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Abstract. It is known that all Radial Basis Function-based meshfree methods suffer from a lack 

of reliable judgement on the choice of shape parameter, appearing in most of the RBFs. While 

the popularity of meshfree/meshless numerical methods is growing fast over the past decade, the 

great challenge is still to find an optimal RBF form with its optimal shape parameter. In this 

work, the main focus is on one type of RBF namely ‘Compactly-Supported (CS-RBF)’ that 

contains no parameter, and yet has not been explored numerically as much in the past, 

particularly under the context of data interpolation/approximation and solving partial differential 

equations (PDEs). To compare the potential advantages of CS-RBF, two most popular choices 

of RBF widely used; Multiquadric (MQ), and Gaussian (GA) were studied parallelly. The 

information gathered and presented in this work shall be useful for the future users in making 

decision on RBF. 

1.  Introduction 

Amongst the well-known numerical schemes; finite volume, finite difference, and finite element method 

that have been invented, developed, and applied in a wide range of science and engineering problems, a 

rather young idea was discovered and has been categorized as ‘meshless/meshfree’ methods [1, 2]. The 

methods under this category have recently become promising alternative tools for numerically solving 

variety of science and engineering problems. Generally, these meshless schemes can be grouped into 

two main classes [3];  

• Strong forms ; The finite point method [4], The hp-meshless cloud method [5], the 

collocation method [6], and references therein.  

• Weak forms ; The diffuse element method [7], The element-free Galerkin method (EFGM; 

[8], The point interpolation method [9], and references therein.  

Each of these has its own advantages/disadvantages depending on several factors involved; domain 

geometry, governing equations, boundary/initial conditions, computer arithmetic, etc. Amongst those 

being proposed and developed nowadays, one of the well-known meshfree method is that called ‘RBF-

collocation’ or sometimes called ‘Kansa’s method’, where it uses a set of global approximation function 
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to approximate the field variables on both the domain and the boundary when solving PDEs [10] . In 

this work, particularly, the main attention is paid on the application of the so-called ‘Collocation 

Method’ characterized in the strong form family. The method is truly meshfree meaning no mesh is at 

all required at any point of the whole computing process.  

For the method of collocation meshfree, there are several forms of well-known radial basis function 

and some are listed below, [11]; 

• Gaussian (GS), defined as; 

( ) ( )
2

r
r e




−
=  

• Inverse Multiquadric (IMQ) , defined as; 

( ) ( )
2

1/ 1r r = +  

• Multiquadric (MQ) , defined as; 

( ) ( )
2

1r r = +  

• Inverse quadratic (IQ) , defined as; 

( ) ( )( )2
1/ 1r r = +  

• Wendland
6C  (WL) , defined as; 

( ) ( ) ( ) ( )( )8 3 2
1 32 25 8 1r r r r r    = − + + +  

• Cubic Matérn (CU) , defined as; 

( ) ( ) ( )( )2 3
15 15 6rr e r r r   −= + + +  

Here,   is called shape parameter, determined by the user and this exactly remains the open topic 

for researchers to investigate the possible optimal choice. A lot of attempts have been made to alleviate 

this problem but by far no universal choice has been found [12-14].  The attempt to get rid of this burden 

by turning attention away from these groups of RBFs to those containing no parameter is now being 

made.  

For this purpose, this work focusses on a compactly-supported form of RBF proposed by Buhmann  

[15] and the effectiveness one can obtained when applied this type of RBF with the collocation-based 

method.  

• Noted as CS1 and defined as; 

 ( ) ( )9/2 7/2 4 2119 / 45 16 / 3 7 14 /15 1/ 9r r r r r
+

= + − − +  

• Noted as CS2 and defined as; 

 ( ) ( )3 4 3 24 log( ) / 3 / 2 4 / 9 1/18r r r r r r
+

= − + + − +   

• Noted as CS3 and defined as; 

 ( ) ( )4 4 3 22 log( ) 7 / 2 16 / 3 2 1/ 6r r r r r r
+

= − + − +   

when +  indicates the cut-off function which is defined to be r  , when 0 1r   and zero 

elsewhere.  

