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Abstract. It is commonly believed that a successful period of inflation driven by a single
or several scalar fields requires a specific hierarchy of masses given by Minf � H �Mheavy,
where Minf can correspond to several or a single light field and Mheavy corresponds to any
heavy field that might be integrated out if it satisfies suitable conditions. This is at the heart
of the so called η-problem in inflation, since large contributions to the masses of the inflatons
might spoil the slow-roll conditions required for inflation. We show that, while this is an
unavoidable conclusion in single field inflation, in multifield inflation, heavy fields as defined
above, may be fully responsible for a successful period of what we call fat slow-roll inflation.
Moreover we show that in this scenario, the turning rate of the inflationary trajectory, Ω/H, is
larger than one. Thus, the η-problem is evaded with large turns in fat inflation. Depending
on the perturbations’ mass spectra, cosmological predictions will differ either slightly or
largely with respect to those of the single field case. We illustrate this scenario in a concrete
example in Type IIB string flux compactifications, where a probe D5-brane moving along
the angular and radial directions in a warped throat drives fat D5-brane natural inflation.
An instantaneous superplanckian decay constant can be defined, consistent with our low
energy approximations. We compute the cosmological observables, which are consistent with
Planck data, ameliorating the tension of single field natural inflation with observations. We
also discuss fat inflation in the context of recently proposed swampland de Sitter conjectures.
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1 Introduction

Cosmological inflation [1–3], originally proposed as a natural explanation for the homogeneity
and flatness of our Universe, has been put on firmer grounds thanks to the most recent
observations from the Planck satellite [4]. Observations are fully consistent with the simplest
inflationary scenario as the leading mechanism to account for the origin of the anisotropies
in the Cosmic Microwave Background (CMB) radiation and, thus, the formation of the large
scale structures. In particular, they agree with two robust predictions of inflation, that is,
a nearly scale invariant spectrum of density perturbations and a stochastic background of
gravitational waves.

In its simplest form, inflation is driven by a single scalar field whose potential energy
dominates, driving an early period of quasi de-Sitter accelerated expansion. However, recently
proposed consistency conjectures [5–7] on the low energy effective theories derived from
quantum gravity, would imply that the vanilla single scalar field inflation belongs to the set
of effective theories that cannot be consistently embedded in a theory of quantum gravity,
the swampland.

On the other hand, major experimental efforts are being pursued within the next decade,
such as the stage four CMB-S4 experiment [8] as well as experiments aiming at detecting
the B-mode polarisation in the CMB induced by primordial gravitational waves such as
CLASS [9], LiteBIRD [10], the Simons Observatory [11], or Probe Inflation and Cosmic Ori-
gins (PICO [12]). Moreover, Large Scale Structure observations by forthcoming experiments,
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such as DESI [13], LSST [14], Euclid [15] or SKA [16], may also find the existence of primordial
non-Guassianities, shedding light on the driving interactions during the inflationary era [17].
It is thus essential to understand, from a theoretical point of view, what scenarios and ob-
servables we may expect from models which go beyond the simplest single field vanilla model.
In particular, multifield models of inflation are generic in supergravity and string theory.

We are thus in a situation where it has become essential to move on from the vanilla sin-
gle field models, both from the theoretical and experimental points of view. In this paper we
take a further step in understanding multifield inflation1 in view of forthcoming experimental
efforts as well as recently proposed theoretical constraints.

Our starting discussion is motivated by the following simple question: given a multi-
scalar Lagrangean, what are the conditions that the parameters and fields need to satisfy in
order to drive a period of successful slow-roll inflation? We show that contrary to usual belief,
a long period of slow-roll inflation does not require any of the scalar fields’ masses to be light
(w.r.t. the Hubble scale), that is, Minf < H < Mheavy, where Minf ,Mheavy correspond to the
masses of one or more light inflatons and heavy fields respectively. On the contrary, we show
that slow-roll inflation is possible when the masses of all scalar fields are heavier than the
Hubble scale. That is, the unexpected hierarchy holds

H �Ma
inf for all fields, a = 1, . . . n (1.1)

We call this new type of inflationary attractor fat inflation to stress the fact that it is the mass
of the scalar fields themselves which is heavy (w.r.t. the Hubble scale).2 As we will show, fat
inflation requires large turning rates, Ω/H � 1, implying a non-geodesic inflationary trajec-
tory. Fat inflation thus belongs to the recently discussed rapid-turn attractors [22]. Moreover,
the η-problem which arises when large contributions to the masses of the scalar fields spoil
standard slow-roll inflation can be evaded in fat inflation thanks to the large turning rates.3

The paper is organised as follows. In section 2 we introduce the new fat inflationary
attractor and show that it requires large turning rates, providing a novel way to evade the η-
problem. In sections 3 and 4 we discuss an explicit fat inflation model in string theory, where a
probe D5-brane moves along the radial and angular directions of a warped resolved conifold in
a type IIB flux compactification. We start in section 3 by introducing the set-up, following the
construction used in [25]. Next in section 4 we use the low energy action derived in section 3 to
construct an explicit model of fat natural inflation. We compute the cosmological observables,
which are consistent with the recent Planck data, thus improving the tension of single field
natural inflation with observations. We also include a set of parameters that gives rise to a
standard hierarchy of masses and whose cosmological predictions are indistinguishable from
single field. We then compute the non-linear parameter fNL, which may help to distinguish
multifield models from the single field case. We end by discussing our findings and future
directions in section 5. We include an appendix, A, where we collect some field theory models
in the literature with large turning rates, which happen to belong to the fat inflationary

1Multifield inflation has been extensively studied over the last 20+ years. Thus the existing literature is
vast and it would be impossible to include every reference in the present paper. We therefore only refer to
those papers which are most relevant for our present discussion.

2A lot of work was been done regarding the hierarchy of the fluctuations’s masses, which can be classified
into adiabatic and entropic. Depending on the masses of the perturbation modes, heavy fields (with respect
to the Hubble scale) may, or not, have a strong effect on the cosmological predictions [18–21].

3For an example of single field inflation where the η-problem is avoided with a fat inflaton in the framework
of warm inflation, see [23, 24].
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attractor. Finally, in appendix B we show a set of parameters which illustrate a possible
double D-brane inflation scenario with two distinct inflationary epochs.

2 Fat inflatons, large turns and the η-problem

Consider a typical low energy Lagrangean for several scalar fields, which may arise from some
consistent theory of quantum gravity:

S =

∫
d4x
√
−g
[
M2

Pl

R4

2
− gab

2
∂µφ

a∂µφb − V (φa)

]
, (2.1)

where g is the determinant of the four dimensional metric gµν , R4 is the four dimensional
Ricci scalar built from g, while gab is the metric of the scalar manifold spanned by the scalar
fields φa, with a = 1, . . . . Although in general there can be several scalar fields, for clarity
we will mostly focus on the two-field case, that is a = 1, 2.

For cosmology we take the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t) dxidxi , (2.2)

with scale factor a(t), so the Hubble parameter is given by H = ȧ/a. The equations of motion
thus become:

H2 =
1

3M2
Pl

(
ϕ̇2

2
+ V (φa)

)
, (2.3)

φ̈a + 3Hφ̇a + Γabcφ̇
bφ̇c + gabVb = 0 , (2.4)

where
ϕ̇2 ≡ gabφ̇aφ̇b , (2.5)

the Christoffel symbols in (2.4) are computed using the scalar manifold metric gab and Va
denotes derivative w.r.t. the scalar field φa.

We now use the common decomposition in multifield models of tangent and normal
projections of the equations above by introducing the unit tangent and normal vectors to the
inflationary trajectory, T a, Na, as4

T a =
φ̇a

ϕ̇
, T aTa = 1 , (2.6)

and the normal is such that NaTa = 0, NaNa = 1. The projected equations become

ϕ̈+ 3Hϕ̇+ VT = 0 , (2.7)

DtT
a = −VN

ϕ̇
Na ≡ −ΩNa , (2.8)

where VT = VaT
a,

DtT
a = Ṫ a + ΓabcT

bφ̇c , (2.9)

and we introduced the dimensionful turning parameter Ω, which will be important in our
discussion below.

Now, given the Lagrangean above with a given potential V , we would like to know what
are the conditions that the potential and derivatives of the fields need to satisfy in order to
drive a long period of accelerated expansion. These are precisely the slow-roll conditions.
We now look carefully at these and show how heavy fields can give rise to slow-roll inflation.

4At this point we focus on the two field case. When more fields are present, more normal vectors will be
introduced.

