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Abstract. For numerically solving PDEs, node or grid adaptation schemes have been invented, 

applied, and improved mainly to improve solution accuracy while reducing the burden caused 

by CPU-limitation and/or users’ interference. This becomes crucial particularly for problems 

involving strong changes in physical phenomena. This work proposes a means of node-

adaptation used in conjunction with a numerical meshfree method called ‘radial point 

interpolation (RPIM)’, carried out using the concept of interpolation via. radial basis functions 

and hence no grid or mesh required. The proposed method is developed to tackle one of the 

most challenging problems with convective force being overwhelming in the system. This 

phenomena is known not to be easily numerically simulated. The proposed node-adaptive 

scheme is carried out where locally-estimated Péclet number (Pe) being used to indicate the 

areas of interest, places where nodes are expected to be added or removed. The whole 

adaptation algorithm is dynamic requiring on user’s interference. When compared to solutions 

obtained from fixed-node cases and other benchmark work, the results obtained in this work 

strongly suggest benefits in terms of both solution accuracy improvement and CPU-storage 

reduction. 

1.  Introduction 

Appearing in many branches of sciences and engineering such as biological, physical chemical, 

physical in fluid mechanics, astrophysics, meteorology, and multiphase flow in oil reservoirs, polymer 

flow [1], convection-diffusion type of PDE is known to play important roles. The combination of two 

phenomena; convection and diffusion is widely regarded as a great challenge when finding solutions 

both analytically and numerically. The case becomes even more challenging when the convective 

force becomes dominant and one often meets with situations where thin boundary and interior layers 

are presented and singular perturbation problems arises known as ‘convection-dominated’ phenomena. 

A number of investigations have been carried out over the decades to provide reliable solutions and/or 

treatments for modelling the phenomena [2]. Some recent works include the use of Meshless local 

Petrov–Galerkin (MLPG) method done in [3], several numerical techniques; the enlargement of the 

local support domain, the upwind support domain, the adaptive upwind support domain, the biased 

support domain, the nodal refinement, and the adaptive analysis, as presented in [4], a stencil of the 

finite–difference method [5], the traditional global collocation Kansa method [6], and the dual 

reciprocity boundary element method [7]. 
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On the development of numerical methods, a new class of numerical methods known as ‘meshless / 

meshfree’ has recently been receiving great amount of interest from scientists and engineers. Some 

different versions of this kind are the element-free Galerkin method [8, 9], the local Petrov-Galerkin 

[10,11], and meshless manifold method [12], (please also see references therein). Along this track, 

Kansa [13] was the first who performed an application of a collocation method based on Multiquadric 

Radial Basis Function (MQ-RBF) to a set of PDEs in 1990. There have been a great amount of 

attempts in developing, applying, and modifying the method to different kinds of problems ever since. 

This includes groundwater contaminant transport [14], plate and shell analysis [15,16,17], 

microelectromechanical system analysis [18] and many more. 

The traditional version of Kansa, nevertheless, is known to severely suffer from having a fully 

unsymmetric and populated collocation matrix, increasing the risk of being ill-conditioned. The 

problem becomes even more severe when the number of nodes are increasing or with larger domain. 

One of the improved versions is the attempt to combine the radial basis function and some polynomial 

basis functions firstly proposed in 2002 by Wang and Liu [19], known as ‘The Radial Point 

Interpolation Method (RPIM)’. With this method, the approximation of the solution is obtained by 

letting the interpolation function pass through the function values at each scattered node within the 

domain. Liu [20] in 2011, concluded that by using the combination of radial and polynomial basis 

functions, the singularity problem can be improved. Together to this, the effect of shape parameters on 

the method for elastoplastic problems in two-dimension models using MQ-RBF was documented by 

Bozkurt et al [21] in 2013. For some more recently and nicely documented, the interested reader is 

referred to [22] and [23]. 

