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Abstract

We apply Gaussian processes and Hubble function data in (7)) cosmology to reconstruct for the first time the f(7)
form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as
from the method of radlal baryon acoustic oscillations, alongside the latest released local value of
Hy = 73.52 + 1.62kms 'Mpc™', we reconstruct H(z) and its derivatives, resulting eventually in a
reconstructed region for f(T) without any assumption. Although the cosmological constant lies in the central
part of the reconstructed reglon the obtained mean curve follows a quadratic function. Inspired by this we propose
a new f(T) parameterization, i.e., f(T) = —2A + &T7, with & the sole free parameter that quantifies the deviation
from ACDM cosmology. Additionally, we confront three viable one-parameter f(7) models from the literature,
which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(7)
region, and then we extract significantly improved constraints for their model parameters, comparing to the
constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct
Hubble measurements and the local value for Hy, in our analysis, the H tension can be efficiently alleviated with

the above reconstruction of f(7).

Unified Astronomy Thesaurus concepts: Cosmology (343); Gaussian Processes regression (1930)

1. Introduction

Modified gravity is an effective approach to describe the
acceleration of the early- and late-time universe (Capozziello &
Laurentis 2011a; Nojiri & Odintsov 2011), except for the
introduction of inflation and/or dark energy components
(Peebles & Ratra 2003; Cai et al. 2010; Elizalde et al. 2018;
Li & Shafieloo 2019; Li et al. 2019). In particular, interest in
studying modified gravity has been curbed by the recently
reported measurements of the Hy tension that has failed to be
addressed within the standard ACDM cosmology (Freedman
et al. 2019; Vagnozzi 2019; Wong et al. 2019). Among various
constructions of modified gravity one can find the interesting
class that is based on the torsional formulation (for a review see
Cai et al. 2016). In particular, starting from the simplest
torsional gravity, namely the teleparallel equivalent of general
relativity (Einstein 1928; Hayashi & Shirafuji 1979, 1982;
Aldrovandi & Pereira 2013; Maluf 2013), one can construct
modifications such as the f(7) gravity (Bengochea & Ferraro
2009; Linder 2010; Bamba et al. 2011, 2013, 2016; Cai et al.
2011, 2016, 2018; Capozziello et al. 2011; Chen et al. 2011;
Dent et al. 2011; Myrzakulov 2012; Wei et al. 2012; Wu &
Geng 2012; Amoros et al. 2013; Li et al. 2013, 2018; Ong et al.
2013; Otalora 2013; Haro & Amoros 2014; Nashed & El
Hanafy 2014; Darabi et al. 2015; El Hanafy & Nashed 2015;
Farrugia & Said 2016; Guo et al. 2016; Bahamonde et al. 2017;
Malekjani et al. 2017; Qi et al. 2017; losifidis & Koivisto
2018; Karpathopoulos et al. 2018; Krssdk et al. 2019;
Nunes 2018), the f(T, Tg) gravity (Kofinas & Saridakis
2014a, 2014b), scalar-torsion theories (Geng et al. 2011;
Hohmann et al. 2018), etc. Finally, one can proceed beyond the

teleparallel framework and construct more complicated tor-
sional theories.

One key question for any theory of modified gravity is how
to determine a viable choice from the arbitrary functions that
have been involved. Some general features may be determined
by theoretical arguments such as the theoretical requirements
for a ghost-free theory that possesses stable perturbations etc.,
or the desire for the action to possess Noether symmetries;
however, the main tool for constraining the possible forms of
modification remains that of confrontation with observations.
The general recipe is to consider by hand a variety of specific
forms inside some general class, apply them in a cosmological
framework, predict the dynamical behaviors at both the
background and perturbation levels, and then use observational
data to constrain the involved parameters or exclude the
examined form (a similar procedure can also be followed to
confront with local/solar system data). For the case of torsional
gravity, cosmological confrontations have been performed in
Wu & Yu (2010), Nesseris et al. (2013), Capozziello et al.
(2015), Basilakos (2016), Nunes et al. (2016, 2017), Nunes
(2018), Basilakos et al. (2018), and Anagnostopoulos
et al. (2019), and the solar system tests can be found in Iorio
& Saridakis (2012), Iorio et al. (2015), and Farrugia et al.
(2016), while the latest limit from galaxy lensing has been
presented in Chen et al. (2019). Hence, in the literature there
exist at least three viable scenarios for f(7) gravity (Nesseris
et al. 2013; Basilakos et al. 2018).

