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Abstract. The aim of this research is to investigate the problem related to the constant 

accelerated of unsteady MHD third grade fluid in a rotating frame. New numerical approach 

will be used in order to solve the problem. Hybrid numerical approach of finite difference 

method and asymptotic interpolation method is introduced. This method is suitable for solving 

unbounded domain where the domain of the problems tends to infinity. Validation has been 

made with other analytical method; Homotopy Analysis Method to show that this hybrid 

method is acceptable. The equation of unsteady state MHD third grade fluid in a rotation about 

z-axis is derived. The nonlinear equation will be discretized by using finite difference method 

and couple with asymptotic interpolation to fulfil the unbounded domain of boundary 

condition.  The effect of various values of parameters such as MHD, rotation, time, second and 

third grade are being tested and discussed. This study concludes that the velocity of distribution 

decreased when the value of MHD and rotation increased. Meanwhile a contrary result occurs 

when the factor of time increased. The velocity profile for real part also will be increased and 

imaginary part will be decreased when the parameter of second and third grade increased.  

1.  Introduction 

The complexity of non-Newtonian fluid becomes interesting subject among the researchers as there 

are many kinds of equations related to the fluid flow can be developed. Non-Newtonian fluids can be 

seen in our daily foods like ketchup and yogurt. Besides that, mucus and blood that have viscous-

elastic behavior also belongs to this type of fluid.  

 In a past few years, several models of fluid flow problem have been discussed numerically and 

experimentally  such as the problem related to the unsteady flow of non-Newtonian third grade fluids 

in a rotating frame [1,2], steady state of MHD flow for a third grade fluid in rotating and porous space 

[3], MHD rotating flow of a second grade fluid in a porous space [4], MHD oscillating flows of 
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rotating second grade fluid in a porous medium [5] and Oldroyd-B fluid with the effects of magnetic 

and porosity [6].  

In this paper, magnetohydrodynamic (MHD) and rotation are highlighted as the main factors of the 

study. MHD is the dynamics of electrically conducting fluids in the presence of magnetic field [7]. 

The application of MHD can be seen in various industrial area and engineering fields. Prior 

researchers have been discussed about the rotation that appears in the fields. The imaginary part which 

is found on the axis that perpendicular (90o) to the real axis will make the rotation exist on a plane. In 

other words, multiplying by a complex number has same meaning as make a rotation around the origin 

by the complex number’s argument, followed by a scaling and its magnitude.  

Many of the mathematical solution have been applied to the fluid flow problems. Homotopy 

Analysis Method (HAM) is one of the analytical methods which has been used to solve the unsteady 

flow problem of non-Newtonian third grade fluid in a rotating frame [2]. HAM also is applied to the 

problem of steady flow of a third grade in a porous plate [8].  

Previous researchers also had produced an exact solution of Oldroyd-B fluid with the effects of 

magnetic and porosity by using Laplace Transform [6]. Numerical Inversion of the Laplace Transform 

has been applied to the unsteady problems of the MHD flow in a porous medium, MHD flow in non-

porous space with Hall currents and flow over a flat rigid plate with porous medium [9]. 

MHD nonlinear equation of a fourth-grade fluid due to noncoaxial rotations of a porous disk with 

fluid at infinity is solved by applying numerical method of finite difference method and successive 

under relaxation scheme [10]. The same numerical method can be seen in the fluid flow problem 

solved by [11]. Finite element method has been used to solve the problem related to fourth grade fluid 

subject to no-slip condition and slip condition [12]. Previous researchers also had solved the non -

linear differential system of Stokes’ first problem by employing Newton method [1]. The non-linear 

partial differential equation which arise from the problem of unsteady MHD third grade fluid with heat 

transfer has been discretized by using implicit finite difference scheme and hence used damped 

Newton method to solve the non-linear algebraic system [13]. Furthermore, finite difference method 

and Newton iterative method are used to solve the model of nonlinear thin film flow velocity [14].    

Hybrid method is a method which combines between two or more methods either in analytical, 

numerical or both. Hybrid homotopy analysis method which combine between homotopy analysis and 

shooting method are used to solve the two-dimensional boundary layer flow of third order fluid over a 

lubricated layer of variable thickness [15]. Hybrid block methods is used to solve the first order of 

ordinary differential equations [16]. Moreover, hybrid method of Chebyshev wavelet finite difference 

method is employed to solve the system of higher order boundary value problem [17]. Other works of 

proposed hybrid method can be seen in computation of the temperature and moisture in porous 

medium [18]. Numerical solution of hybrid method which couples between finite difference method 

and asymptotic interpolation has been proposed to solve the variable accelerated problem of third 

grade fluid in a rotating frame [19].     

