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Abstract. In the paper we give a complete classification of 2-dimensional evolution algebras
over algebraically closed fields, we compare the list of representatives of the isomorphism
classes with that of obtained earlier by the other authors. Also we describe their groups of
automorphisms and derivation algebras.

1. Introduction
Nowadays applications of mathematics in various areas of science is in big trend. Particularly,
applications of algebra in biology are due to works [11, 12, 13, 14]. The non-associative algebras
are used to formulate Mendel’s laws in [8, 9]. Other genetic algebras called evolution algebras
emerged to study non-Mendelian genetics. The class of evolution algebras is of big interest
due to their applications in genetics. Evolution algebras can be applied to the inheritance of
organelle genes, for instance, to predict all possible mechanisms to establish the homoplasmy of
cell populations. The evolution algebras were studied by Tian in [13], a pioneering monograph
where many connections of evolution algebras with other mathematical fields (such as graph
theory, stochastic processes, group theory, dynamical systems, mathematical physics, etc.) are
established. In [13] the close connection between evolution algebras, non-Mendelian genetics and
Markov chains are established. An evolution algebra is nothing but an algebra A provided with
a basis e = (e1, e2, ...), such that eiej = 0, whenever i 6= j (such a basis is said to be natural). In
[3, 5] the authors studied evolution algebras of arbitrary dimension and their algebraic properties.
On the other hand, the derivations of some classes of evolution algebras have been analyzed in
[2, 10, 13]. A result of classification of three-dimensional complex evolution algebras has been
studied in [4]. In the present paper, we give the complete classification of 2-dimensional evolution
algebras over any algebraically closed field, describe their groups of automorphisms and algebras
of derivations depending on a new approach introduced in [1]. For further information, related
to similar problems, the reader is referred to [6, 7, 13].

The organization of the paper is as follows. In Section 2 we introduce a new technique
to classify finite dimensional evolution algebras then we present all possible evolution algebra
structures on 2-dimensional vector space over any algebraically closed field. Section 3 contains
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the description of group automorphisms and the final section is devoted to the description of
derivation algebras of the algebras found in Section 2.

2. Classification of 2-dimensional evolution algebras
Let F denote any algebraically closed field and A be an n- dimensional algebra over F with
multiplication · given by a bilinear map (u,v) 7→ u·v whenever u,v ∈ A. Let E = {e1, e2, ..., en}
be a basis of A over F. Then we can write

u =
n∑
i=1

eiui = eu, v =
n∑
j=1

ejvj = ev,

where u =
(
u1 u2 ... un

)T
, and v =

(
v1 v2 ... vn

)T
are column coordinate vectors

of u and v, respectively, and e =
(
e1 e2 ... en

)
.

ei · ej = A1
i,je1 +A2

i,je2 + ...+Ani,jen =

n∑
i,j,k=1

Aki,jek

where Aki,j are the structure constants of A whenever i, j, k = 1, 2, ..., n. Therefore

u · v =
n∑
i=1

eiui ·
n∑
j=1

ejvj =
n∑

i,j=1

(ei · ej)uivj =
n∑

i,j,k=1

Aki,juivjek

Then one can represent this bilinear map by a matrix A ∈M(n× n2,F) such that

u · v = eA(u⊗ v) (1)

where u⊗ v =
(
u1v1 u1v2 ... u1vn u2v1 u2v2 ... u2vn ... unv1 unv2 ... unvn

)T
.

So an n-dimensional algebra A is presented by a matrix A ∈M(n× n2,F), called the matrix of
structure constants MSC of A with respect to the basis E as follows

A =


A1

1,1 A1
1,2 · · · A1

1,n A1
2,1 A1

2,2 · · · A1
2,n · · · A1

n,1 A1
n,2 · · · A1

n,n

A2
1,1 A2

1,2 · · · A2
1,n A2

2,1 A2
2,2 · · · A2

2,n · · · A2
n,1 A2

n,2 · · · A2
n,n

· · · · · · · · · · · · · · · · · ·
An1,1 An1,2 · · · An1,n An2,1 An2,2 · · · An2,n · · · Ann,1 Ann,2 · · · Ann,n


In the sequel we do not distinguish the algebra A and its MSC A.

