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Abstract.  The random walk with hyperbolic probabilities that we are 
introducing is an example of stochastic diusion in a one-dimensional 
heterogeneous media. Although driven by site-dependent one-step transition 
probabilities, the process retains some of the features of a simple random walk, 
shows other traits that one would associate with a biased random walk and, 
at the same time, presents new properties not related to either of them. In 
particular, we show how the system is not fully ergodic, as not every statistic 
can be estimated from a single realization of the process. We further give a 
geometric interpretation for the origin of these irregular transition probabilities.
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1.  Introduction

Random walks (RWs) are perhaps the most recurrent mathematical models used in the 
description of the erratic evolution of physical systems [1–3]. In its simplest form, a 
RW can be thought to represent the concatenation of shifts in the position of a particle 
that can perform either left-ward or right-ward steps with given probabilities. However, 
these one-step transition probabilities need not to be constant, they may be fully 
dependent on the current status of the walker and even so the stochastic process thus 
defined will still belong to the class of Markov chains [4]: therefore, we can consider 
processes that suer from aging [5] or, as in the present case, particles propagating 
through inhomogeneous media [6, 7].

There are many mechanisms that can account for a lack of homogeneity in the one-
step transition probabilities. Let us review three of them, related to the properties of 
the underlying medium. The first one is of a topological nature, and has its origin in 
the number of paths connecting a site: if one evenly distributes the probability of leav-
ing any given location among its outgoing routes, and the number of possible destinies 
is site dependent, the one-step transition probabilities will be site dependent too. For 
instance, consider the case of a particle that progresses through a rooted tree with level-
dependent branching order and assume that we only track its depth within the tree 
structure. In such a case, the probability of returning to the parent of any given vertex 
is one over the degree of that vertex, dierent from the probability of deepening in the 
tree which is the number of children over the degree of the vertex. This cannot be the 
bare mechanism behind the lack of homogeneity proposed here since, as we will see, our 
one-step transition probabilities are not rational numbers. This limitation, however, 
can be overcome in the case of weighted networks [8] where some additional feature, as 
e.g. channel capacity, is assigned to each (directed) link.

A second way of obtaining site-dependent transition probabilities is of geometric 
character: in many cases, the topological structure of the system can be embedded in 
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a metric space directly associated, or not, with the physical space. This leads to the 
emergence of heterogeneous transition probabilities between dierent sites in a natural 
way, if one assumes that the shorter its length the greater the chances of following a 
given path. In particular, evidences pointing to the presence of hyperbolic geometries in 
technological, biological or social complex networks increase, and thus this novel topic 
is under very active research [9–15]. As we show below, we do connect the properties 
of our heterogeneous medium with the existence of a (hidden) hyperbolic metric space, 
which makes our results relevant to real-world systems.

A third method to obtain inhomogeneous transition rates is through disorder [16, 
17]. Quenched disorder may be the result of the interaction of an initially homogeneous 
medium with an external (random) potential which produces uneven transition rates 
between the sites [18–22]. Particles moving across such systems usually experience 
anomalous diusion [23] that, ironically, in some cases can be related to the evolution 
of a Brownian process on the hyperbolic plane [24–26].

A remarkable property of many (quenched and annealed) disordered systems is 
associated with the concept of ergodicity. A system is said to be ergodic if the ensemble 
average of any physical observable is equal to its time average along a single trajec-
tory, in the limit of infinite measurement time. This means that any sample path will 
densely fill (except perhaps for a set of null measure) the entire phase space of the sys-
tem. Therefore, strong ergodicity breaking takes place when trajectories are confined to 
disjoint sub-spaces. In 1992, within the context of glassy systems, Bouchaud introduced 
the complementary notion of weak ergodicity breaking: he considered a situation in 
which the system, along its evolution, gets trapped in metastable states during random 
periods of time, with a distribution law that leads to diverging mean sojourn times [27]. 
Since then, the concept of weak ergodicity breaking has aroused great interest [28–35], 
being commonly associated with anomalous diusion in general, and sub-diusion in 
particular.

Here we will face a related but dierent form of non-ergodicity: in systems like the 
ones considered in [28] or [29], the process explores the entire phase space almost 
surely, but the fraction of time it spends in any given volume does not coincide with 
the probabilistic measure of this volume. This implies that ensemble and time averages 
are well defined but dierent. In our case, the state space is not decomposable into 
deterministically inaccessible regions but into probabilistically inaccessible regions, that 
is, there is always a finite probability that any given trajectory avoids a whole part 
of the state space, even when the observation time is infinite. As a consequence, the 
system is not ergodic since one cannot deduce all its statistical properties from a single 
sample path. Despite this, the process shows selective self-averaging, depending on the 
physical observable considered.

Besides that, the process has other appealing properties regarding its resemblances 
and dierences when compared to simple and biased random walks.

