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Abstract. This paper analyses a chemostat model for microbial production by considering 

substrate inhibition and variable yield coefficient. The Andrews growth model is considered to 

describe the inhibitory effect of high substrate concentration towards the microbial growth. The 

dependency of product yield towards the substrate concentration also incorporated in the 

chemostat model. The stability and bifurcation analyses of the chemostat model are presented to 

investigate the dynamical behaviour of microbial in the chemostat and to identify the parameter 

region that generates oscillations in the chemostat. The steady state solutions and their stability 

are determined as a function of residence time. When the feed substrate concentration is adjusted 

to be more than 6.1 g/L, there exist a parameter range of residence time that improves the 

microbial production in the chemostat. 

1.  Introduction 

In recent years, the demand for microbial products such as vitamins, antibiotics, biofuel, vaccines and 

pharmaceutical drugs has gained the interest of researches. Hence, in order to fulfil these demands, the 

production of the microbial needs to be improved by understanding the mechanism of microbial growth 

which can be studied using an experimental apparatus called continuous stirred tank reactor (CSTR) or 

chemostat. Chemostat is a tool that has been widely used for continuous production of cell mass or 

microbial over an indefinite period. 

The chemostat can be effectively functioned for microbial growth by understanding the growth rate 

of microbial in the reactor which can be described by the growth rate models. Hence, the growth rate 

model plays an important role in the production of microbial in the chemostat. Previously, different 

types of growth models such as Monod [1], Tessier [2] and Contois [3] models was considered when 

analyzing the chemostat model with variable yield coefficient. These models represent the growth of 

microbial based on the substrate concentration which means the higher the substrate concentration, the 

higher the growth rate of microbial.  

However, in real – life situation there exist some substrates that will inhibit microbial growth at a 

high concentration of substrate. Therefore, a substrate inhibition model called as Andrews growth model 

is considered to estimate the growth of microbial in chemostat. Andrews [4] growth kinetics model is 

an extension of Monod model where an additional substrate inhibition term has been included. This 

model has been widely used for many applications since it provided a good fit to the experimental data 

especially for wastewater treatment systems [5–14].  
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Some experimental studies of chemostat have found that microbial population in the chemostat 

shows oscillatory behavior which alter the stability of the system. It is found that this behavior occurs 

due to the dependency of the yield coefficient on the substrate concentration [15,16]. Hence, the yield 

coefficient should not be assumed as a constant. A number of theoretical studies have been done to study 

the consequence of this assumption [17–21]. It is proved that by considering the variable yield 

coefficient, bifurcation occur to the system which alter the stability of the system and hence can improve 

the production of microbial.  

Therefore, in this research the chemostat model with variable yield coefficient and Andrews growth 

model is analyzed in order to accurately explains the growth of microbial in the chemostat. The 

dynamical behaviors of the model are discussed by obtaining the steady state solutions. The condition 

for washout of cell mass in the reactor to occur, the conditions for the cell mass in the reactor is 

maximized and the condition for oscillation of microbial to occur is determined by investigating the 

stability and bifurcation analyses. 

2.  Mathematical Model of Chemostat 

The microbial system in chemostat, in which cell mass of microbial, X  grows by consuming substrate, 

S  will be investigated in this study. The microbial growth rate is estimated using the Andrews growth 

model and the variable yield coefficient is considered.  

2.1.  Dimensional chemostat model 

The mathematical model for microbial in chemostat can be described as 

 ( )
1

2

max 0

d 1
,

d
S

I

X S
SX K S X X

t K




−
 

= + + + − 
 

 (1a) 

 
( )

1
2

0 max( )d
,

d
S

I

S S SXS S
K S

t S K



  

−
 −

= − + + 
+  

 (1b) 

where X  is the cell mass concentration, 0X  is the initial substrate concentration, S  is the substrate 

concentration, 0S  is the initial substrate concentration, t  is the time, 
dX

dt
 is the rate of change of cell 

mass, 
d

d

S

t
is the rate of change of substrate, /V F =  is the residence time, V  is the volume of the 

mixture, F  is the flow rate, max  is the maximum specific growth rate, SK  is the saturation constant 

and IK  is the inhibition constant,   and   are constant in yield coefficient. 