If E′ = {e′1, ..., e′n} is also another basis for A, and B is the MSC of A with respect to E′.
Now, we will obtain the relation between the matrices of structure constants A and B.

According to the basis E′ we can write ei =
∑n

j=1 e
′
jgji then we got e = e′g where

g ∈ GL(n,F), e′ =
(
e′1 e′2 ... e′n

)
, by (1) we got

u · v = e′B(u′ ⊗ v′), (2)

where u = e′u′, v = e′v′ then due to (1) and (2) we got

u · v = eA(u⊗ v) = e′B(u′ ⊗ v′) = eg−1B(gu⊗ gv) = eg−1B(g ⊗ g)(u⊗ v)

as far as u = eu = e′u′ = eg−1u′,v = ev = e′v′ = eg−1v′. Therefore the equality

B = gA(g−1)⊗2

is valid. Therefore, the isomorphism of algebras A and B with the MSC A and B is given as
follows.
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Definition 2.1 Two n-dimensional algebras A, B, given by their matrices of structural
constants A, B, are said to be isomorphic if B = gA(g−1)⊗2 holds true for some g ∈ GL(n,F).

A 2-dimensional algebra A with a basis e = (e1, e2) is represented by MSC A as follows

A =

(
A1

1,1 A1
1,2 A1

2,1 A1
2,2

A2
1,1 A2

1,2 A2
2,1 A2

2,2

)
∈M(2× 4,F)

and under change of the basis e = (e1, e2) MSC A is given by B = gA(g−1)⊗2, where for

g−1 =

(
ξ1 η1

ξ2 η2

)
one has

(g−1)⊗2 = g−1 ⊗ g−1 =


ξ2

1 ξ1η1 ξ1η1 η2
1

ξ1ξ2 ξ1η2 ξ2η1 η1η2

ξ1ξ2 ξ2η1 ξ1η2 η1η2

ξ2
2 ξ2η2 ξ2η2 η2

2

 .

In the paper we deal with finite-dimensional evolution algebras and denote the algebra by E.

Definition 2.2 An n-dimensional algebra E is said to be an evolution algebra if it admits a
basis {e1, e2, ..., en} such that eiej = 0 whenever i 6= j, i, j = 1, 2, ..., n.

According to the definition above the matrix of structure constants (MSC) for evolution
algebras has the following form

E =


E1

1,1 0 · · · 0 E1
2,2 0 · · · 0 E1

n,n

E2
1,1 0 · · · 0 E2

2,2 0 · · · 0 E2
n,n

· · · · · ·
En1,1 0 · · · 0 En2,2 0 · · · 0 Enn,n

 .

Onward, to simplify the notations for a 2-dimensional algebra A the matrix of its structure
constants (MSC) A is denoted by

A =

(
α1 α2 α3 α4

β1 β2 β3 β4

)
.

In this section we prove the following result on classification of 2-dimensional evolution
algebras.

Theorem 2.3 Over any algebraically closed field F every nontrivial 2-dimensional evolution
algebra is isomorphic to only one of the algebras listed below by their matrices of structure
constants:

E1(c, b) ' E1(b, c) =

(
1 0 0 b
c 0 0 1

)
, where bc 6= 1, (b, c) ∈ F2,

E2(b) =

(
1 0 0 b
1 0 0 0

)
, where b ∈ F, E3 =

(
0 0 0 1
1 0 0 0

)
,

E4 =

(
1 0 0 1
0 0 0 0

)
, E5 =

(
1 0 0 −1
−1 0 0 1

)
, E6 =

(
0 0 0 1
0 0 0 0

)
.