For all collocation-based meshless methods mentioned so far, including RPIM, it is the Radial 

Basis Function that plays a crucial role in determining the quality of the final results. Radial Basis 

Functions (RBF),   , are multivariate functions whose values are dependent only on the distance 

from the origin. This means that on the distance from a point of a given set  jx , and 

( ) ( )j jr − = x x . Here, 
2j jr = −x x  is the Euclidean distance and any function   satisfying 

2
( ) ( ) =x x  is called ‘a radial function’. RBFs have been receiving a great amount of interest from 

researchers from many branches of applications [24]. Some of the most popular choices are focussed 

on in this work and they are listed as follows [25];  

 

• Multiquadric (MQ) : ( ) ( )
2

1r r = +   

• Gaussian (GA) : ( ) ( )( )2
expr r = −   

• Inverse Quadratic (IQ) : ( ) ( )
2

1/ 1r r  = +
 

    

• Inverse Multiquadric (IMQ) : ( ) ( )
2

1/ 1r r = +  

• Cubic Matérn (CMT) : ( ) ( ) ( )( )2 3
15 15 6r r r r   = + + +   

Where   is the so-called ‘shape parameter’ and to be determined by the user. Figure 1 illustrates their 

surface profiles at the same 10.00 = . 
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Figure 1. Radial Basis Function Profiles at 10.00 = ; (a) computational nodes, (b) 

Multiquadric (MQ), (c) Gaussian (GA), (d) Inverse Quadratic (IQ), (e) Inverse 

Multiquadric (IMQ), and (f) Cubic Matérn (CMT). 

Last but not least, one of the objectives of this work is also to optimize the numerical process in 

terms of CPU-storage and time, while obtaining the optimal result quality by proposing a means of 

node-adaptation. The research in the area of node-adaptation or grid-adaptive schemes has been 

widely studied and nevertheless, most attempts have been associated with the traditional numerical 

methods, i.e. finite element method, finite volume method, and finite difference method, see [26]. On 

the other hand, only a small number of investigations done under the scope of meshfree/meshless. 

Some recent works include the use of wavelet based adaptive [27], the distributed adaptive node-

specific signal estimation (DANSE) algorithm [28], the hybrid global RBF-meshless with minimal 

fine tuning [29], the use of two constraints in equidistribution algorithm [30], and the centroid-

adaptive global collocation [31]. 

The organization of this work is as follows. The mathematical structure of the Radial Point 

Interpolation Method (RPIM) and the proposed-node adaptation scheme are detailed in Section 2. Its 

numerical implementation to the steady convection-diffusion problem is provided in Section 3. 

Section 4 presents the overall performance of the method via several benchmark test cases. Findings 

obtained are also discussed in the same section before Section 5 summarizes the main conclusions.  

2.  Mathematical Background 

2.1.  Radial Point Interpolation Meshfree (RPIM) Method 

The collocation scheme starts with considering the following elliptical partial differential equation, 

defined on a bounded and connected domain  ;  

  ( ) ( )u f x =x            for 
nx  (2.1) 

 1 ( ) ( )B u g x=x            for 
1x
 (2.2) 

 2 ( ) ( )B u h x=x            for 
2x
 (2.3) 

Where  is the domain boundary containing two non-overlap sections; 
1  and 

2 , with  

1 2   = . These differential operators;  , and  1 2,B B  are applied on the domain, and the two 

boundary sections respectively. Let  
1

N
c

j j=
=X x  be a set of randomly selected points, known as 
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‘collocation’ or ‘centres’, on the domain where  
1

iN

j j=
x   are those contained within, and   1

1

i

i

N N

j j N

+

= +
x   

and  
1 1i

N

j j N N= + +
x  are those on the boundary 

1  and 
2   respectively.  

The radial point interpolation scheme writes the approximate solution ( )u x  , as the linear 

combination of the basis function ( ) :
N

j
 −  and monomials ( )jp x , shown in the following form; 

  

( ) ( )
2

1 1

T T

( ) ( )
N M

i i j j

i j

u u R a p b
= =

= − +

= +

 x x x x x

R (x)a P (x)b

 (2.4) 

This is defined for N , the total number of centres, and M  representing the number of polynomial 

basis (usually, M N ). The polynomial function can be chosen from Pascal’s triangle which, for 2D 

problems, is of the following form;  

  
2 21 ...x y x xy y =  

T
P (x)  (2.5) 

With this additional term, the interpolation is enforced to pass thought all those N   nodes in the 

domain. To ensure the unique solution of the system, additional  M  equations are added as the 

constraint conditions, displayed as follows;  

 
T

1

( ) 0
N

j i i M

i

p a
=

= = x P a  (2.6) 

For 1,2,...,j M= . This leads to the following form. 