The paper is structured as follows: in section 2 we introduce the process at hand and 
derive its most basic properties. In section 3 we obtain explicit formulas for dierent 
expected values related to the position of the walker as means, variances and mean 
squared displacements. The issue of the ergodicity of the process is first considered in 
this section, and rounded in section 4, which is devoted to the analysis of the statis-
tics of first-time events, as first-return probabilities or first-visit times. We provide a 
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plausible geometric interpretation of the origin of our inhomogeneous probabilities in 
section 5, with the help of hyperbolic metric spaces. The paper ends with section 6 
where conclusions are drawn and future work is envisaged.

2. Definition and main properties of the process

Let us introduce Xt, the one-dimensional random walk we are going to analyze, an 
infinite Markov chain on the integers—namely Xt ∈ Z for t ∈ {0, 1, 2, . . .}, with 
X0 ≡ Xt=0 given—whose one-step evolution can be expressed as follows: if at time t the 
walker is at a given location, Xt  =  n, then at time t  +  1 one has

Xt+1 =

{
n+ 1, with probability pn→n+1,

n− 1, with probability pn→n−1,
� (1)

where we will assume the following dependency for the one-step transition probabilities:

pn→n±1 =
1

2

cosh((n± 1)ξ)

cosh(ξ) cosh(nξ)
,� (2)

with ξ ∈ R, a parameter that controls all the transition probabilities, and whose pos-
sible origin is discussed below in section 5. Although it may not be obvious at first 
sight, this choice for pn→n±1 defines valid transition probabilities, i.e. they are positive 
and the total probability leaving any given site equals to 1,

pn→n+1 + pn→n−1 = 1.� (3)
Alternative expressions for (2) where the validity of equation (3) becomes clearer are

pn→n±1 =
1

2
[1± tanh(ξ) tanh(nξ)] ,� (4)

and

pn→n+1 =
qn+1 + (1− q)n+1

qn + (1− q)n
,� (5)

pn→n−1 = q(1− q)
qn−1 + (1− q)n−1

qn + (1− q)n
,� (6)

where we have defined q,

q ≡ 1

2
[1 + tanh(ξ)] ,� (7)

with 0  <  q  <  1 for finite values of ξ. In figure 1 we illustrate how the one-step trans
ition probabilities vary along the lattice for a specific value of ξ, ξ = 0.55, a choice that 
emphasizes the idiosyncratic characteristics of the model without distorting them.

Parameter q is useful for comparing Xt with other well known examples of RW. The 
process we have defined is symmetric around the origin with, in particular,
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p0→±1 =
1

2
,� (8)

for any choice of q. For large values of |n|, in turn, one finds that the one-step transition 
probabilities attain a limiting value. Thus, for instance, one has that

lim
n→+∞

pn→n+1 = max(q, 1− q),� (9)

what would define a biased random walk with positive drift, regardless of the value of 
q, q �= 1/2. Note that the mirrored conclusion is obtained for negative values of n,

lim
n→−∞

pn→n−1 = max(q, 1− q),� (10)

since this describes a biased random walk with negative drift. This means that one 
cannot simply identify the case q  >  1/2 with a positive drift, and the case case q  <  1/2 
with a negative drift: the process will behave as a simple symmetric random walk in 
the vicinity of the origin, and as a non-reverting, biased random walk in outer regions 
of the line. (Therefore, we could have set ξ � 0 without losing any generality.)

Even though the one-step transition probabilities are inhomogeneous, the two-step 
‘forth-and-back’ and the ‘back-and-forth’ probabilities do not depend on n:

pn→n±1 · pn±1→n =
1

4 cosh2(ξ)
.� (11)

This remarkable property greatly simplifies the computation of p n,t, the probability of 
finding the process at site n at time t, if it started from the origin:

pn,t ≡ P (Xt = n|X0 = 0) .� (12)
Consider the general formula

pn,t =
∑

�s∈Sn,t

p0→s1 · · · pn−st→n,� (13)

where �s  is a t-dimensional vector representing the actual path followed by the walker: 
a vector whose components are sk = ±1. Accordingly, Sn,t is the subset all admissible 
paths given the actual initial and final locations: the set of vectors for which

t∑
k=1

sk = n.

Figure 1.  One-step transition probabilities. We show pn→n±1 for some values of n, 
when ξ = 0.55. Observe how pn→n±1 · pn±1→n ≈ 0.187, independent of n, and that 
p2,3 ≈ 0.700 has almost attained the limiting value limn→∞ pn→n+1 = q ≈ 0.750.
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The cardinality of set Sn,t is

|Sn,t| =
(

t
t−n
2

)
,� (14)

if n and t have the same parity (i.e. if both are odd or even integers) and zero other-
wise. Please note that we are not adopting the criterion of taking as null the binomial 
coecient for non-natural arguments: we use the standard definition of the binomial 
coecient based on the gamma function,

(
a

b

)
≡ Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
,� (15)

valid for real numbers, except negative integers a, b or a  −  b. Therefore, a null prob-
ability is always due to the presence of an impossible event, not to the side eect of any 
binomial coecient—see, e.g. equation (16) below.