Proof. Let E be a nontrivial evolution algebra given by E =

(
a 0 0 b
c 0 0 d

)
and

E′ =

(
α′1 α′2 α′3 α′4
β′1 β′2 β′3 β′4

)
= gE(g−1)⊗2, where g−1 =

(
ξ1 η1

ξ2 η2

)
.
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For the entries of E′ one has

α′1 = 1
∆(ξ2

1(aη2 − cη1) + ξ2
2(bη2 − dη1)),

α′2 = α′3 = 1
∆(ξ1η1(aη2 − cη1) + ξ2η2(bη2 − dη1)),

α′4 = 1
∆(η2

1(aη2 − cη1) + η2
2(bη2 − dη1)),

β′1 = 1
∆(ξ2

1(−aξ2 + cξ1) + ξ2
2(−bξ2 + dξ1)),

β′2 = β′3 = 1
∆(ξ1η1(−aξ2 + cξ1) + ξ2η2(−bξ2 + dξ1)),

β′4 = 1
∆(η2

1(−aξ2 + cξ1) + η2
2(−bξ2 + dξ1)),

(3)

where ∆ = ξ1η2 − ξ2η1.
In particular, note that(

α′2
β′2

)
=

(
ξ1 η1

ξ2 η2

)−1(
a b
c d

)(
ξ1η1

ξ2η2

)
. (4)

and (
α′1 α′4
β′1 β′4

)
=

(
ξ1 η1

ξ2 η2

)−1(
a b
c d

)(
ξ2

1 η2
1

ξ2
2 η2

2

)
, (5)

which shows that α′1β
′
4 − α′4β′1 = 0 whenever ad− bc = 0.

We claim that there is a basis of E such that

α′2 = α′3 = β′2 = β′3 = 0 (6)

and α′1, α
′
4, β

′
1, β

′
4 as simple as possible.

Consider the following cases.

• Case 1: ad − bc 6= 0. In this case due to (6) and (4) is equivalent to ξ1η1 = ξ2η2 = 0. Let

us consider g =

(
ξ1 0
0 η2

)
. Then ∆ = ξ1η2 and from (5) we have

α′1 = aξ1, α
′
4 = b

η2
2

ξ1
, β′1 = c

ξ2
1

η2
, β′4 = dη2.

Due to ad− bc 6= 0 one has the following subcases:

– Subcase 1-a: a 6= 0, d 6= 0. In this case one can make α′1 = 1, β′4 = 1 to get

E1(b, c) =

(
1 0 0 b
c 0 0 1

)
, where bc 6= 1.

– Subcase 1-b: a 6= 0, d = 0. In this case β′4 = 0 and one can make α′1 = 1, β′1 = 1 to get

E2(b) =

(
1 0 0 b
1 0 0 0

)
, where b 6= 0.

– Subcase 1-c: a = 0, d 6= 0. In this case α′1 = 0 and one can make β′4 = 1, α′4 = 1 to get

E′ =

(
0 0 0 1
c 0 0 1

)
, where c 6= 0.

It is isomorphic to E2(c).
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– Subcase 1-d: a = 0, d = 0. In this α′1 = 0, β′4 = 0 and one can make β′1 = α′4 = 1 to get

E3 =

(
0 0 0 1
1 0 0 0

)
.

• Case 2: ad− bc = 0.

– Subcase 2-a: Both (a, b), (c, d) are nonzero and (c, d) = λ(a, b). In this case (5) is
equivalent to

aξ1η1 + bξ2η2 = 0, α′1 =
η2 − λη1

∆
(aξ2

1 + bξ2
2), α′4 =

η2 − λη1

∆
(aη2

1 + bη2
2),

β′1 = −ξ2 − λξ1

∆
(aξ2

1 + bξ2
2), β′4 = −ξ2 − λξ1

∆
(aη2

1 + bη2
2).

∗ Subsubcase 2-a-1: a + bλ2 6= 0. Put ξ2 − λξ1 = 0. Then ξ1 6= 0, the equality
aξ1η1 + bξ2η2 = ξ1(aη1 + bλη2) implies aη1 + bλη2 = 0. If b 6= 0 then η2

η1
= − a

bλ ,

∆ = ξ1(η2 − λη1) and

β′1 = β′4 = 0, α′1 = (a+ bλ2)ξ1, α
′
4 =

η2
1

ξ1

a(a+ bλ2)

bλ2
.

It implies that in this case one can make α′1 = 1 and α′4 one or zero, depending on
a, to get

E4 =

(
1 0 0 1
0 0 0 0

)
or E′ =

(
1 0 0 0
0 0 0 0

)
.

The later is isomorphic to E2(0). If b = 0 then η1 has to be zero, α′1 = aξ1, α
′
4 =

aη21
ξ1

, so by making α′1 = α′4 = 1 one gets E4.