In this research, the hybrid numerical solution of finite difference method and asymptotic 

interpolation method is chosen to solve the differential type of non-Newtonian fluid. The constitutive 

equation and the derivation of unsteady state problem of constant accelerated MHD third grade fluid 

in a rotating frame is shown under mathematical formulation. The parameters involved are MHD, 

rotation, third grade fluid and time.     

  

2.  Mathematical formulation 

The incompressible fluid of differential type of grade n  obeying the following constitutive equation as 

follow 

 

 

(1) 

 1

n

j

j

p
=

= − +T I S
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where T  is a Cauchy stress tensor, p  is pressure of hydrostatic while I  is an identity tensor. The 

first three tensors jS  is given by 1 1=S A , 
2

2 1 2 2 1 = +S A A  and 

( ) ( )2

3 1 3 2 2 1 1 2 3 1 1tr  = + + +S A A A A A A A  where   is shear viscosity, ( )1,2i i = and 

( )1, 2,3i i =  are material constants and ( 1, 2,3)n n =A  is the Rivlin-Ericson tensors. After 

considering the first three tensor jS  into equation (1), the constitutive equation for third grade fluid is 

given by  

 

( )2 2

3 1 1 1 2 2 1p tr    = − + + + +
 

T I A A A A        (2) 

 

Next, momentum equation and continuity equation (for fluid density is constant) is given by 

T
V

divb
t

+=



  and 0= V  where   is density, 

t




 is material derivatives, V is velocity, b  

is body forces and divT  is surface forces. Following [1-2], the momentum equation involving rotation 

is given as follow 

 

     ( ) ( )2 r p div
t


 

+  +  +  = − + 
 

V
V V V T        (3) 

 

where   is angular velocity, r  is radial coordinate with 
2 2 2r x y= + , ( )2 V  is Cariolis and 

( )( )r    is centripetal acceleration. Meanwhile, the momentum equation involving magnetic 

field is given by  

 

p div
t


 

= − +  
 

V
T+J B         (4) 

 

where J  is current density, B  is total magnetic field and therefore
2

0- BJ B= V  is Lorentz force 

per unit volume.  

The nonlinear equation of unsteady MHD third grade fluid in a rotation about z-axis is introduced 

as follows  

 

 

  (5) 

 

 

 

 

    (6) 

 

The initial and boundary conditions for constant accelerated [2] are given as follow 

 

( ) 00, =zu , ( ) 00, =zv  for 0z    

( ) Att,u =0 , ( ) ,t,v 00 = for 0t    

2 22 3
2

1 3 02 2
2 2

u u u u u v
v B u

t z z t z z z z
    

             
−  = + + + −                       

2 22 3
2

1 3 02 2
2 2

v v v v u v
u B v

t z z t z z z z
    

             
+  = + + + −                       
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 ( ) 0→t,zu , ( ) 0→t,zv  as →z  for every t  (7) 

 

Equation (6) is multiplied with complex i  and then will be added with the equation (5). Thus, the 

equation is shown as follow  

 

 

                    (8) 

 

where F u iv= +  and  F u iv= − . Consider the following dimensionless parameter to normalize the 

equation (8) 

 

 

( )

11
2 33

1 2

3

, , ,
F A A

f z t
v v

vA

 
  

= = =   
   

1
2 3A

R
v

 
 =  

 
and 

1
2 3

0

2

B v
M

A





 
=  

 
. (9) 

 

Therefore, the equation of the system is presented as follow 

 

                                                                                                                                                                 

  (10) 

where 

1
2 3

1

4

A
a

v





 
=  

 
 and 

1
4 3

3

5

A
b

v





 
=  

 
are parameters.  