– 3 –



J
C
A
P
0
1
(
2
0
2
0
)
0
2
0

2.1 Slow-roll fat inflation and large turns

Let us analyse carefully what are the conditions that a multifield scalar theory needs to satisfy
in order to drive a successful period of inflation.5 First, a nearly exponential expansion can
be ensured by the requirement that the fractional change of the Hubble parameter per e-fold
d(lnH)/dN (where dN = Hdt) is small, that is:

ε ≡ − Ḣ

H2
=

ϕ̇2

2M2
PlH

2
� 1 . (2.10)

Next, inflation needs to last for a sufficiently long time so that the horizon problem is solved.
This requires that ε remains small for a sufficient number of Hubble times, which is measured
by the second slow-roll parameter, η:

η ≡ ε̇

εH
=

Ḧ

HḢ
+ 2ε = 2

ϕ̈

Hϕ̇
+ 2 ε� 1 , (2.11)

Since ε� 1, eq. (2.11) implies that
ϕ̈

Hϕ̇
� 1 . (2.12)

Using the Friedman equation, we can see that the first slow-roll condition (2.10), implies that
ϕ̇2 � V and therefore, we can write

H2 ' V

3M2
Pl

. (2.13)

Moreover, (2.12) implies that we can write (2.7) as

3Hϕ̇+ VT ' 0 . (2.14)

That is, the slow-roll equations to solve at the background level are (2.13) and (2.14) and (2.8).
Before proceeding, it is now useful to recall why in the single field case, the slow-roll

conditions imply that the mass of the inflaton has to be much smaller than the Hubble scale,
and thus the origin of the η-problem. For the single field case, we simply consider ϕ as the
inflaton, VT = V ′ and there is no third equation. The slow-roll conditions (2.10), (2.11)
simplify to the potential slow-roll conditions:

εV ≡
M2
Pl

2

(
V ′

V

)2

� 1 , ηV ≡M2
Pl

∣∣∣∣V ′′V
∣∣∣∣� 1 , (2.15)

and thus the smallness of the η-parameter implies that M2
inf ∼ V ′′ � H2. We now show how

this conclusion is avoided in the multifield case.
First, using (2.14) and (2.13), the condition (2.10) implies

εT ≡
M2
Pl

2

(
VT
V

)2

� 1 , (2.16)

that is, the tangent projection of the derivative of the potential has to be small. Next, taking
the derivative of (2.14), and imposing the condition (2.12) making use the definitions of DtT

a

and Ω in (2.8), (2.9), we see that (2.12) implies that

−M2
Pl

VTT
V

+
Ω2

3H2
+ ε� 1 , (2.17)

5See [26] for related work.
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where VTT = T aT b∇a∇bV and we replaced 3H2 with V in the first term. Since ε � 1, we
arrive at the first important result, that is, slow-roll (multifield) inflation implies6∣∣∣∣−M2

Pl

VTT
V

+
Ω2

3H2

∣∣∣∣� 1 . (2.18)

Cleary this condition can be satisfied when both terms on the left hand side are small.
However, an interesting new possibility arises when the two terms on the left hand side are
large and cancel each other. This of course requires that VTT > 0.

Let us now see what a large value of VTT /H
2 can imply. Let us call the minimal

eigenvalue of the field’s mass matrix, λ, that is

λ ≡ min(∇a∇bV ) . (2.19)

It follows that for a unit vector Ua, the following relation holds λ ≤ Ua∇a∇bV U b. Taking
Ua = T a, we have

λ ≤ VTT . (2.20)

Consider now the case when λ� H2, implying that all the scalar fields are heavier than the
Hubble scale. We then have

H2 � λ ⇒ H2 � VTT (2.21)

and therefore, when λ� H2, the slow-roll condition (2.18) is satisfied when the turning rate
is large:

Ω2

H2
� 1 , (2.22)

which is our second important result.
Let us summarise: the multifield slow-roll condition (2.18) can be satisfied when all the

scalar fields are heavy (λ � H2) and in this case, the turning rate Ω/H is large. We call
this fat slow-roll inflation, and as we show above, this type of inflationary attractor has large
turning rates, Ω/H.

Notice that (2.18) implies a cancelation between VTT /V and Ω/H, when VTT > 0.
Thus, it is possible that VTT /V > 1 thus having large turns, while λ < 0 and small (see
appendix A for an example of this (AAW2)). However our point is that even when all fields
are heavy, slow-roll is possible and it requires large turns.7

Let us also point out that when more than two fields are present, one can define a turning
rate associated to every normal direction and they will contribute to the total turning rate
(see appendix A for an example (APR)). In appendix A we outline the construction of the
simplest field theory model for two fields leading to the fat inflaton attractor with large
turning rate and we present a collection of field theory models with large and small turning
rates that have been discussed in the literature and demonstrate that those with large turns
belong to the fat slow-roll class.

6A similar expression appeared in footnote 9 of [27] without derivation. In this paper, large turn models
were not discussed.

7Recent multifield inflation investigations have pointed out that small turning rates are not necessary for a
successful period of slow-roll inflation [22, 28–32], as we showed explicitly above. Most of these studies focus
on the case of non-zero negative curvature of the scalar manifold. As we have shown above, large turning
rates do not require a non-zero scalar curvature (see appendix A for explicit field theory examples). Moreover,
as we discuss in the main text, large turning rates are possible even when the standard hierarchy of masses
holds (Minf < H < Mheavy), which is not fat slow-roll inflation.
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Note that large turning rates Ω/H do not imply large dimensionful turns, Ω. Indeed,
since Ω has dimensions of mass, it is measured in Planck units and thus we expect Ω .MPl in
a consistent model. Let us finally note that the geodesic displacement is measured by |DtT | =
0. The departure from a geodesic can be thus measured by the dimensionless Ω/H through
|DNT | = Ω/H, where we have changed to derivatives w.r.t. the number of efolds dN =
Hdt. We therefore see that fat inflation trajectories follow highly non-geodesic trajectories.
Moreover, geodesic inflationary trajectories require very small turning rates Ω/H � 1. In
table 5 in appendix A we list a multifield inflationary example of this type (racetrack).

Dynamics of the linear perturbations. In multifield inflation, it is standard to decom-
pose the linear perturbations in terms of the adiabatic and entropic modes QT , QN , defined
as the projection of the field fluctuations Qa in spatially flat gauge [33–36]. The dynamics of
the primordial linear perturbations about the inflationary background for the adiabatic and
entropy modes is given by the equations [33, 35, 36]:

Q̈T + 3HQ̇T +

(
k2

a2
+m2

T

)
QT = (2ΩQN )˙−

(
Ḣ

H
+
VT
ϕ̇

)
2ΩQN , (2.23)

Q̈N + 3HQ̇N +

(
k2

a2
+M2

)
QN = −2Ω

ϕ̇

H
Ṙ (2.24)

where QT = TiQ
i, QN = NiQ

i, Qi are the field fluctuations in spatially flat gauge, R is the
comoving curvature perturbation and it is directly proportional to the adiabatic fluctuation:

R =
H

ϕ̇
QT . (2.25)

The adiabatic mass squared m2
T is given by

m2
T

H2
≡ −3

2
η − 1

4
η2 − 1

2
εη − 1

2

η̇

H
, (2.26)

and the entropy mass M is given by

M2

H2
=
VNN
H2

+M2
Pl εR−

Ω2

H2
, (2.27)

where VNN = N iN j∇i∇jV and R is the scalar manifold’s Ricci scalar. At superhorizon
scales, (2.24) becomes

Q̈N + 3HQ̇N +
(
M2 + 4Ω2

)
QN ≈ 0 , (2.28)

and one can define an effective entropy mass as M2
eff = M2 + 4Ω2. The relative size of this

mass scale, plays also an important role as it is related to the speed of sound for the adiabatic
perturbations via the relation [18–20]

c−2
s =

M2
eff

M2
. (2.29)

The dynamics of the linear perturbations and cosmological predictions will depend on the
hierarchies of the adiabatic and entropy modes’ masses relative to each other, the Hubble
parameter and the turning rate Ω. The curvature of the scalar manifold R may also play
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an important role if negative and large, as it may trigger geometric destabilisation of the
entropy modes [37].

Notice that the adiabatic mode will be light (w.r.t. H) as long as slow-roll is satisfied
(see (2.26)), which is the case in the fat field inflation scenario we are discussing. On the other
hand, the mass of the entropic mode will depend on the size of Ω/H, the curvature of the
scalar manifold R and VNN/H

2. For example, if besides M � H, the hierarchy Meff � M
holds, the speed of sound (2.29) can be reduced, with observable consequences [18, 19, 38].
Other possibilities can arise as discussed in sidetracked inflation [29] and orbital inflation [39,
40] where the mass of the entropic modes is (much) smaller than H.

Let us see what possibilities may arise in the heavy inflation model. Note first that we
can take Na as a unit vector instead of T a as we did above to write an analogous inequality
to (2.20) in terms of VNN , that is λ ≤ VNN . Imposing (2.21) also implies that H2 � VNN ,
which could dominate or not over the other terms in the entropic mass (2.27).

If the scalar manifold curvature is negative and very large, M may in principle become
small or even tachyonic. On the other hand, note that for the effective entropic mass to be
much larger than M , (Meff � M) thus having a smaller than unity speed of sound, it is
necessary that Ω2 be larger than M2, which implies that 5Ω2 � VNN +H2εR.

2.1.1 Fat inflation and the η-problem

Let us briefly comment on the relevance of the heavy field inflationary attractor we have
discussed for the so called η-problem. As we have shown, fat inflation has the unusual
hierarchy of masses H � Minf , where Minf corresponds to the mass of the “lightest” field
driving inflation. In the standard lore, such hierarchy of masses cannot drive a period of
successful inflation, since large contributions to the masses of the inflatons might spoil the
required flatness and therefore slow-roll conditions required for inflation. However, we have
seen that fat inflation works with large masses when the turning rates are large. Therefore,
previous statements on inflation based on light inflatons need to be revisited. In particular,
in supergravity inflationary constraints were discussed long ago in [41], assuming the need
for light fields. We leave for future work a detailed analysis of these constraints and more
generally of fat inflation and large turns in supergravity.

