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Abstract. Finding a perfect triangle was stated as an open problem by Guy in [6]. Numerous 

researches have been done in the past to find such a triangle, unfortunately, to date, no one has 

ever found one, nor has proved its non-existence. However, on the bright side, there are partial 

results which show that there exist triangles that satisfy five or even six of the seven 

parameters to be rational. In this paper, we perform an extensive search to investigate if we can 

extract any perfect triangles from the curve C4 based on the final unsolved case in [9], which 

will then complete the proof of existence or non-existence of perfect triangle on the curve. 

Multiple conjectures were tested to eliminate the possibilities of finding a perfect triangle from 

the last unsolved case of 𝑛 ≡ 3024 (𝑚𝑜𝑑 6052) in [9]. Finally, a theorem was proved, which 

was subtle enough to eliminate this case, proving that there does not exist any perfect triangle 

arising from the curve C4. 

1.  Introduction 

A Heron triangle is a triangle that has three rational sides (𝑎, 𝑏, 𝑐) and a rational area. Various authors 

have examined the problem of finding triangles with as many of these parameters as possible, being 

simultaneously rational. A perfect triangle, as defined by Guy [6] in Problem D21, is a Heron triangle 

which also has three rational medians. Numerous researches have been done in the past to find such a 

triangle, unfortunately, to date, no one has found such a triangle, nor has anyone proved its non-

existence. However, on the bright side, there are partial results which show that triangles do exist in 

which five or six of the seven parameters are rational. A triangle with sides denoted by (𝑎, 𝑏, 𝑐) has 

medians (𝑘, 𝑙, 𝑚) given by 

 

𝑘 =
1

2
√2𝑏2 + 2𝑐2 − 𝑎2 

𝑙 =
1

2
√2𝑎2 + 2𝑐2 − 𝑏2 

𝑚 =
1

2
√2𝑏2 + 2𝑎2 − 𝑐2. 

All rational sided triangles with two rational medians [2] are completely parametrized by equations 

given by 

𝑎 = (−2𝜑𝜃2 − 𝜑2𝜃) + (2𝜃𝜑 − 𝜑2) + 𝜃 + 1 

𝑏 = (𝜑𝜃2 + 2𝜑2𝜃) + (2𝜃𝜑 − 𝜃2) − 𝜑 + 1 

𝑐 = (𝜑𝜃2 − 𝜑2𝜃) + (𝜃2 + 2𝜃𝜑 + 𝜑2) + 𝜃 − 𝜑 
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for rational 𝜑 and 𝜃 such that 𝜃 > 0, 𝜑 < 1, 𝜑 + 2𝜃 > 1. Also, the Heron's formula for the area, ∆, of 

the triangle (𝑎, 𝑏, 𝑐) is given by ∆=  √𝑠(𝑠 −  𝑎)(𝑠 −  𝑏)(𝑠 −  𝑐) where 𝑠 =  (𝑎 +  𝑏 +  𝑐)/2 is 

known as the semi-perimeter. 

 

 
Figure 1. Triangles with sides (2𝑎, 2𝑏, 2𝑐) and medians (𝑘, 𝑙, 𝑚). 

 

  

Many interesting questions can be raised about these triangles, and there has been massive 

research regarding several properties of the Heron triangle. One interesting question is the existence of 

a perfect triangle arising from any known Heron triangles. The search for a perfect triangle requires to 

find rational solutions to the equations defining the area and the medians in terms of the sides. There 

are partial results which show that Heron triangles do exist in which six of the seven parameters are 

rational. In fact, we know of infinite families of triangles with three rational sides and one rational 

median [2]; three integer sides and three integer medians [4]; three rational sides, two rational medians 

and rational area [3]; rational triangles with three rational sides and rational medians, but not the area 

[5]. Authors in [4] applied Schubert parameters to generate the values of 𝜃 and 𝜑. They plotted these 

parameters considered as points corresponding to distinct Heron triangles with two rational medians, 

in the 𝜃𝜑-plane. Rather than being randomly distributed in the region, the points seem to lie on five 

distinct curves. As a result, it was easy to isolate the rational coordinates of enough points on each 

curve to determine the corresponding equations for C1, C2, C3, C4, and C5. Following from there, to 

find all Heron triangles with the properties of having three rational medians, [1] have uncovered 

additional three curves, C6, C7, C8, apart from the one found in [4]. The authors show that these 

families correspond to eight elliptic curves, all isomorphic to each other.  