3.  Method of solution 

3.1 Finite Difference Method  

The nonlinear equation (10) is discretized by using forward and central finite difference method as 

follow 

 

( )
( ) ( )

( )( )( ) ( ) ( )

1 1 1 1 1 11
1 1 1 11 1

2 2

2

1 1 1 1 1 11 1 1 14 4

2 22
2

2

2 2
2

n n n n n nn n n n n
i i i i i ini i i i i

i

n n n n nn n n n n n n

i i i i i i ii i i i i

f f f f f ff f f f f a
iR M f

k h h k

b b
f f f f f f f f f f f f

h h

+ + + − − −+
+ − + −+ −

+ − + − + −+ − + −

 − + − − +− − +
 + + = +
 
 

+ − + − − + − − +

(11) 

 

 

The initial and boundary conditions in (7) becomes (if the index start from 1) 

 
1 0if =  for 1,2,3,..., 1i N= +   

( )1 1nf A n t= −   for 1,2,3,...n =   

0n

Lf =  for every 1,2,3,...n = , 1 2 3, ,L L L L= .      (12) 

 

22 3
231

02 2

2
2

F F F F F
i F v B F

t z z t z z z

 

  

        
+  = + + −   

          

( )
22 3 2 2

2 2 2 2
2 2 2

f f f f f f f f
iR M f a b

        

               
+ + = + +  +                          
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Rearrange the equation (11) with 1n+  terms move to the left side while n  and 1n−  terms are move 

to the right side as follow 

 

( )

( )( )( ) ( ) ( )

1 1 1 1

1 1

2

1 1 1

1 1 1 1

2 2

2

1 1 1 1 1 11 1 1 14 4

2

2

2 2
2

2

2 2
2

n n n n

i i i i

n n n n n n n
ni i i i i i i

i

n n n n nn n n n n n n

i i i i i i ii i i i i

f f f fa

k h k

f f f f f f fa
iR M f

k h h k

b b
f f f f f f f f f f f f

h h

+ + + +

+ −

− − −

+ − + −

+ − + − + −+ − + −

 − +
+  

 

 − + − +
= − + + −  

 

+ − + − − + − − +

             (13) 

 

At grid point 2i = , the equation (13) becomes 

 

 

( )

( )( )( ) ( ) ( )

1 1 1

1 2 32 2 2

1 1 1

3 2 1 3 2 12
2 2 2

2

3 2 1 3 1 3 13 1 3 2 14 4

1

2 2

2 2
2

2

2 2
2

n n n

n n n n n nn
n

n n n n nn n n n n n n

a a a
f f f

h k k h k h k

f f f f f ff a
iR M f

k h h k

b b
f f f f f f f f f f f f

h h

+ + +

− − −

 
+ − + 
 

 − + − +
= − + + −  

 

+ − + − − + − − +

                         (14) 

 

 

At grid point 3i = ,  

 

( )

( )( )( ) ( ) ( )

1 1 1

2 3 42 2 2

1 1 1

3 4 3 2 4 3 2
3 2 2

2

4 3 2 4 2 4 24 2 4 3 24 4

1

2 2

2 2
2

2

2 2
2

n n n

n n n n n n n
n

n n n n nn n n n n n n

a a a
f f f

h k k h k h k

f f f f f f fa
iR M f

k h h k

b b
f f f f f f f f f f f f

h h

+ + +

− − −

 
+ − + 
 

 − + − +
== − + + −  

 

+ − + − − + − − +

                         (15) 

 

 

At grid point 1i N= − , 

 

( )

( )( )( ) ( ) ( )

1 1 1 1

1 1 2

2

1 1 1

1 1 2 1 2
1 2 2

2

1 2 2 22 1 24 4

2

2

2 2
2

2

2 2
2

n n n n

N N N N

n n n n n n n
nN N N N N N N

N

n n n n nn n n n n n n

N N N N N N NN N N N N

f f f fa

k h k

f f f f f f fa
iR M f

k h h k

b b
f f f f f f f f f f f f

h h

+ + + +

− − −

− − −

− − − − −
−

− − − −− − −

 − +
+  

 

 − + − +
= − + + −  

 

+ − + − − + − − +

   (16) 
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The equation (14)-(16) will produce a tridiagonal matrix  

 

    
( ) ( )

 
( )

 
( )2 2 2 1 2 1n n n n

A F b
−  − −  − 

=                         (17) 

 

and hence the results are obtained from 
1F A b−= .  

