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Abstract. Dynamic weighing has become an essential requirement in a diverse range of 

industries. In dynamic weighing, loadcell based weighing mechanisms are employed in 

determining the weight of the products while they are in motion. This paper proposes a method 

of weight ascertainment based on state estimation theory. A simplified time domain response of 

the weighing system is modelled as an output error model and the 1-D Kalman filter is used in 

two stages to determine the weight of the fruit. The dependency of the weight with the change 

of speed is taken into account in the calibration stage. The validity of the method is tested using 

the data provided by Compac sorting equipment, Auckland, New Zealand. 

1.  Introduction 

Compac Sorting Equipment (Auckland, New Zealand) is a leading supplier of packhouse technology 

for the produce industry. Their high-speed sorting systems sort fruit and vegetables by size, colour, 

defects and sweetness. Compac requires an improved signal processing method for determining the true 

weight of fruit. As a part of the expected improvement, the settling period of the signal is required to be 

reduced so that the signal reaches the steady state prior to the data sampled for weight assessment.  

Time series data of the load cell readings of fruit passing over the load cell are provided from a number 

of fruit at three different speeds. 

Dynamic weighing is different from static weighing in that static weighing involves determining the 

weight while the product being weighed is stationary whereas dynamic weighing weighs the products 

while they are moving. Force sensors are commonly used in these weighing systems. In static weighing, 

the weighed object is placed stationary on the platform and the steady state of the sensor signal is used 

to assess the weight. However, in dynamic weighing the sensor signal may not reach the steady state 

during the brief time of weighing, hence the weight is assessed, for example, by averaging the tail end 

of the signal after it has been through a low-pass filter. The resulting mass estimates can be inaccurate 

for faster, heavier items. It is useful to consider better ways of estimating the true weight in igh speed 

weighing applications 

The proposed method is to employ the 1-D Kalman filter algorithm to estimate the optimal state of 

the signal. The improved steady state signal is then used in weight estimation. The proposed method has 

been tested using data collected from a loadcell when different masses pass over the loadcell. The results 

show a significant improvement in the filtered signal quality which is then used to improve the weight 

assessment.  

2.  Checkweigher 

A checkweigher is the machine that checks the weight of products. It is integrated into the production 

line and usually found at the end of the production line. There are several different designs depending 
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on their application requirements. The primary components of a checkweigher are an in-feed section, 

weighing platform and an out-feed section. 

The items are fed into the weighing conveyer from the in-feed conveyor which is typically mounted 

on a force transducer. A signal processor receives a signal from the force sensor and estimates a value 

of the weight for the product that is being passed over the weigh table. 

 

 
Figure (1). Checkweigher arrangement 

 

3.  Mathematical model 

In the existing system available at Compac, fruit are transported in individual carriers.  Each carrier is 

pulled across a weighing station which is equipped with a dual loadcell system. When the fruit moves 

onto the weighing station, the weight of the fruit applies a force (𝑚′𝑔) on the platform mounted on two 

strain gauge loadcells as depicted in Figure (2). 

It is assumed that the load is equally shared between the two loadcells. 

 

 

Figure (2). Schematic Diagram of the dual load cell arrangement. 

 

 

The output voltage of the load cell is amplified and filtered by a fifth order analogue Butterworth filter 

and sampled at a rate around 4 kHz by a 12 bit ‘analogue to digital converter’ (ADC).  

The readings in the filtered signal are averaged over a set ‘weighing window’. This window is a given 

percentage of the full cycle. It is also given that the current system achieves a repeatability standard 

deviation of less than 0.5 when 200g moving at 10 fruit per second.  

3.1.  Loadcell modelling 

The loadcell is cantilevered to allow deflection. As the fruit and the carrier apply the weight force on 

the load cell, it deflects and is set into oscillations. In literature, the dynamics of the load cells are 

modelled as a spring-mass-damper system, and mathematically represented by a second order 

differential equation [3],[4]. 

