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1 Introduction

Cosmic inflation is widely believed to be the most plausible explanation for the origin of pri-
mordial perturbations in our Universe, while it is still nontrivial to embed inflation into more
fundamental theories (see [1], for a review). Inflation predicts the existence of primordial
gravitational waves (GWs), whose power spectrum amplitude depends on the value of the
Hubble expansion rate during inflation (see [2], for a review). In order to detect or put con-
straints on the primordial GWs, there are future/ongoing experiments of Cosmic Microwave
Background (CMB) B-mode polarization like Lite BIRD [3] as well as interferometers such as
LISA [4], Advanced-LIGO (A-LIGO) [5] and DECIGO [6, 7]. In most models of inflation, the
power spectrum of primordial GWs is almost scale invariant, with a slightly red tilt, where
the most promising way to detect the primordial GWs is through CMB B-mode polarization.
Nevertheless, it should be stressed that even if inflation occurred, there are scenarios where
the amplitude of primordial GWs can be amplified at scales much smaller than CMB’s (see
for reviews, [8, 9]). These scenarios are observationally interesting, since they open up the
possibility that the primordial GWs can be detected by interferometer experiments, even if
their signal is not observed at the CMB scale.1

Among the various scenarios showing interesting features for the primordial GWs at
small scales, massive gravity (see [11], for a review) attracts conspicuous attention and has
been applied to the study on the primordial GWs [12–15]. In this context, recently we have
proposed a new scenario predicting blue-tilted and largely amplified primordial GWs [16].
This prediction is based on the two assumptions, where the first one is that the mass of
tensor graviton is comparable to the Hubble expansion rate during the inflation and the
second one is that the mass diminishes to a small value at a certain time during radiation
dominated era. Owing to the first assumption, the power spectrum of primordial GWs is

1However, recently a new method was proposed to constrain the amplitude of the primordial GWs from
the CMB data at Mpc scale, see [10].
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blue at the end of inflation. From the second one, after inflation until the mass diminishes
to a small value, gravitons are diluted as non-relativistic matter and hence their amplitude
can be substantially amplified compared to the conventional massless gravitons which decay
as radiation. In conventional massive gravity theories including the one proposed by de
Rham-Gabadadze-Tolley (dRGT) [17, 18], it is well known that the tensor graviton mass
that is positive and comparable to the Hubble expansion rate is prohibited around de Sitter
background by the so-called Higuchi bound [19]. Contrary to this, however, there are viable
theories in which the graviton mass in such region does not introduce instabilities, like the
minimal theory of massive gravity (MTMG) [20, 21]. In MTMG, there are only two physical
degrees of freedom propagating as in general relativity in the gravity sector and the would
be ghost mode is removed from the construction, where the assumption of the Lorentz-
invariance is relaxed (see [22–27] for works considering interesting phenomenology based on
Lorentz-violating massive gravity).

The scenario of [16] has similarity with the one of [28] based on a generalization of solid
inflation [29, 30] dubbed supersolid inflation [31] (see [32–34] for related works). Supersolid
inflation is a scenario that simultaneously breaks time reparameterization and spatial diffeo-
morphisms during inflation based on the Effective Field Theory (EFT) of inflation [35]. Such
a symmetry breaking pattern is accompanied by the appearance of the tensor graviton mass
that can be comparable to the Hubble expansion rate during inflation without introducing
ghost instability. Therefore, the fact that the graviton mass comparable to the Hubble ex-
pansion rate during inflation makes the primordial GWs blue-tilted holds in both scenarios.
The mechanism to enhance the primordial GWs so that it is detectable by interferometers,
however, is different. Since supersolid inflation is based on EFT of inflation described by
four scalar fields having time- and space-dependent vevs which break reparameterization
symmetries of the background, at the end of inflation, these fields are regarded to arrange
themselves so that the space-reparameterization symmetry is recovered. Therefore, in the
scenario of [28], the mass of tensor graviton becomes zero at the end of inflation, where the
enhancement mechanism in the scenario of [16] is not applicable.2

Given the situation that there are several scenarios that predict primordial GWs de-
tectable at interferometer scales, it is important to think about how to distinguish them. In
this respect, the statistical property of primordial GWs is a very helpful tool, as in the case of
primordial curvature perturbations. For example, the primordial GWs from vacuum fluctua-
tions of the metric are almost Gaussian [36, 37]. Furthermore, stochastic gravitational wave
backgrounds due to a combination of a large number of uncorrelated astrophysical sources
is Gaussian to a high degree, due to the central limit theorem. Therefore, in this paper, we
calculate the bispectrum of primordial GWs, which is the lowest order statistics providing
information on non-Gaussianity of tensor fluctuations, depending on not only the amplitude,
but also the shape of the triangle composed of the three momentum vectors in the scenario
of [16] (for other works discussing tensor non-Gaussianity, see [38–48]).

It seems that the simplest way to detect the primordial tensor bispectrum is the direct
measurement of the bispectrum at interferometer scales [49]. However, it was shown that
the bispectrum cannot be probed directly [50, 51]. This is caused by the fact that the tensor
bispectrum at small scales is suppressed due to Shapiro time-delay effects associated with
the propagation of tensor modes at sub-horizon scales in the presence of matter. On the
other hand, for supersolid inflation, another method to prove the tensor bispectrum based on

2In the scenario of [28], it is possible to obtain the primordial GWs detectable by interferometers by
considering small speed of sound for the tensor perturbations.
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the quadrupolar modulation of the tensor power spectrum induced by the tensor bispectrum
was proposed [28].3 As mentioned above, since there is similarity between Lorentz-violating
massive gravity and supersolid inflation, it is expected that the quadrupolar modulation of
the tensor power spectrum is also induced in the Lorentz-violating massive gravity. Therefore,
we calculate the quadrupolar modulation of the tensor power spectrum induced by the tensor
bispectrum and briefly discuss the detectability.4

The rest of this paper is organized as follows. In section 2, we briefly summarize the
result on the tensor power spectrum in the scenario of [16]. Then, in section 3, we calculate
the tensor bispectrum in the same scenario today based on the in-in formalism. In section 4,
we calculate the quadrupolar modulation of the tensor power spectrum sourced by the tensor
bispectrum and consider the detectability. Section 5 is devoted to conclusions and discussions.

