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Abstract

X-ray flares may indicate the late-time activity of the central engines of gamma-ray bursts. Such long-term activity
has been described through some models, one of which is the viscous evolution of the outer disk’s fragments
proposed by Perna et al., and developed quantitatively by Dall’Osso et al. Here, we reconstruct the framework of
Dall’Osso et al. by taking both small- and large-scale effects of magnetic field into account. To consider the
magnetic barrier as a possible mechanism that might govern the accretion process of each magnetized clump, we
construct a simple pattern in boundary conditions through which this mechanism might act. Regarding various
model parameters, we probe for their influence and follow some key analogies between our model predictions and
previous phenomenological estimates, for two different choices of boundary conditions (with and without a
magnetic barrier). Our model is remarkably capable of matching the bolometric and X-ray light curves of flares, as
well as reproducing their statistical properties, such as the ratios between rise and decay time, width parameter and
peak time, and the power-law correlation between peak luminosity and peak time. Combining our results with the
conclusions of previous studies, we are led to interpret a magnetic barrier as a less probable mechanism that might
control the evolution of these clumps, especially those created later (or viscously evolved ones).

Unified Astronomy Thesaurus concepts: Accretion (14); Gamma-ray bursts (629); Magnetic fields (994)

1. Introduction

X-ray flares are detected in about one third of Swift gamma-
ray bursts (GRBs) (Burrows et al. 2005; Falcone et al. 2006;
Nousek et al. 2006; Zhang et al. 2006), and marked as one of
the most common phenomena that reveal the late-time erratic
behavior of GRBs’ central engines. Flares are detected in both
long and short GRBs (Campana et al. 2006; Falcone et al.
2006; Romano et al. 2006; Margutti et al. 2011), and appear
mostly in a time window of 102–105 s (Chincarini et al. 2010;
Yi et al. 2016), which overlaps the afterglow timescale.

Several models have been proposed over the years to
describe this late-time flaring activity. The leading external
shock scenario (e.g., Meszaros & Rees 1997) failed to justify
the temporal properties of X-ray flares. In particular, Lazzati &
Perna (2007) argued that inhomogeneities in the external shock
prevent this model from reproducing the observational proper-
ties of the flares. On the other hand, making more detailed
analogies between the temporal and spectral properties of the
flares and those of prompt emissions (e.g., Margutti et al. 2010)
favors the idea that flares and prompt pulses have a common
origin, that is to say they both trace the activity of the central
engine (for more discussions see, e.g., Ioka et al. 2005;
Beniamini & Kumar 2016). Therefore, studying the origin of
the flares might open a new window on GRBs’ central engines.

A variety of efforts have been made to attribute the flares to
evolution of the central engine. King et al. (2005) suggested
that fragmentation of a collapsing star and its subsequent
accretion can lead to X-ray flare production. Moreover, ring-
like fragmentation of the outer regions in a hyperaccreting disk
might cause such a flaring activity, as proposed by Perna et al.
(2006). From the magnetic point of view, some scenarios have
been proposed that support the long-term activity of the central
engine, e.g., late-time episodic accretion caused by a magnetic
flux accumulation in the inner disk regimes, i.e., a magnetic

barrier (Proga & Zhang 2006), and magnetic reconnection in a
differentially rotating millisecond pulsar (Dai et al. 2006).
Motivated by the observed correlation between a flare’s

duration and its arrival time (Cusumano et al. 2006; O’Brien
et al. 2006), and the similarity in the distributions of waiting
times of X-ray flares and prompt gamma-ray emissions, which
might lead to the consideration of a similar physical source for
both events (Guidorzi et al. 2015), Dall’Osso et al. (2017)
developed the idea of disk fragmentation in a more quantitative
manner. They suggest that various flares with different arrival
times (including both early and late-time ones) might be
attributed to the viscous spreading of different clumps created
during the early or late-time phase of central engine evolution.
More specifically, they introduced an offset time as the time
delay between the GRB trigger and the time at which X-ray
flares set in, and argued that different offset times are subject to
the starting point of various clumps’ viscous evolution. So the
early flares are considered to be caused by the prompt accretion
of clumps generated during the early activity phase, while the
delayed flares are due to clumps accreted later, or to fragments
generated early that need to migrate toward the inner regions in
order for viscous stress to dominate. They then provided a
semi-analytical solution to this viscously evolved clump, and
reproduced light curves of X-ray flares that, interestingly,
matched the data well, after implementing some spectral
corrections.
On the other hand, Shahamat & Abbassi (2017) studied the

effects of magnetic field on both the vertical structure and
neutrino luminosity of a self-gravitating neutrino-dominated
accretion disk, as a plausible candidate for early-phase activity
of GRB’s central engine. The strongly magnetized nature of the
disk, with a magnetic field of about 1015–16 G, made both
small- and large-scale effects of the magnetic field worth
studying (the former was studied through magnetic viscosity,
the latter via the magnetic braking process). They mainly found
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that such a consideration may shrink the gravitationally
unstable regions toward the outer initial disk, and they
highlight a magnetic barrier as a plausible mechanism for the
lower accretion rates. All these findings, together with the fact
that GRBs’ central engines are supposed to be highly
magnetized, lead us to develop the scenario of Dall’Osso
et al. (2017) through taking the effects of magnetic field (small
and large scale) into account, and to probe how the
combination of magnetic barrier and fragmentation might
affect this intriguing model to describe the light curves of X-ray
flares.