 

2.  Mathematical Background 

Radial Basis Functions (RBF),  , are commonly found as multivariate functions whose values are 

dependent only on the distance from the origin. This means that ( ) ( )r R = x  with  
nx  and

r R ; or, in other words, on the distance from a point of a given set jx , and ( ) ( )j jr R − = x x

where can normally be defined as follows; 
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2 2 2

1 1 2 22
( ) ( ) ... ( )n nr x x x x x x   = − = − + − + + −x x  (1) 

 

2.1.  RBF collocation scheme for PDFs 

For   and some fixed points 
nx . Nevertheless, in this work, 

2j jr = −x x is the Euclidean distance 

and any function   satisfying 
2

( ) ( ) =x x , is called a radial function. For the methodology of 

RBF-collocation meshless method for numerically solving PDEs, it begins with considering a linear 

elliptic partial differential equation with boundary conditions, where ( )g x  and ( )f x  are known. We 

seek ( )u x  from; 

 ( ) ( ) , inLu f= x x x  (2) 

 ( ) ( ) , onMu g= x x x  (3) 

where 
d ,   denotes the boundary of domain  , L and M are the linear elliptic partial 

differential operators and operating on the domain   and boundary domain  , respectively. For 

Kansa’s method, it represents the approximate solution ( )u x  by the interpolation, using an RBF 

interpolation as the following; 

 ( ) ( )
1 1

( )
N N

j j j j

j j

u c r c 
= =

= = − x x x  (4) 

We can see that  N  linear dependent equations are required for solving N unknowns of jc . 

Substituting ( )u x into equation (2) and equation (3) , we obtain the system of equations as follows; 

 ( ) ( )
1 1

,
I IN N

j j j j i

j j

L c c L f 
= =

 
− = − = 

 
 x x x x x 1, , Ii N=  (5) 

 ( ) ( )
1 1

,
I I

N N

j j j j i

j N j N

M c c M g 
= + = +

 
− = − =  

 
 x x x x x 1, ,Ii N N= +  (6) 

Above equations, we choose N collocation points on both domain   and boundary domain  , and 

divide it into IN  interior points and BN  boundary points ( )I BN N N= + . Let  1 2, , , NX = x x x

denotes the set of collocation points,  1, ,
INI I I= denotes the set of interior points and 

 1, ,
BNB B B= the set of boundary points. The centers jx  used in equation (5) and equation (6)  are 

chosen as collocation points. The previous substituting yields a system of linear algebraic equations 

which can be solved for seeking coefficient  c  by rewriting equation (5) and equation (6)  in matrix 

form as; 

 =Ac F  (7) 

where 
L

M

 
=  
 

A
A

A
 and 

( )

( )
i

i

f

g

 
=  
 

x
F

x
with the following detail;  

( ) ( )L i jij
L= −A x x , ,i jI X x x , 1,2, , , 1,2, ,Ii N j N= =            

( ) ( )M i jij
M= −A x x  ,  ,i jB X x x , 1, , , 1,2, , ,Ii N N j N= + =             
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( )

( )

; , 1,2, , ,

; , 1, , .

i i I

i i I

f I i N

g B i N N

 =

 = +

x x

x x
 

 

Equation (7), the coefficient ' sc  are computed from the following system; 

 
1−=c A F  (8) 

Therefore, the matrix c  is substituted into (4) and the approximate solution of ( )u x can be 

determined by; 

 ( ) ( )
1

N

j j

j

u c 
=

= −x x x  (9) 

The system is known to provide solution if and only if the matrix A is non-singular, its inverse exists.  

2.2.  Numerical Treatment for Nonlinear PDE 

The following procedure was presented by Fasshauer [16]  and is being briefly revisited here. The 

computation process starts with considering the nonlinear PDEs of the form 

 

 Lu f=  (10) 

 

With the following algorithm; 

1. Create the collocation point sets X    and start with an initial guess 0u   

2. For 1,2, ,k K=   

(a) The linearized problem 

 
1 1ku kv f Lu
− − = −  on  X  (11) 

 

(b) Perform the Newton update 

 v v=  (12) 
 

(c) Update the previous approximation 

 1k ku u v−= +  (13) 

In this algorithm 
1ku −

 is the linearization of the nonlinear differential operator L at 1ku − .  

Here we provide an example in order to elaborate the algorithm described above.  

