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1.  Introduction

After the papers by Wilczek and Shapere [1, 2], the sponta-
neous breaking of time translational symmetry (TTS) becomes 
a focus of research and controversy [3–9]. According to the 
special theory of relativity, time and space must be put on 
the same footing. The existence of crystals is a manifestation 
of space translational symmetry (STS) being spontaneously 
broken into a discrete one [10]. It is then natural to think that 
TTS can also be spontaneously broken into a discrete one.

It was soon noticed that the original definition of TTS 
breaking by Wilczek is problematic. Bruno [3], and Watanabe 
and Oshikawa [4], proved that continuous TTS cannot be 
broken in the ground state or Gibbs ensemble of a quantum 
system. But this does not rule out the possibility of TTS 
breaking in nonequilibrium states. The spontaneous breaking 
of TTS was redefined for periodically driven systems [5]. The 
proposals for experiments were discussed [6, 7] and realized 
in 2016 [8, 9].

In the theory of special relativity, STS and TTS are con-
nected to each other by a rotation in spacetime, i.e. the Lorentz 
transformation. Lagrangian must be invariant under both the 
Lorentz transformations and spacetime translations, which 
combine into the Poincaré group [11]. The low-energy states 
may have less symmetries. After a process called spontaneous 

symmetry breaking, the symmetry group reduces to a sub-
group of the Poincaré group. Examples are the space groups 
of crystals. It was long believed that crystals have discrete 
STS, continuous TTS, but no Lorentz symmetry.

An exceptional possibility was discussed in [12]. In 1  +  1 
dimensions, the Poincaré group has subgroups that include 
both discrete spacetime translations and discrete Lorentz 
transformations. A crystal cannot have continuous Lorentz 
symmetry, but it can have discrete one. As thus, it must have 
discrete TTS as well. The overall translational symmetry is 
determined by a lattice in 1  +  1 dimensions. And the period 
of TTS is connected to the lattice constant of crystal and the 
speed of light. The possibility of crystals owning discrete TTS 
and Lorentz symmetry has not been noticed before. Indeed, 
no observation of such symmetry was reported up to now. A 
possible explanation is that the period of TTS is too small, 
only in the order of 10−18 s.

In this paper, we generalize above results to higher dimen-
sions. We classify the discrete Poincaré groups in 1  +  2 and 
1  +  3 dimensions. They are the candidate symmetry groups 
of the corresponding two- and three-dimensional crystals, 
respectively. The STS of a crystal is given by its Bravais lat-
tice. There are 5 and 14 Bravais lattices in two and three spatial 
dimensions, respectively. We find discrete Poincaré symmetry 
only on six of them. Table 1 enumerates these lattices and the 
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discrete symmetry on them. Our results have potential applica-
tion in the search of exotic symmetry of crystals. Our finding 
might also be interesting to ones who study quantum gravity. 
Some approaches to quantum gravity propose the spacetime 
to have a lattice structure [13–18]. And the study on discrete 
Poincaré groups provides a way of maintaining the Lorentz 
symmetry on a spacetime lattice.

The paper is organized as follows. In section 2, we review 
the discrete Poincaré group in 1  +  1 dimensions, and then 
introduce the method of generalization to higher dimensions. 
Sections 3 and 4 contribute to 1  +  2 and 1  +  3 dimensions, 
respectively. Section 5 discusses the possible way of observing 
discrete Poincaré symmetry in crystals.

2.  Discrete Poincaré symmetry

Crystals have discrete STS. Their local properties change 
periodically in space. In 1  +  1 dimensions, a crystal looks the 
same under a spatial translation of coordinates if and only if the 
translation distance is an integer times of the lattice constant. 
Between two reference frames that are moving relative to each 
other, the coordinates transform as a Lorentz transformation. 
Usually, crystals look different in different reference frames. 
But [12] showed that it is possible for crystals to look the same 
if the relative velocity takes some specific values. The cost is 
that the properties of crystals must change with time at some 
specific periods. This kind of symmetry is called the discrete 
Poincaré symmetry.

Wang [12] discussed in general how to construct a peri-
odic function of spacetime that is invariant under a group of 
Lorentz transformations. STS of a crystal is determined by 
its Bravais lattice. The 1D Bravais lattice can be extended in 
the time direction to form a 1  +  1-dimensional spacetime lat-
tice. For simplicity, let us view a crystal as a spacetime lattice. 
Under specific Lorentz transformations, this lattice keeps the 

same in spite of length contraction and time dilation. This is 
possible if the spatial direction after transformation is still in 
one of the lattice directions. The spatial directions vary from 
one reference frame to the other, but the lattice constant, i.e. 
the distance between two neighbor sites in the spatial direc-
tion, keeps the same. Notice that two spatial neighbor sites 
in one reference frame are not spatial neighbors in the other 
because they are not simultaneous any more.

