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Abstract

Recent studies claimed that planets around the same star have similar sizes and masses and regular spacings, and
that planet pairs usually show ordered sizes such that the outer planet is usually the larger one. Here I show that
these patterns can be largely explained by detection biases. The Kepler planet detections are set by the transit
signal-to-noise ratio (S/N). For different stellar properties and orbital period values, the same S/N corresponds to
different planetary sizes. This variation in the detection threshold naturally leads to apparent correlations in planet
sizes and the observed size ordering. The apparently correlated spacings, measured in period ratios, between
adjacent planet pairs in systems with at least three detected planets are partially due to the arbitrary upper limit that
the earlier study imposed on the period ratio, and partially due to the varying stability threshold for different
planets. After these detection biases are taken into account, we do not find strong evidence for the so-called intra-
system uniformity or the size ordering effect. Instead, the physical properties of Kepler planets are largely
independent of the properties of their siblings and the parent star. It is likely that the dynamical evolution has
erased the memory of Kepler planets about their initial formation conditions. In other words, it will be difficult to
infer the initial conditions from the observed properties and the architecture of Kepler planets.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet systems (484); Astrostatistics strate-
gies (1885)

1. Introduction

Almost all planets reside in multi-planet systems, and the
physical and orbital properties of planets in the same system
convey important clues about their formation and evolution. To
date the majority of the multi-planet systems were found by
Kepler (Borucki et al. 2010).1 However, Kepler could only
detect those planets that transited their hosts and had transit
signals above some certain noise level. This limits our
knowledge about the detected multi-planet systems and
complicates the theoretical interpretation.

As Kepler observations provide directly the transit planet-to-
star radius ratio, the relative sizes of planets inside the same
system can be easily examined. Based on data from the first
four months of observations, Lissauer et al. (2011) pointed out
that adjacent planets were likely to have very similar radii, as
most of the pairs show »R R 1p,in p,out . Here Rp,in and Rp,out are
the radii of the inner and the outer transiting planets (tranets),
respectively. This feature was further studied in Ciardi et al.
(2013), and the authors reported that most (>60%) of the multi-
planet systems found by Kepler appeared to have this size–
location correlation: the outer planet was larger than the inner
one.2 In both studies, the authors compared the observed and
the simulated radius ratio distributions to determine the
statistical significance of their finding. Their simulated
distributions were produced by randomly drawing radii from
the observed radius distribution and going through customized
signal-to-noise ratio (S/N) cuts. As I will explain later, this
approach does not capture all the detection biases.

Later follow-up efforts that lead to better characterizations of
Kepler stars, allowing for comparisons of planetary parameters
across systems. Recently, Weiss et al. (2018b, hereafter W18)
claims that planetary systems are like “peas in a pod,” namely
that the planets orbiting around the same host have similar sizes
and regular spacings. They took the large sample of Kepler
multi-planet systems whose parameters were refined by the
California-Kepler Survey (CKS; Petigura et al. 2017; Johnson
et al. 2017), sorted the CKS planets3 in the same systems
according to their orbital periods, and computed the correlation
between sizes of neighboring CKS planets. They then
quantified the significance of this correlation through bootstrap
tests and found that the observed correlation could not be
explained by randomly resampling the observed size distribu-
tion. The procedure was similar for the spacings between
planets.
A later4 work by Millholland et al. (2017) adopted a similar

statistical approach and further claimed that the masses of
planets inside the same system, given by Hadden & Lithwick
(2017) from analyzing the transit timing variations (TTVs;
Agol et al. 2005; Holman & Murray 2005), should also be
similar. This, together with the aforementioned trends about
radius and spacing, was summarized as the intra-system
uniformity (Millholland et al. 2017).
However, an issue that was overlooked in these studies

(Lissauer et al. 2011; Ciardi et al. 2013; Millholland et al.
2017; W18) is the detection threshold. Below I use the transit
detection as an example, but the idea applies to TTV mass
measurements as well (see Section 7). The Kepler transit search
pipeline requires a nominal minimum S/N of 7.1; for the planet
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1 See a list of all known multi-planet systems at the NASA Exoplanet Archive
(http://exoplanetarchive.ipac.caltech.edu; Akeson et al. 2013).
2 Ciardi et al. (2013) argued that this result only applied to planet pairs in
which at least one was approximately Neptune-sized or larger. However,
without this constraint the results are qualitatively similar in the statistical
sense. See their Figures 4 and 11.

