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Abstract
In this paper, we study the product of two complex Ginibre matrices and the 
loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the 
correlation functions). We obtain using Schwinger–Dyson equation  (SDE) 
techniques the general loop equations satisfied by the resolvents. In order to 
deal with the product structure of the random matrix of interest, we consider 
SDEs involving the integral of higher derivatives. One of the advantage of 
this technique is that it bypasses the reformulation of the problem in terms 
of singular values. As a byproduct of this study we obtain the large N limit 
of the Stieltjes transform of the 2-point correlation function, as well as the 
first correction to the Stieltjes transform of the density, giving us access 
to corrections to the smoothed density. In order to pave the way for the 
establishment of a topological recursion formula we also study the geometry 
of the corresponding spectral curve. This paper also contains explicit results 
for different resolvents and their corrections.

Keywords: random matrices, product of Ginibre matrices, loop equations, 
spectral curve, Schwinger–Dyson equations

(Some figures may appear in colour only in the online journal)

1.  Introduction

The study of random matrices in mathematics can be traced back to the work of Hurwitz on 
the invariant measure for the matrix groups U(N) and SO(N) [Hur97, DF17]. In multivari-
ate statistics another stream of random matrix theory was initiated with the work of Wishart 
[Wis28] on estimating the covariance matrices of multivariate statistics when the number 
of variables is large. In theoretical physics Wigner [Wig51] used random matrices to model 
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energy spectrum of Hamiltonians of highly excited states of heavy nuclei. The works of physi-
cists [tH74] on the large N limit of U(N) gauge theory provided yet another application to 
random matrices (and their generalized version often referred to as matrix models). Since then 
random matrix theory and matrix models have been found useful in an overwhelming number 
of contemporary fields, for example communication engineering [TV04], the analysis of algo-
rithms [Tro15], and deep learning [PW17]. Many tools have been developed to understand 
the properties of different models and ensembles. One of these tools is called loop equations, 
and has led to the now well-known Chekhov–Eynard–Orantin topological recursion formula 
[Eyn04, CEO06, CE06]. In the realm of random matrix theory this formula allows for the 
systematic computation of correlation functions of random matrices, as series in 1/N.

However some random matrix ensembles are, in the existing literature, still out of the 
scope of these loop equations. These are product ensembles, that is they are random matri-
ces constructed out of a product of several random matrices. In this paper we describe the 
loop equations  for such a product ensemble, specifically considering the case of a random 
matrix constructed out of the product of two complex Ginibre matrices. Such an ensemble 
was for instance considered in [BLMP07], with applications to the study of financial data, 
while a closely related product ensemble with applications to low energy QCD, was studied 
in [Osb04] (see also the text book treatment [For10, section 15.11]), allowing for insight into 
the poorly understood regime of non-zero baryon chemical potential.

More generally the product ensembles are found to have many applications. Some of 
these applications are described in the thesis [Ips15]. Among those, one finds applications 
to telecommunication problems where product ensembles provide a model of communica-
tion channels where the signal has to pass through different media [Mul02]. One also finds 
applications to the study of spin chains with disorder [CPV93], quantum transport [Bee97], 
quantum information and random graph states [CNŻ10, CNŻ13]. The product ensembles also 
relate to the study of neural networks. Indeed information about the asymptotic behavior of 
such ensembles allows one to draw results about stability of gradient in a deep neural network 
with randomly initialized layers [HN18]. These product ensembles are also of interest for 
the study of the stability of large dynamical systems [Ben84, IF18]. As a consequence, find-
ing mathematical and technical tools for investigating the properties of these ensembles can 
enable progress in these fields of study.

Yet another problem of importance is the one of Muttalib–Borodin ensembles. These 
ensembles were first defined as invariant ensembles, via their eigenvalue probability density 
function (PDF) [Mut95], and latter realized in terms of ensembles of random matrices with 
independent entries [Che18, FW17]. Their joint PDF is proportional to,

N∏
l=1

e−V(λl)
∏

1�i<j�N

(λi − λj)(λ
θ
i − λθ

j ),� (1)

where θ > 0 is a parameter and V(λl) can be interpreted as a confining potential. For general 
potential V  and θ = 2, this model relates to the O(n) matrix model with n = −1, see [BE11, 
Kos89], and it also relates to a particular model of disordered bosons [LSZ06]. A key struc-
tural interest in the Muttalib-Borodin ensembles is that they are biorthogonal ensembles. That 
is they admit a family of biorthogonal polynomials and their correlation functions can be 
expressed in determinantal form, with a kernel that can be expressed in terms of the biorthogo-
nal polynomials; see [Bor98]. Although it is not immediately obvious, the singular values for 
the product of M complex Ginibre matrices also give rise to biorthogonal ensembles [AIK13, 
KZ14]. Moreover, in the asymptotic regime of large separation, the PDF for the squared 
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singular values reduces to (1) with θ = 1/M, and V  having the leading form V(x) = −Mx1/M 
[FLZJ15].

One attractive feature of both the Muttalib–Borodin ensemble, and the squared singular 
values of products of complex Ginibre matrices, is that in the global density limit the moments 
of spectral density are given by the Fuss–Catalan family of combinatorial numbers; see [PŻ11, 
FW17]. Another is the special role played by particular special functions of the Meijer-G and 
Wright Bessel function class. Underlying these special functions is a linear differential equa-
tion of degree M  +  1. Less well understood is the nonlinear differential system implied by 
the correlation kernel based on these special functions. These are relevant to the study of gap 
probabilities; see [WF17, MF18].

Other questions about products of random matrices have been investigated for instance in 
[DP19]. In this work, the authors are concerned about the behavior of traces of general words 
of Ginibre matrices. In particular they show that the limiting square singular values distribu-
tion is a Fuss–Catalan distribution for any words. In the work [DLN18], the authors study the 
traces of the general words in an alphabet of random matrices constructed out of the marginals 
of a random tensor. Using combinatorial techniques it is possible to show freeness of some 
marginals or to describe entirely the free cumulants when there is no freeness of the different 
marginals in the limit. One interesting aspect is that using these products of marginals it is 
possible to find distribution interpolating between the square of a Marčenko–Pastur law and 
the free multiplicative square of a Marčenko–Pastur law.

However there is in general little technical tools to describe the lower order in N observa-
bles of product ensembles. Indeed free probability provides us with some useful techniques 
(free additive and multiplicative convolution), but those are restricted to the large N limit, and 
comes in handy only for the study of the large N density or the behavior of the large N limit of 
the moments (with some extension to the fluctuations of the linear statistics via [CMSS07]).

In this paper we focus on describing the loop equations  for the random matrix 
S2 = X1X†

1 X†
2 X2, where X1, X2 are square complex Ginibre matrices. In order to obtain these 

loop equations we start with Schwinger–Dyson identities and use them to obtain relations 
between moments, later translated in terms of equations on the resolvents of S2. These equa-
tions on the resolvents are the loop equations. One of the new features of the method presented 
here is that the starting point Schwinger–Dyson identities involve higher order derivatives. 
This allows us to obtain relations between moments of the matrix S2 only without having to 
deal with mixed quantities. Thanks to the combinatorial interpretation of the moments of the 
matrix S2 (that we also shortly describe), we show that the (connected) resolvents possess a 
1/N expansion, which is the unique additional ingredient we need to be able to solve the loop 
equations recursively.

Using this data we illustrate the use of the obtained loop equations  by computing the 
large N limit of the resolvent W0,1(x), thus recovering known results relating to the generat-
ing function of the moments. We also compute W0,2(x1, x2) (that is the Stieltjes transform 
of the 2-point correlation function) and show that it takes the expected universal form once 
expressed in the correct variables, thus relating to the Bergmann kernel on the sphere. We 
give explicit results for W1,1(x), W2,1(x) (first and second correction to the large N limit of 
the resolvent), W1,2(x1, x2) (first correction to W0,2(x1, x2)), as well as W0,3(x1, x2, x3). One 
interesting aspect of the obtained loop equations  are their structural properties, that seem 
to generalize in a very natural way the usual bilinear loop equations  for random matrices 
or matrix models. In particular, the family of loop equations we obtain for this product of 
matrices are trilinear in the resolvents Wg,n. This is at the root of the appearance of the double 
ramification point of W0,1(x) and we expect that a topological recursion formula similar to 
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the one obtained in [BE13] applies. Moreover they contain generalizations of the derivative 
difference term usually appearing in the bilinear setting, as well as derivatives of first and 
second order. Motivated by these interesting structural properties, we use the explicit com-
putations to explore the analytical properties of the Wg,n (or rather their analytic continuation 
on the associated spectral curve). These explorations give further hint that there is a topo-
logical recursion formula to compute them systematically. We expect that a similar technique 
allows to describe the loop equations for the product of p � 2 rectangular Ginibre matrices3 
Sp = X1X2 . . .Xp(X1X2 . . .Xp)

†; we leave this study, as well as the one of a topological recur-
sion formula, to further works. Note that, as a byproduct, we also expect that this technique 
applies to the interesting matrix models introduced in [AC14, AC18] to generate hypergeo-
metric Hurwitz numbers.

1.1.  Organisation of the paper

The paper is organized as follows. In section 2, we use the Wishart case (that is the case of one 
Ginibre matrix) as a pedagogical example. It is used to sketch the combinatorial arguments 
allowing to show the existence of the 1/N expansion and to illustrate the Schwinger–Dyson 
equation technique in a simpler context. The reader already accustomed to Schwinger–Dyson 
equations obtained using the matrix elements variables and knowledgeable on the associated 
combinatorics may consider skipping this section.

In section 3, we describe the heart of this paper, that is the derivation of the Schwinger–
Dyson equations and loop equations for a product matrix of the form S2 = X1X†

1 X†
2 X2. The 

loop equations take the form of a family of equations on the resolvents, that is the Stieltjes 
transforms (denoted Wn(x1, . . . , xn)) of the n-point correlation functions. We present the results 
step by step to make the method transparent to the reader and the first few special cases that 
are the loop equations for W1(x), W2(x1, x2) and W3(x1, x2, x3) are presented in details. This 
section ends with the main result, that is the loop equations satisfied by any Wg,n(x1, . . . , xn) as 
shown on equation (96), where Wg,n(x1, . . . , xn) is the coefficient of order g of the 1/N expan-
sion of Wn(x1, . . . , xn).

In section 4, we take on a geometrical point of view in order to compute the Wg,n more 
effectively from the loop equations. We describe in details the spectral curve geometry asso-
ciated to the problem. We compute after a change of variables, W0,2(x1, x2), W1,1(x), W2,1(x), 
W1,2(x1, x2) and W0,3(x1, x2, x3) (see equations (141), (139), (140), (142), (144)). We use these 
explicit computations to explore the analytic properties of the loop equations. These proper-
ties are expected to be of importance to establish a topological recursion formula allowing to 
systematically compute every Wg,n.

2.  One matrix case, Wishart ensemble

In this section, we illustrate the problem that is our interest in this paper on a simpler case, that 
is the (trivial) product of one matrix. This is the case of a Wishart matrix [Wis28]. The case of 
products of a complex random matrix with its complex conjugate was extensively studied in 
[EK02] in the context of N = 4 SYM. Here, we first recall the combinatorial representation 
of moments of a Wishart ensemble matrix. We then show how we can compute the average 
resolvent of a Wishart matrix using the Schwinger–Dyson equation method. It is only in the 

3 Note that the non-zero eigenvalues of X1X2X†
2 X†

1 are the same than the ones of X1X†
1 X†

2 X2. The last choice is slight-
ly more suitable for our choice of combinatorial presentation. However, both cases can be tackled.
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next section that we consider the case of the product of two Ginibre matrices. Thus the techni-
cally knowledgeable reader can skip this section and start reading section 3.

