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1.  Falling with acceleration greater  
than g
Many people, also within the physics community, 
are astonished at the acceleration of a bungee 
jumper exceeding the acceleration of gravity g 
during the fall when the bungee rope is still slack. 
Falling with acceleration greater than g is contrary 
to the result of a free falling object and that makes 
it far from being intuitive, even for physicists [1].

Seeing is believing: one can explore a similar 
phenomenon and carry out the following experi-
ment [2]. Two identical blocks are dropped at the 
same time from a certain height. One block is in 
free fall and the other block is chained with its 
free end of the U-formed chain kept at the ini-
tial height. The chained block touches the ground 
earlier than the other block. This can be observed 
with the naked eye, and one can record the motion 

on camera (a smart phone will do) and process the 
data with a video analysis tool in order the get a 
quantitative confirmation of acceleration greater 
than g [1, 3].

An interesting variation on the previous 
experiment is shown in figure 1. It was proposed 
and carried out by Hogstad during a MatRIC [4] 
symposium on modelling, visualization and simu-
lation in 2015, and the recorded video (see sup-
plementary material) was used in lesson material 
in the SimReal environment [5].

This new experiment gives food for thought 
about the role of the chain in the fall of a chained 
object. It emphasizes that one can only under-
stand this phenomenon of falling with an acceler-
ation greater than g if one abandons the Galilean 
paradigm about the motion of an object of con-
stant mass, according to which every acceleration 

A Heck and P Uylings

A Lagrangian approach to bungee jumping

Printed in the UK

025009

PHEDA7

© 2020 IOP Publishing Ltd

55

Phys. Educ.

PED

1361-6552

10.1088/1361-6552/ab5cdc

2

Physics Education

P a p e r

A Lagrangian approach to 
bungee jumping
André Heck1 and Peter Uylings2

1  Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam,  
The Netherlands
2  Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam,  
The Netherlands

E-mail: a.j.p.heck@uva.nl

Abstract
The fact that a bungee jumper can reach an acceleration greater than the 
acceleration of gravity is, also from a physics point of view, intriguing. Taking 
only gravity into account, it can be explained by applying conservation 
of energy or by deriving carefully the equation of motion in a Newtonian 
approach. In this article we show how it can be done straightforwardly via the 
Lagrangian approach. We will also apply this method to the fall of a block 
with a chain hanging underneath and touching the ground floor, and to the 
fall of a chain on a scale. These examples of systems of variable mass may 
motivate physics students to learn and use the Lagrangian approach, and may 
let them appreciate the benefits of this approach in some physics problems 
compared to Newtonian mechanics, with which they are already familiar.

S Supplementary material for this article is available online

IOP

Published

3

iopscience.org/ped
2020

1361-6552/ 20 /025009+11$33.00

Phys. Educ. 55 (2020) 025009 (11pp)

publisher-id
doi
mailto:a.j.p.heck@uva.nl
https://doi.org/10.1088/1361-6552/ab5cdc
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6552/ab5cdc&domain=pdf&date_stamp=2020-01-08
http://iopscience.org/ped


A Heck and P Uylings﻿

2March 2020

must be produced by a force. Instead one must 
realize that the block plus the moving part of the 
chain that is initially in a tight U-form is not a 
falling rigid body, but is in fact a system of vari-
able mass when one takes the mass of the chain 
into account.

The experiment shown in figure  1, when 
extended to the phase when the block with a 
chain hanging underneath has fallen so far that 
the chain touches the ground floor and will fall 
further with part of the chain coming to rest on the 
floor, links to the posttest task of Kesonen et al 
[3] in their teaching unit for preservice physics 
teachers about understanding the acceleration of 
a bungee jumper (see figure 2).

In Hogstad’s experiment one would see on 
video that the block on the left in the experimental 
setting of figure 1 would speed up when the chain 
is in touch with the floor. An interesting question 
is now whether this speeding up of the system 
on the left is quick enough to have the blocks on 
both sides hit the floor at the same time or that the 
block tied to a folded chain hits the floor first. We 
explore this in section 4.

