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1. Introduction
Cluster analysis is an important exploratory tool widely used in many applications. It consist of a
process in discovering groups of objects such that the objects in a group will be similar (or related) to
one another and dissimilar with (or unrelated) to the objects in other groups. Cluster analysis is a
technique for creating groups of objects such that each cluster contains points that are similar and
unique [1]. The goal is to assign objects in a data set into meaningful classes such that objects in the
same class are more similar to each other than to those in other classes.

One of the most popular clustering methods is the K-Means clustering algorithm [2]. It is a system
ordinarily used to directly segment sets of data into k groups. K-Means algorithm generates a fast and
efficient solution. The basic K-Means algorithm works with the objective to minimize the mean square
distance from each data point to its nearest center.
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A good clustering technique will generate a high quality clusters and high intra-cluster similarity with
low inter-cluster similarity. The quality of clustering results relies heavily on the distance measure
used by the technique and its implementation and also by its ability to discover some or all of the
hidden patterns [3].

A distance measuring function is used to measure the similarity among objects, in such a way that
more similar objects have lower dissimilarity value. Several distance measures can be employed for
clustering tasks. Each measure has its own advantage and disadvantage. The selection of different
measures is a problem dependent. Hence, choosing an appropriate distance measure for K-Mean
clustering algorithm can greatly reduce the burden of the algorithm.

The weakness of the basic K-Means clustering method is that, it is sensitive to the selection of the
initial partition and may convergence to a local minimum of the criterion function value. A local
minimum is the least value that is located within a set of points which may or may not be a global
minimum and it is not the lowest value in the entire set. Its computational complexity is also very
high, especially for large dimension dataset. An ad-hoc solution to these problems is by choosing a set
of different initial partition and the initial partition that gives the smallest sum of squares error is taken
as the solution.

Many attempts were made by different researchers to improve the performance of the basic K-Means
algorithm. [4] motivated the use of a deterministic divisive hierarchical method, which is referred to as
PCA-Part (principal components analysis partitioning) for initialization and the method brings about
faster convergence of the K-Means clustering with fewer number of iterations compared to basic K-
Means method. Their experimental results improved the clustering quality as compared to some other
clustering methods. But, there is no mention of the dimensionality of the data and the computation
time needed in sorting the centers is quite high in this paper.

{5} presented a new strategy to accelerate the K-Means clustering algorithm through the Partial
Distance (PD) logic. The proposed strategy avoids many unnecessary distance calculations by
applying efficient PD approach. The experimental results reveal the efficiency on the proposed
strategy when applied to different data sets. However, the new presented strategy gains more
computation time saving than the basic PD technique. This is because the initial distance d is greater
than the minimum distance � � � produced from the new technique is very small. This method
assumes a random selection of the initial centroid which is what is obtainable with the basic K Means
method.

[6] designed an experiment on different types of normalization each of which was tested against the
ID3 methodology using the HSV dataset, taken three factors into account number of leaf nodes,
accuracy and tree growing time and accomplished comparisons between different learning methods as
they were applied to each normalization procedure. They also designed a new matrix to test for the
best normalization method based on the factors and their priorities and stated that accurate result
depends on the type of analysis and the kind of data to be normalized.

[7] Extended the K-Means clustering algorithm by applying global normalization before performing
the clustering on distributed datasets, without necessarily putting the whole data into one location. The
effectiveness of the proposed normalization based distributed K-Means clustering algorithm was
compared against distributed K-Means clustering algorithm and normalization based centralized K-
Means clustering algorithm. The quality of clustering was also compared by three normalization
procedures for the proposed distributed clustering algorithm. The comparison study implies that the
distributed clustering results depend on the type of normalization procedure.



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012029

IOP Publishing

doi:10.1088/1742-6596/1489/1/012029

3

For the two methods presented above, it is observed that there is no suggestion as to the techniques of
dimension reduction which is a very serious disadvantage of the basic K-Means algorithm. Thus, to
obtain an optimum solution for K-Means clustering algorithm, the data need to be pre-processed
before the K-Means cluster analysis [3]. This pre-processing process consists of data standardization
to scale the dataset to fall within a specified range of values so that any attribute with larger value will
not dominate the attribute with a smaller value. Moreover, for a very high dimensional dataset, a
singular value decomposition (SVD) can be used to reduce the dimension [8].

The singular value decomposition is a powerful tool employed for the solution of systems of linear
equations and the approximation of a matrix in the field of matrix computation and analysis. It is also
a very popular technique used for linear transformation which is employed in the compression of data
and its visualization [9]. The main aim of conducting SVD is the reduction of the dimension of high
dimensional dataset that consist of very large number of variables that are interrelated which retain to
a large degree the variation present in the original dataset. The principal components (PCs) are new
uncorrelated ordered variables whose initial variables are synonymous with the original variables [10],
[11].