Considering the nonlinear PDE of the form2;  

 
2 2 3u u u f−  − + =   in ( ) ( )0,1 0,1 =   (14) 

and ( , ) 0u x y =   on    (15) 
 

On the right hand side, f  is chosen so that equation (14) has an analytic solution of the form 

 ( ) ( ) ( ),u x y x y =  (16) 

with ( )
( )11

1
tt

t e e e
−−

  = + − − , ( ),x y denotes the Cartesian coordinates of 
2x , and the parameter 

 determines the size of the boundary layers near the edges of the domain  . We use a value of 0.1 =   

For this model problem the linearization 
1ku −

 of L is given by  

 ( )
1

2 2 2

13 1
ku kv v u v
− − = −  + −  (17) 

and therefore the equation to be solved in step 2a) of the algorithm is of the form; 
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 ( )2 2 2 2 2 3

1 1 1 13 1k k k kv u v f u u u− − − −−  + − = +   + −  (18) 

When perform step 2a), it is necessary to solve the following linear system, arising from the 

nonsymmetrical collocation procedure 

 
( ) ( )( )

( )

( )

( )( )
1 1

1

k

k
k

j

n
k k k

j u j k i

j x x

c f u
− −

= =

  − = + 
   x x x , ( )

1, ,
k

Ii n=  (19) 

 
( ) ( ) ( )( )

1

0
n

k k k

j i j

j

c 
=

 − =
   x x     , ( ) ( )

1, ,
k k

Ii n n= +  (20) 

By using equation (11-13) , the above then becomes; 

 ( )2 2 2 2 2 3

1

3 1
n

j i ij i iij i
j

c u f u u u 
=

    −  + − = +   + −       , 1, , Ii n=  (21) 

 
1

0
n

j ij

j

c 
=

=    , 1, ,I I Bi n n n n= + + =  (22) 

where, for transparency, the index 'k s  are being omitted on the quantities , ,I Bn n n , and jc . 

The Newton update v v=  used in step 2c) of the algorithm is then given by; 

 ( ) ( )
( )

( )( )
1

k
n

k k

j j

j

v c 
=

= −x x x  (23) 

The next section, the whole process of numerical computing is implemented for solving nonlinear 

partial differential equations and for this 4 problems are tested. All solutions obtained from this 

investigation are justified by compared with their corresponding exacts. 

3.  Numerical Measurement Norms 

All computing experiments were carried out on the same computer; Intel(R) Core(TM) i7-5500U CPU 

@ 2.40GHz with 8.00 GB of RAM and 64-bit Operating System. All numerical solutions obtained from 

the whole study are validated by comparing against the analytical solutions using different types of error 

norms as listed in Table 1, or some other numerical works where available in literature. 

Table 1. Error Norms adopted in this work. 
   

Error Norm Symbol Defined Mathematical Formula 

   Maximum   L
   ( ) ( ). .

1
max i i

ext appx

i N
u u

 
−x x    

   Root-Mean-Square   
RMSL    ( ) ( )( )

1/2

2
. .

1

1 N
ext appx

j

i iu u
N =

 
− 

 
 x x   

   Absolute   AbsL   ( ) ( ). .

i

ex

i

t appxu u−x x  

4.  Numerical Experiments 

4.1. Test 1 : Interpolation Problem 

The interpolation problem starts with a set of discrete data   d

1
,

N

i ii=
= X x x  where for each ix  there 

is its corresponding real value iy  , then the task is to construct a continuous function 
d(x) : →   

such that;  

 ( ) y
i i

 =x  (24) 
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For all 1,2,...,i N= .The first validation of the scheme proposed in this work is done using a benchmark 

function defined on a square-domain,    0,4 0,4  , as follows.  

( ), sin( )cos( )f x y x y=  (25) 

As regarded as one of the most influential factors, the shape parameter is firstly investigated. 

For this purpose simulations using the Multiquadric (MQ) and Gaussian (GA) were under the 

investigation. Figure 1. clearly show the strong effects the shape parameter has for both RBFs. When 

using different numbers of nodes, it also can be seen that the errors norms can be affected as well.  

 

Figure 1. RMSL  measured at different values of shape parameters; left) with 10 10  interpolation 

nodes/centres, and right) with 30 30  interpolation nodes/centres. 