The mathematical model is developed for a single loadcell. The model also assumes that there is no 

relative movement between the fruit and the loadcell, i.e. the fruit, carrier and the load cell oscillate as 

a single unit.  

The input function is a step function with a magnitude of 𝑚𝑔 which is half of the total weight of the 

fruit.  

 

(𝑀 + 𝑚)𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑚𝑔 𝑈(𝑡)     (1) 
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where,  

c: Damping coefficient 

k: Spring constant  

m: mass of the fruit 

M: mass of the career 

U(t) : the unit step function 

 

  

The transfer function is obtained by taking the Laplace transform1 of equation (1), 

(𝑀 + 𝑚)(𝑋(𝑠)𝑠2 − 𝑠𝑥(0) − 𝑥̇(0)) + 𝑐(𝑠𝑋(𝑠) − 𝑥(0)) + 𝑘𝑋(𝑠) = 𝑚𝑔 𝑈(𝑠) 

 

𝑋(𝑠)((𝑀 + 𝑚)𝑠2 + 𝑐𝑠 + 𝑘) = 𝑚𝑔 𝑈(𝑠) + (𝑀 + 𝑚)(𝑠𝑥(0) + 𝑥̇(0)) + 𝑐𝑥(0)  
 

The transfer function of the system,  

𝐻(𝑠) =  𝑋(𝑠)  =   
𝑚𝑔

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
+ 

(𝑀+𝑚)(𝑠𝑥(0)+𝑥̇(0))+𝑐𝑥(0)

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
   2) 

 
    

Using the initial value theorem:  lim
𝑡→0

𝑥(𝑡) = lim
𝑠→∞

𝑠𝑋(𝑠) , the value of the transfer function: 

lim
𝑠→∞

𝑠𝑋(𝑠)  =  lim
𝑠→∞

𝑠 ⌊
𝑚𝑔

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
+ 

(𝑀+𝑚)(𝑠𝑥(0)+𝑥̇(0))+𝑐𝑥(0)

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
⌋ = 0 

 

Using the final value theorem, lim
𝑡→∞

𝑥(𝑡) = lim
𝑠→0

𝑠𝑋(𝑠), the value of the transfer function: 

lim
𝑠→0

𝑠𝑋(𝑠)  =  lim
𝑠→0

 𝑠 ⌊
𝑚𝑔

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
+

(𝑀+𝑚)(𝑠𝑥(0)+𝑥̇(0))+𝑐𝑥(0)

𝑠((𝑀+𝑚)𝑠2+𝑐𝑠+𝑘)
⌋  

 

lim
𝑠→0

𝑠𝑋(𝑠)  =  lim
𝑠→0

 𝑠 ⌊
𝑚𝑔

𝑠((𝑀 + 𝑚)𝑠2 + 𝑐𝑠 + 𝑘)
+

(𝑀 + 𝑚)(𝑠𝑥(0) + 𝑥̇(0)) + 𝑐𝑥(0)

𝑠((𝑀 + 𝑚)𝑠2 + 𝑐𝑠 + 𝑘)
⌋ 

 

lim
𝑠→0

𝑠𝑋(𝑠) = 
𝑚𝑔

𝑘
  (3) 

 

These limits describe the system response to a step function when t = 0 (the initial value) and as 

𝑡 → ∞ (the final value). The final value (𝑚𝑔 𝑘⁄ ) is also the steady state value of the system response.  

 

Assuming that 𝑥̇(0) = 0, 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔  𝑥(0) = 0 , the equation (2) can be re-written as,  

 

𝐻𝐿(𝑠) =   
(

𝑚𝑔

𝑘
)𝜔𝑛

2

𝑠(𝑠2+2𝜉𝜔𝑛𝑠+ 𝜔𝑛
2 )

   (4) 

 

where natural frequency of the fruit and the career, 𝜔𝑛 =  √
𝑘

𝑀+𝑚
 𝑎𝑛𝑑 the damping ratio,  𝜉 =

𝑐𝜔𝑛

2𝑘
 

 

The time domain behaviour of the step response is obtained using the partial fraction and inverse 

Laplace transform of equation (4). 