As K-Means is highly dependent on its initial center position [8], an alternative way of center
initialization method is also required to make the algorithm more effective and efficient. To overcome
the above weaknesses, this paper focused on developing a good clustering technique by two data
preprocessing techniques, selection an appropriate distance measure and the initialization of the center
points for K-Means clustering algorithm.

2. Materials and Methods
The method is a combination of two data pre-processing techniques and selection of better similarity
measure for K-means analysis. A method of z-score is used to scale the data to fall within a specified
range of values, so that any variable with larger value will not dominate the variable with smaller
value. Furthermore, the singular value decomposition to obtain a reduced data containing possibly
uncorrelated variables. Third, the resulting reduced data will be applied to the K-Means clustering
algorithm using Euclidean distance in obtaining the distances between the centers and their points
attached to each center. All the analysis is carried out using MATLAB M-File 7.6 (R2008a) package.
The steps for the technique are as follows:

2.1. Step 1
Consider the z-score method of data standardization. For convenience, let � � � �� � � is the

-dimensional raw data set. This results in an � data matrix given by:

� � � �� � � �

�
�

	 	 � 	
�

The z-score of is given as: � � �

 (1)

where
, is the raw scores to be standardized. 
 and are the sample mean and sample standard deviation

respectively.

2.2. Step 2
In step 2, we proceed to find the singular value decomposition of the standardized dataset in Equation
1. After that a reduced projected data will be obtained. Consider the standardized data matrix , with
zero mean and variance 1. Mathematically, the transformation is defined by a set of -dimensional
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vectors of loadings (loadings here means the weight by which each standardized original variable
should be multiplied to get the component score).

Let � � � � � (2)

where
� � � ; the column of are orthogonal eigenvectors of , the column of are

orthogonal eigenvectors of and is the diagonal matrix containing the square roots of
eigenvalues from or in descending order. And to find we have to start with .

�

�
�

	 	 � 	
�

and �

�
�

	 	 � 	
�

�

�
�

	 	 � 	
�

�
�

	 	 � 	
�

�

� � � �

� � � �

	 	 � 	
� � � �

To get the eigenvalues that corresponds to the eigenvectors of . The equation: � � � defines
the eigenvector and by applying this to gives:

� � � �

� � � �

	 	 � 	
� � � �

	
�

	

This can be written as a set of equations

� 
 � 
 �
 � � (3)

� 
 � 
 �
 � � (4)

� 
 � 
 �
 � � (5)

where � � � �

Rearranging the above Equations (3, 4 & 5) and solving for by putting the determinant of the
coefficient matrix as zero. This will result in our eigenvalues also plugging back into the original
equation will get us our eigenvectors. These eigenvectors are column vectors in a matrix which is
ordered by the corresponding eigenvalues size. This implies that, the eigenvector of the largest
eigenvalues is found in column one, the next eigenvector in size of the eigenvalues is found in column
two and so on until we arrive at the eigenvectors of the smallest eigenvalues which is placed in the last
column of our matrix. Then, we convert the matrix into an orthogonal matrix which we do by applying
the Gram-Schmidt orthogonalization process to the column vectors to obtain .

Thus �

�
�

	 	 � 	
�

The calculation of is similar and same procedure with , but is based on .
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Thus �� �

�
�

	 	 � 	
�

and �

�
�

	 	 � 	
�

For taking the square roots of the eigenvalues that are non-zero and using them as the elements in
the diagonal by putting the largest in , the next largest in and so on until the smallest value
ends up in , these values indicate the variance of the linearly independent components along each
dimension. The non-zero eigenvalues of and are always the same, that is why it does not matter
which one we take them from. The diagonal entries in are the singular values of , the columns in
are the left singular vectors and the columns in are the right singular vectors.

�

�
�

	 	 � 	
�

�

� � �
� � �
	 	 � 	
� � �

where
� � � � are the rank ordered set of the singular values. Now we have all the pieces of the

puzzle, then full principal components decomposition of can be given as:

�

�
�

	 	 � 	
�

� � �
� � �
	 	 � 	
� � �

� � � �

� � � �

	 	 � 	
� � � �

�

�
�

	 	 � 	
�

2.3. Step 3
Given a set of observations, � � � �� � � where each observation is a -dimensional real
vector, to partition the observations into sets � � �, � � � � � � � compute

� � � � � � � �� � �� � � � (6)

The algorithm proceeds by alternating between two steps

� � � − | ≤ | − | ∀ , 1 ≤ ≤ (7)

where
each is assign to exactly one . Then update the process by calculating the new centers in the new
clusters. The algorithm converges when this assignment no longer changes. Then calculate the total
sum of squares error (SSE) that is:

= ∑ ∑ | − | (8)

where = ∑ denotes the centroid of a cluster and denotes the number of instances in .