3 A CKS planet is a planet that transits the host, is detectable by Kepler, and is
included in the CKS sample. CKS planets are almost certainly valid planets,
but because of the geometric transit probability and Kepler detection
sensitivity, the CKS planets are not necessarily all the planets in those systems.
4 The W18 work was posted on the arXiv pre-print server before the
Millholland et al. (2017) work.
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sample used in W18, a higher (S/N=10) threshold was used.
The detection completeness depends strongly on the S/N at the
low end (e.g., Fressin et al. 2013; Thompson et al. 2018).
Given the dominating contribution from smaller planets and
weaker transits (e.g., Hsu et al. 2019), the S/N values of Kepler
transit detections as a result appear to pile up toward the
detection threshold (e.g., Figure 1 of Ciardi et al. 2013) and are
not affected by the variations of stellar parameters or noise
levels. For a certain S/N threshold, the resulting planet radius
threshold depends on the orbital period as well as the host
properties. This variation was not fully taken into account by
those referenced works in generating simulated parameters.

A more proper way is fully forward modeling the detection
and selection processes from the intrinsic planetary (radius or
mass) distribution. Instead of randomly drawing parameters
from the observed distribution, one should draw from the
intrinsic distribution and then apply the same detection criteria
(e.g., S/N cut) on these simulated planets. This process
requires knowing the intrinsic planet distribution function and
having access to the automated Kepler detection pipeline. It is
further complicated by the fact that the planet distribution
function is period dependent (e.g., Dong & Zhu 2013; Hsu
et al. 2019) and possibly multiplicity dependent, and that the
Kepler detection efficiency is weakly multiplicity dependent
(Zink et al. 2019).

There is a shortcut that circumvents these problems. In the
full forward modeling approach, one generates synthetic
planetary systems, adds stellar noises, passes them to the
Kepler detection pipeline, decides which planets are detectable,
and finally performs statistical analyses on the simulated
detections. Through this whole process planetary physical
parameters are converted into transit observables and the
detectability of an individual planet is controlled by the transit
S/N. Given the central role of transit S/N, we can directly start
from this parameter as a shortcut to the full forward modeling
approach. As shown in Figure 1 and the upper right panel of
Figure 2, the S/N distribution is independent of the transit

multiplicity and the stellar properties. Therefore, we can
randomly draw detections from this universal S/N distribution,
derive planetary parameters, and perform the same statistical
analysis as we do on the real data. As the relation between S/N
and planetary radius indicates (Equation (1)), when the minor
contribution from the orbital period is ignored, correlated sizes
will definitely lead to correlated S/N values, but correlated S/
N values do not necessarily mean correlated sizes because of
the same stellar size and stellar noise level that the two adjacent
planets share. Therefore, by randomly sampling the S/N
distribution and thus assuming no correlation in S/N values, I
am being more generous than just assuming no size correlation.
In this work, I apply this more robust statistical approach to

study the patterns observed in Kepler multi-planet systems. I
describe the planet sample in Section 2 and explain the basic
idea in Section 3. Then in Sections 4 and 5 I discuss the issues
involved in the “peas in a pod” claim. The size–location
correlation is re-evaluated in Section 6. Finally, I briefly
comment on the intra-system mass uniformity claim and then
discuss the results in Section 7.

2. Sample

I use the same multi-planet sample as in W18. This sample
includes 909 CKS planets in 355 multi-planet systems. The
parameters of the individual planets and of their hosts were
provided in Table 1 of W18. Of relevance to this study are the
stellar mass Må, stellar radius Rå, 6 hr combined differential
photometric precision (CDPP6 hr, a measure of the stellar noise
level; Christiansen et al. 2012), impact parameter b, planetary
radius Rp, and orbital period P. This table did not include a
column of S/N, but it can be easily computed by

( )
( )= ÅR R P

T
S N

3.5 yr

CDPP 6 hr
. 1

p
2

6 hr

Here T is the transit duration, given by
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where ρå is the stellar mean density. Note that the Equation (2)
of W18 did not have the factor - b1 2 , which made their S/
N overestimated, although this would only have a minor effect
on the results.
I show in Figure 2 the stellar noise level CDPP6 hr versus

three chosen parameters: planet radius Rp, period ratio of
adjacent CKS planets, and the transit detection S/N. For
demonstration purposes I divide the whole sample into two at
the median CDPP6 hr: the quiet sample and the noisy sample.
The S/N value dictates the significance of a transit detection

and is a more fundamental observable in signal detections than
planetary radius, which is not even a direct observable in transit
light curves. Because S/N already takes into account the
variation of stellar noise level CDPP6 hr (Equation (1)), one
does not expect the S/N distribution to be different between the
quiet and the noisy samples. Indeed, a two-sample Kolmo-
gorov–Smirnov (KS) test between the S/N distributions from
two samples gives p=0.18,5 confirming that the S/N
distribution is invariant to the variations of stellar properties.

Figure 1. Cumulative distributions of transit S/N. Different transit multi-
plicities are shown in different colors, and the overall sample is shown in black.
There is no clear dependence of S/N on the transit multiplicity.