2 Dynamics of massive graviton

Here, we briefly explain our setup which was developed in ref. [16]. Our quadratic action for
the tensor graviton hij(τ,x) is given by

S
(2)
h =

M2
Pl

8

∫
dτd3x a2

[
h′ijh

′
ij − ∂lhij∂lhij − a2µ2hijhij

]
, (2.1)

where MPl is the reduced Planck mass, a(τ) is the scale factor, µ(τ) is the mass of the tensor
graviton, τ is the conformal time and a prime denotes its derivative, i.e. X ′ ≡ ∂τX. The
tensor gravitons can be decomposed and quantized as

hij(τ,x) =
2

aMPl

∑
λ=+,−

∫
d3k

(2π)3
eik·x eλij(k̂)

[
vλk (τ)âλk + h.c.

]
, (2.2)

where eλij(k̂) is the polarization tensor and âk/â
†
k are creation/annihilation operators satisfy-

ing the commutation relation, [âλk, â
†σ
p ] = (2π)3δλσδ(k − p).5 Henceforth, we often suppress

the polarization label λ when it is not relevant.

To obtain the evolution of the mode function vk, we need to specify a(τ), µ(τ) and the
initial condition for vk(τ). For simplicity, we assume the de Sitter expansion a ∝ τ−1 during
inflation as well as instantaneous reheating followed by the radiation dominated era a ∝ τ ,
which gives

a(τ) =

{
−1/(Hinfτ) (τ < −τr)
arτ/τr (τ > τr)

. (2.3)

Here Hinf is the Hubble expansion rate during inflation and ar is the scale factor at the
reheating time τr = (arHinf)

−1. Note that in this treatment the conformal time τ jumps

3The idea that the squeezed tensor bispectrum induces the quadrupolar modulation of the power spectrum
of curvature perturbation was proposed earlier and has been investigated actively in the name of ‘tensor
fossils’ [52–55].

4For the discussion on the detection of primordial GWs with pulsar timing arrays like SKA [56], see [57].
5The polarization tensor eλij(k̂) generally satisfies the transverse-traceless condition kie

λ
ij(k̂) = eλii(k̂) = 0.

Since we employ the circular polarization tensor, we also have the normalization conditions eλ∗ij (k̂)eλ
′
ij (k̂) = δλλ′

and the following properties eλ∗ij (k̂) = e−λij (k̂) = eλij(−k̂) for λ = ±.
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from −1/(aHinf) into 1/(aHinf) at reheating for a and da/dτ to be continuous. We further
assume a simple step-function behavior of the graviton mass,

µ(τ) =

{
m (τ < τm)

0 (τ > τm)
, (2.4)

where τm is a certain time during radiation dominated era. Although we do not discuss
its specific mechanism in this paper, this mass transition can be caused, for example, by a
scalar field whose vacuum expectation value controls the graviton mass and whose excursion
is triggered by the temperature of the universe.6

Finally, we set the initial condition for the mode function to be that for the Bunch-
Davies vacuum during inflation,

lim
kτ→−∞

vk(τ) =
1√
2k
e−ikτ . (2.5)

Solving the equation of motion (EoM) based on the above setup, one can show that the
mode function vk(τ) during inflation is given by

vk(τ < τr) =

√
−πτ
2

H(1)
ν (−kτ) , ν ≡

√
9

4
− m2

H2
inf

. (2.6)

where H
(1)
ν is the Hankel function of the first kind of order ν. To discuss the mode function

during inflation in more detail, it is useful to introduce a new dimensionless time variable
x ≡ −kτ . Well after the horizon exit, x� 1, the mode function has the asymptotic form

lim
x→0

vk(x) =

√
π

2k

[
1

Γ(1 + ν)

(x
2

) 1
2

+ν
− iΓ(ν)

π

(x
2

) 1
2
−ν
]
, (τ < τr), (2.7)

where Γ(ν) is the gamma function. Although the second term is always dominant in the
magnitude, the first term which carries the real part of vk also plays an important role in the
calculation of the tensor bispectrum, as we will see in the next section.

The ratio of the mode functions between the current massive case (vmassive
k (τ)) and the

usual massless case (vmassless
k (τ)) is evaluated at the end of inflation as

Υk(τ) ≡
∣∣∣∣ vmassive

k (τ)

vmassless
k (τ)

∣∣∣∣ =⇒ Υk(τr) '
Γ(ν)

Γ(3/2)

∣∣∣∣kτr2

∣∣∣∣ 32−ν . (2.8)

Since |kτr| � 1 and ν < 3/2 for the massive graviton on super-horizon scales, the mode
function is suppressed compared to the conventional massless case. On the other hand, after
inflation ends and the Hubble expansion rate H decreases, the super-horizon graviton modes
behave as non-relativistic matter with m > H > k/a. Then the mode function is relatively
amplified, Υk ∝ a1/2, compared to the massless graviton modes which behave as radiation.
This amplification continues until the graviton mass vanishes at τ = τm. The ratio of the
mode functions is then given by [16]

Υk(τ � τm) = γk

√
τm
τr

Γ(ν)

Γ(3/2)

∣∣∣∣kτr2

∣∣∣∣ 32−ν , (2.9)

6Promoting the parameters in the graviton mass term to functions of a scalar field or scalar fields (but not
of its or their derivatives), the constraint algebra of MTMG does not change and thus the number of local
physical degrees of freedom in the gravity sector remains to be two.
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where γk has a rather lengthy expression obtained by solving the junction conditions, but it
is O(1) for m/Hinf ∼ 1. As a result, the dimensionless power spectrum of the tensor modes
is written as [16]