Different approaches in the literature have addressed the
magnetic barrier mechanism. For instance, D’Angelo & Spruit
(2010, 2011, 2012) studied a magnetically truncated disk
around a star (such as a neutron star). As they pointed out, the
strong magnetic field near the star truncates the accretion disk.
Due to angular momentum transfer between magnetic field and
disk, one plausible state is that the disk is truncated outside the
corotation radius ( )/ /= W* *R GMc

2 1 3 (at which the frequency of
the star’s rotation equals the Keplerian frequency), where M*
and Ω* are the mass and rotational frequency of the star. In this
case a centrifugal barrier prevents the disk from accreting.
Furthermore, the magnetic field lines form a “propeller
regime.” Such a topology of the field lines causes the gas
inside the magnetospheric radius, Rm (the radius at which the
accumulated magnetic field disrupts the accretion flow), to flow
in freely along field lines toward the star’s magnetic poles
(Narayan et al. 2003). On the other hand, Narayan et al. (2003)
discussed the physical conditions that govern the magnetically
arrested disks (MADs) around black holes. They argue that
MADs are considered to be accreting structures that are
disrupted at Rm by the accumulated poloidal magnetic field in
the vicinity of black holes. For R>Rm the flow is
axisymmetric, while for R<Rm the flow breaks up into blobs
or streams. Such streams or blobs can flow in slowly (with a
velocity much less than the freefall velocity) toward the black
hole via magnetic interchanges and reconnection. Regarding
physical conditions imposed by a magnetic barrier around
black holes, we adopt the strategy of Narayan et al. (2003),
which leads us to consider two limiting boundary conditions.
The first one is zero mass flux rate at the inner radius, and the
second is taking the magnetospheric radius (Rm) as the inner
boundary of the disk, namely Rin.

In the present paper, Section 2 manifests our model
framework with a clarification of all the assumptions and
approximations we made in order to smooth our way in
extracting a semi-analytical solution, following the approach of
Dall’Osso et al. (2017). The correlation between our model
parameters and those related to the shape of the light curve will
be considered in Section 3, together with some key analogies
between our model predictions and observations. We then
summarize and discuss our main conclusions in Section 4.

2. Ring-like Fragments and Their Viscous Evolution

Hyperaccreting disks are gravitationally unstable in their
outer regions, which might result in disk fragmentation and be
a source of a disk’s late-time activity (i.e., X-ray flares), as
suggested by Perna et al. (2006), and discussed by Liu et al.
(2014) and Shahamat & Abbassi (2017). A disk becomes
gravitationally unstable once the Toomre parameter, Q, satisfies

(Toomre 1964)

( )
p

=
W
S

<Q
c

G
1 1s

where cs is the sound speed, Ω is the local Keplerian angular
velocity, G is the gravitational constant, and Σ is the disk
surface density. In the magnetized case, this criterion takes the
form (Shu 1992)

( )
p

=
+ W

S
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G
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2
A
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where =
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is the Alfvén velocity. However, in these

unstable regimes, fragmentation into bound objects will occur
if (Gammie 2001; Perna et al. 2006)

( )< » W-t t 3 , 3cool cirt
1

where the cooling timescale is denoted by tcool≈(H/R)2tν
(Pringle 1991), with =n n

t R2

3

2

regarded as the viscous timescale
and tcirt is the critical time scale. Fragments merge and/or
accrete until their tidal influence gets strong enough to open a
gap in the disk. This happens when the mass of the clump has
increased to
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⎞
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R
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whereMBH is the mass of the central black hole (Takeuchi et al.
1996; Dall’Osso et al. 2017), H is the half thickness of the disk,
and α is the viscous parameter.
In what follows, regarding the model proposed by Perna

et al. (2006), we suppose that such a ring-like clump has been
created in the outer regions as a sharp accumulated mass, more
specifically a delta function, at radius R0. Computing the
viscous evolution of the clump, we also consider the standard
equation for axisymmetric accretion disks (Kato et al. 2008):
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⎞
⎠( ) ( ) ( )/ /n
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Although this equation seems to ignore magnetic field
effects, the small-scale effect of magnetic field can be taken
into account through the magnetic viscosity term, i.e., ν.
Hence, being interested in considering the large-scale effect of
magnetic field, we add a term corresponding to the torque
exerted by the Lorentz force. To do so, we make use of the
approach of Lee et al. (2000) and Shahamat & Abbassi (2017)
to modify Equation (5) to

⎡

⎣
⎢⎢⎢

⎤
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( )
( )

( )
( )

n¶
¶

S = -
¶
¶

S +

W
p

¶
¶

W f

t
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d
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3
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z
2

Considering the common assumption Bz≈BR (e.g., Proga &
Zhang 2006; Shahamat & Abbassi 2017), in order to get rid of
the magnetic field components in the second term of the
numerator, we can make use of the magnetic viscosity equation

( )
p

a= -fB B
P

4

3

2
, 7

R

2
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where P is the total pressure of the accretion flow. On the other
hand, we know that

( )
a
rn= -

W
P R

d

dR

1
, 8

and we consider Hρ≈Σ as a vertically averaged approx-
imation (Kato et al. 2008). Finally, one can rewrite
Equation (6) as
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where =h H

R
.

