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1.  Introduction

Circular parts are components of many industrial products and 
widely exist in manufacturing. However, no part is perfectly 
circular in practice and errors can be introduced by various 
sources in machining processes, such as clamping distortion, 
spindle run-out, poor bearings in the lathe or grinding wheel 
spindle, misalignment and deflection of shafts, presence of dirt 
and chips on clamping surfaces, imbalance, heat, vibration, 
etc. In assembly of circular parts, it is not enough to consider 
only the dimensional tolerances on their diameters; the geo-
metric form of circularity needs to be considered. Circularity, 
which is also known as roundness, is one of the most impor-
tant geometric forms for circular parts and is used to measure 
how close the shape of a part is to a perfect circle. To evaluate 
the circularity error of a part, a set of data points first needs 
to be collected from the part’s surface. To do this, the part is 
placed on a turntable and the probe of a measuring instrument 
is placed at the circular element of the part to be measured. 

While the part is rotated, the profile of the circular element 
or a set of measured data points is captured. Then, the circu-
larity error can be estimated with respect to a chosen criterion. 
There are four different criteria for circularity error evalua-
tion: least square circle (LSC), minimum circumscribed circle 
(MCC), maximum inscribed circle (MIC), and minimum zone 
circle (MZC). Of these criteria, the LSC is the simplest and 
can be calculated analytically, but the circularity error is often 
exaggerated. The MZC is aimed at finding a pair of concentric 
circles with minimum radial separation to contain all the mea-
surement points, which gives a more reasonable circularity 
error evaluation. The MZC is essentially a nonlinear optim
ization problem and computing its exact solution is much 
harder. A similar problem exists for spherical parts, which are 
also ubiquitous in manufacturing. Analogous to the criteria 
for circularity error evaluation, there are four equivalent cri-
teria for sphericity error evaluation: least square sphere (LSS), 
minimum circumscribed sphere (MCS), maximum inscribed 
sphere (MIS), and minimum zone sphere (MZS).
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So far, there are a number of methods of circularity error 
evaluation. Based on computational geometry involving 
a convex hull and Voronoi diagram, Roy and Zhang [1, 2] 
derived that the MZC center is located at one vertex of the 
farthest and nearest Voronoi diagrams, which are the intersec-
tions of the farthest and nearest Voronoi convex sets of all data 
points, respectively. Huang [3] further divided the vertices into 
X- and Y-types and showed that only the X-type vertex can 
give the optimal solution. Using the concepts of convex hulls 
and equidistant (Voronoi) and equiangular diagrams, Samuel 
and Shunmugam [4] proposed another method for MZC error 
evaluation based on computational geometric techniques 
using outer and inner convex hulls. Li and Shi [5–7] further 
used convex hulls with a curvature technique in computing 
MCC, MIC, and MZC errors. Based on the outer and inner 
convex hulls, software was developed to determine the MCC, 
MIC, and MZC errors from measurement points [8]. Jywe 
et al [9] constructed three geometric models to select the exact 
control points for MCC, MIC, and MZC errors. Noticing that 
the circularity error can be determined from a small number 
of critical data points, Huang [10] proposed a new strategy for 
improving computational efficiency by collecting the farthest 
and nearest data points from the current minimum radial sepa-
ration center until all collected data points meet an optimal 
condition. In addition, the evaluation of the MZC error was 
often treated algebraically as an optimization problem and 
solved using various techniques, such as iterative search 
approaches [11–17], evolutionary algorithms [18, 19], a par-
ticle swarm optimization algorithm [20] and a linear program-
ming method [21]. Recently, Rhinithaa et al [22] conducted 
a comparative study of several selected algorithms and a new 
geometric algorithm using the reflection mapping technique.