All the coordinate transformations that keep a crystal 
invariant make up a group, dubbed the discrete Poincaré 
group. It contains the discrete Lorentz transformations and 
the spacetime translation of lattice vectors. The element of a 
discrete Poincaré group is denoted by Λ(L, r), which means 
a Lorentz transformation L followed by a spacetime transla-
tion r. In 1  +  1 dimensions, L is a 2-by-2 matrix and r is a 
two-components vector. According to definition, the product 
of two group elements reads

Λ(L′, r′)Λ(L, r) = Λ(L′L, L′r + r′).� (1)

The discrete Poincaré group is found to be

P =

{
Λ
(
Lvj , rn0n1

) ∣∣∣∣j, n0, n1 = 0,±1,±2, · · ·
}

,� (2)

where j ,n0 and n1 are arbitrary integers. In the Lorentz trans-

formation, vj denotes the velocity of one reference frame rela-

tive to the other, taking the value vj/c = sign( j)
√

1 − 4/m2
j  

with c the speed of light. And mj  is an integer sequence sat-
isfying mj+1 = gmj − mj−1, where g is the generator of the 
sequence, m0  =  2, m1  =  g and m−j = mj. The translation 
vector rn0n1 reads

rn0n1 = n0r0 + n1r1,� (3)

where r1 = (0, a1)
T  with a1 denoting the lattice con-

stant. And r0 equals 
(

a1
√

g2 − 4/(2c), 0
)

T  for even g or 

Table 1.  Discrete Poincaré groups (denoted by P ) on the one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) Bravais 
lattices. Re denotes the rectangular lattice. M, O, Ob, T and H denote the monoclinic, orthorhombic, base-centered orthorhombic, tetragonal 
and hexagonal lattices, respectively. R  is the point group of the corresponding Bravais lattice. The set P  is a direct product of L and Y, 
which are the groups of Lorentz transformations and spacetime translations, respectively. The translation group Y forms a spacetime lattice. 
Each vector of Y is a linear combination of its primitive vectors. n0, n1, n2 and n3 are integers. r1, r2 or r3 are the primitive vectors of the 
corresponding Bravais lattice, while r0 is the temporal primitive vector. In the expression of r0 and r1, a1 denotes the lattice constant, c 
denotes the speed of light, and g � 2 is an integer generator which determines the shape of Y. The discrete Lorentz group L contains the 
elements of R , as well as the Lorentz boosts B�vj. The velocity �vj in the Lorentz boost must be in the direction of r1, and can only take some 
discrete values (j  is an integer).

1D

2D 3D

Re M O Ob T H

R I D2 C2h D2h D2h D4h D6h

Y n0r0 + n1r1 n0r0 + n1r1 +n2r2 n0r0 + n1r1 + n2r2 +n3r3

r1 = (0, a1, 0, · · · ) T , r2 ⊥ r1, r3 ⊥ r1,

r0 =
(

a1
√

g2 − 4/(2c), 0, 0, · · ·
)

T  for even g,

r0 =
(

a1
√

g2 − 4/(2c), a1/2, 0, · · ·
)

T for odd g.
L

{
RB�vj

∣∣R ∈ R, �vj ‖ r1
}

P P = L × Y
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(
a1
√

g2 − 4/(2c), a1/2
)

T  for odd g. Note that the first 

component of a vector denotes the time coordinate, while the 
second denotes the space coordinate.

A discrete Poincaré group is determined by its generator 
g (g � 2). As g  =  2, we have mj ≡ 2 and vj ≡ 0. P  contains 
no Lorentz transformation, and the translation vector rn0n1 is 
purely spatial. This is the symmetry group of 1D crystals in 
the orthodox view.

In the case g  >  2, the spatial translations (n0  =  0) in P  
keep the same. But P  contains additional discrete Lorentz 
transformations and discrete TTS. As g  >  2 is even, the points 
rn0n1 form a rectangular lattice in 1  +  1-dimensional space-
time. This lattice gives the spacetime translational symmetry. 
Both TTS and STS are discrete, which are connected to each 
other by the discrete Lorentz rotations Lvj . The period of TTS 
is 
√

g2 − 4a/(2c). As g is odd, the points rn0n1 form a centered 
rectangular lattice. The period of TTS becomes 

√
g2 − 4a/c. 