Ph(k, τ � τm) = γ̃2
k |kτr|3−2ν τm

τr
Pmassless
h (k, τ), (2.10)

with γ̃k ≡ γk × 2ν−3/2Γ(ν)/Γ(3/2). Here, Pmassless
h denotes the usual power spectrum of the

massless tensor modes from inflation,

Pmassless
h (k, τ) = T 2

k (τ)
2H2

inf

π2M2
Pl

, (2.11)

with the transfer function of the massless tensor modes,

Tk(τ) ≡
hmassless
k (τ)

hmassless
k (τr)

=
a(τr)

a(τ)

vmassless
k (τ)

vmassless
k (τr)

. (2.12)

If gravitons keep the mass for a while after inflation τm � τr, it overcomes the dumping
factor in eq. (2.8) and the gravitational waves can be substantially amplified for relevant
modes with |kτr|3−2ντm/τr � 1. The tensor tilt is

nT ≡
d lnPh(τr)

d ln k
= 3− 2ν, (2.13)

where the O(εH) slow-roll correction is ignored under the assumption m/Hinf = O(1). Notice
that the tilt of the power spectrum is blue, nT > 0, because the mode function decays on
super-horizon scales during inflation.

3 Tensor bispectrum

In this section, we calculate the tensor bispectrum. We consider the following interaction
Hamiltonian at the third order for the tensor perturbation:

Hint = H
(GR)
int +H

(mass)
int , (3.1)

with

H
(GR)
int = −

M2
Pl

4
a2

∫
d3xhijhkl

(
∂j∂lhik − ∂i∂j

1

2
hkl

)
, (3.2)

H
(mass)
int = −g

M2
Pl

4
a4

∫
d3xhijhjkhki , (3.3)

where the coefficient g(τ) depends on time. H
(GR)
int is found even in general relativity (GR)

around de Sitter space. On the other hand, H
(mass)
int is absent in GR and it arises from

the same argument as the graviton mass term as discussed in appendix A. We assume g is
also constant during inflation in the same way as the graviton mass µ (see eq. (2.4)). It is

worth mentioning that H
(mass)
int also appears in supersolid inflation [28, 34], which suggests

that the appearance of this interaction is a generic feature of the breaking of the space
reparameterization symmetry.
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The three-point function for the tensor mode hij can be calculated based on the in-in
formalism [36, 58],

〈hi1j1(τ,k1)hi2j2(τ,k2)hi3j3(τ,k3)〉 = i

∫ τ

−∞
dη〈[Hint(η), hi1j1(τ,k1)hi2j2(τ,k2)hi3j3(τ,k3)]〉.

(3.4)

From this three-point function, we define un-contracted bispectrum for later convenience as

〈hi1j1(τ,k1)hi2j2(τ,k2)hi3j3(τ,k3)〉 ≡ (2π)3δ(k1 + k2 + k3)Bi1j1i2j2i3j3(k1, k2, k3), (3.5)

where ki ≡ |ki|. Taking the following sum over the indices, one can compute the tensor
bispectrum from it,

Bh(k1, k2, k3) = δj1i2δj2i3δj3i1Bi1j1i2j2i3j3(k1, k2, k3). (3.6)

The un-contracted bispectrum Bi1j1i2j2i3j3 can be split into two parts which are contributed

by H
(GR)
int and H

(mass)
int , respectively, as

Bi1j1i2j2i3j3 = B
(GR)
i1j1i2j2i3j3

+B
(mass)
i1j1i2j2i3j3

. (3.7)

Plugging eqs. (3.2) and (3.3) into (3.4), we obtain

B
(GR)
i1j1i2j2i3j3

= − 32

a3M4
Pl

I(GR)(k1, k2, k3; τ) E(GR)
i1j1i2j2i3j3

(k̂1, k̂2, k̂3) , (3.8)

B
(mass)
i1j1i2j2i3j3

=
192

a3M4
Pl

I(mass)(k1, k2, k3; τ) E(mass)
i1j1i2j2i3j3

(k̂1, k̂2, k̂3), (3.9)

where I(X) are basically time integrals of the mode functions,

I(GR)(k1, k2, k3; τ) ≡ k2
1

∫ τ

−∞
dη a−1(η) Im

[
v∗k1(τ)v∗k2(τ)v∗k3(τ)vk1(η)vk2(η)vk3(η)

]
, (3.10)

I(mass)(k1, k2, k3; τ) ≡
∫ τ

−∞
dη a(η)g(η) Im

[
v∗k1(τ)v∗k2(τ)v∗k3(τ)vk1(η)vk2(η)vk3(η)

]
, (3.11)

while E(X) are combinations of the tensor polarizations,

E(GR)
i1j1i2j2i3j3

(k̂1, k̂2, k̂3) =

[
Πi1j1,ij(k̂1)Πi2j2,kl(k̂2)

(
κ3jκ3lΠi3j3,ik(k̂3)− 1

2
κ3iκ3jΠi3j3,kl(k̂3)

)
+ 5 permutation terms w.r.t. 1, 2, 3

]
, (3.12)

E(mass)
i1j1i2j2i3j3

(k̂1, k̂2, k̂3) =Πi1j1,ij(k̂1)Πi2j2,jk(k̂2)Πi3j3,ki(k̂3) (3.13)

with

κi ≡
ki
k1

(i = 2, 3) , Πij,kl(k̂) ≡
∑
λ

eλij(k̂)e∗λkl (k̂). (3.14)

We shall also adopt the notation κi ≡ |κi| = ki/k1.
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In what follows in this section, we will evaluate I(X). As discussed in appendix B, it
can be shown that I(X) are well approximated by

I(GR)(τ) ' Im
[
v∗k1(τ)v∗k2(τ)v∗k3(τ)

]
k2

1

∫ τ

−∞
dη a−1(η) Re [vk1(η)vk2(η)vk3(η)] , (3.15)

I(mass)(τ) ' Im
[
v∗k1(τ)v∗k2(τ)v∗k3(τ)

] ∫ τ

−∞
dη a(η)g(η) Re [vk1(η)vk2(η)vk3(η)] . (3.16)

We will evaluate these time integrals and the prefactor Im[v∗k1v
∗
k2
v∗k3 ] in section 3.1 and 3.2,

respectively.