  
0

0

( )
( )

M

T

M

    
= = =    
    

R PU x a
U x Hα

P 00 b
 (2.7) 

Leading to  

  
1

0 ( )−=α H U x  (2.8) 

Where  

  
0 M

T

M

 
=  
 

R P
H

P 0
 , 

   0 1 2 1 2... ...
T

n Ma a a b b b
 

= = 
 

a
α

b
  

  

1 1 1 2 1 1 1 1

1 2 2 2 2 2 2 2

0

1 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

N

N

N N N N N N N N N

R x y R x y R x y

R x y R x y R x y

R x y R x y R x y


 
 
 =
 
 
 

R    

  

1 2

1 2

1 2

1 1 ... 1

...

...

(x )(x ) (x ) ...

N

T

M N

M NM M M N

x x x

y y y

pp p


 
 
 
 =
 
 
 
 

P   
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Substituting these back into the collocation equation, yielding;  

  
T T 1( ) ( )u − =  x R (x) P (x) H U x  (2.9) 

By setting the shape functions matrix, T
Θ (x)  , as;  

 
T T T 1− =  Θ (x) R (x) P (x) H  (2.10) 

Then the previous equation can be re-written as;  

 T( ) ( )u =x Θ (x)U x   (2.11) 

2.2.  The Node Adaptation Scheme 

Generally, the methodology of mesh refinement/enrichment can be classified into four main groups as 

follows;  

• h-refinement: nodes are added or removed from the computing domain based on some user’s 

pre-defined refinement criteria (See [26] and references therein). 

• r-refinement: the number of nodes is kept constant through the computing process but the 

nodes are allowed to move dynamically based on some pre-defined criteria (See [9] and 

references therein). 

• p-refinement: the nodes and the number of nodes are both fixed but the accuracy can be 

improved by utilizing higher-order terms in the approximating Taylor series expansion (See 

[32] and references therein). 

• m-refinement: the computational mesh is completely rebuilt regarding to error indicator 

introduced from discretization step (See [33] and references therein). 

The refinement scheme proposed in this work is fallen into the h-refinement category. The 

following adaptation ingredients are a further developed version of the work of Kaennakham and 

Chuathong [31], being proposed here in this work aiming to cooperate numerically with RPIM for 

modelling the convection-dominated phenomena.   

2.2.1.  The Proposed Means of Error Indicator. The node adaptation proposed in this work is 

proceeded based on the local change of the chosen physical parameter, the ‘Péclet number (Pe)’ which 

is the ratio of the contributions to mass transport by convection to those by diffusion, expressed for a 

node ( ), : ( )i jx y i, j=  as follows; 

 
( )

( ),

,
Pe

i j

i j

L Local Convection Rate

D Local Diffusion Rate
= =

U
 (2.12) 

Where L is a characteristic length scale defined locally as the distance of the node ( )i, j  to the nearest 

node around itself,  ( ),i j
U   is the local velocity magnitude, and D   is the characteristic diffusion 

coefficient, and 1,2,...,j N=  . Numerically, this local change can be tracked using the following 

formulas.  

( )( ) ( ) ( ) ( )

( )( )
1, , 1,

,

1 1

Pe 2Pe Pe
Pe ,

i j i j i j

i j
x

i i i ix x x x

+ −

+ −

− +
=

− − ( )( ) ( ) ( ) ( )

( )( )
, 1 , , 1

,

1 1

Pe 2Pe Pe
Pe

i j i j i j

i j
y

i i i iy y y y

+ −

+ −

− +
=

− −
 (2.13) 

 

Then the error indicator used to drive the node adaptation algorithm,
( )k , is obtained for a thk  -node 

as follows;  

 ( )
( ) ( )

2 2
( ) ( )

( ) ( )
Pe Pe

2

k k

w y xk k

cell

   +
    

=   
 (2.14) 
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Where ( ) ( ) ( ) ( ) ( )4( )( )k k k k k

cell x y

Characteristic Domain Lenght
x y h h

Thetotal number of nodes
 =       , the volume weight 1w =   and 

   is the absolute value. In order to prevent the algorithm from producing a strong change of the raw 

values of the refinement variable during the computation, a means of normalization is needed and for 

this task the normalized error indicator,  ( ),i j
  , is defined as; 

 ( )

( )

( )

,

,

,

   
max { }

i j

i j

l k




 =  (2.15) 