2.  Theoretical underpinning of a  >  g and 
modelling the fall of an object tied to a 
U-formed chain
To explain how a bungee jumper can reach an 
acceleration greater than the acceleration of grav-
ity, it is easiest to look at the simplified situation 
of a chained block falling under gravity and with 
no friction involved. The 1D model, including the 
symbols used, is sketched in figure 3. The origin 
of the coordinate system used to describe the 
motion is the initial position of the dropped block 
with the positive vertical axis pointing downward.

M  =  mass of the block
m  =  mass of the chain
µ  =  m/M, mass ratio chain: block
L  =  length of the chain
g  =  acceleration of gravity
a  =  acceleration of the chained block
v  =  speed of the chained block
y   =  distance travelled by the block
Kagan and Kott [6] used conservation of 

energy to derive the following formula for the 
acceleration as long as there is still a moving part 
of the chain:

Figure 1.  Dropping simultaneously two identical chained blocks from a height of a few metres (part 1). The chain 
on the right hangs initially in a tight U-form and the length of the chain hanging under gravity on the left is (almost) 
equal to the length of the part of the U-formed chain that will move (the red frame in part 2). The block on the right 
will move faster before anything touches the ground floor (part 3). Reproduced with permission from SimReal.
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a = g

Ç
1 +

µy (4L + µ (2L − y))

2(µ (L − y) + 2L)2

å
.� (1)

Substituting y = L in the above equation  gives 
the formula of the acceleration when the block 
has fallen so far that the whole chain has come 
to rest:

a = g
Å

1 +
µ (4 + µ)

8

ã
.� (2)

Formula (2) shows that at this moment the accel-
eration a is certainly greater than g. However, this 
formula does not give much insight in what is 
really going on.

Through a more direct Newtonian approach, 
one can understand why a > g and derive the 
equation  of motion. Newton’s second law of 
motion of an object with variable mass is in this 
case

∑
F =

dpobj

dt
=

dmobj

dt
· vobj + mobj · aobj,� (3)

where mobj, vobj, aobj, and pobj represent the mass 
of the object (changing in time), the veloc-
ity, acceleration, and momentum of the object, 
respectively, and F represents a force acting on 
the object. The picture of the experimental set-
ting shown in figure  3 illustrates that the mov-
ing part on the right-hand side diminishes during 

the fall because part of the chain ‘moves’ to the 
left-hand side of the chain hanging still. This 

implies dmobj

dt < 0. Because v > 0 in the direction 
of motion, we may conclude that the first term in 
the right-hand side of equation (3) is negative and 
consequently that the whole expression on the 
right is less than mobj · aobj. When only gravita-
tional force is taken into account, we can substitute ∑

F = mobj · g into the left-hand side of equa-
tion. So equation (3) leads to mobj · g < mobj · aobj 
and this implies that a > g must hold.

Two identical balls A and B are
at equal heights from the floor.
A chain is tied to ball B, from
which it hangs so that another end
of the chain touches to the floor,
as illustrated at right. The chain is
approximately four times heavier
that the ball. The balls are dropped
at the same time. Predict what would
happen. The balls hit the floor
a) At the same time
b) At different times,
    so that ball A hit the floor first
c) At different times,
    so that ball B hit the floor first
Explain your reasoning.

Ball A Ball B

Chain hanging
from ball B

Floor

Figure 2.  Posttest task in [3]. The correct answer is c. Reproduced from [3]. © IOP Publishing Ltd. All rights 
reserved.