3.1 Evaluating time integral during inflation

Concentrating on the inflationary era, τ < τr, one can rewrite the time integrals in eqs. (3.15)
and (3.16) as∫ τr

−∞
dη a∓1(η) Re [vk1(η)vk2(η)vk3(η)] =

π3/2

8k
5/2
1

(
Hinf

k1

)±1

J (GR/mass), (3.17)

with dimensionless integrals

J (GR/mass)(κ2, κ3) ≡
∫ ∞
|k1τr|

dy y
3
2
±1 Re

[
H(1)
ν (y)H(1)

ν (κ2y)H(1)
ν (κ3y)

]
, (3.18)

where g(η) is assumed to be constant during inflation and y ≡ −k1η is introduced as a new

dummy variable. J (GR/mass) depends on κ2, κ3 and ν =
√

9/4−m2/H2
inf and should be

numerically evaluated. In figure 1, we show their dependence on m/Hinf for the equilateral
(κ2 = κ3 = 1) and the squeezed (κ3 � κ2 = 1) configurations. The following three obser-
vations are found in figure 1: (i) |J (mass)| is always larger than |J (GR)|. (ii) The squeezed
configuration (solid) is larger than the equilateral configuration (dashed). (iii) |J (mass)| in-
creases as |kτr| decreases for |kτr| . 0.7, while |J (GR)| is insensitive to |kτr| � 1.

Comparing I(mass) and I(GR), we find

I(mass)

I(GR)
=

ginf

H2
inf

J (mass)

J (GR)
, (3.19)

where ginf is the value of g during inflation. Since J (mass) is larger than J (GR) by almost
an order of magnitude as seen in figure 1, we expect that the contribution to the tensor

bispectrum is dominated by B
(mass)
i1j1i2j2i3j3

rather than B
(GR)
i1j1i2j2i3j3

, if ginf & H2
inf . We will

explicitly confirm this expectation with numerical computations in the next section.
One can also see in figure 1 that the squeezed configuration case is much larger than

the equilateral case. We find that J (GR/mass) diverges in the squeezed limit as

lim
κ2→1,κ3→0

J (GR/mass) ' − lim
κ3→0

∫ ∞
|k1τr|

dy y
3
2
±1 Im

[(
H(1)
ν (y)

)2
]

Im
[
H(1)
ν (κ3y)

]
= lim

κ3→0
κ−ν3 ×

(
2νΓ(ν)

π

∫ ∞
|k1τr|

dy y
3
2
−ν±1 Im

[(
H(1)
ν (y)

)2
])

. (3.20)

This implies that the tensor bispectrum peaks at the squeezed configuration, and the degree

of divergence in the squeezed limit is solely determined by ν =
√

9/4−m2/H2
inf .
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
m /H inf

0.10

1

10

100

|J (X) |

Figure 1. The numerical results of |J (X)(κ2, κ3)| defined in eq. (3.18) with X = GR (blue) and
X = mass (red and grey) are shown as functions of m/Hinf . The solid and dashed line denote the
squeezed configuration (κ2 = 1, κ3 = 0.1) and the equilateral configuration (κ2 = κ3 = 1), respectively.
The lower bound of the integral range of |J (mass)| is |kτr| = 10−15 (red) and 10−5 (grey), while |J (GR)|
(blue) does not depend on it. |J (mass)| is amplified for m/Hinf . 0.7 as |kτr| decreases.

Although J (GR) is not sensitive to the lower limit of the integral, |k1τr| � 1, we found
J (mass) depends on it for m/Hinf . 0.7. Well after all the modes with k1, k2, k3 exit the
horizon, the integrand of J (GR/mass) in eq. (3.18) evolve as,

y
3
2
±1 Re

[
H(1)
ν (y)H(1)

ν (κ2y)H(1)
ν (κ3y)

]
∼ y

3
2
−ν±1. (3.21)

Hence, the massless limit (ν = 3/2) of J (mass) exhibits a logarithmic enhancement. Indeed,
we can explicitly calculate J (mass) in the massless limit as

lim
m→0

J (mass) =
(
1 + κ3

2 + κ3
3

)
(Nk1 − γE) +

1

3
(1 + κ2 + κ3)

(
4 + 4κ2

2 + 4κ2
3 − κ2 − κ3 − κ2κ3

)
,

(3.22)
where Nk1 ≡ − log |k1τr| and γE is Euler’s constant.7 Nevertheless, in this paper, we focus on
the cases of m/Hinf = O(1) with which we obtain the amplified blue-tilted GW power spec-
trum, eq. (2.10). Then, not only J (GR) but also J (mass) becomes constant for a sufficiently
small |k1τr|. Therefore, we can ignore the late time contribution to J (GR/mass).

3.2 Evolution after inflation

Now we consider the factor Im
[
v∗k1(τ)v∗k2(τ)v∗k3(τ)

]
in eqs. (3.15) and (3.16) which represents

the post-inflationary evolution of the bispectrum. Evaluating at the end of inflation and
using eq. (2.7) again, one finds

a−3(τr) Im
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

]
'

23ν−3Γ3(ν)H3
inf

π3/2κν2κ
ν
3k

9/2
1

|k1τr|
3
2

(3−2ν), (3.23)

where a−3 was multiplied because the bispectrum has this prefactor in eqs. (3.8) and (3.9)
which originally comes from the fact, h(τ) ∝ v(τ)/a(τ). The evolution after inflation is given

7Basically this integral was calculated in ref. [34] (see eq. (72) of the paper). There are, however, a couple
of typos in the paper including the absence of the term proportional to Nk1 . For these points, we contacted
the authors of ref. [34] and we have got the agreement.
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by a factor from eqs. (2.9) and (2.12)

vk(τ)

vk(τr)
=

√
τm
τr
γk

a(τ)

a(τr)
Tk(τ). (3.24)

Now we obtain

a−3(τ) Im
[
v∗k1(τ)v∗k2(τ)v∗k3(τ)

]
' H3

inf

Tk1(τ)Tk2(τ)Tk3(τ)

23/2κν2κ
ν
3k

9/2
1

γ̃k1 γ̃k2 γ̃k3

[
|k1τr|(3−2ν) τm

τr

] 3
2

.

