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Abstract. Throughout this paper, we use the concept of fuzzy chromatic number (FCN)  of fuzzy 

graphs based on 𝛿-fuzzy independent vertex sets  with [0,1]    published in 2015. In this paper, 

we construct two type algorithms  to determine fuzzy chromatic number of cartesian product and 

join of fuzzy graphs. The first type algorithm is constructed to find FCN of specific fuzzy graphs 

based on formulas in  the theorems. The second type algorithm is designed  to establish FCN of 

cartesian product and join of any fuzzy graphs based on the concepts of the cartesian  product 

and join of fuzzy graphs and fuzzy chromatic algorithm. Experimental results of the algorithms 

are also discussed. 

1. Introduction 

Since many real life problems contain indeterminate phenomena, we need  tools to model the problems. 

A fuzzy graph is one of  effective tools to model a real life problem because it can deal with 

indeterminate phenomena. Many researchers  have proposed  applications of  some notions in fuzzy 

graphs, among others Munoz et al. [1] and  Rosyida et al. [2]  illustrated  applications of fuzzy graph 

coloring in traffic light problems. Akram gave an application of interval-valued fuzzy line graphs in 

neural networks [3]. Malik et al. [4] proposed an application of the concept of fuzzy incidence graphs 

for solving a human trafficking problem. Mathew and Mordeson [5] discussed fuzzy incidence blocks 

and their applications in illegal migration problems, and so on. 

 The methods for  coloring of fuzzy graphs and finding their chromatic number (CN)  have been 

given by several researchers. Cioban [6] introduced a coloring of fuzzy graphs through  fuzzy 

independent vertex sets (FIVS) depended on values 𝛿 in [0,1] interval. Further, a fuzzy graph coloring 

by means of maximal FIVS has been put forward by Bershtein and Bozhenuk [7]. Munoz et al. [1] 

created  a coloring method  by way of 𝛼-cuts of the fuzzy graphs. Tahmasbpour and Borzooei  [8] 

investigated CN of bipolar fuzzy graphs. In 2015, Rosyida et al. [9] constructed a fuzzy chromatic 

number (FCN) of fuzzy graphs through 𝛿-FIVS. Moreover, FCN of some operations of fuzzy graphs, 

i.e. join, union, and cartesian product have been investigated in [10], [2], and [11]. 

 Many researchers also investigated algorithms based on the concepts in fuzzy graphs. Dong et al.  

[12]  invented hierarchical clustering algorithm based on fuzzy graph connectedness. Shiono et al.  [13] 

introduced an algorithm for drawing intelligible and comprehensive fuzzy graphs using a partition tree.  

A new algorithm to get fuzzy Hamilton cycle in a fuzzy network by means of adjacency matrix and 

minimum vertex degree has been introduced by Ghani and Latha [14]. Kishore and Sunitha [15] gave 
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an algorithm to obtain CN of fuzzy graphs via 𝛼-cuts of the fuzzy graph. Recently,  Thakur et al. [16] 

initiated an efficient coloring algorithm applied for time detraction of sign image segmentation by way 

of  fuzzy graph theory.  Rosyida et al. [2] constructed an algorithm to determine FCN of union of fuzzy 

graphs. 

 Since a fuzzy graph coloring has many applications in real life problems, it is needed algorithms 

and computation techniques to solve coloring problems in fuzzy graphs. As a continuation of the 

previous works, we design algorithms to determine FCN of join and cartesian product of fuzzy graphs 

based on the properties  given  in [10] and [11]. Further, we also construct general algorithms for finding 

FCN of join and cartesian product of  fuzzy graphs in this paper. As far as we know, these are novelties 

in the research of fuzzy graph coloring because there is no one who investigates algorithms and 

computation techniques for determining FCN of operation of two fuzzy graphs. 

 The structure of this paper is  as follows: Section 2 discuss basic theories used in the next sections. 

Algorithms to determine FCN of cartesian product and join of fuzzy graphs are presented in Section 3. 

In Section 4, experimental results  are discussed. Finally, conclusions are provided in Section 5. 