½ (L – y)

½ (L + y)

M

y

Figure 3.  Sketch of the block of mass M attached 
to a folded chain of length L that has already fallen 
a distance y  and is travelling at a speed v and 
acceleration a.
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Heck et al [1] derived the following equation of 
motion for y  as function of time via the Newtonian 
approach:

ÿ = g +
1
2µẏ2

µ (L − y) + 2L
.� (4)

Crucial in the derivation of this differential equa-
tion is the assumption that vobj denotes the velocity 
by which the mass leaves the moving system and 
that one can take for this instantaneous change 
from v to 0 the average value, i.e. vobj =

1
2 v. A 

similar viewpoint was taken by Biezeveld [7] in 
his comparison of experimental data with results 
obtained by computer modelling. Heck et al [1] 
used equation (4) to derive formula (1) of Kagan 
and Kott [6] for the acceleration of the bungee 
jumper.

But the factor ½ in the speed of the bend of 
the hanging chain is easily overlooked (e.g. in [8]; 
see also [9]) and is from physics point of view 
not easily underpinned. Wong and Yasui [10] have 
shown that the factor ½ is required for energy 
conservation and that the mass transfer at the 
fold of the chain must take place elastically at the 
mean velocity when the falling part of the folded 
chain and the part of the chain that hangs still are 
both conservative systems. In other words, addi-
tional considerations are needed to derive the cor-
rect equation  of motion. In the next section  we 
show that instead of the Newtonian approach 
to classical mechanics, one can take recourse to 
Lagrangian mechanics and derive the equation of 
motion without additional physical or mathemati-
cal procedures.

3.  A Lagrangian approach to bungee 
jumping and to other motions of falling 
chains and chained objects
All students are first introduced in physics edu-
cation to Newtonian mechanics, in which force, 
momentum and the three laws of Newton are used 
to describe the dynamics of a rigid body and to 
understand the motion. For systems with vari-
able mass this leads to counterintuitive results. A 
good alternative without recourse to the concepts 
of force and momentum is Lagrangian mechan-
ics, which is mainly taught at undergraduate level 
in advanced classical mechanics courses. In this 
formalism, kinetic and potential energy together 

with the principle of least action drive the deri-
vation of the equation of motion. A summary of 
the Lagrangian formalism can be found in [11]; 
a concise but rigorous treatment of Lagrangian 
systems for physics, engineering and mathemat-
ics students can be found in [12].

In the Lagrangian formalism, a mechanical 
system is described by general coordinates and 
velocities. In our study we deal with a 1D sys-
tem and thus we can work with a Lagrangian L 
that is a mathematical function of the generalized 
coordinate q, generalized velocity q̇, and time t, 
that is, L (q, q̇, t). For a conservative system, the 
least action principle leads to the Euler–Lagrange 
equation

∂L

∂q
− d

dt

Å
∂L

∂q̇

ã
= 0,� (5)

in which the Lagrangian L = T − U  is com-
posed of the kinetic energy T  and the potential 
energy U .

3.1.  A Lagrangian approach to bungee 
jumping

Referring to figure  3, the natural coordinate to 
use is q = y where the distance ytravelled by 
the block (or the bungee jumper if one prefers 
that context) is the reference point for the analy-
sis. This requires kinetic and potential energy to 
be expressed in terms of y and ẏ; in fact ẏ = v 

½ L – y

½ L ½ L

M

M

Initial
situation

Chained block
in motion

Initial
height

y

Figure 4.  A block to which a chain is tied that hangs 
beneath the block and initially touches the ground floor 
(left-hand side) and the chained block in motion with 
part of the chain coming to rest on the floor.
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when the positive vertical axis points down-
ward. As can be seen from figure 3, the moving 
part of the chain on the right-hand side has mass 
mr =

1
2 (L − y) · m/L , whereas the part on the 

left-hand side hanging still has mass ml = m − mr. 
The kinetic energy of the moving chain is

Tr =
1
2 mrv2 = 1

2 m
L − y

2L
v2 = 1

2 m
L − y

2L
ẏ2� (6)

and the kinetic energy Tb of the block is

Tb = 1
2 Mv2 = 1

2 Mẏ2.� (7)

The kinetic energy T of the mechanical system is 
T = Tr + Tb.

