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Abstract. In this paper we introduce a new variant of station cone algorithm to solve linear 

programmimg problems. It uses a series of interior points Ok to determine the entering variables. 

The number of these interior points is finite and they move toward the optimal point. At each 

step, the calcution of new vertex is a simplex pivot. The proposed algorithm will be a polynomial 

time algorithm if the number of points Ok is limited by a polynomial function. The second 

objective of this paper is to carry out experimental calculations and compare with simplex 

methods and dual simplex method. The results show that the number of pivots of the station cone 

algorithm is less than 30 to 50 times that of the dual algorithm. And with the number of variables 

n and the number of constraints m increasing, the number of pivots of the dual algorithm is 

growing much faster than the number of pivots of the station cone algorithm. This conclusion is 

drawn from the coputational experiments with n ≤ 500 and m ≤  2000. In particular we also test 

for cases where n = 2, m = 100 000 and n = 3, m = 200 000. For case where n = 2 and m = 100 

000, station cone algorithm is given no more than 16 pivots. In case of n = 3, m = 200 000, 

station cone algorithm has a pivot number less than 24. 

1. Introduction 

Linear programming (LP) is considered as one of the greated inventions of mathematics in the 20th 

century. And there are two mathematicians who are regarded as the founders of the LP: Soviet 

mathematician Leonid Kantorovich (19 January 1912 – 7 April 1986) and American mathematician 

George Dantzig (November 8, 1914 – May 13, 2005). 

In 1939, for the first time, Leonid Kantorovich studied the problem of planning production. And he 

came up with a mathematical model approach. He set up the mathematical model for the production 

planning problem along with the solution. The Kantorovich work - “Mathematical methods of 

organizing and planning production” [17] is recorded as the original appearance of linear programming. 

But the important milestone of linear programming as a new field of mathematics was in 1947, when 

George Dantzig introduced the simplex algorithm. After its discovery by Dantzig in 1947 [6] the simplex 

method was unrivaled, until the late 1980s, for its utility in solving practical linear programming 

problems. The computational experiments show that the simplex method is efficient in practice [2,3,6,7]. 

Nevertheless, there exists a class of linear programming problems for which the simplex method takes 

an exponential number of steps [10].  

In 1979 [9] Khachiyan introduced the ellipsoid method which run in polynomial time (a bound of  
5( )O n L  arithmetic operations on number with ( )O nL digits). Khachiyan's algorithm was of landmark 

importance for establishing the polynomial time solvability of linear programs. Despite its major 

theoretical advance, the ellipsoid method had little practical impact as the simplex method is more 

efficient for many classes of linear programming problems [1,14].  
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In 1984 [8] Kamarkar proposed a new projective method for linear programming problems which 

not only improved Khachiyan's theoretical worst-case polynomial bound but in fact promised 

dramatically practical performance improvement over simplex method.  Karmarkar's algorithm falls 

within the class of interior point methods. In contrast to the simplex method, which finds the optimal 

solution among the vertices of the feasible set, the interior point method moves through the interior of 

the feasible region and reaches the optimal solution only asymptotically. Stimulated by Karmarkar’s 

algorithm a variety of interior point methods were developed for linear programming [12,16]. 

There are several important open problems in the theory of linear programming, the solution of which 

would represent fundamental breakthrough in mathematics. In the recent survey on linear programming 

[15] M.J. Todd has mentioned unsolved problems: Is there a polynomial pivot rule for the simplex 

method? The immense efficiency of the simplex method in practice, despite its exponential time 

theoretical performance, hints that there may be variations of simplex algorithm that run in polynomial 

time.  

Therefore, we set ourselves the following 3 purposes: The first purpose is to search the new algorithm 

more efficiently than the simplex algorithm; The second purpose is to find the polynomial pivot rule for 

the variation of simplex algorithm; The third purpose is to conduct experimental calculations to campare 

the newly found algorithm with the simplex algorithm. 

In this paper, we present an algorithm, which can be considered a varian of the dual simplex method. 

In the next section, we introduce the station cone concept, which plays a key role in our algorithm. How 

to select the leaving variable is presented in the section 3. In section 4, we show how to choose the 

entering variable - this is an important key to the efficiency of the algorithm.. Section 5 devoted to 

algorithm description.The result of experimental calculation is presented in section 6. A few comments 

are given in section 7. 