So that  ( ),
0 1

i j
    . With a pre-defined lower threshold,  low   , and upper threshold,   up  ,  where  

0     1low up      ,  the computational domain is divided into 3 sub-areas; 

• Refinement areas : those nodes with   ( ),
 upi j

    

• Coarsen areas : those nodes with  ( ),
 lowi j

    

• Intact areas : those nodes with  ( ),
   low upi j

     

2.2.2.  Node Adaptive Manner. Figure 2 illustrates the proposed node adaptation manner where a node     

is marked to be adapted. Four child-nodes are then created amongst their three neighbours in a 

centroid manner. With this centroid-line node generator, it can ensure that no child-nodes generated by 

neighbouring parents shall be overlapped. This is called ‘one-level of refinement’ and the coarsen 

process is simply done by the opposite direction, i.e. from (c) to (a) whereas the initial or parent node 

cannot be removed. 

 

 

Figure 2. One-level of node-adaptation manner with one parent-node and 

four child-nodes. 

 

3.  Implementation of RPIM for Steady Convection-Dominated PDE  

To study the physical phenomena of the system when the convection force is dominant, a benchmark 

2D steady state of convection-diffusion problem [4] is focused on. The governing equation is as 
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follows; 
 ( ) ( ) ( ) 0T TL u u u u q=  −  + − =V D x  (3.1) 

The problem domain is ( )    , 0,1 0,1 ,x y  =  and the coefficients are 
0

,
0

x

y





 
=  
 

D  

 , 3 ,4 ,x yV V x y = = − − V  and 1 = in which  
y y  = =  is a given constant of diffusion 

coefficient. The boundary condition is considered as ( ) ( ) ( ) ( )0, 1, ,0 ,1 0u y u y u x u x= = = = . 

The exact solutions for this problem is given by; 

 ( )
( ) ( )2

2 1 3 1
sin 1 exp 1 expexact

x y

x y
u x y

 

    −  −
= − − − −             

 (3.2) 

 

 

Figure 3. Solution profiles for different stages of diffusion-force 

domination. 

Equation (2.4) and constrain equation (2.6) are applied to the governing equation and in this work,  

6M =  is needed to be imposed in order to obtain the coefficient matrices  a .  

With N  being the number of centres, this leads to the following matrix equation form.  

  ( ) ( )( ) 
1 1 x x y y

dig x y digdig dig


 
         + = − +          

g A C V R P V R P u a  (3.3) 
 

For 1, 2,...,i N=  and with the following matrices;  
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 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

xx yy xx yy xx yy

N

xx yy xx yy xx yy

N

xx yy xx yy xx yy

N N NN N N

R R R R R R

R R R R R R

R R R R R R


 + + +
 
 + + +
 =
 
 

+ + +  

A , ( )

( )

( )

( )

1

2

0 0 0

0 0 0
,

0 0 0

0 0 0

x

x

x dig

x N N N

V

V

V


 
 
 =
 
 
  

V

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

xx yy xx yy xx yy

M

xx yy xx yy xx yy

M

xx yy xx yy xx yy

N N NM N M

P P P P P P

P P P P P P

P P P P P P


 + + +
 
 + + +
 =
 
 

+ + +  

C , ( )

( )

( )

( )

1

2

0 0 0

0 0 0

0 0 0

0 0 0

y

y

y dig

y N N N

V

V

V


 
 
 
 =
 
 
  

V  

1

2

0 0 0

0 0 0

0 0 0

0 0 0

dig

N N N

u

u

u


 
 
   =   
 
 

u ,                 

1

2

0 0 0

0 0 0

0 0 0

0 0 0

dig

N N N

g

g

g


 
 
   =   
 
 

g , 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 21 2 1 2 3
... ...

T

N M
a a a a a a a =  a  . 

Where ( ) ( )
2 2

2 2

xx yyR R R r
x y

  
+ = + 

  
.  

With the polynomial constrains, this leads to a transformation of equation above into a new system 

of equations where the solutions exist and are mathematically unique, and are expressed as follows;  

  ( ) ( )( ) 
1 1 x x y y

dig x y digdig dig


 
         + = − +          

g A C V R P V R P U a  (3.4) 

Thus, for a  thk −  iteration, the coefficient matrix  
( )k 

 
a   can be achieved by;  

( ) ( ) ( )
1

1 1k k k
−

− −     =
     
a Ξ Ψ  (3.5) 

Where;  

( ) ( ) ( ) ( )( )1 11k kx x y y

x y digdig dig




− −        = − +          
Ξ V R P V R P U  (3.6) 

and  

 
( ) ( ) ( )1 1 11k k k

dig


− − −    = +    
Ψ g A C  (3.7) 

Note that with 1k =   , then 
( )1k−

U is the initial “guess” value of U . 