The subsequent exploration of these curves revealed that constraining the remaining median to be 

rational required one to find rational points on genus seven curves, which by Faltings' Theorem, leads 

to a finite number of possible solutions, which were left unresolved. Then, in [8], the authors disposed 

of the unresolved finite list of solutions in the sense that they found them all and verified that none of 

them correspond to a non-trivial Heron triangle with three rational medians, in other words, a perfect 

triangle. In this paper, we devote our work on the recent results obtained in [9], where the author 

proved that there does not exist any perfect triangles arising from the curve C4 except possibly for 𝑛 ≡
3024 (𝑚𝑜𝑑 6052). Following from there, we attempt to eliminate the last unsolved case in [9] and 

conclude that there does not exist any perfect triangle coming from the curve C4, not even from 𝑛 ≡
3024 (𝑚𝑜𝑑 6052). 

 

2.  Results and Discussion: Case of 𝝁 = −𝟒, −𝟑, −𝟏, 𝟎, 𝟑 

Before we have a look at the conjectures and a theorem that finally eliminated the possibility of 

obtaining a perfect triangle from 𝑛 ≡ 3024 (𝑚𝑜𝑑 6052), let us first of all walkthrough on how this 
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case existed in the first place. In [9], the following theorem was one of the main results proved, which 

states that:  

 

Theorem 1. Finding a perfect triangle corresponding to an appropriate rational point on the curve C4 is 

equivalent to finding an integer 𝑛 such that 𝑍(𝑛𝑃) = 𝑅(𝑥) − 𝑆(𝑥) ∙ 𝑦 a square where 𝑛 ∈ ℤ, 

(𝑥𝑛, 𝑦𝑛) = 𝑛𝑃, 𝑃 = (−21, 324) is an infinite order generator of the curve 𝐸 ∶  𝑦2 = (𝑥 − 15)(𝑥2 +
15𝑥 − 3042) and 𝑅(𝑥), 𝑆(𝑥) ∈ ℤ[𝑥] are polynomials of degree 16 and degree 14, respectively. 

 

This theorem then led to the following corollary states that 

 

Corollary 2. Let 

𝑋 = {𝑛 ∈ ℕ|𝑍(𝑛𝑃) = 𝑅(𝑥𝑛) − 𝑆(𝑥𝑛). 𝑦𝑛 a square} 

𝑌 = {−4, −3, −2, −1,0,3}. 

If 𝑋 = 𝑌, then there are no perfect triangles arising from the curve C4, and the set of rational points on 

D4 are exactly 

(𝜑, 𝑚) = {∞, (−1,0), (−1, ±2), (−
1

2
, ±

9

8
) , (0, ±

9

8
) , (1, ±2), (1, ±18), (3, ±18)}. 

Note that, none of these points stated above in (𝜑, 𝑚) corresponds to a perfect triangle as 

Heron triangle with two rational medians lies only on the region defined by 𝜃 > 0, 𝜑 < 1, 𝜑 + 2𝜃 >
1. These inequalities exclude regions in which a proper triangle cannot form. Among all the values 

listed in the set 𝑌, only the value of 𝜇 = −2 was unable to be eliminated due to the inexistence of the 

value 𝛿(𝜇) as listed in the table below. Due to that, the value of 𝜇 = −2 was unable to eliminate the 

possibility of a perfect triangle coming from 𝑛 ≡ 3024 (𝑚𝑜𝑑 6052).  

 

Table 1: Conditions following from lifting the multiplier. 

