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Abstract. This paper presents the application of a half-sweep iteration concept to the Grünwald 

implicit difference schemes with the Kaudd Successive Over-Relaxation (KSOR) iterative 

method in solving one-dimensional linear time-fractional parabolic equations. The formulation 

and implementation of the proposed methods are discussed. In order to validate the 

performance of HSKSOR, comparisons are made with another two iterative methods, full-

sweep KSOR (FSKSOR) and Gauss-Seidel (FSGS) iterative methods. Based on the numerical 

results of three tested examples, it shows that the HSKSOR is superior compared to FSKSOR 

and FSGS iterative methods.  

1.  Introduction 

Numerical solution of fractional partial differential equations (FPDEs) could be found in many 

application areas especially in the fields of engineering, physics and economics. Their broad 

applications have been mentioned by many researchers, refer [1,2].  

In this paper, we focus on the numerical solution of one-dimensional time-fractional parabolic 

equations (TFPEs), which can generally be defined as follows 
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where p(x) represents a convection coefficient, q(x) a diffusion coefficient and f(x,t) a source term.  

In order to solve FPDEs, many numerical methods have been developed. Solving problem (1) using 

numerical techniques will lead to large sparse linear systems. Normally, it requires the application of 

iterative solvers. In 2012, Youssef [3] introduced a new version of the Successive Over-Relaxation 

(SOR) iterative method, which known as Kaudd Successive Over-Relaxation (KSOR) iterative 

method. Prior to that, in 1991, Abdullah [4] has introduced the half-sweep iteration concept in order to 
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reduce the computational complexities during the iteration process. Due to the reduction of the 

computational complexities, many investigations on the effectiveness of this iteration concept have 

been discussed extensively by [5,6,7,8]. Inspired by their works, this paper extended the application of 

the half-sweep iteration concept to the Kaudd Successive Over-Relaxation (HSKSOR) iterative 

method by solving the Grünwald implicit approximation equations of the problem (1). Previously, the 

same method has been applied by [9,10] in their respective problems.  

Knowing for the unconditionally stable in both time and space, the implicit finite difference 

method has been extensively discussed by many researchers before, such as [11,12,13]. To derive the 

approximation equations of the problem (1), we also have applied the implicit finite difference 

scheme. However, most of the previous discussions were done based on the Caputo fractional 

derivative. Meanwhile, in this study, we used the Grünwald fractional operator, which defined by 

[14,15] as 

Definition 1: Grünwald fractional derivative of order-α 
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where the Grünwald weights are 
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Throughout the application of the half-sweep concept, only half of all interior node points in the 

solution domain are considered. Figure 1 shows the difference between the execution of full-and half-

sweep iterations. Whereby, the applications are onto the node points of type • only until it reaches a 

convergence state.  
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a) full-sweep 
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b) half-sweep  

Figure 1: a) and b) show the distribution of uniform node points 

for the full- and half-sweep cases respectively  

2.  Half-sweep Grünwald Implicit finite difference approximation equations 

In this paper, Grünwald Implicit finite difference scheme is applied to discretize problem (1). To 

derive the Grünwald implicit approximation equations, first, we divided the solution domain into 

uniform step-size 
b a

h x
N

−
= =   and T

M
t =  in x and t directions respectively, where N and M are 

some positive integers. Based on these uniformly divided finite grid sizes, the solution domain on the 

time interval [0, ]T  and space interval [ , ]a b  are denoted as ,jt j t=   at 0,1,2, ,j M= and 

,ix a ih= + at 0,1, 2,...,i N=  respectively. Hence, by applying the Grünwald fractional derivative 

operator to the time and implicit difference scheme in space, the discrete form of problem (1) can be 

expressed generally as 
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and where, for the full-sweep case at i= 1,2,3,…,N-1 and p=1,  
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while, for the half-sweep case at i=2,4,6,…,N-4,N-2 and p=2, 
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Hence, by using the half-sweep Grünwald implicit finite difference scheme, the approximation 

equation (3) can be simplified as 
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Next, the approximation equations (4) can be easily shown in matrix form as follows 
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3.  Formulation of the family of Kaudd Successive Over-Relaxation iterative methods 

As explained in Section 2, the characteristic of the coefficient matrix A is large and sparse. In this 

paper, we solve equation (5) using FSKSOR and HSKSOR iterative methods. To verify their 

effectiveness, the FSGS iterative method performed as a control method.  

To derive the FSKSOR and HSKSOR method, first, let the coefficient matrix in equation (5) be 

decomposed as 

 A D L V= + +  (6) 

where D, L and V represent the diagonal, lower triangular and upper triangular respectively.   