Sphericity error evaluation is actually a mathematical 
generalization of circularity error evaluation from 2D space 
to 3D space. However, the one-dimension increase makes 
the problem much harder to solve. Huang [23] extended the 
method based on Voronoi diagrams [3] to MZS error evalu-
ation. Similarly to the work [9], Chen and Liu [24] proposed 
four models of control points to evaluate the MZS error. 
Samuel and Shunmugam [25, 26] expanded their method 
[4] for MZC error evaluation to the MZS error. Lei et al [27] 
extended the search algorithm [16] to sphericity error evalua-
tion. Fan and Lee [28] cast the problem of MZS error evalu-
ation into the problem of minimum potential energy of a 
simulated mechanical system and proposed a search algorithm 
for the optimal MZS solution around the LSS solution. Wen 
and Song [29] proposed an immune evolutionary algorithm 
for the MZS error. Huang et al [30] computed the MZS error 
using a search algorithm with diverse search directions and 
adaptive step sizes. In addition, an online validation service to 
test minimum zone algorithms has been provided by TraCIM 
(Traceability for Computationally-Intensive Metrology) [31], 
an international head organization for metrological algorithm 
validation.

In this paper, a unified branch-and-bound (B&B) algorithm 
is proposed to compute the MZC/MZS errors. The MZC/MZS 
error can be generally written as

e � min
p0∈Q

{
max
i∈[1,n]

‖pi − p0‖ − min
i∈[1,n]

‖pi − p0‖
}

� (1)

where pi ∈ Rd, i = 1, 2, ..., n are n measurement points in 
d-dimensional space Rd, p0 ∈ Rd  is the center of the con-
centric circles/spheres, Q is the solution domain, and d  =  2 
or 3. While taking the domain Q to be a square region that 
is believed to contain the globally optimal solution, a lower 
bound on the MZC/MZS error attainable over the domain is 
derived and proven to monotonically increase as the square 
domain is divided into smaller square subdomains. With this 
lower bound, applying the B&B technique to sequentially 
dividing the domain with the smallest lower bound yields 
that the smallest lower bound is guaranteed to converge to 
the MZC/MZS error. Furthermore, the accuracy of the algo-
rithm’s result is proven to be within a user-specified toler-
ance for stopping the division of a domain, which provides 
users with the freedom to control the computation accuracy 
as needed. In addition, the proposed algorithm is efficient. It 
takes several milliseconds on a modern PC to compute the 
MZC/MZS error on a thousand data points distributed over a 
whole circle/sphere, or tens to hundreds of milliseconds even 
if the data points are gathered in a small sector. In comparison 
with the existing algorithms, which often need sophisticated 
mathematics, the most distinctive feature of the proposed 
algorithm is that it is extremely simple and can be imple-
mented in several lines of computer programs by anyone with 
basic algebraic knowledge. Its performance has been verified 
on a number of point sets and shown to be in accordance with 
other methods.

The rest of this paper is organized as follows. Section 2 pre-
sents the algorithm, followed by numerical examples showing 
its performance in section 3. Section 4 concludes this paper.

2.  Algorithm

Let p∗
0 be a globally optimal solution such that

e = max
i∈[1,n]

‖pi − p∗
0‖ − min

i∈[1,n]
‖pi − p∗

0‖.� (2)

In general, the point p∗
0 is not unique and all of them give the 

same minimal value e. The proposed algorithm in this paper 
is aimed at finding one such point for which e is attained. 
Assume that Q is a square domain containing p∗

0. Let q0 be 
the center of Q and D(Q) the diagonal length of Q, both of 
which can be easily calculated for a given square domain Q. 
Let ẽ(Q) be defined as

ẽ(Q) � max
i∈[1,n]

‖pi − q0‖ − min
i∈[1,n]

‖pi − q0‖.� (3)

By the triangular inequalities for the triangle formed by 
pi, q0, and p∗

0, i.e. ‖pi − q0‖ � ‖pi − p∗
0‖+ ‖p∗

0 − q0‖ and 
‖pi − q0‖ � ‖pi − p∗

0‖ − ‖p∗
0 − q0‖, from equations  (2) and 

(3) it follows that

ẽ(Q) � e + 2‖p∗0 − q0‖.� (4)