2.2 Fat inflation and the swampland

We conclude this section by making a connection between fat inflation and the recently
proposed dS conjectures8 [5–7], which require that

∇V
V
≥ c

MPl
or (2.30)

min(∇a∇bV )

V
≤ − c′

M2
Pl

(2.31)

where ∇V ≡
√
gabVaVb and c, c′ are some O(1) constants. It was shown in [42] that in

multifield inflation, the first condition can be satisfied, so long as the turning rate Ω/H is
sufficiently large. This can easily be seen as follows. Generalising the potential slow-roll
parameter (2.15) to the multifield case we have

εV ≡
M2

Pl

2

V aVa
V 2

= εT +
Ω2

9H2
ε , (2.32)

8One should keep in mind that these conjectures have not been proved, and should therefore be considered
with care.
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that is:

εV = ε

(
εT
ε

+
Ω2

9H2

)
. (2.33)

When εT ' ε, one arrives at the relation presented in [42, 43]:

εV ' ε
(

1 +
Ω2

9H2

)
, (2.34)

and therefore, one sees that in a multifield inflationary model, where Ω 6= 0, for sufficiently
large turning rate Ω/H (and suitable values of ε), εV can be of order one.9

However, (2.34) does not tell us how to achieve large turns given a multifield model of
inflation. We have provided an answer above in eq. (2.21) and (2.18): in order to get large
turns, a sufficient condition is to consider models where

H2 � λ ≤ VTT , (2.35)

that is, multifield fat field inflation. Clearly in this case, the second condition (2.31) is not
satisfied.

Let us also comment on another conjecture, the Distance Swampland Conjecture
(DSC) [44]. Roughly, it claims that the geodesic displacement between two points in field
space is bounded, again by an order one number in Planck units, that is:

∆φ . c̃MPl , (2.36)

with c̃ ∼ O(1). Otherwise a tower of light states emerges which would spoil the low energy
effective description. A recent discussion on multifield inflation and the DSC has appeared
in [45]. So here we simply stress that inflationary trajectories with large turning rates Ω/H &
1 differ strongly from a geodesic and thus (2.36) does not apply. Moreover, an almost geodesic
trajectory requires a very small turning rate value Ω/H � 1. (See appendix A for a concrete
example).

In the next two sections we discuss an explicit example of fat inflation where a probe
D5-brane moves along the angular and radial directions of a warped resolved conifold in a
type IIB string theory compactification.

3 D5-brane inflation supergravity set-up

In this section we present the supergravity set-up where we study a concrete example of fat
D5-brane inflation. In the next section we will use the results discussed here to study the
full cosmological evolution and predictions of this model.

Consider a flux compactification of type IIB string theory on an orientifold Calabi-Yau
threefold [46], where the use of internal fluxes generates a warped throat in the internal space.

The low energy 10D action of type IIB supergravity, together with local sources in the
Einstein frame, is given by

SIIB = − 1

2κ2
10

∫
M10

d10x
√
|g|

(
R− |∂τ |2

2(Im τ)2
− |G3|2

2Im τ
− |F̃5|2

4 · 5!

)

+
1

8iκ2
10

∫
M10

C4 ∧G3 ∧ Ḡ3

Im τ
+ Sloc , (3.1)

9Since there is no calculation of the constant c an order one parameter can fall in a large range of values.
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where τ = C0 +ie−φ is the axio-dilaton and the three-form flux, G3 = F3−τH3, is a combina-
tion of the Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NS-NS) three-form
fluxes: F3 = dC2, H3 = dB2 and F̃5 = F5 − 1

2C2 ∧H3 + 1
2B2 ∧ F3. Note that F5 is self-dual

five-form with F̃5 = ?5F̃5. The 10D gravitational constant is given by κ2
10 = 1

2(2π)7g2
sα
′4,

where
√
α′ = `s is the string length and gs = e〈φ〉. To add Dp-branes into the setup, we

include in the local action Sloc, a DBI term plus a Chern-Simons contribution, namely

Sloc = SDBI + SCS . (3.2)

We consider a warped metric ansatz for a flux compactification given by [46],

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mndy

mdyn , (3.3)

where the warp factor A(y) and the unwarped internal metric, denoted by g̃mn, depend only
on the internal six-dimensional coordinates ym and the maximally symmetric 4D spacetime
has metric gµν . The self-dual F̃5 takes the form [46],

F̃5 = (1 + ?10)dα(y) ∧
√
−detgµν dx

0 ∧ dx1 ∧ dx2 ∧ dx3 , (3.4)

where α(y) is a function of the internal coordinates. The 10D Einstein equations and the
5-form Bianchi identity imply [47]

∇̃2Φ− = R4 +
e8A(y)+φ

24
|G−|2 + e−4A(y)|∂Φ−|2 + local (3.5)

where R4 is the four-dimensional Ricci scalar. This curvature term is not present when the 4D
spacetime is taken to be Minkowski [46], but in the case of inflation, this spacetime is quasi-de
Sitter, hence R4 ' 12H2, with H the Hubble parameter. Furthermore, the Laplacian ∇̃ is
constructed from the unwarped internal metric g̃mn, and we define the following fields

Φ− ≡ e4A(y) − α(y), G− ≡ ∗6G3 − iG3 . (3.6)

Integrating (3.5) over the internal space in the case R4 = 0 (assuming no boundary
contribution at infinity) the l.h.s. vanishes as it is a total derivative. Since each term on
the r.h.s. is positive semi-definite, each must individually vanish at leading order, giving the
imaginary self-dual (ISD) solution G− = 0 and Φ− = 0.

In order to construct cosmological solutions, we start in the non-compact limit with an
infinitely long warped throat, supported by the ISD flux solutions G− = Φ− = 0. To obtain
dynamical 4D gravity, we then cut off the warped throat at some large radial distance, rUV ,
and glue it to a compact bulk Calabi-Yau (CY). While the full metric on the bulk is not
known, the metric on the warped throat is explicitly known for certain cases, such as the one
used here, corresponding to the well known resolved conifold (RC) [48–50]. Given that we
partially know the full metric, we only consider the possibility of having inflation well within
the warped throat region. Perturbations to Φ− arise as a result of this gluing procedure
and are solutions to the Poisson equation (3.6). Assuming that the gluing procedure induces
small corrections to Φ−, and G− of the same order, the leading order perturbation of Φ− in
the large throat limit is a solution to the homogeneous Laplace equation:

∇̃2Φh = 0 , (3.7)
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while Φ− is the solution to the Poisson equation arising when we consider the effect of a
non-negligible R4:

∇̃2Φ− = R4 , (3.8)

The solutions to (3.7) and (3.8) depend on the unwarped internal 6D geometry and were
computed in [25] for the RC geometry. These will be relevant for the potential for the
D5-brane positions and will be presented in subsection 3.2.

3.1 The warped resolved conifold

We now consider the warped resolved conifold (WRC) [49, 50] where we study the dynamics
of moving probe D-branes. This resolved conifold (RC) is one of the two smooth versions
of the non-compact Calabi-Yau threefold, the conifold [48], which is a cone over the base

T 1,1 = SU(2)×SU(2)
U(1) , which can be thought topologically as an S2×S3. At the tip of the cone,

the volume of both spheres vanishes, and there is a singularity. This can be removed by either
deformation or resolution. In the case of deformation the S2 sphere of the T 1,1 base shrinks
at the tip and it takes the shape of a S3 giving rise to deformed conifold (DC). In the case of
resolution the singularity is removed by blowing up the two-sphere of the T 1,1 giving rise to
the resolved conifold [48, 50]. The warped 10D spacetime is obtained by placing a stack of N
D3-branes at the tip of the RC, extended along the four non-compact spacetime directions
localised at the north pole of the S2 at the tip of the RC. Since localising the stack at the
north pole specifies an angle, the warp factor has both angular and radial dependence.10 The
resulting geometry is the resolved conifold with 10D metric [49, 50]

ds2 = H−1/2(ρ, θ2)ds2
FRW +H1/2(ρ, θ2)ds2

RC , (3.9)

where we take the 4D spacetime to be FRW for our cosmological application, and the 6D
unwarped space is the RC, whose metric is given by [49]

ds2
RC = g̃mndy

mdyn =

(
r2 + 6u2

r2 + 9u2

)
dr2 +

1

9

(
r2 + 9u2

r2 + 6u2

)
r2(dψ + cos θ1dφ1 + cos θ2dφ2)2

+
1

6
r2(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(r2 + 6u2)(dθ2

2 + sin2 θ2dφ
2
2) , (3.10)

here u is the resolution parameter. It is also the natural length scale of the resolved conifold.
We have also defined the dimensionless coordinate ρ = r/3u. The warp factor, H(ρ, θ2) is
the solution to the Green’s function equation for the Laplace operator on the RC. An exact
expression for the WRC warp factor is given by [50]

H(ρ, θ) = (LT1,1/3u)4
∞∑
l=0

(2l + 1)HA
l (ρ)Pl[cos θ] , (3.11)

the length scale of the T 1,1 is set by L4
T 1,1 = (27/4)πNgs`

4
s; Pl are the Legendre polynomi-

als, and the radial functions HA
l (ρ) are given in terms of the 2F1(a, b, c; z) hypergeometric

functions as

HA
l (ρ) =

2Γ(1 + β)2

Γ(1 + 2β)
ρ2+2β

2F1(β, 1 + β, 1 + 2β;−1/ρ) , (3.12)

10In contrast, the warp factors depend only on the radial coordinate in the case where the internal geometry
is the singular or deformed conifold, and is an assumption usually made for generic warped throats.
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where β =
√

1 + (3/2)l(l + 1). For the cosmological solutions we study below, we keep only
the l = 0 mode in (3.11), which corresponds to the ‘smeared’ solution in [49]. Taking the
limit of small r, one can see that the apparent singularity of this mode is removed once the
full sum is considered [50].