2.1.  Random Wishart matrices

In this paper we always consider square matrices. In the Wishart matrices case it corresponds 
to setting the asymptotic size ratio parameter c to 1. Let X ∈ MN×N(C) be a Ginibre random 
matrix. More concretely, X is a random matrix whose entries are i.i.d. complex Gaussian with 
zero mean and variance 1/N, or more formally, the entries Xa,b are distributed according to the 
density

N
2iπ

e−N|Xa,b|2 dX̄a,bdXa,b =
N
π

e−N|Xa,b|2 dR(Xa,b)dI(Xa,b),� (2)

where R(Xa,b) denotes the real part and I(Xa,b) the imaginary part of Xa,b. In particular we 
denote,

dX†dX =
∏
a,b

dX̄a,bdXa,b =
∏
a,b

(2i)dR(Xa,b)dI(Xa,b).� (3)

X has the distribution

dµ(X) =
NN2

(2iπ)N2 e−NTr(XX†)dX†dX.� (4)

A (complex) Wishart random matrix is the random variable defined as the product S1 = XX†.
Combinatorics of moments. The moments mk of order k of a Wishart random matrix are 
defined as

mk = E
(
Tr(Sk

1)
)

.� (5)

Further, for any sequence of positive integers k1, . . . , kn we can define moments mk1,...,kn of 
order k1, . . . , kn. Similarly to the moments of order k they are defined as the expectation of 
products of traces of powers of S1

mk1,...,kn = E

(
n∏

i=1

Tr(Ski
1 )

)
.� (6)

As is for instance explained in [DLN18], the moments of order k can be computed as a sum 
over labeled bicolored combinatorial maps M with one black vertex. This combinatorial rep-
resentation of moments implies that the moments have a 1/N expansion. That is

mk =
∑
g�0

N1−2gm[g]
k ,� (7)

where m[g]
k  are the coefficients of this expansion. This is a crucial point that allows one to solve 

the loop equations recursively. Note also that this expansion is finite, that is here g  <  k/2. Let 
us be a bit more explicit on this point.

We recall the definition of labeled bicolored combinatorial maps with possibly more than 
one black vertex.
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Definition 1.  A labeled bicolored combinatorial map is a triplet M = (E,σ•,σ◦) where,

	 •	�E is the set of edges of M
	 •	�σ•,σ◦ are permutations on E
	 •	�M is said to be connected if and only if the group 〈σ•,σ◦〉 acts transitively on E.

The cycles of σ◦ are called white vertices, the cycles of σ• are called black vertices, and the 
cycles of σ•σ◦ are called faces. Combinatorial maps can be represented graphically [DLN18, 
Eyn16] as they encode embeddings of graphs on surfaces. We give a few examples in figure 1. 
Note that the edges are labeled. Indeed the set of edge E = {1, . . . , p} so that each edge is 
indexed by the corresponding integer in E. We do not wish to expand too much on the differ-
ence between labeled and unlabeled combinatorial maps here as our purpose is mainly to sup-
port the existence of the 1/N expansion using combinatorial arguments and these arguments do 
not rely on the labeling. However it is an important difference for whom is interested in using 
purely combinatorial techniques to compute the moments.

We define the set of combinatorial maps Mp = {M = (E,σ•,σ◦) | E =  
{1, . . . , p},σ• = γ = (123 . . . p)}. Due to the fact that σ• = γ = (123 . . . p) has one cycle, 
the maps in Mp have one black vertex. One shows, using Wick–Isserlis theorem [Wic50, 
Iss18], that the moments of order k can be written as a sum over combinatorial maps M ∈ Mp 
(see [DLN18] for additional explanations and different pictorial representations)

mk =
∑

M∈Mk

NV◦(M)−k+F(M),� (8)

where V◦(M) is the number of white vertices of M and F(M) is the number of faces of M. 
Indeed, we can compute explicitly

mk =
∑

allindices

E

(∏
n∈Zk

Xinjn X†
jnin+1

)

=
∑

allindices

∑
σ◦∈Sk

∏
n∈Zk

Cov(Xikjk X
†
jσ◦(k)iγ(σ◦(k))

)

=
1

Nk

∑
allindices

∑
σ◦∈Sk

∏
n∈Zk

δikiγ(σ◦(k))δjkjσ◦(k)

=
1

Nk

∑
σ◦∈Sk

N#γ◦σ◦N#σ◦ ,

�

(9)

1
2

34

5
6

7 1
23

4
5 6

7
8

9

1

2

3

4

Figure 1.  Left: Map, pictured with its edge labels, of genus 1 contributing to 
the computation of m7. The corresponding permutations are σ• = (1234567) 
and σ◦ = (1)(24)(35)(67). Center: Connected map of genus 0 contributing to 
the computation of c4,5 and also to m4,5. The corresponding permutations are 
σ• = (1234)(56789) and σ◦ = (19)(2)(34)(56)(78). Right: Disconnected map with 
two genus 0 components. Contribute to the computation of m2,2. The corresponding 
permutations are σ• = (12)(34) and σ◦ = (1)(2)(3)(4).
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where we used the cyclic permutation γ = (1 . . . k) to rewrite our sum, and the Wick–Isserlis 
theorem in the second line (Cov denotes the covariance of the matrix elements). We recognize 
that k is the number of edges of a combinatorial map M defined through the permutations 
σ◦ and σ• := γ. The notations #γ ◦ σ◦ and #σ◦ denote the number of cycles of the corre
sponding permutations. They correspond to respectively the number of faces F(M) of the 
corresponding combinatorial map M and its number of white vertices V◦(M). Then using 
the fact that V• + V◦(M)− k + F(M) = 2 − 2g(M), where g(M) is the genus of the com-
binatorial map (that is the genus of the surface in which the corresponding graph embedds), 
one can show equation (7).

Remark 1.  Note that elements of Mp are necessarily connected as γ  acts transitively on 
{1, . . . , p}.

We now define the relevant set of maps for studying the moments of order k1, . . . , kn. In  
this case we denote p =

∑n
i=1 ki, E = {1, . . . , p} and γk1,...,kn = (12 . . . k1)(k1 + 1 . . . k2) . . .

(kn−1 + 1 . . . kn)

Mk1,...,kn = {M = (E,σ•,σ◦) | σ• = γk1,...,kn}.� (10)

Due to the fact that σ• = γk1,...,kn has n cycles, the maps in Mk1,...,kn have n black vertices. The 
maps in Mk1,...,kn are possibly non-connected as γk1,...,kn does not act transitively on the set of 
edges. Consequently we define the corresponding set of connected maps

Mc
k1,...,kn

= {M = (E,σ•,σ◦) | σ• = γk1,...,kn , 〈σ•,σ◦〉actstransitivelyonE}.
� (11)

We state without proof4 that

mk1,...,kn =
∑

M∈Mk1,...,kn

NV◦(M)−p+F(M),
� (12)

where p =
∑

i ki. We can define the associated cumulants ck1,...,kn of the moments, through 
their relation to moments

mk1,...,kn =
∑

K�{k1,...,kn}

∏
κi∈K

cκi .� (13)

This relation is just the moment-cumulant relation for the family of random variables {
Rki := Tr(Ski

1 )
}

, see also [Rot64]. The sum ranges over the set partition K of the set 

{k1, . . . , kn}. κi is an element of K, that is a subset of {k1, . . . , kn}. We then make a slight abuse 
of notation by declaring that cκi := ca1,...,as where κi = {a1, . . . , as} ⊆ {k1, . . . , kn}. These 
cumulants can be expressed as sums over connected combinatorial maps

ck1,...,kn =
∑

M∈Mc
k1,...,kn

NV◦(M)−p+F(M).
� (14)

Thanks to the connected condition, this sum is a polynomial in 1/N as long as n  >  1. That is 
to say we have

ck1,...,kn =
∑
g�0

N2−n−2gc[g]k1,...,kn
.� (15)

This last equation  is shown starting from (14) and again using V• + V◦(M)− k + F
+F() = 2 − 2g() with V• = n.

4 The proof is very similar to the one black vertex case shortly explained above and already appearing in [DLN18].
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Large N limit of moments of a Wishart matrix. Using (7), one can study the large N limit of 
the moments of order k of a Wishart matrix, that is one can compute the limit

lim
N→∞

1
N

mk = m[0]
k .� (16)

This limit is given by the number of planar, labeled, bicolored combinatorial maps with one 
black vertex and k edges. The number of such maps is given by the Catalan number5 Ck so that 

m[0]
k = Ck =

1
k+1

(2k
k

)
. This allows to compute the large N limit W0,1(x) of the moment generat-

ing function of the Wishart matrix

W0,1(x) := lim
N→∞

1
N
E
(
Tr

(
(x − S1)

−1)) =
∑
p�0

m[0]
p

x p+1 =
x −

√
x2 − 4x
2x

.� (17)

This last quantity is the Stieltjes transform of the limiting eigenvalues density of the Wishart 
matrix. The knowledge of W0,1(x) allows in principle6 to recover the limiting eigenvalues den-
sity via the inverse transformation.
Schwinger–Dyson equation method. In this part we use an alternative method to compute 
W0,1(x). We use the Wishart case as a pedagogical example. The Schwinger–Dyson equa-
tion method relies on the use of the simple identity

N∑
a,b=1

∫
NN2

(2iπ)N2 dX†dX∂X†
ab

(
(X†Sk

1)abe−NTr(XX†)
)
= 0,

�

(18)

where ∂X†
ab

 denotes the derivative with respect to the complex conjugate transpose element, so 
∂X†

ab
= ∂Xba

. After computing the derivatives explicitly we obtain the following set of relations 
between moments

∑
p1,p2�0

p1+p2=k

mp1,p2 − Nmk+1 = 0.
� (19)

In order to continue this computation we define the n-points resolvents Wn(x1, . . . , xn) and 
their connected counterpart Wn(x1, . . . , xn)

Wn(x1, . . . , xn) := E

(
n∏

i=1

Tr
(
(xi − S1)

−1)
)

=
∑

p1,...,pn�0

mp1,...,pn

x p1+1
1 . . . x pn+1

n

� (20)

Wn(x1, . . . , xn) =
∑

p1,...,pn�0

cp1,...,pn

x p1+1
1 . . . x pn+1

n
.� (21)

Note that we will often name the n-points resolvents and their connected counterpart simply 
resolvents, unless the context makes it unclear which object we are discussing. W0,1(x) is (up 
to normalization) the large N limit of W1(x). We have the relation

5 Note that one obtains Catalan numbers when the ratio parameter is set to c  =  1, however for general values of 
c one obtains the Narayana statistics on trees, that is polynomials in c whose coefficients are Narayana numbers 
[DR03].
6 In this specific case one can recover explicitly the limiting eigenvalue density via the inverse transformation. 
However in general it can be more tedious to compute the inverse transform. In the cases where the equation deter-
mining W0,1 is an algebraic equation, one can deduce a system of polynomial equations on two quantities u(x), v(x), 
one of them being (proportional to) the large N limit of the eigenvalue density ρ0,1(x). We illustrate this fact in the 
later remarks 3, 4.
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Wn(x1, . . . , xn) =
∑

K�{1,...,n}

∏
Ki∈K

W|Ki|(xKi),� (22)

where we used the notation xKi = {xj}j∈Ki. The above relation is inherited from the moment-
cumulant relation of equation (13).

Remark 2.  Note that W1(x) = W1(x).