(3.25)
Here, the last factor γ̃k1 γ̃k2 γ̃k3 [|k1τr|(3−2ν)τm/τr]

3/2 reminds us of the expression for the power
spectrum, eq. (2.10). Since the power spectrum (∝ h2) gains the factor γ̃2

k |k1τr|(3−2ν)τm/τr,
it is reasonable for the bispectrum (∝ h3) to acquire it to the 3/2 power.

In the case of the instant reheating, the transfer function for the massless tensor at the
present time Tk(τ0) is given by [59]

Tk(τ0) = Ωm0

√
g∗(Tin)

g∗0

(
g∗s0

g∗s(Tin)

)2/3 3j1(kτ0)

kτ0
T̃1(k/keq), (3.26)

where j1(x) = (sin(x)/x − cos(x))/x, T̃1(x) = 1 + 1.57x + 3.42x2, Tin is the temperature of
the universe when the mode reenters the horizon and keq = 7.1 × 10−2Ωm0h

2Mpc−1 is the
wavenumber corresponding to the horizon scale of the matter-radiation equality.

3.3 Tensor bispectrum today

Putting the results of the previous subsections altogether, we obtain the two contributions
to the contracted bispectrum at the present time as

k2
1k

2
2k

2
3 B

(GR)
h = −1

2
(2π)3/2H

4
inf

M4
Pl

E(GR)J (GR)

κν−2
2 κν−2

3

Tk1Tk2Tk3(τ0)γ̃k1 γ̃k2 γ̃k3

[
|k1τr|(3−2ν) τm

τr

] 3
2

,

(3.27)

k2
1k

2
2k

2
3 B

(mass)
h = 3(2π)3/2 ginfH

2
inf

M4
Pl

E(mass)J (mass)

κν−2
2 κν−2

3

Tk1Tk2Tk3(τ0)γ̃k1 γ̃k2 γ̃k3

[
|k1τr|(3−2ν) τm

τr

] 3
2

,

(3.28)

where we multiplied B
(GR/mass)
h by (k1k2k3)2 in order to make them dimensionless. Here, the

contracted polarization tensors E(GR/mass) ≡ δj1i2δj2i3δj3i1E
(GR/mass)
i1j1i2j2i3j3

are computed as

E(GR) =
1

1024κ4
2κ

4
3

(
κ4

2 − 2κ2
2

(
κ2

3 + 1
)

+
(
κ2

3 − 1
)2)2 [

κ6
2 + 15κ4

2

(
κ2

3 + 1
)

+ 15κ2
2

(
κ4

3 + 6κ2
3 + 1

)
+
(
κ6

3 + 15κ4
3 + 15κ2

3 + 1
) ]
, (3.29)

E(mass) =
1

512κ4
2κ

4
3

(
−2
(
κ2

2 + 1
)
κ2

3 +
(
κ2

2 − 1
)2

+ κ4
3

)2 (
κ4

2 + 6κ2
2

(
κ2

3 + 1
)

+ κ4
3 + 6κ2

3 + 1
)
.

(3.30)

For instance, their values at the squeezed and equilateral configurations are

E(GR) =
1

2
, E(mass) =

1

4
. (Squeezed : κ2 = 1, κ3 → 0) (3.31)

E(GR) =
1647

1024
, E(mass) =

189

512
. (Equilateral : κ2 = κ3 = 1) (3.32)
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Figure 2. The shape functions S(GR) (left panel) and S(mass) (right panel) defined in eq. (3.33) are
shown for m/Hinf = 0.8. Both of them diverge at the squeezed limit, κ2 → 1 and κ3 → 0.

We can also define their shape functions as

S(X)(κ2, κ3) = N (X)κ2−ν
2 κ2−ν

3 E(X)(κ2, κ3)J (X)(κ2, κ3), (X = GR/mass) (3.33)

where the factor N (X) =
[
E(X)J (X)(κ2 = κ3 = 1)

]−1
normalizes the shape function at the

equilateral configuration such that S(X)(κ2 = κ3 = 1) = 1. From eq. (3.20), one finds that
the asymptotic behavior of the shape functions in the squeezed limit is the same for the two
contributions,

lim
κ2→1,κ3→0

S(X)(κ2, κ3) ∝ κ2−2ν
3 , (X = GR/mass) (3.34)

and (k1k2k3)2Bh diverges in the squeezed limit for ν > 1⇐⇒ m/Hinf <
√

5/2 ≈ 1.12.

Let us compare the amplitudes of the two contributions, B
(mass)
h and B

(GR)
h . Their ratio

is given by ∣∣∣∣∣B
(mass)
h

B
(GR)
h

∣∣∣∣∣ = 6
ginf

H2
inf

∣∣∣∣∣E(mass)J (mass)

E(GR)J (GR)

∣∣∣∣∣ & 6
ginf

H2
inf

. (3.35)

Here, |E(mass)J (mass)/E(GR)J (GR)| is plotted in figure 3 and is shown to be larger than unity
irrespective of m/Hinf or configuration. Therefore, for ginf/H

2
inf = O(1), the new contribution

to the bispectrum B
(mass)
h dominates the conventional one B

(GR)
h .

It is interesting to note that the bispectrum divided by the square root of the power
spectra can be written in a simple expression,

(k1k2k3)2Bh(k1, k2, k3)

[Ph(k1)Ph(k2)Ph(k3)]1/2
' 3π9/2ginf

HinfMPl
E(mass)J (mass)(κ2κ3)

7
2
−2ν , (3.36)

where the sub-leading contribution from B
(GR)
h is ignored. Here, the common factor discussed

below eq. (3.25) which enhances both the power spectrum and bispectrum is cancelled out.