∗ Subsubcase 2-a-2: a + bλ2 = 0. Note that in this case a, b, λ have to be nonzero,
to make ξ2 = η1 = 0. Then ∆ = ξ1η2, and

α′1 = aξ1, α
′
4 =

bη2
2

ξ1
, β′1 =

aλξ2
1

η2
, β′4 = bλη2.

It implies that one can make α′1 = 1, β′4 = 1 to get α′4 = a
bλ2

= −1, β′1 = bλ2

a = −1
and

E5 =

(
1 0 0 −1
−1 0 0 1

)
.

– Subcase 2-b: c = d = 0. In this case

α′1 =
η2

∆
(aξ2

1 + bξ2
2), α′2 = α′3 =

η2

∆
(aξ1η1 + bξ2η2), α′4 =

η2

∆
(aη2

1 + bη2
2),

β′1 = −ξ2

∆
(aξ2

1 + bξ2
2), β′2 = β′3 = −ξ2

∆
(aξ1η1 + bξ2η2), β′4 = −ξ2

∆
(aη2

1 + bη2
2).

Taking ξ2 = 0, η1 = 0 results in

α′1 = aξ1, α
′
2 = α′3 = 0, α′4 =

bη2
2

ξ1
, β′1 = β′2 = β′3 = β′4 = 0.
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∗ Subsubcase 2-b-1: a 6= 0. Then one can make α′1 = 1, α′4 = 1 or 0, depending on b
to get

E4 =

(
1 0 0 1
0 0 0 0

)
or E′ =

(
1 0 0 0
0 0 0 0

)
,

respectively. The leter is isomorphic to E2(0).
∗ Subsubcase 2-b-2: a = 0. Then

α′1 = 0, α′2 = α′3 = 0, α′4 =
bη2

2

ξ1
, β′1 = β′2 = β′3 = β′4 = 0,

and one can make α′4 = 1 to get E6 =

(
0 0 0 1
0 0 0 0

)
.

– Subcase 2-c: a = b = 0. In this case

α′1 = −η1

∆
(cξ2

1 + dξ2
2), α′2 = α′3 = −η1

∆
(cξ1η1 + dξ2η2), α′4 = −η1

∆
(cη2

1 + dη2
2),

β′1 =
ξ1

∆
(cξ2

1 + dξ2
2), β′2 = β′3 =

ξ1

∆
(cξ1η1 + dξ2η2), β′4 =

ξ1

∆
(cη2

1 + dη2
2),

which is similar to the case c = d = 0, i.e., we obtain algebras isomorphic to previously
considered cases.

Now we compare the list of the paper with the following classification result on complex evolution
algebras obtained in [7].

Theorem 2.4 Every nonzero 2-dimensional complex evolution algebra is isomorphic to exactly
one of the following evolution algebras given by their matrix of structure constants

E′1 =

(
1 0 0 0
0 0 0 0

)
, E′2 =

(
1 0 0 1
0 0 0 0

)
,

E′3 =

(
1 0 0 −1
1 0 0 −1

)
, E′4 =

(
0 0 0 0
1 0 0 0

)
,

E′5a,b =

(
1 0 0 b
a 0 0 1

)
, E′6c =

(
0 0 0 1
1 0 0 c

)
,

where ab 6= 1, c 6= 0 and E′5a,b ' E
′
5b,a

, E′6c ' E
′
6c′
⇔ c

c′ = cos2kπ
3 +isin2kπ

3 for some k ∈ {0, 1, 2}.
In the list of the paper these algebras are represeted as follows.

E2(0) ' E′1, E4 ' E′2, E5 ' E′3, E6 ' E′4, E1(a, b) = E′5a,b , E2(c−3) ' E′6c ,

the last isomorphism is due to

(
1 0 0 c−3

1 0 0 0

)
= gE6c(g

−1)⊗2 at g =

(
0 c
c2 0

)
. According

to the discussion above in [7] the algebra E′60 given in the present paper by E3 is missed.