In general, the viscosity ν depends on the surface density and
Equation (9) is nonlinear. If, however, ν is only a function of
radius, then the equation is linear and much more amenable to
analytic methods. Therefore, following Dall’Osso et al. (2017)
and Tanaka (2011), we assume the viscosity to follow a radial
power law, ν∝Rn, to achieve an exact solution for Σ(R, t)
using a Green’s function G,

( ) ( ) ( ) ( )òS = S =
¥

¢ ¢ ¢R t G R R t R t dR, , , , 0 , 10
Rin

in which Σ(R, t= 0) is a given arbitrary profile at t=0.
Having Σ(R, t), the accretion power Lacc, due to the viscous
spreading of the clump, is approximately

( ) ( ) ( ) ( ) ò n pS W
¥

L R t R R R dR
9

4
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2
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To compute the Green’s function, we need to determine our
desired boundary condition. In this regard, we encounter two
strategies. The first is a boundary condition of zero central
torque, which is of astrophysical interest especially in the case
of accretion onto a black hole or a slowly rotating star, at radii
larger than the radius of the innermost circular orbit or the
stellar surface, respectively. The other is a boundary condition
of zero mass flux. Having a strong central source of angular
momentum, the accreting gas will be prevented from flowing
in, and will instead accumulate near the center (Tanaka 2011).
Such solutions can describe accretion disks around a compact
binary (Pringle 1991), and also compact objects with strong
central magnetic fields (Lynden-Bell & Pringle 1974). The
latter seems similar to the physical situation imposed by the
accumulated poloidal magnetic field near the innermost region
of MADs, which might result in a magnetic barrier mechanism
(Narayan et al. 2003; Shahamat & Abbassi 2017). Therefore,
we are to apply both boundary conditions, in order to probe the
effect of a magnetic barrier on the light curve of an X-ray flare.

Obtaining the appropriate Green’s function, in the case of a
boundary condition of zero torque, the surface density integral
takes the following form:

⎛
⎝⎜

⎞
⎠⎟

( )
[ ( ) ( ) ( ) ( )]
[ ( ) ( ) ( ) ( )]

[ ( ) ( )]
( )

( )

( )/

/

/ /

ò

k k k k
k k k k

k k
k k

S
S

=

´ -
´ -

´
-
+

k

¥ - + - -

- - n

R

R

R

R

n e
Y J x Y x J
Y J x Y x J

Y J
d

1 2

12

n b n

n t t

l l l l

l l l l

l l

0 0 0

1 2
0

in

2

2 1 2

0 0

2 2

1

2 2
in

and in the case of a boundary condition of zero mass flux one
may achieve
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To learn about new parameters and variables, and to get an
insight into the adopted procedure, we refer readers to the
Appendix.
What matters right now is how to fix the parameters Σ0 and

R0.

2.1. Determination of Σ0 and R0

As previously stated, one can assume the ring-like clump to
be a sharp concentration at radius R0. This radius can be
regarded as the same as that of gravitational instability.
Therefore, we approximated Σ0 with the expression

( )
p p

S »
M

R l

M

R l2 2
14

cl cl
0

frag

0

frag

ins

where lcl denotes the clump size, which can be estimated as the
local Jeans length (λj). First, to evaluate R0, we need to find an
expression for Rins. This can be fulfilled by the use of the
Toomre criterion (Equation (2)). Through some mathematical
considerations as performed by Shahamat & Abbassi (2017),
we can approximate magnetic pressure ( / pB 82 ) with the total
pressure (P). Mathematically speaking, one knows that

p p< +B P B8 8 ,2 2

we then have

( )/b p b» + <p P B 8 with 1.mag
2

This provides us with the following expression:

( )p
b
b

=
-

»B P P8
1

0.3 152

in which, to get the last equality, we choose β to be 0.01, which
is the same value as adopted by Shahamat & Abbassi (2017).
With the help of Equation (8) we reach
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a
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B R
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Replacing these quantities, and applying relations  p n= SM 3
(valid for steady accretion) and n=1/2 (an acceptable value
for advection-dominated disks, see, e.g., Tanaka 2013), one
may obtain

⎜ ⎟⎛
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Finally, we are in need of the local magnetic Jeans length,
λjmag, which takes the form
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Regarding all the above considerations, we will have

( )l
p a

=
h M GMR

M

3.1
. 19jmag

5 2
ins

Hereby, we have our approximately estimated values for Σ0

and R0.