The velocity vj in the Lorentz rotation can only take discrete 
values. For example, vj takes 0,

√
5c/3, 3

√
5c/7, · · · at g  =  3, 

or 0,
√

3c/2, 4
√

3c/7, · · · at g  =  4.
P  is the subgroup of the continuous Poincaré group for 

whatever g. It is reasonable to guess that P  at g  >  2 is also 
the symmetry group of some crystals. If a crystal chooses 
P  at g  >  2 as its symmetry group, it looks the same after a 
coordinate translation only if the translation vector is rn0n1. It 
means that the local properties are varying not only with space 
but also with time. They are periodic functions of spacetime 
coordinates.

A few more words are necessary for explaining the phys-
ical meaning of vj. Let us view a crystal as a chain of atoms 
with the distance between two neighbors being a. The discrete 
TTS requires that the atoms are moving periodically even in 
the rest frame (like a lattice vibration). If all the atoms are 
oscillating in the same phase, a becomes the period in the spa-
tial direction (the lattice constant). But in a moving reference 
frame, the atoms are not oscillating in the same phase any-
more, because simultaneity depends on the reference frame. 
Starting from an atom A, we will find that the movement of 
its neighbor is now behind A. But since the oscillation is peri-
odic, after a few atoms, we may again find an atom B that is 
oscillating in the same phase as A. Now the lattice constant 
becomes the distance between A and B. But due to the length 
contraction, this distance is indeed a in the moving reference 
frame. For this to happen, the contraction must be strong, 
since the distance between A and B in the rest frame is a few 
times of a. This explains why vj is comparable to the speed 
of light.

Equation (2) gives the discrete Poincaré groups in 1  +  1 
dimensions. In this paper, we generalize to 1  +  2 and 1  +  3 
dimensions. For this purpose, we define the symmorphic 
Poincaré group. The element Λ(L, r) is a pure Lorentz trans-
formation as r  =  0, or a pure translation as L  =  1 (the identity 
matrix). We use L = {L} to denote a group of Lorentz trans-
formations, and Y = {r} to denote a group of translations. If 
the set P  is a direct product of L and Y and P  is a group under 
the multiplication rule (1), we say that P  is a symmorphic 

Poincaré group. This definition is similar to the symmorphic 
space group in crystallography. In 1  +  1 dimensions, the dis-
crete Poincaré group is indeed a symmorphic group.

In d � 2 spatial dimensions, the Lorentz transformation 
L ∈ L is a (1  +  d)-by-(1  +  d) matrix. The translation r ∈ Y 
is a (1 + d)-dimensional vector. L acting on r gives the trans-
formation of a vector between different reference frames. If 
Lr and L−1r are both the elements of Y for each r ∈ Y, we 
say that Y is invariant under L. Note that Y is indeed a lattice 
in (1 + d)-dimensional spacetime. Y being invariant under 
L means that this lattice keeps the same after the spacetime 
rotation L. If Y is invariant under each L ∈ L, we say that Y 
is invariant under L. We construct discrete Poincaré groups 
based on next fact: L × Y is a symmorphic Poincaré group 
if and only if Y is invariant under L. The proof is given in 
appendix A.

In d � 2 spatial dimensions, symmetry operations include 
rotation, reflection, inversion and improper reflection. These 
operations are denoted by R. And we use B to denote a Lorentz 
boost (a symmetric matrix in the unit c  =  1). In general, a 
Lorentz transformation in 1  +  d dimensions can be expressed 
as L  =  RB. In d � 2 spatial dimensions, the group L contains 
not only Lorentz boosts, but also spatial rotations, reflections, 
etc. Indeed, it is not enough to identify a reference frame by 
just giving its velocity. Because different reference frames 
may differ by a rotation. This complexity causes all the dif-
ficulties in the construction of discrete Poincaré groups.

In our approach, we start from a d-dimensional Bravais 
lattice, extending it in the time direction to form a (1  +  d)-
dimensional lattice Y. Therefore, Y contains the Bravais lat-
tice as its part. This is what we require for P = L × Y being 
the symmetry group of a Bravias lattice.

We then check if Y is invariant under the Lorentz boosts, 
rotations, reflections, etc. These operations make up the group 
L. L contains the point group of the Bravais lattice. For 
example, for the 2D square lattice, L must contain the spatial 
rotations of angles 0, π/2, π or 3π/2. If L contains nothing 
more than the point group, Y is obviously invariant under L 
(a Bravais lattice is invariant under its point group according 
to definition). In this case, we obtain a trivial symmorphic 
Poincaré group with no Lorentz transformation. It is the sym-
metry group of crystals in the orthodox view.