5 The Anderson–Darling test, which is more sensitive to the differences in
scales as well as the tails of the distributions, gives p=0.05.
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However, the radius distributions and the period ratio
distributions from the two samples are different: the two-
sample KS test gives p<10−5 and p<10−4, respectively.
These differences are most prominent at small values of Rp and
period ratio. The difference in Rp is due to the projection of the

same S/N distribution into different stellar samples: smaller
planets are more easily detected around more quiet stars. Then
through the dynamical stability requirement, the difference in
Rp distributions propagates into the difference in period ratio
distributions. See Section 5 for more details.

Figure 2. Lower panels show the noisy level of the planet host, characterized by CDPP6 hr, vs. the planet radius Rp (lower left), planetary period ratio (lower middle),
and signal-to-noise ratio (S/N) of the transit detection (lower right). The gray dashed horizontal lines mark the median CDPP6 hr, based on which the sample is divided
into two. In the upper panels we compare the cumulative distribution functions (CDF) of the individual parameter (Rp, period ratio, and S/N) from the two samples,
and the two-sample KS test p-values are indicated. The radius and period ratio distributions of the two samples are statistically different. In the case of period ratio
(lower middle panel), we also mark with the black dashed line the smallest CDPP6 hr for various period ratios. The S/N distributions are very similar between the two
samples. Nearly 50% of planet detections have S/N<30, i.e., only a factor of three above the detection threshold (S/N=10, as marked by the vertical dashed line).

Figure 3. Schematic view of how an inhomogeneous stellar sample will lead to the size (left panel) and spacing (right panel) correlations. For stars with a certain noise
level, only planets above a certain size are detectable. This can be seen in the lower left panel of Figure 2. Given that there are more smaller planets than larger ones,
detected planet pairs tend to cluster around the corner that is defined by the vertical and horizontal sensitivity limits. For different stellar samples (as measured by their
noise levels), these clusterings appear at different locations along the diagonal line, and thus a collection of these planets will naturally show a size correlation (left
panel). Similarly, the stability boundary in the measure of period ratio decreases with decreasing planet sizes, as seen in the lower middle panel of Figure 2. Because of
the strong bias in the orbital period of transit detections, observable planet triplets will tend to cluster around the corner of the stability boundary. For different stellar
samples (as measured by the noise level), these clusterings appear at different locations along the diagonal line, and thus a collection of these planet triplets will
naturally show a spacing correlation (right panel).
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Therefore, across the whole sample there is a universal S/N
distribution but no universal radius distribution or period ratio
distribution. The latter two were used in the bootstrap test
by W18.

3. The Idea of this Paper

Figure 3 illustrates how the variation in the detection
threshold originating from a fixed S/N can lead to size and
spacing correlations in observed planets.

First of all, one should know that there are more smaller
planets than larger ones, at least down to Keplerʼs sensitivity
limit, after the correction of detection bias (e.g., Hsu et al.
2019). Therefore, if only planets above a certain size are
detectable, then the detected planets will tend to pile up toward
the detection threshold. In realistic missions such as Kepler, the
detection threshold is usually fixed in S/N because of its
central role in signal detection. However, given the relation
between planetary radius and transit S/N (Equation (1)) a fixed
S/N threshold will lead to different radius thresholds for stars
with different noise levels. Such a varying radius threshold will
naturally lead to a correlation between the sizes of neighboring
Kepler planets. See the left panel of Figure 3 for a simple
illustration.

W18 used bootstrap tests on planetary radii to study the
significance of the size correlation. The underlying assumption
behind their radius bootstrap test is that the radius distribution,
P(Rp), should be universal across different stellar subsamples. I
have shown in the previous section that this assumption does
not hold for the sample under investigation. Instead, the radius
distribution depends on the stellar properties, specifically the
noise level CDPP6 hr. I denote this conditional radius distribu-
tion as ( ∣ )P R CDPPp 6 hr and note that

( ) ( ∣ ) ( )¹P R P R CDPP . 3p p 6 hr

A proper radius bootstrap test should therefore be randomly
drawing radii from the conditional radius distribution

( ∣ )P R CDPPp 6 hr . Unfortunately, such a conditional radius
distribution cannot be easily specified, but one can use the
relation between Rp and S/N to further simplify the procedure.
With other parameters the same (as is required by the bootstrap
test), Rp uniquely determines S/N. Thus randomly sampling

( ∣ )P R CDPPp 6 hr is equivalent as randomly sampling S/N from

( ∣ )P S N CDPP6 hr and then deriving Rp from S/N. Recalling
that the CDPP6 hr distribution is universal across different stellar
subsamples,

( ∣ ) ( ) ( )=P PS N CDPP S N , 46 hr

one can further simplify the proper radius bootstrap test as
randomly resampling the S/N distribution P(S/N). This is
another justification of the S/N-resampling method that is used
in this work.
Similar to the claimed size correlation, the claimed spacing

correlation is also affected by the variation in the detection
threshold. With decreasing stellar noise, the minimum period
ratio between adjacent planets also decreases, as shown in the
lower middle panel of Figure 2. This is probably because of the
stability boundary, in the measure of period ratio, decreases
with decreasing planet size and we refer to Section 5 for a more
detailed explanation. As the transit probability strongly biases
toward small period values and thus small period ratios, the
detectable planet pairs tend to pile up toward the smallest
period ratio (i.e., the stability boundary). The variation of this
stability boundary in an inhomogeneous stellar sample
naturally leads to a spacing correlation. See the right panel of
Figure 3 for an illustration.