3.2 Moving D-branes in the warped throat

We now consider a D5-brane extending in the four non-compact dimensions, wrapping p-
times a 2-cycle in the internal WRC space and moving along the radial and one angular
direction in the compact space. We follow closely [25], where the authors focused on the
potential for the angular direction, obtaining a superplanckian decay constant to realise a
model of single field natural inflation. As in [25], we turn on a non-zero electric flux on the
worldvolume of the D5-brane, F2, which generates a non-trivial cosine contribution to the
potential for the angular direction, as we review below.

In the next section we will study in detail the cosmological evolution for the two field
inflationary evolution using the full potential computed in [25] for the radial and angular
coordinates. The potential can in principle support either single field inflation but more in-
terestingly a multifield evolution, with both fields moving during inflation giving rise to either
fat or standard inflation with large and small turning rates respectively. A double D-brane
inflation can in principle also be realised. The radial field drives a first period of inflation,
relevant for the CMB scales; inflation then stops briefly until the angular field drives a second
period of accelerated expansion, which might be interesting for phenomenological applica-
tions such as the production of primordial black holes.11 In section 4 we focus on a set of
parameters which gives a fat natural inflation model with large turning rate. We also present
a set of parameters which give rise to a standard type of inflation with small turning rates.

Before looking into the cosmology, in this subsection we review the action describing the
D-brane dynamics and the derivation of the scalar potential computed in [25]. The D5-brane
dynamics are described by the DBI and CS terms:

S5 = SDBI5 + SCS5

= −T5

∫
W6

d6ξ
√
−det(P6 [gab +Bab + 2πα′Fab])

+µ5

∫
W6

P6

[
C6 + C4 ∧ (B2 + 2πα′F2)

]
, (3.13)

where
µ5 =

[
(2π)5`6s

]−1
, and T5 = µ5g

−1
s , (3.14)

F2 is the world volume gauge field, B2 is the NSNS 2-form field pulled back on the brane
and P6 is the pullback of a 10D tensor to the six dimensional brane worldvolume.

We take the simple embedding of the D5-brane in the 10D spacetime as in [25, 51]:

ξa = (xµ, θ1, φ1) , (3.15)

where µ = 0, 1, 2, 3 are the non-compact coordinates. The wrapping of the brane of the
2-cycle Σ2 in the internal space is specified by the natural 2-cycle in T 1,1, given by

r = const. , ψ = const. , θ2 = f(θ1) = −θ1 , φ2 = g(φ1) = −φ1 . (3.16)

11We present an example of this in appendix B. Although the model is unrealistic from the cosmological
and theoretical point of view.
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Having specified the embedding and wrapping, we can now compute the pullback of the 10D
metric gMN defined as

P6[g]ab =
∂xM

∂ξa
∂xN

∂ξb
gMN , (3.17)

which gives us the induced metric on the brane, with components:

P6[g]00 = −H−1/2(1−Hv2) , (3.18)

P6[g]ij = a2H−1/2δij , (3.19)

P6[g]θ1θ1 =
1

3
H1/2(r2 + 3u2) , (3.20)

P6[g]φ1φ1 =
1

3
sin2 θ1H1/2(r2 + 3u2) . (3.21)

We will be considering the D5-brane to be moving along the radial and one angular direction,
θ2, while it is assumed to be fixed along the other two internal dimensions. In this case, the
speed squared of the brane is given by

v2 = gmn ẏ
mẏn = grrṙ

2 + gθ2θ2 θ̇
2
2

=

(
r2 + 6u2

r2 + 9u2

)
ṙ2 +

1

6
(r2 + 6u2)θ̇2

2 . (3.22)

As we mentioned above, we turn on a non-zero worldvolume flux F2 of strength q, along the
wrapped 2-cycle (all other components of Fab are set to zero), so that its pullback has the
following non-zero components

P6[F2]θ1φ1 = −P6[F2]φ1θ1 =
q

2
sin θ1 . (3.23)

With this we have all information we need to write down the total action for the D5-
brane (3.13). Noting also that P6[B2] = 0 and C6 = 0, the action becomes (expanding
the square root)

S5 = −4πpT5

∫
d4x
√
−g4H−1F1/2

[
1− 1

2
Hv2

]
+ 4π2α′pq µ5

∫
d4x
√
−g4 α(y)

=

∫
d4x
√
−g4

[
1

2
gijv

ivj − V (r, θ2)

]
, (3.24)

where we used (3.4) and (3.6), and we defined:

gij = 4πpT5F1/2diag

(
r2 + 6u2

r2 + 9u2
,
1

6
(r2 + 6u2)

)
, vi = (ṙ, θ̇2) , (3.25)

F ≡ H
9

(r2 + 3u2)2 + (π`2sq)
2 , (3.26)

V (r, θ2) = ϕ(r) + γ
(
Φ− + Φh

)
, γ = 4π2`2spqT5gs , (3.27)

ϕ(y) = 4πpT5H−1
[
F1/2 − `2sπqgs

]
, (3.28)

H =

(
LT 1,1

3u

)4( 2

ρ2
− 2 ln

(
1

ρ2
+ 1

))
, L4

T 1,1 =
27π

4
Ngs`

4
s . (3.29)
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Figure 1. A cartoon representation of the D5-brane embedding in the WRC.

Here Φ− = Φ− + Φh, is the solution to the Poisson equation, while Φh is the solution to
the homogeneous equation (3.7) while Φ− is the solution due to the correction of the Ricci
scalar (3.8). We focus on solutions of the Laplace equation which are invariant under the
SU(2)1×U(1)ψ which rotates the (θ1, φ1) and ψ coordinates of the shrinking S3. The solutions
were presented in [25] and are given by (remember that ρ = r/3u)

Φh(ρ, θ2, φ2) =
∞∑
l=0

m=l∑
m=−1

[
alH

A
l (ρ) + blH

B
l (ρ)

]
Ylm(θ2, φ2) , (3.30)

Φ− =
5

72

[
81
(
9ρ2 − 2

)
ρ2 + 162 log (9

(
ρ2 + 1

)
)− 9− 160 log(10)

]
, (3.31)

where (l,m) denote the other SU(2)2 quantum numbers of the corresponding isometries of
T 1,1. The independent solutions are given by HA

l (ρ) in (3.12) and

HB
l (ρ) =2 F1(1− β, 1 + β, 2,−ρ2) . (3.32)

We refer to [25] for further details. The homogeneous solution Φh is independent of the choice
of probe brane and it is valid everywhere within the WRC throat, in particular near the tip.
The coefficients al, bl are undetermined, but small. We keep two independent solutions (de-
pending only on θ2) to the Laplace equation for (l,m) = (0, 0), (1, 0), so that Φh is given by12

Φh = a0

[
2

ρ2
− 2 log

(
1

ρ2
+ 1

)]
+ 2a1

[
6 +

1

ρ2
− 2(2 + 3ρ2) log

(
1 +

1

ρ2

)]
cos θ2

+
b1
2

(
2 + 3ρ2

)
cos θ2 , (3.33)

where again, the coefficients a0, a1, b1 are small. In [25] a1 was taken to be zero. However
we will keep it in our analysis of the inflationary solutions in the next section.

3.3 Moduli stabilisation

We are using the open string moduli associated to the position of a moving probe D5-brane
to drive inflation and are thus intrinsically assuming that all closed string moduli, complex
structure, dilaton and Kähler moduli, have been stabilised and are fixed at their minima.

12We take b0 = 0, as this term multiplies HB
0 = 1 and thus gives a small constant contribution to the

potential given by λb0.
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We briefly outline how this assumption can be realised, as discussed also in [25], but we do
not attempt to implement a full closed string stabilisation mechanism in detail in the present
paper. In type IIB flux compactifications, closed string moduli are partially stabilized by
turning on suitable RR and NSNS fluxes [46]. This can be seen in a supergravity N = 1
description by the scalar potential induced from the Gukov-Vafa-Witten (GVW) superpo-
tential in type IIB string theoryW =

∫
G3∧Ω, where Ω is the holomorphic (3, 0)-form of the

internal manifold and G3 is the three-form flux defined above. The GVW scalar potential
depends on the complex structure and the axio-dilaton moduli which can thus be stabilised
by the presence of the 3-form flux G3 while the Kähler moduli remains unfixed. Stabilisation
of the Kähler moduli can be achieved by considering non-perturbative corrections to the
superpotential such as gaugino condensation from wrapped D7-branes.

We now assume that at the inflationary scale, the stabilisation of all the closed string
moduli has been completed and these moduli do not affect the brane dynamics on the WRC.
The RC has Hodge numbers h2,1 = 0, h1,1, = 1 [52] meaning that there is no complex struc-
ture moduli, while there is a single Kähler modulus. Since h2,1 = 0, it is not possible to turn
on (2, 1)-form fluxes, which can preserve N = 1 supersymmetry. The axio-dilaton can be
stabilised by turning on non-supersymmetry preserving (3, 0)-form fluxes, allowed by the ex-
istence of the non-trivial 3-cycles (the third betti number is b3 = 2(1 + h2,1) = 2). When the
WRC is glued to a compact CY, the number h(2,1) may be modified, allowing the stabilisation
of the complex structure (which determines some geometry of the compact space far away
from the throat) and the axio-dilaton using supersymmetry preserving (2, 1)-fluxes. In sum-
mary, we expect that flux stabilisation of closed string moduli can be achieved when the WRC
is glued to a compact CY without affecting the subsequent open string inflationary evolution.