Since p∗
0 is contained in Q, the following inequality holds:

‖p∗
0 − q0‖ � D(Q)/2.� (5)

Meas. Sci. Technol. 31 (2020) 045005
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From equations (4) and (5) it then follows that

ẽ(Q) � e + D(Q).� (6)

Let l(Q) be defined as below, and from equation (6) it follows 
that

l(Q) � ẽ(Q)− D(Q) � e.� (7)

Hence, l(Q) gives a lower bound on the value e over domain 
Q. It is noteworthy that such a lower bound can be obtained 
for any square domain containing the globally optimal solu-
tion p∗

0 to the problem (1). For a domain not containing p∗
0, 

l(Q) can still be defined as equation (7) but it would not be 
bounded above by e since the inequality (5) does not neces-
sarily hold any more.

Algorithm 1 describes the proposed B&B algorithm for e, 
which sequentially divides domains into smaller ones such 
that a sufficiently small domain is attained and gives the glob-
ally optimal solution p∗

0 to the problem (1). At every itera-
tion of the algorithm, one domain Q* for which l(Q*) is the 
smallest among all domains is selected from the list L of 
domains and divided into 2d square subdomains (namely, four 
quadrants and eight octants in the case of d  =  2 and 3, respec-
tively), using lines/planes through its center q∗

0 orthogonal to 
the coordinate axes. Then, the new domains Q′

js are added to 
L, and Q* is removed from L. It should be noted that the union 
of domains in L is always equal to the initial domain Q and 
there is at least one domain in L containing the optimal solu-
tion p∗

0 as long as Q contains it. Since domains here are closed 
and adjacent domains share borders, on occasion the point 
p∗

0 could lie on the shared border of two or more domains. 
However, this does not affect the convergence of the proposed 
algorithm, as proven by the following.

Let Qj  be one of the subdomains of Q* and qj the center of 
Qj . It can be proven that l(Q∗) � l(Qj). First, it is easy to derive 
‖qj − q∗

0‖ = D(Qj)/2 and D(Q∗) = 2D(Qj). Then, similarly to 
the derivation of equation (6) from equation (3), by the triangular 
inequalities ‖pi − qj‖ −‖qj − q∗

0‖ � ‖pi − q∗
0‖ � ‖pi − qj‖ 

+‖qj − q∗
0‖ it can be deduced that

ẽ(Q∗) = max
i∈[1,n]

‖pi − q∗
0‖ − min

i∈[1,n]
‖pi − q∗

0‖

� max
i∈[1,n]

‖pi − qj‖ − min
i∈[1,n]

‖pi − qj‖+ 2‖qj − q∗
0‖

= ẽ(Qj) + D(Qj).
�

(8)

Therefore, from equations (7) and (8) it follows that

l(Q∗) = ẽ(Q∗)− D(Q∗)

� ẽ(Qj) + D(Qj)− D(Q∗)

= ẽ(Qj)− D(Qj)

= l(Qj).

� (9)

This confirms that l(Q*) monotonically increases during 
the iteration of the B&B algorithm. At the same time, the 
inequality (7) holds for any square domain containing the 
globally optimal solution p∗

0 and there exists a domain in the 
list L containing p∗

0. In addition, l(Q*) is the minimum for 
all domains in L. Hence, l(Q*) is bounded above by e. When 
Q* is infinitely small and a singleton, l(Q∗) = ẽ(Q∗) = e. 

Therefore, it is guaranteed that Q* will converge to the glob-
ally optimal solution p∗

0 to the problem (1), and the value 
ẽ(Q∗) to e. Moreover, from the inequality (6) an elegant prop-
erty for the final Q* by the stopping criteria D∗ � ε can be 
deduced:

0 � ẽ(Q∗)− e � ε� (10)

where ẽ(Q∗) and e represent the computed and true values of 
the MZC/MZS error, respectively, and ε is a user-specified 
non-negative scalar representing the termination tolerance of 
the algorithm. Equation (10) implies that the error in the result 
and the accuracy of the algorithm can be easily controlled 
through ε. Another major advantage of the proposed algorithm 
is that it is very simple and easy to implement.

