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Abstract. The finite difference method for discretization space fractional chemotaxis model is
introduced in this study. The space fractional chemotaxis system is obtained from the classical
advection-diffusion equations of the chemotaxis system by replacing the spatial derivative with a
generalized derivative of fractional order. We compare the numerical solution of finite difference
method and exact solution for a test example. The results reveal that the finite difference
method is very simple and efficient for solving space fractional chemotaxis system.

1. Introduction
Chemotaxis is an important resource for cellular communication which impacts the chemical
substances in the environment on the movement of mobile species. This can lead strictly
oriented movement to partially oriented and partially tumbling movement. The movement
towards a higher concentration of the chemical substance is called positive chemotaxis, whereas
the movement towards a lower concentration is called negative chemotaxis.
The standard chemotaxis model system were described by Paltak [1], E. Keller and L. Segel [2]

respectively in 1953 and 1970. It is represented by the set of partial differential equations

ut −∇(m∇u) +∇(ξu∇v) = 0, (x, t) ∈ R
d × R

+,
δvt −Δv + τv + ρu = 0, (x, t) ∈ R

d × R
+,

(1)

where u(x, t) denotes the density of bacteria in the position x ∈ R
d at time t, v is the

concentration of chemical signal substance, δ ≥ 0 represents the relaxation time, the parameter
ξ is the sensitivity of cells to the chemoattractant and m, τ and ρ are given smooth functions.
The proposed model has been extensively studied in the last few years (see [3, 4, 5, 6, 7] for a
recent survey articles).
In [8], inconsistent transport model based on space fractional differential equations is solved

finite volume method. To know details about fractional Laplacian and its application, we refer
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the readers to [9, 10, 11, 12, 13, 14] Recently, the fractional chemotaxis model is solved by many
researchers using numerical methods [15, 16, 17].
In this paper, we considered the following space fractional chemotaxis system (SFCS):

ut − Dαu+
∂

∂x

(
u

∂v

∂x

)
= f(x, t, α), (x, t) ∈]a b[×(0 T ], (2)

−∂2v

∂x2
+ τv = 0, x ∈]a b[, (3)

with initial and boundary conditions

u(a, t) = u(b, t) = 0, for all t ∈ [0 T ], (4)
v(a) = γ, v(b) = β, (5)

u(x, 0) = u0(x), for all x ∈ [a b], (6)

where u(x, t) is the cell density in the position x ∈ [a b] at time t, v the chemical density, the
function f regulates the cell death which controls the gross cell number and the positive constant
τ the rate of attractant depletion, the positives constants γ and β are given and u0 is a smooth
given function. The equation ( 2) include the diffusion of the cells and chemotactic drift and
the equation ( 3) expresses the production of attractant [18]. The symbol Dαu stands for left
Riemann-Liouville fractional derivative.

Definition 1.1 (Riemann-Liouville fractional derivative on [a, b] [19])
The α (n− 1 < α < n) order left Riemann-liouville derivative of the function on [a,b] is defined
as

Dαu(x, t) =
1

Γ(n − α)
∂n

∂xn

∫ x

a

u(ξ, t)
(x − ξ)α−n+1

dξ =
∂n

∂xn
(In−α)u(x, t), (7)

where the function Γ(.) is the well known Gamma function and Iα(.) is called the Riemann-
Liouville integral.
If α = n, then Dαu(x, t) = dnu

dxn .

The numerical solution of the fractional differential equation was considered by several
authors using different methods [20, 21].
In this paper, we introduce the finite difference method for solving the (SFCS) (2-6).