With these definitions in mind, one considers the equality

∑
k�0

1
xk+1




∑
p1,p2�0

p1+p2=k

mp1,p2 − Nmk+1


 = 0,� (23)

leading after some rewriting to

W2(x, x)− NW1(x) + N2/x = 0,� (24)

or only in terms of the connected resolvents

W1(x)2 + W2(x, x)− NW1(x) + N2/x = 0.� (25)

The (connected) resolvents inherit a 1/N expansion from the expansion of the cumulants,

Wn(x1, x2, . . . , xn) =
∑
g�0

N2−2g−nWg,n(x1, x2, . . . , xn)

� (26)
and thus we have

W1(x) =
∑
g�0

N1−2gWg,1(x), W2(x, x) =
∑
g�0

N−2gWg,2(x, x).
� (27)

In the large N limit equation (25) reduces to an equation on W0,1(x),

xW0,1(x)2 − xW0,1(x) + 1 = 0.� (28)

From which we select the solution which is analytic at infinity thus recovering expression 
(17). Note that similar techniques can be used to obtain equations on the coefficients Wg,n 
of the full asymptotics expansion of the Wn functions, these loop equations are known to be 
solvable recursively from physicists works [AKM92] in the more general setting of formal 
integrals. This is also the origin of the development of the Chekhov–Eynard–Orantin topo-
logical recursion formalism [Eyn04, CE06, CEO06, Eyn16] (which ultimately relied on ideas 
developed in earlier works of AmbjØrn and al.). In this paper we want to retrieve such loop 
equations for product of random matrices and use those to extract data on the 1/N expansion 
of moments and cumulants.

Remark 3.  Consider the density ρ1(x) = E(
∑N

i=1 δ(x − λi)) where λi are the eigenvalues 
of S1. Its normalized large N limit is denoted limN→∞

1
N ρ1(x) = ρ0,1(x). From the last above 

equation we can obtain a polynomial equation on ρ0,1(x), that is the corresponding limiting ei-
genvalue density. To this aim, one introduces the two following operators acting on functions,

δf (x) = lim
ε→0+

f (x + iε)− f (x − iε)� (29)

sf (x) = lim
ε→0+

f (x + iε) + f (x − iε).� (30)
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We have the following polarization property, that is for two functions f1, f2 , we have

δ( f1f2)(x) =
1
2
(δf1(x)sf2(x) + sf1(x)δf2(x))� (31)

s( f1f2)(x) =
1
2
(δf1(x)δf2(x) + sf1(x)sf2(x)).� (32)

Starting from equation (28) one deduces the two equalities

δ(xW0,1(x)2 − xW0,1(x) + 1) = 0� (33)

s(xW0,1(x)2 − xW0,1(x) + 1) = 0.� (34)

After using the polarization formula, these equations boil down to the system on u(x):  =  sW0,1(x) 
and v(x) := δW0,1(x)

xu(x)− x = 0� (35)

x
2
(u(x)2 + v(x)2)− xu(x) + 2 = 0.� (36)

The Stieltjes inversion formula in turn leads to ρ0,1(x) = 1
2iπ v(x) = 1

2π

√
x−4

x , where we 

choose the solution v(x) that leads to a positive and normalized density.

3.  Loop equations for the product of two Ginibre matrices

In this section we consider the problem of computing W0,1(x), W0,2(x1, x2) and W1,1(x) for a 
matrix S2 = X1X†

1 X†
2 X2 with X1, X2 two independent random N × N  complex matrices with 

normal entries of mean zero and variance 1/N. We compute these quantities by exclusive 
use of Schwinger–Dyson equation techniques. More generally, we obtain the general equa-
tions satisfied by any Wg,n for (g, n) � (0, 1).

In the first subsection, we briefly explain the combinatorics underlying the computation of 
the moments of the matrix S2 that justifies the existence of a 1/N expansion for the Wg,n. In 
the second subsection we study in details the corresponding Schwinger–Dyson equations and 
obtain the loop equations satisfied by W0,1(x), W0,2(x1, x2) and W1,1(x) in this context. We show 
in particular that the loop equation satisfied by W0,1(x) is an algebraic equation of degree 3 in 
W0,1. Finally we describe the loop equations satisfied by any Wg,n.

3.1.  Combinatorics of the moments of S2 and existence of 1/N expansion

We describe here the combinatorics of the moments of the matrix S2. This is a crucial point as 
this underlying combinatorics allows us to show that the cumulants of the random variables {
Tr(Si

2)
}∞

i=0 have a 1/N expansion. In the subsequent developments, we keep the same nota-
tion for the moments mk, mk1,...,kn but it should be clear that in this section and the following, 
the moments we consider are the moments of the matrix S2, and that is so, in both the one trace 
case, and the multiple traces case. We have
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mk = E
(
Tr(Sk

2)
)

, mk1,...,kn = E

(
n∏

i=1

Tr(Ski
2 )

)
,� (37)

where the expectation is taken with respect to the density

dµ(X1, X2) =

(
NN2

(2iπ)N2

)2

e−NTr(X1X†
1 )e−NTr(X2X†

2 )dX†
1 dX1dX†

2 dX2.� (38)

By using the Wick–Isserlis theorem, it is possible to give a combinatorial interpretation to the 
moments of S2 (see for instance [DLN18]). The moments mk of S2 write as a sum over combi-
natorial maps with one black vertex, 2k edges of two different types, type I and type II, such 
that there are k edges of type I and k edges of type II. Moreover the type of the edge alternates 
when going around the black vertex. Finally the white vertices can only be incident to edges 
of one given type. See figure 2 for examples.

We denote the set made of these maps by M2k(2). In terms of permutations, these maps 
are such that σ• = (12 . . . 2k) and the action of σ◦ on the set of edges E = {1, 2, 3, 4, . . . , 2k} 
factorizes7 over the odd and even subsets Eo = {1, 3, 5, . . . , 2k − 1}, Ee = {2, 4, 6, . . . , 2k}. 
More formally we have the decomposition

mk =
∑

M∈M2k(2)

NV◦(M)−2k+F(M).
� (39)

Similarly, for moments of order k1, . . . , kn, we have the set of maps M2k1,2k2,...,2kn(2), such that 
there are n black vertices with degree distribution 2k1, 2k2, . . . , 2kn and a total of p = 2

∑
i ki 

edges. Types of edge alternate around each black vertex, and white vertices can only be inci-
dent to edges of the same type see figure 2 for examples. We then have the decomposition

mk1,...,kn =
∑

M∈M2k1,2k2,...,2kn (2)

NV◦(M)−p+F(M),
� (40)

I

I
II

II

II
II

I

I

I I

I

II

II

II

Figure 2.  Left: Example of a map with two types of edge contributing to the computation 
of m4. Right: Example of a map with two types of edge contributing to the computation 
of m2,1 and c2,1.

7 Note that this factorization property is at the origin of the relation between these combinatorial maps and 3-con-
stellations (see [LZ13] for definition of constellations). This is a point of view which is not developed here as it was 
not realized by the authors when the first version of this manuscript was written.
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where, as previously, V◦ denotes the number of white vertices (equivalently cycles of σ◦), and 
F  the number of faces (equiv. cycles of σ•σ◦.

Similarly we can express the cumulants ck1,...,kn for the family of random variables {
Tr(Si

2)
}∞

i=0 as a sum over the set of connected maps Mc
2k1,2k2,...,2kn

(2)

ck1,...,kn =
∑

M∈Mc
2k1,2k2,...,2kn

(2)

NV◦(M)−p+F(M) =
∑
g�0

N2−2g−nc[g]k1,...,kn
.

� (41)

The connected condition ensures that the ck1,...,kn have a 1/N expansion for n � 1. This 1/N 

expansion as well as the definition of ck1,...,kn as the cumulants of the family 
{

Tr(Si
2)
}∞

i=0 
ensure that the resolvents for the matrix S2 have the same structural properties than the resol-
vents of the Wishart matrix in equations (22), (26), that is we also have for the matrix S2

Wn(x1, . . . , xn) =
∑

K�{1,...,n}

∏
Ki∈K

W|Ki|(xKi),� (42)

Wn(x1, x2, . . . , xn) =
∑
g�0

N2−2g−nWg,n(x1, x2, . . . , xn).� (43)

3.2.  Equation on W1 and W0,1

We now want to write Schwinger–Dyson equations for the moments of the matrix S2 in order 
to obtain the loop equations for the resolvents. We start with the set of identities, summing 
over all repeated indices

∫
dX1dX†

1 dX2dX†
2

∂

∂X†
1,ab

([
X†

1 X†
2 X2Sk

2

]
abe−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0� (44)

∫
dX1dX†

1 dX2dX†
2

∂

∂X†
2,ab

([
Sk

2X1X†
1 X†

2

]
abe−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0.� (45)

After evaluating explicitly the action of the derivatives, we obtain relations,
∑

p1+p2=k
p1,p2�0

E
(

Tr(S p1
2 )Tr(S p2

2 X†
2 X2)

)
− NE

(
Tr(Sk+1

2 )
)
= 0

� (46)

∑
p1+p2=k
p1,p2�0

E
(

Tr(S p1
2 X1X†

1)Tr(S p2
2 )

)
− NE

(
Tr(Sk+1

2 )
)
= 0,

� (47)

where for both equation, the first term comes from the evaluation of the derivative on 
the monomial, while the second term comes from the evaluation of the derivative on the 
exponential factor. Note however that these equations  contain mixed terms of the form 
E (Tr(S p1

2 )Tr(S p2
2 X∗

2 X2)) and E (Tr(S p1
2 X1X∗

1 )Tr(S p2
2 )) that cannot be expressed in terms of the 

moments of S2. Thus these two equations do not close on the set of moments of S2. In order to 
obtain a set of relations that closes over the set of moments of S2, we consider another identity 
involving higher derivatives. This is,
∫

dX1dX†
1 dX2dX†

2
∂

∂X†
1,ab

∂

∂X†
2,bc

([
X†

1 X†
2 X2Sk

2X1X†
1 X†

2

]
ace−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0,� (48)
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where we sum over repeated indices. After some additional algebra to evaluate the action of 
both derivative operators, one gets relations between moments and additional mixed quantities

∑
p1+p2+p3=k+1

p1,p2,p3�0

E
(
Tr(S p1

2 )Tr(S p2
2 )Tr(S p3

2 )
)
+

(k + 1)(k + 2)
2

E
(
Tr(Sk+1

2 )
)

− N
∑

p1+p2=k+1
p1,p2�0

[
E
(
Tr(S p1

2 )Tr(S p2
2 X∗

2 X2)
)
+ E

(
Tr(S p1

2 X1X∗
1 )Tr(S p2

2 )
)]

+ N2E
(
Tr(Sk+2

2 )
)
= 0,

� (49)

where the first and second terms are obtained from the action of both derivatives operators on 

the monomial 
[
X†

1 X†
2 X2Sk

2X1X†
1 X†

2

]
ac. The third term that involves mixed quantities is obtained 

by acting with one derivative operator on the monomial, while acting with the other derivative 
operator on the exponential factor. The last term is obtained from the action of both deriva-
tive operator on the exponential factor. These equations contain the mixed quantities already 
present in (44). Thus we can use (44) to get rid of these terms in (49). This leads to the equa-
tions on moments

∑
p1+p2+p3=k+1

p1,p2,p3�0

E (Tr(S p1
2 )Tr(S p2

2 )Tr(S p3
2 )) +

(k + 1)(k + 2)
2

E
(
Tr(Sk+1

2 )
)
− N2E

(
Tr(Sk+2

2 )
)
= 0,

�
(50)

which is trilinear in the traces of S2. Notice that this family of equations (46), (47), (49), (50) 

extends to the value ‘k  =  −1’ by replacing the monomial 
[
X†

1 X†
2 X2Sk

2X1X†
1 X†

2

]
ac by 

[
X†

1 X†
2

]
ac. 

Therefore we allow ourselves to set k  =  k  −  1 and to use our moments notation to get

∑
p1+p2+p3=k

p1,p2,p3�0

mp1,p2,p3 +
k(k + 1)

2
mk − N2mk+1 = 0.