 

𝜇 = 𝑌 𝛿(𝜇) Condition applied on  
𝛿(𝜇) 

Implication upon lifting 

−4 13 ∙ 1789 
(

13 ∙ 1789

𝑞
) = −1 

𝑛 ≢ 𝑘 − 4(𝑚𝑜𝑑 𝑞) 

−3 5 ∙ 29 
(

5 ∙ 29

𝑞
) = −1 

𝑛 ≢ 𝑘 − 3(𝑚𝑜𝑑 𝑞) 

−2 - - - 

−1 5 ∙ 29 
(

5 ∙ 29

𝑞
) = −1 

𝑛 ≢ 𝑘 − 1(𝑚𝑜𝑑 𝑞) 

0 13 ∙ 1789 
(

13 ∙ 1789

𝑞
) = −1 

𝑛 ≢ 𝑘(𝑚𝑜𝑑 𝑞) 

3 5333 ∙ 97324757 
(

5333 ∙ 97324757

𝑞
) = −1 

𝑛 ≢ 𝑘 − 3(𝑚𝑜𝑑 𝑞) 

 

 

3.  Result and Discussion: Case of 𝝁 = −𝟐 

 

In this section, we will investigate the case of 𝜇 = −2. Table 1 above indicates that there is no 

condition imposed on this case from which we were unable to eliminate the lifting of 𝑛 ≡ 2𝑡𝑘 −
2(𝑚𝑜𝑑 2𝑡+1𝑘) for 𝑘 ∈ ℤ+ values. Despite being unable to eliminate this case by applying the 

methodology introduced in [9], numerous other independent methods and ideas were exploited; 

unfortunately, they were not strong enough to give a subtle argument to eliminate the lifting of 𝑛 ≡
2𝑡𝑘 − 2(𝑚𝑜𝑑 2𝑡+1𝑘) which could possibly indicate the existence of one or more further points on the 
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curve, of enormous height that could yield a perfect triangle. Nonetheless, we demonstrate the 

following conjectures and ideas in an attempt to eliminate the lifting of this case leaving only 𝑛 ≡
−2(𝑚𝑜𝑑 2𝑡+1𝑘) each time 𝑘 lifts. In addition, for each of these conjectures and ideas, we also include 

a brief reason indicating the failure of these arguments to subtly eliminate the lifting of 𝑛 ≡ 2𝑡𝑘 −
2(𝑚𝑜𝑑 2𝑡+1𝑘). At the end of this section, we present a theorem that finally worked in eliminating this 

particular unsolved case. 

 

Conjecture 1.1: Let 𝑘 ∈ ℤ+  such that 𝑘𝑃̃ = 𝑃∗ = (15 + 36𝑖, 216 − 324𝑖) in 𝐸(𝔽𝑞), then 𝑛 ∈ 𝑌 =

{−2} implies 𝑛 ≢ 𝑘 − 2(𝑚𝑜𝑑 𝑚𝑞) with 𝑚𝑞 the order of 𝑃̃ over 𝔽𝑞. 

 

Failure: We still need to figure out how to connect the 𝑘 values obtained here to the congruence 

condition obtained in Table 1 above, which is modulo 3026 ∙ 2𝑡. Ideally, here we would have 𝑚𝑞|2𝑘. 

 

Conjecture 1.2: If (
30

𝑞
) = +1, then 𝐸̃ has a point 𝑄̃ = (0,39√30). Then, 

𝑍(𝑄̃) = 26 ∙ 318 ∙ (7911395185002059361 + 144441653471996604√30). 

If 𝑄̃ = 𝑎𝑃̃ and 𝑃̃ has order 𝑚 and 𝑍(𝑄̃) is not a square, then 𝑛 ∈ 𝑋 implies 𝑛 ≢ 𝑎(𝑚𝑜𝑑 𝑚). Also,  
𝑍

26 ∙ 318
= 𝐴̃ + 𝐵̃√30 = 𝑢2 

which implies 

𝑢4 − 15822790370004118722𝑢2 + 98074412360272357821743841 = 0. 
The discriminant of this quartic in 𝑢2 is 30 ∙ 𝑎2, where 𝑎 ∈ ℤ and the quartic factorizes as  

[𝑢2 − (𝐴̃ + 𝐵̃√30)][𝑢2 − (𝐴̃ − 𝐵̃√30)]. 

If it has a linear factor, then at least one of 𝐴̃ + 𝐵̃√30 is a square, and if the quartic splits then both are 

squares.  

Failure: It is easy to describe the 𝑞 with (
30

𝑞
) = +1, but not so easy to determine which values of 𝑎 (if 

any) that gives 𝑄̃ = 𝑎𝑃̃. 
 