Let us continue with the computation of (13). Assume for the moment that n  >  0, 
with n � t. One can easily check that

p0→s1 · · · pn−st→n = p0→1 · · · pn−1→n ·
1

[2 cosh(ξ)]t−n ,

after reordering the first occurrence of each transition probability in a directed way 
towards n and then applying property (11) to the remaining (t− n)/2 couples. But, 
according to equation (2), one has

p0→1 · · · pn−1→n =
cosh(nξ)

[2 cosh(ξ)]n
,

and thus

p0→s1 · · · pn−st→n =
cosh(nξ)

[2 cosh(ξ)]t
.

This quantity is the same for all the paths, and therefore

pn,t =

(
t

t−n
2

)
cosh(nξ)

[2 cosh(ξ)]t
,� (16)

if n and t share the same parity, and p n,t  =  0 if not.
Equation (16) does not depend on the sign of n, while |n| � t, and thus constitutes 

the general solution of the stated problem. Note how this expression coincides with the 
probability function of a randomly-biased RW,

pn,t =
1

2

[
p
(q)
n,t + p

(1−q)
n,t

]
,� (17)

with

p
(q)
n,t ≡

(
t

t−n
2

)
q

t+n
2 (1− q)

t−n
2 ,� (18)

https://doi.org/10.1088/1742-5468/ab535b
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since

cosh(nξ) =
1

2

[(
q

1− q

)n
2

+

(
1− q

q

)n
2

]
,� (19)

and

1

[2 cosh(ξ)]t
= [q(1− q)]

t
2 .� (20)

Figure 2 shows an example of p n,t for ξ = 0.55, which corresponds to q ≈ 0.75. We see 
how after 100 time steps, probability concentrates around |n| ≈ 50.

The resemblance between our process and a randomly-biased RW is partial, how-
ever. Due to the lack of homogeneity, Xt is not symmetric upon time reversal: by follow-
ing a reasoning similar to that used in the derivation of (16), and noting that

pn→n−1 · · · p1→0 =
1

[2 cosh(ξ)]n cosh(nξ)
,

one gets

P (Xt = 0|X0 = n) =

(
t

t−n
2

)
1

[2 cosh(ξ)]t cosh(nξ)
,� (21)

which is also valid for any n, |n| � t, with the same parity of t. In fact, by using the 
same ideas it can be shown that one has

pn,t;m ≡ P (Xt = n|X0 = m) =

(
t

t−n+m
2

)
cosh(nξ)

[2 cosh(ξ)]t cosh(mξ)
,� (22)

Figure 2.  Probability function p n,t. We depict the probability of finding the system 
at position n after t  =  100 steps, if X0  =  0 and ξ = 0.55, the latter corresponding 
to q ≈ 0.75. As t is an even number in this case, only even values of n are shown. 
The solid curve is a representation of equation  (16) whereas the histogram was 
obtained from 100 000 numerical simulations of the process, with the binning (here 
and hereafter) chosen to include just one attainable site in each category.

https://doi.org/10.1088/1742-5468/ab535b


Random walk with hyperbolic probabilities

8https://doi.org/10.1088/1742-5468/ab535b

J. S
tat. M

ech. (2020) 013203

for general values of m and n, as long as |n−m| � t, and the involved quantities 
have the appropriate parity to allow reaching site n starting from site m in t steps1. 
Equation  (22) implies that pn,t;m �= pm,t;n, unlike the case of a randomly-biased RW 
where

p
(q)
n,t;m =

(
t

t−n+m
2

)
q

t+n−m
2 (1− q)

t−n+m
2 = p

(1−q)
m,t;n ,� (23)

and therefore one has

1

2

[
p
(q)
n,t;m + p

(1−q)
n,t;m

]
=

1

2

[
p
(q)
m,t;n + p

(1−q)
m,t;n

]
.� (24)

Obviously, probability p n,t;m in (22) satisfies the corresponding Chapman–Kolmogorov 
equation [2]:

pn,t;m =
m+t′∑

n′=m−t′

pn,t−t′;n′ · pn′,t′;m,� (25)

for any value of t′, 0 < t′ < t, thanks to the fact that

cosh(nξ)

[2 cosh(ξ)]t−t′ cosh(n′ξ)
· cosh(n′ξ)

[2 cosh(ξ)]t
′
cosh(mξ)

=
cosh(nξ)

[2 cosh(ξ)]t cosh(mξ)
,

is independent of n′, and the Chu–Vandermonde identity—see, e.g. [36]:
(
t

k

)
=

t′∑
k′=0

(
t− t′

k − k′

)(
t′

k′

)
.� (26)