 

                                                      
1 Laplace transform converts a time domain signal into a frequency domain where the magnitude and the phase 

angle of the signal is determined. The transform also converts differential equations into a simple algebraic 

equations. (Bateson, 1999, p. 120).   



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1489/1/012017

4

 

 

 

 

 

 

𝑥(𝑡) =  
𝑚𝑔

𝑘
−

𝑚𝑔

𝑘

(2𝜉𝜔𝑛+1)

𝜔√1−𝜉2
𝑒−𝜉𝜔𝑡√1−𝜉2

    (5) 

 

The time domain response essentially consists of two parts: a constant component of 𝑚𝑔 𝑘⁄  and a 

decaying oscillatory component. The response suddenly increases to a constant value of  𝑚𝑔 𝑘⁄  . The 

expected time domain behaviour of the load cell output represented by the second order differential 

equation is shown in Figure (3). 

 

 

Figure (3). Step response to a second order differential equation 

 

The actual voltage output of the unfiltered signal for 200 g at 0.5 m/s and 573.1g at 0.5 m/s 1.5 m/s 

are shown in figure (4 (a)) and (4 (b)). 

The model response and actual data plots shows that the values suddenly increase to a new value (a 

constant component of the values) where it settles as the time progresses. The model settles faster after 

two dominant peaks. The unfiltered data for 200g at 0.5m/s, shows a similar characteristic to that of 

model response, however, the presence of extra oscillations makes the graph fluctuate around a constant 

value. 573.1g at 0.5 m/s, demonstrates the constant component. The signal is highly oscillatory during 

the entire signal time. In comparison, the actual data plots exhibit some similarities to the model 

behaviour with some deviations.  

The second order system equation is developed based on Newton’s second Law therefore it precisely 

represents the system dynamics. Deviation from this expected pattern implies the presence of other 

elements such as system disturbances, interference and other vibrations noise in the system. 
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Figure (4). The response of the load cells for calibrated mass of 200 g 

(a) at 0.5 m/s (b) at 1.5 m/s for a single carrier 

 

4.  Kalman filter algorithm 

The Kalman filter is an optimal estimation algorithm named after the Rudolf E. Kalman who developed 

the algorithm. The recursive optimal state estimation algorithm essentially estimates the unmeasured 

states of linear dynamic systems or processes from noisy observations.  Extensions of the algorithm 

were also developed for non-linear systems [7].   

 

The basic notion of the Kalman filter is presented for the convenience of the reader. 

 

The system dynamics that evolves in time is given by the system equation,  

 

𝑥𝑡+1 =  𝐹𝑡𝑥𝑡 + 𝑤𝑡 ;  𝑤𝑡~  𝑁 (0,  𝜎𝑤
2 ) 

Where, 

𝑥𝑡 :  state vector at time, 𝑡 . (the vector to be estimated) (𝑛 x 1). 

𝐹𝑡 ∶  state transition matrix that describes the effect of the current state  𝑥𝑡 on  𝑥𝑡+1 , the updated    

state (𝑛 𝑥 𝑛) 

𝑤𝑡:  process noise vector associated with 𝑥𝑡 (𝑛 x 1). The process noise is assumed to be Gaussian 

with zero mean and a known variance of  𝜎𝑤
2 .  

The measurement equation, 

 

𝑦𝑡 =  𝐻𝑡𝑥𝑡 + 𝑣𝑡  ; 𝑣𝑡  ~  𝑁 (𝑣𝑡; 0,   𝜎𝑣
2) 
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𝐻𝑡: the transformation vector that maps the system states into the measurement domain (𝑚 𝑥 𝑛).  

