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Abstract. In this study, the Variational Bayes (VB) approach was hybridized with the bootstrap prior 

procedure to improve the accuracy of subset selection as well as optimizing the algorithm time in 

modelling high-dimensional genomic data with inherent sparse structure. The new hybrid VB approach 

is shown to yields a minimal sufficient statistic which under mild regularity conditions converges to the 

true sparse structure. Simulation and real-life high-dimensional genomic data experiments revealed 

comparable empirical performance with other competing frequentist and Bayesian methods. In addition, 

a new fast algorithm that illustrates the procedure was developed and implemented in the environment 

of R statistical software as package “VBbootprior”. 
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1. Introduction 

 

 

Variable selection is one of the fundamental aspects of statistical modelling as evidenced by numerous 

authors. The classes of model selection procedures include criteria based approaches [1 - 3], penalized 

regression approaches [4 - 6] and Bayesian modelling approaches [7 - 10]. There have been several 

improvements in the area yet there is still no standard view on how to effectively perform subset 

selection, especially in high-dimensional settings. The primary focus of this paper is to develop a robust 

strategy for selecting variables in high-dimensional genomic data with inherent classification problem. 

 

The Bayesian model selection strategy is more advantageous due to its ability to incorporate many types 

of variation as well as the incorporation of prior information. The weak aspect of the procedure is its 

sensitivity to the knowledge and thus proper specification of prior is highly necessary. One of the 

common prior used in Bayesian model selection involving linearity of variables and parameters is 

Zellner’s g-prior [11]. 

 

In low dimensional setting, Bayesian model selection is performed by exploring all models involved 

vis-à-vis Bayesian inference. In contrast, for high-dimensional setting the Markov Chain Monte Carlo 

(MCMC) methods are employed. MCMC for moderate to large scale problems can be computationally 
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inefficient [12-18]. For this reason, an enormous amount of effort has been put into developing MCMC 

and similar stochastic search based methods which can be used to explore the model space in a 

computationally efficient manner [19-23].  

 

The Mean-field variational Bayes (VB) is a computationally efficient but approximate alternative to 

MCMC for Bayesian inference [12]. Although, it is difficult to fairly compare MCMC and VB as they 

differ theoretically. The VB approach is deterministic while MCMC is a stochastic approach, but in 

most cases, VB tends to be faster than MCMC, especially in high-dimensional settings [24-25]. 

 

2. Variational Bayes Bootstrap Prior (VBprior) for Subset Selection in Binary Classification 

 

Suppose we have a binary class problem defined as {𝑦 ∈ [0, 1]| 𝒛} governed by the logistic 

discriminant model: 

𝑝(𝑦 = 1|𝒛) =
exp (𝒛𝛽)

1 + exp (𝒛𝛽)
 

 

where y is the response variable, z is the matrix of predictors and 𝜷 is the weight vector. 

 

The classifier often return estimated probability 𝑝̂(𝑦 = 1|𝒛) which is then converted to [0, 1] 
using the scheme below: 

𝜓 = {
1,  𝑝(𝑦 = 1|𝒛) ≥ 𝑐𝑢𝑡𝑝𝑜𝑖𝑛𝑡

 
0,  𝑝(𝑦 = 1|𝒛) < 𝑐𝑢𝑡𝑝𝑜𝑖𝑛𝑡

 

The cut-point probability is often fixed at 0.5.  
 