� (51)

We then multiply the above equation by 1
xk+1 and sum over k � 0 in order to get an equation on 

the resolvents

∑
k�0

∑
p1+p2+p3=k

p1,p2,p3�0

mp1,p2,p3

xk+1 +
∑
k�0

k(k + 1)
2

mk

xk+1 − N2 mk+1

xk+1 = 0,
� (52)

which after a few manipulations rewrites

x2W3(x, x, x) + x∂xW1(x) +
1
2

x2∂2
x W1(x)− N2xW1(x) + N3 = 0.� (53)

Note the interesting structural replacement of W2(x, x) appearing in (24) by W3(x, x, x) 
and the appearance of a derivative term. Then we know from (42), (43) that 
W3(x, x, x) = N3W0,1(x)3 + O(N) and W1(x) = NW0,1(x) + O(1/N). Therefore we obtain the 
equation on W0,1(x)

x2W0,1(x)3 − xW0,1(x) + 1 = 0.� (54)

This last equation relates to the equation satisfied by the generating function G(u) of particular 
Fuss–Catalan numbers [Fus91, Mlo10, BBCC11, Riv18], uG(u)3  −  G(u)  +  1  =  0 through the 
change of variables W0,1(x) = 1

x G(1/x). Consequently we have
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W0,1(x) =
∑
p�0

Cp[3]
x p+1 ,� (55)

where Cp[D] are the Fuss–Catalan numbers of order D, the usual Catalan numbers Cp  being 
the Fuss–Catalan numbers of order 2, that is Cp = Cp[2], and have the binomial coefficient 
form

Cp[D] =
1

(D − 1) p + 1

(
Dp
p

)
.� (56)

An explicit form of W0,1(x) can be written as follows. First define

K±(u) = (
√

1 + u ±
√

u)1/3,� (57)

then G(u) writes

G(u) =
K+

(
− 27u

4

)
− K−

(
− 27u

4

)
√
−3u

.� (58)

Finally one has

W0,1(x) =
1
x

G
(

1
x

)
.� (59)

We study the solutions and the structure of (54) from a geometric perspective in the next 
sections.

Remark 4.  Though in principle we need to first focus on the cut structure of W0,1 to use the 
arguments that follow, we will in this remark content ourselves with a formal computation. 
Starting from equation (54) we can also obtain a polynomial equation satisfied by the corre
sponding density by using the δ, s operators along the cut. Indeed with a similar method to that 
in remark 3 we have the equalities

δ(x2W0,1(x)3 − xW0,1(x) + 1) = 0� (60)

s(x2W0,1(x)3 − xW0,1(x) + 1) = 0.� (61)

This leads, using the same previously used notations, to the system

x2

4
(3u(x)2 + v(x)2)− x = 0� (62)

x2

4
(u(x)3 + 3v(x)2u(x))− xu(x) + 2 = 0� (63)

which can be solved and leads to the large N normalized density for the random matrix S2

ρ0,1(x) =
1

2iπ
v(x) =

1
2π

√√√√
(√

81 − 12x + 9
)2/3

22/3 3
√

3x4/3
+

22/3 3
√

3
((√

81 − 12x + 9
)

x
)2/3 − 2

x
,� (64)

which is supported on (0, 27/4], see the plot of the distribution on figure 3. Notice that this 
result can also be obtained by computing the free multiplicative product of two Marčenko–
Pastur distribution of parameters c1,2  =  1. A functional form equivalent to (64) is given in 
[PŻ11].
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Equation (53) possesses a 1
N  expansion. This expansion results in a set of relations between 

Wg,1(x), Wg′,2(x, x) and Wg′′,3(x, x, x). Indeed we have

0 = x2
[ 1

N

∑
g�0

N−2gWg,3(x, x, x) + 3N
∑

g1,g2�0

N−2(g1+g2)Wg1,1(x)Wg2,2(x, x)

+ N3
∑

g1,g2,g3�0

N−2(g1+g2+g3)Wg1,1(x)Wg2,1(x)Wg3,1(x)
]

+ xN
∑
g�0

N−2g∂xW1,g(x) +
N
2

x2
∑
g�0

N−2g∂2
x W1(x)− N3x

∑
g�0

N−2gWg,1(x) + N3.

� (65)
By collecting the coefficient of N3−2g, we obtain the following tower of equations

0 =x2


Wg−2,3(x, x, x) + 3

∑
g1+g2=g−1

Wg1,1(x)Wg2,2(x, x) +
∑

g1+g2+g3=g

Wg1,1(x)Wg2,1(x)Wg3,1(x)




+ x∂xWg−1,1(x) +
x2

2
∂2

x Wg−1,1(x)− xWg,1(x) + δg,0.
� (66)

In particular, the coefficient of N3 of equations (66) produces (54). The coefficient of N pro-
duces an equation on the next-to-leading order W1,1(x) also involving W0,1(x) and W0,2(x,x)

3x2W0,1(x)W0,2(x, x) + 3x2W0,1(x)2W1,1(x) + x∂xW0,1(x) +
x2

2
∂2

x W0,1(x)− xW1,1(x) = 0.� (67)

We cannot solve this equation because of the presence of W0,2. However if we can produce 
an equation on W0,2 involving only W0,1, we will be able to solve for W0,2 and then plug the 
obtained form of W0,2 into the above equation to solve for W0,1

8. This is the general philosophy 
that allows to solve loop equation, and this is the one we will follow in the coming sections. 

Figure 3.  Plot of the eigenvalue density of the matrix S2 in the large N regime.

8 Remark the important fact that W0,3(x,x,x) does not appear in the equation on W1,1. This is because the Euler 
characteristic associated with (g = 0, n = 3) is the same as the one associated to (g = 1, n = 1). As we will see in 
the course of the paper, the terms appearing in the equation on a given Wg,n must have a strictly smaller Euler char-
acteristic. This is why the loop equations can be solved recursively once the 1/N expansion is performed.
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The necessary ingredient for this approach to be valid is the availability of a 1/N expansion for 
the resolvents Wn(x1, . . . , xn) (see equation (43), which can be seen as a generalization of large 
N factorization). Coming back to the equation (66) remark that more generally, the coefficient 
of N3−2g for a fixed value of g produces the equation for Wg,1(x) in terms of the functions Wg′,n′ 
such that 2 − 2g − 1 < 2 − 2g′ − n′ and n′ � 3. So we indeed need additional equations to 
obtain the form of the Wg′,n′.

3.3.  Equation for W2(x1, x2)

In this section we use Schwinger–Dyson equation techniques to obtain a loop equation for 
W2(x1, x2). We start with slightly different identities that involve an additional trace insertion 
Tr(Sq

2). This allows us to access relations between more general moments.
Schwinger–Dyson equations and loop equation for W2(x1, x2) and W0,2(x1, x2). Consider 
the vanishing integrals of total derivatives

∫
dX1dX†

1 dX2dX†
2

∂

∂X†
1,ab

([
X†

1 X†
2 X2Sk+1

2

]
abTr(Sq

2)e
−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0

� (68)
∫

dX1dX†
1 dX2dX†

2
∂

∂X†
2,ab

([
Sk+1

2 X1X†
1 X†

2

]
abTr(Sq

2)e
−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0,

� (69)
and the higher derivative one
∫

dX1dX†
1 dX2dX†

2
∂

∂X†
1,ab

∂

∂X†
2,bc

([
X†

1 X†
2 X2Sk

2X1X†
1 X†

2

]
acTr(Sq

2)e
−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0,� (70)

where all repeated indices are summed. After evaluating explicitly the derivatives, the two first 
equations (68) and (69) lead to

∑
p1+p2=k+1
{ pi�0}

E
(

Tr(S p1
2 )Tr(S p2

2 X†
2 X2)Tr(Sq

2)
)
+ qE

(
Tr(Sk+q+1

2 X†
2 X2)

)
− NE

(
Tr(Sk+2

2 )Tr(Sq
2)
)
= 0

� (71)
∑

p1+p2=k+1
{ pi�0}

E
(

Tr(S p1
2 X1X†

1)Tr(S p2
2 )Tr(Sq

2)
)
+ qE

(
Tr(Sk+q+1

2 X1X†
1)
)
− NE

(
Tr(Sk+2

2 )Tr(Sq
2)
)
= 0,

� (72)
where the first term of both equations (68) and (69) is obtained from the action of the deriva-
tive operator on the non-traced monomial. The second term is obtained via the action of the 
derivative operator on the traced monomial term Tr(Sq

2). The third term comes from the action 
of the derivative operator on the exponential factor. These two equations involve mixed terms 
and cannot be written solely in terms of the moments of S2. Meanwhile, the higher derivative 
equation (70) leads to
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∑
p1+p2+p3=k+1

{ pi�0}

E (Tr(S p1
2 )Tr(S p2

2 )Tr(S p3
2 )Tr(Sq

2)) +
(k + 1)(k + 2)

2
E
(
Tr(Sk+1

2 )Tr(Sq
2)
)

− N
∑

p1+p2=k+1
{ pi�0}

[
E
(

Tr(S p1
2 )Tr(S p2

2 X†
2 X2)Tr(Sq

2)
)
+ E

(
Tr(S p1

2 X1X†
1)Tr(S p2

2 )Tr(Sq
2)
)]

+ N2E
(
Tr(Sk+2

2 )Tr(Sq
2)
)
+ 2

∑
p1,p2�0

p1+p2=k+1

qE
(

Tr(S p1
2 )Tr(S p2+q

2 )
)
+

q∑
n=1

qE
(
Tr(Sk+1+n

2 )Tr(Sn
2)
)

− Nq
[
E
(

Tr(Sq+k+1
2 X†

2 X2)
)
+ E

(
Tr(Sq+k+1

2 X1X†
1)
)]

= 0,
�

(73)

where the two first terms come from the action of both derivatives operators on the non-traced 
monomial. Each term of the second line comes from the action of one of the derivative on the 
exponential factor and of the other on the non-traced monomial. The first term of the third 
line of (73) comes from the action of both derivatives on the exponential factor. The second 
term of the third line is obtained as a sum of the action of the X†

1 (resp. X†
2) derivative on the 

non-traced monomial and the action of the X†
2 (resp. X†

1) derivative on the traced monomial 
Tr(Sq

2). The last term of the third line is obtained from the action of both derivative operators 
on the traced monomial. Finally the two terms of the fourth line of (73) are obtained by the 

action of ∂X†
1,ab

 (resp. ∂X†
2,bc

) on the traced monomial and ∂X†
2,bc

 (resp. ∂X†
1,ab

) on the exponential 
factor. Combining equations (71)–(73), rewriting some of the sums in a nicer way and using 
our moments notation we obtain

∑
p1+p2+p3=k+1

{ pi�0}

mp1,p2,p3,q +
(k + 1)(k + 2)

2
mk+1,q − N2mk+2,q +

∑
p1,p2�0

p1+p2=k+1

qmp1,p2+q

+
∑

p1,p2�0
p1+p2=k+q+1

qmp1,p2 = 0.

�

(74)

After performing the shift k → k − 1 in (74), we multiply (74) by 1
xk+1

1 xq+1
2

, and sum over 

k, q � 0. Doing so we obtain the equation

0 = W4(x1, x1, x1, x2) +
1
x1
∂x1 W2(x1, x2) +

1
2
∂2

x1
W2(x1, x2)−

N2

x1
W2(x1, x2) +

N3

x2
1

W1(x2)� (75)

+
1
x2

1
∂x2

(
x1x2

W2(x1, x1)− W2(x1, x2)

x1 − x2

)
+

1
x2

1
∂x2

(
x1x2W2(x1, x1)− x2

2W2(x2, x2)

x1 − x2

)
.� (76)

We re-express this equation in terms of the connected resolvents to obtain

W4(x1, x1, x1, x2) + 3W1(x1)W3(x1, x1, x2) + 3W2(x1, x2)W2(x1, x1) + 3W1(x1)W1(x1)W2(x1, x2)

+
1
x1
∂x1 W2(x1, x2) +

1
2
∂2

x1
W2(x1, x2)−

N2

x1
W2(x1, x2) +

1
x2

1
∂x2

(
x1x2

W2(x1, x1)− W2(x1, x2)

x1 − x2

)

+
1
x2

1
∂x2

(
x1x2W2(x1, x1)− x2

2W2(x2, x2)

x1 − x2

)
+

1
x2

1
∂x2

(
x1x2

W1(x1)W1(x1)− W1(x1)W1(x2)

x1 − x2

)

+
1
x2

1
∂x2

(
x1x2W1(x1)W1(x1)− x2

2W1(x2)W1(x2)

x1 − x2

)
= 0,

� (77)
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where we used the fact that the terms factoring in front of W1(x2) form the first loop equa-
tion (53). From this equation we can get an equation on W0,2 by inserting the 1/N expansion of 
the resolvents appearing in (77) and collecting the coefficients of N2. This equation involves 
only already computed quantities and can be re-expressed as

1
x1

(
3x1W0,1(x1)

2 − 1
)

W0,2(x1, x2) +
1
x2

1
∂x2

(
x1x2

W0,1(x1)W0,1(x1)− W0,1(x1)W0,1(x2)

x1 − x2

)

+
1
x2

1
∂x2

(
x1x2W0,1(x1)W0,1(x1)− x2

2W0,1(x2)W0,1(x2)

x1 − x2

)
= 0.