At this stage, it is worth pointing out one subtlety about the bispectrum from H
(mass)
int

calculated in this section. In [60], it was shown that the tensor bispectrum satisfying Mal-
dacena’s consistency relation [36] obtained in usual GR can be removed by a gauge transfor-
mation. In this case, the calculated bispectrum is not physical but just artifact for a local
observer (see also [61, 62]). On the other hand, for the bispectrum generated by solid infla-
tion [29, 30], it was shown in [63, 64] that the Maldacena’s consistency relation does not hold
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Figure 3. |E(mass)J (mass)/E(GR)J (GR)| which appears in the ratio |B(mass)
h /B

(GR)
h | in eq. (3.35)

is plotted for 0 ≤ m/Hinf ≤ 1.4. The solid and dashed line denote the squeezed configuration
(κ2 = 1, κ3 = 0.1) and the equilateral configuration (κ2 = κ3 = 1), respectively. This plot implies
that |E(mass)J (mass)/E(GR)J (GR)| is always larger than unity.

for the tensor squeezed bispectrum and one cannot remove it by gauge transformations.8 In
other words, the calculated bispectrum is observable in solid inflation. Here, since our setup
can be regarded as a generalization of solid inflation, which in the unitary gauge does not
respect the spatial diffeomorphism, it is natural for us to expect that the contribution from

the mass term H
(mass)
int which is absent in the GR limit to the tensor bispectrum cannot be re-

moved by gauge transformations. Therefore, we will assume in this paper that the calculated

bispectrum B
(mass)
h is not a gauge artifact but an actual observable.

4 Quadrupolar modulation of tensor power spectrum

In this section we discuss the detectability of the primordial tensor bispectrum calculated in
the previous section. Although it seems that the simplest way to detect the tensor bispectrum
is the direct measurement of it at interferometer scales, it was shown that the bispectrum
cannot be probed directly [50, 51]. Instead of this, we briefly discuss the detectability based
on the modulation of the tensor power spectrum induced by the squeezed tensor bispectrum.

The tensor power spectrum with polarization λ1 modulated by a long tensor mode with
polarization λ3 and wavevector k3 is given by

lim
k3→0
〈hλ1k1

hλ1k2
〉′
h
s3
k3

' 〈hλ1k1
hλ1k2
〉′ + lim

k3→0

(
hλ3k3

〈hλ1k1
hλ1k2

hλ3k3
〉′

P λ3h (k3)

)
, (4.1)

where the prime on the expectation value 〈· · · 〉′ indicates that the momentum conserving
delta function and a factor of (2π)3 are removed. Here, the power spectrum is given by

P λh (k) =
2H2

inf

M2
Plk

3
T 2
k (τ0)γ̃2

k |kτr|(3−2ν) τm
τr
, (4.2)

where the two polarizations are not summed over and Ph(k) = 2P λh (k) in our model.

8For recent discussions on the implication of the violation of Maldacena’s consistency relation in solid
inflation, see [65, 66].
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From the definition of tensor bispectrum shown in eq. (3.5), one finds

〈hλ1k1
hλ1k2

hλ3k3
〉′ = eλ1∗ij (k̂1)eλ1∗kl (k̂2)eλ3∗mn(k̂3)Bijklmn(k1, k2, k3)

' 192

a3M4
Pl

I(mass) eλ1∗ij (k̂1)eλ1∗kl (k̂2)eλ3∗mn(k̂3)E(mass)
ijklmn(k̂1, k̂2, k̂3)

=
192

a3M4
Pl

I(mass) eλ1∗ij (k̂1)eλ1∗jk (k̂2)eλ3∗ki (k̂3), (4.3)

where we ignored the subdominant contribution from the GR interaction in the second line.
This equation can be reduced by summing over λ1 in the squeezed limit,

lim
k3→0

∑
λ1

〈hλ1k1
hλ1k2

hλ3k3
〉′ ' lim

k3→0

−192

a3M4
Pl

I(mass)eλ3∗ij (k̂3)k̂i1k̂
j
1

= lim
k3→0

−3π3/2ginf

2HinfMPlk
3/2
1

Ph(k1)

√
P λ3h (k3)J (mass)eλ3∗ij (k̂3)k̂i1k̂

j
1, (4.4)

where
∑

λ e
λ∗
ij (k̂)eλjl(k̂) = δil − k̂ik̂l is used in the first line.

Substituting it into eq. (4.1), the observable power spectrum taking into account the
presence of the long tensor mode hλ3k3

has the following quadrupole modulation

lim
k3→0

Ph(k1)
∣∣(obs)

h
λ3
k3

' lim
k3→0

Ph(k1)
(

1 + f̂λ3NL(k3)hλ3k3
eλ3∗ij (k̂3)k̂i1k̂

j
1

)
≡ lim

k3→0
Ph(k1)

(
1 + Q̃λ3ij (k3)k̂i1k̂

j
1

)
, (4.5)

with

f̂λ3NL(k3) ≡ −3π3/2ginf

2HinfMPlk
3/2
1

J (mass)√
P λ3h (k3)

. (4.6)

Then, the observed quadrupole in the tensor power spectrum can be obtained by sum-
ming over both long-mode polarizations λ3 = ± and wave vector k3,

Qij(x) = lim
k3→0

∫
d3k3

(2π)3
eik3·x

∑
λ3

Q̃λ3ij (k3) . (4.7)

Note that the lower limit of the integral in the above equation is given by the scale corre-
sponding to the infrared cutoff which is, however, not relevant in our case. The expectation
value of the quadrupole moments squared can be calculated as

(Q)2 ≡ 8π

15
〈Qij(x)Qij(x)〉 = lim

k3→0

8π

15

∫
d3k3

(2π)3

∑
λ3

〈Q̃λ3∗ij (k3)Q̃λ3ij (k3)〉′

= lim
k3→0

4

15π

∫
dk3 k

2
3

∑
λ3

(
f̂λ3NL(k3)

)2
P λ3h (k3)

=
6π2

5

(
ginf

HinfMPl

)2 ∫
dκ3 κ

2
3

(
J (mass)

)2
. (4.8)
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Figure 4. Plots of ginf/(HinfMPl) that gives
√

(Q)2 = 10−2 as functions of m/Hinf . The color
scheme is orange for κUV = 10−15 and blue for κUV = 10−8, which roughly correspond to LISA and
SKA, respectively. The lower bound of the κ3 integral is taken as 10−15κUV.