For P  to be nontrivial, L must contain at least one Lorentz 
boost B�v  with �v �= 01. We find that Y is invariant under 
B�v ∈ L only if �v  is in the lattice direction, that is �v  connects 
at least two sites of the Bravais lattice (see appendix B for 
the proof). Without loss of generality, we suppose that �v  is 
in the x-direction. The sites of Y in the x-axis then form a 
1D Bravais lattice. Equation (3) has told us the unique way 
of extending a 1D Bravais lattice into a (1  +  1)-dimensional 
spacetime lattice. In this way, we naturally obtain the sublat-
tice of Y in the t  −  x plane. We can then obtain the whole Y 
and P = L × Y (see the detailed derivation in appendices C 

1 There exist possibilities that L contains no Lorentz boost but only com-
posite Lorentz transformations (L  =  RB), which are not discussed in this 
paper.
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and D). P  is the subgroup of the continuous Poincaré group, 
at the same time contains the space group of Bravais lattice as 
its subgroup. In next sections, we enumerate P  in 1  +  2 and 
1  +  3 dimensions.

3. Two dimensional Bravais lattices

In two spatial dimensions, there are five Bravais lattices: 
oblique, rectangular, centered rectangular, hexagonal and 
square lattices. There exist symmorphic Poincaré groups on 
the rectangular lattice, but no symmorphic Poincaré groups 
on the other four lattices (see table 1). The derivation is given 
in appendix C.

Recall that an element of the symmorphic Poincaré group 
is denoted as Λ(L, r), where L is an element of L and r is 
an element of Y. Here L is the group of Lorentz transfor-
mations and Y is the group of translations. r is a vector in 
1  +  2-dimensional spacetime, and can be generally expressed 
as r  =  (t,x,y )T where t denotes the time and x and y  denote the 
space coordinates. Two primitive vectors of the rectangular 
lattice are r1 = (0, a1, 0)T  and r2 = (0, 0, a2)

T  with a1 �= a2.
The symmorphic Poincaré group is determined by an 

integer generator g � 2. All the Lorentz boosts in L must 
be in the same direction. It is either in the x-direction or in 
the y -direction. Without loss of generality, we suppose it 
to be in the x-direction. The temporal primitive vector of 

Y is then r(e)
0 = (

√
g2 − 4 a1/(2c), 0, 0)T  for even g, or 

r(o)
0 = (

√
g2 − 4 a1/(2c), a1/2, 0)T  for odd g. An arbitrary 

vector of Y can be expressed as

rn0n1n2 = n0r0 + n1r1 + n2r2,� (4)

where n0, n1 and n2 are integers. Figure 1 shows a unit cell 
of Y. Y in 1  +  2 dimensions is indeed an extension of the 
1  +  1-dimensional spacetime lattice along a perpendicular 
direction. Y is an orthorhombic lattice for even g or a base-
centered orthorhombic lattice for odd g.

The Lorentz boost in L can be expressed as

Bvj =




1√
1−v2

j /c2

−vj/c2
√

1−v2
j /c2

0
−vj√

1−v2
j /c2

1√
1−v2

j /c2
0

0 0 1


 ,� (5)

where vj = sign( j)
√

1 − 4/m2
j (g) c takes the same value as 

in 1  +  1 dimensions. Bvj acting on a vector keeps its y -comp
onent invariant. The transformation is purely within the t  −  x 
plane.

We use R  to denote the point group of a Bravais lattice. 
For the rectangular lattice, R  contains a rotation of angle π in 
the x  −  y  plane, a reflection across the x-axis and a reflection 
across the y -axis. The discrete Lorentz group L can then be 
expressed as

L =
{

RBvj

∣∣R ∈ R and j = 0,±1,±2, · · ·
}

.� (6)

The element of L is the product of a spatial operation and a 
Lorentz boost. In the case g  =  2, Bvj is the identity matrix and 
L reduces to R , that is the Lorentz symmetry is absent. For 

g  >  2, L gives a discrete Lorentz symmetry in the x-direction, 
but no Lorentz symmetry in the y -direction.

4. Three dimensional Bravais lattices

In three spatial dimensions, there are 14 Bravais lattices. 
There exists symmorphic Poincaré symmetry on the mono-
clinic, orthorhombic, base-centered orthorhombic, tetragonal 
and hexagonal lattices (see table 1). The derivation is given in 
appendix D.

We denote a vector in 1  +  3-dimensional spacetime 
as (t,x,y ,z)T. Again, P = L × Y denotes the symmorphic 
Poincaré group. The Lorentz boosts in L are supposed to 
be in the x-direction without loss of generality. Similar to 
1  +  2-dimensional case, the Lorentz boost is expressed as

Bvj =




1√
1−v2

j /c2

−vj/c2
√

1−v2
j /c2

0 0
−vj√

1−v2
j /c2

1√
1−v2

j /c2
0 0

0 0 1 0
0 0 0 1




,� (7)

where vj takes the same value as in 1  +  1 or 1  +  2 dimen-
sions. And L is again 

{
RBvj

∣∣R ∈ R and j = 0,±1,±2, · · ·
}

, 
where R  is the point group of the corresponding Bravais lat-
tice. There is no Lorentz symmetry in the y   −  z plane.