Let 𝑥 ∈ ℕ be the subset of  𝑧 that is correctly related to y. Thus we define the probability distribution of 

x as Poisson with parameter 𝜆, thus; 
 

𝑥~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

with hierarchical prior; 𝜆~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝜃) and 𝜃~𝐺𝑎𝑚𝑚𝑎(𝑏, 𝑐).We want to estimate the posterior of 

𝑝(𝜆, 𝜃|𝑥) given the distribution 𝑞(𝜆, 𝜃). The first step is to obtain the factorization method; 

 

So we choose; 

𝑝(𝜆, 𝜃|𝑥) ≈ 𝑞(𝜆, 𝜃) = 𝑞(𝜆)𝑞(𝜃) 

 

From the general approach we can obtain; 

 

𝑞(𝜃) ∝ 𝑒𝑥𝑝{𝐸𝑞(𝜆)[𝑙𝑛𝑝(𝑥|𝜆, 𝜃)] + 𝑙𝑛𝑝(𝜆) + 𝑙𝑛𝑝(𝜃)} 

 

𝑞(𝜃) ∝ 𝑒𝑥𝑝{𝐸𝑞(𝜆)[𝑙𝑛𝑝(𝑥|𝜆, 𝜃)] + 𝑙𝑛𝑝(𝜃)} 

 

Since the expectation is only over 𝜆, hence it doesn’t affect 𝑙𝑛𝑝(𝜃). Thus; 

  
𝑞(𝜃) ∝ 𝑒𝑥𝑝{𝐸𝑞(𝜆)[𝑙𝑛𝑝(𝑥|𝜆, 𝜃)]}𝑝(𝜃) 

 

𝑝(𝑥|𝜆, 𝜃) = 𝑝(𝑥|𝜆)𝑝(𝜆|𝜃) =
exp (−𝜆)𝜆𝑥

𝑥!
×

𝜃

Γ𝑎

𝑎

𝜆𝑎−1 exp(−𝜃𝜆). 

 

For iid samples; 
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𝑝(𝑥1, … , 𝑥𝑁|𝜆, 𝜃) = ∏
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
×

𝜃

Γ𝑎

𝑎

𝜆𝑎−1exp (−𝜃𝜆)

𝑁

𝑖=1

 

𝑙𝑛𝑝(𝑥1, … , 𝑥𝑁|𝜆, 𝜃) = ∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
×

𝜃

Γ𝑎

𝑎

𝜆𝑎−1exp (−𝜃𝜆))

𝑁

𝑖=1

 

𝑞(𝜃) ∝ 𝑒𝑥𝑝 {𝐸𝑞(𝜆) [∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
× 𝜆𝑎−1exp (−𝜃𝜆))

𝑁

𝑖=1

]} 𝑝(𝜃) 

 

𝑝(𝜃) =
𝑐

Γ𝑏

𝑏

𝜃𝑏−1exp (−𝑐𝜃) 

 

𝑞(𝜃) ∝ 𝑒𝑥𝑝 {𝐸𝑞(𝜆) [∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
× 𝜆𝑎−1exp (−𝜃𝜆))

𝑁

𝑖=1

]} 𝜃𝑏−1exp (−𝑐𝜃) 

 

𝑞(𝜃) ∝ 𝑒𝑥𝑝 {𝐸𝑞(𝜆) [∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖+𝑎−1exp (−𝜃𝜆)

𝑥𝑖!
)

𝑁

𝑖=1

]} 𝜃𝑏−1exp (−𝑐𝜃) 

 

𝑞(𝜃) ∝ [∏
𝐸𝑞(𝜆)[𝜆𝑥𝑖+𝑎−1]

𝑥𝑖!
 (1 + 𝜃)exp{𝐸𝑞(𝜆)[−𝜆]}

𝑁

𝑖=1

] 𝜃𝑏−1exp (−𝑐𝜃) 

𝑞(𝜃) = 𝐺𝑎𝑚𝑚𝑎(𝜃|𝑎′, 𝑏′) 

𝑎′ = 𝑏 + 𝑎 + ∑ 𝑥𝑖

𝑁

𝑖=1

 

𝑏′ = 𝑐 + 𝐸𝑞(𝜆)[−𝜆] 

Next to obtain optimal 𝜆; 

𝑞(𝜆) ∝ 𝑒𝑥𝑝{𝐸𝑞(𝜃)[𝑙𝑛𝑝(𝑥|𝜆, 𝜃)] + 𝑙𝑛𝑝(𝜆)} 

 