3. The groups of automorphisms of 2-dimensional evolution algebras
Recall that a bijective function f : E −→ E preserving the binary operation of E is an
automorphism of E. The set of all automorphisms E is denoted by Aut(E), it is a group with
respect to the composition operation. If a basis of n-dimensional algebra E is fixed, then the
elements of Aut(E) are represented by elements of GL(n,F) as follows

Aut(E) = {g ∈ GL(n,F) : gE − E(g ⊗ g) = 0}. (7)

Let i ∈ F stand for an element with i2 = −1, I =

(
1 0
0 1

)
and g =

(
x y
z t

)
∈ GL(2,F).
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Theorem 3.1 Over an algebraically closed field F (Char(F) 6= 2), the automorphism groups of
two-dimensional algebras are given as follows:

Aut(E1(b, c)) = {I}, if b 6= c, Aut(E1(b, b)) =

{
I,

(
0 1
1 0

)}
, if b2 6= 1,

Aut(E2(b)) = {I}, if b 6= 0, Aut(E2(0)) =

{(
1 0
t 1− t

)
: t 6= 1

}
,

Aut(E3) =

{
I,

(
0 1
1 0

)
,

(
t 0
0 t2

)(
t2 0
0 t

)
,

(
0 t
t2 0

)
,

(
0 t2

t 0

)}
, where t = −1

2
+i

√
3

2
,

Aut(E4) =

{
I,

(
1 0
0 −1

)}
, Aut(E5)) =

{(
t 1− t

1− t t

)
: t 6= 1

2

}
,

Aut(E6) =

{(
t2 s
0 t

)
: t 6= 0, s ∈ F

}
.

Proof. To prove the theorem we go through the list given in Theorem 2.3 and compute their

groups automorphisms according to (7). Consider E1(b, c) =

(
1 0 0 b
c 0 0 1

)
. Then

gE1(b, c)−E1(b, c)(g⊗g) =

(
x− x2 + cy − bz2 −xy − btz −xy − btz −bt2 + bx+ y − y2

ct− cx2 + z − z2 −cxy − tz −cxy − tz t− t2 − cy2 + bz

)
,

therefore to describe the automorphisms one should solve the system of equations with respect
x, y, z and t:

x− x2 + cy − bz2 = 0 (8)

ct− cx2 + z − z2 = 0 (9)

−xy − btz = 0 (10)

−cxy − tz = 0 (11)

−bt2 + bx+ y − y2 = 0 (12)

t− t2 − cy2 + bz = 0. (13)

The equations (10) and (10) imply tz(bc− 1) = 0.

• Case 1: b 6= c. The system has only one solution g = I due to bc− 1 6= 0.

• Case 2: b = c. The system has solutions in matrix form

{(
1 0
0 1

)
,

(
0 1
1 0

)}
.

In the case E2(b) =

(
1 0 0 b
1 0 0 0

)
we have

gE2(b)− E2(b)(g ⊗ g) =

(
x− x2 + y − bz2 −xy − btz −xy − btz −bt2 + bx− y2

t− x2 + z −xy −xy −y2 + bz

)
.

This produces the system of equations:

x− x2 + y − bz2 = 0 (14)

t− x2 + z = 0 (15)

−xy − btz = 0 = 0 (16)

−xy = 0 = 0 (17)

−bt2 + bx− y2 = 0 (18)

−y2 + bz = 0. (19)



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012001

IOP Publishing

doi:10.1088/1742-6596/1489/1/012001

8

As above to find g we have to solve the system equation.

• Case 1: b 6= 0. Due to xy = zt = 0 one has only two subcases:

– Subcase 1-a: x = t = 0, yz 6= 0. In this case the equation (15) implies z = 0, so there
is no non singular g with the entries satisfying the system.

– Subcase 1-b: xt 6= 0, y = z = 0. In this subcase we have x = t = 1 and g = I.

• Case 2: b = 0. Due to y = x2 − x, t = x2 − z, y = 0 we find x to be 1, as a result t = 1− z

and g =

(
1 0
z 1− z

)
, where z 6= 1.

If we consider E3 =

(
0 0 0 1
1 0 0 0

)
, then

gE3 − E3(g ⊗ g) =

(
y − z2 −tz −tz −t2 + x
t− x2 −xy −xy −y2 + z

)
,

which implies the following two cases:

• Case 1: xt 6= 0, y = z = 0. In this case due to t = x2, x = t2 one has x = 1, t = 1 or

x = −1
2 + i

√
3

2 , t = −1
2 − i

√
3

2 or x = −1
2 − i

√
3

2 , t = −1
2 + i

√
3

2 .