4.  Numerical Experiments and General Discussion 
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Since all the RBFs under this investigation contain the shape  , choosing an adequate one for each 

simulation is firstly to be reasoned.  In the past, some attempts to pinpoint the optimal value of   

involve the classic work of Hardy [34] where it was shown that by fixing the shape at  

( )1 0.815d =   , where ( )
1

1
N

i

i

d N d
=

=    , and 
id  is the distance from the node to its nearest 

neighbour, good results should be anticipated.  Franke and Schaback [35] concluded that the choice of 

a fixed shape of the form  0.8 N D =   with  D   being the diameter of the smallest circle 

containing all data nodes, can also be a good alternative.  In 2000, Zhang et al. [36] demonstrated and 

concluded that the optimal shape parameter is highly problem dependent. In 2002, Wang and Lui [37] 

pointed out that by analysing the condition number of the collocation matrix, a suitable range of 

derivable values of  can be found. Later in 2003, Lee et al. [38] suggested that the final numerical 

solutions obtained are found to be less affected by the method when the approximation is applied 

locally rather than globally. A rather recent work is the selection of an interval for variable shape 

parameter by Biazar and Hosami in 2016 [39], where a novel algorithm for determining and interval 

was proposed. To sum up, finding an optimal choice of this parameter is highly problem dependent. 

For this reason, all best shapes shown in this work were obtained purely by carrying out a large 

number of experiments under different constraints and conditions for each simulation and observing 

the trends in errors produced. 

4.1.  Error Measurement Norms  

All numerical solutions obtained from the whole study are validated by comparing against the 

analytical solutions using different types of error norms as listed in Table 1, or some other numerical 

works where available in literature. 

Table 1. Error Norms adopted in this work. 

Error Norm Symbol Defined Mathematical Formula 

   Maximum   L    ( ) ( ). .

1
max i i

ext appx

i N
u u

 
−x x    

   Root-Mean-Square   RMSL    ( ) ( )( )
1/2

2
. .

1

1 N
ext appx

j

i iu u
N =

 
− 

 
 x x   

   Absolute   
AbsL   ( ) ( ). .

i

ex

i

t appxu u−x x  

   Relative   
RlvL   

( ) ( )

( )

. .

.

ext app

i

i

x

ext

iu u

u

−x x

x
 

   Root-Relative-Square   
RRSL   

( ) ( )( )

( )( )

1/2
2

. .

1

2
.

1

N
ext appx

i

N
ext

i i

i

i

u u

u

=

=

 
− 

 
 
  





x x

x

 

 All computing experiments were carried out on the same computer; Intel(R) Core(TM) i7-5500U 

CPU @ 2.40GHz with 8.00 GB of RAM and 64-bit Operating System. 

4.2.  Method Validation Via. Interpolation Problem    
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The first numerical experiment shall be dedicated to validating the methodology of RPIM with an 

interpolation problem. The interpolation problem starts with a set of discrete data    d

1
,

N

i ii=
= X x x   

w h ere  fo r  each   
ix   there is its corresponding real value  iy   , then the task is to construct a 

continuous function  d(x) : →    such that;  

  ( )i iy =x  (4.1) 

For all 1,2,...,i N= . The first validation of the scheme proposed in this work is done using a 

benchmark Franke-type function [40], defined on a unit square-domain as follows.  

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2 2 2

2 2

2 2

9 2 9 1
, 0.75exp 0.75exp

4 4 4

9 2 9

9 10

9 7
0.5exp 0.2exp 9 4 9 7

1

9 3

4 4

x x
f x y

x
x

y

y

y

y

   − +
= − − + − −   

      

 −
 + − − − − − −

− +

 
   

−
−

 (4.2) 

As regarded as one of the most influential factors (    ), the shape parameter is firstly investigated. 