�
(78)

This equation involves only W0,1 and W0,2. Since we already know W0,1 from equation (54), 
we can obtain the form of W0,2. In principle we can now come back to equation (67) to solve 
for W1,1.

First few relations between c[0]k , c[0]k1,k2
. One can extract relations between the c[0]k , c[0]k1,k2

 from 

equation (78). These relations are obtained by expanding the equation at x1, x2 = ∞. The first 
few examples are

3c[0]0 c[0]1 − c[0]1,1 = 0,� (79)

2(c[0]1 )2 + 6c[0]0 c[0]2 − c[0]1,2 = 0,� (80)

6c[0]1 c[0]2 + 9c[0]0 c[0]3 − c[0]1,3 = 0.� (81)

These relations allow to obtain the c[0]k1,k2
 recursively knowing that c[0]0 , c[0]1 = 1. We can check 

these first few relations combinatorially. For illustrative purposes we display the combinato-

rial maps interpretation of 3c[0]0 c[0]1 − c[0]1,1 = 0

3

(
III

)
−



 IIII

I I

+

II II

I I +
II II

II



 = 0.� (82)

The first term of this graphical equation is made of the union of the maps contributing to c[0]0  
and c[0]1 . For c[0]0  there is only the trivial connected map made of one unique black vertex. For 
c[0]1  one has only one connected map with one unique black vertex and one edge of type I and 
one edge of type II and this map is obviously planar. The last term inside the parenthesis cor-

responds to the sum of planar maps contributing to c[0]1,1 (see equation (41)). The maps contrib-

uting must be connected, have two black vertices with each of them of degree two with one 
adjacent edge of both types. More generally, one has

0 = 3
∑

p1+p2+p3=k−3

c[0]p1
c[0]p2

c[0]p3+1,q − c[0]k−1,q +

k+q−2∑
m=0

q c[0]k+q−m−2c[0]m +
k−2∑
m=0

q c[0]k−m−2c[0]m+q.� (83)

3.4.  General loop equations

In this section we describe the general loop equations for Wn(x1, . . . , xn). Because of the use 
of higher derivatives for Schwinger–Dyson equations, the case of W3(x1, x2, x3) is still special 
compared to the cases Wn<3. We thus give the corresponding Schwinger–Dyson equations in 
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details before stating the corresponding loop equations. For the Wn>3 cases, the situation is 
very similar to the W3 case. Therefore we refrain from presenting the detailed derivation, and 
only state the corresponding loop equations.
Loop and Schwinger–Dyson equations for W3(x1, x2, x3). We have to consider the equalities
∫

dX1dX†
1 dX2dX†

2∂X†
1,ab

([
X†

1 X†
2 X2Sk+1

2

]
abTr(Sq1

2 )Tr(Sq2
2 )e−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0� (84)

∫
dX1dX†

1 dX2dX†
2∂X†

2,ab

([
Sk+1

2 X1X†
1 X†

2

]
abTr(Sq1

2 )Tr(Sq2
2 )e−NTr(X1X†

1 )e−NTr(X2X†
2 )
)
= 0� (85)

∫
dX1dX†

1 dX2dX†
2∂X†

1,ab
∂X†

2,bc

([
X†

1 X†
2 X2Sk

2X1X†
1 X†

2

]
acTr(Sq1

2 )Tr(Sq2
2 )e−N(Tr(X1X†

1 )−Tr(X2X†
2 ))

)
= 0.

� (86)
The inspection of these Schwinger–Dyson equations reveals that the only type of terms that 

we have not already faced are obtained when both derivatives ∂X†
1,ab

, ∂X†
2,bc

 distribute over the 
two traced monomials Tr(Sq1

2 ), Tr(Sq2
2 ). The distributed action of derivatives on the traced 

monomial leads to the term

2q1q2E
(

Tr
(

Sq1+q2+k+1
2

))
= 2q1q2mk+q1+q2 .� (87)

The generating function of this term appearing in the corresponding loop equation will be

∑
k,q1,q2�0

2q1q2mk+q1+q2

xk+1
1 xq1+1

2 xq2+1
3

=
2
x1

∂2

∂x2∂x3

(
(x2 − x3)x1x2x3W1(x1)− (x1 − x3)x1x2x3W1(x2) + (x1 − x2)x1x2x3W1(x3)

∆({x1, x2, x3})

)

� (88)
where ∆({x1, x2, x3}) = (x3 − x2)(x3 − x1)(x2 − x1) is the Vandermonde determinant of the 
family of variables {x1, x2, x3}. The remaining terms of the loop equations can be inferred by 
realizing that for all terms involved in either (84)–(86), one of the two traced monomials plays 
a spectator role for the action of the derivatives. Consequently, one obtains the loop equation,

0 = W5(x1, x1, x1, x2, x3) +
1
x1
∂x1 W3(x1, x2, x3) +

1
2
∂2

x1
W3(x1, x2, x3)−

N2

x1
W3(x1, x2, x3) +

N3

x2
1

W2(x2, x3)

+
1
x2

1
∂x2

(
x1x2

W3(x1, x1, x3)− W3(x1, x2, x3)

x1 − x2

)
+

1
x2

1
∂x2

(
x1x2W3(x1, x1, x3)− x2

2W3(x2, x2, x3)

x1 − x2

)

+
1
x2

1
∂x3

(
x1x3

W3(x1, x1, x2)− W3(x1, x2, x3)

x1 − x3

)
+

1
x2

1
∂x3

(
x1x3W3(x1, x1, x2)− x2

3W3(x3, x3, x2)

x1 − x3

)

+
2
x3

1

∂2

∂x2∂x3

(
(x2 − x3)x1x2x3W1(x1)− (x1 − x3)x1x2x3W1(x2) + (x1 − x2)x1x2x3W1(x3)

∆({x1, x2, x3})

)
.

�

(89)

We now introduce some notations in order to shorten expressions. We denote

W̃n+2(x1, x1, x1; x2, . . . , xn) =
∑

µ�[x1,x1,x1]

∑
⊔|µ|

i=1 Ji={x2,...,xn}

∏
µi∈µ

W|µi|+|Ji|(µi, Ji)

� (90)

W̃g,n+2(x1, x1, x1; x2, . . . , xn) =
∑

µ�[x1,x1,x1]

∑
⊔|µ|

i=1 Ji={x2,...,xn}∑|µ|
i=1 gi=g+|µ|−2

∏
µi∈µ

Wgi,|µi|+|Ji|(µi, Ji).

� (91)
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The notation µ � [x1, x1, x1] needs to be explained. The summation runs over the partitions µ of 
the list [x1, x1, x1] in the following sense. Firstly, in our notation the object [xa, xb, xc, . . .] is a list 
of elements, that is an ordered multi-set. More concretely the order of appearance of the ele-
ments in the list is important and so for example the instances [x1, x2, x1, x1, x4], [x1, x1, x1, x2, x4] 
of lists are different (though they are the same multi-sets). We now come to explain what we 
mean by partitions of lists. A (denumerable9) list of elements can be represented as a set 
in the following way. We send a list to the set of pairs {(element, positioninthelist)}. For 
instance, the list [x1, x2, x1, x1, x4] �→ {(x1, 1), (x2, 2), (x1, 3), (x1, 4), (x4, 5)} while the sec-
ond list [x1, x1, x1, x2, x4] �→ {(x1, 1), (x1, 2), (x1, 3), (x2, 4), (x4, 5)} which are indeed two dif-
ferent sets. The partitions of the list µ are the partitions of the corresponding set of pairs 
(element, positioninthelist). However, note that the elements of the partitions forget about the 
position in the list and thanks to the symmetry of the functions Wn functions should be seen as 
subsets of the corresponding multi-set. For instance, due to the fact that µ is really a partition 
of a list, the partition µ = {{x1, x1}, {x1}} with µ1 = {x1, x1}, µ2 = {x1} of the list [x1, x1, x1] 
appears three times in the sum.

Some further notations are also required. The sum over 
⊔|µ|

i=1 Ji = {x2, . . . , xn} means 

that we sum over the decompositions into |µ| (possibly empty) subsets Ji of the set 
{x2, . . . , xn}. For instance, in the case n  =  3, one can consider the term indexed by the parti-
tion µ = {{x1, x1}, {x1}} and the decomposition J1 = ∅, J2 = {x2, x3}, which correspond to 
a term of the form W2(x1, x1)W3(x1, x2, x3) in the sum. Note that these definitions are very 
similar to the ones appearing in [BE13, definition 4]. We also introduce the notation

Ox =
1
x1
∂x1 +

1
2
∂2

x1
.� (92)

Using these notations the corresponding equation for connected resolvents writes

0 =W̃5(x1, x1, x1; x2, x3) + OxW3(x1, x2, x3)−
N2

x1
W3(x1, x2, x3)

+
2
x3

1

∂2

∂x2∂x3

(
(x2 − x3)x1x2x3W1(x1)− (x1 − x3)x1x2x3W1(x2) + (x1 − x2)x1x2x3W1(x3)

∆({x1, x2, x3})

)

+
1
x2

1
∂x2


x1x2




∑
J�[x1,x1,x3]
Ji �={x3},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x2
−

∑
J�[x1,x2,x3]
Ji �={x3},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x2







+
1
x2

1
∂x2


x1x2

∑
J�[x1,x1,x3]
Ji �={x3},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x2
− x2

2

∑
J�[x2,x2,x3]
Ji �={x3},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x2




+
1
x2

1
∂x3


x1x3




∑
J�[x1,x1,x2]
Ji �={x2},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x3
−

∑
J�[x1,x2,x3]
Ji �={x2},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x3







+
1
x2

1
∂x3


x1x3

∑
J�[x1,x1,x2]
Ji �={x2},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x3
− x2

3

∑
J�[x3,x3,x2]
Ji �={x2},∀Ji

∏
Ji∈J W|Ji|(Ji)

x1 − x3


 .

�

(93)

9 we will of course consider only the denumerable case since our lists are finite.

S Dartois and P J Forrester﻿J. Phys. A: Math. Theor. 53 (2020) 175201



21

We can now extract the corresponding equation of order g (that is the coefficient of N−1−2g 
in the expansion of (93)). The corresponding family of equations on Wg,3 can then be solved 
recursively provided that we know the Wg′,n′ of lower orders,

0 = W̃g,5(x1, x1, x1; x2, x3) + OxWg−1,3(x1, x2, x3)−
1
x1

Wg,3(x1, x2, x3)

+
2
x3

1

∂2

∂x2∂x3

(
(x2 − x3)x1x2x3Wg,1(x1)− (x1 − x3)x1x2x3Wg,1(x2) + (x1 − x2)x1x2x3Wg,1(x3)

∆({x1, x2, x3})

)

+
1
x2

1
∂x2




x1x2




∑
J�[x1,x1,x3]
Ji �={x3},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x2
−

∑
J�[x1,x2,x3]
Ji �={x3},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x2







+
1
x2

1
∂x2




x1x2

∑
J�[x1,x1,x3]
Ji �={x3},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x2
− x2

2

∑
J�[x2,x2,x3]
Ji �={x3},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x2




+
1
x2

1
∂x3




x1x3




∑
J�[x1,x1,x2]
Ji �={x2},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x3
−

∑
J�[x1,x2,x3]
Ji �={x2},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x3







+
1
x2

1
∂x3




x1x3

∑
J�[x1,x1,x2]
Ji �={x2},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x3
− x2

3

∑
J�[x3,x3,x2]
Ji �={x2},∀Ji

g=
∑

i gi+4−|J|

∏
Ji∈J Wgi,|Ji|(Ji)

x1 − x3




.