𝑣𝑡 : is observation noise matrix  (𝑚 𝑥 1), distributed according to Gaussian distribution with zero 

mean and a known variance of  𝜎𝑣
2. 

vt and wt are uncorrelated so that    E[vj, wk] = 0. 
 

The Kalman filter algorithm is summarised below. 

 

 The unbiased estimate of the state at time t is  𝑥𝑡  and 𝑃𝑡 is the square error of the priori estimate, 

i.e., 𝑃𝑡 = 𝐸[(𝑥𝑡 − 𝑥𝑡)2]. 
The time updates of the estimate of the state, 𝑥𝑡+1 and 𝑃𝑡+1 are given by, 

 

𝑥𝑡+1 =  𝐹𝑡𝑥̂𝑡 +  𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥̂𝑡), 
 𝑃𝑡+1 =  (𝐹𝑡 −  𝑘𝑡𝐻𝑡)𝑃𝑡𝐹𝑡

𝑇 +   𝜎𝑤
2  

 

 where, 𝐾𝑡 =  𝐹𝑡𝑃𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 +   𝜎𝑣
2 )−1 

  

𝐾𝑡 is the most important parameter of the filter and is called the Kalman Gain. The Kalman Gain is 

calculated in every iteration of the recursive algorithm in such a way that the variance of the new 

estimate is minimum.   When a new observation 𝑦𝑡 becomes available a new estimate for the state vector 

and the variance vector is calculated. Initial values of the state vector 𝑥𝑜  and the variance vector 𝑃𝑜 must 

be defined before the filter is implemented. However, the results show that the initial values do not have 

a significant impact on the filter outcome. 

 

5.  1 – D Kalman filter approach 

In one dimensional state space, the system is characterised by scalar quantities.  

𝑥𝑡 -  state to be estimated  

𝐹𝑡   - state transition coefficient  

𝑤𝑡 - process noise associated with 𝑥𝑡 and is a scalar variable.  

 

The measurement equation, 

𝑦𝑡 =  𝐻𝑡𝑥𝑡 + 𝑣𝑡    ~ 𝑣𝑡: 𝑁 (0,   𝜎𝑣
2) 

    

𝐻𝑡  - transformation coefficient that maps the system states into the measurement domain. 

𝑣𝑡  - observation noise, a scalar variable zero mean and a known variance of  𝜎𝑣
2. 

 

The equation (5) presented in Section 3 of this paper shows that the time domain response of the system 

consists of two components and system noise. The sudden increase of the signal value is responsible for 

the weight of the fruit. The focus in this approach is to obtain the increase of the signal value by using 

a simplified mode of the response as shown below. 
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Figure (5). Graph of unfiltered data for 200 g moving at 0.5 m/s 

 

Dashed line marked with black is the simplified response that shows the change in voltage when the 

load cell is loaded with a fruit (mass).  

 

The data is separated into two sets: 

Between A and B, unloaded response 

Between C and D, loaded response (constant state of the step response).  

The proposed method uses a selected set of data. Two optical position sensors are to be used to start 

and end weight sampling. When the first sensor is blocked by the cup, the signal for collection of weight 

data is triggered and when the second sensor is blocked, the weight sampling is to be ended. The data 

sampled between the sensor signals is used in weight estimation.   

The loaded and unloaded responses are treated as two sets of time series data. A steady state value of 

each is estimated separately, and the difference between the two steady state values can be used to 

estimate the mass of the fruit. 

The time response consists of oscillatory dynamics, constant dynamics and system noise. The 1-d 

Kalman filter is used to estimate the underlying constant dynamics and this approach assumes that the 

oscillatory dynamics and noise is the stochastic input to the Kalman filter.   

A discrete time state space model is employed for time series data sampled at regular intervals.  

Development of the state space model is explained below. 

In order to obtain the constant state, a constant dynamic model is used as the system model. The 

process noise variance,  𝜎𝑤 was set to zero assuming that there are no mismatches between the model 

and the expected constant state.  