L  errors produced by using each type of RBF at a wide range value of   are shown in Figure. 4 

(left). For this interpolation problem, it is found that all types of RBF reveal comparatively good result 

accuracy when ( )1.9,2.1   . Beyond this point, it is interesting to see that GA, IQ, and IMQ start to 

lose their accuracy where even better solutions are still obtainable for CMT and MQ. For MQ-RBF (at 

8.00 =  ) in particular, the error is found to as low as  3.12 03E −   and the corresponding numerical 

solutions are plotted in Figure 4 (right).  

 

 

Figure 4. Left) L error measured with the change of shape parameter
 
0.001 20.00  , and 

Right) Exact solution profile with black dots representing those computed by MQ-RBF                      

( 8.00 = ) . 
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Table 2:  
AbsL  and RlvL   measured at selected centres obtained from all RBFs compared with the 

exacts when using the same shape of 4.25 = . 

(x,y) 
GA IMQ MQ CMT IQ 

 AbsL    RlvL   AbsL   RlvL   AbsL   RlvL   AbsL   RlvL   AbsL   RlvL  

(0.00,0.81) 2.49E-04 2.82E-01 1.01E-04 1.14E-01 9.92E-05 1.13E-01 1.97E-04 2.24E-01 5.01E-05 5.69E-02 

(0.09,0.45) 9.82E-05 4.27E-04 4.62E-04 2.01E-03 6.56E-05 2.85E-04 3.35E-05 1.46E-04 4.62E-04 2.01E-03 

(0.36,0.45) 4.25E-04 1.95E-03 5.20E-04 2.39E-03 3.58E-04 1.64E-03 2.82E-04 1.29E-03 5.45E-04 2.50E-03 

(0.45,0.36) 1.84E-03 6.17E-03 9.84E-04 3.30E-03 1.06E-03 3.57E-03 6.67E-04 2.24E-03 1.01E-03 3.41E-03 

(0.45,0.45) 6.54E-04 4.03E-03 4.49E-04 2.77E-03 5.88E-04 3.63E-03 3.95E-04 2.43E-03 4.12E-04 2.54E-03 

(0.90,0.00) 2.39E-04 1.50E-03 1.91E-04 1.20E-03 2.10E-04 1.32E-03 2.11E-05 1.33E-04 1.72E-04 1.08E-03 

(0.90,0.09) 4.75E-04 2.33E-03 2.89E-04 1.42E-03 1.53E-04 7.49E-04 2.54E-04 1.25E-03 9.41E-05 4.62E-04 

(0.90,0.27) 2.02E-04 5.48E-04 3.30E-04 8.96E-04 3.24E-04 8.80E-04 2.39E-04 6.50E-04 3.80E-04 1.03E-03 

(1.00,0.27) 8.57E-05 4.28E-04 1.10E-04 5.51E-04 8.32E-05 4.15E-04 1.95E-04 9.73E-04 7.70E-06 3.84E-05 

 

4.3.  Node-Adaptation Scheme with Non-rectangular domain 

In this second test case, the Poisson equation shown below is numerically solved by RPIM with and 

without the use of the proposed node-adaptation algorithm.  

 

2 2
2 2

2 2
u u x

x y

  
 = + = − 

  
 (4.3) 

This is defined on the domain with an elliptical boundary expressed as ( )2 2/ 4 1x y+ = . Where the 

boundary condition is taken directly from the exact solution which is expressed as follows;  

 ( )
4

2 2 21
( , ) 50 8 33.6 1

246 4

x
u x y x y y

 
= − − + + − 

 
 (4.4) 

In this case the number of nodes on the domain boundary is kept intact. Errors produced by each 

RBF under this example are shown in Table 3 and it can be seen that reasonable agreement in solution 

accuracy can be obtained for all types of RBFs. In this table, solution numerically computed with and 

without using the proposed node adaptation are compared against each other. Based on both error 

norms used, IMQ, is seen to slightly outperform the others with the lowest  RMSL   of 2.726 E -04 when 

using node-adaptation scheme and of 1.502E-04 without node-adaptation scheme. In terms of CPU-

time needed, all RBFs under the use of adaptation method show promising aspects when compared 

with those obtained using the fixed-node cases. The lowest amount of CPU-time involved is found 

under the case of CMT-RBF (1.729s.) and the highest is found for GA-RBF (2.225s.). The final 

number of nodes produced by the algorithm, noted as  .FNd    , is clearly seen to dramatically reduced 

by 68% at most when using CMT-RBF where only 49 extra nodes are generated from 51 original 

nodes in order to reach the same level of accuracy as that of fixed-node case, shown in Figure 5. This 

aspect confirms the advantage of the node-algorithm scheme proposed in this work.  
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Table 3: Error norms with CPU-time and final number of nodes produced, .FNd  and the 

same shape of 0.1 = . With (using 51 initial nodes), and Without using the node-adaptive 

algorithm. 
 