2.2. What about Rin and Rout?

The inner radius (Rin) differs in for the two different
boundary conditions we adopted here. In the case of zero
torque, we choose it to be equal to the innermost stable circular
orbit, while for zero mass flux, in which the magnetic barrier
can be taken into account, we considered the magnetospheric
radius as the inner radius. This quantity can be defined as
(Proga & Zhang 2006)

( ) f» -
- -R M M60 20m 3

2 3
1

2 3
3

4 3
30
4 3

where f30≡f/(1030 cm2 G). Here f is the magnetic flux
accumulated in the disk inner side and it has been taken to be
about 10−2, which can be supposed to be a typical value for the
activity of the GRB’s central engine (Xie et al. 2009; Shahamat
& Abbassi 2017). Also, ò−3=103ò, in which ò is a parameter
defined to be the ratio of the radial velocity of the accreted
matter to its freefall velocity inside the magnetospheric radius
(Shahamat & Abbassi 2017). We adopted a value of 10−3 for ò.
Indeed, this parameter is less certain (for more discussion about
this parameter see, e.g., Lloyd-Ronning et al. 2016; Narayan
et al. 2003). M1 and M3 denote / 

-M M1 s 1 and MBH/3 Me,
respectively.

On the other hand, as time passes, the accretion rate declines
after the prompt phase. Metzger et al. (2008) reported that a
neutrino-cooled accretion disk, in its late-time viscous evol-
ution, experiences a decreasing mass accretion rate with a self-
similar behavior  µ -M t 4 3. Hence, we approximate the late-
time accretion rate as

⎛
⎝⎜

⎞
⎠⎟ ( ) =
-

M M
t

t
210

0

4 3

where M0 is the accretion rate related to a given time, t0,
specified (arbitrarily) during the late activity phase. We have
fixed M0 to have the value 0.04 Me s−1 at t0=50 s after the
prompt phase (which is supposed to have an accretion rate of
about 0.1–10 Me s−1, typically).

In the context of the outer boundary, we consider Rout as the
radius at which the viscous evolution of the clump sets in. To
estimate this radius, we take the shear, self-gravity, and tidal
forces per unit mass exerted on the clump as introduced by
Dall’Osso et al. (2017). We then add the Lorentz force in order
to account for the large-scale effects of magnetic field.

A clump of linear size lcl and mass Mcl will be affected by
the shear force per unit mass

( )


p
=

W
nF

l M

M2
22cl

cl

in which the relation  pn= SM 3 , valid for a steady-state disk,
has been considered.

Given the self-gravity force per unit mass of the clump,
=F GM

lSG
cl

cl
2 , the tidal force due to the central object,

( )=FT
GM

r

l

r
BH
2

cl (Dall’Osso et al. 2017), and the Lorenz force

per unit mass, =
pS

fFB
B B

4
r (Lee et al. 2000), viscous spreading of

the clump will start roughly when Fν+FT+FB>FSG. It is
worth noting that, making use of Equation (7) and  p n= SM 3 ,
the Lorentz force can be rewritten in the form - aGM h

r

9

4 2 . After
all, the condition for being viscously evolved reads
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The solution to this inequality can provide us with an upper
limit for the outer boundary Rout.

2.3. Issues on Bolometric and X-Ray Luminosities

There are some significant points to be noted. It is the
relativistic jet (which can be created through the Blandford–
Znajek mechanism, as the most viable scenario that can
efficiently extract the rotational energy of a spinning black hole
by a large-scale magnetic field threading the disk (Blandford &
Znajek 1977)) that might produce the GRB’s X-ray flares. To
be more precise, such emissions are subject to the radiative
mechanisms through which the jet power is converted into
radiation. For the sake of simplicity, we assume the radiative
efficiency in the jet to be constant. Therefore, the bolometric
luminosity of the flare will be

( )=L f L 24bol rad acc

where frad is the efficiency of conversion of energy from mass
accretion into radiation, which we assume to be constant. We
also adopted frad≈0.5 in view of discussions by Fragile et al.
(2012). However, in case of the zero-flux boundary condition,
i.e., taking the magnetic barrier into account, and consequently
using the radiation efficiency in the MAD model (Narayan
et al. 2003), we adopted a value of ∼1.0 for frad, based on
discussions by Tchekhovskoy et al. (2011) and McKinney et al.
(2012).
On the other hand, we need to consider the X-ray bandpass

(0.3–10 keV) in order to evaluate this model by making a
comparison with observations that are performed in a finite
X-ray energy band. Thus, an efficiency coefficient is required
to consider the X-ray energy band instead of the bolometric
light curve. Here, we follow Jin et al. (2010) and Fan & Piran
(2006) by approximating the X-ray flare luminosity as a
constant coefficient of bolometric luminosity, LX=fXLbol,
where fX (X-ray flare efficiency) is estimated as ≈0.1.

3. Results

3.1. Correlation of Model Parameters and Spectral Properties

Our model contains some parameters, MBH, h, and α, whose
effects on shape parameters should be noticed. We introduce
two shape parameters: k is the “asymmetryparameter,” and w
is the ratio of the width, Δt=t2−t1, to the peak time, tp. tp is
the time at which the peak luminosity Lp is expected. t1 and t2
refer to the times with fluxes of around /L ep (the former during
the rise and the latter during the decay). The asymmetry
parameter is regarded as the ratio td/tr, with rise time
tr=tp−t1 and decay time td=t2−tp.
To gain an insight into how model parameters affect those

related to the shape of the light curve, we provide some data,
predicted by our model, in Table 1. It should be mentioned that

4
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we considered 0.5�h�1 (valid for the late-time advection-
dominated phase of the GRB’s central engine, e.g., Metzger
et al. 2008), and 0.01�α�0.2, which is a physically
justified interval (e.g., McKinney et al. 2012). Generally
speaking, we interestingly found that the shape parameters, w
and k, are not significantly sensitive to the model parameters,
regardless of some scatter. This fact that has been confirmed by
the statistical analysis of observational data, and will be
discussed in more detail in Section 3.2.