2. Solution methods
In this section, we only discretize the equation (2) because the equation (3) with the boundary
conditions v(a) = γ and v(b) = β is easy to solve in the one-dimensional case and its solution is
given by the following equation:

v(x) = A e
√

τx +B e−
√

τx ∈ C∞([a b]), (8)

where

A = =
(
γ e−

√
τb − β e−

√
τa

)
/

(
e
√

τ(a−b) − e−
√

τ(a−b)
)

, (9)

B = =
(
β e

√
τa − γ e

√
τb

)
/

(
e
√

τ(a−b) − e−
√

τ(a−b)
)

. (10)
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2.1. Finite difference method
We consider a domain [a, b] that is discretized with N + 1 uniformly spaced nodes xi = a + ih
for i = 0, · · · , N , with the spatial step h = (b−a)/N . In order to numerically solve the equation
(2) of the (SFCS) using the finite difference method of Meerschaert and Tadjeran [22], we first
expand the advective term in (2) using the product rule.

∂

∂x

[
u(x, t)

∂v(x)
∂x

]
=

∂u(x, t)
∂x

∂v(x)
∂x

+ τ u(x, t) v(x). (11)

Next, the derivative ∂u/∂x in (11) can be approximated using the central difference. This implies
that a suitably one mesh is used to ensure monotonicity [23]. Now, we recall the fractional
derivative Laplacian as follows:

Dαu(x, t) =
1

Γ(1− α)
∂

∂x

∫ x

a

u(ξ, t)
(x − ξ)α

dξ for α ∈]0 1[, (12)

Dαu(x, t) =
du(x, t)

dx
for α = 1, (13)

and

Dαu(x, t) =
1

Γ(2− α)
∂2

∂x2

∫ x

a

u(ξ, t)

(x − ξ)(−1+α)
for α ∈]1 2[. (14)

Before discretizing the fractional Laplacian derivative, we need the following definition

Definition 2.1 (Shifted Grünwald formula on [a b] [23, 8])

1
Γ(n − α)

∂n

∂xn

∫ x

a

u(ξ, t)
(x − ξ)α−n+1

dξ ≈ 1
hα

[(x−a)/h+p]∑
j=0

wα
j u(x − (j − p)h, t), (15)

where p is the shift value, n is the smallest integer greater than or equal to α and wα
j are weight

functions such that

wα
0 = 1 and wα

j = (−1)j
α(α − 1) · · · (α − j + 1)

j!
for j = 1, 2, · · · . (16)

For p = 0 the equation (15) is called the standard Grünwald formula. In order to approximate
the Liouville fractional derivative, we use the standard Grünwald formula for α ∈]0 1[. However,
for α ∈]1 2[ the shift Grünwald formula for the shift p = 1 is required to obtain numerically
stable results [22].

Dαu(xi, t) ≈ 1
hα

i∑
j=0

wα
j u(xi−j , t) for α ∈]0 1[, (17)

and

Dαu(xi, t) ≈ 1
hα

i+1∑
j=0

wα
j u(xi−j+1, t) for α ∈]1 2[. (18)

For the adjective term, using second order central differences we can approximate the derivative
of u.

∂

∂x
u(xi, t)

∂

∂x
v(xi) + τ u(xi, t) v(xi) =

(
u(xi+1, t)− u(xi−1, t)

2h

)
∂v(xi)

∂x

+τ u(xi, t) v(xi). (19)
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We now define a temporal partition tn = nk for n = 0, 1, · · ·, where k is the time step, and
approximate the temporal derivative in (19) by the standard first order backward difference.
Defining un

i ≈ u(xi, tn) as the numerical solution, fn
i = f(xi, tn, α) and vi = v(xi). Then for all

α ∈]0 2[, we obtain the fully implicit scheme for the equation (19):

un+1
i − un

i

k
= − v′i

2h
(
un+1

i+1 − un+1
i−1

) − τviu
n+1
i +

1
hα

i∑
j=0

wα
j un+1

i−j + fn+1
i

=
N∑

j=0

giju
n+1
j + fn+1

j for α ∈]0 1[, (20)

un+1
i − un

i

k
=

1− v′i
2h

(
un+1

i+1 − un+1
i−1

) − τviu
n+1
i + fn+1

i

=
N∑

j=0

giju
n+1
j + fn+1

j for α = 1, (21)

