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Abstract. In this paper, we solved the first kind and second kind Emden-Fowler type equations by using
scheme involving Genocchi polynomials. Using the nice properties of Genocchi polynomials, which is the
member of Appell polynomials, we construct the Genocchi operational matrices of derivative. Then, we
use collocation scheme together with this operational matrix to transform the Emden-Fowler equation to
a matrix equation. Hence we obtain a system of algebraic equations with unknown coefficients, solving
this system will lead to the solution of Emden-Fowler type equations. This Emden-Fowler equation is a
singular second order differential equation which many numerical methods may fail to solve the problem
effectively. Error analysis on standard Emden-Fowler type equations for this proposed method is shown.
We finally solve some numerical examples and compare to other numerical scheme to show the efficiency,
simplicity and accuracy of the method.

1. Introduction

Since the Genocchi polynomials were first applied to solve fractional calculus problem involving dif-
ferential equation by Abdulnasir and Phang in 2016 [1], this Genocchi Polynomials were successfully
applied to solve various type of problems in numerical analysis, which including generalized fractional
pantograph equations [2], system of Volterra integro-differential equation [3], fractional diffusion wave
equation and fractional Klein—Gordon equation [4], fractional partial differential equations [5]. How-
ever, the use of Genocchi polynomial related method was yet to extend to solve singular initial value
problems. Hence, in this paper, we hope can apply the nice feature on Genocchi Polynomials to tackle
the Emden-Fowler type of equations, which these equations are singular initial value problems related to
second order ordinary differential equations.

In this research direction, orthogonal polynomials as well as non-orthogonal polynomials such as
Genocchi polynomials had been used for solving various type of differential equations, even up to frac-
tional differential equations. The basic procedure in these type of methods are transferring the problem
to a system of equations, then solving the system of equations will lead to the solution of the differen-
tial equation problems. One of the efficient way to do this is by deriving operational matrix. For ex-
amples, Bernoulli operational matrix for solving Fredholm fractional integro-differential equation with
right-sided Caputo’s derivative [6], Legendre operational matrix for solving differential equation in Ca-
puto—Fabrizio operator [7], Legendre operational matrix [8] and Jacobi operational matrix [9]. However,
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there are still no much study on using Genocchi polynomial related method for solving singular initial
value problem such as Emden-Fowler type equation.

The Emden-Fowler type equation have the following form:

2
'+ 2y +af()3(0) =0, ¥(0) =y0, ¥'(0)=0 M

where f(x) and g(y) are functions of x and y respectively. For f(x) = 1 and g(y) = y", equation (1)
becomes the standard Lane-Emden equation.

On top of that, researchers in this research area are always attempt to solve this singular type of prob-
lem, among that including using Laplace transform together with the Adomian decomposition method
or so called Laplace Adomian decomposition method (LADM) [10], optimal homotopy analysis method
[11], Reproducing kernel Hilbert space method [12], modified Adomian decomposition method [13].

Here we proposed a new collocation method based on Genocchi operational matrix which enable us to
solve high order Emden-Fowler type equations as in [14]. In this paper a very straight forward approach
using Genocchi operational matrix of derivative is used to approximate the solution of Emden- Fowler
equations through collocation method. We compare our numerical results with some recently published
results to clearly demonstrate the accuracy and applicability of our proposed method via Genocchi poly-
nomials . To the best of our knowledge this is the first time Genocchi polynomials are applied to this
kind of problems of singular differential equation.

The rest of the paper is organised as follows. In Section 2, we will give some preliminaries for
Genocchi polynomials and the Genocchi operational metrix will be derived. In section 3, we will apply
Genocchi polynomials together with collocation scheme for solving Emden-Fowler equation. In Section
4, we will present the error analysis of the proposed method. In Section 5, we will give some numerical
examples and short conclusion will be given in Section 6.

2. Preliminaries

In this section, we denote the Genochi polynomials with G, (x), where n is the order of Genocchi
polynomials. This type of polynomial always having highest degree n — 1. It is easy to show that the
Genocchi polynomials having the following property.