To elaborate how effective the model parameters are, we
point to their impact on the clump mass, and subsequently on
the maximum amount of flux and the width parameter, which
might directly affect the shape of the light curve. First, as h
grows, the clump mass increases, and this leads to a decline in
the peak luminosity and an increase in the width parameter as
well as peak time, i.e., the light curve gets wider with less
maximum radiated flux. At first glance, this might appear to
contradict the fact that the larger the clump mass is, the higher
the total radiated energy gets (E∝Mcl). For one thing, we
found that the radius at which the viscous evolution is triggered
is less for small h than for a thicker clump. For instance, R0

(which is chosen to be the same as Rins, since the viscous
evolution constraint (23) is respected by this radius, in this
case) is 905.2Rg for the set of parameters MBH=10, h=0.5,
α=0.01, and toff=200 s, while it is about 1303.5Rg in the
similar case with h=0.6. For another thing, the clump is
denser in the former case than in the latter. Subsequently, the
flare duration (which might be estimated to be of the order of
the width parameter) will be considerably less for the thinner
clump than for the thicker one, as one can see in data provided
in Table 1. Thus, we are of the opinion that the heavier clump is
expected to radiate more total energy, although its lower
density located at a farther distance causes such a decline in the
luminosity. On the other hand, this behavior can be explained
through the explicit dependence of luminosity on h. Concerning
Equation (4), clump mass increases in proportion to h2. Also, R0
(∼Rins) is proportional to h2, as appears in Equation (17). These
two proportionalities together with the relation between lcl and h
(lcl(∼λjmag)∝h

3) cause Σ0 to be proportional to h−3, regarding

Equation (14). Thus, one may conclude that Σ has a reverse
relation with h (i.e., ( )S µ - +h h1.5 1 1 ), and this subsequently leads
the luminosity to drop as h grows, considering Equation (11).
Apparently, this result opposes the outcome of Dall’Osso et al.
(2017), because they conclude that for the same initial radius (R0),
a more massive clump produces a larger peak luminosity. Such an
inconsistency stems from ignoring correlations that we considered
between model parameters in our framework and fixing them
arbitrarily.
Second, our data demonstrate that any increase in the α

parameter might enhance the clump mass remarkably, while the
width parameter might not be affected considerably, so that the
peak luminosity grows. This fact has been also inferred by
Dall’Osso et al. (2017). Finally, we came to the conclusion that
growth of the black hole mass may lead to a heavier clump with
a rather higher luminosity, which happens over a longer
timescale. In this case, the growth of the clump mass is
apparently more significant than the increase in duration, so
that a final higher luminosity is produced.
Overall, such correlations between model parameters and

spectral quantities are can be inferred from our data; however,
in agreement with Dall’Osso et al. (2017) and observational
analysis, the shape parameters w and k are not strongly affected
by our model parameters, regardless of their somewhat
scattered behavior.

3.2. Observations and Model Predictions

From the study by Chincarini et al. (2010) of 113 flares in
the 0.3–10 keV energy band of the X-ray Telescope (XRT),
and four subenergy bands, some observational characteristics
of the X-ray light curves can be clarified as follows.

(i) The ratio of rise time to decay time is constant, implying
that both timescales grow by the same factor, so that
td≈2tr. Consequently, flares are self-similar in time.

(ii) The width evolves linearly with the peak time: w≈0.2.
These two points are the key features that strongly
distinguish the flare emission from the prompt phase.

Table 1
Spectral and Model Parameters for the Boundary Conditions of Zero Torque and Zero Mass Flux

MBH toff h α Mcl tp Lp Δt w k
(Me) (s) (Me) (s) (1048 erg s−1) (s)

10 100.0 0.6 0.01 0.36 110.0 1.4 16.0 0.15 2.5
10 200.0 0.6 0.01 0.36 220.5 0.6 32.0 0.15 2.3
10 100.0 0.5 0.01 0.25 105.0 1.6 7.5 0.07 2.7
10 200.0 0.5 0.01 0.25 210.5 0.7 15.0 0.07 2.0
5 50.0 0.9 0.01 0.4 61.5 2.12 21.5 0.3 2.5
5 100.0 0.9 0.01 0.4 122.5 0.73 43.0 0.3 2.7
3 50.0 0.9 0.01 0.2 57.0 2.1 12.5 0.2 2.51
3 100.0 0.9 0.01 0.2 113.5 0.7 26.0 0.22 2.7
3 50.0 0.9 0.1 0.76 57.0 2.7 12.5 0.2 2.5
3 100.0 0.9 0.1 0.76 114.5 1.15 26.5 0.23 2.7
2.5 1000.0 0.6 0.01 0.09 1094.5 0.023 148.0 0.14 2.4
2.5 1000.0 0.5 0.01 0.06 1048.5 0.03 69.0 0.07 2.2
2.5a 200.0 0.8 0.15 0.6 215.0 6.0 26.0 0.12 2.7
2.5a 300.0 0.8 0.15 0.6 340.5 1.12 70.5 0.2 2.7
3a 200.0 0.8 0.13 0.7 218.0 8.0 31.5 0.15 2.7
3a 300.0 0.8 0.13 0.7 349.0 1.5 85.0 0.24 2.6

Note.
a Cases with zero-flux boundary condition.