 

2. Preliminaries 

Throughout this paper, we use basic notions in fuzzy sets cited from [17] and some concepts of fuzzy 

graphs  in [18].  Given  a non-empty set 𝑉 and 𝐸 is a subset of  .V V   A graph  which consists of a 

crisp set 𝑉 (vertex set)   and a  fuzzy set E  (fuzzy edge set) is named fuzzy graph, symbolized by

( , ),G V E  where  : [0,1]V V  →  is a membership function of .E  Thereafter,   the graph 𝐺(𝑉, 𝐸) is called 

as  a crisp graph. A graph * *
( , )G V E  with *

{ | ( ) 0}E uv uv=   is named as an underlying graph of 

( , ).G V E  

 Given  fuzzy graphs  
1 1 1
( , )G V E  and 

2 2 2
( , )G V E  where   1 2 ,V V =    

1 2
,E E  have membership 

functions 
1 2
, ,   respectively. A product 

1 2
G G  is called a cartesian product if its vertex set is V V V=   

and its edge set is E  that is defined as 
1 2 1 1 2 2 1 2 2 1 2 1

{( , )( , ) | ; } {( , )( , ) | ; },x y x y x V y y E x y x y y V x x E    

with membership degrees 
1 2 2 1 2

(( , )( , )) ( ),
E

x y x y y y =  and and  
1 2 1 1 2

(( , )( , )) ( ).
E

x y x y x x =  Meanwhile,  

operation    
1 2

G G+    is called join  of  fuzzy graphs 
1

G  and 
2

G  if its vertex set is  
1 2

V V V=   and the 

edge set is 
1 2

E E E E=    with  
1 2 1 2

1 2
{( , ( )) | , }, ( ) max{ ( ), ( )}

E E E E E
E xy xy x V y V xy xy xy    
 =   =

when 
1 2

,xy E E   and 
1 2

( ) 1
E E E

xy  
=  when xy E   [19]. 

 The concepts of coloring fuzzy graphs depended on values   was discussed in [6]. Let [0.1]  , 

a set V  is named a fuzzy independent vertex set (FIVS) of  ( , ),G V E    if it satisfies

( , ) , ,x y x y    . The FIVS  can  be symbolized by .


 The 𝑘-coloring of  G  was constructed 

by partitioning 𝑉 into   𝛿-FIVS 
1 2

{ , , }
k

  
    for which  ,

i j
i j

 
 =    and 

1 2
.

k
V

  
  =  The  value  𝑘 (minimum) required in the 𝑘-coloring of  G  is named  a 𝛿-chromatic 

number, represented as ( ).G


  

 Further, we discuss a concept of fuzzy chromatic number  (FCN) of  fuzzy graphs proposed in 

[9]. Let ( , ),G V E  be  a fuzzy graph  with 𝑛 vertices. A  fuzzy set ( ) {( , ( )) | 1, 2, , }G k L k k n


 = =   is said 

to be  FCN  of G  if ( ) max{1 | [0,1], ( ) }.L k G k



  = −  =  The notation ( )L k


 stands for a membership 

degree of  𝑘 in .  The formula for FCN of cartesian product of fuzzy graphs, especially path and 

complete fuzzy graphs  provided in [11], is presented in the following theorem. 

 

Theorem 1 [11].  Assuming    
1 1 1
( , )G V E  and 

2 2 2
( , )G V E    are fuzzy graphs  where   * * * *

1 1 1 2 2 2
( , ), ( , )G V E G V E   

are their associated underlying graphs in the form of path and complete graphs. Let 
1 1

| |V n=  and 
2 2| | .V n=

If  
1 2

G G G=  is a cartesian product, then  ( ) {( , ( ))}G k L k


 =   is FCN of the cartesian product with 
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1 2 2

2 1 2

min ( ), ( ) , if 1 ,
( )

1, if .

{ }L k L k k n
L k

n k n n

 


  
= 

  

 

Further, we construct an algorithm for determining FCN of cartesian product of path and cycle fuzzy 

graphs based on formulas given in Theorem 1. 