3. Expectations

As the process is symmetric around the origin, the expected value of the position is zero 
if the process began at that point, E [Xt|X0 = 0] = 0. The situation changes drastically 
when one considers a general initial point, since then

µt;m ≡ E [Xt|X0 = m] =
m+t∑

n=m−t

n · pn,t;m

=
t∑

k=0

(
t

k

)
m+ 2k − t

cosh(mξ)

cosh((m+ 2k − t)ξ)

[2 cosh(ξ)]t

= m+ tanh(ξ) tanh(mξ) · t,

�

(27)

1 Note that equation (22) is sensitive to the fact that n and m have the same sign or not only through the bino-
mial factor, that is, through the diering number of paths that would connect initial and final locations in each 
scenario, but not through the one-step probabilities themselves.
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and the process shows ballistic behavior for ξ �= 0, despite the existing symmetry [37]. 
This result is very relevant, since the process is time homogeneous and then

E [Xt+τ |Xt = m] = m+ tanh(ξ) tanh(mξ) · τ = µτ ;m,

for any t, τ � 0. In addition, note how we can rewrite µt;m as

µt;m = m+ Vm · t,� (28)
where we have introduced the current of probability leaving site m, Vm,

Vm ≡ pm→m+1 − pm→m−1 = tanh(ξ) tanh(mξ),� (29)
a quantity that, as the symbol suggest, plays the role of the initial position-dependent 
velocity of the process starting from m. This speed increases with |m|, until reaching a 
terminal value:

lim
m→±∞

Vm = ±| tanh(ξ)|.� (30)

In contrast to the linear growth in t of µt;m for m �= 0, the time evolution of the 
standard deviation of the process, σt;m, presents two well-dierent regimes:

σ2
t;m ≡ E

[
X2

t |X0 = m
]
− µ2

t;m =
m+t∑

n=m−t

n2 · pn,t;m − µ2
t;m

=
t∑

k=0

(
t

k

)
(m+ 2k − t)2

cosh(mξ)

cosh((m+ 2k − t)ξ)

[2 cosh(ξ)]t
− µ2

t;m

= m2 + 2mVmt+
1

cosh2(ξ)
t+ tanh2(ξ)t2 − µ2

t;m

=
1

cosh2(ξ)
t+

tanh2(ξ)

cosh2(mξ)
t2.

�

(31)

The first term in the last expression will be the most relevant at the beginning of the 
evolution if either |ξ| is small or |m| is large but, as time increases, the second term will 
eventually dominate. Indeed one has

lim
t→∞

µt;m

σt;m

= | sinh(mξ)|,� (32)

for fixed m, and

lim
|m|→∞

|µt;m −m|
σt;m

= | sinh(ξ)| ·
√
t,� (33)

for fixed t. This translates into trajectories that show a marked directionality and a 
relatively low dispersion, as it can be observed in figure 3. Actually, the example dis-
played here corresponds to a case in which, starting from X0  =  0, Xt does not take nega-
tive values at any moment. We defer until section 4 the proof that this fact is neither 
incidental nor a consequence of considering a sample path with finite length.

Having a finite probability of obtaining a trajectory that avoids half of the space of 
states (when ξ �= 0) prevents the process from being ergodic: for instance, one will not 
be able to estimate p n,t or µt;n for arbitrary choices of n from that sample path. Despite 
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this, the process is partially ergodic: there are magnitudes that can be evaluated accu-
rately with the knowledge of a single trajectory, regardless of its peculiarities, being 
paradoxically one of these quantities the mean squared displacement (MSD), a statistic 
that is commonly used to verify the ergodicity of a process [23, 31, 34].

To prove this, let us define the squared displacement of the process between times 
t and t+ τ, τ � 0, ∆X2(t, t+ τ), as

∆X2(t, t+ τ) ≡ (Xt+τ −Xt)
2.� (34)

The time-averaged MSD, ∆X2(τ ;T ), is the normalized sum of the all the dierent 
squared displacements that can be obtained from a single realization along the mea-
surement time T, T � τ ,

∆X2(τ ;T ) ≡ 1

T − τ + 1

T−τ∑
t=0

∆X2(t, t+ τ).� (35)

Let us compute next the expected value of the squared displacement, the MSD,

E
[
∆X2(t, t+ τ)|X0 = 0

]
= E

[
X2

t+τ |X0 = 0
]
+ E

[
X2

t |X0 = 0
]

− 2E [Xt+τXt|X0 = 0] .
� (36)

We already have expressions for the first two terms, since E
[
X2

t+τ |X0 = 0
]
= σ2

t+τ ;0 and 
E [X2

t |X0 = 0] = σ2
t;0, so we can focus our eorts in the last one:

E [Xt+τXt|X0 = 0] = E [E [Xt+τXt|Xt]|X0 = 0] ,� (37)
by virtue of the tower property of the conditional expectation, but

E [Xt+τXt|Xt = m] = µτ ;m ·m = X2
t +Xt tanh(ξ) tanh(Xtξ) · τ ,� (38)

and therefore

(a) (b)

Figure 3.  Sample path of Xt, for ξ = 0.55. (a) In the left panel we illustrate the 
beginning of the simulation of a realization of the process with 100 000 time steps. 
(b) In the right panel we consider the whole evolution of the walker, by plotting 
its position every 5000 time steps, for clarity reasons. In both plots, the solid line 
has a slope equal to the terminal velocity corresponding to positive walks, see 
equation (30).

https://doi.org/10.1088/1742-5468/ab535b
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E [Xt+τXt|X0 = 0] = E
[
X2

t |X0 = 0
]
+ τ tanh(ξ)E [Xt tanh(Xtξ)|X0 = 0]

= σ2
t;0 + τ tanh(ξ)

t∑
n=−t

n tanh (nξ) pn,t

= σ2
t;0 + τ tanh(ξ)

t∑
k=0

(
t

k

)
(2k − t)

sinh((2k − t)ξ)

[2 cosh(ξ)]t

= σ2
t;0 + τt tanh2(ξ).

�

(39)

Collecting all the pieces, we finally get

E
[
∆X2(t, t+ τ)|X0 = 0

]
= σ2

t+τ ;0 + σ2
t;0 − 2σ2

t;0 − 2τt tanh2(ξ)

=
1

cosh2(ξ)
τ + tanh2(ξ)τ 2 ≡ σ2

τ ;0,
� (40)

independent of t2. Therefore, one has

E
[
∆X2(τ ;T )

∣∣∣X0 = 0
]
= σ2

τ ;0,� (41)

independent of T.

In figure 4(a) we can observe how ∆X2(τ ;T ) converges to this theoretical value as 
T increases, for dierent choices of τ , τ = 2, 3, 4 and 53. We have used the same sample 
path of 100 000 time steps of figure 3. The relative error reduces as the number of terms 

in (35) increases, i.e. is O
(
T−1/2

)
, for T � τ . For comparison purposes, we have included 

in the same figure, figure 4(b), a second graph where the MSD, E [∆X2(0, τ)|X0 = 0], 
is estimated from the initial displacements of N instances of the 100 000 replicas of the 

process used in the making of figure 2. In this case the convergence scales as O
(
N−1/2

)
, 

as the number of realizations considered grows.

4. First-time events

It is clear from the structure of equation  (22) that the transition probability is not 
invariant under a spatial shift. Despite that, the probability that the process returns to 
any given point n after 2t steps, u2t,

u2t ≡ P (X2t = n|X0 = n) =

(
2t

t

)
1

[2 cosh(ξ)]2t
,� (42)

does not depend on n, and coincides with the expression that one would associate 
with the simple random walk, after the replacement of the fair-coin toss probability 

2 After a similar although more involved calculation, it can be shown that E [∆X2(t, t+ τ)|X0 = m] is not a function 
of m either, that is E [∆X2(t, t+ τ)|X0 = m] = σ2

τ ;0, for any value of m.
3 The case τ = 1 leads to ∆X2(t, t+ 1) = 1, identically.
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1/2 by the factor 1/2 cosh(ξ). Equation (42) allows us to check that p n,t;m—see equa-
tion (22)—fulfills the right closure property: e.g. consider the case

u2t = P (X2t = 0|X0 = 0)

=
t∑

n=−t

P (X2t = 0|Xt = n)P (Xt = n|X0 = 0)

=
t∑

n=−t

(
t

t−n
2

)2
1

[2 cosh(ξ)]2t
=

(
2t

t

)
1

[2 cosh(ξ)]2t
,

�

(43)

where we have applied again the Chu–Vandermonde identity, equation (26), having in 
mind that the last sum only contains those terms for which n has the same parity of t.

A quantity related to u2t is f 2t, the probability that the process returns to a given 
point n after 2t steps for the first time. Before analyzing f 2t, let us introduce the random 
variable Tn;m,

Tn;m ≡ min {t > 0 : Xt = n|X0 = m} ,� (44)
i.e. the interval defined by the first-visit time to an arbitrary site n starting from m [3]. 
Now, we can write f 2t in terms of Tn;m,

f2t ≡ P (Tn;n = 2t) .� (45)
As the notation suggest, f 2t is independent of n, just like u2t. In fact, f 2t can be related 
to u2t by the same formula that one has for the simple random walk:

f2t =
1

2t− 1
u2t =

1

2t− 1

(
2t

t

)
1

[2 cosh(ξ)]2t
,� (46)

(a) (b)