Although the above procedure of observational constraints is
very useful in offering crucial information on the possible
forms of modification, it is even more productive if the data can
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reconstruct the involved modification functions in a model-
independent way without inserting an initial guess. Such a
procedure has been successfully developed in the early-time
inflationary cosmology (Copeland et al. 1993; Lidsey et al.
1997; Herrera 2018); however, concerning the late-time
cosmology the involved complications allow only for a partial
application, such as in the cosmography framework (Bamba
et al. 2012; Capozziello et al. 2019) or backscattering
procedure (Capozziello et al. 2017). Interestingly, a useful tool
in the above reconstruction is the analysis of Gaussian
processes (GPs) (Rasmussen & Williams 2005; Holsclaw
et al. 2010; Seikel & Clarkson 2013), which allow one to
investigate features of the form of the involved unknown
functions in a model-independent way using only the given
data sets. Such a procedure has been applied to dark energy
models using various data sets in order to reconstruct the
evolution of the Hubble function, of the dark energy equation-
of-state (EoS) parameters, of the dimensionless comoving
luminosity distance, of the dark interaction term, etc. (Seikel
et al. 2012; Shafieloo et al. 2012; Kim et al. 2013; Seikel &
Clarkson 2013; Nair et al. 2014; Santos-da-Costa et al. 2015;
Yang et al. 2015; Zhang & Xia 2016; Wang & Meng 2017;
Elizalde et al. 2018; Gomez-Valent & Amendola 2018; Melia
& Yennapureddy 2018; Pinho et al. 2018; Zhang & Li 2018;
Elizalde & Khurshudyan 2019; Gomez-Valent & Amendola
2019; Rau et al. 2019; Yin & Wei 2019).

In this article we develop the GP analysis for the case of f(T)
cosmology, in order to reconstruct the form of the f(7)
modification in a model-independent way, namely using as the
only input the observational data sets of Hubble function
measurements H(z). Such a procedure becomes easy in the case
of f(T) cosmology, since the latter has the advantage that the
torsion scalar is a simple function of H, namely T = —H?, and
thus eventually all cosmological equations can be expressed in
terms of H(z) and its derivative. Hence, reconstructing H(z) and
its derivative from the Hubble data through the GP analysis,
leads to the reconstruction of the f(7) form itself, without any
assumption.

The plan of the article is as follows. In Section 2 we provide
a brief review of the cosmological equations of f(7) gravity. In
Section 3 we describe the basic ingredients of GPs and then we
apply them to observational data on the Hubble function to
reconstruct H(z) and its derivative. Then in Section 4 we use
this reconstruction to reconstruct the form of f(7) in a model-
independent way, and to extract a constraint on various f(7)
models in the literature. Finally, in Section 5 we summarize our
results with a discussion.

2. f(T) Gravity and Cosmology

In this section we briefly review f(7) gravity and cosmology.
In the torsional formulation one uses as dynamical variables the
vierbeins fields, which form an orthonormal basis at a manifold
point. In a coordinate basis they are related to the metric
through g, (x) = 7,5 €/ (x) ¢ (x), with Greek and Latin
indices respectively used for the coordinate and tangent space. In
the particular class of tele&)ara]lel gravity one introduces the
Weitzenbock connection W), = ) 8ﬂef (Weitzenbock 1923),
and thus the corresponding torsion tensor is

T = Wy — W, = ed (ue! — Oue), M

w = o v

while the corresponding curvature tensor is zero. We mention
here that the above formulation is constructed in a specific
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cosmological gauge where the spin connection components are
vanishing, which simplifies the analysis and allows us to
impose the specific vierbein choice below. Leaving a non-zero
spin connection is also possible, but this would involve more
complicated vierbeins (Kr$§dk & Saridakis 2016; Hohmann
et al. 2018).