Then, recall the family of SOR iterative method which generally stated in [16,17,18,19] as 

 ( ) ( ) ( ) ( ) ( )( )11
1

k k k

j j jU U D L F VU 
−+

= − + + −  (7) 
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Therefore, by using the same the decomposition matrix in equation (6), the general scheme of 

FSKSOR and HSKSOR iterative method can be written as [3,10] 

 
( ) ( ) ( ) ( ) ( )( )( )1 11
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k k k
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− −+

= + + + −  (8) 

where ω and 
( )1k

jU
+

respectively represent the relaxation factor and the unknown vector at kth iteration.  

Therefore, by determining the values of matrices D, L and V, the proposed algorithm for the 

HSKSOR iterative method to solve equation (6) could be described as in Algorithm 1. 

Algorithm 1: Half-sweep KSOR scheme 

i. Initialize ( )0
0iU  and 

1010 − . 

ii. Assign the optimal value of ω, 

iii. For 2,4,6, , 4, 2,i N N= − −   and 1,2,3, , .j M=  Compute: 

( ) ( ) ( ) ( ) ( )( )( )1 11
1

k k k
U U D L F VU 

− −+
= + + + −  

iv. Perform the convergence test, ( ) ( )1 10
, , 10 .

k k

i j i jU U 
+ −−  =  If yes, go to step (v). Otherwise, 

repeat step (iii). 

v. Compute the remaining points (i.e. ○) using, direct method. 

vi. Display approximate solutions. 

4.  Numerical examples 

In this section, three examples are tested in order to demonstrate the effectiveness of FSKSOR and 

HSKSOR iterative methods with the Grünwald implicit difference scheme at three different values of 

alfas (α=0.333, 0.666, 0.999).   

 

Example 1 [20] Consider the following one-dimensional linear inhomogeneous fractional Burger’s 

equation  
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with p(x) =1 and q(x) = -1, and subject to the initial condition ( ) 2,0 .U x x=  The exact solution is 

( ) 2 2, .U x t x t= +  

Example 2 [21] Consider the following one-dimensional inhomogeneous time-fractional parabolic 

equation 
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and subject to the initial condition ( ),0 0.U x =  The exact solution is given by ( ) ( )2, sin 2 .U x t t x=  

Example 3 [22] Consider the following one-dimensional linear inhomogeneous time-fractional 

parabolic equation 
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subject to the initial condition ( ),0 0U x = . The exact solution is given by ( ) 2, .xU x t t e=  
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Three parameters are considered for comparison which are the iteration numbers (k), computation 

time in seconds (time) and maximum absolute error. In the implementation of the iterative methods, 

the convergence test considered the tolerance error, ε=10-10. Meanwhile, the optimal values of ω were 

pre-selected by choosing the one with the smallest iteration numbers. Then, the numerical results 

obtained from the implementation of FSKSOR and HSKSOR to examples 1 to 3 are recorded as in 

Tables 1 to 3 respectively. Whereas, Table 4 shows the decrement percentage of the iteration numbers 

and computation time.  

 

Table 1. Comparison of Number Iterations (k), execution time (in seconds) and maximum absolute 

error for the iterative methods using example 1 at α=0.333, 0.666, 0.999. 

 
 

Table 2. Comparison of Number Iterations (k), execution time (in seconds) and maximum absolute 

error for the iterative methods using example 2 at α=0.333, 0.666, 0.999. 

 

k t Max Error k t Max Error k t Max Error

FSGS 18325 7.89 2.5972e-02 8957 5.36 1.3065e-02 2772 3.69 1.2478e-03

404 3.20 2.5972e-02 283 3.11 1.3065e-02 166 3.14 1.2480e-03

(ω=-2.0613) (ω=-2.0909) (ω=-2.1743)

199 1.88 2.5971e-02 140 1.87 1.3065e-02 86 1.87 1.2480e-03

(ω=-2.1261) (ω=-2.1899) (ω=-2.3794)

FSGS 67139 41.90 2.5973e-02 32944 23.62 1.3066e-02 10244 11.42 1.2473e-03

813 6.67 2.5972e-02 569 6.47 1.3065e-02 331 6.33 1.2480e-03

(ω=-2.0303) (ω=-2.0446) (ω=-2.0836)

404 3.76 2.5972e-02 283 3.72 1.3065e-02 166 3.68 1.2480e-03

(ω=-2.0613) (ω=-2.0909) (ω=-2.1743)

FSGS 243922 276.40 2.5975e-02 120271 142.56 1.3067e-02 37649 53.24 1.2454e-03

1621 14.51 2.5972e-02 1136 13.63 1.3065e-02 659 13.08 1.2480e-03

(ω=-2.0151) (ω=-2.0221) (ω=-2.0411)

813 7.71 2.5972e-02 569 7.59 1.3065e-02 331 7.45 1.2480e-03

(ω=-2.0303) (ω=-2.0446) (ω=-2.0836)