RBF 
RMSL   L   CPU-time (s) .FNd  

With Without With Without With Without With Without 

GA 2.825E-03 1.921E-04 8.690E-03 4.251E-03 2.225 3.841 116 315 

IMQ 2.726E-04 1.502E-04 1.074E-03 3.058E-04 1.914 3.991 108 315 

MQ 1.669E-03 2.025E-04 7.276E-03 1.255E-03 1.884 4.012 116 315 

CMT 1.003E-02 2.001E-04 3.638E-02 5.011E-04 1.729 4.174 100 315 

IQ 3.824E-04 1.884E-04 1.667E-03 6.225E-04 2.120 3.705 104 315 

 

 

 

Figure 5. Results obtained with  0.1 = ,  ( ) ( ), 0.1,0.5lower upper  = ; (a) Initial 

node distribution, (b) Final node distribution after using the node-adaptive 

algorithm in conjunction with CMT-RBF, and (c) Solution comparison at 

selected centres. 

4.4.  Convection-Dominated Phenomena Simulation 

In Section 3, one of the benchmark cases of convection-dominated equation is numerically derived 

via. the method of RPIM. It is pointed out that the diffusion coefficient, , plays a crucial role in 

determining the level of convective force in the system. One numerical experiment that is well-known 

and nicely documented is that by Gu & Liu [4] where the main results at different    (measured by RRSL  

) are listed in Table 4. With a fixed interval of refinement threshold of   ( ) ( ), 0.5,0.8lower upper  =    , 

numerical solutions computed by each type of RBF are also shown in the same table, together with 

their corresponding optimal shape, 
opl  , and the final number of nodes generated, .FNd  
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Table 4: Measurement of  RRSL   at different     obtained from using each RBF type (with their 

optimal shape parameter and final number of nodes,  / .opl FNd  ) simulated using  

( ) ( ), 0.5,0.8lower upper  =   with 100 initial nodes. 

  

Gu & Liu 

[Gu and 

Liu (2006)]. 

GA 
( / .)opl FNd  

IMQ 
( / .)opl FNd  

MQ 
( / .)opl FNd  

CMT 
( / .)opl FNd  

IQ 
( / .)opl FNd  

Fixed-

Node 

with MQ 

100 0.2450 0.0050 

(1.0/305) 

0.0381 

(0.25/297) 

0.1526 

(0.1/201) 

0.0035 

(1.0/305) 

0.0053 

(1.0/305) 

0.8153 

(1.5/144) 

10 0.2550 0.9930 

(30/181) 

0.0004 

(0.50/291) 

0.0068 

(0.25/287) 

0.0172 

(5.0/305) 

0.0172 

(1.50/296) 

1.1223 

(9.0/144) 

1 0.3460 0.9968 

(50/160) 

0.0033 

(0.70/223) 

0.0014 

(0.5/223) 

0.1172 

(10/245) 

0.0697 

(5.0/233) 

6.5153 

(18.5/144) 

0.1 1.2760 0.9891 

(55/125) 

0.0936 

(0.65/130) 

0.2421 

(0.5/123) 

0.4568 

(12/130) 

0.1432 

(10.0/125) 

11.1057 

(11.0/400) 

0.01 15.8320 0.9239 

(65/126) 

0.1900 

(15.0/145) 

0.4487 

(10.0/142) 

0.6899 

(17/122) 

0.2858 

(15.0/118) 

64.6012 

(14.5/400) 

0.001 195.3450 1.6891 

(100/126) 

0.2875 

(20.0/163) 

0.5481 

(15.0/186) 

0.9502 

(20/245) 

0.2582 

(19.0/147) 

315.2515 

(10.4/400) 

 

At moderate-high convection phenomena, 1 100  , it is seen from the table that all RBFs are 

able to produce reasonable results quality. MQ-RBF, in particular, when the problem becomes more 

convective, in conjunction with the node-adaptation scheme, it reveals the lowest value of error of 

0.0014 with  0.5opl =  and . 223FNd =  . In terms of the number of nodes involved, nevertheless, the 

small number of nodes of 160 are found for GA-RBF with  RRSL   = 0.9968.  When the situation 

becomes even more convective-dominated, 100 0.001  , as expected, all cases are found to lose 

their accuracy. Nevertheless, it should be noticed that those solutions obtained using node-adaptation 

remain significantly lower than those presented in the work of Gu & Liu [4]. 