𝑥𝑡+1 =  𝑥𝑡 + 𝑤𝑡;   𝑤𝑡   ~ 𝑁(0,   𝜎𝑤),   where   𝜎𝑤 = 0, 

 

The measurement equation of the 1- dimensional state space model was given by equation. 
𝑦𝑡  =  𝑥𝑡 + 𝑣𝑡:   𝑣𝑡~  𝑁 (0,   𝜎𝑣) 

 

In summary, the state space model proposed is, 

𝑥𝑡+1 =  𝑥𝑡        

𝑦𝑡  =  𝑥𝑡 +  𝑣𝑡:   𝑣𝑡~  𝑁 (0,   𝜎𝑣)     
  𝜎𝑣 : The measurement uncertainty was obtained from the sensor data sheets. 

𝑥0 : The first reading of the data sampled between position sensors 

𝑃0 : The square error between the first and the second readings  
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6.  Results and simulations 

The Kalman filter algorithm is tested on numbers of data sets provided by Compac. The results and 

simulations for loaded data are listed shown in this section. The results of unloaded data exhibit similar 

performance. 

The filter performances are measured by directly comparing the settling times and the standard 

deviation of the Kalman filter with that of the 5th order Butterworth filter.  

 

Results of number of tests were presented in two sections; 

• Constant mass at varying speeds. 

• Varying masses at constant speed. 

Summary of the results are listed in table (1) and table (2) below.  

 

Table (1).  Summary of results for 200 g mass moving at 0.5 m/s, 1.0 m/s and 1.5 m/s. note: 

some offsets in voltages have been introduced to the Butterworth filter signal values to 

clearly view the signals. 

 
Conveyor 

speed 

(m/s) 

Butterworth Kalman 

Mean Std2 Settling time 

(ms) 

Mean Std Settling time 

(ms) 

       

0.5 1419.7 34.1 112 2363.0 7.7 28 

1.0 1487.1 57.2 67 2458.0 9.0 47 

1.5 1703.3 48.5 - 2822.5 15.8 27 

 

 

Table (2). Summary of results for 200 g and 573.1 g masses moving at 0.5 m/s. note: 

some offsets in voltages have been introduced to the Butterworth filter signal values to 

clearly view the signals. 

 
Mass (g) 

 

Butterworth Kalman 

Mean Std Settling 

time (ms) 

Mean Std Settling 

time (ms) 

200.0 1562.8 9.8 112 2130.2 1.7 28 

573.1 2323.1 43.9 172 2874.1 9.0 45 

573.1 2363.0 36.7 158 2924.9 5.0 30 

573.1 2343.9 68.9 - 2891.9 11.1 40 

573.1 2286.5 35.9 174 2846.4 4.0 35 

573.1 2315.1 52.8 174 2884.8 6.3 35 

 

The comparison showed in the Table (1) and Table (2) shows that the Kalman filter outperforms the 

Butterworth low pass filter in many aspects. 

 

• Observed in Table (1), the standard deviation has a lower value when compared with that of the 

Butterworth filter in each case. When 200g moving 0.5 m/s the standard deviation decreases from 

34.1 to 7.7 (77%) and when the same mass moving at 1.5 m/s, the standard deviation decreases 

from 48.5 to 15.8 (67.4%).  

Table (2) shows the test results of different masses moving at the same speed of 0.5 m/s. These 

results also demonstrate similar improvements in standard deviation. 

                                                      
2 Std- Standard deviation. 



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1489/1/012017

9

 

 

 

 

 

 

The decrease of standard deviation reduces the 95% confidence interval, reducing the margin of 

error of the filtered signal.  

 

• Settling time tabulated in Table (1) and Table (2), is the time required for the system response curve 

to reach and stay within 2% about the mean value. The data was examined using spread sheets in 

MS Excel and a trial and error method was used to estimate the settling time in each case. 