 

        3.2   Asymptotic Interpolation Method 

 

The unbounded domain of boundary conditions are taken into consideration whereby the asymptotic 

interpolation method is embedded into the system by introducing a special function 
La

eaay
2

2
10

−
+=

where L  represents different length as L→ . In the unbounded domain, as 6,12,18L = , the 

concept of limits is applied and the solution is represented by 
0a  as shown below: 

 

( ) ( )

2
2

2
2

1 1
0 1 0 0 0lim lim a L

aL L

a a
y a a e a a a

e

−

→ →
= + = + = + =


.      (18) 

 

In this study, we couple the finite difference method with asymptotic interpolation method by using 

minimization technique. Figure 1 shows the graphical representation of solution after inserting the 

asymptotic function. It also shows that the solution will converge to the horizontal asymptote. F1, F2 

and F3 are the results of L=6, L=12 and L=18, respectively while the results of hybrid method are 

obtained from the least square curve fitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of hybrid method 

 

 

The MATLAB software is used to run the algorithms and plot the functions. The validation of 

hybrid method has been made by comparing with other method such as analytical method; homotopy 

analysis methods [19]. Here, the absolute error and relative error are calculated using the formula 

given as follows 

 

 

 

0a  
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 Absolute error Exact solution Hybrid method= − . (19) 

 

 ( )
Absolute error

Relative error % = ×100%
Exact solution

. (20) 

 

Based on the calculation using equation (20), the relative error for this hybrid method is presented 

in Table 1. Figure 2 shows the graphs of hybrid method and exact solution at 1a b R M = = = = =  

and it is clearly showing that both graphs are closed to each other. 

 

  Table 1. Comparison of results between hybrid method and exact solution for

1a b R M = = = = = . 

 

Eta 

( )
 

Exact solution  

(for validation) 

Hybrid 

method  

Absolute 

error 

Relative 

error (%) 

0 1.0000 1.0000 0.0000 0.0000 

0.2 0.7536 0.7506 0.0030 0.3981 

0.4 0.5684 0.5669 0.0015 0.2639 

0.6 0.4288 0.4282 0.0006 0.1399 

0.8 0.3235 0.3233 0.0002 0.0618 

1.0 0.2441 0.2442 0.0001 0.0410 

1.2 0.1842 0.1844 0.0002 0.1086 

1.4 0.1391 0.1393 0.0002 0.1438 

1.6 0.1050 0.1052 0.0002 0.1905 

1.8 0.0793 0.0794 0.0001 0.1261 

2.0 0.0599 0.0600 0.0001 0.1669 

 

 

 
 

Figure 2. Comparison of graphs between hybrid method and exact solution for 

1a b R M = = = = = . 

 

Figure 3 shows the graphs of percentage error for different values of k . In this test, the value of h  

is fixed while the values of k  is varies in order to see the percentage of error for this hybrid method. It 

is proven that the hybrid method is stable when the value of k  decrease.  
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Figure 3. Error for different values of k dt=  while h dx=  keep fixed. 

 

4.  Results and Discussions 

The graphs of velocity distributions are plotted using hybrid method where the finite difference and 

asymptotic interpolation method are applied as shown in Figure 4 - 7. The parameters involved in the 

graph development are 

 i.  MHD parameter, M  

 ii. second and third grade fluid parameters, a and b respectively 

 iii.  rotating frame parameter, R 

 iv.  time,    

4.1.  Effects of Parameter M  

The velocity distribution of real part ( u ) and imaginary part ( v ) when 3M =  and 1a b R = = = =  

are kept fixed is illustrated in Figure 4. It shows the results are converges for this infinite problem. 

 

 
Figure 4. Velocity profile for 3M =  and 1a b R = = = = . 

 

 

(%) 
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Table 2 presents the influence of different values of parameter M  on the velocity distribution. It 

appears that the velocity profile for real part (u ) and imaginary part ( v ) are decreased when the 

values of parameter M increased. 

 

Table 2. Effects of parameter M on the velocity distribution for 1a b R = = = = . 
 

  u  v  

1M =  5M =  1M =  5M =  

0.0 1.00000 1.00000 0.0000000 0.0000000 

0.2 0.75060 0.75020 -0.0001032 -0.0005177 

0.4 0.56690 0.56630 -0.0001565 -0.0007838 

0.6 0.42820 0.42750 -0.0001776 -0.0008898 

0.8 0.32330 0.32260 -0.0001792 -0.0008977 

1.0 0.24420 0.24350 -0.0001695 -0.0008491 

 

4.2.  Effects of Parameter R  
Figure 5 shows the result of velocity distribution after considering the unbounded domain. The hybrid 

method is applied for the different length to show the infinite length and it shows the results are 

converging. The influence of different values of parameter R  on the velocity distribution is shown in 

Table 3. Decreasing values of velocity profile for real part (u ) and imaginary part ( v ) occurs when R  

increased. In physical situation it is related to the Coriolis acceleration where the increment of angular 

velocity has decrement impact on the velocity. 