� (94)
We now state in full generality the loop equations.
General loop equations. We obtain the higher order loop equations in full generality by start-
ing with Schwinger–Dyson equalities of the same type than (84)–(86), but we now insert more 
traces of monomials of the matrix S2. Doing so we obtain more relations between moments, 
and those relations can be translated into relations involving Wn with higher values of n. As 
before, this first set of relations cannot be used to compute the Wn as it does not close. To 
solve this problem we perform the 1/N expansion which leads to a closed set of equations on 
Wg,n. We display both the equations  on Wn and the equations  on Wg,n for (g, n) such that 
2g  −  2  +  n  >  0. With Iij = {x1, . . . , xn}\{xi, xj},
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0 = W̃n+2(x1, x1, x1; x2, . . . , xn) + OxWn(x1, . . . , xn)−
N2

x1
Wn(x1, . . . , xn)

+
2
x3

1

∑
2�i<j�n

∂2

∂xi∂xj

(
(xi − xj)x1xixjWn−2(Iij)− (x1 − xj)x1xixjWn−2(I1j) + (x1 − xi)x1xixjWn−2(I1i)

∆({x1, xi, xj})

)

+
1
x2

1

∑
i∈[[2,n]]

∂xi


x1xi




∑
J�{x1,x1}⊔|J|

k=1 Kk={x2,...,xn}\{xi}

∏
Jl∈J W|Jl|+|Kl|(Jl, Kl)

x1 − xi
−

∑
J�{x1,xi}⊔|J|

k=1 Kk={x2,...,xn}\{xi}

∏
Jl∈J W|Jl|+|Kl|(Jl, Kl)

x1 − xi







+
1
x2

1

∑
i∈[[2,n]]

∂xi


x1xi

∑
J�{x1,x1}⊔|J|

k=1 Kk={x2,...,xn}\{xi}

∏
Jl∈J W|Jl|+|Kl|(Jl, Kl)

x1 − xi
− x2

i

∑
J�{xi,xi}⊔|J|

k=1 Kk={x2,...,xn}\{xi}

∏
Jl∈J W|Jl|+|Kl|(Jl, Kl)

x1 − xi


 .

� (95)
For the equations on Wg,n, write

0 = W̃g,n+2(x1, x1, x1; x2, . . . , xn) + OxWg−1,n(x1, . . . , xn)−
1
x1

Wg,n(x1, . . . , xn)

+
2
x3

1

∑
2�i<j�n

∂2

∂xi∂xj

(
(xi − xj)x1xixjWg,n−2(Iij)− (x1 − xj)x1xixjWg,n−2(I1j) + (x1 − xi)x1xixjWg,n−2(I1i)

∆({x1, xi, xj})

)

+
1
x2

1

∑
i∈[[2,n]]

∂xi




x1xi




∑
J�{x1,x1}⊔|J|

k=1 Kk={x2,...,xn}\{xi}
g=

∑
l gl−|J|+2

∏
Jl∈J Wgl,|Jl|+|Kl|(Jl, Kl)

x1 − xi
−

∑
J�{x1,xi}⊔|J|

k=1 Kk={x2,...,xn}\{xi}
g=

∑
l gl−|J|+2

∏
Jl∈J Wgl,|Jl|+|Kl|(Jl, Kl)

x1 − xi







+
1
x2

1

∑
i∈[[2,n]]

∂xi




x1xi

∑
J�{x1,x1}⊔|J|

k=1 Kk={x2,...,xn}\{xi}
g=

∑
l gl−|J|+2

∏
Jl∈J Wgl,|Jl|+|Kl|(Jl, Kl)

x1 − xi
− x2

i

∑
J�{xi,xi}⊔|J|

k=1 Kk={x2,...,xn}\{xi}
g=

∑
l gl−|J|+2

∏
Jl∈J Wgl,|Jl|+|Kl|(Jl, Kl)

x1 − xi




.

� (96)

Using the family of equation (96) one can recursively compute any Wg,n knowing the initial 
conditions W0,1(x) and W0,2(x1, x2). Indeed the equation on Wg,n involves only functions Wg′,n′ 
such that10 2 − 2g − n < 2 − 2g′ − n′. Thus the terms Wg′,n′ appearing in the equation  on 
Wg,n are already readily computed from lower order equations. Moreover, starting from these 
equations it should be possible to obtain a topological recursion like formula. Such a recursion 
formula certainly looks like the Bouchard–Eynard topological recursion formula introduced 
in [BHL+ 14, BE13]. Establishing such a formula strongly depends on the analytic proper-
ties of the Wg,n as well as the geometric information contained in W0,1 and W0,2. Thus in the 
next section we try to make explicit some of these properties. We first focus on the geometry 
underlying the equation  satisfied by W0,1, and then describe the analytic properties of the 
higher order terms, by: 1. doing explicit computations and 2. studying the structure of the loop 
equations. A more detailed and systematic study of the analytical properties of the loop equa-
tions is postponed to further work on the product of p  rectangular Ginibre matrices.

10 this can be seen explicitly by choosing to place Wg,n on the left hand side of the equality and everything else on 
the right hand side. Then due to the constraints on the different sums, one is led to the conclusion that all the terms 
appearing on the left hand side are already computed from previous loop equations that are obtained as coefficients 
of lower order in the 1/N expansion.
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4.  Spectral curve geometry

Before computing the first few solutions of the loop equations, we focus on studying the equa-
tion (54) on W0,1. Indeed, this equation defines an affine algebraic curve C, called the spectral 
curve, where by affine algebraic curve we mean the locus of zero in (x, y) ∈ Ĉ2 = (C ∪ {∞}) 2 
of the polynomial

P(x, y) = x2y3 − xy + 1.� (97)

This set of zeros of P in C2 is generically a (complex) codimension 1 subset of C2. In par
ticular it can be given the structure of a Riemann surface. Computing the solutions W0,1(x) of 
(54) gives a parametrization of the curve away from the ramification points. One of the goals 
of this section is to introduce a global, nicer parametrization called rational parametrization 
of the curve. Using this parametrization allows us to simplify the resulting expressions of the 
solutions. Indeed in the original x variables, the solutions of (54) are multi-valued. However 
one can fix that by promoting these solutions to meromorphic functions on the full affine curve 
defined by equation (54), the curve being the Riemann surface of W0,1(x).

4.1.  Basic properties of the curve

There are two finite ramification points in the x-plane, one at (xr1 , yr1) = (27/4, 2/9), which is 
a simple ramification point and one at (xr2 , yr2) = (0,∞) which is a double ramification point. 
There is also one ramification point at infinity xr∞ = ∞ which is a simple ramification point. 
These ramifications are found from the condition that P(x, y) = 0 and ∂yP(x, y) = 0. We dis-
play the ramification profile in figure 4. The cut structure is readily described in [FLZJ15, 
section 2.1 & 2.2]. It is pictured in figure 5, where the lowest sheet of the figure corresponds to 
the physical sheet that is corresponding to the solution analytic at infinity, whose coefficients 
of the Laurent expansion are the moments of S2. The other two sheets correspond to the two 
other solutions of (54) that are not analytic at infinity. Indeed they have a simple ramification 
point at infinity. From the figure 5 we can infer that the monodromy group is generated by the 
transposition τ1 = (12) (obtained by going around xr1 in the physical sheet) and τ2 = (132) 
(going around xr2). These permutations are represented using colors on figure 4.

The genus of the curve C can be obtained by considering the Newton polygon of the curve. 
The number of interior lattice points of the polygon drawn on figure 6 corresponds to the 
generic genus of the curve, that is the genus of the curve for generic enough coefficients of the 
polynomial P. However by fine tuning the coefficients of the polynomial one could in princi-
ple obtain a curve with smaller genus. The generic genus is the maximal genus the curve can 
have. In our case, P(x, y) = x2y3 − xy + 1, the number of lattice points in the Newton polygon 
is zero, thus the genus of the curve is zero. Since the genus of the curve is zero, there exists a 
rational parametrization. That is there exists two rational functions

x : Ĉ → Ĉ� (98)

y : Ĉ → Ĉ,� (99)

such that

x(z)2y(z)3 − x(z)y(z) + 1 = 0, ∀z ∈ Ĉ.� (100)
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These two functions can be found by solving the following system on the coefficients of 
Qx(z), Qy(z) and Px(z), Py(z),

Qx(z)x(z) = Px(z)� (101)

Qy(z)y(z) = Py(z)� (102)

x(z)2y(z)3 − x(z)y(z) + 1 = 0,� (103)

where Qx(z), Qy(z) and Px(z), Py(z) are set to be polynomials of degree high enough for a 
solution to exist. Then one obtains explicitly one possible parametrization

x(z) =
Px(z)
Qx(z)

=
z3

1 + z
, y(z) =

Py(z)
Qy(z)

= −1 + z
z2 .� (104)

x ∞ 27/4 0

z = 3

z = −3/2
z = −1

z = ∞
z = 0

x(z)

Figure 4.  Ramification profile of the curve C. We use colors to indicate permutations of 
sheets around ramification points.

27/40

0

0

27/4

Figure 5.  Cut structure of W0,1.
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Note that from this point of view, y(z) is the analytic continuation of W0,1(x(z)). The function 
x can be seen as a cover x : C → Ĉ of generic degree 3 (that is there are generically three 
values of z corresponding to the same value of x). As such, the zeroes of dx corrrespond to the 
ramifications point of the cover. One can then check that dx = 0 at zr1 = 0 and zr2 = −3/2, 
corresponding to the values x(0) = 0 and x(−3/2) = 27/4. One also notices that the zero of 
dx at z  =  0 is a double zero, thus confirming the fact that xr1 is a double ramification point. 
Finally since x  =  27/4 is a simple ramification point, there is another pre-image of 27/4 in z 
variable, that is we have x(3) = 27/4. This leads to the ramification profile shown on figure 4.

4.2.  Computation of w0,1 and w0,2

Using this parametrization we compute the functions

wg,n(z1, . . . , zn) = Wg,n(x(z1), . . . , x(zn))
n∏

i=1

x′(zi) +
δg,0δn,2x′(z1)x′(z2)

(x(z1)− x(z2))2 ,

�

(105)

where x′(z) denotes the first derivative of the function x(z) with respect to its argument. We 
also denote w̃0,2(z1, z2) = W0,2(x(z1), x(z2))x′(z1)x′(z2). wg,n functions are meromorphic func-
tions on C, as such they are rational functions of their variables zi. Consequently, they are 
much easier to manipulate than Wg,n and their analytic properties are more transparent. For 
w0,1(z) we already know that y (z)  =  W0,1(x(z)), thus

w0,1(z) = y(z)x′(z) = −2z + 3
1 + z

.� (106)

The original functions Wg,n can be recovered using the inverse function

z(x) = −xW0,1(x) =∞ −1 − 1
x
− 3

x2 − 12
x3 − 55

x4 + O
(

1
x5

)
.� (107)

Indeed one has,

Wg,n(x1, x2, . . . , xn) =
wg,n(z1, z2, . . . , zn)

x′(z1)x′(z2) . . . x′(zn)

∣∣∣
zi=z(xi)

for(g, n) �= (0, 2),
� (108)

x

y

0 1 2 3

1

2

3

Figure 6.  Newton polygon for the affine curve x2y3 − xy + 1 = 0. The number of N2 
lattice points inside the polygon gives the generic genus of the curve. Here there is no 
points inside the polygon so that the generic genus is zero, which implies that the genus 
is zero.
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W0,2(x1, x2) =
w̃0,2(z1, z2)

x′(z1)x′(z2)

∣∣∣
z1=z(x1),z2=z(x2)

.
� (109)

Note also that the corresponding coefficients of the expansion of Wg,n at infinity, that is the 

c[g]k1,...,kn
, can be obtained by computing residues

c[g]k1,...,kn
= Res

{xi→∞}
xk1

1 . . . xkn
n Wg,n(x1, x2, . . . , xn) = Res

{zi→−1}
x(z1)

k1 . . . x(zn)
kn wg,n(x(z1), x(z2), . . . , x(zn)).