The torsion tensor incorporates all the information on the
gravitational field, and the torsion scalar arises from its
contraction as

1
4

T= pr/];uw + %TWVTW/? - 7;)/1 TR Ve (2)
This forms the Lagrangian of teleparallel gravity (similarly to
general relativity where the Lagrangian is the Ricci scalar), and
since variation in terms of the vierbeins gives the same
equations as general relativity, the constructed theory was
named teleparallel equivalent of general relativity (TEGR).
One can start from the TEGR to derive the torsional-based

modifications. The simplest extension is to generalize T in the
action to be T + f(7) (Cai et al. 2016):

1
S=—— |d*e[T+ f(T)+ L,], 3)
16nG F () (
where e = det(elf) = /—g, G is the gravitational constant,
and where for completeness we have also included the matter
Lagrangian L,,. Variation of the above action results in the field
equations

e 10,(eef S,") 1 + fr]1 + €f S, 0 (D)frr

1 12
— [+ fr1eaT? S, + JAIT +F(T)]
=47nGel T, ", 4)

em
with f. = 0f /0T, frr = 0% /OT?, and where T, " denotes the
total matter (namely dark and baryonic matter) energy—momentum
tensor. Finally, S,/ = %(K’”’ p+ O Ty — 6, T,) is the

superpotential, with K, = —%(TW p — T, — T,") the con-
torsion tensor.

In order to apply f(7) gravity in a cosmological framework we
impose the spatially flat Friedmann—Lemaitre—Robertson—Walker
metric

ds* = dt* — a*(t) 6;dx'dx/, (%)

which corresponds to the vierbein form e =

2 diag(1, a, a, a),
where a(f) is the scale factor. Inserting this choice into the
general field Equation (4) we obtain the Friedmann equations

of f(T) cosmology, namely
_8nG f I

H? — = 4+ ==, 6
3 Pon 5 3 (6)

4G (p,, + Bu
_ Gyt B o

1+ fp +2Tfy

with H = a/a the Hubble function and where dots denoting
derivatives with respect to 7. Additionally, in the above
equations p,, and P, are respectively the energy density and
pressure of the matter fluid. Note that the torsion scalar (2) in
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Table 1
Observational Data for H(z) and their Uncertainty o in Units of
kms~! Mpc ™!
z H(z) ol z H(z) OH
0.070 69 19.6 0.4783 80.9 9
0.090 69 12 0.480 97 62
0.120 68.6 26.2 0.593 104 13
0.170 83 8 0.680 92 8
0.179 75 4 0.781 105 12
0.199 75 5 0.875 125 17
0.200 72.9 29.6 0.880 90 40
0.270 77 14 0.900 117 23
0.280 88.8 36.6 1.037 154 20
0.352 83 14 1.300 168 17
0.3802 83 13.5 1.363 160 33.6
0.400 95 17 1.4307 177 18
0.4004 77 10.2 1.530 140 14
0.4247 87.1 11.1 1.750 202 40
0.44497 92.8 12.9 1.965 186.5 50.4
0.24 79.69 2.65 0.60 87.9 6.1
0.35 84.4 7 0.73 97.3 7.0
043 86.45 3.68 2.30 224 8
0.44 82.6 7.8 2.34 222 7
0.57 92.4 4.5 2.36 226 8

Note. In the upper panel we present the 30 points deduced from the differential
age method of cosmic chronometers, and in the lower panel we present 10
samples obtained from the radial BAO method. The data are from Zhang & Xia
(2016) (see references therein for each data point).

Friedmann—Robertson—Walker (FRW) geometry becomes
T = —6H?, ®)

and this expression proves very useful for the purpose of the
present work.

As a next step we define an effective dark energy sector with
energy density and pressure respectively given by

3 [Ty ]
=—|-—=4+ =], 9
Poe SWG[ 6 3 ®

1 — fr T+ 2T7

Pop = ——| LT 2 | (10)

lonG| 1+ fp + 2Tf

and therefore its EoS parameter reads
T — 2T;

oo LU+ fr + 2TfLf/T — 2,1

Hence, the first Friedmann Equation (6) effectively acquires the
standard form H? = SWTG(,OM + ppp). Finally, the system of
cosmological equations closes by considering the conservation

of matter,
P + 3H(p,, + Ba) = 0, (12)

which using (6) and (7) implies additionally the conservation of
the effective dark energy,

P + 3H (pp + Por) = 0. (13)

3. Gaussian Process Using H(z) Data

In this section we first present the general steps of the GP
approach, and then we apply it in the case where the inserted
data come from observations of the Hubble function.
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3.1. Gaussian Process

The GP is a powerful tool allowing one to reconstruct the
behavior of a function (and its derivatives) directly from given
data sets (Seikel et al. 2012). The basic ingredients of the GP
techniques are the covariance function (kernel), and the feature
that the parameters describing it can be estimated directly from
observational data (Seikel et al. 2012). Hence, one does not
need to consider any specific parameterization for the involved
unknown function of the model, since it can be reconstructed
from observational data directly by using the cosmological
equations.