Y in 1  +  3 dimensions has four primitive vectors. We 
use r1, r2 and r3 to denote the three primitive vectors of the 
Bravais lattice. If r1 is chosen to be (0, a1, 0, 0)T , the temporal 

primitive vector is then r(e)
0 = (

√
g2 − 4 a1/(2c), 0, 0, 0)T  for 

even g, or r(o)
0 = (

√
g2 − 4 a1/(2c), a1/2, 0, 0)T  for odd g. A 

vector of Y can be expressed as

rn0n1n2n3 = n0r0 + n1r1 + n2r2 + n3r3,� (8)

where n0, n1, n2 and n3 are integers.
Note that r1 cannot be chosen arbitrarily. It is required that 

r2 and r3 be both perpendicular to r1. Figure 2 displays the 
direction of r1 on different Bravais lattices. The monoclinic, 
orthorhombic, base-centered orthorhombic, tetragonal and 
hexagonal lattices can be viewed as the five 2D Bravais lattices 
extended in the perpendicular direction, respectively. And this 
perpendicular direction must be chosen to the direction of r1. 

Figure 1.  A unit cell of Y for 2D rectangular lattice. The left panel 
is for odd g, while the right panel is for even g.
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Especially, in the tetragonal lattice, r1 must lie in the vertical 
direction in which the lattice constant is different from those 
in the other two directions.

Again, the discrete Poincaré group P  is uniquely deter-
mined by the integer generator g � 2. In the case g  =  2, we 
obtain Bvj ≡ 1 and L ≡ B. And r0  =  0 indicates a continuous 
TTS. The symmetry group reduces to the space group of 
Bravais lattices.

In the case g  >  2, vj(g) = sign( j)
√

1 − 4/m2
j c is nonzero 

for j �= 0. When one reference frame is moving at vj relative 
to the other, the Bravais lattice looks the same for them. And 
the temporal primitive vector is now nonzero, indicating that 
TTS is broken into a discrete one.

5.  Discussion

We have enumerated the symmorphic Poincaré groups on 2D 
and 3D Bravais lattices. An interesting question is whether the 
symmorphic Poincaré symmetry does exist in real crystals. 
According to our results, it is possible to find such a sym-
metry only in crystals based on the monoclinic, orthorhombic, 
base-centered orthorhombic, tetragonal or hexagonal lattices. 
For examples, graphite and rutile are based on the hexagonal 
and tetragonal Bravais lattices, respectively.

If a crystal has symmorphic Poincaré symmetry, it 
keeps invariant under a coordinate transformation of 
P = L × Y, where L and Y are determined by the generator 
g. Each crystal has a unique g. To be more precise, when we 
describe the motion of electrons (or phonons) in this crystal, 
the Lagrangian density or equation  of motion need to keep 
invariant under P , which imposes a strong constraint on the 
possible form of them. Here, the Lagrangian (or equation of 
motion) is an effective one, only for the particles that we are 
interested in. The full Lagrangian for the electrons, nuclei and 

their interactions has of course the continuous Poincaré sym-
metry. One can think that the effective one is derived from the 
full one by using some mean-field theory. Wang [12] showed 
how to construct such an effective Lagrangian from the sym-
metry principle. One starts from a Lagrangian with con-
tinuous Poincaré symmetry and then replaces the constants 
(coupling or mass) by a function f (r) that has the symmetry 
P . Especially, f (r) is invariant under a translation of vector 
rn0n1n2n3, where rn0n1n2n3 is given by equation (8). As n0  =  0, this 
means that f (r) is a periodic function of space. As n0 �= 0, we 
find that f (r) is also a periodic function of time:

f (t, x, y, z) = f (t + T , x, y, z).� (9)

It is easy to see T =
√

g2 − 4 a1/(2c) for even g or 
T =

√
g2 − 4 a1/c for odd g. Here a1 is the lattice constant. 

Since the coupling f  in the equation of motion is a periodic 
function, we expect the solutions to be also periodic functions 
with the same period. Therefore, the local properties of the 
crystal should change periodically in the spacetime.