2. Station Cone 

Consider a linear programming problem in the matrix form 

                                                         
 

Max  ,

: ,  0 ,

c x

x P x Ax b x =  
 (2.1) 

where ,A R ,b R , x R .n nxm m nc R      Let 
1 2, ,..., mA A A denote the row vectors.Through this paper we  

suppose that (2.1) and its dual problem are nondegenerated.We also suggest the feasible region 𝑃 of 

(2.1) has strict interior points. For simplicity of argument, we assume that the matrix A has full column 

rank n and n < m. 

Let     1 2
, ,..., 1,2,...,n nI i i i m=   such that the vectors ,  i nA i I are linear independent. This means 

the vector ,  i nA i I establish a basis of 𝑅𝑛.Therefore any vector n
lA  can be expressed as a linear 

combination of the vectors ,  
ki k nA i I .  Let 

kli be the linear coefficient of the vector lA  in the basis

,  
ki k nA i I , then 

1

,   1,2,..., ,  1,2,..., .
k k

n

lj li i j
k

a a j n l m
=

= = =  

Consider the system of homogeneous linear inequalities 

                                                 0,   . 
ki k nA x i I    (2.2) 

Definition 1.  The linear inequality 

                                                          0       lA x             (2.3) 

is called the consequent linear inequality of the system (2.2) if and only if all the solutions of the system 

(2.2) satisfy the linear inequality (2.3). 

We need the following well known result in theory of linear inequalities.  

Theorem 2.1. The linear inequality (2.3) is a consequent linear inequality of the system (2.2) if and 

only if 

1

 = ,  0,  
k k k

n

l li i li k n
k

A A i I 
=

   
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Definition of station cone.   Let polyhedral cone M be defined by system of linear inexqualities  

                                                         

1 1

2 2

,

 ,                       

....
,

n n

i i

i i

i i

A x b

A x b

A x b







   

where 
1 2
, ,...,

ni i iA A A are linear independent. Then M is called a station cone if the vector c is a 

nonnegative linear combination of the vectors 
1 2
, ,..., .

ni i iA A A  Then the vertex  x  of the station cone M 

is called a station solution and the vectors 
1 2
, ,...,

ni i iA A A  is called a basis of a station cone. 

Therefore, geometrically it can be seen that all the station cones lie on one side of the objective 

function (c,x) at their vertices (see fig 1: 1 2 3 4 5, , , ,M M M M M   are station cones and 6 7 8 9, , ,M M M M  

are not station cones). In other words, the solutions of the system of linear inequalities that create the 

station cones satisfy the inequality *, ,c x c x , whereas x* is the vertex of the station cones. This is 

equal to the fact that the inequality *, ,c x c x  is the consequent inequality of the system of the linear 

inequalities, which formulate the station cone. This also means that the vector c is the nonnegative linear 

combination of the basic vectors of the station cone.  

 

Figure 1. Station and non station cones 

Theorem2.2.  If the station solution  x  satisfies all the constraints of the problem (2.1) then x   is 

an optimal solution.  

 

3. Leaving variable 

Let 
1 2
, ,...,

ni i iA A A  be the basis of the station cone and 

0
1

,
k

n

k i
k

c A
=

=   

1

,    1,2,... .
k

n

j kj i
k

A A j m
=

= =
 

Then from definion 2.1 follows that: 0,   1,2,...ko k n   = . 

From now on we assume that all ko are strictly positive, i.e. 0 0,  1,2,...,k k n  = . 
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It is obvious that 0 00,  1,2,..., ;  0,  1,...,k kk n k n m  = = = +  is a basis solution of the dual problem 

of (2.1): 

                                                       
Min  ,

0,

T T

b

A c









           (3.1) 

where mR . The assumption 0 0,  1,2,...,k k n  =  means that the dual problem (3.1) is 

nondegenerated.  

Remark 1. The vertex of the station cone is a basic solution of the dual problem. 

4. Pendulum principle and entering variable 

We find that, if we connect the vertices of the cones to the center of a circle, the vertices will oscillate 

around the optimal point according to the pendulum principle. Then finally stop at the optimal point. 