• Case 2: x = t = 0, yz 6= 0. Similarly, we obtain y = 1, z = 1 or y = −1
2 + i

√
3

2 , z = −1
2 − i

√
3

2

or y = −1
2 − i

√
3

2 , z = −1
2 + i

√
3

2 .

Consider E4 =

(
1 0 0 1
0 0 0 0

)
, then

gE4 − E4(g ⊗ g) =

(
x− x2 − z2 −xy − tz −xy − tz −t2 + x− y2

z 0 0 z

)
.

In this case we get g = I or g =

(
1 0
0 −1

)
.

In the case E5 =

(
1 0 0 −1
−1 0 0 1

)
due to (7) one has x − y = x2 − z2, y = x − x2 + z2,

t = x2 +z−z2, xy−zt = 0, x(x−x2 +z2)−z(x2 +z−z2) = 0, −x+y = y2− t2, −(x2 +z2) =
(x2 − x+ z2)2 − (x2 + z − z2)2,
which can be rewritten as follows

y = x− x2 + z2,
t = x2 + z − z2,

x(x2 − x− z2) + z(x2 + z − z2) = 0,
x2 − z2 = −(x2 − x− z2)2 + (x2 − (z2 − z))2.

• Case 1: z 6= 0. Then x2 +z−z2 = −x(x2−x−z2)
z and the substitution it into the last equation

implies

z2(x2 − z2) = (x2 − z2)(x2 − x− z2)2 (x2 − z2)((x2 − x− z2)2 − z2) = 0.

– Subcase 1-a: x2 − z2 = 0. Then x = ±z, y = ±z, t = z and g is singular.
– Subcase 1-b: (x2 − x− z2)2 − z2 = 0. Then x2 − x − z2 = ±z, y = ∓z, t = x ± z + z,

x± z + z = −x(±z)
z = ∓x.

Therefore, the following two cases occur:
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∗ Subsubcase 1-b-1: x2 − x − z2 = z, y = −z, t = x + 2z, 2x + 2z = 0. One has
x = −z, y = −z, t = z and g is singular.
∗ Subsubcase 1-b-2: x2 − x − z2 = −z, y = z, t = x. It implies that z = 1 − x and

g =

(
x 1− x

1− x x

)
, where x 6= 1

2 .

• Case 2: z = 0. Then y = −(x2 − x), t = x2, x2(x − 1) = 0 and x2 = −(x2 − x)2 + x4. So
x = 1, y = 0, t = 1 and one gets a trivial automorphism.

Take E6 =

(
0 0 0 1
0 0 0 0

)
. Then

gE6 − E6(g ⊗ g) =

(
−z2 −tz −tz −t2 + x

0 0 0 z

)
,

therefore, g =

(
t2 y
0 t

)
, where t 6= 0.

In the cases of the field F of characteristic 2 the corresponding result is given as follows.

Theorem 3.2 The group of automorphisms of 2-dimensional evolution algebras over
algebraically closed field F (Char(F) = 2) are given as follows

Aut(E1(b, c)) = {I}, if b 6= c, Aut(E1(b, b)) =

{
I,

(
0 1
1 0

)}
, if b2 6= 1,

Aut(E2(b)) = {I}, if b 6= 0, Aut(E2(0)) =

{(
1 0
t 1− t

)
: t 6= 1

}
,

Aut(E3) =

{
I,

(
0 1
1 0

)
,

(
t 0
0 t2

)(
t2 0
0 t

)
,

(
0 t
t2 0

)
,

(
0 t2

t 0

)}
, where t2 + t+1 = 0,

Aut(E4) = {I}, Aut(E5) =

{(
t 1− t

1− t t

)
: t ∈ F

}
, Aut(E6) =

{(
t2 s
0 t

)
: t 6= 0, s ∈ F

}
.

4. Derivation algebras of 2-dimensional evolution algebras
Recall that a derivation of an algebra E is a linear transformation d : E −→ E such that

d(x · y) = d(x) · y + x · d(y), for all x, y ∈ E.