Figure 4.  Mean squared displacement of Xt, for ξ = 0.55 and X0  =  0. (a) In the 

left panel we show the time-averaged MSD, ∆X2(τ ;T ), for τ  equal to 2 (blue 

dots), 3 (orange squares), 4 (green diamonds), and 5 (red triangles). The dataset 
is the same used in the confection of figure 3, a single sample path of 100 000 time 
steps. The value is plotted against the observation time T. (b) In the right panel 
we consider the ensemble estimation of MSD, E [∆X2(0, τ)|X0 = 0]. The dataset is 
the same used in the confection of figure 2, 100 000 trajectories of 100 time steps 
each. The estimate is plotted against N, the number of samples averaged. Only the 

initial displacement is considered. In both graphs, the solid lines correspond to the 

theoretical values of σ2
τ ;0.
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since in both cases f 2t and u2t do satisfy the following relationship:

u2t =
t∑

t′=1

f2t′ · u2(t−t′).� (47)

This independency of f 2t with respect to n can be used to illustrate another instance 
of the partial ergodicity shown by the process. The time homogeneity determines that 
Tn;n can be also defined as

Tn;n ≡ min {τ > 0 : Xt+τ = n|Xt = n} ,� (48)
and since P (Tn;n = 2t) is not a function of n, a single trajectory can be used to estimate 
f 2t, as we have done in figure 5 where the successive values of Xt are taken from our 
realization of the process with 100 000 time steps.

Note that when obtaining this estimation of f 2t, we must not discard those points 
in the trajectory for which no first-visit time lapse can be defined, thus reducing the 
total amount of events. The reason is because the process (for ξ �= 0) is not recurrent:

P (∃t > 0 : X2t = n|X0 = n) =
∞∑
t=1

f2t = 1− | tanh(ξ)| < 1.� (49)

Even being the process transient, the mean number of returns to any given point may 
be still greater than one,

∞∑
t=1

u2t =
∞∑
t=1

(
2t

t

)
1

[2 cosh(ξ)]2t
= | coth(ξ)| − 1 � 1,� (50)

which is true for |ξ| � 0.5 ln 3 ≈ 0.55, very similar to the value we are using in the illus-
trative examples. Indeed, the mean number of returns grows unboundedly as ξ → 0.

Consider now the problem of finding the statistics of the first-visit time to an arbi-
trary site n starting from the origin, f t,n,

ft,n ≡ P (Tn;0 = t) ,� (51)
which is null if n and t have dierent parity, or t < |n|. For n  =  0 one has that ft,0 = f2t, 
whereas for n  >  0, we can obtain f t,n thanks to its connection with p n,t and ut,

pn,t =
t∑

t′=n

ft′,n · ut−t′ ,� (52)

since the probability of finding the process at site n at time t is the sum of all paths 
that reach n at time t′ � t, and then return to n in the remaining time span. Since ut−t′ 
is equal to zero for t′ − t odd, the three integers n, t and t′ must share the same parity. 
With this proviso, let us introduce the z-transform of p n,t, p̂n(z)

4,

p̂n(z) ≡
∞∑
t=n

pn,t · zt =
∞∑
t=n

(
t

t−n
2

)
cosh(nξ)

[2 cosh(ξ)]t
· zt,� (53)

4 Depending on the context, alternative definitions of this discrete version of the Laplace transform can be found 
in the literature.
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with 0 � z < cosh(ξ), and consider our previous findings, equations (42) and (52),

p̂n(z) =
∞∑
t=n

t∑
t′=n

ft′,n

(
t− t′

t−t′

2

)
1

[2 cosh(ξ)]t−t′
· zt

=
∞∑

t′=n

ft′,n · zt
′

∞∑
t=t′

(
t− t′

t−t′

2

)
· Z t−t′ ,

where

Z ≡ z

2 cosh(ξ)
<

1

2
.� (54)

But
∞∑
t=t′

(
t− t′

t−t′

2

)
· Z t−t′ =

∞∑
k=0

(
2k

k

)
· Z2k =

1√
1− 4Z2

,

what renders
∞∑

t′=n

ft′,n · zt
′
= p̂n(z)

√
1− 4Z2 = p̂n(z)

∞∑
k=0

(−1)k
(
1/2

k

)
z2k

cosh2k(ξ)
.

Therefore, from equation (53), one gets5

Figure 5.  First-visit probability function f 2t. In this graphic we plot the theoretical 
value for the probability that the first return to the initial location occurred after 
2t steps, solid curve, together with an estimation obtained from the first-return 
time lag to every sample Xt of our single trajectory of 100 000 time steps. Note 
that, indeed, the return only took place in 50 184 of the cases, very close to the 
theoretical prediction of eventually returning to the starting point of 0.499 48 of 
the cases, see equation (49).