� (110)
It is also true that the residue in z variables can equivalently be computed at infinity. The 
passage from the Wg,n to the wg,n functions takes into account the Jacobian of the change of 
variables.

For future convenience, we define

σ(z) =
1

x(z)
(1 − 3x(z)y(z)2),� (111)

where σ relates to ∂yP since σ(z) = 1
x(z)2 ∂yP(x(z), y(z)). So in particular σ vanishes at the rami-

fication point (xr1 , yr1) = (27/4, 2/9) and x(z)2σ(z) has a zero of order 2 at (xr2 , yr2) = (0,∞).
Expression of w̃0,2. We have after multiplying (78) by x′(z1)x′(z2) and performing a few 
additional manipulations

σ(z1)w̃0,2(z1, z2) =
x′(z1)

x(z1)2 ∂z2

(
x(z1)x(z2)

y(z1)
2 − y(z1)y(z2)

x(z1)− x(z2)

)

+
x′(z1)

x(z1)2 ∂z2

(
x(z1)x(z2)y(z1)

2 − x(z2)
2y(z2)

2

x(z1)− x(z2)

)
.

� (112)
From this equation w̃0,2(z1, z2) can be computed in the variables z1, z2, so that one obtains

w̃0,2(z1, z2) =
z2

2z2
1 + 2(z2z2

1 + z2
2z1) + z2

1 + z2
2 + 4z2z1

(z2z2
1 + z2

2z1 + z2
1 + z2

2 + z2z1)2
.� (113)

From this expression we can recover the limiting cumulants of the product of traces,

c[0]i,j = Res
z1,z2→∞

x(z1)
ix(z2)

jw̃0,2(z1, z2).� (114)

We provide the reader with the first few orders on table 1. These numbers can be obtained 
easily via symbolic computation softwares.

Remark 5.  We can prove that

c[0]i,j =
2ij

3(i + j)

(
3i
i

)(
3j
j

)

� (115)
using the residue formula. We checked that these numbers satisfy the recurrence equation (83) 
for the first few orders. It would be interesting to prove this result via combinatorial means.

Universality for w0,2. In this paragraph we explain in detail and a posteriori11 the analytic 
properties of w̃0,2 and w0,2. We first argue that w̃0,2 does not have poles at the ramification 
points that is z = −3/2, 0. We then consider the situation when x(z1) → x(z2). First starting 
from the above remark that x(z)2σ(z) = ∂yP(x(z), y(z)), we know that x(z)2σ(z) has a double 

11 Since they can already easily be inferred from the explicit result of equation (113).
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zero at z  =  0 and a simple zero at z  =  −3/2, which makes it a source of poles as this factor 
appears in the denominator in front of the two terms of (116), see below

w̃0,2(z1, z2) =
x′(z1)

x(z1)2σ(z1)
∂z2

(
x(z1)x(z2)

y(z1)
2 − y(z1)y(z2)

x(z1)− x(z2)

)

+
x′(z1)

x(z1)2σ(z1)
∂z2

(
x(z1)x(z2)y(z1)

2 − x(z2)
2y(z2)

2

x(z1)− x(z2)

)
.

�

(116)

We start by focusing on poles at the simple ramification point z  =  −3/2. We remind our-
selves that dx vanishes at the ramification points, and so x′(z) has a simple zero at z  =  −3/2. 

Therefore x′(z1)
x(z1)2σ(z1)

 is holomorphic at z1  =  −3/2. Moreover, x(z1) and y (z1) are holomorphic 

at z1  =  −3/2. As a consequence w̃0,2 is holomorphic at z  =  −3/2 in both z1 and z2 (thanks to 
the symmetry z1 ↔ z2).

We now come back to the ratio x′(z1)
x(z1)2σ(z1)

 for z1  =  0. A similar argument is valid at z1  =  0. 

Indeed x′(z1) has a double zero at z1  =  0 and this cancels the double zero of x(z1)
2σ(z1) at 

z1  =  0. In fact one can explicitly compute the ratio and find

x′(z1)

x(z1)2σ(z1)
=

1
1 + z1

� (117)

which confirms our argument. x(z) is holomorphic at z  =  0, but y(z) is not, indeed it has 
a double pole at z  =  0. So the terms x(z1)x(z2)y(z1)

2 could bring a simple pole at z1  =  0. 
However, using the fact that w̃0,2(z1, z2) is symmetric in its arguments, if such a simple pole 
exists at z1  =  0 then one should have a simple pole at z2  =  0. Using the fact that x(z2) has a 
third order zero at z2  =  0, and y (z2) has a double pole at z2  =  0 one can show that w̃0,2(z1, z2) is 
holomorphic at z2  =  0, therefore the apparent singularity at z1  =  0 is a removable singularity. 
Consequently, we have just shown that w̃0,2(z1, z2) is holomorphic at the ramification points 
z = −3/2, 0 in both its variables.

Other possible singularities may occur at the singularities of x(z) which possesses a simple 
pole at z  =  −1 and when x(z1) → x(z2). First note that

y(z1)
2 − y(z1)y(z2)

x(z1)− x(z2)
,� (118)

Table 1.  Table of the first few cumulants c[0]i,j = limN→∞ E
(

Tr(Si
2)Tr(S j

2)
)
−  

1
N2 E

(
Tr(Si

2)
)
E
(
Tr(S j

2)
).

i
j 1 2 3 4 5 6 7

1 3 20 126 792 5005 31 824 203 490
2 ** 150 1008 6600 42 900 278 460 1808 800
3 ** ** 7056 47 520 315 315 2079 168 13 674 528
4 ** ** ** 326 700 2202 200 14 702 688 97 675 200
5 ** ** ** ** 15 030 015 101 359 440 678 978 300
6 ** ** ** ** ** 689 244 192 4649 339 520
7 ** ** ** ** ** ** 31 549 089 600
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has a double zero when z1 → −1, thus

x′(z1)

x(z1)2σ(z1)
∂z2

(
x(z1)x(z2)

y(z1)
2 − y(z1)y(z2)

x(z1)− x(z2)

)
� (119)

is holomorphic when z1 → −1 since x(z1)x′(z1)
x(z1)2σ(z1)

 has a double pole at z1  =  −1. A similar argu-

ment applies to the term

x′(z1)

x(z1)2σ(z1)
∂z2

(
x(z1)x(z2)y(z1)

2 − x(z2)
2y(z2)

2

x(z1)− x(z2)

)
,� (120)

thus showing that w̃0,2(z1, z2) is holomorphic at z1  =  −1, and by symmetry at z2  =  −1.
We are now left with the situation x(z1) → x(z2). A first possibility is z1 → z2. In this case 

both ratios

y(z1)
2 − y(z1)y(z2)

x(z1)− x(z2)
,

x(z1)x(z2)y(z1)
2 − x(z2)

2y(z2)
2

x(z1)− x(z2)
,� (121)

are holomorphic since the denominators and numerators have simultaneous simple zeroes. So 
w̃0,2(z1, z2) is holomorphic when z1 → z2. However, since x(z) is a covering of degree three, 
there exists two (not globally defined) functions, d1(z), d2(z) that leaves x invariant, that is 
x ◦ di = x, i ∈ {1, 2}. These functions are the (non-trivial) solutions of the equation

d(z)3

1 + d(z)
=

z3

1 + z
.� (122)

This leads to the expressions

d1(z) = −1
2

z2 + z + z
√
(z − 3)(1 + z)

1 + z
,� (123)

d2(z) = −1
2

z2 + z − z
√
(z − 3)(1 + z)

1 + z
.� (124)

One can check that x(d1(z)) = x(d2(z)) = x(z). In order to understand the pole structure of 
w̃0,2(z1, z2), one also needs to know how does y(z) changes when composed with one of the di. 
One has the simple identities for i ∈ {1, 2}

y(di(z)) =
di(z)

z
y(z).� (125)

Using these identities, one expects poles when z1 → d1,2(z2). Indeed, in this limit the numera-
tors of (121) does not have zeroes anymore, while the denominators have simple zeroes. Thus 
w̃0,2(z1, z2) should have double poles when z1 → d1,2(z2). This is indeed what we find by 
requiring that the denominator of (113) vanishes.

Remark 6.  The functions di have interesting properties. Indeed they permute the sheets of 
the covering x : C → Ĉ. Their behavior in a small neighborhood around a ramification point 
relates to the local deck transformation group of the cover.

Let us first focus on the double ramification point z  =  0. It is a fixed point of both d1 and d2 
and around z  =  0, we have d1(z) ∼0 e−

2iπ
3 z and d2(z) ∼0 e

2iπ
3 z thus they are inverse of each 

other locally, and generate the cyclic group Z3. This cyclic group is the group generated by 
the permutation of the sheets τ2 = (132). This group is the local deck transformation group 
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around the ramification point at z  =  0.

We now consider the behavior of d1, d2 at z  =  −3/2. In this case, only d1 fixes z  =  −3/2, 
while d2(−3/2) = 3, d2(3) = −3/2, that is d2 exchanges the ramification point with the point 
above it (see figure 4). Note however that one has d1(3) = d2(3) = −3/2 as the two solu-
tions d1, d2 of equation  (122) merge at z  =  3 (as they also do at z  =  1). This merging has 
the following interpretation. At z  =  −3/2 two of the three sheets of the covering coincide. 
Therefore, there remains effectively only two sheets to be permuted, that is why d1 fixes 
z  =  −3/2 while d2 permutes z  =  −3/2 with z  =  3. The action of the local deck transforma-
tion group at z  =  −3/2 relates to the action of d1 in a small neighborhood of z  =  −3/2. Since 
d1(−3/2 + ε)− d1(−3/2) ∼0 −ε, d1 locally generates the cyclic group Z2 corresponding to 
the group generated by the permutation τ1 = (12). Similar arguments can be used to describe 
the local deck transformation group at the ramification point z = ∞.