The potential energy U , with the zero level 
chosen at the origin of the coordinate system, is 
the sum of the potential Ur of the moving part of 
the chain, with centre of mass at distance yr, given 
by

Ur = −mrgyr = −m
L − y

2L
g
Å

y +
L − y

4

ã
� (8)

and the potential Ul  of the part of the chain hang-
ing still, with centre of mass at distance yl, given 
by

Ul = −mlgyl = −m
L + y

2L
g

L + y
4

� (9)

and the potential Ub of the block given by

Ub = −Mgy.� (10)

Collecting all terms into the Lagrangian L gives

L = 1
2 m L−y

2L ẏ2 + 1
2 Mẏ2

+m L−y
2L g
Ä

y + L−y
4

ä
+ m L+y

2L g L+y
4 + Mgy.

� (11)

Because the above Lagrangian contains no 
explicit time dependence, the chained block is a 
conservative system. We use the above expres-
sion to compute the partial derivatives present in 
the Euler–Lagrange equation. Application of the 
rules of differentiation and algebraic simplifica-
tion lead to

∂L
∂ẏ = m L−y

2L ẏ + Mẏ = ẏ
Ä

M + m L−y
2L

ä
,

∂L
∂y = − 2mgy−2Lg(2M+m)+mẏ2

4L .
� (12)

Taking the time derivative of the first term gives

d
dt

Å
∂L

∂ẏ

ã
= ÿ
Å

M + m
L − y

2L

ã
− mẏ2

2L
.� (13)

Equating this expression to ∂L/∂y , substituting 
µ = m/M , isolating ÿ, and simplifying algebraic 
expressions lead to the equation of motion men-
tioned in section 2 (i.e. formula (4)):

ÿ = g +
1
2µẏ2

µ (L − y) + 2L
.

� (14)
The special case of a falling folded chain (i.e. 
without the block) is included in the above 
analysis: we only have to substitute M = 0 in 
the formulas and we finally obtain the following 
equation of motion (e.g. in agreement with [13]):

ÿ = g +
1
2 ẏ2

L − y
.� (15)

3.2.  A Lagrangian approach to the posttest 
task in [3]

We also apply Lagrangian mechanics to the post-
test task of Kesonen et al [3] illustrated in figure 2. 
It is about the fall of a block to which a chain is 
tied that hangs under gravity underneath the block 
and initially touches the ground floor. The block 
is dropped and part of the chain comes to rest on 
the floor during the motion. This is again a system 
of variable mass.

When we would choose the point where the 
hanging chain initially touches the floor as origin 
of the coordinate system and choose the positive 
vertical axis in the upward direction, the algebra 
in the Lagrangian formalism would be rather 
simple. But, having in mind the computer model-
ling of the revised experiment of Hogstad, as dis-
cussed in the next section, we choose the symbol 
M for the mass of the ball, consider a chain of 
length 1

2 L and mass 1
2 m, select the initial position 

of the block as origin of the coordinate system, 
and choose the positive vertical axis in down-
ward direction. The situation before the block is 
dropped and during the fall is shown in figure 4. 
We show how the Lagrangian approach can be 
applied conveniently via a coordinate change.

Referring to figure 4, the natural coordinate is 
q = y, where the distance y travelled by the block 
is the reference point for the analysis. For conveni-
ence we introduce the new coordinate u = 1

2 L − y 
and use this one in the Lagrangian formalism. 
Keep in mind that u̇ = −ẏ and ü = −ÿ. As can be 
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seen from figure 4, the moving part of the chain 
has mass mc =

( 1
2 L − y

)
· m/L = m · u/L . The 

kinetic energy of the moving part of the chain is

Tc =
1
2 mcv2 = 1

2 m
u
L

v2 = 1
2 m

u
L

u̇2� (16)

and the kinetic energy Tb of the block is

Tb = 1
2 Mv2 = 1

2 Mu̇2.� (17)

The kinetic energy T  of the mechanical system is 
T = Tc + Tb.