G,(1)+Gn(0)=0, n>1. )

Let G(x) is the Genocchi vector in the form G(x) = [G;(x), Ga2(x),---,Gn(x)], then the derivative of
Genocchi Polynomials, G’ (x)) of G(x), with the aid of de’ilx(x) =nG,_1(x), n> 1, can be expressed in the
matrix form by G'(x)T = MG” (x), where

G (x) 000 0 0 0 G (x)

5 (x) 2 00 0 0 O G (x)

G (x) 030 0 0 O G3(x)

G’(X)T _ Gﬁt(x) , M= 0 0 4 0 0 O , G(X)T — | Gax)
Gy_,(x) o000 - N—-10O0 Gn-1(x)

Gy (x) o000 -0 N O Gn(x)

Thus, M is N x N operational matrix of derivative. Using the property of Genocchi polynomials, the
k" derivative of G(x) can be obtain by
G'(x)T =MG” (x) = G (x) = G(x)MT
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e ();) - G(x:) (MT ).

3. Collocation scheme based on Genocchi operational matrix

In this section, we will apply the Genocchi operational matrix of derivatives together with collocation
method to solve numerically the Emden-Fowler equation as in equation (1). We achieve this by letting the
solution of Emden-Fowler equation as in equation (1) can be approximated by the first N terms Genocchi
polynomials. In this case, we have

N
yn(x) =~ Z cnGn(x) = G(x)C 3)
n=1

where the Genocchi coefficient vector C and the Genocchi vector G(x) are respectively given by
C" = [e1,¢2--+ en] and G(x) = [G1 (%), Ga(x), -, G ()]
Then, we have the following k" derivative of yy(x).

W) =G6W e =G, )

where M is the Genocchi operational matrix as given in Section 2. Also for f(x) and g(y), we
approximate it in term of Genocchi polynomials as follows

N
f(x) = fn(x) = Y baGalx) = G(x)B ®)
n=1

and
g(y) = gn(y) = 8(G(x)C) (6)

where BT = [by,by,--- ,by].
Substituting equations (3)-(6) in equation (1), we have

CWMMW%+§GMMFW+MawMAGMQZO (7)

Treating the initial condition in the same way, we have

G(0)C = yo

G0y (MT)C =0. ®

To find the solution yy(x), we can collocate equation (7) at some suitable collocation points, for example,
ones can use x; = ﬁ i=1,2,--- ,N—2to obtain

2
G(xi)(MT)*C+ = G(x) (MT)C +a(G(x:) B)g(G(x:)C) =0, ©)
1
for i =1,2,--- ,N —2. The equations (9) are N — 2 non-linear algebraic equations. Together with

equations (8), they make N non-linear algebraic equations which can be easily solved by using any
numerical methods such as Newton’s iterative method, or just applying Maple to solve the nonlinear
equations. Hence, yy(x) given in equation (3) can be calculated.
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4. Error Analysis

Suppose that H = L?[0,1] and {G(x),G(x),--,Gy(x)} C H be the set Genocchi polynomials and
Y = Span{G(x),G2(x), -+ ,Gy(x)}. Also let f be arbitrary element of H, since Y is a finite dimensional
vector space, f has a unique best approximation in Y, say f* such that

VWeY [f=f < f =yl
since f* € Y, then there exist the unique coefficients cy, ¢y, - ,cy such that

N
f~f= gl cnGn(x) = CG(x)

where C = [c1,¢2,-++ ,en], G(x) =[Gi(x), Ga(x), -+ ,Gn(x)].
In the following Lemma we show how the coefficients ¢, can be obtained.

Lemma 1 If the function is f € H = L*|0, 1], then the function can be approximated by using truncated

N
Genocchi series 'Y, c,G,(x). The coefficients ¢, forn=1,2,---N can be calculated using the following
n=1

= 2 (D) + £ (0)).

Remark: f"~1)(x) denotes the (n — 1)" derivative of f.

Cn

Proof 1 The proof can be see in [15].

In the following theorem, we give an upper bound for the error for the function approximation used
to solve the problem (1).

Theorem 1 Let y(x) be the exact solution of equation (1) and yn(x) is the approximate solutions of
equation (1) respectively. Also assume that || f(x)|| < p and ||gn ()|l < ¥, then

(PP N+ YFy )

N!
where Gy, Fy and Py denotes the maximum value of Gy (x),f"V="(x) and g™~V (y) Vx € [0,1] respec-
tively.

[1y() =yw ()| < |a| Gy

Proof 2 From (1) it follows

Xt xt Xt

[ [xy"(x)dxdt = =2 [ [ ¥ (x)dxdt — [ [ axf(x)g(y)dxdt
00 00 00

by using continuity of integral operator and imposing initial conditions, we are able to get
Xt
y(x) = 3yo — |al g’ ({ f(x)g(y)dxdt.

