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Abstract. Unmanned underwater vehicle (UUV) is an effective instrument to allow human to
execute hazardous underwater mission without being exposed to life risk. Recently, UUV has
gained increased popularity in the field of oceanography, underwater archaeology, underwater
cable examination, military usage and hydrodynamic survey operation. Since aquatic animals
have great capability to circumvent the drag underwater for efficient swimming compared with
the torpedo-like man-made submarine, the morphology of aquatic animals shall be investigated
in order to improve the efficiency of UUV. However, the complexity and non-linearity of their
body shapes has hindered the formation of its morphological equations. Hence, this research
aims to apply the mathematical model of moving least squares method to construct continuous
equations which describe the bionic body shape of batoid and dolphin. The work will render
geometrical support for computer-aided design and fluid dynamics analysis in the future.

1. Introduction

Unmanned underwater vehicles (UUV) are mechanical devices which can be controlled to perform
underwater missions such as path following [1], navigation sensing [2] and oceanography mapping [3],
without human occupant. The hydrosphere is covering 70% of the earth, while 97% of the hydrosphere
is made-up from the ocean, leaving around 3% from the fresh water [4]. It is almost impossible to explore
the entire underwater environment with submersibles. In order to discover the hidden world beneath the
sea level, the UUV plays its imperative role by disencumbering human from the hazardous underwater
missions [5]. Indeed, UUV has been a valuable tool for underwater exploration and operation, in tandem
with the growing importance of ocean [6].

The first prototype of the UUV was built in 1957, and it was used for diffusion investigation, acoustic
transmission studies and submarine wakes research [7,8]. With increasing interest and curiosity toward
the underwater world, humans intensifies the investment in the invention and modification of UUV. Due
to its lower cost and smaller size compared to the large expensive submarines, UUV appears to be more
promising in term of manufacturing cost and operating agility [9,10].

Evolution of the aquatic animals has taken place since millions of years ago and they spent their
entire life in the viscous medium. The water drag, form drag and induced drag are the main swimming
resistances for the aquatic animals [11]. Water drag refers to the viscous frictional force between the
water contact surface and body surface. Form drag refers to the resistance force to displace the water
from one particular place to another, while induced drag refers to the energy lost in vortices created at
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fins during swimming. Since the aquatic animals are regarded to be having great capability to circumvent
the drag underwater for efficient swimming [12], the morphologies of aquatic and marine animals are
studied in order to improve the efficiency of UUV [13]. Discovery of the aquatic animals’ morphology
has sparked the interests of engineers to invent swimming machines which mimic the shape of aquatic
animals, such as the biomimetic fins and divers’ flippers [14,15]. Swimming efficiency of aquatic
animals are generally ranging from 80% to 90%, but the average efficiency of the manmade thruster is
not more than 50% [16]. The naturally streamlined body curvature and locomotion patterns of these
aquatic animals are rendering the ideal models to be readily applied in UUV design.

In fact, aquatic animals often possess unigue and complex curvature for their body shape that allows
them to swim or propel underwater in swift and smooth locomotion. Unfortunately, most of the current
designs are based on a very rough approximation of fish morphology, possibly due to the lack of detailed
mathematical information of its geometry. In this paper, equations were constructed to describe the 3D
geometry of aquatic animals. Our work focuses on the geometry of body surface of rajiform batoid and
common dolphin. Moving least squares method [17] has been applied as the mathematical tool for the
geometry construction. The generated equations is expected to benefit the oceanic engineering
communities in the future, such as for fluid dynamics analysis and computer-aided design (CAD).

2. Methodology

2.1 Mathematical Modelling of Moving Least Squares Method

Moving Least Square (MLS) is a method to approximate and construct a continuous function for a set
of disordered data or scattered sampling points [18]. It has wide applications in geometry formation [19],
image processing [20] and solution of meshfree techniques [21], due to its robustness in generating a
continuous equation to connect most of the irregular sampling data [17,22]. There are a lot of researchers
and scholars have been utilise MLS for optimisation studies and engineering analysis [17,23,24]. This
method is able to connect all of the disordered plots with quasi-interpolation, eventually generating an
approximated smooth surface curve. This method is able to reconstruct a smooth 3D surface in CAD or
digital graphic design.
Let the data set of z which can be represented by the approximated function z":
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where P is the guess variables of function (parabolic function basically), a is its associating coefficients
(constant values), while m is the maximum number of guess function applied. The difference between
the actual value (z) and approximated value (z") is the error (R). In MLS method, the weighted discrete
norms, J can formed as:
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The minimisation of J is then conducted such that:
oJ
—=0 3
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The differential products of J are combined as summation term and rearranged as a matrix form of
Aa = B, and therefore the coefficients a can be identified as in Eq. (4):

a=A'B (4)
where:

a=[a a, - am]T

A= i%Wip(xi )P(x)"
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There are many weight functions available [25], yet quartic spline function is chosen due to its
simplicity and convenience:

W - 1-6r° +8r3+3r* 0<r<1 5)
0 =1
where:
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(x,y) is the sampling point (any fixed point in the problem domain), while x; and y; are the x- and y-
component coordinate points available throughout the domain. Xmax, Xmin, Ymax and Ymin refers to the
maximum coordinate at x-component domain, mininum coordinate at x-component domain, maximum
coordinate at y-component domain, minimum coordinate at y-component domain, respectively.

2.2 Data Sampling

Before collecting a set of data, the computed tomography (CT) of a rajiform batoid (Dasyatis Sabina)
is obtained from the work of Fontanella et al. [26], as shown in Figure 1. The CT scans of the rajiform
batoid are applied with gridlines according to their real scale, where it is 1 cm per grid. Figure 2 used to
observe and determine the set of coordinates for animal’s geometry.

(@) (b)

Figure 1. CT scan of a rajiform batoid, Dasyatis Sabina adapted from the work of Fontanella et al. [26]
in (a) side view and (b) dorsal view.

(a) (b)

Figure 2. Gridlines was applied on the CT scan of a rajiform batoid, Dasyatis Sabina adapted from the
work of Fontanella et al. [26] in (a) side view and (b) dorsal view.
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On the other hand, the CAD drawing of a common dolphin (bottlenose dolphin) is obtained, as shown
in Figure 3. The CT scans of the common dolphin (Figure 4) are obtained to further support the data
collection of the dolphin’s geometry [27]. The CAD drawing of a common dolphin (bottlenose dolphin)
is applied with gridlines accordingly. Knowing that the average total length of an adult dolphin is around
230 cm and the largest diameter is around 60 cm [28], the gridlines split the figure with 1:10 ratio, in
which every single grid is equivalent to 10 cm.

Figure 3. CAD drawing of a common dolphin (side & dorsal view) is retrieved from Maya Tutorials.
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Figure 4. CT scan of a common dolphin (side view) is adapted from [27].

2.3 Data Collection

The selected samples outline the back bone of a batoid, body frame and the frame of the disc-shaped
pectoral fin, as shown in Figure 5. Microsoft Excels is used to record the data and estimate the remaining
of the coordinates around the body of the batoid by assuming each section of body is a semi-circle with
respect of y-axis, where:

r=x*+z> , -r<x<r & r=z,, at y=012,...
By rearranging it,
z=Nr’—x* , —r<x<r & r=z, at y=012,..

where zmax IS the maximum points in z-component domain. The completed reference plot that readily
serves as an initial input to the moving least square matrix is shown in Figure 5(a), while the surface
plot is shown in Figure 5(b).

Similarly, the samples of coordinates of dolphin are collected from the model as illustrated in Figure
6(a) and (b). The completed reference plots for top-half and bottom-half of a common dolphin’s body
are readily serves as an initial input to the moving least square matrix. The surface plot according to
reference points as in Figure 6(a) and (b) is plotted into Figure 6(c) and (d) respectively.
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Figure 5. (a) Reference plot which resembles of a rajiform batoid; (b) surface plot according to the
reference plot of a rajiform batoid.
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Figure 6. (a) Reference plot resembles of a dolphin’s body (upper part); (b) reference plot resembles of
a dolphin’s body (lower part); (c) surface plot according to the reference plot of a dolphin’s body (upper
part); (d) surface plot according to the reference plot of a dolphin’s body (lower part).
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3. Result and Discussions

The surfaces formed from initial reference plots, as shown in Figure 5(a), Figures 6(a) and 6(b), might
not as similar as the geometry of the real aquatic animals. However, the focus of our work, to enhance
the dimensional continuity for the geometry boundaries and its surfaces. The coordinates around the
surfaces are estimated by assuming as if they are circles which are perpendicular along the y-axis. MLS
solver serves the main purpose to reconstruct a continuous equation according to the data input from the
initial reference plots. Since coordinate on z-axis in every 3D geometry equations are closely related to
the coordinate on x-axis and y-axis, the z-point can be described as a combination of variable x and y.
The guess function is tuned by trial and error for the best possible results that we can obtain.

For the rajiform batoid, the coefficient for each variable is determined using the MLS solver that we
developed using MATLAB. The approximated equation for the batoid surface can be illustrated as in
Eq. (7).