3.4 Backreaction constraints

We now discuss briefly the constraints on the wrapping number p and brane flux q due to
the D5-brane backreaction onto the background geometry (see also [25, 51, 53]).

A D5-brane could in principle alter the warp factor and internal geometry and introduce
a non-trivial profile for the dilaton. However, if its contribution to the Einstein equations is
much smaller than that of the stack of the N D3-branes sourcing the warped throat, then
one can safely consider the D5-brane as a probe. We can estimate the size of the D5-brane
contribution compared to the N D3-branes as follows. Consider the local contribution from
a Dp-brane to the traced Einstein’s equation, which goes as [46, 51]

(Tmm − Tµµ )loc = (7− p)Tp ∆(9−p)(Σp−3) , (3.34)

where ∆(9−p)(Σp−3) = δ(9−p)(Σp−3)/
√

detg9−p is the covariant delta function on the wrapped
(p-3)-cycle, Σp−3. The condition that the backreaction of the wrapped D5-brane be negligible
can be then written as

p

2N

T5

T3

∆(4)(Σ2)

∆(6)(Σ0)
� 1 . (3.35)

Using the WRC metric we find [53]

p� T3

T5

2NH−1/2

r2 sin θ1
=

12N(2π)2H−1/2

sin θ1

`2s
r2
. (3.36)

This depends on the inverse of the warp factor and thus the r. h. s. of (3.36) will be smaller
at the minimum rmin. As we will see, it is easy to achieve a successful period of inflation
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for a wide range of values of p consistent with (3.36). We can similarly find a bound for
the brane flux q by noting that it induces a D3-brane charge due to the CS term of the D5-
brane action (3.13). Therefore it contributes to the five form Bianchi identify as [25]: T5ρ

pq D5
3

which should be small compared to the D3-brane contribution T3ρ
N D3
3 , so we require, similar

to (3.35) that

T5ρ
pq D5
3

T3ρN D3
3

� 1 . (3.37)

Here [25]

ρN D3
3 = N

δ(6)(Σ0)√
det g6

, ρpq D5
3 = p q(πα′) sin θ1

δ(4)(Σ2)√
det g6

. (3.38)

Therefore we arrive at the constraint

pq � T3

T5

N

π`2s sin θ1
=

4πN

sin θ1
. (3.39)

Therefore, once we choose a value for p that satisfies (3.36), we need to choose q such
that (3.39) holds. As we will see there is a large parameter space where these conditions can
be satisfied, giving rise to a successful period of inflation with large and small turning rates.

4 Fat D5-brane inflation in the warped resolved conifold

We now have all we need to study explicitly the multifield D5-brane inflationary evolution,
where a probe D5-brane moves inside the WRC along the radial and an angular directions:
(r, θ) (from now on, we drop the subindex 2 in the angular coordinate). Due to the complexity
of the system, we solve all equations numerically.

4.1 Effective 4D action and cosmological equations

Our starting action is given by (see eq. (3.24))

S4 =

∫
d4x
√
−g
[
M2

Pl

2
R4 +

1

2
gijv

ivj − V (r, θ)

]
(4.1)

where the four dimensional metric is the FRW metric (2.2), gij is defined in (3.25) and the
full expression for the scalar potential is given by (see (3.25), (3.31), (3.33)):

V (r, θ) = V0 + 4πpT5H−1
[
F1/2 − `2sπqgs

]
+ γ

[
Φ− + Φh

]
, (4.2)

where γ = 4π2`2spqT5gs and (see (3.24), (3.25))

F =
H
9

(r2 + 3u2)2 + (π`2sq)
2 (4.3)

Φ− =
5

72

[
81
(
9ρ2 − 2

)
ρ2 + 162 log (9

(
ρ2 + 1

)
)− 9− 160 log(10)

]
(4.4)

Φh = a0

[
2

ρ2
− 2 log

(
1

ρ2
+ 1

)]
+ 2a1

[
6 +

1

ρ2
− 2(2 + 3ρ2) log

(
1 +

1

ρ2

)]
cos θ

+
b1
2

(
2 + 3ρ2

)
cos θ . (4.5)
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As we explained in the previous section, the coefficients a0, a1, b1 are arbitrary, but small
(in [25] a1 = 0). We have also introduced a constant piece V0, which we tune in order
to downlift the de Sitter minimum of the potential to Minkowski. The reasons behind are
twofold. This term encodes any unknown physics that may shift these minima to Minkowski.
For example, due to the explicit stabilisation mechanism of the closed string moduli, which we
haven’t included. Moreover, the recently proposed dS swampland conjectures [5–7] exclude
dS minima in string theory, if correct, while Minkowski minima are allowed.

Finally, the four dimensional Planck mass, MPl after compactification is given by
(see (3.1))

M2
Pl & κ−2

10 Vol (T 1,1)

∫ u

0
y5H(y) ∼ Nu2

4(2π)3gs`4s
, (4.6)

where we used that Vol (T 1,1) = 16π3/27 and assumed that most of the volume comes from
the throat, approximating H ∼ L4/ρ4. For concreteness, for the cosmological solutions we
fix MPl to the lower bound.

Analysis of parameters. Before looking into the full numerical analysis of multifield
inflationary solutions to (4.1), let us pause here to discuss the parameters’ values that we
consider, taking into account our approximations. First of all, for the string weak coupling
approximation to be valid we need gs � 1. Next, we require a large number of D3-branes
N � 1 so that backreaction of the probe D5-brane is under control. As we mentioned before,
in the WRC, the u parameter is the natural length of the throat, so that we can take [25]
rUV = u and it should be larger than `s, that is u > `s. We also need to keep in mind
the hierarchy of scales that needs to be satisfied in order for our approximations to be valid
during 4D inflation [54, 55]. That is, MPl &Ms &Mc � H, where Mc is the compactification
scale and H is the Hubble parameter defined as H ≡ ȧ/a. Taking these considerations into
account, we fix the parameters gs, N, u to ensure that this hierarchy holds and vary the
parameters p, q, keeping track of the backreaction constraints (3.36), (3.39). We then choose
the coefficients a0, a1, b1(� 1) in the potential (4.2) such that the amplitude of the scalar
perturbations matches with observations. As we will see, there is a large range of values for
the parameters p, q, a0, a1, b1 giving different types of inflationary solutions, in particular, fat
slow-roll natural inflation.

As pointed out in [25] we can expect the potential (4.2) to drive single field natural
inflation once the radial coordinate is fixed to its minimum, r = rmin and so long as the
decay constant, f , takes superplanckian values consistent with the approximations above. It
was then shown in [53] that warping and wrapping can help in obtaining superplanckian decay
constants in single field inflation, consistent with the supergravity low energy approximations
and the weak gravity conjecture (WGC) [56], which when applied to the axion would require
that the axion decay constant be subplanckian.13

However, one may wonder whether the fixing of r to its minimum is a good approxima-
tion, and whether this field may contribute to the inflationary evolution and give interesting
observable features. In subsections 4.2 and 4.3 we present explicit numerical solutions for the
two-field cosmological evolution. Since the radial and angular fields are evolving, we define
an instantaneous decay “constant”, f for the angular variable. This parameter depends on
the radial field (see (4.11) below) and thus on the inflationary trajectory, which deviates from

13We refer the reader to [53] for details on how this conclusion could be avoided in warped single field axion
models.
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a geodesic (see discussion in section 2.1). For suitable choices of parameters, this instanta-
neous decay constant can take superplanckian values, consistent with the supergravity low
energy approximations. Note however that in this case, a straightforward application of the
WGC is not clear. We leave for future work a study of the implications of the WGC for time
dependent decay constants and non-geodesic trajectories.

In particular, in subsection 4.2 we present an example of a fat natural inflationary
scenario with large turning rate Ω/H > 1. We show that the cosmological predictions differ
from single field natural inflation and enter the 95%CL regions of the latest Planck results [4].
We compute the local non-Gaussianity parameter fNL, which can help distinguish multifield
models from single field. In subsection 4.3 we use a different choice of parameters to provide
an example of a standard inflation with the usual hierarchy of masses and small turning rate
(Ω/H ∼ 0.35). Further in the appendix B, we show a toy model of double D-brane inflation
where the CMB scale can be fixed at the first inflationary period, while other interesting
features can arise from the second period. This model however would require the brane to
start moving from inside the bulk region, which lies outside the consistency range of our
approximations and therefore we do not consider it further.

Cosmological evolution. We are now ready to study the D5-brane multifield inflationary
evolution in the warped throat. The equations of motion for (4.1) in the FRW background
are given by (2.3), (2.4), which we rewrite here for clarity:

H2 =
1

3M2
Pl

(
ϕ̇ 2

2
+ V (φj)

)
, (4.7)

φ̈ i + 3Hφ̇ i + Γijkφ̇
jφ̇ k + gij∂jV = 0 , (4.8)

where φi = (r, θ),
ϕ̇2 = gijφ̇

iφ̇ j = grrṙ
2 + gθθθ̇

2 , (4.9)

and the Christoffel symbols are computed with respect to the scalar metric gij , which we
recall here

grr = 4πpT5F1/2 r
2 + 6u2

r2 + 9u2
, gθθ = 4πpT5F1/2 r

2 + 6u2

6
. (4.10)

We now look at different explicit inflationary solutions. As we mentioned before, we
start by presenting an explicit example of fat natural inflation with large turning rate Ω/H.