𝑞(𝜆) ∝ 𝑒𝑥𝑝{𝐸𝑞(𝜃)[𝑙𝑛𝑝(𝑥|𝜆, 𝜃)]}𝑝(𝜆) 

𝑝(𝑥|𝜆, 𝜃) = 𝑝(𝑥|𝜆)𝑝(𝜆|𝜃) =
exp (−𝜆)𝜆𝑥

𝑥!
×

𝜃

Γ𝑎

𝑎

𝜆𝑎−1exp (−𝜃𝜆) 

 

𝑞(𝜆) ∝ 𝑒𝑥𝑝 {𝐸𝑞(𝜃) [∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
× 𝜆𝑎−1exp (−𝜃𝜆))

𝑁

𝑖=1

]} 𝜆𝑎−1exp (−𝜃𝜆) 

 

𝑞(𝜆) ∝ 𝑒𝑥𝑝 {𝐸𝑞(𝜃) [∑ 𝑙𝑛 (
exp (−𝜆)𝜆𝑥𝑖

𝑥𝑖!
× 𝜆𝑎−1exp (−𝜃𝜆))

𝑁

𝑖=1

]} 𝜆𝑎−1exp (−𝜃𝜆) 

 

𝑞(𝜆) ∝ [∏
[𝜆𝑥𝑖+𝑎−1]

𝑥𝑖!
exp (−𝜆) 𝑒𝑥𝑝 [𝐸𝑞(𝜃)[𝜃]]

𝑁

𝑖=1

] 𝜆𝑎−1exp (−𝜃𝜆) 

 

𝑞(𝜆) = 𝐺𝑎𝑚𝑚𝑎(𝜆|𝑐′, 𝑑′) 

𝑐′ = 𝑏 + 𝑎 + ∑ 𝑥𝑖

𝑁

𝑖=1
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𝑑′ = 𝐸𝑞(𝜃)(𝜃) 

 

The next step is to calculate variation inference objective which is the likelihood 𝐿 = 𝐿(𝑎′, 𝑏′, 𝑐′, 𝑑′). 

 

Algorithm 1: Variational Bayes Bootstrap Prior for Subset Selection in Binary Classification 

Define the data as input for  𝐪(𝛉) = 𝐆𝐚𝐦𝐦𝐚(𝛉|𝐚′, 𝐛′) and 𝐪(𝛌) = 𝐆𝐚𝐦𝐦𝐚(𝛌|𝐜′, 𝐝′) 

Obtain 𝐚′, 𝐛′, 𝐜′, 𝐝′ as output. 

1. Initialize 𝐚𝟎
′, 𝐛𝟎

′, 𝐜′
𝟎, 𝐝𝟎

′
 

2. For iteration 𝐭 = 𝟏, … , 𝐓 

- Update 𝐪(𝛉) by setting; 

𝐚𝐭
′ = 𝐛 + 𝐚 + ∑ 𝐱𝐢

𝐍

𝐢=𝟏

 

𝐛𝐭
′ = 𝐜′𝐭−𝟏 + 𝐄𝐪(𝛌)[−𝛌] 

𝐛𝐭
′ = 𝐜′𝐭−𝟏 −

𝐜′𝐭−𝟏

𝐝′𝐭−𝟏
 

- Update 𝐪(𝛌) by setting; 

𝐜𝐭
′ = 𝐛𝐭−𝟏

′ + 𝐚𝐭−𝟏
′ + ∑ 𝐱𝐢

𝐍

𝐢=𝟏

 

𝐝𝐭
′ = 𝐄𝐪(𝛉)[𝛉] 

𝐝𝐭
′ =

𝐚𝐭−𝟏
′

𝐛𝐭 − 𝟏′
 

 

3. Evaluate 𝐋(𝐚′, 𝐛′, 𝐜′, 𝐝′) to assess convergence. 

 

3. Data Calibration 

This section presents the application of VB on published real data.  Each dataset represents a microarray 

study of thousands of gene expression profiles (p) measured on (n) individuals. The dataset was 

extracted from the Gene Expression Omnibus (GEO) database a subsection of National Center 

Biotechnology Information (NCBI). The data were partitioned using 5-folds cross-validation. One-fifth 

of each dataset was used to test while the VB approached was developed on the remaining part of the 

dataset. The datasets description is summarized in Table 1. 