If the generator of a crystal is g  =  2, we obtain T  =  0. In 
this case, f  is independent of time, so are the local properties. 
This is what we usually think of. But there exist the other pos-
sibilities. If the generator of a crystal is g  >  2, its local prop-
erties change periodically with time, even in the absence of 
external driving. This is the exclusive feature of symmorphic 
Poincaré symmetry. An experiment searching for the time 
periodicity in crystals will then clarify whether there exists 
symmorphic Poincaré symmetry or not. Let us take graphite 
as an example. Its lattice constant is a1 ≈ 6.7 × 10−10 m. Its 
time period is then T =

√
g2 − 4 × 1.1 × 10−18 s for even g 

or T =
√

g2 − 4 × 2.2 × 10−18 s for odd g. The time periods 
of typical crystals are very small. This may explain why the 
symmorphic Poincaré symmetry has not been observed up 
to now. An alternative way of observing the time periodicity 
would be by using the Floquet effect. The function f (r) in the 
equation  of motion can be treated as a periodically-driving 
potential. In the presence of it, we expect the system to absorb 
radiation of the frequency 1/T. Therefore, a peak at this fre-
quency in the absorption spectrum would also support the exist-

ence of discrete Poincaré symmetry. We use again graphite as 

an example. The frequency is 
(
g2 − 4

)−1/2 × 9.1 × 1017 Hz 
for even g or 

(
g2 − 4

)−1/2 × 4.5 × 1017 Hz for odd g. It is in 
the frequency range of x-rays.

This paper focuses on the classification of discrete Poincaré 
symmetry. In future, we expect to study the effective field 
theories with this symmetry and how to obtain them from a 
fundamental theory with continuous Poincaré symmetry.
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Figure 2.  The boost direction on the (a) monoclinic,  
(b) orthorhombic, (c) base-centered orthorhombic, (d) tetragonal 
and (e) hexagonal lattices. a1, a2 and a3 denote the lattice constants. 
And we use β to denote the angle between two primitive vectors in 
the y   −  z plane when it is not 90◦.
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Appendix A.  Proof of L × Y being a symmorphic 
Poincaré group

Suppose L = {L} is a group of Lorentz transformations and 
Y = {r} is a group of translations. We express the set L × Y 
as P = {Λ(L, r)|L ∈ L, r ∈ Y}. According to definition, P  
is a symmorphic Poincaré group if and only if P  is a group 
under the multiplication rule (1). Therefore, our destination is 
to prove that P  is a group under the rule (1) if and only if Y is 
invariant under L.

First, we prove that P  is a group if Y is invariant under L. 
The associativity of the multiplication rule (1) is obvious. If 
Λ(L, r) and Λ(L′, r′) are two elements of P , we have L, L′ ∈ L 
and r, r′ ∈ Y according to definition. By using equation (1), 
we obtain Λ(L, r)Λ(L′, r′) = Λ(LL′, Lr′ + r). Since L is a 
group, LL′ ∈ L is obvious. And because Y is invariant under 
L, we obtain Lr′ ∈ Y and then Lr′ + r ∈ Y (Y is a group). 
Therefore, Λ(LL′, Lr′ + r) must be an element of P . The clo-
sure of P  is proved. Y and L are groups, so that they con-
tain identity elements. The identity element of Y is r  =  0 
(no translation), and the identity element of L is L  =  1 (no 
Lorentz rotation). By using equation  (1), it is easy to see 
Λ(1, 0)Λ(L, r) = Λ(L, r)Λ(1, 0) = Λ(L, r) for arbitrary L and 
r. Therefore, Λ(1, 0) is the identity element of P . The exist-
ence of identity element is proved. If Λ(L, r) is an element of 
P , we have L ∈ L and then L−1 ∈ L, and r ∈ Y. Since Y is 
invariant under L, we obtain L−1r ∈ Y and then −L−1r ∈ Y. 
Therefore, Λ(L−1,−L−1r) is also an element of P  according 
to definition. And it is easy to see that Λ(L−1,−L−1r) is the 
inverse of Λ(L, r). The existence of inverse element is proved. 
As above, if Y is invariant under L, P  must be a group.

Second, we prove that P  is not a group if Y is not invariant 
under L. If Y is not invariant under L, there exist L ∈ L and 
r ∈ Y so that Lr �∈ Y. Because L and Y are groups and the 
set P  is the direct product of L and Y, we know that Λ(L, 0), 
Λ(1, r) and Λ(L−1, 0) are the elements of P . Their product 
is Λ(L, 0)Λ(1, r)Λ(L−1, 0) = Λ(1, Lr). But Λ(1, Lr) is not an 
element of P . Therefore, P  is not closed under the rule (1). P  
is not a group.

As above, P  is a group if and only if Y is invariant under L.

Appendix B.  Proof of �v  being in the lattice direction

Suppose Y is a spacetime lattice obtained by extending a 
Bravais lattice in the time direction. B�v  is a Lorentz boost, 
and it is an element of L. In this appendix, we prove that Y is 
invariant under L only if �v  is in the lattice direction.