The set of all derivations of an algebra E form a Lie algebra with respect to the bracket
[d1, d2] = d1 ◦ d2 − d2 ◦ d1 for the derivations d1 and d2. The Lie algebra is denoted by Der(E).
It is an important ingradient in studying structure properties of the algebra E. If E is an n-
dimensional algebra given by MSC E then the elements of Der(E) can be presented by elements
of M(n,F) as follows

Der(E) = {D ∈M(n,F) : E(D ⊗ I + I ⊗D)−DE = 0}.

In the paper we describe the derivation algebras of all 2-dimensional evolution algebras.

Theorem 4.1 The derivation algebras of 2-dimensional evolution algebras over an algebraically
closed field F (Char(F) 6= 2), can be given as follows

Der(E1(b, c)) = {0}, Der(E2(b)) = {0}, if b 6= 0,

Der(E2(0)) =

{(
0 0
t −t

)
: t ∈ F

}
, Der(E3) = Der(E4) = {0},

Der(E5) =

{(
−t t
t −t

)
: t ∈ F

}
, Der(E6) =

{(
2t s
0 t

)
: t, s ∈ F

}
.
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Proof. Let D =

(
x y
z t

)
be any element in M(2,F) and E1(b, c) =

(
1 0 0 b
c 0 0 1

)
. Then

E1(b, c)(D ⊗ I + I ⊗D)−DE1(b, c) =

(
x− cy y + bz y + bz 2bt− bx− y

−ct+ 2cx− z cy + z cy + z t− bz

)
and one has to solve the following system of equations with respect to x, y, z, t

x− cy = 0, (20)

−ct+ 2cx− z = 0, (21)

y + bz = 0, (22)

cy + z = 0, (23)

2bt− bx− y = 0, (24)

t− bz = 0. (25)

to find the derivations. The equations (22) and (23) imply that z(1− bc) = 0. Therefore, due
to bc 6= 1 one has x = y = t = z = 0 and D = 0, i.e., Der(E1(b, c)) = {0}.

Let us consider E2(b) =

(
1 0 0 b
1 0 0 0

)
. Then

E2(b)(D ⊗ I + I ⊗D)−DE2(b) =

(
x− y y + bz y + bz 2bt− bx

−t+ 2x− z y y −bz

)
,

which implies that x = y = 0, t = −z, bz = 0. The system of equations has nontrivial solution

D =

(
0 0
z −z

)
if and only if b = 0.

Take E3 =

(
0 0 0 1
1 0 0 0

)
. Then

E3(D ⊗ I + I ⊗D)−DE3 =

(
−y z z 2t− x

−t+ 2x y y −z

)
and one gets D = 0.

In the case of E4 =

(
1 0 0 1
0 0 0 0

)
we have

E4(D ⊗ I + I ⊗D)−DE4 =

(
x y + z y + z 2t− x
−z 0 0 −z

)
and get D = 0.

In E5 =

(
1 0 0 −1
−1 0 0 1

)
case one has

E5(D ⊗ I + I ⊗D)−DE5 =

(
x+ y y − z y − z −2t+ x− y

t− 2x− z −y + z −y + z t+ z

)

and as a result D =

(
−z z
z −z

)
.
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Let us consider E6 =

(
0 0 0 1
0 0 0 0

)
. Then

E6(D ⊗ I + I ⊗D)−DE6 =

(
0 z z 2t− x
0 0 0 −z

)

and one gets D =

(
2t y
0 t

)
.

Here are the corresponding results in the case of F with Char(F) = 2.

Theorem 4.2 The derivation algebras of 2-dimensional evolution algebras over algebraically
closed field F of characteristic 2 are described as follows

Der(E1(b, c)) = {0} , Der(E2(b)) = {0}, if b 6= 0, Der(E2(0)) =

{(
0 0
t −t

)
: t ∈ F

}
,

Der(E3) = {0}, Der(E4) =

{(
0 0
0 t

)
: t ∈ F

}
,

Der(E5) =

{(
t −t
t −t

)
: t ∈ F

}
, Der(E6) =

{(
0 s
0 t

)
: t, s ∈ F

}
.
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