2.2.  Dimensionless chemostat model 

The dimensionless variables for substrate concentration ( ),S  cell mass concentration ( )X  and time ( )t

are introduced as follows 

 * ,= SS S K  (2) 

 * ,= SX X K  (3) 

 ( )
1*

max .
−

=t t  (4) 

The dimensionless chemostat model is obtained by substituting equation (2), equation (3) and 

equation (4) into equation (1a) and equation (1b) which is written as 
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 ( )( ) ( ) ( )( )( )
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1 2
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d
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 where * * * *max 0 0
0 0, , , , .S S

S S I

V X S K K
X S I

F K K K

 
 

 
= = = = =   

The dimensionless equations have five parameters which are * * * *
0 0, , ,S X   and .I  In this study, the 

case of sterile feed is assumed which means 0 0X =  and hence, *
0 0.X =  The dimensionless model now 

has four parameters known as bifurcation parameters since the value of each parameter might change 

the behaviour of the chemostat system. The dimensionless residence time *( )  is the primary bifurcation 

parameter while the dimensionless initial substrate concentration *
0( )S  is the secondary bifurcation 

parameter. The dimensionless yield coefficient *( )  and inhibition constant ( )I  are third and fourth 

bifurcation parameters, respectively. However, the value for * and I  are determined based on the 

microbial system and hence they are not ‘tunable’ parameters. 

3.  Results 

The stability and bifurcation analysis of the chemostat model with Andrews growth model and variable 

yield coefficient has been carried out to identify the dynamical behaviour of microbial in the chemostat. 

The steady state solutions of the model with their stability and the bifurcation point have been 

determined. 

3.1.  Steady state solutions of the chemostat model 

The steady state solutions of the dimensionless chemostat model are obtained by letting equation (5a) 

and equation (5b) equal to zero. There are three steady state solutions of the dimensionless chemostat 

model which represents the washout and no washout condition in the chemostat. The steady state 

solutions are given by 

 

i) Washout 

 ( ) ( )* * *
0, ,0 ,=S X S  (6) 

ii) No washout 

 ( ) ( ) ( )( ) ( )
1/22 1* * * * *

1 1 1, 1 1 4 2 , , 
−  

= − − − − −   
  
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The washout steady state solution as in equation (6) is not physically meaningful since the cell mass 

concentration is always zero. Hence, further analysis is focused on the no washout steady state solutions, 

equations (7) and equations (8). The substrate component of the steady state solutions can be defined if 
* 1 2 I  +  and the cell mass component is non-negative when the conditions shown in table 1 is 

satisfied. 

 

Table 1. Conditions for non-negative cell mass concentration of the steady state solutions, 

provided 0   and *
0 0.S   

 

Steady State Solution 
If 

( )
2

*
0

1
0 I

S
   If 

( )
2

*
0

1
I

S
  

( )* *
1 1,S X  ( )

1
* * *

0 01IS S
−

 + +  
* 1 2 ,I  +  

( )* *
2 2, .S X  _ ( )

1
* * *

0 01 2 1I IS S
−

+   + +  

 

 

3.2.  Stability of the steady state solutions 

The stability of the steady state is determined by finding the Jacobian matrix, determinant, trace and 

eigenvalues of the dimensionless equation i.e., equation (5a) and equation (5b). The steady state is stable 

if the trace is negative, the determinant is positive, and the eigenvalues are negative. 

3.2.1. Stability of washout steady state solution 

The Jacobian matrix ( ),J  determinant ( ),Det  trace ( ),Tr  and eigenvalues ( )  for washout steady state, 

equation (3) are obtained as follows 

 

( ) ( )( )

( )( )

*
0

* 2
* * * *

0 0 0

*
0

*2
* *
0 0

1

1 1

,
1

0

1

 



 −
− 
 + + +
 =
 
 −
 + + 
 

S

S S I S

J
S

S I S

 (9) 

 ( ) ( )( ) ( )
12 1

* * * * *
0 0 01 1 , 

− − 
= − + + 
 

Det S S I S  (10) 
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= + + −Trace S S I S  (11) 

 ( )( ) ( )( )
12 2

* * * * * * * * *
1 2 0 0 0 0 0*

1
, 1 .     



−

= − = − + + − + +S I S S S I S  (12) 

By reducing equation (10), equation (11) and equation (12), the washout steady state solution is stable 

if the following condition is satisfied 

 ( )
1

* * *
0 01 .

−

 + +IS S  (13) 

Therefore, the dimensionless residence time *( ) should always be more than *
0 *

0

1
1IS

S
+ +  to make sure 

that the steady state is not stable and the washout situation does not occur in the chemostat. 