4. On the Radius Uniformity

In the left panel of Figure 4 I show the radius of one CKS
planet, Rj, versus the radius of the outer adjacent CKS planet,
Rj+1. This is very similar to Figure2 of W18. The correlation
coefficient, quantified by Pearson r, between Rlog j and +Rlog j 1
of all planet pairs is r=0.65, consistent with the value
reported in W18.6

To assess the importance of this correlation W18 generated
synthetic planet systems in which the radius of each planet was
randomly drawn from the overall radius distribution. An
example realization following the procedure of W18 is shown
in the middle panel of Figure 4. Note that in this plot there
appears to be fewer sub-Earth-sized planets. This is because,

Figure 4. Comparisons between radii of adjacent planets (Rj and Rj+1). In the left panel is the distribution of planet pairs in the CKS multi-planet sample. In the middle
and the right panels are the synthetic planet pairs generated in two different approaches: resampling Rp and resampling S/N. The former was used in W18. Planet pairs
from two stellar samples (quiet and noisy) are plotted with different colors to highlight the difference. The correlation coefficient between Rlog j and +Rlog j 1 is also
indicated at the lower right corner of each panel.

6 As pointed out by the journal’s statistics editor, Pearson’s r correlation
coefficient assumes linear relationships and Gaussian scatter, neither of which
are well established for this data set. Nonparametric correlation coefficients,
such as Kendall’s τ, are better suited for this correlation test. Pearson’s r values
are nevertheless used in this work simply to keep consistency with W18.
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following W18, simulated planets with S/N < 10 are excluded.
This step reduces the number of planets by nearly 20%.

However, as discussed in Section 2 and illustrated in
Figure 2, the S/N distribution is more fundamental and
universal than the radius distribution in transit signal detec-
tions. In particular, the radius distribution appears differently
for stars with different noise levels. This can also be seen in the
left panel of Figure 4, where I have differentiated the planet
pairs from quiet and noisy samples. Note the similarity between
this plot and the left panel of Figure 3. Following the reasoning
in Section 3, I therefore modify the bootstrap test of W18.
Instead of resampling the Rp distribution, I resample the S/N
distribution and then, with other parameters unchanged, derive
Rp from Equation (1).7 Note that while I am bootstrapping
transit S/N, I am essentially performing a forward modeling
(see Section 1 for the detailed explanation). The result from one
random test is shown in the right panel of Figure 4. In this
simulated sample the planet pairs from two stellar samples
show a systematic offset, a feature that is similar to the data
(left panel). The radii of adjacent planets also show significant
correlation, r=0.48.

I repeat the above statistical test for 1000 times, record all
Pearson r coefficients, and show their histogram in Figure 5.
For comparison purposes I also produce the histogram of r
coefficients from 1000 bootstrap tests following the W18
procedure (i.e., resampling Rp), and the resulting histogram
peaks at r≈0, similar to what W18 had (see their Figure5).
By resampling on the more fundamental parameter S/N, I
almost always reproduce, at least qualitatively, the observed
size correlation, although with an average correlation coeffi-
cient of r≈0.5 this effect alone cannot explain quantitatively
the observed size correlation. We discuss below what can
potentially account for the remaining size correlation.

Since Kepler can only detect transiting planets above a
certain S/N threshold, it is very likely that many of the Kepler
multi-planet systems may contain additional undetectable
planets. Outside the period limit that Kepler can probe
(∼1 yr), studies have shown that cold giant planets preferen-
tially co-exist with inner small planets (Zhu & Wu 2018; Bryan
et al. 2019; Herman et al. 2019), the inclusion of which will
certainly break the size similarity pattern.
Inside the Kepler period domain, there are also signs of

additional planets. Dynamical studies have suggested that the
majority of the Kepler multi-planet systems are not fully
packed if the detected planets are all the planets in the system.
According to Fang (2013) ∼55% of systems with at least four
detected planets can contain additional intervening planets
without leading to dynamical instability, and the fraction is
even higher for systems with two or three detected planets (see
also Pu & Wu 2015). Furthermore, the fact that Kepler planet
detections pile up toward the detection threshold8 is also
suggesting that smaller and undetectable planets do exist.
An intervening undetectable planet between two detectable