 

3. Main Results 

3.1. Algorithms to determine fuzzy chromatic number (FCN) of cartesian product of fuzzy graphs 

We present two  algorithms for determining FCN of cartesian product of  fuzzy graphs. The type I 

algorithm (Algorithm 1) is designed based on the  fuzzy chromatic algorithm [2] and the concept of 

cartesian product of  two fuzzy graphs.  It can be applied to cartesian product of any two fuzzy graphs. 

Let  
1 1 1
( , )G V E  and 

2 2 2
( , )G V E   be fuzzy graphs  with the  underlying graphs * * * *

1 1 1 2 2 2
( , ), ( , )G V E G V E , 

1 1
| |V n=  

and 
2 2| | .V n=  

 The first step in type I algorithm is to construct cartesian product  
1 2

G G G=  based on the 

definition. The second step is to find FCN of cartesian product of fuzzy graphs based on fuzzy chromatic 

algorithm. The inputs to be processed in Algorithm 1 are the vertex set V V V=   with cardinality 1 2.n n  

and the edge set with cardinality * *

1 2 2 1( . | |) ( . | |).n E n E+ Therefore, the size of inputs to be processed in 

Algorithm 1  are large enough. 

 Whereas, the type II algorithm (Algorithm 2) is constructed based on the properties  in Theorem  

1. It can be applied  to cartesian product of path and complete fuzzy graphs. There are two steps in 

Algorithm 2. The first step is to invent FCN of  1G  and 2G   by using fuzzy chromatic algorithm.  The 

second step is to compute FCN of cartesian product 
1 2

G G G=  according to formulas given in the 

theorem. The inputs to be processed  are * *

1 1 1 2 2 2, , , , ,E W V E W V  where 1W   and 2W are the sets of 

membership degrees of edges in 1E  and 2E . It means that the size of inputs used  in Algorithm 2 are 

smaller than the size of inputs in Algorithm 1 and it will yield less running time as explained in the 

experimental results. 

 

Table 1. Algorithm 1 (To determine FCN of cartesian product of any two fuzzy graphs). 

 Commands  

Input SS1 = load('data 1 1,E W '); SS2=load('data 22 ,E W ') 

Output FCN of 
1 2

G G G=  

Step 1 

 
Set: 𝑥1 = 𝑆𝑆1. 𝐸1; 𝑥2 = 𝑆𝑆1. 𝑊1; 𝑧1 = 𝑆𝑆2. 𝐸2; 𝑧2 = 𝑆𝑆2. 𝑊2;           
V1 = unique(x1(: ));   nV1 = length(V1); V2 =  unique(z1(: ));  

nV2 = length(V2); [X,Y] = meshgrid(V1,V2); VV = [X(:) Y(:)]; 

nVV=length(VV); Vnum=[1:nVV]'; 

Step 2 

 
Create  cartesian product  

1 2
G G G= :   

[𝐸𝑜, 𝑊𝑜] = fuzzycartesian_function (𝑥1, 𝑥2, 𝑧1, 𝑧2);  

Cartesian_FG = table(Eo, Wo, ′VariableNames′, {′Edge′, ′Weight′}) 

 

Step 3 

 
Set:      V =  VV;  n = length(V); 
 1 2 1 2 1 2 1 2{( , )( , ) | 1} {( , )( , ) | 1};E u y u y y y z u y u y u u x=      

W = [x2; z2];   delta =  [0, W];       m = length(delta);  
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Step 4 

 

 

Determine FCN  of the cartesian product:  

[Voo, Loo] = fchrom_fcartesian(V, E, W, delta, m);   
FCN_cartesian_FG = table(Voo, Loo, ’VariableNames’, {′k′, ′L_k′}) 

  

Meanwhile, the second algorithm is presented in Table 2. 