The potential energy U , with the zero level 
chosen at the ground floor, is the sum of the 
potential Uc of the moving part of the chain, with 
centre of mass at distance uc from the ground 
floor, given by

Uc = mcguc = m · u
L
· g · u

2
=

1
2

mg
L

u2� (18)

and the potential Ub of the block given by

Ub = Mgu.� (19)

Collecting all terms into the Lagrangian L (u, u̇, t) 
gives

L =
m
2L

u · u̇2 +
1
2

Mu̇2 − mg
2L

u2 − Mgu.� (20)

We use this expression to compute the partial 
derivatives present in the Euler–Lagrange equa-
tion. Application of the rules of differentiation 
and simplification gives

∂L
∂u̇ = m

L u · u̇ + Mu̇ = u̇
(
M + m u

L

)
,

∂L
∂u = m

2L u̇2 − mg
L u − Mg = m

2L u̇2 − g
(
M + m u

L

)
.

� (21)
Taking the time derivative of the first term gives

d
dt

Å
∂L

∂u̇

ã
= ü

(
M + m

u
L

)
+

m
L

u̇2.� (22)

Equating this expression to ∂L/∂u , substituting 
µ = m/M  , isolating ÿ, and simplifying algebraic 
expressions lead to the following differential 
equation:

ü = −g −
1
2µ · u̇2

µ · u + L
.� (23)

Going back to the original coordinate y we get the 
following equation of motion:

ÿ = g +
1
2µẏ2

µ ·
( 1

2 L − y
)
+ L

.� (24)

Formula (24) resembles formula (14), which is 
the equation of motion for the fall of the bungee 

L

L

½ (L – y1)

L – y2

½ L

M

Initial state

System 1. Fall of a chained block
                            with the chain in tight U-form

System 2. Fall of a block with a chain
     hanging underneath

Initial stateIntermediate state Intermediate state

M

y1

y2

Figure 5.  Sketch of the experimental setting (with initial and intermediate states) and the choice of coordinate 
system with its origin at the height at which the blocks are dropped.
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jumper when the rope is still slack: it is in fact the 
same formula if one reads both formulas as

ÿ = g +
1
2µẏ2

µ · (l − y) + 2l
� (25)

where l is the length of the chain.
The special case of the fall of a vertically 

hanging chain of length 1
2 L that touches the floor 

(i.e. without the block) is included in the above 
analysis: we only have to substitute M = 0 in the 
formulas to come to the following equation  of 
motion (in agreement with results [14] under the 
assumption of no dissipation and conservation of 
energy):

ÿ = g +
1
2 ẏ2

( 1
2 L − y

) .� (26)

Note that this equation of motion diverges when 
the chain reaches the ground floor. This is actu-
ally a consequence of the assumptions made in 
the modelling of the phenomenon. The system 
actually turns out to be nonconservative due to the 
energy loss through the inelastic collision of the 
part of the chain coming to rest on the floor with 
the ground floor. Dissipation can be incorporated 
in the Lagrangian approach leading to more gen-
eral Euler–Lagrange equations, but this is beyond 
the scope of this article.

4.  Modelling the motion in the revised 
experiment
As promised we would model the following 
revision of Hogstad’s experiment discussed in  
section 1. We consider one block that is chained 
such that the free end of the chain is kept at the 
initial height, which is equal to the length of the 
chain, and a second block with a chain hanging 
underneath of length equal to half of the length of 
the chain attached to the first block. Both blocks 
are dropped simultaneously and the question is 
how the motion of both blocks develops in time 
and whether both blocks hit the floor at the same 
time or one block hits it earlier. The experimental 
setting is sketched in figure 5.

In section  3 we have used the Lagrangian 
approach to derive the equation of motion when 
the systems in the experiment behave as systems 
of variable mass. From this it follows that we 
have the following initial value problems:

4.1.  System 1: block with a chain hanging in 
tight U-form, i.e. the bungee jumper model

In this system we can use the equation of motion 
derived via the Lagrangian approach to bungee 
jumping in section 3.1, i.e. formula (14). We have 
to solve the following initial value problem:

ÿ1 = g +
1
2µẏ2

1

µ (L − y1) + 2L
, y1 (0) = 0, ẏ1 (0) = 0.