ones likely also transits and has a smaller (compared to the
detection threshold) size. What the addition of such a smaller
intervening planet does to the radius correlation (e.g., left panel
of Figure 4) is two-fold. First, one planet pair that shows strong
correlation is removed and then, two planet pairs that show
much weaker correlation are added. The combined conse-
quence is that the size correlation is reduced significantly. To
demonstrate this effect, one would like to increase Keplerʼs
sensitivity to recover the smaller planets. This is obviously not
practical, so I turn to the opposite direction.9 I increase the S/N
threshold used in the statistical test, which is equivalent to
increasing stellar noises and thus lowering Keplerʼs sensitivity,
and then measure the size correlation in the same way. As
shown in Figure 6, the size correlation becomes stronger in
such down-graded Kepler missions. This is aligned with our
speculation and suggests that, in a superior Kepler mission
which can detect much smaller planets and thus is less affected
by detection biases, the size correlation should be much
weaker.
Another way to show the influence of additional planets on

the size correlation is to restrict to high-multiple systems that
are less likely to contain additional planets because of stability
requirements. I only include systems with at least four CKS
planets and repeat the same statistical tests. The results are
shown in Figure 7. This time the distribution of the correlation
coefficients from statistical tests is statistically closer to the
observed value. This again confirms that the missing planets do
have an effect on the size correlation.

5. On the Period Ratio Uniformity

W18 also claimed that the spacings between planets,
measured by the period ratios, are correlated in systems with
at least three CKS planets. To reach this conclusion, they first
identified all CKS planet triplets, which consisted of all the
CKS planets in three-planet systems and three consecutive
planets in higher-multiple systems. For each planet triplet they

Figure 5. Distributions of the Pearson r coefficients from statistical tests. The
blue and orange histograms are results from two different approaches, and the
black dashed line indicates the measured correlation value (r=0.65). Note
that resampling radius is a bootstrap method whereas resampling S/N is a
forward modeling approach.

7 In practice, this can be easily achieved with the rela-
tion ( ) ( )=R R S N S Np

new
p new .

8 The detection efficiency of the Kepler pipeline depends on the transit S/N.
As Ciardi et al. (2013) have shown with some earlier Kepler samples (see their
Figure1), Kepler detection is only complete for S/N25. Therefore, when
the incompleteness of the detection pipeline is taken into account, S/N of ∼20
is still at the edge of the detection threshold.
9 This test was originally suggested by Xi Zhang.
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computed the period ratio between the inner two planets, in,
and the period ratio between the outer two planets, out.
Considering the incomplete sensitivity to large period
ratios, W18 only included the planet triplets whose < 4in
and < 4out . Then they computed the Pearson r coefficient
between the two variables log in and log out and found
r=0.46. To assess the significance of this correlation, they
generated synthetic systems, in which the period ratios were
randomly drawn from the overall period ratio distribution, and
found that the correlations in these simulated samples were
systematically much smaller than the observed one.

This approach may produce biased results in two ways. First,
the cut at period ratio = 4 is fairly arbitrary and not
physically motivated. In the left panel of Figure 8 I show the
out versus in for all planet triplets in the W18 sample. One
can see that the detection limit at large period ratios is diagonal
rather than flat. This can be well explained by the detectability
of these multi-planet systems. If the planets in the same system
have coplanar or nearly coplanar orbits, the detectability of all
planets only depends on the orbital period of the outermost
planet, Poutermost. For a planet triplet, this detection threshold
scales as µ in out. In the left panel of Figure 8, I plot the line
that corresponds to =  25in out , and it roughly agrees with the
upper boundary of all data points. Adopting this physically
motivated detection threshold, I find the Pearson r=0.21
between log in and log out. Restricting to <  16in out gives
r=0.15. Both correlations are much weaker than that given
by W18.

The second issue is the varying detection threshold of the
transit. At first glance, the S/N, as given in Equation (1), has
only weak dependence on orbital period and no explicit
dependence on the period ratio. The period ratio comes into
play via the dynamical stability requirement. The stability
boundary is typically measured in the number (K ) of mutual
Hill radii, rH,

⎜ ⎟⎛
⎝

⎞
⎠· ( )- = º

+ +
a a K r r

a a m m
,

2 3
, 52 1 H H

1 2 1 2
1 3

where ai and mi are the semimajor axis and mass of the inner
(i= 1) and outer (i= 2) planets, respectively. For simplicity,
we further assume ( )» » Å Åm m M R R1 2 p

3. Note that this is
not valid in general, but it is acceptable for the planet pairs that
are just above the detection threshold and close to the
instability limit. Then with Kepler’s third law we can have a

rough scaling between the planetary size and the critical period
ratio for dynamical stability

⎛
⎝⎜

⎞
⎠⎟ ( )= » +

Å


P

P
K

R

R
1 0.019 . 62

1

p

Below we adopt K=20, although in reality the threshold on K
also depends on many factors, such as individual planet
masses, eccentricities, mutual inclinations, etc. (e.g., Chambers
et al. 1996; Zhou et al. 2007; see Pu & Wu 2015 for a detailed
discussion). As Figure 2 shows, the smallest planet detectable
around a typical noisy star is 1R⊕, for which the stability
threshold is » 1.4crit,1 . The smallest detectable around a
typical quiet star, in contrast, is 0.5R⊕, with a stability
threshold of » 1.2crit,2 . This varying threshold is visible in
the lower middle panel of Figure 2 as well as the right panel of
Figure 8. Again for demonstration purposes I have differ-
entiated the planet triplets from the quiet sample and noisy
sample with different colors. No planet triplets from the noisy
sample are below the red dashed line, which denotes