5 Observe how this result is not valid for n  =  0 and becomes ill-defined for n  =  t  =  0.
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ft,n =
cosh(nξ)

[2 cosh(ξ)]t

t−n
2∑

k=0

(
t− 2k
t−n
2

− k

)
(−1)k

(
1/2

k

)
22k

=
cosh(nξ)

[2 cosh(ξ)]t

(
t

t−n
2

)
n

t
=

n

t
pn,t,

�

(55)

once again, a result that is formally identical to the one corresponding to a simple 
random walk. For negative targets, n must be replaced by |n|, since p n,t is already 
symmetric. We show in figure 6 the shape of probability f t,n for n  =  11. Obviously, the 
minimum feasible value of t is t  =  11, although the probability attains a maximum at 
t  =  17.

Equation (55) can be easily generalized to include an arbitrary choice for the initial 
starting site m, m �= n:

ft,n;m ≡ P (Tn;m = t) =
|n−m|

t
pt,n;m

=
|n−m|

t

(
t

t−n+m
2

)
cosh(nξ)

[2 cosh(ξ)]t cosh(mξ)
,

� (56)

where the same restrictions to values and parities of n, m and t considered in the deri-
vation of expression (22) do apply here.

Let us prove now this announced lack of ergodicity in the process. To that end, we 
will define Rn;m as the set of all the paths that go from site m to site n:

Rn;m ≡ {∃t > 0 : Xt = n|X0 = m} .� (57)

Figure 6.  First-visit probability function f t,n. In this graphic we plot the probability 
that the first visit at site n  =  11 occurred after t steps, for X0  =  0, ξ = 0.55. As n is 
an odd number, only those odd values of t equal or above 11 are considered. The 
solid curve is a representation of equation (55) whereas the histogram was obtained 
from the same 100 000 simulated trajectories used in the confection of figure 2, 
where tmax = 100. In this case, only 50 099 of the sample paths have ever reached 
n  =  11, in excellent agreement with the theoretical prediction of about 50 000 for 
tmax → ∞, P (R11;0) ≈ 0.500 003, see equation (58).
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Then, for ξ �= 0, the probability that any given site n, starting from m, is ever reached 
is always smaller than one and amounts to

P (Rn;m) =
∞∑

t=|n−m|

ft,n;m =
∞∑

t=|n−m|

|n−m|
t

pt,n;m

= 2F1

(
�

2
,
�+ 1

2
; �+ 1;

1

cosh2(ξ)

)
cosh(nξ)

cosh(mξ) [2 cosh(ξ)]�
,

�

(58)

where � ≡ |n−m| > 0 and 2F1 (a, b; c; u) is the Gaussian hypergeometric function. Recall 
that equation (58) does not hold when n  =  m. This case must be considered separately, 
as we have already done, c.f. equation (49),

P (Rn;n) = 1− | tanh(ξ)| < 1.

Therefore, the process is not ergodic: for any starting point of the process, the set of 
random trajectories that do not fill the entire state space is not of null measure. In 
particular, consider the case of P (R±1;0),

P (R±1;0) = 2F1

(
1

2
, 1; 2;

1

cosh2(ξ)

)
1

2
=

1 + e−2|ξ|

2
.� (59)

This result implies that the chances that a whole path is restricted either to non-nega-
tive integers or non-positive integers are the same:

P (Xt � 0, ∀t � 0|X0 = 0) = P (Xt � 0, ∀t � 0|X0 = 0) =
1− e−2|ξ|

2
,� (60)

whereas the probability that in a single realization one finds visits to both positive and 
negative sites reduces exponentially with |ξ|,

P (∃{t′ � 0, t′′ � 0} : Xt′ ·Xt′′ < 0|X0 = 0) = e−2|ξ|.� (61)

For ξ = 0.55, these three probabilities are roughly equal, as it can be checked in table 1. 
Therefore, a sample path like the one in figure 3 is more the rule than the exception 
under these circumstances.

As a final curiosity, the mean first-visit time, provided that the time lapse is finite, 
does exist and has a surprisingly compact expression:

Table 1.  Probabilities that a realization of Xt is restricted to non-negative integers, 
to non-positive integers, and that it takes positive and negative values. We show 
theoretical values for ξ = 0.55, along with estimates obtained from the analysis of 
the N = 100 000 trajectories with tmax = 100 used in the confection of figures 2 and 

6. The relative error is of O
(
N−1/2

)
 again.