At even higher convective-dominated ( 5.0 03E = − ), which has not been documented formerly in 

literature, Figure 6 illustrates the node distribution obtained from using each RBF with the node-

adaptation scheme. All cases were run based on  ( ) ( ), 0.4,0.7lower upper  =   and it can be observed to 

provide highly promising aspects both in terms of accuracy (with  1.00 10.00RRSL E +  ) and the 

number of nodes required ( . 200FNd   ). The best case revealed from this final experiment is that 

using IMQ-RBF where the error is as low as 0.8812 with only 141 nodes being generated and 

computed on.  
For comparison purposes, simulations by RPIM with MQ -RBF based on a fixed number of 

uniformly distributed nodes were also parallelly investigated for all levels of convective -force 

domination and the results are declared in Table 4. It is clearly seen that the solutions are 

comparatively worse in all cases particularly at the very highly convec tive-dominated stage,  =  

0.001, with  RRSL  =315.2515 where up to 400 nodes were needed. With the use of the convectional 

collocation method as applied in [4], the error is found to reach up to 195.34, approximately 757 times 

higher than the node-adaption IQ-RBF. This strongly confirms the benefit and promising aspect of 

using the proposed node-adaptive algorithm used in conjunction with RPIM.  
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Figure 6. Node distribution of each RBF (with the optimal shape  , ,opl  and the final 

node number .,FNd  ) after performing the node-adaption algorithm at 5.0 03E = −  

using ( ) ( ), 0.4,0.7lower upper  =  and  10 10   initial nodes. 
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Figure 7.  Solution profile simulated using CMT-RBF with 100 initial nodes obtained for

1.00 03E = − ,  ( ) ( ), 0.5,0.8lower upper  =  with the optimal shape  45.00opl =   and the final 

nodes number after adaptation is  . 182.FNd =  

Figure 7 displays the solution profile obtained at very high value of convection force, where no 

other numerical works available in literature yet. At this stage, simulations when using a fixed-node 

with  35 35 nodes were also investigated and the results are 1321.25,L = 365.61,RMSL =  and 

805.74RRSL =  . With this information, it can then be clearly seen that the proposed node-adaptation 

algorithm is able to produce a significant improvement in terms of both accuracy and the number of 

computational nodes involved. It has to also be noticed that the potential layers anticipated to take 

place along the edges 1x =  and 1y =   are treated with no extra treatments. Instead, the algorithm 

applied in conjunction with this type of collocation method taking place all over the domain is able to 

pick up well the phenomena occurring along those edges.  
 

5.  Conclusion 

In this work a node-adaptation scheme is proposed and used in conjunction with the radial point 

interpolation meshfree method. Five popular choices of radial basis (RBF) functions are also under 

investigation; Multiquadric (MQ), Gaussian (GA), Inverse Quadratic (IQ), and Cubic Matern (CMT). 

The combination of these numerical treatments is applied to solve the problem with strong convection 

force in steady state. The investigation began with studying the effect of the RBF shape parameter by 

adopting a benchmark case of interpolation called ‘Franke’ function before moving on more 
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complicated PDEs. Several error measuring schemes were adopted to monitor the effectiveness of the 

proposed method in overall. It is found that with having the local problem parameter as the refinement, 

the use of the proposed node-adaptation method leads to a reduction in both CPU-time and storage in 

computation process. M oreover, solution improvements are noticeable for all RBFs under 

investigation. This promising aspect becomes even more obvious when fixed-node cases are found to 

significantly lose their capability to capture the problem phenomena when convection becomes 

dominant. Another benefit gained from using the node-adaptation discovered is that all RBFs tend to 

be less sensitive to their shape parameter making it much easier and more reliable, requiring less 

human judgement during the computational process. Nevertheless, it is still great of challenge to 

further improve the adaptation scheme towards more complex problems and this remains our future 

work. 
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