In the GP one assumes that the observations of the data set
are sampled from a multi-variance Gaussian distribution.
Moreover, the values of the function evaluated at different
points are not independent, and the connection between
neighboring points is due to the covariance functions chosen
in advance. The Gaussian distribution corresponds to a
random variable characterized by a mean value and a
covariance. Similar to Gaussian distributions, GPs should be
understood as distributions over functions, determined by a
mean function and a covariance matrix. Since the covariance
function, for a given set of observations, can determine the
relation between independent and dependent variables, the GP
correlates the function at different points by using the
covariance function.

There exist a number of possible choices for the covariance
function, i.e., for the kernel, e.g., squared exponential,
polynomial, spline, etc., which are used in various applications
(Rasmussen & Williams 2005). Although there is a discussion
on possible effects of the choice of kernel on the results
(Rasmussen & Williams 2005; Seikel & Clarkson 2013) (in a
similar way that there is a discussion of the possible effect of
the choice of covariance matrix on the usual observational
fittings, Eifler et al. 2009; Morrison & Schneider 2013), one
commonly used choice, with good theoretical justification, is
the squared exponential function (Rasmussen & Williams 2005;
Seikel & Clarkson 2013):

_ (x—x")2

k(x,x')=o%e a2, (14)

where oy and [ are parameters known as hyperparameters.
These parameters represent the length scales in the GP. In
particular, / corresponds to the correlation length along which
successive f(x) values are correlated, while we need the
parameter oy to control the variation in f(x) relative to the mean
of the process. Therefore, the covariance between output
variables will be written as a function of the input ones. We
mention that the covariance is maximum for variables whose
inputs are suitably close. Furthermore, as can be seen from
(14), the squared exponential function is infinitely differenti-
able, which proves to be a useful property in the case of
reconstructing higher-order derivatives. Additionally, the initial
and effective approach adopted in the GP to estimate the values
of the hyperparameters, is based on the training by maximizing
the likelihood, showing that the reconstructed function has the
measured values at the data points.

Finally, we mention that the consideration of the squared
exponential kernel is the most natural choice among various
possibilities, given the assumption that the error distribution for
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the observational data is the Gaussian one (Rasmussen &
Williams 2005; Seikel & Clarkson 2013).8

3.2. H(z) Data

In this work we will use GP techniques with Hubble data
H(z) (1 + z = ap/a, with ag = 1 the present scale factor). In
particular, we use 30-point samples of H(z) arising from the
differential evolution of cosmic chronometers, alongside 10-
point samples obtained from the method of radial baryon
acoustic oscillations (BAQO), which allows us to extend the data
range up to z = 2.4, improving also the behavior at low
redshifts. In Table 1 we present the above points as they appear
in Zhang & Xia (2016). We note that in principle the use of
data points from different data sets should be avoided;
however, as was discussed in Seikel et al. (2012), the
simultaneous use of the above two data sets gives the increased
statistics that are necessary for the correct application of the
GP. Finally, concerning the value of the Hubble parameter at
present, Hy, we use the latest released local value at 2.4%
precision, namely Hy = 73.52 £+ 1.62kms 'Mpc™' (Riess
et al. 2016). We mention here that since we are using direct
Hubble measurements and the local value for H,, in our
analysis and hence in our f(7) reconstruction, the H, tension is
alleviated by construction.’

We use the publicly available package Gaussian Processes in
Python developed by Seikel et al. (2012), and we apply it to the
aforementioned H(z) data. The result of this elaboration is the
successful reconstruction of H(z) and H'(z) (primes denote
derivative with respect to the redshift z) in a model-independent
way. In Figure 1, the numerically derived mean curves and
their 1o errors are presented.'” These reconstructions shall be
used to reconstruct the f(7) forms in the next section.