5

The Astrophysical Journal, 888:64 (10pp), 2020 January 10 Shahamat & Abbassi



Moreover, analyzing 468 bright X-ray flares from the GRBs
observed by Swift between 2005 and 2015, Yi et al. (2016)
argued that the peak luminosity decreases with the peak time,
following a power-law behavior µ -L tp p

1.27.
In general, for both boundary conditions, our model leads to

rather observationally well matched predictions, considering
the mentioned shape parameters.

In the case of a zero-torque boundary condition, Figures 1
and 2 demonstrate how our model respects these three criteria.
We have considered a variety of model parameters, specified
within the panels, and different offset times during the early
phase of flaring activity (with tp< 1000 s), i.e., 50 s, 100 s,
200 s, and 1000 s, in order to enhance the validity of our fits.

Figure 1 reflects the logarithmic behavior of X-ray
luminosity over time. Four different offset times of 50 s,
100 s, 200 s, and 300 s have been considered. The best fit for
peak luminosity versus peak time (the purple dotted–dashed
line) indicates a power-law trend with a power index of
∼−1.44, which is interestingly close to the value discussed by
Yi et al. (2016), i.e., −1.27. These light curves have been
plotted for three sets of model parameters: MBH=3 Me,
h=0.8, and α=0.13 (green curves), MBH=2.5 Me, h=
0.8, and α=0.15 (orange dashed curves), and MBH=5 Me,
h=0.6, and α=0.22 (blue dotted curves). The inset panel
shows the fit for a broader range of model parameters including
those considered in Figure 2. Being of a rather similar power
index, i.e., ∼−1.35, the variation of model parameters does not
affect the correlation we obtained in our model, which is in
good agreement with its phenomenological relation, namely

µ -L tp p
1.27. On the other hand, as expressed in Section 3.1,

Figure 2 reveals the robustness of the shape of the light curve in
our model through the considerable (acceptable) insensitivity
of the asymmetry parameter (width over peak time). Further-
more, our predicted values for these two shape parameters, i.e.,
k≈2.5 and w≈0.11, are in rather good agreement with those
predicted by Chincarini et al. (2010), i.e., k≈2 and w≈0.2.

In order to obtain results for the zero-mass-flux boundary
condition, and consequently take the magnetic barrier into
account, we need to probe for a set of model parameters that

satisfy the condition

( )t = <nt

t
1 25

diff

where /»t H vdiff A is the diffusion timescale that estimates the
magnetic field buoyancy and the time it takes to rise to the disk
surface (Shahamat & Abbassi 2017). Such a limitation ensures
that the magnetic barrier is likely to exist during the clump’s
accretion due to the accumulation of the magnetic flux inside
the inner regions (Xie et al. 2009; Shahamat & Abbassi 2017).
The adopted parameters in Figures 3 and 4 comply with this
criterion. For instance, for MBH=2.5 Me, h=0.8, and
α=0.15 we found an average value of about 0.8 for τ.
Figure 3 illustrates the variation of X-ray luminosity with

time for different sets of model parameters and for offset times
of 50 s, 100 s, 200 s, and 300 s. These parameters are similar to
those considered in Figure 1; to show the generality of our
result, we extended the sets of parameters for the inset to
include those regarded in Figure 4. Besides the fact that the
power-law fit for Lp and tp is in good agreement with
phenomenological predictions, taking the magnetic barrier into
account leads to an increase in the peak luminosity by an order
of magnitude in comparison with similar cases for the zero-
torque boundary condition. This is an expected result according
to general relativistic magnetohydrodynamic simulations
performed, e.g., by McKinney et al. (2012) and Tchekhovskoy
et al. (2011).
Regarding Figure 4, our fits for the other two shape

parameters k and w confirm a satisfactory robustness of our
model in reproducing the shape of the light curve for the case
of the zero-mass-flux boundary condition as well as the zero-
torque boundary condition.
However, we must point out some issues on the subject of

the magnetic barrier mechanism. On the one hand, Liu et al.
(2014), through the study of a self-gravitating neutrino-
dominated accretion disk (called NDAF), confirmed that
instabilities appear in the outer parts and away from the
equatorial plane. From a magnetic point of view, Shahamat &
Abbassi (2017) probed for the possibility of fragmentation in a
self-gravitating magnetized NDAF and also found it to be
possible in the outer parts and away from the equatorial plane.
Thus, we think that clumps might be thinner than what we
expected from the vertical structure of the late-time advection-
dominated central engine, that is, smaller values of the h
parameter should be more worthy of consideration. As a
consequence, clumps of smaller masses would be more likely
to form. On the other hand, regarding α in its physically
meaningful range, we found that the magnetic barrier is mainly
plausible in the case of heaver clumps (with masses of the order
of 0.4–0.8 Me). Therefore, we think that such a limitation
might make it lees likely for the magnetic barrier to govern the
evolution of the generated clumps. Moreover, we considered f
to be of the order of 10−2, which might be an overestimation
for the late-time accumulated magnetic flux, since, as time
passes and the accretion rate drops, both the clump’s magnetic
field and the accumulated magnetic flux decline. Such a drop in
magnetic field, which is more likely for higher values of toff,
might weaken the possibility of the magnetic barrier even more
(see, e.g., McKinney et al. 2012 and references therein).
In the context of a power-law correlation between Lp and tp,