 

 
Figure 5. Velocity profile for 30R =  and 1a b M = = = = . 

 

 

Table 3. Effects of parameter R on the velocity distribution for 1a b M = = = = . 
 

  u  v  

30R =  60R =  30R =  60R =  

0.0 1.0000 1.0000 0.000000 0.000000 

0.2 0.7505 0.7502 -0.0001071 -0.0001115 

0.4 0.5667 0.5661 -0.0001636 -0.0001717 

0.6 0.4279 0.4270 -0.0001872 -0.0001982 
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0.8 0.3230 0.3220 -0.0001904 -0.0002032 

1.0 0.2438 0.2428 -0.0001815 -0.0001954 

 

4.3.  Effects of Parameter ,a b  

Figure 6 and 7 show the results of velocity profile for real parts (u ) and imaginary parts ( v ) when the 

values of parameter 1.5a =  while 1R b M = = = =  keep fixed and 15b =  while 

1R a M = = = =  keep fixed.    

 

 
Figure 6. Velocity profile for 1.5a =  and 1R b M = = = = . 

 

 
Figure 7. Velocity profile for 15b =  and 1R a M = = = = . 

 

The results show that the velocity profile for real part increased while the imaginary part decreased 

when the values of a  and b  increased as shown in the Table 4 and Table 5. 

 

Table 4. Effects of parameter a on the velocity distribution when 1b R M = = = = . 
 

  u  v  

1a =  5a =  1a =  5a =  

0.0 1.0000 1.0000 0.000000 0.000000 

0.2 0.7506 0.8761 -0.0001032 -0.0000539 
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0.4 0.5669 0.7726 -0.0001565 -0.0000954 

0.6 0.4282 0.6812 -0.0001776 -0.0001264 

0.8 0.3233 0.6007 -0.0001792 -0.0001488 

1.0 0.2442 0.5295 -0.0001695 -0.0001642 

 

 

Table 5. Effects of parameter b on the velocity distribution for 1a R M = = = = . 
 

  u  v  

15b =  30b =  15b =  30b =  

0.0 1.0000 1.0000 0.000000 0.000000 

0.2 0.7553 0.7599 -0.0001015 -0.0000997 

0.4 0.5723 0.5777 -0.0001548 -0.0001532 

0.6 0.4330 0.4379 -0.0001765 -0.0001754 

0.8 0.3273 0.3314 -0.0001786 -0.0001779 

1.0 0.2474 0.2506 -0.0001692 -0.0001688 

 

 

4.4.  Effects of Parameter   

Figure 8 shows the effect of time on the velocity profile when 0.5t =  and 1a b M R= = = =  for 

different length.   

 

 
Figure 8. Velocity profile for 0.5 =  and 1a b M R= = = = . 

 

Table 6 shows the effect of different time towards the real part and imaginary part of velocity 

profile. It is shows that the velocity profile increased when the increment of time occurs. 

  

Table 6. Effects of parameter  on the velocity distribution for 1a b M R= = = = . 
 

  u  v  

0.75 =  1 =  0.75 =  1 =  

0.0 0.7500 1.0000 0.000000 0.000000 

0.2 0.5621 0.7506 -0.0000769 -0.0001032 

0.4 0.4247 0.5669 -0.0001004 -0.0001565 

0.6 0.3208 0.4282 -0.0001269 -0.0001776 
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0.8 0.2424 0.3233 -0.0001345 -0.0001792 

1.0 0.1831 0.2442 -0.0001309 -0.0001695 

 

5.  Conclusions 

The study of the constant accelerated unsteady state of MHD third grade fluid in a rotating frame has 

been conducted. A hybrid numerical of finite difference method and asymptotic interpolation method 

is applied to the problem. Previously, the validation has been made with the other method which is 

analytical method; HAM to show that this hybrid method is acceptable. In addition, the relative errors 

also have been calculated and the stability test has been conducted. The parameters involved are 

MHD, rotation, second-grade, third grade and time. From the results, the velocity profile will be 

increased and (or) decreased when the values of parameter vary. The study also revealed the 

following:    

i. The increment values of the magnetohydrodynamic and rotating parameters will decrease 

the velocity profile. 

ii. The real part in velocity profile is increased while the imaginary part is decreased when 

the parameter of second and third grade increased.  

iii. The increment of time will increase the velocity profile. 
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