Now, let us assume that both functions f(x) and g(y) are written in terms of Genocchi polynomials,
then the obtained truncated solution, yy(x), is also written in terms of Genocchi polynomials. Here, we
want to find an upper bound for the associated error. Hence, we have;

15(6) =y ()l = 3y0— |l Ofg‘ﬂx)g(y)dxdz ~3y0+al g‘of’fN<x>gN<y>dxdr||m

< |a|g‘0f’||f<x>g<y> ~ Fu()en(y)llwddt

But, || f(x)g(y) — fv(x)en(0)le = lF (x)g(y) — f(x)en (y) + f(x)en () — fn (x)gn (¥) ||oo
<)l (g () — v ) lleo) + g ) o ([ £ () — fiv () [[e0)

thus, using the associated assumptions, we have

PPy + vFy

Iy () =yn()llee < lal G (=

),
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this complete the proof.

5. Numerical Examples
In this section, we will use the Genocchi operational matrix to solve various type of Emden-Fowler
equations.

Example 1 The standard Lane-Emden equation
Fora=1, f(x)=1, g(y)=y(x)" and yy = 1. Equation(1) becomes standard Lane-Emden equation of
index m

2
V() + 2 (00 +3(0)" =0, x>0, m >0, (10)

subject to
y(0)=1, y(0)=0

When m = 0,1, and 5 the exact solutions are respectively known to be y(x) =1 — %x ;oY) ==

-1

and y(x) = (1 + %) ’

Applying the technique described in Section 3, with N = 12, the approximated y”(x), y'(x) and y"(x)
was substituted in equation (1) and we have

xG(x)(MT)2C +2G(x)(MT)C + x(G(x)C)™ = 0. (11)
Also from the initial conditions, we have
G(0)C=1, and G(0)(M")C =0. (12)

Thus, collocating equation (11) at x; = %0, we get ten algebraic equations in terms of m.
Now, we consider the cases m =0, 1 and 5.

The case m = 0. The equations obtained after collocating equation (11) are solved together with equation
(12) for the values of the constants ¢; j=1,2,---,12 and we getc| = %,cz = %21,03 = %,04 =0,¢c5 =
0706 = 0,6‘7 = 07C8 = 01C9 = 07010 = 07Cll = O,C12 =0.

Thus, y(x) = G(x)C is calculated and exact y(x) = 1 — 3,x? is obtained.

The case m = 1. The equations obtained after collocating equation (11) are solved when m =1 to-
gether with equation (12) for the values of the constants ¢; j=1,2,---,12, The solution obtained is
compared with exact solution in Figure 1, one can see clearly that our solution strongly agrees with the
exact solution. We also compare, in Figure 2 the absolute error of this propose method and that obtained
using ADM in [16], which shows that our method gives stronger result.

The case m = 5. The equations obtained after collocating equation(11) are also solved when m =5 to-
gether with equation (12) for the constants ¢; j=1,2,---,12 and the solution y(x) is calculated, Figure
3 represents the comparison of the proposed and exact solution and Figure 4 shows the comparison of
absolute error of the present method and that obtained by Wazwaz using ADM in [16], here one can also
see that our method is a bit more accurate.

Example 2 The isothermal gas spheres equation
Fora=1, f(x)=1, g(y)=e"" and yo = 0 Equation (1) is the isothermal gas spheres equation

2
¥ (x) + ;y’(x) +W =0, x>0. (13)

subject to
¥(0)=0, y'(0)=0.
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Figure 1. Comparison of our solution Figure 2. Comparison of absolute
with exact solution when m = 1 for error for our method with ADM when
example 1. m = 1 for example 1.
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Figure 3. Comparison of our solution Figure 4. Comparison of absolute
with exact solution when m = 5 for error for our method with ADM when
examp]e 1 m =15 for example 1.

This example is solved by our method via collocation scheme as described in Section 3 with N = 12.
The numerical results are compared with a series solution obtained by Wazwaz in [16] using ADM in
Table 1. The absolute error is illustrated in Figure 5.

Example 3 Fora=1, f(x)=1, g(y) = sin(y) Equation (1) becomes
4 2 / .
y(x)+ gl (x)+sin(y) =0, x>0. (14)
subject to

y(0)=1, y'(0)=0.