�
(27)

4.2.  System 2: block with a chain hanging 
underneath

First we have a free fall of the chained object and 
as soon as the chain touches the floor it becomes 
the system of variable mass discussed in sec-
tion 3.2. The equation of motion is therefore split 
into two parts: as long as the chained object is in 
free fall we have

ÿ2 = g, y2 (0) = 0, ẏ2 (0) = 0.� (28)

The time interval of this free fall is 
î
0,
√

L/g
ó
 and 

the speed of the object is at the end of the time 
interval equal to 

√
gL. Hereafter, it follows from 

formula (27) with y = y2 − 1
2 L that the motion 

is described by the following initial value prob-
lem as long as the block does not hit the floor, i.e. 
when 12 L � y2 � L:

ÿ2 = g +
1
2µẏ2

2

µ·(L−y2)+L ,

y2

Ä√
L/g
ä
= 1

2 L, ẏ2

Ä√
L/g
ä
=

√
gL.

� (29)

Analytical formula for the time T needed for 
the chained blocks to reach the ground floor 
can be found with a computer algebra system 
like maple. They involve elliptic functions, a 
topic that is usually beyond the mathematical 
competency of undergraduate physics students. 
Instead one can let students program simulations 
in mathematical software environments like 
Matlab or R Studio, or even in a programming 
language like Python using scientific libraries. 
But such environments are hardly accessible 
to secondary school students. However, within 
their reach are graphical system dynamics based 
modelling environments like Insight Maker 
[15] and the modelling tool of Coach [16, 17]. 
We will use the latter system, as we have done 
before in [1].

Phys .  Educ .  55  (2020)  025009
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Graphical system dynamics based model-
ling involves quantities commonly called lev-
els that change in time by inflows and outflows. 
In our modelling activity we have position and 
velocity as level variables and acceleration 
as inflow. Physical flow and information flow 
determine the system’s behaviour over time. 
Information flow is best understood as an indi-
cation of dependencies between variables. These 
variables can be levels, flows, parameters, and 
auxiliary variables. These relations are made 
explicit graphically and very specific via math-
ematical formulas. The graphical model actually 
represents a computer model, which provides 
in many cases an iterative numerical solution 
of a system of differential equations, e.g. via a 
Runge–Kutta algorithm.

The two systems in the revised experiment 
illustrated in figure  5 have been graphically 
modelled in Coach, and the position–time graphs 
and the ratio a/g —time graphs have been com-
puted and plotted; see figure  6. We have used 
the parameter values µ = 4.5 and L = 5 m in the 
simulation.

From the position-time graphs in figure 6 it is 
clear that the block in system 1, a block tied to a 
tight U-shaped chain, hits the floor earlier in time 
than the block in system 2, a block tied to a chain 
hanging underneath. The ratio a/g —time graphs 
illustrate that although the decrease in mass dur-
ing the fall is equal for both systems, the block in 
system 2 reaches the highest acceleration, actu-
ally because the change of mass only happens in 
the second part of the fall.

5.  Modelling the weight of a chain falling 
on a scale
As we have mentioned in the previous section, the 
equations  of motion that we derived can be eas-
ily adapted for the fall of a U-formed chain under 
gravity and the fall of a chain on the ground to form 
there a pile. We only need to set the extra weight 
of the object tied to the chain to zero, i.e. M = 0.