3.2.2. Stability of no washout steady state solutions 

There are two no washout steady state solutions which are, equation (4) and equation (5). The Jacobian 

matrix for both steady state solutions are written as 

 
11 12

21

,
0

 
=  
 

J J
J

J
 (14) 

 

where 
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1
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1 1
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 
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i i i
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J

S S I S

 (15) 

 

 

( ) ( )( )
*

12 2
* * * *

,

1 1

−
=

+ + +

i

i i i

S
J

S S I S
 (16) 

 

 
( )

( )( )

2
* * *

21 2
* *

,

1

−
=

+ +

i i i

i i

X I S X
J

S I S

 (17) 

 

for 1,2.i =  From the matrix, these steady states will only be stable if trace, 11 0Tr J=   and determinant, 

12 22 0.Det J J= −   It is found that the no washout steady state solutions, equation (7) and equation (8) 

are stable if the following condition is satisfied 

 
* * * 1

0 01 ( ) . − + +IS S  (18) 

 

 However, the second steady state solution, equations (8) will only be positive for 
* * * 1

0 01 2 1 ( ) , −+   + +I IS S  as mentioned in table 1. Hence, it can be concluded that the steady state 
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* *
2 2( , )S X  is always physical unmeaningful and the steady state * *

1 1( , )S X  is always stable when the 

dimensionless residence time satisfy the condition as in equation (18). The phase plane diagrams of the 

steady state solutions are plotted by considering two different values of dimensionless residence time 
*( 1,3) =  to illustrate the stability of the steady state solutions. The initial substrate concentration 

*
0( )S  is assumed to be 2 and the constants are assumed to be * 5.43, 0.08 = =I  [18,22,23]. Figure 1 

shows the washout steady state is stable since the dimensionless residence time is less than 
* * 1
0 01 ( )−+ +IS S  while, figure 2 shows the no washout steady state * *

1 1( , )S X  is stable since the 

dimensionless residence time is more than * * 1
0 01 ( ) .−+ +IS S  

Figure 1. Phase Plane Diagram of the steady 

state solutions 
*( 1) =  

     Figure 2. Phase plane diagram of the 

steady       state solutions 
*( 3) =  

3.3.  Bifurcation analysis of the no washout steady state solutions 

According to Gray and Roberts [24], the conditions for Hopf bifurcation occurs is when the trace is zero, 

11 22 0J J =  and the determinant is positive, 11 22 12 21 0.J J J J−   Previously, we found that the 

determinant will always be positive when ( )
1

* * *
0 01 .IS S

−

 + +  Hence, the bifurcation points can be 

determined by letting the trace equal to zero which can be written as 

 

 
( ) ( ) ( )( )

( ) ( )( )

2 2
* * * * *
1 0 1 1

*

* 2 2
* * * *

1 1 1

1 1 2
1

( ) 0.

1 1




 

− + + +

= − + =

+ + +

I S S IS X

H

S S I S

 (19) 

 

The value of residence time at which bifurcation occurs can be found by finding the roots of equation 

(19). For instance, by substituting * 5.25, 0.08I = =  and *
0 5S =  into equation (19) we get the residence 

time 
* 1.64,2.86. =  This means there are bifurcation occur at * 1.64 =  and * 2.86. =  However, the 

initial substrate concentration, *
0S  is also a bifurcation parameter. It is important to find the degenerate 
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Hopf bifurcation point where the two Hopf points are annihilating each other. A degenerate Hopf 

bifurcation occurs when the following conditions are satisfied 

 *( ) 0, =H  (20) 

 
*

0.


=
dH

d
 (21) 

The degenerate Hopf bifurcation is obtained by substituting equation (19) into equation (20) and 

equation (21) which can be written as 

 ( ) ( )* *
0 , 3.46,2.20 , =S  (22) 

when * 5.25 =  and 0.08.I =  Hence, natural oscillations occur either when *
0 3.46S    or *

0 3.46.S   

 

3.3.1. Numerical results 

The steady state diagrams of dimensionless cell mass concentration against dimensionless residence 

time in figure 3 are plotted to determine the existence of natural oscillation for three different values of 

initial substrate concentrations 
*
0( 5, 2, 0.05).S =  The solid lines in the diagrams represents the stable 

steady state solutions while the dashed lines represents the unstable steady state solutions. Meanwhile, 

the orange line represents the washout steady state, and the blue and red line represents the no washout 

steady state, 
*
1X  and 

*
2X , respectively. The dashed black line represents the stable periodic solutions. 