4.2 Fat D5-brane inflation with large turning rate

We now present an explicit set of parameters which realises fat slow-roll inflation where the
dimensionless turning rate Ω/H is large while the dimensionful Ω remains small (in Planck
units).

We solve the full equations of motion (4.7), (4.8) numerically14 with the values of the
parameters shown in table 1. We fixed the flux number q, while we vary the wrap number
p. However, this is not the only possibility and there is a wider range of p, q values that
can be chosen to obtain successful slow-roll fat inflation with the smallest eigenvalue of
the scalar mass squared satisfying λ > H2. Note that once we fix (N, gs, u) the string
and compactification scales are fixed. For the values in table 1, the string scale is Ms ∼
2 × 10−3Mp, while the compactification scale is set by V1/6

6 ∼ 13 `s, which gives, for the

14It is convenient to solve the equations of motion (4.7), (4.8) by rewriting them using the number of e-folds
as independent variable dN = Hdt.
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N gs `s u q a0 a1 b1

1000 0.01 501.961 50`s 1 0.001 0.0005 0.001

Table 1. Parameter’s values for the slow-roll fat inflation example discussed in the text. Note that
`s is given in Planck units.

Figure 2. The scalar potential for the parameter values in table 1. The value of the minimum
does not change when we change p. The minimum of the potential is located at rmin = 21.414,
θ = (2n+ 1)π, n ∈ Z. The potential and r coordinate are given in Planck units.

parameters in table 1, Mc ∼ 1.53× 10−4MPl. On the other hand, the scale of inflation turns
out to be H ∼ 10−5MPl for the 5 choices of p we take (see table 2).

Although both fields are evolving and thus a decay constant for the angular variable
cannot be defined, we can define an instantaneous decay constant f by

f =
√
gθθ. (4.11)

It remains approximately constant during the first 60-50 efolds (before the end) of inflation
with f60/f50 ∼ 0.9902 and grows to about f60/fend ∼ 0.8665 by the end of inflation. In
table 2 we give the values of the (average value between N = (60− 50)) instantaneous decay
constant for five different choices of p for the parameters’ choice in table 1. We also give
the initial conditions for the angular and radial fields as well as the total number of e-folds
achieved. In figure 2 we show the potential in Planck units for the parameter values in table 1.
The minima are located at (rmin, θmin) = (21.414, (2n+ 1)π), n ∈ Z and are independent of
the wrapping number p. The minima of the potential are positive and thus we use V0 to shift
this dS minimum to Minkowski as discussed before.

In figure 3 we show the scalar fields’ trajectories along the full inflationary evolution
for the case with f ' 6.22 and other parameter values in tables 1 and 2. The radial field
quickly settles to its displaced minimum at V (θinitial, rdisp) and follows it throughout the
evolution, as the angular coordinate evolves. Both fields eventually reach their minimum
and start oscillating around it. For all values of p, the turning rate Ω/H > 1 as shown in
figure 4. In all the examples, the dimensionful turn is small and of order Ω ∼ 10−4MPl.
The Hubble parameter on the other hand is of order H ∼ 10−5MPl as expected for natural
inflation. As we discussed above, the minimum eigenvalue of the mass matrix is larger than
the Hubble scale and for all examples it is λ/H ∼ 10. The slow-roll parameters are shown in
figure 5 for the f ' 6.22 example. We finally show in figure 6 the value of ∇V/V ((2.30)),
relevant for the swampland constraints (see discussion in section 2.2), which starts from
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p f/MPl θinitial Ntot

7 7.49 1.15 90.79

6 6.89 1.10 83.19

5 6.22 0.95 83.47

4 5.51 0.76 84.33

3 4.71 0.55 83.05

Table 2. Instantaneous decay constants (4.11) for different values of the wrapping number p for the
case study with rmin = 21.414 and θmin = π, using values of the parameters in table 1 (here f is the
average value between 60-50 e-folds before the end of inflation). The initial conditions used for θ and
total number of e-folds achieved are also given and in all cases rinitial = 4.

Figure 3. Fields’ trajectory in the potential (upper plot) and their evolution (lower plots) for the
case f ' 6.22 in table 2 and parameters given in table 1.

around 0.22 at N∗ ∼ 60 and grows to about ∼ 102 at the end of inflation (right plot). We
have therefore an example of a slow-roll inflationary evolution with large turning rate and
only heavy scalar fields. It is easy to check that the values of (p, q) are consistent with the
backreaction constraints discussed in section 3.4.

Cosmological parameters. We now discuss the inflationary predictions for the primordial
spectra in the D5-brane fat inflationary model. The dynamics of the linear perturbations is
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Figure 4. Turning rate comparison during the first 10 e-folds for the examples in table 2 (left)
and turning rate for the full inflationary evolution for the case f ' 6.22 (right). In these examples
Ω ∼ 10−4MPl.

Figure 5. Slow-roll parameter’s evolution for the f ' 6.22 case. Here ηϕ ≡ − ϕ̈
Hϕ̇ (note that

η = −2ηϕ + 2ε).

described by equations (2.23), (2.24), while the masses of the adiabatic and entropy modes
are given by (2.26) and (2.27). For the model discussed in this section, the scalar manifold
curvature R is negative and large R ∼ −3 × 104M−2

Pl during inflation, however, it does
not trigger any instability. Indeed, the mass of the entropy mode is much larger than H,
M/H ∼ 103 and thus it decays and can be integrated out. Moreover, Meff/M ∼ 1 and
therefore, the speed of sound is essentially one (see eq. (2.29)). We have also checked the
adiabaticity condition [20]

A =

∣∣∣∣∣ Ω̇

MΩ

∣∣∣∣∣� 1 , (4.12)

holds in our case with A ∼ 5× 10−4.

We therefore use the standard formulae for the cosmological parameters in terms of the
slow-roll parameters (2.10), (2.11). In terms of these the spectral index and the tensor to
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Figure 6. Evolution of ∇V/V as defined in the swampland constraint (2.30) discussed in section 2.2
for the fat inflation case (left) with f ' 6.22 given in table 2 and parameters given in table 1; and
small turn case (right) for f ' 6.54 in table 4 and parameters in table 3.

scalar ratio are given by15

ns = 1− 2 ε− η , r = 16ε , (4.13)

with the latest Planck data [57] giving the values

ns = 0.9649± 0.0042 (at 68% CL) , (4.14)

r < 0.10 (at 95% CL) , (4.15)

while the BICEP2/Keck BK14 combined analysis gives r < 0.064. The amplitude of the
power spectra are given by

∆2
s =

1

8π2M2
Pl

H2

ε
∼ 2.1× 10−9 , ∆2

t =
2H2

π2M2
Pl

. (4.16)

Here all quantities are evaluated at horizon crossing at about 60 − 50 efolds before the end
of inflation. Our final choice of parameters in tables 1 and 2 is such that the amplitude of
the power spectra match observations. In figure 7 we show the (ns, r) plane for the D5-brane
multifield fat inflation model discussed above with parameters given in tables 1 and 2. The
single field natural inflation predictions are indicated by the cyan dashed curve, while the
multifield D5-brane predictions follow the continuous curve. The effect of the heavy inflatons
and large turns move the predictions to the 95%CL region, even when cs ' 1. This can
be understood as the slope of the potential and thus the inflationary trajectory changes
when the masses of the scalar fields increase. Therefore, the velocities and accelerations
will change, giving slightly different values of the slow-roll parameters and thus cosmological
observables.16 Although it is interesting that fat inflation gives different predictions to single
field, the (ns, r) plane is not enough to distinguish between them. We therefore give a first
look into the non-Gaussianity following [59].

15The running of the spectral index turns out to be very small αs ∼ 10−4.
16We haven’t added the uncertainty in the number of efolds between horizon crossing and the end of inflation,

N∗, coming from reheating after inflation. In the case when the post inflationary evolution is dominated by
scalars, it is possible that N∗ is shifted to larger values, providing a better fit for natural inflation [58].
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Figure 7. The (ns, r) plane for the D5-brane multifield fat inflation model discussed in the text with
parameters given in tables 1 and 2. The shaded regions are the Planck 95%CL regions as indicated.
The single field natural inflation predictions are indicated by the cyan dashed curve, while the fat
D5-brane predictions follow the continuous curve. The effect of the heavy inflatons and large turns
move the predictions to the best fit region, even with cs ' 1 (see main text).

Primordial non-Gaussianity f local
NL . We now compute the local type non-Gaussianity,

f local
NL , associated with the previous fat inflationary trajectories.17 We follow the covariant
δN formalism of [59] for inflationary models on a curved manifold, where the non-linear
parameter f local

NL takes the standard form

fNL = −5

6

N,iN,jN;ij

(N,kN,k)2
, (4.17)

where i refers to {r, θ}, comma and semicolon denote the partial and covariant derivatives
with respect to the scalar fields {r, θ} and the scalar-field metric gij . Notice that we have
removed the label local for convenience.