As evident in table (1), the settling time also improves at all the speeds. At 0.5 m/s, the settling time 

reduces by 75% (112 ms to 28 ms) and at 1.0 m/s, the settling time reduces by 29.8% (from 67 ms 

to 47 ms). At the highest speed available, i.e. 1.5 m/s, a settling time of 27 ms is observed when 

using the Kalman filter whereas the existing Butterworth filter response does not reach the steady 

state prior to the data is sampled for weight assessment.  

This enable the transient response to reach the steady state faster resulting in larger ‘averaging 

window’. This improvement is specifically useful at higher belt speeds where the signal time is 

shorter, and the signal does not reach steady state. 

 

The improvement in the signal quality (standard deviation and the settling times) listed in table (1) and 

(2) show that the Kalman filter provides improved filtering solution in dynamic weighing system 

discussed in this paper. The reduction in settling times and the standard deviation results in improved 

throughput rate and the measurement accuracy respectively.  

 Some graphs showing the filtered and unfiltered signal are given in figure (6). 

 

 

 

(a) 

(b) 
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Figure (6). The graphs of filtered and unfiltered data for ‘loaded data’ for 200g fruit  

moving at (a) 0.5m/s, (b) 1.0 m/s and (c) 1.5 m/s. 

 

 

Please follow these instructions as carefully as possible so all articles within a conference have the 

same style to the title page. This paragraph follows a section title so it should not be indented. 

  

7.  Conclusions 

In general, the dynamic weighing systems have limitations in achieving the required throughput and 

accuracy. An alternative method based on the Kalman filter algorithm is explored in this paper. The 

Kalman filter was regarded as the optimal solution to data tracking and prediction problems. The filter 

was constructed as a mean error minimiser in the deterministic derivation. The Kalman filter has many 

advantages in state estimation in continuously changing systems. The system equation is in the form of 

a first order difference equation that uses only the information of the previous state. Hence the 

computation of the states is faster. The filter gain is updated in every iteration of its calculations, 

minimising the residual with an updated gain factor in every step.  

The filter is also adaptive to the data being used.  All these features results in a fast response enabling 

the system reaching the steady state fast.  

The continuous time Kalman filter has previously been used in weight estimation in high speed 

dynamic weighing system using the second order differential equation as the system model [3]. 

An alternative method of using the one- dimensional Kalman filtering technique has been explored as a 

possible solution that will enable improved accuracy of dynamic weighing.  

The dynamic behaviour of the weighing mechanism was studied and analysed using a mathematical 

model: a second order differential equation.  

The step response of the second order differential equation is given by the equation (5) shown below. 

 

𝑥(𝑡) =  
𝑚𝑔

𝑘
−

𝑚𝑔

𝑘

(2𝜉𝜔𝑛 + 1)

𝜔√1 − 𝜉2
𝑒−𝜉𝜔𝑡√1−𝜉2

 

 

𝑥(𝑡) = steady state response + transient response 

 

It consists of a constant state (or a steady state) of magnitude 
𝑚𝑔

𝑘
 and a decaying oscillatory 

component.   

 

(c) 
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The actual data plots exhibit some similarities to the model behaviour with some deviations which 

imply the presence of other elements such as system disturbances, interference, vibrations and 

instrumentation noise in the system.  

The constant state, or the steady state, that is responsible for the weight of the fruit was estimated using 

an alternative method, i.e. using the 1- dimensional Kalman filter algorithm.  The step response of the 

system was considered as two sets of stochastic data; loaded and unloaded data. The mean value of the 

filtered signal is calculated in each case and the difference between the two mean values are used to 

estimate the weights of fruit.   

 

The simplicity of the proposed technique and the Kalman filter algorithm will make the proposed 

method a useful tool in obtaining improved weight measurements in dynamic weighing systems. The 

method is comparatively less computationally intensive and can be implemented with simple computer 

resources such as MS-Excel. 
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