4. Reconstructing the form of f(7T) from the GP

In the previous section we applied the GP to the H(z) data and
we obtained the reconstruction of H(z) and its derivatives in a
model-independent way, namely without assuming anything
about the underlying gravitational theory or cosmological
scenario. In this section we will assume that the universe is
governed by f(7) gravity, hence we will use the cosmological
equations of Section 2, and we will use the reconstructed H(z)
and its derivatives to reconstruct the form of f(7) without any
other assumption. To our knowledge it is for the first time that

8 Another choice can be the so-called Matern (v = 9/2) covariance function

(Rasmussen & Williams 2005; Seikel & Clarkson 2013)

3| I 27(x — !
km(x, x’):a}e’ T X [l + 3|xl adl + ()6712 )

18)x —x'P  27(x — x")*
+ s
713 3504

+

with oy and [ the hyperparameters. However, its application leads to similar
results to the squared exponential function (14), namely coincidence within 1o
(Elizalde & Khurshudyan 2019). Indeed, repeating the analysis of the present
work using this alternative kernel shows that the difference between the results
is within 3%. Therefore, taking this fact into account, in this article we proceed
only with the choice of squared exponential kernel, namely (14).

o Accompanied with the H, as well as og tensions, another model-
independent approach of alleviation can be achieved by virtue of the effective
field theory approach as shown in Yan et al. (2019).

Note that, although we have imposed the value Hy,= 73.52 £
1.62km s~ Mpc ', the GP reconstruction itself lprovides an automatically
tuned value around 73.226 + 1.492 kms ' Mpc™ ' at z = 0, which remains
self-consistent.
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Figure 1. GP reconstruction of H(z) and H'(z) (primes denote derivative with
respect to the redshift z), using the Hubble data arising from the differential
evolution of cosmic chronometers (30-point sample) and from the radial BAO
method (10-point sample) (Zhang & Xia 2016), presented in Table 1, alongside
the latest released local value Hy = 73.52 £ 1.62kms™! Mpc’l (Riess
et al. 2016), using the squared exponential kernel (14). In each graph the
black curve marks the mean reconstructed curve, while the light blue region
marks the 1o errors coming from the data errors as well as from the GP errors.
We use units of km s~ Mpc ™.

this is performed, since up to now in the literature a specific
ansatz for f(7) was always imposed by hand and then the
confrontation with the data allowed the involved parameters to
be constrained.

The basic feature of f(7) gravity that makes the above
reconstruction procedure easy is the fact that in the FRW
geometry for the torsion scalar we have relation (8), namely
T = —6H> ie., it is a simple function of H. Thus, all the
involved terms and functions of f(T) cosmology can eventually
be expressed in terms of H(z) and its derivatives, which have
been reconstructed through the GP in the previous section.
Hence, the final step of this analysis is the reconstruction of the
form of f(7) itself.

We start by expressing all cosmological equations of
Section 2 in terms of the redshift z. For the time derivative
of a function & we have h = —W’H (1 + z), where the prime
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denotes derivative with respect to z, while for fr we have

_ &M _ df/dz _ f

_ =L 15
Jr dT dT/dz T’ (13)

The next step in the application of the GP is to replace f by
fe+ A7) —f(@)
Az |

for small Az, which allows us to relate the values of f at z;,
and z;. In particular, it is easy to see that from Equation (6) one
acquires

f@iv) — f(z)

_ '@ | o 871G f(Zt)]
=3 i H 3i) — —— Zi )
(Zit1 — 2) (z,)[ (zi) 3 P (i) + e

@)~ (16)

A7)

where T = —6H? and T" = —12HH'. Moreover, for the matter
sector we adopt the EoS parameter for regular dust, which
eventually gives

3 .0
= ——HZQ(l + 2)3, 13

due to (12). Here H and 2,y are the Hubble parameter and the
dark matter density parameter (2, = 87Gp,, /3H?) at z = 0.
Inserting these into (17), we finally obtain

S @iv) = (@)

H/(zz.i)) [HZ(z,») = HyQuo(l +2)° +

=6(ziy1— 2)

|

19)

Equation (19) allows us to reconstruct f(z), as long as H(z)
and H'(z) are known. However, in the previous sections we
were able to reconstruct H(z) and H'(z) from the Hubble data.
Thus, the reconstruction of f(z) is straightforward. Finally,
since both f(z) and T(z) = —6H"(z) are reconstructed, we can
easily reconstruct the form of f(7) in a model-independent way.

In Figure 2 we present the reconstructed f(7) resulting from
our analysis, which is the main result of the present work. Let
us now try to extract information on the possible forms of f(7).

The first and clear result is that the form f(T)=
—2A = const., namely the cosmological constant, lies in the
central part of the reconstructed region, and in particular has
the value f(T) = 76H0 (1 — Q,,0) (the dotted line of Figure 2),
which is exactly that of the cosmological constant (f(7) =
—19,267 (km s~ ' Mpc™")?) as expected.