Table 2. Algorithm 2 (Determining FCN of Cartesian Product of Path and Complete Fuzzy 

Graphs) 

 Commands  

Input SS1 = load('data 1 1,E W '); SS2=load('data 22 ,E W ') 

Output FCN of cartesian product of path and complete fuzzy graph 
1 2

G G G=  

Step 1 

 
Set: 𝑥1 = 𝑆𝑆1. 𝐸1; 𝑥2 = 𝑆𝑆1. 𝑊1; 𝑧1 = 𝑆𝑆2. 𝐸2; 𝑧2 = 𝑆𝑆2. 𝑊2;  

V1 =  unique(x1(: ));   nV1 = length(V1); V2 =  unique(z1(: ));  

nV2 = length(V2);  
Path_fuzzygraph = table(x1, x2, ′VariableNames′, {′Edge′, ′Weight′}). 

Complete_fuzzygraph = table(z1, z2, ′VariableNames′, {′Edge′, ′Weight′}). 

 

Step 2 

 

Determine FCN  of path and complete fuzzy graphs: 
[𝑉𝑜, 𝐿𝑜] =  fchrom_fuzzypath_function (𝑥1, 𝑥2);  
[𝑉1, 𝐿1] =  fchrom_fuzzycomplete_function (𝑧1, 𝑧2);  

 

Step 3 Set 𝑁1 = min(𝑛𝑉1, 𝑛𝑉2); 𝑁2 = max (𝑛𝑉1, 𝑛𝑉2); 

Step 4 for 𝑘 = 1 to length (𝑁1) do 

Step 5 𝐿2(𝑘) = min(𝐿𝑜(𝑘), 𝐿1(𝑘)); 

Step 6 end 

Step 7 for 𝑘 = 𝑁1 + 1 to length (𝑁2) do 

Step 8 𝐿3(𝑘) = 𝐿1(𝑘); 

Step 9 end 

Step 10 for 𝑘 = 𝑁2 + 1 to length (𝑛𝑉1 ∗ 𝑛𝑉2) do 

Step 11 𝐿4(𝑘) = 1; 

Step 12 end 

Step 13 Cartesian product: [𝐸𝑜, 𝑊𝑜] = fuzzycartesian_function (𝑥1, 𝑥2, 𝑧1, 𝑧2); 

 Cartesian_Path_Complete_FG = table (𝐸𝑜, 𝑊𝑜). 

Step 14 Set 𝐿 = [𝐿2  𝐿3(1, 𝑛𝑉1 + 1: 𝑛𝑉2)  𝐿4(1, 𝑛𝑉2 + 1: 𝑛𝑉1 ∗ 𝑛𝑉2)];  

FCN_fcartesian_Path_Complete = table ((1: (𝑛𝑉1 ∗ 𝑛𝑉2))
′
, (𝐿)′, 

                                                                   ′VariableNames′, {′𝑘′, ′𝐿𝑘′}). 
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3.2. Algorithms to determine FCN of join of fuzzy graphs 

A property on fuzzy chromatic number of join of fuzzy graphs given in [10] be valid for join operation 

of any two fuzzy graphs, except:  

• the join 
1 2

G G+  contains  complete fuzzy subgraphs with even number of vertices (greater than 

4) or  
1

G  and  2G contains complete fuzzy subgraphs with odd number of vertices; 

• the fuzzy graph 
1

G  contains a complete fuzzy subgraph with number of vertices 𝑛 ≥ 5   and 2G  

contains a cycle fuzzy subgraph or vice versa. 

 

We modify  the  property in [10] by the proposed remark. 

Remark 1. Let 
1 1 1
( , )G V E  and 

2 2 2
( , )G V E   be  fuzzy graphs. Let * *

1 2,G G  be their underlying graphs with 

chromatic numbers *

1  and *

2 , respectively. The join 
1 2

G G G= +  has  fuzzy chromatic number 

( ) {( , ( ))},G k L k =  where 

( )

( ) ( )( )
1 2

1 2

* *

1 22 2

* *

1 22 2

* *

1 2 1 2

  

  i

min ( ), ( ) , if   is even, 2

max , , f  is

  

  

 odd, 3 ,
( )

0, if 1,

1, if  .