 

Finally, after multiple attempts to eliminate the final remaining case in [9], we came up with 

the following theorem which worked in eliminating the case of 𝑛 ≡ 2𝑡𝑘 − 2(𝑚𝑜𝑑 2𝑡+1𝑘). 

 

 

Theorem 3 Let 𝑘 = 3026 ∈ 𝑆, then there exists an indicator prime 𝑞 ≠ 2, 3,17 such that 𝜇 = −2 ∈ 𝑌 

implies 𝑛 ≢ 2𝑡𝑘 − 2(𝑚𝑜𝑑 2𝑡+1𝑘).  

 

Proof. 

For 𝑡 = 0, we obtain the lifting to 𝑛 ≡ 3024 (𝑚𝑜𝑑 2 ∙ 3026) which by reducing 𝑛 (𝑚𝑜𝑑 40), we 

have 𝑛 ≡ {4, 8, 12, 16, 20, 24, 28, 32, 36} (𝑚𝑜𝑑 40). Prime 17327 eliminates 

{4, 8, 12, 16, 20, 24, 28, 32} (𝑚𝑜𝑑 40) leaving only 𝑛 ≡ 36 (𝑚𝑜𝑑 40) which by Chinese remainder 

theorem is equivalent to 𝑛 ≡ 4 (𝑚𝑜𝑑 8). The prime 157 and 190367 eliminates 𝑛 ≡ 4 (𝑚𝑜𝑑 8) 

which implies 𝑛 ≢ 36 (𝑚𝑜𝑑 40). Thus, 𝑛 ≢ 3024 (𝑚𝑜𝑑 2 ∙ 3026) leaving 𝑛 ≡ −2 (𝑚𝑜𝑑 2 ∙ 3026). 

 

For 𝑡 = 1, we obtain the lifting to 𝑛 ≡ (2 ∙ 3026) − 2 (𝑚𝑜𝑑 22 ∙ 3026) which by reducing 

𝑛 (𝑚𝑜𝑑 40), we have 𝑛 ≡ {2,10,18, 26,34} (𝑚𝑜𝑑 40). The prime 251 eliminates 𝑛 ≡
{2,10, 26,34} (𝑚𝑜𝑑 40). For 𝑛 ≡ 18 (𝑚𝑜𝑑 40), which is equivalent to 𝑛 ≡ 2 (𝑚𝑜𝑑 8) is eliminated 

by prime 2774248223. Thus, 𝑛 ≢ 2 ∙ 3026 − 2 (𝑚𝑜𝑑 22 ∙ 3026) leaving only 𝑛 ≡ −2 (𝑚𝑜𝑑 22 ∙
3026). 
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For 𝑡 ≥ 2, we obtain the lifting to 𝑛 ≡ (2𝑡 ∙ 3026) − 2 (𝑚𝑜𝑑 2𝑡+1 ∙ 3026) which by reducing 𝑛 ≡
(𝑚𝑜𝑑 40), we have checked that 𝑛 ≡ {6,14,22, 30,38} (𝑚𝑜𝑑 40).. The prime 67 eliminates 𝑛 ≡
{6, 30} (𝑚𝑜𝑑 40) while prime 233 eliminates 𝑛 ≡ {14, 22} (𝑚𝑜𝑑 40). For 𝑛 ≡ 38 (𝑚𝑜𝑑 40), which 

is equivalent to 𝑛 ≡ 6 (𝑚𝑜𝑑 16) is eliminated by prime 1326053. Thus, 𝑛 ≢ (2𝑡 ∙ 3026) −
2 (𝑚𝑜𝑑 2𝑡+1 ∙ 3026) leaving only 𝑛 ≡ −2 (𝑚𝑜𝑑 2𝑡+1 ∙ 3026).       ∎ 

 

With this theorem, we manage to eliminate the last unsolved case in [9], which states that 

there may exist perfect triangles coming from 𝑛 ≡ 3024 (𝑚𝑜𝑑 3026), hence proving that there does 

not exisexistfect triangles coming from the curve C4. 

 

4.  Conclusion 

 

With this theorem, we manage to eliminate the last unsolved case in [9], which states that there may 

exist perfect triangles coming from 𝑛 ≡ 3024 (𝑚𝑜𝑑 3026), hence proving that there does not exist 

perfect triangles coming from the curve C4. For further research, we will have a look at the curve C5. 
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