Nevertheless, from the reconstructed region of Figure 2 we
can obtain additional information, namely the form of the mean
reconstructed curve (the black curve of Figure 2). In particular,
we can see that the mean curve is not a constant, but its best fit
(with accuracy R* ~ 0.94) follows a quadratic function of the
form f(T) = —2A + oT + €17, with —2A = —6HG (1 — Q,0)
(i.e., A is not a free parameter) and the two parameters
o R —0026 4+ 0.00088, £ ~ (—9.68 + 0.28) x 10™® in units
of kms™' Mpc™'. Since the linear term can be removed from
f(T) and be absorbed by the standard linear term that exists
already in (3), the above form remains with one free parameter,
namely &, as is the case in all viable models (that is why we did
not allow for a second free parameter, namely v7°, although in
this case the fitting is significantly improved at R* ~ 0.999).
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T

Figure 2. GP reconstruction of the f(7) form in a model-independent way,
using the forms of H(z) and H'(z) of Figure 1 reconstructed from Hubble data
and the squared exponential kernel (14), imposing £2,,0 = 0.302. The black
curve marks the mean reconstructed curve, while the light blue region marks
the 1o errors coming from the GP errors. Moreover, the dotted line marks the
scenario for the cosmological constant f(7) = —2A = —6H3(1 — Q,0). Both
T and f(T) are measured in units of Hz, i.e., (km s7! Mpc’l)z, and we present
them divided by 10°.

Hence, in summary, the mean curve of the reconstructed
procedure follows the quadratic form

f(T) ~ =2\ + £T2, (20)

with ¢ the sole free parameter. Note that, if we use a
dimensionless free parameter, then we may rewrite (20) as
f(T) ~ —2A + BT?*/T}, with Ty = —6H, and hence with the
dimensionless parameter 3 = 36H €.

However, besides the mean curve of the reconstruction, in
principle any curve inside the shaded region of Figure 2 is
allowed to be the true f(7T) form. Hence, let us confront three
viable one-parameter f(7) models of the literature (Nesseris
et al. 2013; Basilakos et al. 2018) with our reconstructed
region. In particular, they are the power-law (f;CDM) model

f(T) = a(=T), 3y

with o = (6H)'~ b 1 1=9%0  the square-root exponential (,CDM)
model

f(T) = aTy(l — e PVT/D), (22)
with o = % and Ty = —6Hg, and the exponential
(fsCDM) model

f(T) = aly(l — ePT/h), (23)
with o = %}W These models coincide with ACDM for

b = 0 (model (21)) and for b = 1/p — 0T (models (22) and
(23)).

As shown in Figure 3, if we expect the above f(7) forms to
lie inside the reconstructed region we obtain the following
constraints on their sole parameter: —0.0005 < b < 0.0004 for
the power-law (f;CDM) model, 0 < b = 1/p < 0.15 for the
square-root exponential (f>CDM) model, and 0 < b = 1/p
< 0.13 for the exponential (f3CDM) model. Interestingly
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Figure 3. GP reconstruction of the f(7) form in a model-independent way,
using the forms of H(z) and H'(z) of Figure 1 reconstructed from Hubble data
and the squared exponential kernel (14), imposing €2,,0 = 0.302. Additionally,
we have added the predictions of three viable f(7) models of the literature, for
their choices of edge parameter in order to still lie inside the reconstructed
region, namely b = —0.0005 and b = 0.0004 (black solid curves) for the
power-law model (21), b = 1/p = 0 and b = 1/p = 0.15 (red dashed curves)
for the square-root exponential model (22), and b = 1/p =0and b = 1/p =
0.13 (green dotted curves) for the exponential model (23). Both T and f(7) are
measusred in units of Hz, i.e., (km s ! Mpc’l)z, and we present them divided
by 10°.

enough, these constraints are improved compared to the
constraints coming from usual observational analysis using
Type Ia supernovae, quasi-stellar objects, the cosmic microwave
background shift parameter, direct measurements of the Hubble
constant with cosmic chronometers, and measurements of redshift
space distortion (fog), which give —0.047 < b < 0.011 for the
power-law, —0.035 <b=1/p <0.129 for the square-root
exponential, and —0.011 < b = 1/p < 0.111 for the exponential
models (Basilakos et al. 2018; Anagnostopoulos et al. 2019). Note
the significant improvement by two orders of magnitude in the
case of the power-law model. This is one of the main results of the
present work, and shows the capabilities of the reconstruction
procedure using the GP.