3. Results and Discussions
In this section, a simulation experiment is conducted to compare the basic and new K-Means methods.
In order to show the advantage of the new K-Means method, we use small and large in all our
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simulation experiment. That is ( , ) = (15, 20), (100, 500), (200, 500), (500, 1500) and (1000, 1500),
where refers to the number of variables and is the sample size. The data was generated from
multivariate normal distribution (0, ) with covariance matrix = Γ, > 0, and Γ is a
symmetric matrix of size ( × ) with all diagonal elements equal 1 and all off diagonal elements
equal where = 0, and = 1.2 as in [12]. The = 0 values is a representative of no correlation
values. For = 1.2 the covariance matrix for the = 0 value is:

=

1.2 0 � 0
0 1.2 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 1.2

; = 0

The CPU running time required by each experiment and their error sum of squares for the two
methods are presented in Table 1. Here a sample of four  cluster formations are shown in Figure 1 to
Figure 4, for the pairs ( , ) = (15, 20) and (100, 500) owing to convenience and space
considerations.

Figure 1 Basic K-Means method with (15, 20) Figure 2 New K-Means method with (15,
20)

Figure 1 shows the cluster formation obtained using the basic K-Means method with simulated data
for the pairs ( , ) (15, 20). It can be seen that six points are out of the cluster formation. These six
points are on the borders which are marked by the coordinates (2, 2), (0, 9), (0, 13), (3, 0), (6, 0) and
(7, 0). They are all found in cluster 2. This is one of the Conventional K-Means drawbacks, which is
that the method does not capture all the points within the cluster formation.

Figure 2 shows the new K-Means method. It can be observed that there is no points that are (farthest to
the cluster center) outside the cluster formation line. This implies that this method is good for
clustering the points. Furthermore, the inter distances between clusters are preserved to be as large as
possible.
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Figure 3 Basic K-Means method with (100, 500) Figure 4 New K-Means method with
(100, 500)

Figure 3 shows the cluster formation obtained using the basic K-Means method with simulated data
for the pairs ( , ) (15, 20) and (100, 500).  The total sum of squares error for the clustering is very
high while inter distances between clusters is very small and this makes it difficult to differentiate the
center that belongs to either cluster 1 or cluster 2 in the cluster formation.

Figure 4 show the cluster formation obtained using the new K-Means method with simulated data (15,
20) and (100, 500). Here, the total sum of squares error and the running time are much reduced while
the inter distances between clusters are preserved to be as large as possible for better identification.

Table 1: The total sum of squares error and CPU time taken
Basic K-Means method New K-Means method

n p SSE CPU time (Sec) SSE CPU time (Sec)
20 15 946.24 37 428.05 11
500 100 8731.06 104 5152.31 32

500 200 10386.17 318 59519.53 58
1500 500 14638.08 567 8729.36 174
1500 1000 152137.41 814 9186.25 272

Table 1 shows the total sum of squares error and their respective CPU time for the basic K-Means
clustering method and the new K-Means method. This was achieved by the runs of the simulated data
sets. The result reveals that the new method performs better in terms of their sum of squares error and
the CPU time taken for the execution.

3.1. Discussion
The experimental results obtained with the basic K-Means method yield the expected results bearing
in mind that the method is known to be inefficient as can be seen in Figure 1 and 3. The experimental
results also implies that the new K-Means method performs very well, providing better total sum of
squares error and reduced CPU time taken for the execution as shown in Table 1. However, it is
observed that when p is getting larger the CPU running time is also considerably increased. This was
observed to be true for both basic and new methods. Furthermore, it was also observed that the
clusters are well separated as revealed in Figure 2 and 4. This agrees with the findings of [13], that
says compactness and separation are used to measure the significance of clustering results.
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4. Conclusion
K-Means is one of the most popular clustering methods. It has become an important multivariate
analysis tool in many exploratory studies. However, there exist abundant researches on K-Means in
the literature, although none of them is suitable, considering the high complexity of the basic method,
especially for high dimensional dataset. Hence, this research centered on two steps: data pre-
processing techniques and selection of good similarity measure, we scaled the data to fall within a
specified range of values and singular value decomposition to reduce the dimension to a lower level.

The results and findings were validated with simulation experiments. From this experiments it was
observed that, the sum of the total clustering errors was reduced as much as possible whereas inter
distances between clusters are preserved to be as large as possible for better identification of clusters
as in figure 4.
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