FSGS 877165 1914.74 2.5981e-02 435083 965.24 1.3074e-02 137338 323.96 1.2376e-03

3246 34.07 2.5972e-02 2269 30.86 1.3065e-02 1311 27.70 1.2480e-03

(ω=-2.0076) (ω=-2.0110) (ω=-2.0204)

1621 16.27 2.5972e-02 1136 15.76 1.3065e-02 659 15.25 1.2480e-03

(ω=-2.0151) (ω=-2.0221) (ω=-2.0411)

FSGS 3114564 13356.94 2.6008e-02 1556326 6730.67 1.3102e-02 496352 2216.78 1.2066e-03

6365 87.08 2.5972e-02 4519 75.36 1.3065e-02 2618 63.69 1.2480e-03

(ω=-2.0076) (ω=-2.0110) (ω=-2.0204)

3246 36.10 2.5972e-02 2269 33.96 1.3065e-02 1311 31.89 1.2480e-03

(ω=-2.0076) (ω=-2.0110) (ω=-2.0204)

FSKSOR

HSKSOR

128

256

512

1024

2048

FSKSOR

HSKSOR

FSKSOR

HSKSOR

FSKSOR

HSKSOR

FSKSOR

HSKSOR

M Method
α=0.333 α=0.666 α=0.999

k t Max Error k t Max Error k t Max Error

FSGS 14148 6.40 3.4745e-04 7120 4.72 5.2947e-04 2358 3.57 4.5604e-04

385 3.23 3.4734e-04 264 3.13 5.2935e-04 144 3.09 4.5594e-04

(ω=-2.0585) (ω=-2.0903) (ω=-2.1686)

193 1.85 9.3060e-04 135 1.84 1.1077e-03 84 1.84 1.0292e-03

(ω=-2.1204) (ω=-2.1889) (ω=-2.3790)

FSGS 47194 28.00 2.0203e-04 24125 17.50 3.8529e-04 8332 10.12 3.1294e-04

764 6.66 2.0160e-04 513 6.40 3.8483e-04 291 6.20 3.1267e-04

(ω=-2.0299) (ω=-2.0441) (ω=-2.0811)

385 3.80 3.4734e-04 274 3.77 5.2935e-04 144 3.73 4.5594e-04

(ω=-2.0585) (ω=-2.0866) (ω=-2.1686)

M Method
α=0.333 α=0.666 α=0.999

128
FSKSOR

HSKSOR

256
FSKSOR

HSKSOR
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Table 3. Comparison of Number Iterations (k), execution time (in seconds) and maximum absolute 

error for the iterative methods using example 3 at α=0.333, 0.666, 0.999. 

 
 

From the recorded results in Tables 1 to 3, it clearly shows that the implementation of the half-

sweep concept to the standard KSOR iteration technique managed to reduce the required iteration 

numbers and the computation time needed to solve the problem (1) at all mesh sizes that are examined. 

The summary of the decrement percentage of FSKSOR and HSKSOR in comparison to the FSGS 

iterative method for examples 1 to 3 are recorded in Table 4. 

 

  

FSGS 151187 149.13 1.6691e-04 79109 86.99 3.5049e-04 29799 42.17 2.7708e-04

1467 13.99 1.6516e-04 1025 13.61 3.4871e-04 576 12.74 2.7687e-04

(ω=-2.0147) (ω=-2.0218) (ω=-2.0397)

764 7.65 2.0159e-04 513 7.56 3.8483e-04 291 7.40 3.1267e-04

(ω=-2.0298) (ω=-2.0441) (ω=-2.0811)

FSGS 454367 812.72 1.6304e-04 251077 509.06 3.4511e-04 107228 240.64 2.6674e-04

2906 31.95 1.5605e-04 2049 30.49 3.3969e-04 1125 27.04 2.6791e-04

(ω=-2.0073) (ω=-2.0096) (ω=-2.0197)

1467 16.23 1.6516e-04 1115 15.91 3.4871e-04 654 15.44 2.7687e-04

(ω=-2.0147) (ω=-2.0189) (ω=-2.0388)

FSGS 1241856 4591.56 1.7665e-04 839911 3310.98 3.3991e-04 384794 1578.31 2.5732e-04

5708 80.73 1.5380e-04 4056 71.23 3.3742e-04 2155 60.45 2.6568e-04

(ω=-2.0037) (ω=-2.0054) (ω=-2.0098)

2905 35.44 1.5605e-04 2049 33.81 3.3969e-04 1151 31.90 2.6792e-04

(ω=-2.0071) (ω=-2.0103) (ω=-2.0202)

512
FSKSOR

HSKSOR

1024
FSKSOR

HSKSOR

2048
FSKSOR

HSKSOR

k t Max Error k t Max Error k t Max Error

FSGS 18947 7.94 1.1755e-03 9174 5.54 2.5778e-03 2824 3.78 2.2069e-03

423 3.16 1.1757e-03 295 3.13 2.5780e-03 172 3.11 2.2070e-03

(ω=-2.0606) (ω=-2.0905) (ω=-2.1743)