There are two user-specified parameters for the algorithm, 
namely the initial domain Q and the termination tolerance ε. 
In practice, the minimum requirement for choosing an initial 
domain is that it should contain the optimal solution p∗

0. Since 
there is no other constraint on its choice, the initial domain 
can be taken to be arbitrarily big as long as it is believed to 
contain p∗

0. On this basis, a smaller initial domain is more 
beneficial and can reduce the number of iterations and the 
computation time required by the algorithm to compute p∗

0. 
While measuring a practical object, one may have the object’s 
dimensions or an estimation, which could help determine an 
appropriate initial domain. In addition, ε can be set to match 
the precision of measured data points or the requirement in 
practical scenarios.

Algorithm 1.  Circularity/sphericity evaluation.

Input: pi, i = 1, 2, ..., n
Output: Circularity/sphericity error e and center p∗

0

1: Select a domain Q and calculate D(Q)

2: L ← ∅
3: D∗ ← D(Q) and Q∗ ← Q
4: while D∗ > ε do
5:    Divide domain Q* into 2d subdomains Qj 

6:    Calculate D(Qj ), ẽ(Qj), and l(Qj ) for each Qj 

7:    Add all Qj ’s to L
8:    Q∗ ← any domain in L in which l(Qj ) is minimal
9:    D∗ ← the value D(Qj ) of Q*

10:    Remove Q* from L
11: end while
12: return ẽ(Q∗) and the center of Q*

3.  Examples

In this section, the performance of algorithm 1 is verified with 
numerical examples. The algorithm has been implemented 
in Matlab and run on a desktop with an Intel Core i7-6700  
3.40 GHz CPU and 16 GB RAM on which its CPU running 
times for the following examples were collected.
Example 1. The purpose of this example is to verify the com-
putational accuracy and efficiency of algorithm 1 for the MZC 
error. In this example, n  −  8 points are randomly generated 
between two circles centered at the origin with radii of 9.5 and 
10.5, and another eight points are taken at [−9.50T], [9.50T], 
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Table 1.  Comparison of different algorithms for circularity evaluation.

Data set Method xc (mm) y c (mm) e (µm)

Appendix A [9] [9] — — 8.5
[18] — — 8.5
[14] 0.035 615 −0.052 9295 8.537 46
[7] 0.0356 −0.0529 8.6

[19] — — 8.5
[20] 0.035 615 098 379 2411 −0.052 929 337 039 9840 8.536 709 71
[17] 0.035 614 97 −0.052 929 48 8.54

Ours 0.035 614 971 221 −0.052 929 481 201 8.537 464 355
Table C2 [4] [4] 40.0007 50.0015 29.816

[13] 40.000 739 50.001 530 29.280 1747
[7] 40.0007 50.0015 29.3

Ours 40.000 739 456 991 50.001 530 105 661 29.280 174 780
Appendix A [10] [10] 0.005 36 0.007 88 957.35

[18] 0.005 36 0.007 88 957.35
[14] 0.005 355 47 0.007 880 73 957.354

[7] 0.005 35 0.007 91 957.42
[16] 0.005 3758 0.007 7843 957.4438
[17] 0.005 3467 0.007 909 06 957.42

Ours 0.005 346 707 309 0.007 909 059 150 957.419 945 646
Table B1 [13] [13] 82.990 941 97.008 387 38.231

[18] 82.990 941 97.008 387 38.231
[14] 82.9909 97.0084 38.2309

[6] 82.9909 97.0084 38.2
[7] 82.9909 97.0084 38.2

[19] — — 38.231
[16] 82.990 9411 97.008 3872 38.231 04
[17] 82.990 941 40 97.008 3875 38.2304

Ours 82.990 941 049 445 97.008 387 267 061 38.230 943 982

Figure 1.  Performance of algorithm 1 initialized by the smallest bounding box to compute the MZC error.