there are some points of importance to be noticed. We need to
emphasize that the time dependence we considered to set our

Figure 1. X-ray luminosity light curve for three sets of model parameters:
MBH=3 Me, h=0.8, and α=0.13 (green curves), MBH=2.5 Me, h=0.8
and α=0.15 (orange dashed curves), and MBH=5 Me, h=0.6, and
α=0.22 (blue dotted curves). The vertical axis is on a logarithmic scale. Four
different offset times, toff=50 s, 100 s, 200 s, and 300 s, are included in the
case of a zero-torque boundary condition. The dotted–dashed lines in purple
depict the best power-law fit for the peak luminosity and peak time, which are
in good agreement with observations.
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model parameters, such as the radius at which the clump is
created, cannot lead to such a power-law behavior. This is
because we have used these relations to apply some physically
justified constraints to our model parameters, such as M and
R0, and these relations have not been applied directly in the
time evolution equation of luminosity. In particular,
Equation (21) has been used only to determine the accretion
rate at toff and it has not been considered in the main formalism
of the model, which provides us with the time evolution of
luminosity. In other words, we only aimed to use these
relations to fix some model parameters regarding the offset
time at which the clump starts to accrete. Hence, their time
dependences have not influenced the clump’s evolution
directly, so that one can think of this power-law trend as a
general outcome of our model.

4. Summary, Conclusions, and Discussion

We reconstructed the quantitative framework established by
Dall’Osso et al. (2017), through a magnetic style in which
small- and large-scale effects of magnetic field have been taken
into account. To this end, we added one more term
corresponding to the torque exerted by the Lorentz force (see
Equation (5)). To solve this evolution equation, some
approximations and assumptions have been implemented in

order to be able to adopt a similar semi-analytic approach to
that proposed by Tanaka (2011) and followed by Dall’Osso
et al. (2017). Through this method, we have provided final
solutions that differ from those achieved by the previous work
in some respects. First, for both cases of boundary conditions,
the power-law dependence on radius changed in comparison
with solutions obtained by Tanaka (2011). Second, considering
h as an arbitrary parameter that is not just fixed at “1” (this
affects nt in in the final solution) causes another difference in our
result with respect to what has been achieved by Dall’Osso
et al. (2017). Finally, to estimate model parameters such as
clump mass, we limited ourselves to the correlations introduced
between these parameters, so that our results are able to verify
the framework we defined; however, in Dall’Osso et al. (2017)
it was of less importance to consider such correlations in
providing data. On the other hand, to investigate the possibility
of a magnetic barrier occurring during each clump’s viscous
evolution, we compared the diffusion and viscous timescales.
Moreover, two different boundary conditions have been
imposed, i.e., zero torque and zero mass flux, in the hope of
distinguishing the presence of the accumulated magnetic flux
inside the inner regions, and consequently the magnetic barrier
mechanism. We then studied the validity of our model through
some key analogies to phenomenological findings. Our main
conclusions can be identified as follows.

1. The ratio of width to peak time is found to be an almost
constant, although somewhat scattered, parameter with an
average value ∼0.1, which is in rather good agreement
with its phenomenological estimate, ∼0.2. We also came
to the conclusion that a magnetic barrier, if it exists, will
not change this parameter significantly; instead, it might
cause our data to become less scattered (left panel in
Figure 4).

2. The insensitivity to model parameters of the skewness of
the X-ray light curves (the asymmetry parameter) reveals
another robust aspect of our model. This important
feature is respected for both boundary conditions, with a
similar value of about ∼2.4, which is in satisfying
agreement with its observational prediction, i.e., ∼2.

3. Interestingly, the power-law correlation between the
maximum value of luminosity and peak time, with a
value of about ∼−1.3, is found to be close to what was
estimated by Yi et al. (2016) from a phenomenological

Figure 2. Left: decay time vs. rise time for various sets of model parameters and offset times with the linear fit as a dotted purple line. Right: best linear fit for the
width parameter. Both fits show rather good agreement with observations, as discussed in the text. A zero-torque boundary condition has been considered.

Figure 3. Same as Figure 1 in the case of the zero-flux boundary condition.
Considering all sets of model parameters (those of Figure 4 have also been
taken into account), the fit for the inner plot complies with observations as well
as the other one (with only three sets of model parameters).
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point of view, i.e., ∼−1.27. Both boundary conditions
adopted here respect this feature.