At the node density of  15 15 , Table 2 provides the absolute errors measured at different locations all 

over the domain. The information contained in this table show significant accuracy obtained from all 

types of RBFs. Nevertheless, for MQ and GA, a caution has been previously taken on fining the optimal 

shape values and they were found to be in ( )4,6.5  for MQ, ( )0.1 0.8− and for GA. It must be noted 

that no extra treatment was needed for the cases of using compactly-supported RBFs. Solutions 

produced by all the cases were plotted against one another as shown in figure 2. and figure 3.  
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Table 2.  AbsL  measured at different locations over the computational domain with 15 15  

interpolation nodes/centres 

x y 
MQ 

( 5.00) =   
GA 

( 0.50) =  CS1 CS2 CS3 

0.000 0.000 8.59E-10 1.57E-12 1.46E-11 3.55E-11 1.46E-11 

0.000 1.396 1.87E-06 2.73E-12 4.17E-04 1.09E-02 5.42E-04 

0.000 12.566 1.32E-09 3.64E-13 5.46E-11 7.84E-12 6.37E-12 

1.396 0.000 7.06E-06 1.60E-05 6.66E-04 7.37E-05 3.86E-03 

2.793 0.000 2.56E-06 5.86E-06 3.49E-04 1.41E-03 1.07E-02 

2.793 1.396 7.73E-06 1.13E-05 8.23E-04 5.66E-03 9.36E-04 

2.793 12.566 2.55E-06 5.86E-06 3.49E-04 1.41E-03 1.07E-02 

4.189 0.000 1.12E-06 2.43E-06 5.30E-04 1.21E-02 1.55E-02 

4.189 12.566 1.12E-06 2.43E-06 5.30E-04 1.21E-02 1.55E-02 

5.585 12.566 3.32E-07 6.88E-07 3.51E-04 6.51E-03 1.64E-02 

6.981 0.000 3.32E-07 6.88E-07 3.51E-04 6.51E-03 1.64E-02 

6.981 12.566 3.32E-07 6.88E-07 3.51E-04 6.51E-03 1.64E-02 

8.378 0.000 1.12E-06 2.43E-06 5.30E-04 1.21E-02 1.55E-02 

8.378 12.566 1.12E-06 2.43E-06 5.30E-04 1.21E-02 1.55E-02 

9.774 0.000 2.55E-06 5.86E-06 3.49E-04 1.41E-03 1.07E-02 

9.774 11.170 7.73E-06 1.13E-05 8.23E-04 5.66E-03 9.36E-04 

9.774 12.566 2.56E-06 5.86E-06 3.49E-04 1.41E-03 1.07E-02 

11.170 0.000 7.07E-06 1.60E-05 6.66E-04 7.37E-05 3.86E-03 

11.170 12.566 7.06E-06 1.60E-05 6.66E-04 7.37E-05 3.86E-03 

12.566 0.000 1.09E-09 3.76E-13 1.20E-10 6.24E-11 2.64E-11 

12.566 12.566 2.26E-09 9.46E-13 5.91E-13 5.34E-11 4.06E-11 
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Figure 2. Solution approximation at selected locations obtained from each RBF type, compared again 

the exact solution. 

 
Figure 3. Solution profile comparison between that produced by CS1-RBF and that of the exact one. 

 

4.2.  Test 2 : Poisson Problem with Non-rectangular domain 

In this second test case, the Poisson equation shown below is numerically solved by the collocation 

meshfree method.  

 
2 2

2 2

2 2
u u x

x y

  
 = + = − 

  
 (26) 



5th International Conference on Mathematical Applications in Engineering

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012020

IOP Publishing

doi:10.1088/1742-6596/1489/1/012020

9

 

 

 

 

 

 

This is defined on the domain with an elliptical boundary expressed as ( )2 2/ 4 1x y+ = . Where the 

boundary condition is taken directly from the exact solution which is expressed as follows;  

 ( )
4

2 2 21
( , ) 50 8 33.6 1

246 4

x
u x y x y y

 
= − − + + − 

 
 (27) 

Based on the promising results obtained from the previous example, only CS1 is now presented here 

and it is marked as ‘CS’ from hereon. 

 For this example,  L
 and  

RMSL  were utilized to measure the accuracy at different node 

density of 64, 144, 225, and 400. Table 3 clearly shows that the accuracy obtained from using MQ and 

GA is greatly influenced by the number of nodes involved in the system. This figure is more obvious 

when using 225 nodes with GA-RBF where a strong fluctuation of 
RMSL  occurs. This is not, however, 

the case when using CS where the solutions were found to remain almost intact with the change of node 

density. Figure 4. depicts the node distributions and the corresponding solution profile. It should also be 

remarked here that the optimal values of shape parameters shown in the table were obtained from a 

series of simulations taking place beforehand.  