= »  2in out crit,1
2 , whereas planet triplets from the quiet

sample can extend further down to crit,2
2 . This varying stability

threshold was not taken into account in W18.
The varying stability threshold applying to an inhomoge-

neous stellar sample naturally leads to a spacing correlation, as
is illustrated in the right panel of Figure 3. Note the similarity
between this plot and the right panel of Figure 8. Generating
synthetic planetary systems that meet all detection thresholds of
individual planets and of the triplet as well as the stability
threshold is not trivial, so I cannot assess quantitatively the
impact of this effect on the Pearson r coefficient. However, as a
qualitative check, if only planet triplets from the noisy sample
are used, I have r=0.25 even with the square cut at = 4.
This is much smaller than what one has (r=0.46) if both
noisy and quiet samples are used.

6. On the Size Ordering

Lissauer et al. (2011) and Ciardi et al. (2013) first noticed
that the Kepler multi-planet systems show a size–location
correlation. Specifically, the larger planet in any planet pair is
most often the one with the longer period. To check the
statistical significance against observation biases, these authors
compared the radius ratio distributions between observation

Figure 6. Size correlation plots for different choices of the threshold S/N values. Increasing the threshold S/N is equivalent to decreasing the Kepler sensitivity,
which leads to increased size correlation. Extrapolating to lower S/N thresholds, this test suggests that a much better Kepler-like mission that is sensitive to smaller
planets will find a much weaker size correlation.
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and simulation. In generating simulated planet pairs, they
randomly drew radii from the observed radius distribution and
then, to mimic their selection procedure, eliminated those
which would not be detected if either of the planets at the
orbital period of the other one fell below the specified S/N
threshold. Their simulated radius ratio distribution showed an
equal number of planet pairs with <R Rp,in p,out and

>R Rp,in p,out. Ciardi et al. (2013) also performed several other
tests, including using different S/N thresholds and maximum
periods. The size ordering was always observed. Therefore, it
was concluded that the size–location correlation has a physical
origin.

This statistical approach suffers from the same issue as
the W18 one. Using the CKS multi-planet sample, I show in
Figure 9 the cumulative distributions of transit S/Ns and radius
ratios between planets in pairs. Similar to what Lissauer et al.
(2011) and Ciardi et al. (2013) found, here I also have more
than 60% of planet pairs showing the so-called size–location
correlation: <R Rp,in p,out. However, the S/N is on average
unity, suggesting that the transit signal of the inner planet is as
strong as that of the outer one. This is is expected if one
randomly pairs up the transit S/N values from the observed S/
N distribution. See the green curve in the left panel of Figure 9.
Given the relation between S/N and radius (Equation (1)), one
can derive the radius ratio from the S/N,

⎛
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⎞
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⎛
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( )
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( )»
-R

R

P

P

S N

S N
. 7in

out

p,in

p,out

2
in

out

1 3

In the above approximation we ignore the contribution from
impact parameters. Because of the term involving the period
ratio, two transit signals with equal S/N naturally lead to a pair
of planets with <R Rp,in p,out, that is, the size–location
correlation.

The distributions from randomly sampling the S/N distribu-
tion do not match the observed distributions perfectly, in
particular in the range ( ) ( )< <1 S N S N 4in out , or

equivalently < <R R1 2p,in p,out . There are two possible
reasons. First, transiting planets in some pairs do show a weak
size correlation. This is also suggested in Section 4, as the
random S/N sampling cannot fully explain the observed
correlation strength (Figure 5). However, as is also suggested in
Section 4, this can possibly be explained by transit bias, as one
is not detecting all of the planets in the same system.
Regardless, the fraction of planet pairs that show the size
correlation is likely a small fraction (5%). Otherwise it would
require a very fine-tuned period ratio distribution to push the
median S/N to almost exactly unity.
Another possible reason that can account for the deviation is

some subtle detection bias in the planet search pipeline. When
S/N values are randomly paired up, it is implicitly assumed
that the detection efficiency does not depend on parameters
other than S/N. This is not entirely true in reality. For the same
value of S/N, the detection efficiency decreases gradually with
the orbital period (see, e.g., Figure9 of Thompson et al. 2018).
This effect biases against planet pairs with large R Rp,in p,out, the
type of pairs that are in short for the observational distribution
to match the simulated one. Future detailed studies are needed
to quantify this effect.
In short, the observed size–location correlation in Kepler

multi-planet systems can be mostly, if not fully, explained by
detection biases. It is possible that some planet pairs do have
ordered sizes, but they only consist of a small fraction (5%)
of all planet pairs.