In 1  +  d dimensions, we can express the spacetime coor-
dinates as (t, x1, · · · , xd)

T . Without loss of generality, we sup-
pose that �v  is confined to the x1-direction. The matrix B�v  then 
looks like

B�v =




1√
1−v2/c2

−v/c2√
1−v2/c2

0 · · ·
−v√

1−v2/c2

1√
1−v2/c2

0 · · ·

0 0 1 · · ·
· · · · · · · · · · · ·




.� (B.1)

B�v  is a symmetric matrix if we use the unit c  =  1. The diag-
onal elements are all 1 and the off-diagonal elements are all 
zero except for the first two lines and columns. Suppose r ∈ Y 
is a Bravais lattice vector, hence its temporal component is 
zero. We choose r = (0, x1, · · · , xd)

T with x1 �= 0 without loss 
of generality. Indeed, there always exist lattice vectors with 
nonzero component in the x1-direction, otherwise, it is not a 
Bravais lattice.

If Y is invariant under B�v , B�vr must be an element of Y. 
And B�v ∈ L infers B−�v ∈ L. Therefore, B−�vr  is an element 
of Y, hence r′ = B�vr + B−�vr − 2r  is an element of Y. Here 
we have used the properties of Y being a group. r′ reads 

(0, kx1, 0, · · · ) T  with k = 2√
1−v2/c2

− 2. We have k  >  0 for 

v �= 0, and then r′ �= 0. According to the definition of Y, r′ is 
a Bravais lattice vector since its temporal component is zero. 
And r′ lies in the x1-axis. This means that the x1-direction 
is a lattice direction. We then proved that �v  is in the lattice 
direction.

Appendix C.  (1+2)-dimensional symmorphic Poin-
caré groups

In this section, we construct the symmorphic Poincaré groups 
in 1  +  2 dimensions. We use (t,x,y )T to denote the coordinates 
in 1  +  2 dimensions. Suppose P = L × Y is a symmorphic 
Poincaré group. Y is invariant under L. For nontrivial P , L 
contains at least one Lorentz boost B�v . And Y is invariant 
under B�v . As proved in appendix B, �v  must be in the lattice 
direction. Without loss of generality, we suppose that �v  is in 
the x-direction and the lattice constant in this direction is a1. 
Therefore, r1 = (0, a1, 0)T  is a primitive vector of the Bravais 
lattice, and a primitive vector of Y as well.

B�v  can be expressed as

B�v =




1√
1−v2/c2

−v/c2√
1−v2/c2

0
−v√

1−v2/c2

1√
1−v2/c2

0

0 0 1


 ,� (C.1)

which is a symmetric matrix in the unit c  =  1. B�v  rotates 
r1 into the t  −  x plane. The sublattice of Y in the t  −  x 
plane is a (1  +  1)-dimensional spacetime lattice, which 
is invariant under B�v . Obviously, this sublattice and 
B�v  are the elements of a (1  +  1)-dimensional discrete 
Poincaré group. As reviewed in section  2, such a group 
is determined by an integer generator g � 2 . For an 

even g, the primitive vectors of the sublattice are r1 and 

r(e)
0 = (

√
g2 − 4 a1/(2c), 0, 0)T . For an odd g, the primitive 

vectors are r1 and r(o)
0 = (

√
g2 − 4 a1/(2c), a1/2, 0)T . And 

the velocity in the Lorentz boost can only take the values

vj = sign( j)
√

1 − 4/m2
j (g) c� (C.2)

with j = 0,±1,±2, · · ·.
The lattice Y has three primitive vectors in 1  +  2 dimen-

sions. Among them, r0 and r1 lie in the t  −  x plane. While 
the Bravais lattice has two primitive vectors in the spatial 

J. Phys.: Condens. Matter 32 (2020) 145402



X Li et al

7

dimensions, namely r1 and r2. Obviously, r0, r1 and r2 must be 
the three primitive vectors of Y.

Without loss of generality, we express r2 as (0, r2x, r2y)
T . An 

arbitrary vector of Y (dubbed a lattice vector) can be expressed 
as n0r0 + n1r1 + n2r2 with n0, n1 and n2 being integers. Y is 
invariant under B�v  if and only if B�vr0, B�vr1 and B�vr2 are lat-
tice vectors. B�vr0 and B�vr1 are obviously lattice vectors, since 
r0 and r1 are the primitive vectors of the (1  +  1)-dimensional 
sublattice which is invariant under B�v .