We now come to the universality statement. Indeed, we expect that a slightly different 
object than w̃0,2(z1, z2) takes a universal form. This is the reason for the shift introduced in 
(105). The statement is that w0,2(z1, z2) should have a universal form, that is it should be the 
unique meromorphic function on the sphere with a double pole of order 2 on the diagonal with 
coefficient 1 and otherwise regular and that these properties completely determines the form 
of w0,2(z1, z2). This is a possible form of the universality statement. Indeed, it tells that the 
geometry of the curve (here the sphere Ĉ � P1) on which the function w0,2(z1, z2) is defined 
entirely determines w0,2(z1, z2) in the suitable coordinates. Indeed if we compute w0,2(z1, z2) 
we obtain

w0,2(z1, z2) = w̃0,2(z1, z2) +
x′(z1)x′(z2)

(x(z1)− x(z2))2 =
1

(z1 − z2)2 .� (126)

We find exactly the expected universal form for a genus zero spectral curve. Note for the 
knowledgeable reader that this can be also seen from a deformation point of view. Assume 
that we change the distribution on the random matrix elements to a formal distribution pro-
portional to

e−NTr(X1X†
1 )e−NTr(X2X†

2 )eNTrV(S2)dX†
1 dX1dX†

2 dX2.

where V(x) =
∑

p�0 tpx p and the tp  are here formal deformation parameters. Then for small 
enough deformations we expect that the form of w0,2(z1, z2) stays the same (but the cover x(z) 
changes, in particular the properties of its ramification points).
Comment on probabilistic interpretation of W0,1(x), W1,1(x) and W0,2(x1, x2). As stated 
earlier, W1(x) is the Stieltjes transform of the eigenvalues density of the matrix S2, that is

W1(x) =
∫ ∞

−∞
du

ρ1(u)
x − u

.� (127)

In particular in the large N limit we have that

W0,1(x) =
∫ ∞

−∞
du

ρ0,1(u)
x − u

,� (128)

and the computation of W0,1(x) uniquely determines ρ0,1(x). The same property is also true 
for the exact density, i.e. W1(x) uniquely determines ρ1(x). This can be traced back to the 
Carlemann condition [Akh65]. Indeed the Stieltjes transform W1(x), (resp. W0,1(x)) contains 
the information on the whole moment sequence of ρ1(x) (resp. ρ0,1(x)). The sequence of 
moments of both distributions can be shown to satisfy the Carlemann condition, and thus one 
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expects that the knowledge of the Stieltjes transform is sufficient to reconstruct the densities 
ρ1(x), ρ0,1(x). However it is known [FFG06] that in general the truncation of the 1/N expan-
sion of the resolvent does not determine a unique truncated density. Indeed, there exists, a 

priori, multiple densities truncated at order p , ρ( p)
1 (x) =

∑ p
g�0 N−2gρg,1(x) with the same 

truncated resolvent
p∑

g�0

N−2gWg,1(x) =
∫ ∞

−∞
du

ρ( p)(u)
x − u

.� (129)

That is the computation of the corrections to W0,1(x) only determines Stieltjes class of densi-
ties12, often referred to as a smoothed density. This is sufficient however to compute the cor-
rections to the average E(φ(x)) where φ(x) is any function analytic on the support of ρ0,1(x). 
In particular, our later computation of the first few corrections to the large N resolvent does 
not determine corrections ρ1,1(x), ρ2,1(x), . . .

The probabilistic interpretation of W0,2 goes as follows. W2 is the Stieltjes transform of the 
connected part of the eigenvalue correlation function

W2(x1, x2) =

∫ ∞

−∞
dudv

ρ2(u, v)
(x1 − u)(x2 − v)

,� (130)

and

ρ2(x1, x2) = E




N∑
i=1

δ(x1 − λi)

N∑
j=1

δ(x2 − λj)


− ρ1(x1)ρ1(x2),� (131)

where the λi are the eigenvalues of the matrix S2. In the large N limit, the centered ran-
dom vector whose components are the traces of successive powers of the matrix S2, (
Tr(Si

2)− E(Tr(Si
2))

)k
i=1 converges to a normal random vector of zero mean and variance 

Varm,n

Varm,n = c[0]m,n = Res
z1→−1

Res
z2→−1

x(z1)
mx(z2)

nw0,2(z1, z2),� (132)

where the normality of this centered random vector at large N follows from the fact that 
Wn(x1, . . . , xn) = O(1/Nn−2), that is the higher cumulants of the limiting distribution of the 
family {Tr(Si

2)} vanish at large N. This statement extends to the large N limit of any linear 
statistics A of the eigenvalues of the form

A =

N∑
i=1

a(λi),� (133)

where a is a sufficiently smooth function (analytic for instance), as we have

Var(A) =
∮

Γ

∮

Γ

dx1dx2

(2iπ)2 a(x1)a(x2)W0,2(x1, x2),� (134)

12 Though this is not a rigorous justification, one can look at the truncated Carlemann criterion, for instance in the 
GUE case, and see that the Carlemann criterion is indeed not satisfied order-by-order in 1/N. Only the large N and 
the exact criterion are satisfied.

S Dartois and P J Forrester﻿J. Phys. A: Math. Theor. 53 (2020) 175201



31

with Γ a contour encircling the cut (0, 27/4] of W0,1(x).

4.3.  Computation of w1,1 and higher correlation functions

From these data one can access the first correction to the resolvent which allows in turn to 
access a first correction to the large N density. The equation for w1,1(z) can be easily obtained 
from the equation (67) on W1,1(x). It reads

w1,1(z) =
3x(z)2

x′(z)∂yP(x(z), y(z))
y(z)w̃0,2(z, z) +

x(z)2

∂yP(x(z), y(z))

(
∂zy(z)−

x′′(z)
2x′(z)2 ∂zy(z) +

1
2x′(z)

∂2
z y(z)

)
.

� (135)
This leads to the result of the next paragraph.
Expression of w1,1(z) and analytic properties of (135). We obtain,

w1,1(z) =
z4 + 7z3 + 21z2 + 24z + 9

z2(2z + 3)4 .� (136)

We notice that the poles are located at z  =  0 and z  =  −3/2, which are the zeroes of dx. 
However, starting from (135) one can only infer that the poles of w1,1(z) can be located at 
z = 0,−3/2,−1. Indeed, one can easily obtain from the analytic properties of x(z), y(z) and 
w̃0,2(z, z) that the first term of the right hand side of (135) can have poles only at z = 0,−3/2, 
and rule out singularities at z = −1,∞. However when considering the derivatives term, that 
is the second term of equation (135), one can not rule out poles at z  =  −1. The explicit com-
putation shows that the coefficient of these poles is zero.

Remark 7.  Note that we can produce a guess for the coefficients c[1]n . We provide our guess 
for purely informative purposes,

c[1]n =
(n − 1)2n
6(3n − 1)

(
3n
n

)
.� (137)

Expression for higher correlations. Using the loop equation  (96) we can compute any 
n-point resolvents recursively at any order. We illustrate this claim by providing the first few 
resolvents of higher order. One point case.

w0,1(z) = −2z + 3
z + 1

� (138)

w1,1(z) =
z4 + 7z3 + 21z2 + 24z + 9

z2(2z + 3)4� (139)

w2,1(z) =
9z9 + 153z8 + 1284z7 + 4227z6 + 7626z5 + 9246z4 + 8280z3 + 5220z2 + 1971z + 324

z3(2z + 3)10 .

� (140)
 Two points case.

w̃0,2(z1, z2) =
z2

2z2
1 + 2(z2z2

1 + z2
2z1) + z2

1 + z2
2 + 4z2z1

(z2z2
1 + z2

2z1 + z2
1 + z2

2 + z2z1)2� (141)

w1,2(z1, z2) =
pol(z1, z2)

z2
1 (2z1 + 3) 6z2

2 (2z2 + 3) 6
,� (142)
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with pol(z1, z2) a symmetric polynomial of z1, z2 of degree 12,

pol(z1, z2) = 128z6
2z6

1 + 1280z5
2z6

1 + 6144z4
2z6

1 + 12288z3
2z6

1 + 12480z2
2z6

1 + 6912z2z6
1 + 1728z6

1 + 1280z6
2z5

1 + 12800z5
2z5

1

+ 55680z4
2z5

1 + 108672z3
2z5

1 + 111168z2
2z5

1 + 62208z2z5
1 + 15552z5

1 + 6144z6
2z4

1 + 55680z5
2z4

1 + 215352z4
2z4

1 + 405000z3
2z4

1

+ 414234z2
2z4

1 + 233280z2z4
1 + 58320z4

1 + 12288z6
2z3

1 + 108672z5
2z3

1 + 405000z4
2z3

1 + 768312z3
2z3

1 + 809838z2
2z3

1 + 466560z2z3
1

+ 116640z3
1 + 12480z6

2z2
1 + 111168z5

2z2
1 + 414234z4

2z2
1 + 809838z3

2z2
1 + 888165z2

2z2
1 + 524880z2z2

1 + 131220z2
1 + 6912z6

2z1

+ 62208z5
2z1 + 233280z4

2z1 + 466560z3
2z1 + 524880z2

2z1 + 314928z2z1 + 78732z1 + 1728z6
2 + 15552z5

2 + 58320z4
2

+ 116640z3
2 + 131220z2

2 + 78732z2 + 19683.
� (143)

 Three points case.

w0,3(z1, z2, z3) =
24

(2z1 + 3) 2 (2z2 + 3) 2 (2z3 + 3) 2 .� (144)

For all these computed wg,n, (g, n) �= (0, 1), (0, 2) the poles are located at z  =  0 and z  =  −3/2. 
Therefore we can expect that the poles of wg,n, for 2g  −  2  +  n  >  0, are always located at z  =  0 
and z  =  −3/2, however this remains to be proven.

Remark 8.  The computed wg,n are rational functions of the zi. We notice that the numerator 
of these rational functions seems to be a polynomial with positive integer coefficients. If this 
property is true for every wg,n, it would be interesting to understand if these positive integers 
have an enumerative (combinatorics or geometry) meaning.

5.  Conclusion

In this first paper on loop equations for matrix product ensembles, we have shown how to 
obtain loop equations for any resolvents for a random matrix defined as a product of two square 
complex Ginibre matrices without resorting to an eigenvalues or singular values reformulation 
of the problem. We used these loop equations to compute several terms of the expansion of 
the resolvents Wn. In particular we accessed W0,2, giving us information on the fluctuations of 
linear statistics, as well as the first correction W1,1 to W0,1. A similar technique applies to the 
more general case of the product of p � 2 rectangular Ginibre (complex or real) as well as 
to some other product ensembles13, for instance the ensembles introduced in [FIL18] that are 
closely related to the Hermite Muttalib–Borodin ensemble. Note that the large N limit of the 
rectangular case have been studied to some extent by different means, combinatorial and free 
probabilistic, see for instance [BJL+10].

Several questions are suggested by this work. The most straightforward one concerns the 
establishment of a topological recursion formula for the wg,n. In the present case this topologi-
cal recursion formula is certainly similar to the one devised in [BHL+ 14, BE13] by Bouchard 
and al. and Bouchard and Eynard. We postpone the construction of such formula to further 
works. Another interesting question oriented towards enumerative geometry concerns the 
application of the same technical means to the matrix model introduced by AmbjØrn and 
Chekhov in [AC14, AC18] which generates hypergeometric Hurwitz numbers. In these works 
the spectral curve is obtained, however this is done via a matrix-chain approach that requires 
p   −  1 of the p  matrices to be invertible, thus ruling out the fully general case of rectangular 
matrices. In our present work we studied the case of the product of two square matrices. This 

13 work in progress.
14 and additional constraints as we are here interested in random matrices aspects and not in matrix models aspects
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would correspond to a specific case of [AC14, AC18], setting their counting parameters γ  to 
one14. However the technique that we presented generalizes to rectangular matrices allowing 
in principle to study the case of a generic choice of γ  (in particular allowing, using [AC14, 
AC18] notations, γ3 �= γ4 �= . . . �= γn−1). Thus we hope the spectral curve for hypergeometric 
Hurwitz numbers can be obtained in full generality using our higher derivatives technique.

Yet another related question is the following. Free probability provides us with tools to 
determine the equation satisfied by the large N limit of the resolvent of a product of matri-
ces knowing the large N limit of the resolvents of the members of the product. These tools 
have been generalized to some extent to the 2-point resolvent in the works of Collins and al. 
[CMSS07] in order to more systematically access the fluctuations of linear statistics. One 
question is then the following. Can we devise similar tools that would allow to construct the 
full set of loop equations for a product matrix knowing the loop equations satisfied by the 
member of the product (or, more realistically, the large N sector of the loop equations)? 

Finally, the loop equations can be interpreted as Tutte equations [Eyn16, Tut62, Tut68]. 
The loop equations  described in this paper can also be interpreted combinatorially, and it 
would be interesting to understand the more general case of maps with an arbitrary number of 
black vertices in such a combinatorial setting. Moreover, one would also like to understand if 
it is possible to merge two sets of Tutte equations together for two independent sets of maps 
with one type of edge in order to obtain Tutte equations for maps with two types of edges. 
The combinatorial interpretation of the free multiplicative convolution described in [DLN18, 
section 3.3] may be a useful starting point.
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