Using eq. (3.20), this integral is evaluated as∫ κUV

dκ3κ
2
3

[
J (mass)

]2
' G

(
m

Hinf

)
κ3−2ν

UV

3− 2ν
, (4.9)

with

G
(

m

Hinf

)
≡

(
2νΓ(ν)

π

∫ ∞
|k1τr|

dy y
3
2
−ν±1 Im

[(
H(1)
ν (y)

)2
])2

≈ exp

[
1.80919

(
m

Hinf

)3

− 2.01653

(
m

Hinf

)2

− 4.96751

(
m

Hinf

)
+ 5.58025

]
,

(4.10)

where κUV denotes UV cutoff of κ3 and a numerical fit is used in the second line. It is
worth mentioning that the concrete value of κUV depends on the target scale at which we
expect to observe the quadrupole modulation. For example, by assuming that k3 is slightly
larger than the horizon scale today, for the scale corresponding to interferometers like LISA,
κUV ' 10−15, while for the one corresponding to pulsar timing arrays like SKA, κUV ' 10−8.

Combining all results in this section so far, ginf can be expressed as9

ginf

HinfMPl
=

√
5

6π2

√
(Q)2

(
3− 2ν

κ3−2ν
UV

) 1
2

G
(

m

Hinf

)− 1
2

, (4.11)

According to recent discussions on the quadrupole modulation induced by the tensor bispec-
trum, it was suggested that the quadrupole can be observed if

√
(Q)2 & 10−2 [67, 68] on

9For the present case with m/Hinf = O(1), a theoretically natural choice for the value of ginf would be
of order O(H2

inf), which can be different from O(HinfMPl). Moreover, theoretical considerations such as the
positivity bound may lead to some constraints on the range of ginf . However, in the present paper, we instead
adopt the purely phenomenological standpoint and discuss the interesting range of ginf for on-going/future
experiments. For this purpose it is convenient to put bounds on ginf in the unit of HinfMPl instead of H2

inf ,
assuming that Hinf is not too different from MPl.
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small scales, where the tensor power spectrum is observable. In figure 4, numerical plots of
ginf/(HinfMPl) that give

√
(Q)2 = 10−2 are shown. If the value of ginf for given m/Hinf is

greater than the one shown by the plots, the modulation can be proved at the interferometer
scale (the orange plot with κUV = 10−15) or the scale of pulsar timing arrays (the blue plot
with κUV = 10−8).

Making use of the expression (4.11), the dependence of ginf/(HinfMPl) on κUV and
m/Hinf can be understood as follows. For a fixed m/Hinf , its power on κUV is −3/2 + ν that
is negative for 0 < ν < 3/2. Then, for κUV that is positive and much smaller than 1, a larger
ginf/(HinfMPl) is required for the detectability with a smaller κUV. On the other hand, for a
fixed κUV, from the second line of (4.10), we can show that (G(m/Hinf))

−1/2 is an increasing
function of m/Hinf for the region shown in figure 4, which means that a larger ginf/(HinfMPl)
is required for the detectability with a larger m/Hinf . Qualitatively, both of these features
can be explained by the fact that the tensor power spectrum is blue-tilted, where the effect
of the super horizon mode crutial for the modulation is suppressed for smaller κUV with
fixed m/Hinf or for larger m/Hinf with fixed κUV. Then, for large m/Hinf , the detectability
requires a very large value of ginf/(HinfMPl), which needs an enormous fine-tuning, but for
small m/Hinf , we do not need such a fine-tuning. For example, for m/Hinf = 0.5, which still
gives interesting results on the tensor power specturm [16], in order to obtain

√
(Q)2 & 10−2,

observable at the interferometer scale, we just need

ginf

HinfMPl
& 10−2. (4.12)

5 Conclusions and discussions

Recently, based on the minimal theory of massive gravity (MTMG), we proposed a new sce-
nario predicting blue-tilted and largely amplified primordial gravitational waves (GWs) [16].
In the scenario, the primordial GWs can be detected by interferometer experiments, even if
their signal is not observed at the CMB scale. While the analysis in ref. [16] was limited to
the linear perturbation related with the tensor power spectrum, since there are many other
possible sources producing the GWs detectable at the interferometer scales, it is important
to clarify how to distinguish our scenario from others. In this paper, as a natural extension
of the previous analysis, we have considered the non-Gaussianity of primordial GWs in the
scenario with the special emphasis on the tensor bispectrum.

We have shown that in MTMG, the interaction Hamiltonian for the tensor perturbation
at the third order has two contributions, where one has the same form as the usual one derived
from general relativity (GR) and the other is peculiar to MTMG. With this interaction
Hamiltonian, we have calculated the tensor bispectrum based on the in-in formalism. Our
method to obtain the tensor bispectrum today can be separated into the following two steps.
The first step is evaluating the time integral in the in-in formalism during inflation. At this
step, since the form of the interaction Hamiltonian peculiar to MTMG is the same as the
one appearing in supersolid inflation, the calculation of this part itself is not new, while
we have presented new results for the parameter region with the graviton mass comparable
to the Hubble expansion rate during inflation. The second step is taking into account the
enhancement of the GWs after inflation that is crucial in our scenario and is new. Combing
these together, we have found that the contribution from the three-point interaction peculiar
to MTMG dominates the one derived from GR and that the resultant tensor bispectrum
peaks at the squeezed limit whose slope is determined by the graviton mass.
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We have also considered the detectability of this tensor bispectrum. Since it had been
shown in the literature that the bispectrum cannot be probed directly at interferometer
scales, we have instead discussed the detectability based on the quadrupolar modulation of
the tensor power spectrum, which is induced by the squeezed tensor bispectrum, making use
of the well-known idea of the tensor fossils. We have shown that for m/Hinf = 0.5, which
is sufficient to generate a blue-tilted and amplified tensor power spectrum detectable at the
interferometer scales, if ginf , the coefficient of the three-point interaction peculiar to MTMG
with the dimension of mass squared, is larger than 10−2HinfMPl, which is natural for Hinf not
so smaller than MPl, the quadrupolar modulation sourced by the squeezed tensor bispectrum
is observable.