One particular variation, namely the fall of a 
ball chain forming a pile on a scale pan of a scale, 
offers students the opportunity to set up an experi-
ment, collect data, and notice that the ratio of the 

Figure 6.  Screen shot of a coach activity in which a graphical model implements the motion of system 1 and 2 
sketched in figure 5 and provides simulation results. Reproduced with permission from Coach Software.
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reading of the scale and the total weight of the 
chain becomes greater than one. The theoretical 
value for the reading of the scale denoted by W, 
under the assumption of a perfectly inelastic col
lision of the chain with the scale pan, is given by 
the following formula

W =
m
L
· g · y +

m
L
· ẏ2.� (30)

The first term in this formula corresponds with 
the weight of the pile on the scale pan after the 
chain has fallen over a distance y The second 
term follows from the change in the linear verti-
cal momentum ∆p during a time interval ∆t. A 
mass m/L · ẏ ·∆t with velocity ẏcomes to rest on 
the scale pan and thus ∆p = m/L · ẏ ·∆t · (−ẏ) .  
From Newton’s second law follows:

F =
dp
dt

= lim
∆t→0

∆p
∆t

= −m
L

ẏ2.� (31)

The reading of the scale corresponds with the 
absolute value of this expression, i.e. with 
m/L · ẏ2. When we numerically solve the follow-
ing equation of motion for the chain of length 1

2 L 
and total mass 12 m

ÿ = g +
1
2 ẏ2

( 1
2 L − y

)� (32)

we can also compute the ratio W/
( 1

2 mg
)
 during 

the fall of the chain on the scale pan. Figure 7 is 
a screen shot of a Coach activity showing the 
graph of the weight ratio versus the distance trav-
elled by the top of the chain, computed by graphi-
cal system dynamics based model and using the 
parameter settings of [18].

What catches the eye is the unrealistic high 
values of the weight ratio when the chain has nearly 
completely come to rest on the scale pan. This is 

Figure 7.  Screen shot of a coach activity in which a graphical model implements the fall of a chain on a scale 
pan. The graph of the weight ratio versus the distance travelled by the top of the chain is drawn. Reproduced with 
permission from Coach Software.
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certainly evident if the model results are compared 
with the experimental results of [18]. Students can 
actually observe during the experiment that the 
assumptions used in the modelling process, namely 
that the system is conservative, are not met in reality. 
They will probably notice that the process of part of 
the chain coming to rest on the scale pan involves 
interaction between the balls in a ball chain and 
consequently involves friction. This example, in 
which experimental data and modelling results can 
be compared, shows once more the importance of 
having a good sense for the quality of models and 
modelling. This modelling sense is an important 
set of competencies that physics students need to 
develop in their courses in the bachelor programme.

6.  Discussion
Despite a ‘call to action’ [19] sixteen years ago in 
which it was proposed to base introductory univer-
sity mechanics teaching and learning around energy 
instead of force and around the principle of least 
action, despite position papers [20, 21] to justify and 
promote this so-called action physics, and despite 
recent reports [22] that such an approach is in prac-
tice challenging but doable and motivates students, 
it is fair to state that physics students at most uni-
versities learn about the principle of least action and 
the Lagrangian approach only in advanced classical 
mechanics courses, with the main purpose of pre-
paring students to the concept of Hamiltonian in the 
context of quantum mechanics.

The challenges of action physics do not only 
have to do with the mathematical competencies 
needed, but also with various misconceptions 
about the principle of least action and the calcu-
lus of variation [23]. Several authors [11, 24] have 
discussed methods to simplify the mathematics, 
but for many a student the Lagrangian, defined as 
the difference between kinetic energy and potential 
energy, remains a vague concept that is less clear 
than the concepts of force, momentum and energy.

But in our opinion, a major problem is in 
fact that the principle of least action and the 
Lagrangian approach are introduced via sim-
ple physics problems that students have solved 
before in a Newtonian approach. They hardly 
get a chance to practice the Lagrangian approach 
in new situations where a Newtonian approach 
would be more cumbersome. After treatment of 
the subjects the students can go back to business as 

usual and solve physics exercises via Newtonian 
mechanics or conservation of energy.

We think that the examples discussed in the 
paper such as the first phase of the fall of a bungee 
jumper and the fall of a block with a chain hang-
ing underneath and touching the ground floor, 
are interesting and motivating applications of the 
Lagrangian approach that could convince physics 
students that in particular problems (here systems 
of variable mass) this alternative approach has big 
advantages compared to the Newtonian approach.
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