That is one of the main ideas of the satipn cone algorithm. In other words, the pendulum principle is one 

of the spinal ideas, from which the station cone algorithm is formed. 

Let us approximate the equator of the earth by a polygon with the edge of 1 meter long. Then this 

polygon has 40 millions edges and 40 millions vertices. Suppose we have to find the maximum of a 

linear function 1 2xc cx+ over this polygon.  

On figure 1, let A denote an optimal point, 1B denote the starting point. Suppose the distance between
1B and 𝐴 is 5 million meters. Then the simplex method will produce an optimal solution after 5 million 

iterations. 

Let 1M  be a station cone defined by 2 constraints containing points 1B  and 1D , where 1D  is on the 

other side of 𝐴  with a distance, for examples, 4 million meters to 𝐴 (see figure 2). 

 
Figure 2. Pendulum principle 

We denote by
1x  the vertex of 1M . Since 1M is a station cone, it is clear that 

1 1x ,c cx x M   . The 

station cone 1M will be our starting cone. Starting our algorithm with the operation of connecting 
1x  

with O, where O  is the center of the equator. The segment 
1,0x    will intersect with the boundary of P 

at 2B . Replacing the constraint containing 1B by the constraint containing 2B  we have a new cone 2M . 

Repeat the above procedure with 2M  and we have 3M , etc. (see figure 1). The replacement of one 

constraint by another has to follow the restriction that the new generating cone is a station cone. We note 

that at each iteration, the distance between two points kB  and kD  defined by two edges of the station 

cone kM  is reduced by approximately 2 times in comparison with the previous iteration. Therefore the 

number of the iterations T can be estimated by the following  bound    

                                                                     
2log

2

m
T             (4.1) 
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For our example with m = 40 million the formula (4.1) gives  

7
2 2log log 2.10 25

2

m
T  =  . 

The above example shows that our algorithm can produce an optimal solution after around 25 

iterations. 

Initial station cone 

We now proceed to find an initial station cone. We can find an initial station cone M  by solving the 

following system  

                                                                        ,
    0,

T TA c

=


          (4.2) 

where m . We can suppose 0Tc   because, if some coefficient of 
Tc is negative then we multiply 

both sides of the corresponding equation with -1. To find a solution of (4.2), we solve the following big 

- M  problem 

                                                        
 1 1 2 2 ...

     ,
       0,  0,

n n
T T

Min M y M y M y

A Ey c
y




+ + +

+ =
 

  (4.3) 

Where, ,  m ny   and E is the unit matrix of ( n n ) and 1 2, ,..., nM M M  are significantly large 

positive numbers. The problem (4.3) has an optimal solution * 0,  0.y  =  and 
 is a solution of (4.2).  

We also assume that a strict interior feasible solution O of (2.1) is available. If such an initial point 

is not available then we modify the problem using the usual big – M augmentation [11] as follows: 

                                                        
 1

1

1

Max  ,

      ,                    
            , 0.

n

n

n

c x Mx

Ax ex b
x x

+

+

+

−

− 


  (4.4) 

Where ( )1,1,....,1
T me =  and M is a significantly large positive number.  

Let  0
1 1 2max 0, , ,...,n mx b b b+  − − − .Then ( )0

10,...,0,
T

nx +
 is a strict interior feasible solution of (4.4) which 

is in the same form as (2.1).  

Initial interior point 

Let O be a strict interior point of P. Denoted by , 1, 2,...,iO i n=  the projections of 𝑂 onto 𝑛 facets of 

the station cone Mk. Let , 1, 2,...,iH i n=  be the intersection points of the boundary of  

 P and the segments , , 1,2,...,iO O i n= . Then the new point 𝑂∗ will be calculated by the following 

formula 

                                                               
1

1
*

1

n

i
i

O H O
n =

 = + 
+  

               (4.5)  

5. Station Cone Algorithm 

1. Initialization 

Determine the starting station cone 𝑀. Calculate the point 𝑂∗  by formula (4.5). 

Let  *;  kM M O O= = . 

2. Step (𝒌 = 𝟏, 𝟐,… ) 

If the vertex  𝑥𝑘 of the station cone kM is a feasible point of P, then 𝑥𝑘 is an optimal solution. In the 

contrary case, select the inequality s sA x b  for entering the station cone and define the inequality 

r ri iA x b  for leaving the station cone. Determine the new station cone  1kM +
 with the vertex 𝑥{𝑘+1}. 