,k k

k k

L L k k

L L k k
L k

k

k n n

 

 


 

 

 

   +

   +      = 
 =


+   +

  (1) 

 

In this section, we present two algorithms for finding fuzzy chromatic number of join of fuzzy 

graphs. The type I algorithm (Algorithm 3) is constructed based on fuzzy chromatic algorithm [2] and 

the concept of join of fuzzy  graphs. The first step in type I algorithm is to produce the join operation  

1 2
G G G= +  based on the definition of join of fuzzy graphs. The second step is to invent FCN of join of 

fuzzy graphs based on fuzzy chromatic algorithm. Let 
1 1 1
( , )G V E  and 

2 2 2
( , )G V E    be fuzzy graphs  with 

the  underlying graphs * * * *

1 1 1 2 2 2( , ), ( , )G V E G V E  where 1 1| |V n=  and 2 2| |V n= . The inputs that will be 

processed in Algorithm 3 are the vertex set  1 2V V V=   with cardinality 1 2n n+  and the edge set 

1 2E E E E=    with cardinality  * *

1 2 1 2| | | | ( . )E E n n+ + . Therefore, the size of inputs used in Algorithm 

3 are large enough. 

Meanwhile, the type II algorithm (Algorithm 4) is designed for specific fuzzy graphs based on 

Remark 1.  There are two steps in the second algorithm. The first step is to determine FCN of fuzzy 

graph 
1

G  and  2G  by using fuzzy chromatic algorithm.  The second step is to compute fuzzy chromatic 

number of join  
1 2

G G G= +  according to formulas  in Remark 1. The inputs to be processed in Algorithm 

4 are * *

1 1 1 2 2 2, , , , ,E W V E W V  where  1W  and 2W  are the sets of membership degrees of edges in 1E  and 2 .E

It is clear  that the size of inputs used  in Algorithm 4 are smaller than the inputs in Algorithm 3 and it 

will produce less running time (this fact is shown in the experimental results). Algorithm 3 is presented 

in Table 3. 

 

Table 3. Algorithm 3 (To determine FCN of join of any two fuzzy graphs). 

 Commands  

Input S1 = load('data 1 1,E W '); S2=load('data 22 ,E W ') 

Output FCN of join 
1 2

G G G= +  

Step 1 

 
Set: 𝑥1 = 𝑆1. 𝐸1; 𝑥2 = 𝑆1. 𝑊1; 

𝑧1 = 𝑆2. 𝐸2; 𝑧2 = 𝑆2. 𝑊2;  V1 =  unique(x1(: ));   nV1 = length(V1); 
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V21 =  unique(z1(: ));  nV21 = length(V21); 

Step 2 for 𝑖 = 1 to 𝑛𝑉21 do   (%Define labels of vertices in 𝑉2 by continuing  labels of 

vertices in 𝑉1) 

Step 3 𝑉22(𝑖) = 𝑉21(𝑖) + 𝑛𝑉1; 

Step 4 end 

Step 5 Set:  𝑉2 = (𝑉22)′; 𝑛𝑉2 = length(𝑉2); 𝑛𝑧1 = length(𝑧1); 

Step 6 for 𝑖 = 1 to 𝑛𝑧1 do   (%Define labels of edges in 𝐸2 based on new labels of vertices 

in 𝑉2) 

Step 7 𝑧(𝑖, 1: 2) = [𝑧1(𝑖, 1) + 𝑛𝑉1   𝑧1(𝑖, 2) + 𝑛𝑉1] 

Step 8 end 

Step 9 

 
Create  join 

1 2
G G G= + : [𝑋, 𝑌] = meshgrid (V1, V2); VV =  [X(: ) Y(: )]; 

nVV=length(VV); 𝐸 = [𝑥1; 𝑧; 𝑉𝑉];  𝑉 = [𝑉1; 𝑉2];  𝑛 = length(𝑉); 
[𝐸𝑜, 𝑊𝑜] =  fuzzyjoin_function (𝑥1, 𝑥2, 𝑧1, 𝑧2);  

Join_FG = table(Eo, Wo, ′VariableNames′, {′Edge′, ′Weight′}) 

 

Step 10 Determine FCN  of the join:  

W = [x2; z2];   delta = [0; W]; m = length(delta); 
[Voo, Loo] = fchrom_fjoin(V, E, W, delta, m);   
FCN_join = table(Voo, Loo, ’VariableNames’, {′k′, ′L_k′}) 

  

 

Further, we present Algorithm 4 in Table 4. 