There are some more points worth discussing here. For one
thing, Dall’Osso et al. (2017) found the bolometric luminosity
to be far from satisfactory in comparison with observations.
However, after conducting a spectral correction through the
adoption of a time-dependent X-ray efficiency, they modified
the results to be well matched with observations. Whereas,
considering the large-scale effect of a magnetic field led us to
obtain shape parameters in close agreement with phenomen-
ological values in both cases of bolometric and X-ray
luminosities. Note that, in our study, bolometric luminosity
differs from X-ray luminosity only by a constant coefficient,
LX=fXLbol. Thus, the bolometric and X-ray light curves have
the same shape parameters in our model.

Another point is that we assumed frad and fX to be constants.
Accounting for any inconstancy about these two parameters
might affect the shape of the light curve. On the one hand,
simulations lead us to conclude that the efficiency in converting
torus mass into jet energy varies from a few per cent up to more
than 100%. The black hole spin, the disk thickness, and the
magnetic flux might effectively alter this parameter (see, e.g.,
Giacomazzo et al. 2013 and references therein). On the other
hand, regarding fX, Dall’Osso et al. (2017) argued that a time-
dependent X-ray efficiency with a decreasing trend in time
(which is in agreement with the “curvature effect” if the
emitting region has an accelerated bulk relativistic motion
(Uhm & Zhang 2015, 2016)) might affect the spectral
properties of X-ray flares.

Separate from these considerations, our simple model,
together with the other probable modifications, could efficiently
reproduce the spectral properties of X-ray flares. However,
more precise studies via simulations appear to be essential to
shed more light on the dark nature of the late-time evolution of
a GRB’s central engine.

Appendix A
Boundary Conditions and Green’s Functions

Following Dall’Osso et al. (2017), to find the Green
function, we adopted assumed the viscosity to follow a radial
power law, ν∝Rn, and assumed a separable ansatz of the form

( ) ( )sS = l-R t R R e, p t, where p and Λ are real numbers and σ
is an arbitrary function of R, so that Equation (9) can be

rewritten as a Bessel differential equation (Tanaka 2011):
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where s=νR−n is a constant. It should be mentioned that we
considered the Newtonian potential with /W = GM R3 . We

also choose = + -p n b1

2
1 , with b1=1.5+3/h, and Λ=3sk2.

All these considerations, besides comparing Equation (26) with
the transformed Bessel function
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Now, the solution to Equation (10) can be written in the
following form:

( ) [ ( ) ( ) ( ) ( )] ( )s = +-R R A k J ky B k Y ky 28k
n

l l
2

where =
-

-
y R

n1 2

n1 2

. It is worth noting that in case of non-integer

l, Yl must be replaced by J−l. Integrating the above solution
over all possible k-modes gives the solution

( ) [ ( ) ( ) ( ) ( )]

( )
òS = +

¥
- - -R t R A k J ky B k Y ky e dk, .

29

n
l l

sk t

0

1 4 3 2

The mode-weighting functions A(k) and B(k) are determined by
the boundary conditions and the initial surface density profile Σ
(R, t= 0).
We just elaborate the zero-mass-flux boundary condition

here, because the zero-torque one is implemented in a similar
way. Before any further calculation to get the final solution, it
is better to determine s in the power-law expression for
viscosity as follows. The (magnetic) viscosity can be
parameterized as n a= Wcs

2 (Shakura & Sunyaev 1973;
Pringle 1991). On the other hand, invoking hydrostatic

Figure 4. Fits for the asymmetry parameter (left) and the variation of width with peak time (right) where the zero-flux boundary condition has been taken into account.
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equilibrium perpendicular to the disk plane gives us /= WH cs ,
and consequently one can infer n a= h GM R2 1 2, which
yields a=s h GM2 and n=1/2. Furthermore, considering
the continuity equation

( )¶S
¶

+
¶S
¶

=R
t

Rv

R
0, 30R

together with

 p= - SM Rv2 ,R

lead us to

( )


p
¶S
¶

=
¶
¶t R

M

R

1

2
. 31

Comparing Equations (31) and (9) provides us with the
following result:
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By substitution of the corresponding expressions for ν, Ω,
and Σ, and making use of the recurrence relations between
different Bessel functions
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where κ=kyin. As we proceed below, we need to obtain some
more ingredients to get the final solution for Σ(R, t). First,
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and, second, we know
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Thus, Λ can be rewritten in the form
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Combining all the above, the expression for surface density
takes the form
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where nt in is the viscous timescale of the inner radius of the disk
and x=y/yin. The mode weight c(κ) might be obtainable by
making use of a generalized Weber transform (Zhang et al. 2006;

Tanaka 2011)
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If a=1 and b=0, the pair is identical to the ordinary Weber
transform. However, a=l and b=1 correspond to our
desired boundary condition, i.e., zero mass flux. After all,
what would be the Green function? Clearly,
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Finally, through applying the above considerations and running
some more calculations, one may achieve the following result
for c(κ):
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Thus,

Considering Equation (10), the Green’s function would be
obtainable as
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Finally, regarding the initial surface density as
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in which Σ0 and R0 are arbitrary (Tanaka 2011), we have
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Likewise, in the case of the zero-central-torque boundary
condition, one can evaluate the Green’s function as
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and subsequently the surface density will read
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