un+1
i − un

i

k
= − v′i

2h
(
un+1

i+1 − un+1
i−1

) − τviu
n+1
i +

1
hα

i+1∑
j=0

wα
j un+1

i−j+1 + fn+1
i

=
N∑

j=0

giju
n+1
j + fn+1

j for α ∈]1 2[, (22)

where v′i denotes the derivative of v at the node xi for i = 1, · · · , N − 1 and for α ∈]0 1[,

gij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h−αwα
i−j j < i − 1

v′
i

2h + h−αwα
1 j = i − 1

−τvi + h−αwα
0 j = i

− v′i
2h j = i+ 1

0 j > i+ 1,

(23)

for α = 1,

gij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′i−1
2h j = i − 1

−τvi j = i
1−v′

i
2h j = i+ 1
0 j > i+ 1 or j < i − 1,

(24)

for α ∈]1 2[

gij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wα
i−j+1h

−α j < i − 1
v′

i
2h + h−αwα

2 j = i − 1
−τvi + h−αwα

1 j = i

− v′i
2h + h−αwα

0 j = i+ 1
0 j > i+ 1.

(25)

Denoting the numerical solution vector Un =
(
un

1 , un
2 , · · · , un

N−1

)
therefore the scheme of

equation (2) was written in the matrix form as follows:

(I + k A) Un+1 = Un + kFn+1. (26)
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Remark 2.1 As the Shifted Grünwald formula on [a b] is convergent of order 2 in space (see
[23]), it is well known that the spatial derivative approximation of the function by second order
central differences is again order 2 in space and the temporal derivation approximation of the
function by by the standard first order backward difference is order 1 in time. Then it easy to
conclude that the numerical scheme (26) ) is convergent of order 2 in space and order 1 time.

3. Results and discussions
In this section, we study the (SFCS) (2-6) for the different fractional order value α = 0.5, 1, 1.5
and at time T = 1 using the finite difference method. We also compare our results with the
exact solution.
Let us use the domain [0 50], the spatial step h = 0.25, temporal step k = 0.005 and τ = 0.01.

For this, we consider the following example:
Example:

ut − Dαu+
∂

∂x

(
u

∂v

∂x

)
= f(x, t, α), (x, t) ∈ ]0 50[×]0 1[, (27)

−∂2v

∂x2
+ τv = 0, x ∈]0 50[, (28)

with initial and boundary conditions

u(a, t) = u(b, t) = 0, for all t ∈ [0 1], (29)
v(a) = 0.3, v(b) = 0.2, (30)

u(x, 0) = x(50− x), for all x ∈ [0 50], (31)

Here f (t, x, α) = e−t [f1 (x, α)− f2 (x, α)] , such that

f1 (x, α) =
√

τ(50− 2x)
(
Ae

√
τx − Be−

√
τx

)

+τx(50− x)
(
Ae

√
τx +Be−

√
τx

)
(32)

and

f2 (x, α) = x(50− x) +
50x1−α

Γ (2− α)
− 2 x2−α

Γ (3− α)
, (33)

where the constants A and B are define in (9-10).
In this case, the exact solution (u,v) of the problem (41-45) is given by

{
u (t, x) = x (50− x) e−t

v = Aeτx +Be−τx.
(34)

4. Concluding remarks
In this work, the finite difference is applied for solving the space fractional chemotaxis system
(SFCS) numerically. The Grünwald approach plays a key role for discretize the term of fractional
derivative of the problem. This method has been examined and compared with analytic solution
of the space fractional chemotaxis system. Good agreement is observed between the numerical
solution obtained by the finite difference method and the analytical solution. In Biological
Sciences the importance of the SFCS problem and it’s numerous applications, we expect to
develop these results in high dimension (R2 and R

3) with the temporal and spatial fractional
derivative.
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Figure 1. The finite difference method and the exact solution for different values of α. The
dashed line is for the exact solution. The parameters are: τ = 0.01, the time step size is 0.005,
and the number of partitions of x-axis is 200.
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