Meas. Sci. Technol. 31 (2020) 045005
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Figure 2.  Performance of algorithm 1 initialized by the least square solution to compute the MZC error.

Figure 3.  Performance of algorithm 1 initialized by the smallest bounding box to compute the MZS error.

Meas. Sci. Technol. 31 (2020) 045005
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Figure 4.  Performance of algorithm 1 initialized by the least square solution to compute the MZS error.

Figure 5.  Performance of algorithm 1 to compute the MZC error in the case where data points are distributed in a small sector.

Meas. Sci. Technol. 31 (2020) 045005
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[0  −  9.5T], [09.5T], [−10.50T], [10.50T], [0  −  10.5T], and 
[010.5T] so that the ground truth of the MZC error is known to 
be 1. The number of points n increases from 100 to 1000 and 
the termination tolerance ε for the algorithm decreases from 
10−2 to 10−10. For each combination of n and ε, the algorithm 
is tested on 1000 random point sets to collect the average error 
in the computed results compared with the ground truth, as 

well as the average number of iterations and CPU running 
time of the algorithm.

When the initial domain Q for algorithm 1 is taken to be 
the smallest square bounding box of all data points, the perfor-
mance of the algorithm is depicted in figure 1. From figure 1(a) 
it can be seen that the level of accuracy is proportional to and 
bounded below by − log10 ε, as stated by equation (10). From 

Figure 6.  Performance of algorithm 1 to compute the MZS error in the case where data points are distributed in a small sector.

Table 2.  Comparison of different algorithms for sphericity evaluation.

Data set Method xc (mm) y c (mm) zc (mm) e (µm)

Table 1 [28] [28] — — — 7.66
[26] 0.001 118 08 0.000 414 94 −0.000 172 66 7.660 12
[29] 0.002 495 −0.000 097 0.000 479 7.660
[30] 0.002 504 16 −0.000 096 13 0.000 481 53 7.660 19

Ours 0.002 504 156 298 −0.000 096 126 920 0.000 481 529 278 7.660 194 938
Example 1 [24] [24] 0.003 911 0.002 535 0.004 562 8.327

[29] 0.003 910 0.002 536 0.004 556 8.327
[27] 0.003 901 0.002 624 0.004 427 8.336
[30] 0.003 910 96 0.002 534 75 0.004 561 46 8.326 84

Ours 0.003 910 946 122 0.002 534 741 343 0.004 561 521 573 8.326 841 243
Example 2 [24] [24] 0.003 509 −0.003 305 −0.000 292 9.67

[29] 0.003 506 −0.003 308 −0.000 292 9.669
[27] 0.003 506 −0.003 289 −0.000 266 9.672
[30] 0.003 509 03 −0.003 305 22 −0.000 292 24 9.666 21

Ours 0.003 508 991 629 −0.003 305 242 365 −0.000 292 261 803 9.666 208 620
Table 1 [25] [25] 40.001 41 30.000 24 60.000 59 2.828 42

[30] 40.001 414 21 30.000 242 65 60.000 585 80 2.828 43
Ours 40.001 414 215 042 30.000 242 636 914 60.000 585 787 641 2.828 429 604

Meas. Sci. Technol. 31 (2020) 045005
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figure  1(b), the number of iterations increases linearly with 
− log10 ε and seems independent of the number of points, 
since all the plotted lines overlap with each other. From fig-
ures 1(c) and (d), the CPU running time of the algorithm is 
linear with − log10 ε and the number of points, respectively.