 

Table 4. Algorithm 4 (Determining FCN of Join of Specific Fuzzy Graphs) 

 Command  

Input S1 = load('data 1 1,E W '); S2=load('data 22 ,E W '); 

𝑎1 = chromatic number of underlying graph 𝐺1
∗;  

𝑎2 = chromatic number of underlying graph 𝐺2
∗;  

 

Output FCN of  Join 
1 2

G G G= .  

Step 1 

 

 

 

 

 

Set 𝑥1 = 𝑆1. 𝐸1; 𝑥2 = 𝑆1. 𝑊1; 𝑧1 = 𝑆2. 𝐸2; 𝑧2 = 𝑆2. 𝑊2;  

V1 =  unique(x1(: ));   nV1 = length(V1); n1 = nV1; VV1 = {1: n1]′; 

V2 =  unique(z1(: )); nV2 = length(V2); n2 = nV2; VV2 = {1: n2]′;  

delta1 = [0; x2];  𝑚1 = length(delta1); delta2 = [0; 𝑧2]; 
𝑚2 =  length(delta2); 

Step 2 

 
Determine FCN  of  

1
G  and  2G : 

[𝑉01, 𝐿01] =  fchrom_function (𝑉𝑉1, 𝑥1, 𝑥2, delta1, 𝑚1);  
[𝑉02, 𝐿02] =  fchrom_function (𝑉𝑉2, 𝑧1, 𝑧2, delta2, 𝑚2);  

 

Step 3 Set 𝑁𝑁 = max(𝑛𝑉1, 𝑛𝑉2); 𝑥 = 𝑎1 + 𝑎2; 𝑉0 = [1: (𝑛𝑉1 + 𝑛𝑉2)]′; 

Step 4 for 𝑘 = 1 to 𝑥 − 1 do 

Step 5 if (rem (𝑘, 2) == 0) && min(2 ≤ 𝑘 ≤ 𝑥 − 1); 
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Step 6 𝑁𝑁1 = 𝐿01 (
𝑘

2
) ; 𝑁𝑁2 = 𝐿02 (

𝑘

2
) ; 𝐿001(𝑘) = min(𝑁𝑁1, 𝑁𝑁2) ; 

Step 7 else 

Step 8         𝑦1 = floor(𝑘

2
); 𝑁𝑁2 = 𝐿01(𝑦1); 𝑁𝑁3 = 𝐿02(𝑦1) 

Step 9           𝐿002(𝑘) = max(𝑁𝑁2, 𝑁𝑁3); 

Step 10 end 

Step 11 end 

Step 12 for 𝑘 = 𝑥 to  (𝑛𝑉1 + 𝑛𝑉2) do 

Step 13              𝐿003(𝑘) = 1; 

Step 14 end 

Step 15 Set 𝐿𝐿001 = (𝐿001)′; 𝐿𝐿002 = (𝐿002)′; 
𝐿𝐿00 = [0; 𝐿𝐿001(2); 𝐿𝐿002(3); 𝐿𝐿001(4); 𝐿𝐿002(5); 𝐿𝐿001(6); 
                … ; (𝐿003(1, 𝑥: 𝑛𝑉1 + 𝑛𝑉2))′]  
FCN_join = table (𝑉0, 𝐿𝐿00, ′VariableNames′, {′𝑘′, ′𝐿𝑘′}) 

 

4. Experimental Results 

We implement Algorithm 1 and Algorithm 2 for finding fuzzy chromatic number of cartesian product 

of two fuzzy graphs 1 2G G   in  Figure 1 where 1 1 1 1 1 2 3 4( , ), { , , , }G V E V u u u u= = ,  and 

2 1 5 1 4 1 3 1 2 2 5 2 4 2 3 3 5 3 4 4 5{( ,0.7),( ,0.6),( ,0.5),( ,0.4),( ,0.3),( ,0.2),( ,0.1),( ,0.6),( ,0.4),( ,0.3)}.E v v v v v v v v v v v v v v v v v v v v=  

The outcomes of the algorithms for fuzzy chromatic number (FCN)  of the cartesian product in Matlab 

R2016a are shown in Figure 2. 