Zuntoid = 7.25—0.7[7 ~exp(2-0.05x? - 0.000167y* )} —0.15y - 0.0136% — 0.006y? + 0.0006xy>

+0.0001yx* +0.0004y> +0.0026 cos ( 20|x|)cos (20| y| ) +0.0445sin (20| )sin (20]y|) ©)

Graphical plots for Eq. (7) can be demonstrated in Figure 7. Figure 7(a) indicates the approximated
reference plot of a rajiform batoid formed from MLS solver, while Figure 7(b) shows an approximated
smooth surface curvature that resembles a rajiform batoid.
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Figure 7. (a) Approximated reference plot of a rajiform batoid generated from Eq. (7); (b) approximated
surface plot of a rajiform generated from Eq. (7).

The location difference contour comparing the z-component coordinate between reference points
(Figure 5(a)) and approximated points (Figure 7(a)) is plotted in Figure 8. The value of Root Mean
Square Error (RMSE) is 0.8843, which is small enough to justify Eq. (7). RMSE can be calculated as:

RMSE = | =~ Pald ] (8)
n
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The highest difference can be observed on the inflated bone side and the flattened wings of the batoid.
With credits to these differences, the surface of the generated batoid is smoother compared with the
refereed batoid as in Figure 5(b). The batoid generated as in Figure 7(b) has a more ‘“naturally
streamlined” surface shape, making it to be closer to bionic morphology of batoids.
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Figure 8. Location difference contour plot in comparing z-component coordinate of the reference
coordinate and approximated coordinate.

For the common dolphin, the coefficient for each variable is determined with the MLS solver as well.
In the case of dolphin, the body shape is known to be a torpedo shape, or a shape form with many circles
with different diameter along the y-axis. Due to the limitation of MLS, the common dolphin’s body has
to be plotted separately as top-half and bottom-half, as shown in Figure 6. The pectoral limbs, dorsal fin,
and caudal limbs are not included in the plots in order to obtain greater accuracy of curvature for the
body.

The approximated equations for upper part and lower part of dolphin have been formulated
respectively in Eq. (9) and (10).

Zoatoig = 2.9+ 0.14y —0.29x* —0.174y? —0.0035yx” +0.0008y° +0.0098cos( 20|x|)cos(20]y|)  (9)

Zoatoig = —2.9—0.14y +0.29x* +0.174y? +0.0035yx* — 0.0008y* — 0.0098 cos( 20| x|)cos(20]y]) (10)

From Egs. (9) and (10), the approximated reference plot and surface plot of a common dolphin’s
body can be computed in Figure 9.

The approximated reference and surface plots as obtained in Figure 9 are close to the observation on
Figure 6. The RMSE for dolphin plot is 0.2424, which is much lower compared with the batoid’s,
possibly due to its simpler geometry without high gradient along its surface. The location difference
contour for dolphin study has been plotted in Figure 10. The greatest difference can be observed around
the highly deforming section of the torpedo-like body of dolphin.

In general, MLS computation could produce the surface plots which have obvious smoother
curvature than the initial reference plots. Indeed, MLS encounters its limitation in 3D plotting of data,
such that the coordinates in the data sample cannot be overlapping (i.e. more than one values of z within
similar x and y coordinate). Therefore, the modelling for common dolphin’s body has to be separated
into two parts. MLS solver has a better precision only if the studied body is a uniform curvature. Thus,
dolphin’s dorsal fin, caudal limbs, pectoral limbs and the tail of batoid has to be neglected and removed
from the main body if a more accurate result is desired. The variables have to be manipulated wisely in
order to generate a better continuous equation.
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Figure 9. (a) Approximated reference plot resembles of a dolphin’s body (upper part); (b) approximated
reference plot resembles of a dolphin’s body (lower part); (c) approximated surface plot according to
the reference plot of a dolphin’s body (upper part); (d) approximated surface plot according to the
reference plot of a dolphin’s body (lower part).
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Figure 10. Location difference contour plot in comparing z-component coordinate of the reference
coordinate and approximated coordinate for (a) upper part of dolphin; and (b) lower part of dolphin.

4. Conclusion

In conclusion, continuous equations which describe the morphology of rajiform swimmer (batoid) and
common dolphin have been constructed using MLS. Although the input data is not exactly the same
with the real geometry of the selected aquatic animals, the MLS solver is still able to generate surfaces
with smoother appearance. The coefficients of each variable are identified in the process after setting
the possible variables and inserting a set of 3D coordinates. The proposed equations in this study would
provide geometrical input for computer-aided design (CAD) and fluid dynamics analysis in the future.
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