 

Table 3.  Errors produced by each RBF when using different levels of nodes density.  

Number of  

Computational Nodes 
Error Norms 

MQ 

( 0.1 = ) 

GA 

( 0.1 = ) 
CS 

64 L
 8.6331e-04 9.4614e-04 0.0157 

RMSL  3.8422e-04 3.5081e-04 0.0063 

144 L
 5.7818e-04 0.0036 0.0077 

RMSL  2.0858e-04 0.0014 0.0039 

225 L
 0.0057 0.0028 0.0048 

RMSL  0.0024 9.4496e-04 0.0027 

400 L
 0.0034 0.0039 0.0032 

RMSL  0.0012 0.0014 0.0015 
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Figure 4. (a) and (b) node distribution at two levels of density, and (c) solution comparison between 

that of CS-RBF and the exact one. 

 

4.3.  Test 3 : Nonlinear Problem   

The nonlinear PDE as given in GE. Fasshauer5 on a square domain 0 1, 0 1x y     is taken a look at. 

The governing equation is as follows;   

 
2 2 3u u u f−  − + =  (28) 

with the boundary condition  0u =   on   and  the right hand side of the equation is chosen from the  

analytical solution of form; 

 ( ) ( ) ( ),u x y x y =  (29) 

with   ( ) ( )111
ttt e e e

 
−− −= + − − ,and ( ),x y denotes the Cartesian coordinate of 

2x  . 

The computational domain for this example is shown in figure 5. where some extra nodes are required for 

the computing algorithm for nonlinear case as explained in Section 2. Table 4 provide strong evidence 

confirming that the solution quality produced by CS can be as good as those obtained from the two popular 

choices of RBFs. Solution profiles are plotted against the exact ones and shown in figure 6.  
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Figure 5. Node being uniformly-distributed over the computational domain, together with 

supported nodes needed for nonlinear computing process. 
 

Table 4.  Numerical solutions comparison with the exacts. 

Points MQ GA CS Exact 

(0.2,0.2) 0.750708 0.751436 0.753032 0.747144 

(0.2,0.4) 0.848307 0.849172 0.849450 0.846440 

(0.2,0.6) 0.848307 0.849172 0.849450 0.846440 

(0.4,0.2) 0.848307 0.849172 0.849450 0.846440 

(0.4,0.4) 0.959267 0.960383 0.959399 0.958933 

(0.4,0.6) 0.959267 0.960383 0.959399 0.958933 

(0.6,0.2) 0.848307 0.849172 0.849450 0.846440 

(0.6,0.4) 0.959267 0.960383 0.959399 0.958933 

(0.6,0.6) 0.959267 0.960383 0.959399 0.958933 

(0.6,0.8) 0.848307 0.849172 0.849450 0.846440 

(0.8,0.2) 0.750708 0.751436 0.753032 0.747144 

(0.8,0.4) 0.848307 0.849172 0.849450 0.846440 

(0.8,0.6) 0.750708 0.751436 0.753032 0.846440 

(0.8,0.8) 0.750708 0.751436 0.753032 0.747144 
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Figure 6. Solution comparisons; (a) using MQ-RBF, (b) using GA-RBF, and (c) using CS-RB 

5.  Conclusion 

 In this work, the main objective is to numerically study the effectiveness of one type of radial basis 

functions that has not been explored as much and it is called ‘compacted-supported , CS- RBF’. This is 

done under the context of a numerical method that requires no mesh or grid so it is called 

‘meshfree/meshless’ with collocation on computational nodes. The CS-RBF is applied to several 

benchmark test cases and its potential uses have been monitored. The main findings obtained from all 

the experiments are as follows;  

1. When compared to the use of two popular RBFs; Multiquadric (MQ) and Gaussian (GA), 

the burden of finding an optimal shape parameter normally encountered in MQ and GA is 

completely omitted while the solutions produced are still in a good agreement.  

2. The numerical solutions are found to me significantly affected by the distance between 

centres in the domain. This is not the case for all the shape-parameter-based RBFs such as 

MQ and GA.  

3. The mathematical structure of CS-RBF is much less complex and much simpler when it 

comes to finding its first and second order of derivatives for solving PDEs.  

This all indicates its promising future for further applications in more complex problems and it remains 

as our future investigation. 
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