Go to next step 𝑘 = 𝑘 + 1. 

Remark 2. Except for the calculation for finding the entering variable, each step of algorithm 1 is a 

simplex pivot. 

With the assumption that the dual problem (3.1) of (2.1) is nondegenerated, we hence have the 

following 
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Theorem 2.6. 

The above algorithm produces an optimal solution after a finite number of iterations. 

Proof. Follows from the theorems 2.3,2.4,2.5. 

6. Computational experiences 

The above proposed station cone algorithm has been tested, using MatLab, on a set of randomly 

generated linear problems [13] of the form 

                                                                      Max  ,  
     ,

c x
Ax b

          (6.1) 

where ( )1,1,...,1 ,nc R=  , A is the full matrix of (n x m) with ija is randomly generated from the interval 

[0,1), the vector b has been chosen such that the hyperplanes , ,  1,...,i iA x b i m= =  are tangent to the 

sphere (0, 1) with center at origin and radius r = 1.To ensure  that (6.1) has a finite optimal solution we 

add the constraints 

                                                                   1 ,   1,2,..., .ix i n =            (6.2) 

The optimal solution and objective function value of ((6.1)-(6.2)) have been retested by simplex 

algorithm from MatLab.  

Function Data01. m randomly generates the input data for the problems and stores the matrix A and, 

vector b in the data base form Dat01. mat. Function Alg01. m solves the problem by a new proposed 

algorithm1 and function Simplex01. m itself is the simplex algorithm from the optimization toolbox of 

MatLab. 

Test results are shown in the tables below ( SCA: Station Cone Algorithm). 

 

Table 1.  n = 2, 3 and 500 100000m   

n m Problem 
Pivots Ratio 

(SIMPLEX/SCA) SIMPLEX SCA 

2 

 

500 1 257 9 28.5 

1000 1 518 8 64.8 

2000 1 1000 10 100 

3000 1 1540 11 140 

5000 1 2505 13 192.6 

10000 1 4955 14 353.9 

20000 1 9967 14 711.9 

50000 1 25043 15 1669.5 

100000 1 50314 16 3144.6 

3 

 

500 1 44 12 3.6 

1000 1 60 15 4 

2000 1 98 13 7.5 

3000 1 104 18 5.7 

5000 1 149 18 8.2 

10000 1 174 18 9.7 

20000 1 284 17 16.7 

50000 1 423 21 20.1 

100000 1 626 22 28.5 

150000 1 779 18 43.2 

200000 1 912 23 39.7 
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Table 2.     150 300, 200 700n m  

n m Problem 
Pivots Ratio 

(SIMPLEX/SCA) SIMPLEX SCA 

150 200 

1 13282 1385  

2 10385 1531  

3 11493 1357  

Average 11720 1424 8.230 

150 250 

1 12834 1710  

2 13714 1950  

3 12672 1720  

Average 13073 1793 7.291 

200 300 

1 26367 2628  

2 24800 2941  

3 27010 2813  

Average 26059 2794 9.326 

250 300 

1 35942 3387  

2 36978 3434  

3 40686 3473  

Average 37869 3473 11.047 

250 500 

1 66942 5751  

2 62302 5608  

3 68747 5422  

Average 66003 5593 11.801 

300 600 1 108448 7964 13.6172 

350 700 1 157099 11007 14.2726 

 

Table 3. n = 300, 400, 500; m = 1000,  2000 

n m Problem 

Pivots Ratio 

DUAL SIMPLEX SCA 
DUAL 

SIMPLEX/SCA 

300 1000 1 227 215 8 952 26.44 

400 1000 1 388 676 13 266 29.29 

500 1000 1 583 464 21 033 27.74 

100 2000 1 997 853 21 807 45.75 

7. Conclusions 

 

7.1. The above tested examples show that the number of pivots of the station cone algorithm is 

significantly smaller than the simplex and dual methods. 

7.2. The test has confirmed the trend that as the number of variables and constraints increases, the 

number of pivots of the simplex algorithm increases more rapidly than the number of pivots of the station 

cone algorithm. Therefore, it is necessary to carry out calculations with larger examples. 
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