Let us study the condition of B�vr2 being a lattice vector. The 
value of �v  is given by equation (C.2). And we already know 
from [12] that B�vj = (B�v1)

j, where the superscript denotes 
the exponent. Therefore, B�vj r2 is a lattice vector if and only 
if B�v1 r2 and B−�v1 r2 are lattice vectors. Note (B�v1)

−1 = B−�v1. 
And the elementary Lorentz boost is

B±�v1 =




g
2 ∓ 1

c

√
g2

4 − 1 0

∓
√

g2

4 − 1 c g
2 0

0 0 1


 .� (C.3)

Now we obtain two equations:

B�v1 r2 = n0r0 + n1r1 + n2r2

B−�v1 r2 = n̄0r0 + n̄1r1 + n̄2r2.� (C.4)

We need to find r2x and r2y  so that n0, n1, n2, n̄0, n̄1, n̄2 are all 
integers. It is easy to see that r2x must be an integer times of 
a1 but r2y  can be arbitrary real number. Without loss of gen-
erality, we choose r2x  =  0 and rename r2y  as a2. The second 
primitive vector of the Bravais lattice is then r2 = (0, 0, a2)

T .
In one word, if P = L × Y is a symmorphic Poincaré 

group and L contains at least one Lorentz boost, two primitive 
vectors of the Bravais lattice must be perpendicular to each 
other and the velocity of the boost is in the direction of one 
primitive vector.

With this in mind, we rule out the possibility of oblique, 
centered rectangular or hexagonal lattices owning nontrivial 
symmorphic Poincaré symmetry. Further analysis rules out 
the possibility of the square lattice. This can be proved by 
contradiction. We suppose that a square lattice has the primi-
tive vectors r1 = (0, a, 0)T  and r2 = (0, 0, a)T . Its spacetime 
lattice Y is invariant under the Lorentz boost B�v  with �v  lying 
in the x-direction. B�v  is an element of L. Do not forget that 
L contains the point group of the square lattice. In particular, 
a rotation of angle π/2 in the x  −  y  plane is an element of L, 
which can be expressed as

Rπ/2 =




1 0 0
0 0 −1
0 1 0


 .� (C.5)

B′ = Rπ/2B�vR−1
π/2 is then a Lorentz boost in the y -direc-

tion. And (B�vB′B′B�v) ∈ L is a Lorentz boost of velocity 
�v′. �v′ makes an angle 0 < θ < π/2 with the positive x-axis. 
As proved in above, �v′ must be in a lattice direction of the 
square lattice, since Y is also invariant under (B�vB′B′B�v). And 
if we use r′1 to denote the primitive vector of the square lat-
tice in the �v′-direction, the other primitive vector r′2 has to be 

perpendicular to r′1. But this is impossible on a square lattice. 
Therefore, a square lattice cannot have nontrivial symmorphic 
Poincaré symmetry.

In two spatial dimensions, there exist nontrivial symmor-
phic Poincaré symmetry only on the rectangular lattice. If we 
choose two perpendicular primitive vectors—r1 = (0, a1, 0)T  
and r2 = (0, 0, a2)

T  with a1 �= a2, the Lorentz boost must be 
in the direction of r1 or r2.

Appendix D.  (1+3)-dimensional symmorphic Poin-
caré groups

In this section, we construct the symmorphic Poincaré groups 
in 1  +  3 dimensions. We use (t,x,y ,z)T to denote the coordinates 
in 1  +  3 dimensions. Again, we suppose P = L × Y is a sym-
morphic Poincaré group. And L contains at least one Lorentz 
boost B�v . �v  is in the x-direction and the lattice constant in this 
direction is a1. r1 = (0, a1, 0, 0)T  is a primitive vector of the 
Bravais lattice. The other two primitive vectors are supposed 
to be r2 = (0, r2x, r2y, r2z)

T  and r3 = (0, r3x, r3y, r3z)
T .

Similarly, we can prove that r2x  =  0 and r3x  =  0. r2 and 
r3 must be perpendicular to r1. And the temporal primitive 

vector of Y is r(e)
0 = (

√
g2 − 4 a1/(2c), 0, 0, 0)T  for even g or 

r(o)
0 = (

√
g2 − 4 a1/(2c), a1/2, 0, 0)T  for odd g.

In 3D Bravais lattices, the boost must be in the direction 
of one primitive vector and the other two primitive vectors 
are in the perpendicular direction. There are 14 Bravais 
lattices. Only in the monoclinic, orthorhombic, base-centered 
orthorhombic, tetragonal, hexagonal or cubic lattices, there 
exist two primitive vectors that are both perpendicular to the 
third one. But similar to the square lattice in two dimensions, 
the cubic lattice cannot have nontrivial symmorphic Poincaré 
symmetry.

Notice that the monoclinic, orthorhombic, base-centered 
orthorhombic, tetragonal and hexagonal lattices can be cre-
ated by extending five 2D Bravais lattices in the perpendicular 
direction. And this direction is indeed the direction of the 
Lorentz boost.
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