In figure 3(a), there are two Hopf points that changes the stability of the system while in figure 3(b) and 

3(c), no Hopf points is identified and no periodic solutions arise. Therefore, the natural oscillation of 

microbial population (periodic solutions) occurs when the initial substrate concentration is more than 

3.46 (
*
0 6.1S g/L) for 

* 5.25 =  and 0.08.I =  The parameter region that can generates the oscillation 

has been illustrated in figure 4. The unfolding diagram shows the Hopf bifurcation locus and the 

degenerate Hopf point when 
* 5.25 =  and 0.08.I =  

 

 
Figure 3(a). Dimensionless steady state solutions 

*( )X  against 

dimensionless residence time 
*( )  when 

*
0 5.S =  
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Figure 3(b). Dimensionless steady state solutions 

*( )X against 

dimensionless residence time 
*( )  when 

*
0 2.S =  

 

 

 

 

 
Figure 3(c). Dimensionless steady state solutions 

*( )X against 

dimensionless residence time 
*( )  when 

*
0 0.05.S =  
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Figure 4. Unfolding diagram showing Hopf bifurcation locus for

* 5.25, 0.08I = =  

 

3.4.  Condition for maximization of cell mass in the chemostat 

Next, in order to determine if there is a residence time at which cell mass concentration is maximised, 

we let  

 

*

*
0, for 1,2,idX

i
dt

= =  (23) 

and the maximum residence time is 

 ( ) ( ) ( ) ( )( ) ( )( )
12 2 2 2

* * * * * * * * * * * *
max 0 0 0 02 2 4 2 2 1 ,I I S S I S S       

−

= − − + + + −  (24) 

 

where 
* *

0 1.S   Hence, the steady state diagram of cell mass concentration 
*( )X  against residence 

time 
*( )  will have a local maximum at point  

 
( ) ( )* * * * * *

max (max) (max), , , , , for 1,2,i i i iS X S X i = =
 (25) 

where 

 
( ) ( )( )
( ) ( )

1
1/2

22 2
* * *

* 0
* *
1(max) 0 * * * 2 2

* * *
0

0

1 4
1 4

4 ,
1 1

I S

S I S
S S

 


   

−
  
 − −    = − + +  −    −     

 (26) 
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 (29)  

For instance, when the dimensionless initial subtrate concentration,
*

0S  is 2 (
* *

0 1,S  ) the cell mass is 

maximised when the dimensionless residence time, 
*

max  is 2.18 as shown in figure 3(b). The maximum 

cell mass concentration, 
*

1(max)X  is 6.30 and 
*

2(max)X  is -868.85 which is physically unmeaningful. This 

means that if the condition 
* *

0 1, S  is satisfied, the cell mass concentration will be maximised at a 

finite residence time, 
*

max . If 
* *

0 1, S  then the value of 
*

max  is negative and the corresponding value 

of 
*X  is non-physical. Hence, the steady-state solutions are maximised at an infinite residence time 

where 

 
* *
1(max) 0lim X S

→

=  (30) 

 
*
2(max)lim X

→

= −  (31) 

This is shown in figure 3(c), where the value of 
*

0S  is 0.05 and the cell mass concentration is maximized 

at an infinite residence time with 
*

1(max)X  is approaching 0.05. 

4.  Conclusion 

In this study, the chemostat model with Andrews growth model and variable yield coefficient has been 

investigated to study the dynamical behaviour of microbial in a chemostat. There are three steady 
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state solutions found which represents the washout and no washout situations in the chemostat. 

The conditions at which washout and no washout solutions intersect and exchange stability is 

given by * * * 1
0 01 ( ) . −= + +IS S  The conditions needed to have positive no washout steady state 

solutions, are obtained as in table 1. The condition that generate oscillation of microbial in a 

chemostat has been identified for a given value of * and .I  The initial substrate concentration 

0( )S  should be more than 6.1 g/L for generating the oscillation in the chemostat. The parameter range 

to generate the oscillation in the chemostat has been illustrated in figure 4. Besides that, the requirement 

to maximize the cell mass concentration in the chemostat has been determined. If 
* *

0 1, S  there exist 

a dimensionless residence time 
*

max( ),  equation (24) that maximize the cell mass concentration 

*

max( ),X  given by equation (27) and equation (29). If 
* *

0 1, S  the steady-state solutions are maximised 

at an infinite residence time where * *
1(max) 0=X S  and *

2(max) .= −X  
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