In order to calculate fNL numerically, we use the method of finite differences for the
derivatives (e.g. N,r = (N(r+∆r, θ)−N(r−∆r, θ))/(2∆r), etc.), and integrate N(r, θ) from the
horizon crossing of the relevant mode, N∗, to the end of inflation, Nend, defined where ε = 1.
We choose modes in the range from N∗ = 50 to N∗ = 70 prior to the end of inflation. Given
that the final result for fNL is very sensitive to tiny values of (∆r,∆θ) at horizon crossing,
we average over a few possible larger values (∆r ≈ O(10−1) and ∆θ ≈ O(10−3)), making
sure that their dispersion is roughly two orders of magnitude smaller than the resulting fNL.
Moreover, we have also checked that slight differences in the definition of the end of inflation
do not change the final value of fNL.

In figure 8 we show the results for fNL for the five decay constants discussed ealier,
and find that they are all negative and of order O(1), falling within the most recent bounds
by Planck, f local

NL = −0.9 ± 5.1 [61]. Furthermore, once comparing our fNL results with the
single clock consistency relation fNL = 5

12(1 − ns) [62], they clearly depart from the single
field model (see the right plot in figure 8).

17See [60] where an analytical expression for the equilateral non-Gaussianity for a simple two-field inflation
model is presented.
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Figure 8. (Left) |fNL| as a function of the number of e-folds N for the five different cases of decay
constants and initial conditions presented in table 2, with error bars (as the standard deviation of
the averaged value for fNL using 9 different combinations of (∆r,∆θ)) of the order of 10−2. (Right)
|fNL| vs ns for the same decay constants. All values of fNL for these fat inflation realisations are
negative, and deviate from the single field consistency condition (brown solid line).

N gs q u `s a0 a1 b1

1000 0.01 70 50ls 501.961 0.1 0.0001 0.0001

Table 3. Parameter’s values. Note that `s is given in Planck units. That is, Ms = 2× 10−3MPl.

4.3 D5-brane inflation with a light field: small turns

We now present an example of a choice of parameters where the turning rate is smaller
than one and one of the fields is lighter that the Hubble parameter. That is, a “standard”
hierarchy for the mass of the fields holds: M1 . H < M2. In particular, M1/H ∼ 0.35 at
N∗ = 60 − 50 and in this case, ∇V/V is slightly smaller than in the fat inflation example
above with ∇V/V & 0.1 at N∗ ∼ 60 for the f ∼ 6.54 case (see left plot in figure 6). This
example illustrates the differences between the two types of inflationary evolution that can
arise in multifield models.

The parameters’ values are shown in table 3. Instantaneous decay constant, initial
conditions, and total number of e-folds achieved are given in table 4. The instantaneous
decay constant in this case remains almost unchanged during the whole inflationary evolution
with f60/fend ∼ 0.9998. In figure 9 we show the turning rates for this set of parameters and
in figure 10 we show the predictions for the spectral tilt and the tensor-to-scalar ratio. As
it is clear from the plot, the multifield D5-brane inflation is indistinguishable from single
field natural inflation at linear order in perturbations. In this example too the mass of the
adiabatic mode is small w.r.t. H, while M � H and Meff ∼ M , so that cs ∼ 1. Finally, the
adiabaticity condition (4.12) in this case gives A ∼ 10−3.

We finally compute the non-Gaussianity parameter for this example following the same
procedure as before. The results are shown in figure 11 (the value of fNL we find is negative
also in this case). In this case, as it is clear from the plot, although the predictions for
(ns, r) are indistinguishable from single field, the non-Gaussianity parameter is large and
falls outside the most recent constraints from Planck. It is interesting that for smaller turns,
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p f/MPl rinitial θinitial Ntot

90 7.07 400 105.873 81.83

77 6.54 410 105.973 79.24

65 6.01 430 106.073 75.62

55 5.52 500 106.173 73.06

46 5.05 380 106.373 80.70

37 4.53 410 106.473 75.64

Table 4. Decay constants for different values of the wrapping number p for the case study with
rmin = 456.797 and θmin = 33π, using values of the parameters in table 1. The initial conditions used
for (r, θ) and total number of e-folds achieved are also given.

Figure 9. Turning rate comparison during the first 10 e-folds for the examples in table 4 (left)
and turning rate for the full inflationary evolution for the case f ' 6.54 (right). In these examples
Ω ∼ 10−5MPl.

the non-linear parameter turns out to be much larger. We do not have an intuition for this
result and would be interesting to explore this further. Let us note only that in [59], it was
found that very different values for fNL are obtained as the trajectory of the inflatons changes.

5 Discussion

We have shown that a successful period of slow-roll inflation can be achieved in multifield
scenarios even when the masses of the scalar fields are heavier than the Hubble scale, that is,
H < Minf , where Minf is the mass of the “lightest” field. We call this attractor fat inflation
to stress that it is the masses of all the scalar fields, which are heavier than the Hubble scale,
rather than the masses of the quantum fluctuations. Indeed, in terms of the masses of the
fluctuations, the mass of the adiabatic mode is given in terms of the slow-roll parameters,
and therefore it is always smaller than H during slow-roll, while the isocurvature mass(es)
might be heavy or light, with different cosmological implications [18, 19, 21, 29, 39].

This is a non-trivial result, as it is commonly believed that large contributions to the
masses of the inflatons might spoil slow-roll inflation, a phenomenon that goes under the
name of η-problem. However, we have seen that large contributions to the masses do not
necessarily spoil multifield slow-roll inflation. We showed that this scenario unavoidably has
large turning rates Ω/H, and therefore non-geodesic trajectories. Fat inflation thus evades
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Figure 10. The (ns, r) plane for the D5-brane multifield inflation model with small turning rate with
parameters given in tables 3 and 4. The shaded regions are the Planck 95%CL regions as indicated.
The predictions fall exactly along the single field natural inflation curve (cyan dashed curve).

Figure 11. Left image shows the value of |fNL| vs the number of e-folds N for the five different cases
of decay constants and initial conditions presented in 4. The right image shows |fNL| vs ns for the
same decay constants. All values of fNL for these models are negative.

the η-problem with large turns in multifield scenarios. Fat inflation opens up a new possibility
for multifield inflation in which large turns and thus non-geodesic motion are unavoidable,
with interesting implications for the dS swampland conjectures and possible cosmological
implications that may be testable in the forthcoming years. As we discussed in the explicit
D5-brane example (sections 3, 4), the cosmological predictions differ from single field and
may be distinguishable from it via non-Gaussianities.

In appendix A we collected examples of field theory multifield models in the literature,
which happen to belong to the fat slow-roll attractor. These include a recently discussed three
field model in [63] (APR) where the lightest field is sixty times the Hubble scale, m1/H & 60,
while the heaviest is thousand times heavier, m3/H & 4500. The sidetrack models, where
there is a transition from a standard slow-roll trajectory with a light and a heavy field, to a
fat slow-roll trajectory, with both scalar fields having larger masses than the Hubble scale.
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In sections 3, 4, we presented an explicit example of fat inflation using a probe D5-brane
moving in the warped resolved conifold of a type IIB flux compactification. The fat inflatons
correspond to the scalar fields associated to the radial and one angular directions. The brane
is assumed to be fixed along the other two angular directions and we assumed also that the
closed string moduli can be stabilised using a combination of fluxes and non-perturbative
terms. The scalar potential for the two-fields has a cosine dependence on the angular direc-
tion, which can be used to realise natural inflation [25]. We defined an instantaneous, field
dependent decay constant as f =

√
gθθ(r), which took superplanckian values realising a fat

natural inflation model. The cosmological parameters differ slightly from single field natural
inflation as we showed in figure 7. As we discussed, the speed of sound remains basically one
and the difference in the predictions w.r.t. to single field can be understood by the different
behaviour of the slow-roll parameters (or the potential) along the inflationary trajectory when
fat fields drive inflation. For comparison, we also presented an example of a set of parameters
which gives a standard hierarchy of masses in 4.3. In this case, the predictions coincide with
the single field case as shown in figure 10 and thus would be impossible to distinguish between
the two cases using only (ns, r). In both examples, fat and standard inflation, the inflationary
trajectory deviates from a geodesic, which is measured by the turning rate Ω/H (see sec-
tion 2) which is order one for the standard case and order ten in the fat case (see figures 4, 9).
The scalar curvature is negative and large in the fat and standard examples (R ∼ −104M−2

Pl ,
R ∼ −102M−2

Pl respectively). However no geometric destabilisation is triggered. In both
examples too, the mass of the entropic mode is well above the Hubble scale.

We have used the results in [59] to compute the local non-Gaussianity, which would be a
useful tool to distinguish multifield model predictions from the single field case. For the fat in-
flationary case, we found that the non-Gaussianity is of order one (see figure 8) and can there-
fore constitute a powerful tool to distinguish this model from single field, which predicts a neg-
ligible level of non-Gaussianity. The standard example with small turning rate on the other
hand gives a much larger value for the fNL parameter (see figure 11) and would be ruled out
by current bounds. Although we do not have a clear intuition for this result, it has been shown
in [59] how different trajectories can give completely different values for the non-Gaussian pa-
rameter. Although the inflation model studied in [59] has tiny turning rates (O(10−3−10−4)),
it holds that also in that case, for the trajectory with larger value of Ω/H, the non-Gaussian
parameter is smaller and viceversa. It would be interesting to study this behaviour in more
detail, as it could be important to distinguish among single and multifield models of inflation.