Table 1.  Dataset description with the number of samples (n) and number of predictors (p). 

Author of Data Cancer type 𝒏 𝒑 

[26] Colon Cancer 62 2000 

[27] Lymphoma Cancer 58 6817 

[28] Breast Cancer 168 2905 

[29] Lung Cancer 181 12533 
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4. Results 

This section presents the results of the train and test data for each of the datasets. Table 2. Presents the 

results of best subsets after applying the VB algorithm. The best subsets were then later used to perform 

classification of the disease as shown in the subsequent Tables. 

Table 2.  Number of Best Subsets of Predictors 

Cancer type 𝒑 𝒙 

Colon Cancer 2000 3 

Lymphoma Cancer 6817 3 

Breast Cancer 2905 3 

Lung Cancer 12533 2 

 

Table 3. Performance metrics results (%) for Colon and Lymphoma cancer 

 Cancer type 

Colon Lymphoma 

Performance Metrics Train Test Train Test 

Sensitivity 85.18 84.67 98.72 96.67 

Specificity 94.95 94.29 98.67 88.33 

Positive Predictive Value 90.40 91.67 99.57 96.90 

Negative Predictive Value 92.20 89.64 96.08 90.00 

Accuracy 91.55 90.26 98.70 94.92 

Balance Accuracy 90.06 89.48 98.69 92.50 

Prevalence 35.49 35.64 75.32 75.25 

Detection Rate 30.27 29.10 74.35 72.67 

Area Under the ROC Curve (AUC) 90.06 89.48 98.69 92.50 

Table 2 showed that out of many predictors 2 or 3 of them can guarantee accuracy in the prediction of 

test data of at least 85%. 

Table 4. Performance metrics results (%) for Breast and Lung cancer 

 Cancer type 

Breast Lung 

Performance Metrics Train Test Train Test 

Sensitivity 100.00 89.33 100.00 99.31 

Specificity 100.00 86.67 100.00 91.43 

Positive Predictive Value 100.00 95.00 100.00 98.04 

Negative Predictive Value 100.00 94.17 100.00 97.50 

Accuracy 100.00 91.56 100.00 97.78 

Balance Accuracy 100.00 88.00 100.00 95.37 

Prevalence 51.04 51.33 82.87 82.87 

Detection Rate 51.04 47.33 82.87 82.31 

Area Under the ROC Curve (AUC) 100.00 88.00 100.00 95.37 
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Table 5. Test Data Accuracy Comparison of VB with Random Forest (RF) 

Cancer type VB RF 

Colon Cancer 90.26 85.48 

Lymphoma Cancer 94.92 89.46 

Breast Cancer 91.56 61.83 

Lung Cancer 97.98 99.44 

Average 93.68 84.05 

 

The results in Table 3 and Table 4 showed that overfitting is not a problem with VB procedure since 

the test data results are not better than the train data results except for prevalence and detection rate 

which are a function of the sample rather than the algorithm. One of the outstanding results can be 

observed with Lung cancer data where only 2 subsets of the 12533 gene expression profile taken resulted 

in almost 98% accuracy. Table 5. showed the side by side comparison with RF, the accuracies of VB 

were found to be larger than RF except for Lung cancer data. 

 

5. Conclusion 

In this paper, a new stage-wise feature selection named VB (Accuracy Based Feature Selection) was 

developed and its performance in the area of biomarker gene identification was achieved. The 

performance results revealed high accuracy in both test and train data. A comparative analysis of VB 

and Random Forest (RF) by [30] established the supremacy of the proposed methods for 75% of the 

data used. 
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