Finally, concerning the quadratic form of f(7) in Equation (20),
we deduce that in order to lie inside the reconstructed region its
free parameter ¢ should be constrained as —8.0 x 10° <
&< 45 x 1078 (in units of (km s Mpcfl)74). Equivalently,
using the parameter 3 = 36H; ¢ discussed above, we derive that
—59 < 3 < 33. Hence, in the present work we propose the new
f(T) parameterization (20), since it can also be efficient in
describing the reconstructed region that was obtained from the
Hubble data through the GP analysis. The efficiency of the
quadratic form was actually expected, since at late times, where H
and thus T are small, every function can be expanded in 7T-series
(Torio & Saridakis 2012; Nashed 2015; Farrugia et al. 2016;
Bahamonde et al. 2019; Chen et al. 2019).

For completeness, we close this section by presenting in
Figure 4 the model-independent reconstructed forms of the
dark energy density parameter Qpg = 87Gppg /3H? from (9)
and the dark energy EoS parameter wpg from (11), as they arise
using the obtained reconstructions of H(z), H'(z), and f(T).
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Figure 4. The reconstructed forms of the dark energy density parameter 2pg
from (9) (upper graph) and the dark energy EoS parameter wpg from (11)
(lower graph), as they arise using the obtained reconstructions of H(z), H'(z),
and f(7). In each graph the black curve marks the mean reconstructed curve,
while the light blue region marks the 1o errors coming from the data errors as
well as from the GP errors.

5. Conclusions

In this work we have applied the GP analysis and Hubble
function data in f(7T) cosmology to reconstruct for the first time
the f(T) form in a model-independent way. In particular, up to
now in the literature of f(7) gravity, as well as in the majority
of gravitational modifications, physicists have assumed a
specific ansatz for the involved unknown function, and used
observational data in order to constrain the model parameters.
However, the use of the GP analysis allows one to investigate
features of the form of the involved unknown functions in a
model-independent way without any assumption, using only
the given observational data sets.

We applied the GP analysis for Hubble function measure-
ments, namely for H(z) data sets coming from cosmic
chronometers as well as from the radial BAO method, alongside
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the latest released local value Hy = 73.52 &+ 1.62kms ™' Mpc ™!
at 2.4% precision. Application of the procedure led to the
reconstruction of H(z) and its derivative without any assumption.
On the other hand, f(7T) cosmology has the advantage that the
torsion scalar is a simple function of H, namely 7 = sz, and
thus eventually all cosmological equations can be expressed in
terms of H(z) and H'(z). Hence, having reconstructed H(z) and H'
(z) allowed us to additionally reconstruct the f(7) form itself,
without any assumption. To our knowledge this is the first time
where a general and model-independent reconstruction for the
f(T) gravity has been obtained. Additionally, we mention that
since we are using the direct Hubble measurements and the local
value for H, the H, tension can be alleviated by construction in
our analysis and hence in our f(7) reconstruction.

A first result of our analysis is that the cosmological
constant lies in the central part of the reconstructed region, as
expected. However, the mean curve of the reconstructed
region is not a constant, but its best fit follows a quadratic
function. Hence, inspired by this, in this work we proposed a
new one-parameter f(7) parameterization, namely f(7) =
—2A + €77, with —2A = —6H02(1 — Q,u0) and £ the sole free
parameter that quantifies the deviation from ACDM cosmol-
ogy. Moreover, fitting this form into the reconstructed region,
we extracted the constraints on the free parameter as
—80x 10 < &<45x 1078 (kms ' Mpc™ )™,

Additionally, we have confronted three viable one-parameter
models of f(T) with the reconstructed f(7) region; these are the
power-law, square-root exponential, and exponential models.
As shown in the main text, we obtained improved constraints
for their free parameters compared to the bounds that arise from
traditional observational analyses; in particular, for the case of
the power-law model the improvement was more than two
orders of magnitude.

In summary, by using GPs and Hubble data we obtained a
model-independent reconstruction for the f(7) form, and by
fitting its mean curve we proposed a new one-parameter f(7)
parameterization, namely the quadratic one. Finally, confront-
ing three viable f(7) models of the literature with our
reconstructed region, we extracted improved constraints on
their parameters. These features reveal the capabilities of the
reconstruction procedure using GPs. Hence, it would be
interesting to apply them in other theories of modified gravity
too.
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