209 1.85 1.1785e-03 145 1.84 2.5807e-03 89 1.84 2.2096e-03

(ω=-2.1252) (ω=-2.1892) (ω=-2.3794)

FSGS 69499 40.98 1.1744e-03 33775 23.09 2.5767e-03 10436 11.31 2.2058e-03

853 6.69 1.1750e-03 592 6.44 2.5773e-03 342 6.27 2.2064e-03

(ω=-2.0300) (ω=-2.0444) (ω=-2.0837)

423 3.82 1.1757e-03 295 3.78 2.5780e-03 172 3.75 2.2071e-03

(ω=-2.0606) (ω=-2.0906) (ω=-2.1743)

FSGS 252889 267.84 1.1724e-03 123467 138.85 2.5746e-03 38383 51.68 2.2036e-03

1707 14.43 1.1748e-03 1181 13.68 2.5772e-03 681 12.89 2.2063e-03

(ω=-2.0150) (ω=-2.0221) (ω=-2.0411)

853 7.70 1.1750e-03 592 7.59 2.5773e-03 342 7.43 2.2064e-03

(ω=-2.0300) (ω=-2.0445) (ω=-2.0837)

FSGS 911238 1836.10 1.1650e-03 447430 922.83 2.5670e-03 140195 309.11 2.1956e-03

3392 33.80 1.1748e-03 2353 30.74 2.5771e-03 1356 27.92 2.2062e-03

(ω=-2.0075) (ω=-2.0110) (ω=-2.0204)

1707 16.51 1.1748e-03 1181 16.02 2.5772e-03 681 15.46 2.2063e-03

(ω=-2.0150) (ω=-2.0221) (ω=-2.0411)

FSGS 3243868 12617.00 1.1357e-03 1604114 6334.88 2.5367e-03 507555 2083.86 2.1641e-03

6774 88.57 1.1747e-03 4680 75.59 2.5771e-03 2708 63.53 2.2062e-03

(ω=-2.0038) (ω=-2.0055) (ω=-2.0102)

3392 36.43 1.1748e-03 2353 34.29 2.5771e-03 1356 32.55 2.2062e-03

(ω=-2.0075) (ω=-2.0110) (ω=-2.0204)

2048
FSKSOR

HSKSOR

512
FSKSOR

HSKSOR

1024
FSKSOR

HSKSOR

128
FSKSOR

HSKSOR

256
FSKSOR

HSKSOR

α=0.666 α=0.999
M Method

α=0.333
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Table 4. Decrement percentage of the number of iterations and 

computation time for HSKSOR and FSKSOR iterative methods 

compared to FSGS iterative Method 

Example Method   α =0.333 α=0.666 α=0.999 

1 

FSKSOR 
Iter 97.80‒99.80% 96.84‒99.71% 94.01‒99.47% 

Time 59.44‒99.35% 41.98‒98.88% 14.91‒97.13% 

HSKSOR 
Iter 98.91‒99.90% 98.44‒99.85% 96.90‒99.74% 

Time 76.17‒99.73% 65.11‒99.50% 49.32‒98.56% 

2 

FSKSOR 
Iter 97.28‒99.54% 96.29‒99.52% 93.89‒99.44% 

Time 49.53‒98.24% 33.69‒97.85% 13.45‒96.17% 

HSKSOR 
Iter 98.64‒99.77% 98.10‒99.76% 96.44‒99.70% 

Time 71.09‒99.23% 61.02‒98.98% 48.46‒97.98% 

3 

FSKSOR 
Iter 97.77‒99.79% 96.78‒99.71% 93.91‒99.47% 

Time 60.20‒99.30% 43.50‒98.81% 17.72‒96.95% 

HSKSOR 
Iter 98.90‒99.90% 98.42‒99.85% 96.85‒99.73% 

Time 76.70‒99.71% 66.79‒99.46% 51.32‒98.44% 

5.  Conclusion 

In this work, we implemented the half-sweep iteration concept on Grünwald implicit difference 

schemes and KSOR iterative method to solve one-dimensional time-fractional parabolic equations. 

Based on the numerical results, it shows that HSKSOR iterative method has reduced the number of 

iterations and execution time of the standard FSKSOR and FSGS iterative methods. Meanwhile, from 

the maximum error, it shows that the accuracy of HSKSOR is in good agreement with FSKSOR and 

FSGS iterative methods. Overall, the numerical results have shown that the HSKSOR method is more 

superior in terms of the number of iterations and the execution time than the standard method. For 

future work, other iterative methods especially on the two-step iteration family [23,24,25,26] will be 

applied to the proposed approximation equation in order to increase its convergence iteration. 
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