The appearance of the quadrupolar modulation of the tensor power spectrum is related
with the Maldacena’s consistency relation on the squeezed limit of the tensor three-point
function [36] with which it was shown that tensor modes with wavelengths much longer than
the present Hubble radius are unobservable [60]. Actually, for the setup of solid inflation,
in ref. [69], it was shown that the appearance of the quadrupolar modulatoin is related with
the fact that the Maldacena’s consistency relation is violated in the model [63, 64]. It is
interesting to see if the consistency relation is violated or not in the scenario we considered
whose setup can be regarded as generalization of solid inflation, explicitly.

In this paper, we have restricted ourselves to the case where the massive graviton is
the only spin-2 particle. On the other hand, recently, from the viewpoint of cosmological
collider [70, 71], the possibility that there are extra new particles in the very high energy
regime like during inflation has been actively explored. Although most of works so far are
intended to find particles with spin less than 2, some phenomenology is investigated for the
case with extra spin-2 particles [67, 72–80]. The generalization of the current work to this
direction might be worth investigating.

Finally, in this paper, as an extension of [16], where the amplitude of tensor power spec-
trum is large at the interferometer scales, but small at the CMB scale, we have not considered
the possibility that the tensor bispectrum in this model is detectable by on-going CMB exper-
iments. However, for some parameter region, it is possible that the amplitude of the tensor
bispectrum is sufficiently large at the CMB scale, while that of the tensor power spectrum
is not. So far, the detectability of tensor bispectra by CMB experiments are discussed for
only very limited types of the tensor bispectra whose forms are well approximated by given
templates (see [81], for a review) and the tensor bispectrum generated in our model does
not fall into such classes. Therefore, it might be also interesting to consider the detectability
of the tensor bispectrum in this model by CMB experiments. We would like to leave these
topics for future work.

Acknowledgments

We would like to thank E. Dimastrogiovanni, P. Creminelli, M. Fasiello, S. Koroyanagi, V.
De Luca, G. Franciolini, A. Ricciardone and G. Tasinato for useful discussions. The work
of TF was supported by JSPS KAKENHI No. 17J09103 and No. 18K13537. The work of
SMi was supported by JSPS KAKENHI No. 16K17709. The work of SMu was supported by
JSPS KAKENHI No. 17H02890, No. 17H06359 and also partially supported by the World
Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

– 15 –



J
C
A
P
0
1
(
2
0
2
0
)
0
2
3

A Graviton mass and coupling constant in MTMG theory

In the main text, we have studied primordial tensor non-Gaussianity from massive gravity
which predicts blue-tilted and largely amplified gravitational waves without relying on details
of a concrete theory. On the other hand, MTMG [20, 21], which has a mass scale m and
three dimensionless parameters ci (i = 1, 2, 3), is a concrete example giving such interesting
phenomenology. Therefore, here, we express the tensor graviton mass µ and coupling constant
g in terms of the parameters in MTMG. The FLRW cosmology in this theory has two branches
of solutions, the self-accelerating branch and the normal branch. In the self-accelerating
branch, the effective cosmological constant is given by

Λeff =
m2

2
X(c1X

2 + 3c2X + c3) , (A.1)

where X is a constant satisfying c1X
2 + 2c2X + c3 = 0. In this set-up, it was shown that the

squared mass of graviton is given by

µ2 =
m2

2
X

[
c2X + c3 +

H

Hf
(c1X + c2)

]
, (A.2)

where Hf is the Hubble expansion rate of the fiducial metric and it can be freely specified.
The self-coupling constant of the cubic interaction is given by

g = −m
2

24
X

[
c2X − c3 +

H

Hf
(c1X − c2)

]
. (A.3)

B Real part versus imaginary part

In this section, we derive the approximation in eqs. (3.15) and (3.16). The integrals in
eqs. (3.10) and (3.11) are evaluated at the end of inflation as∫ τr

−∞
dη a∓1(η)Im

[
v∗k1(τ)v∗k2(τ)v∗k3(τ)vk1(η)vk2(η)vk3(η)

]
= Iim + Ire, (B.1)

with

Iim = Im
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

] ∫ τr

−∞
dη a∓1(η)Re [vk1(η)vk2(η)vk3(η)] ,

Ire = Re
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

] ∫ τr

−∞
dη a∓1(η)Im [vk1(η)vk2(η)vk3(η)] . (B.2)

Since its integrand increases in time, Ire is analytically performed with the super-horizon
asymptotic form of the mode function as

Ire = Re
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

] ∫ τr

−∞
dη a∓1(η)Im [vk1(η)vk2(η)vk3(η)]

= Re
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

] 23(ν−1)Γ3(ν)

π3/2k
5/2
1 (κ2κ3)ν

(
k1

Hinf

)∓1 ∫ ∞
|k1τr|

dy y
3
2
±1−3ν

' Im
[
v∗k1(τr)v

∗
k2(τr)v

∗
k3(τr)

] 22ν−3π3/2Γ2(ν)

k
5/2
1 (κ2κ3)νΓ(ν + 1)

|k1τr|
5
2
−ν

5
2 ∓ 1− 3ν

a∓1
r (1 + κ2ν

2 + κ2ν
3 ), (B.3)
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where m/Hinf < 0.94 is assumed to simplify
∫

dyy−3ν+5/2. Using eq. (3.17), one finds

Ire

Iim
' 22νΓ2(ν)(1 + κ2ν

2 + κ2ν
3 )

Γ(ν + 1)(κ2κ3)ν J (GR/mass)

|k1τr|
5
2
−ν±1

5
2 ∓ 1− 3ν

. (B.4)

The factor |k1τr|
5
2
−ν±1 is tiny in the massive case. Therefore, this shows Ire � Iim which

justifies the approximation in eqs. (3.15) and (3.16).
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