The initial domain Q can also be taken to be a square cen-
tered at the LSC center with a size of twice the LSC error. By 
doing this, the number of iterations and the CPU running time 
of the algorithm are reduced by half, as shown in figures 2(b)–
(d), whereas the computational accuracy remains at the same 
level, as shown in figure 2(a).
Example 2. To verify the performance of algorithm 1 for the 
MZS error, a similar setting to Example 1 is used; that is, ran-
domly generating n  −  12 points between two origin-centered 
spheres with radii of 9.5 and 10.5, and arranging 12 points at 
the intersections of the spheres with the x, y , and z axes of the 
coordinate frame such that the ground truth of the MZS error 
is 1. The algorithm’s performance with the two aforemen-
tioned different initialization strategies in Example 1 is shown 
in figures 3 and 4, respectively. Again, the level of accuracy 
and the number of iterations are linear with − log10 ε, while 
the CPU running time is linear with − log10 ε or the number 
of points. In this case, nevertheless, the initialization with the 
least square solution helps only a little to improve the compu-
tational efficiency of the algorithm.
Example 3. In this example, the proposed algorithm is applied 
to the case where data points are distributed in a small sector 
between the concentric circles/spheres centered at the origin 
as in the previous two examples. By describing a circle with 
the polar coordinates (r,φ), in this case, r is varied from 9.5 to 
10.5 and φ from 0 to π/4 to generate random data points. Six 
points at (9.5, 0), (9.5,π/8), (9.5,π/4), (10.5, 0), (10.5,π/8), 
and (10.5,π/4) are added to the data points so that the ground 
truth of the MZC error is exactly 1. Similarly, by using the 
spherical coordinates (r, θ,φ), data points for the MZS test are 
generated within r ∈ [9.5, 10.5], θ ∈ [0,π/4], and φ ∈ [0,π/4].  
Again, to ensure a unit MZS error, ten points at (9.5, 0, 0),  
(9.5, 0,π/4), (9.5,π/4, 0), (9.5,π/4,π/4), (9.5,π/8,π/8), 
(10.5, 0, 0), (10.5, 0,π/4), (10.5,π/4, 0), (10.5,π/4,π/4), and 
(10.5,π/8,π/8) are imposed.

The initial domain for the algorithm is taken to be a square 
domain centered at the LSC/LSS center. However, it has been 
noticed that the LSC/LSS center can significantly deviate 
from the MZC/MZS center in the case of partially distributed 
points. Hence, the size of the initial domain is taken to be four 
times the radius of the LSC/LSS, which is believed to be large 
enough to contain the MZC/MZS center. Figures 5 and 6 show 
the algorithm’s performance in the two cases, respectively. It 
can be seen that the proposed algorithm can still compute the 
MZC/MZS errors accurately, but its required number of itera-
tions and computation time are notably greater than in the pre-
vious examples.
Example 4. In this example, the proposed algorithm is run 
on several existing data point sets and compared with other 
methods. The selected data point sets are the most popular 
ones that have been frequently used to test circularity/sphe-
ricity error algorithms. Tables 1 and 2 display the results of 
our algorithm together with the results taken directly from the 

original work. Since the original work provide results with 
different approximations, we set the termination tolerance 
ε = 10−12 for our algorithm to attain an accuracy level higher 
than all the others. Then, it can be seen that the accuracy of 
our algorithm is comparable with others and even higher in 
many cases.

4.  Conclusion

In this paper, a unified algorithm for minimum zone circularity/
sphericity errors based on the B&B technique has been pre-
sented. For any square domain, a lower bound on the minimal 
radial difference between two concentric circles/spheres cen-
tered in the domain sandwiching given points is proposed. It is 
proven that the lower bound monotonically increases when the 
domain is divided into smaller square subdomains. At every 
iteration of the algorithm, the subdomain with the smallest 
lower bound is chosen and further divided. As the algorithm 
iterates and the subdomains become smaller, the smallest 
lower bound monotonically increases and converges to the 
exact value of the desired error as long as the initial domain 
contains the solution. The proposed algorithm is accurate, 
efficient, and very simple. In addition, a parallel implementa-
tion of the algorithm could further improve its computational 
efficiency as it usually does for B&B algorithms.
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