 

 

Figure 1. Cartesian product 1 2G G . 
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Figure 2. Outcomes of Algorithm 1 (b) and Algorithm 2 (a) for FCN of  1 2G G  in Fig.1. 

 

Algorithm 2 which is constructed through formulas given in Theorem 1 has less running time, i.e. 

average 0.296   seconds, applied for fuzzy graph 1G  with 4 vertices and 2G  with 5 vertices and the 

number of edges are 3 and 10 edges. Whereas, the number of   vertices and edges to be processed in 

Algorithm 1 are 20 vertices and 55 edges. It causes longer running time compared with Algorithm 2, i.e. 

average 57.83  seconds. 

 Moreover,  Algorithm 3 and Algorithm 4 have been implemented for finding fuzzy chromatic 

number of join of two fuzzy graphs 1 2G G  in Figure 3. The experimental results of the algorithms for 

determining FCN  of the join  1 2G G are shown in Figure 4.   The inputs to be processed in Algorithm 

4 are the number of vertices of 1V  and 2V  that are   5 and  6 vertices and the number of edges, i.e. 10 

and 15 edges. It causes less running time, i.e. average  0.149   seconds. Meanwhile, the number of 

vertices and edges to be processed in Algorithm 3 are larger, i.e. 11 vertices and 55 edges. This 

conditions cause longer running time compared with Algorithm 4, i.e. average 1.113  seconds. 
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Figure 3. Join 1 2G G+ . 

 

 

 
Figure 4. Outcomes of Algorithm 3 (b) and Algorithm 4 (a) for FCN of join  in Fig.3. 

 

5. Conclusions 

We have constructed two algorithms for determining fuzzy chromatic number (FCN) of cartesian 

product of fuzzy graphs. The  type I algorithm (Algorithm 1) is a  general algorithm that can be used for 

finding FCN of cartesian product  of any two fuzzy graphs. The first step in  Algorithm 1 is to construct 

cartesian product of two fuzzy graphs based on the definition. The second step is to find FCN of the 

cartesian product of fuzzy graphs based on fuzzy chromatic algorithm. Whereas, the type II algorithm 

(Algorithm 2) is an algorithm to determine FCN of cartesian product  of specific fuzzy graphs, i.e., path 

and complete fuzzy graphs. The steps in  Algorithm 2 are constructed based on formulas given in 

Theorem 1.  

 Furthermore,  two algorithms for finding fuzzy chromatic number (FCN) of join of fuzzy graphs 

have been constructed. The  type I algorithm (Algorithm 3)  can be utilized for determining FCN of  join 

of any two fuzzy graphs. The first step in  Algorithm 3 is to produce the join operation  of two fuzzy 

graphs based on the definition. The second step is to invent FCN of join of fuzzy graphs based on fuzzy 
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chromatic algorithm.  Meanwhile, the type II algorithm (Algorithm 4) is an algorithm to determine FCN 

of join operation  of specific fuzzy graphs according to formulas in Remark 1. In the experimental 

results, we have shown that the type II algorithms have less average running times compared with the 

type I algorithms. 

 In the forthcoming research, we will construct formulas to determine FCN of cartesian product 

and join of another specific fuzzy graphs, such as fuzzy tree, fuzzy star, etc.  Further, we will design 

algorithms based on the formulas obtained. Moreover, we will investigate properties of FCN of strong 

product of fuzzy graphs and  create algorithms to determine FCN of the strong product based on the 

properties. 
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