7. Discussion

In this work, I re-examine several claims about the relative
sizes and spacings between Kepler planets around the same
host. I make use of the observed transit S/N values, because
they are observationally more fundamental than other para-
meters such as the planet radius. I present several findings.

Figure 7. The left panel shows the comparison between radii of adjacent planets (Rj and Rj+1) from compact systems, defined as systems with at least four transiting
planets. The planet pairs from two stellar samples are marked with different colors. The correlation coefficient is given in the lower right corner. For these planet pairs,
1000 statistical tests are performed, in which the S/N (rather than Rp) is resampled, and the resulting Pearson r values are shown as the histogram in the right panel.
The observed correlation coefficient is not much different from the correlation we get in the statistical test.
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1. The apparently similar sizes of planets in the same Kepler
system can be largely explained by the projection of the
same S/N cut onto different stellar properties.

2. The apparently correlated spacings, measured in period
ratios, between adjacent planet pairs in systems with at
least three detected planets are partially due to the
arbitrary upper limit that W18 imposed on the period
ratio and partially due to the varying stability threshold in
different stellar samples.

3. The observed size–location correlation can be explained
by the projection of the same S/N onto different values of
orbital period. As far as the transit detection is concerned,
the inner and the outer transiting planets on average have
similar S/N values.

The claim of intra-system mass uniformity by Millholland et al.
(2017) suffers from very similar issues. Below I draw the
analogy between the Millholland et al. (2017) and W18 studies
and defer a more quantitative analysis for future works. The
analysis of Millholland et al. (2017) was performed on a
sample of 89 planets from 37 Kepler systems, whose masses
were constrained by Hadden & Lithwick (2017) through
TTV.10 Whether or not a TTV mass measurement can be made
is more directly related to the TTV amplitude than to the planet
mass. For a pair of planets, the TTV amplitude is generally
dependent on the distance from the period commensurability,
Δ, which is defined as (Lithwick et al. 2012)

( )D º
¢
-

P

P

J

J
1 . 8out

in

Here Pin and Pout are the orbital periods of the inner and outer
planet in a TTV pair, respectively, and J′/J is the closest small
integer ratio for Pin/Pout. Other things being equal, a smaller Δ
means that a lower planet mass can be measured from TTV.
This makes the Δ−mp relation (Figure 10) somewhat
analogous to the CDPP6 hr–Rp relation (lower left panel of
Figure 2). Consequently, Millholland et al. (2017) reshuffling
the planet mass is similar to W18 bootstrapping the planet
radius. As shown in Section 4, this approach leads to biased
results.
Therefore, the so-called intra-system uniformity and the size

ordering effect that appear in the Kepler multi-planet systems
can be mostly, if not entirely, explained by observational
biases. As far as the data is able to inform, the physical
properties of one Kepler planet are largely independent of the
properties of both its siblings and the parent star.
So far the analysis has been done on the Kepler multi-planet

systems, but the same conclusion likely applies to all Kepler
planets. It is true that over half of the transiting planets were
found in systems with only one transiting planet (i.e., single-
tranet systems). However, this is most likely a result of a
selection effect, as Kepler only detects planets that transit the
host star. The orbital properties, such as eccentricity and mutual
inclination, of single tranets and multi tranets are different (e.g.,
Xie et al. 2016; Zhu et al. 2018; Van Eylen et al. 2019), but this
does not necessarily mean that their physical properties are
different as well. In fact, studies have shown that the planetary
properties and the stellar properties of single-tranet and multi-
tranet systems are similar (e.g., Munoz Romero & Kemp-
ton 2018; Weiss et al. 2018a; Zhu et al. 2018), suggesting they
are likely the same population. Nevertheless, future ground-
based radial velocity observations will be able to tell whether or
not this is true.
A recent work by He et al. (2019) applied the full forward

modeling method to study the Kepler multi-planet systems. The
authors generated multi-planet systems following specific

Figure 8. Outer period ratio vs. the inner period ratio for all triplets (left panel) and the subset with both period ratios <4 (right panel). I use triangles, squares, and
asterisks for planet triplet from three-tranet, four-tranet, and �five-tranet systems. Weiss et al. (2018b) only used planet triplets with both period ratios <4 (i.e., those
in the right panel). However, such a square cut is not physically motivated, since the detection probability of a triplet scales as  in out. The gray dashed line in the left
panel shows an example. I also label with different colors the planet triplets from two stellar samples to highlight their different distributions. In particular, there is no
planet triplet with <  2in out (i.e., to the lower left of the red dashed lines).