Let us finally comment on the challenges of the D5-brane model. As we have discussed,
the instantaneous superplanckian decay constant is consistent with the weak coupling gs < 1
limit with a hierarchy of scales given by MPl & Ms & Mc > H (Ms ∼ 10−3, Mc ∼ 10−4,
H ∼ 10−5). Consistency with the WGC could be understood along the lines discussed in [53].
However, as we mentioned before, the WGC for axions in its original form can not be straight-
forwardly applied to the case we consider here, that is, a field dependent decay “constant”
and a non-geodesic trajectory. We leave for future work a careful study of this situation. Let
us further stress that we haven’t considered a full embedding of the WRC into a controlled
type IIB flux compactification. Therefore, we can only estimate the value of Mc and thus Ms

from (4.6) and our choice for rUV = u. We have thus simply assumed that the closed string
moduli are heavier than the open string moduli, the brane positions which drive inflation. On
the other hand, it turns out that the heaviest eigenvalue of the mass matrix for the D5-brane
model is of the order of the string scale in both examples and therefore heavier than the closed
string moduli, assumed to be fixed. This is a drawback of our model in its present form and
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it would be necessary to make a full embedding of the WRC into a flux compactification to
properly address this problem. Though our D5-brane model is far from being complete, we
took the first step towards understanding large turning rate inflation in string theory.

More generally, in view of our present results, it would be interesting to revisit D-
brane models, such as D3-brane multifield inflation, which have been studied in the standard
inflationary attractor with small turns. This will also be important in view of the recent
theoretical constraints on standard slow-roll inflation and forthcoming experiments.
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A Field theory models of fat inflation

In this appendix we first describe how to construct the simplest field theory model for two
fields leading to the fat inflation attractor with large turning rate. We then collect some
field theory multifield inflation examples in the literature that happen to be fat field inflation
models and compare them with some “light field” (that is where Minf < H) examples also
in the literature.

As we discussed in section 2.1, when the minimal eigenvalue of the mass matrix is larger
than the Hubble parameter, the multifield slow-roll condition is satisfied and the turning
rate is large, indicating a non-geodesic trajectory (see section 2.1). It is thus clear that some
interaction between the scalar fields is necessary, which can either come from the kinetic
terms or the scalar potential. The simplest possibility is to consider a flat scalar manifold in
polar coordinates, that is, gab = diag(1, ρ2) for the scalar fields ρ, θ with potential V (ρ, θ).
The eigenvalues of the mass matrix in this case take the simple form:

λ± =
1

2

Vρρ +
Vρ
ρ

+
Vθθ
ρ2
±

√(
Vρρ −

Vρ
ρ
− Vθθ

ρ2

)2

+
4

ρ2

(
Vθρ −

Vθ
ρ

)2
 , (A.1)

where Va, Vab denote partial derivatives of V with respect to the scalar fields. If we now
consider a scalar potential of the form V = 1

2M
2ρ2 +W (θ), the eigenvalues simplify to

λ± = M2 +
Wθθ ±

√
W 2
θθ + 4W 2

θ

2ρ2
. (A.2)
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Figure 12. Comparison of the mass of the lightest scalar field and the Hubble parameter (left) and
turning rate Ω/H (right) for the minimal sidetrack (NI) model during the first part of inflation.

As we mentioned, the fat inflationary attractor occurs when λ− > H2 ∼ V = 1
2M

2ρ2 +W (θ).
Therefore, for a sufficiently large value of M and when ρ is close to its minimum, the fat
inflation condition can be satisfied. Moreover, the potential for θ, W (θ), is taken such that
successful inflation does indeed occur. The simplest possibility is to consider W (θ) = m2θ2/2
with M � m. Other possibilities are W (θ) = Λ4θ4/4 or W (θ) = Λ4(1 + cos θ) with M � Λ.
This last example is listed below in table 5 (AAW2).

We now collect in table 5 some examples of field theory multifield inflation models in the
literature that happen to be fat inflation models. We list the model’s name, Ω/H, the mass
hierarchy and scalar curvature R. (In these models Ω < MPl). We include also a multifield
supergravity “light field” inflationary example, in which the fields follow an almost geodesic
trajectory, that is, where Ω/H � 1.

The first models in 5, Orbital inflation [39], Spiral inflation [64] and Racetrack infla-
tion [65] together with AAW2 [38], have all the usual mass hierarchy.18 Compared to the
other models, racetrack inflation has very small turning rate: Ω/H ∼ O(10−4) and thus
follows an almost geodesic trajectory (see section 2.1). AAW2, on the other hand is char-
acterised by Ω/H & 2; this is possible when VTT /V > 1 even when λ < 0 and thus smaller
than H2 (see section 2.1).

As fat inflation models with large turning rates, we show an example of two-field natural
inflation model discussed in [38] (AAW1), the recent three field model in [63] (APR) and the
sidetrack models in [29]. These all have large Ω/H, and only the sidetrack models have a
non-zero negative curvature R. In table 6 we show the ratio between the masses and the
Hubble parameter for AW1, APR and the sidetrack models (both the minimal an hyperbolic
examples have similar mass hierarchies).

The AAW1 model has a reduced speed of sound as in this case it holds that Meff > M ,
that is Ω > M with both M,Meff � H. It has a relatively mild hierarchy of masses,
comparable with sidetrack. The hierarchy of masses results to be way more dramatic in the
APR three-field model, where it is worth noticing that the potential does not have a minimum
and therefore inflation does not end. Finally in the sidetrack models the scalar curvature is
negative R < 0 and triggers an instability which sends the light field inflationary attractor

18Here we use the Lagrangean presented in [38], which is a two field model with a flat scalar manifold
(R = 0) written in polar coordinates with a potential V = V0

[
M2/2(ρ− ρ0) + (1 + cos (mθ))

]
. For the values

we give in tables 5, 6, we use the following parameters (m = 0.002, ρ0 = 0.0001) and M = 100 for AAW1 while
M = 0.15 for AAW2 in Planck units (V0 can then be adjusted to match the amplitude of the power spectrum).
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Model Ω/H mass spectrum R(M−2
Pl )

Orbital Inflation [39] ∼ −0.2 m1 < m2 < H 0

Spiral Inflation [64] ∼ −0.12 m1 < H < m2 0

Racetrack [65] ∼ 6× 10−4 m1 < H < m2 −2
3

AAW2 [38] ∼ 2 m1 < H < m2 0

Minimal sidetrack (NI) [29] ∼ 70 H < m1 < m2 − 4M2

(M2+2χ2)2

Hyperbolic sidetrack (NI) [29] ∼ 163 H < m1 < m2 − 4
(M)2

Minimal sidetrack (Staro) [29] ∼ 16 H < m1 < m2 − 4M2

(M2+2χ2)2

Hyperbolic sidetrack (Staro) [29] ∼ 150 H < m1 < m2 − 4
(M)2

AAW1 [38] ∼ 12 H < m1 < m2 0

APR [63] ∼ 61 H < m1 < m2 < m3 0

Table 5. Inflationary models illustrating fat and light field inflation. Here M is the curvature scale
and χ is one of the fields. For all the models (except APR) we give the value of Ω/H at the start
of the last 60 e-folds before the end of inflation (where ε ∼ 1), after which these parameters increase
similarly to our D5-brane example (see figures 4, 9). In the APR model inflation does not end, so the
values of the parameters are given at the start of inflation. In this example, Ω decreases, while Ω/H
remains almost constant (see [63]).

Model m3/H m2/H m1/H

Sidetrack (NI-Staro) — & 35 & 30

AAW1 — & 13 & 10

APR & 4500 & 632 & 60

Table 6. Ratio of masses to the Hubble parameter for the fat inflationary models as indicated. Again,
we give the value of the masses at the start of the last 60 e-folds before the end of inflation (and at
the start of inflation for APR).

(Minf < H) to the heavy field inflationary attractor we introduced in section 2. These models
have a small Ω/H during the light field attractor, which becomes large when the fields settle
into the fat field attractor (see figure 12). At the same time, the mass hierarchy changes from
the standard m1 < H < m2 to the fat hierarchy H < m1 < m2. This is shown in figure 12.

B Double D5-brane inflation

Finally in this appendix we present a possibility for a double inflation realisation using the
scalar potential for the D5-brane discussed in the main text. It is clear that this possibility can
arise if one considers initial conditions such that the radial field starts far away enough from
its minimum. The behaviour of the potential in this limit is dictated by an r4 power, while
in the angular direction it is given by the cosine. In a double inflation realisation, the radial
coordinate starts evolving driving a first period of r4 inflation, while the angular coordinate
stays frozen until r reaches its shifted minimum, oscillates around it for a while and θ takes off
towards its minimum driving a second period of inflation driven by the cosine term. Between
the two periods of inflation, the slow-roll approximation is broken (see figure 13): the Hubble
horizon starts to increase, and ε becomes larger than one. Interestingly, for this example the
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N gs q u `s a0 a1 b1

1000 0.01 70 50`s 501.96 0.00025 10−5 10−5

Table 7. Parameter’s values for the double inflation model discussed in the text. Note that here `s
is given in Planck units.

q p rinitial θinitial Ntot

72 53 149.414 105.773 62.85

Table 8. Case study with rmin = 1.06656 (in Planck units) and θmin = 93π using the parameters in
table 7.

Figure 13. Hubble horizon (left) and ε (right) evolution for the double inflation example discussed
in the text.

value of ε in the first phase of inflation is larger than in the second ε2 < ε1 and thus it can
potentially give rise to efficient production of primordial black holes. Unfortunately for the r
coordinate to drive inflation, it has to start off outside the throat in the WRC, rinitial > rUV .
Moreover, since inflation is driven by a quartic power, the predictions for CMB scales would
lie outside the current observable bounds. It is still interesting to show how such a scenario
could arise in a D-brane model.
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