This example is solved by our method via collocation scheme with N = 12, the numerical results are
demonstrated in Table2 and it is compared with results obtained using SADM in [17] and ADM in [16].
The absolute error is illustrated in Figure 6 which proves that our method is of high accuracy.
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Table 1. Comparison of the numerical solutions and absolute errors obtained by present method and

ADM for example 2.

X  Present Method ADM[16] Error(Present Method) Error(ADM)
0.1 -0.0016658367 -0.0016658339 3.00000E-10 2.56000E-07
0.2 -0.0066533643 -0.0066533671 0.00000E+00 4.68000E-07
0.3 -0.0149328883 -0.0149328833 2.00000E-10 3.18000E-07
0.4 -0.0264554779 -0.0264554764 3.70000E-09 6.69000E-07
0.5 -0.0411539500 -0.0411539574 3.24000E-08 1.90400E-06
0.6 -0.0589440832 -0.0589440752 1.98900E-07 1.52200E-06
0.7 -0.0797260049 -0.0797260072 9.17600E-07 1.79100E-06
0.8 -0.1033860422 -0.1033860675 3.43540E-06 7.91000E-06
0.9 -0.1297985388 -0.1297985822 1.09758E-05 2.36500E-05
1.0 -0.1588278334 -0.1588278798 3.09241E-05 5.82590E-04

Table 2. Comparison of the numerical solutions and absolute errors obtained by present method, ADM

and SADM for example 3.

x  Present Method ADM[16] SADM [17] Error Error(ADM)  Error(SADM)
0.1 0.9985976023 0.9985979274 0.99859793 6.66700E-11 3.00000E-10 6.22E-11
0.2 0.9943949769  0.9943962649 0.99439626 1.00200E-10 4.00000E-10 3.49E-11
0.3 0.9874058794 0.9874087314 *k 1.22400E-10  2.90000E-09 *k
0.4 09776534069 0.9776583657 *k 1.06000E-10  2.54000E-08 *k
0.5 0.9651702487 0.9651777799 0.96517778 1.14000E-10 1.51200E-07 5.62E-10
0.6 0.9499990212  0.9500094973 *k 8.50000E-11  6.54300E-07 ok
0.7 0.9321926734 0.9322063619 *k 1.60000E-10 2.27390E-06 *k
0.8 09118149445 09118319931 0.91183203 7.00000E-11 6.71100E-06 4.60E-9
0.9 0.8889408496 0.8889612639 *k 6.00000E-11  1.74896E-05 ok
1.0 0.8636571677 0.8636807612 *k 1.75000E-09 4.13243E-05 *k

Example 4 Let consider the first kind nonlinear third order Emden-Fowler equation as investigated in
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[14] , .
Y00+ 2y (%) = (4 8)y(x0) 7 =0, (15)

subject to
¥(0) =1, y'(0) =y"(0) =0.

We solve this problem using our method via collocation scheme with N = 12 also our solution is
compared with the exact solution y(x) = v/1 4+ x3, Figure 7 shows the comparison of the results.

Example 5 Finally, we consider the following second kind third order Emden-Fowler type equation also
investigated in [14]

y”@y+;y%n-ao+1a€+w%yu):0, (16)

subject to

3
The exact solution of this equation is known to be y(x) =5 .
We solve this problem the same way by using our method via collocation scheme with N = 12. Figure 8
shows the comparison of our numerical solution with the exact solution.

l— Our Solution Exact Solution] l— Our Solution Exact solutionl

1.0 T 1.0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Figure 7. Comparison of our solution Figure 8. Comparison of our solution
with exact solution for example 4 with exact solution for example 5

For these five benchmark problems in Emden-Fowler equations, our propose method is able to solve
the singular initial value problem, i.e. Emden-Fowler equations in high accuracy. This show that the
Genocchi polynomials with collocation scheme is able to deal with singular initial value problems.

6. Conclusion

In this paper, we solve the singular initial value problem, which is Emden-Fowler equation by using
Genocchi Operational matrix with collocation scheme. The numerical examples presented show that
the method via Genocchi polynomials is able to solve Emden-Fowler equation in high accuracy.
Furthermore, the method is simple and easy to be applied. Hence, we recommend that in future, some
works need to be done for solving fractional singular differential equations by using this Genocchi
polynomials, or other type of polynomial related method. Other problems such as stiff type differential
equations up to fractional order also worth be studied.
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