10 Millholland et al. (2017) had eight planets with only mass upper limits, as
indicated in Hadden & Lithwick (2017), in their sample: Kepler-23 d, Kepler-
24 e, KOI-115.03, Kepler-105 b, Kepler-114 b, Kepler-114 d, Kepler-310 c,
and KOI-427.01. It is not appropriate to treat mass upper limits and mass
measurements in the same way. The removal of these planets reduces the
number of transiting planets in four systems (Kepler-105, 114, 310, 549) down
to one, so these systems are excluded from the sample. In the end I have 77
planets from 33 systems.
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prescriptions, passed the simulated systems through a simpli-
fied Kepler detection pipeline, and compared their simulated
planet catalogs to the real catalog. The authors find a better
match in a combination of selected observables between the
simulated and real catalogs once the periods and radii of planets
around the same host are assumed to be correlated. However, it
is unclear whether the improvement in the fit is due to physical

correlations or some artifacts in the model. In fact, as their best-
fit models show (Figures 3–5 of He et al. 2019), the match to
transit depth and transit depth ratio distributions, the most
relevant ones for the size correlation, is not improved once the
size correlation is introduced.11 This is in agreement with the
conclusion of the current paper that there is no evidence for the
size correlation. The spacing correlation is a much more
complicated issue in such a full forward modeling approach. To
give a specific example, how to generate stable multi-planet
systems remains an unsolved problem. The critical spacing for
long-term stability depends on many factors, including the
number of planets (i.e., multiplicity; Funk et al. 2010) and
orbital properties (i.e., eccentricity and mutual inclination; Pu
& Wu 2015), the latter of which have also been shown to be
multiplicity dependent (Xie et al. 2016; Zhu et al. 2018). Using
a fixed K value for all systems, as was done in He et al. (2019),
is not realistic. More work is needed.
The conclusion that the properties of Kepler planets are

largely independent of the properties of their siblings and the
parent star has theoretical implications. Either the formation of
Kepler planets had almost no requirement for their birth
environment, or the (likely) chaotic evolution erased their
memory of the initial condition. This latter scenario is more
likely once several other pieces of evidence are put together.
Kepler multi-planet systems are shown to be dynamically
compact (Pu & Wu 2015) and have very diverse compositions
(Wu & Lithwick 2013; Marcy et al. 2014; Hadden &
Lithwick 2017). The nearly flat period ratio distribution, arisen
from either in situ formation (Petrovich et al. 2013; Wu et al.
2019) or breaking the chain of resonances after migration
(Izidoro et al. 2017), also points to a stage of dynamical
instability. Finally, Kepler planets are shown to be strongly

Figure 9. Cumulative distributions of the transit S/N (left panel) and the radius ratio (right panel) between planets in a pair. The ratio is specified as the property of the
inner to the property of the outer. The two ways of forming planet pairs are studied. The blue curves use only pairs from adjacent planets, whereas the orange curves
include pairs from non-adjacent planets. The green curves are results from randomly sampling the S/N distribution. The vertical dashed lines mark the boundary
where the quantity of the inner equals the quantity of the outer, and the horizontal solid lines with colors mark the values at which the curves meet these equalities. The
green regions mark the 1σ confidence interval, derived from 1000 realizations of the random sampling, and the horizontal dashed lines mark the median. On average
the inner tranet has the same S/N as the outer one, which is what one expects from the random sampling. This naturally leads to an excess of pairs with <R Rp,in p,out

(i.e., the size–location correlation).

Figure 10. Illustration of the planet pairs used in Millholland et al. (2017) for
claiming the intra-system mass uniformity. For each pair, I show on the x-axis
the masses of individual planets and on the y-axis the distance to exact period
commensurability,Δ, given by Table 2 of Hadden & Lithwick (2017). The size
of the symbol reflects the radius of the planet. As Δ decreases, lower masses
can be detected via the TTV technique. This detection bias is not taken into
account by Millholland et al. (2017) in constructing synthetic systems.

11 Their best-fit clustered periods and sizes model actually gives a worse match
to the observed distributions of transit depth and transit depth ratios than their
best-fit non-clustered model does.
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correlated with outer giant planets (Zhu & Wu 2018; Bryan
et al. 2019; Herman et al. 2019). The planet–planet scatterings
that are responsible for the large eccentricities of the cold giant
planets (Chatterjee et al. 2008; Jurić & Tremaine 2008) can
easily drive dynamical instabilities in the inner system.

As the orbital velocity far exceeds the escape velocity for the
majority of Kepler planets, the encounters between planets
during the dynamical evolution can significantly revise their
physical properties, thus removing the imprint of the initial
formation conditions. In other words, it will be difficult to infer
the initial conditions from the properties of current Kepler
planets. A different conclusion was reached in Kipping (2018)
from studying the size orderings of Kepler planets. Kipping
(2018) assumed that the observed orderings are physical and
free from observational biases. This is not true, as the present
study has shown.

I would like to thank Subo Dong, Cristobal Petrovich,
Yanqin Wu, Norm Murray, and Eve Lee for discussions, and
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the size correlation section. I also thank the anonymous referees
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