Theoretical Estimate

P (Xt � 0, ∀t � 0|X0 = 0) 0.333 56 0.335 33
P (Xt � 0, ∀t � 0|X0 = 0) 0.333 56 0.333 07
P (∃{t′ � 0, t′′ � 0} : Xt′ ·Xt′′ < 0|X0 = 0) 0.332 87 0.331 60
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E (Tn;m|Rn;m) ≡

∑∞

t=|n−m|
tft,n;m

P (Rn;m)
=

2F1

(
�+1
2
, �+2

2
; �+ 1; 1

cosh2(ξ)

)

2F1

(
�
2
, �+1

2
; �+ 1; 1

cosh2(ξ)

) �

= |coth(ξ)| �,

� (62)

for m �= n, and

E (Tn;n|Rn;n) =

∑∞

t=1
2tf2t

P (Rn;n)
=

1

cosh(ξ)| sinh(ξ)|(1− | tanh(ξ)|)
= | coth(ξ)|+ 1,

� (63)

for m  =  n. Therefore, we have found a translational invariance that is not present in 
f t,n;m, see equations (56) and (58). Another aspect of the partial ergodicity shown by 
the process.

5. A geometric interpretation of one-step probabilities

We discuss now one possible mechanism for generating the inhomogeneous one-step 
probabilities that drive the dynamics of Xt. The approach is based on the idea that 
coexisting with the topological structure of the state space of the process, Z in our case, 
there is an underlying metric space that assigns a distance dn,m to integers n and m, 
dierent from the L1 distance |n−m|, and that this distance determines the likelihood 
of the transitions on the basis of the relative proximities of the possibles destinies to 
the actual location of the walker.

So that, let us introduce dn,m,

dn,m ≡ sinh(|n−m|ξ)
tanh(ξ) cosh(nξ) cosh(mξ)

.� (64)

Equation (64) defines a distance between sites m and n as it shows all the required 
properties: it is semi-positive definite (for any value of ξ), symmetric, gives a null result 
if and only if n  =  m, and fulfills the triangle inequality

dn,m � dn,l + dl,m,� (65)
since

dn−1,n+1 = dn−1,n + dn,n+1.� (66)
Then, if we assume that the probability of a one-step transition is inversely propor-
tional to the distance, i.e.

pn→n+1

pn→n−1

=
dn−1,n

dn,n+1

=
cosh((n+ 1)ξ)

cosh((n− 1)ξ)
,� (67)

one obtains equation (2) after demanding the conservation of probability, equation (3). 
Note that the factor tanh(ξ) of the denominator in equation (64) is discretional, in the 
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sense that it has no eect in equation (67) and consequently does not interfere in the 
computation of the one-step transition probabilities. However, it provides several inter-
esting features: it makes dn,m independent of the sign of ξ, allows to recover the norm 
as the distance in the ξ → 0 limit,

lim
ξ→0

dn,m = |n−m|,� (68)

and sets the unit-length distance equal to d0,1.
In order to clarify the meaning of equation  (67) we will extend the definition in 

equation (64) to any pair of points in R,

dx,y ≡
sinh(|x− y|ξ)

tanh(ξ) cosh(xξ) cosh(yξ)
,� (69)

with

dx,z � dx,y + dy,z,� (70)
and where the equality holds if and only if y ∈ [x, z]. Equation (69) determines a dis-
tance in the absolute of a one-dimensional hyperbolic geometry: consider u and v in the 
segment (−r, r), with the following Cayley–Klein metric defined in it,

δ(u, v) ≡ 1

2
acosh

(
1 +

2r2(u− v)2

(r2 − u2)(r2 − v2)

)
.� (71)

Then, if we assume the Beltrami–Klein projection of the hyperbolic geometry, see 
figure 7, we will have

u(x) = r tanh(x|ξ|), v(y) = r tanh(y|ξ|),

with

r =
1

| tanh(ξ)|
.� (72)

This mapping leads to

dx,y = |u(x)− v(y)|,� (73)
and conversely

δ(u, v) = |x− y| · |ξ|.� (74)
Therefore, |ξ| plays the role of unit of length in the hyperbolic geometry, where we 

have placed the equally spaced sites among which our inhomogeneous random walk 
evolves, see equation (74). The probabilities, however, do not stem from the distances 
between the points in the hyperbolic geometry, but from the associated Euclidean 
distances in the absolute, the projective segment (−r, r), equation  (73). We show in 
figure 8 a set of points uniformly sampled in terms of the hyperbolic measure δ, and 
spatially arranged according to the Euclidean distance between them, dn,n+1. Observe 
how this distance decreases as |n| increases, since the Euclidean length of the segment 
is finite.
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6. Conclusions and future work

The random walk with hyperbolic probabilities that we have introduced here is an 
interesting example of stochastic diusion through a one-dimensional inhomogeneous 
discrete media. In some aspects, it behaves as the (random) superposition of two biased 

random walks, but preserving traits and relationships of a simple random walk. The 
reason behind this latter point can be traced back to a remarkable feature of the pro-
cess: even the one-step transition probabilities are site dependent, the probability of 
performing a closed loop of any size is not. This fact has strong implications when 
deriving the statistical properties related to first-time events.

A magnitude connected with one of these first-time events is the likelihood of even-
tually reaching a target, if the process is presently at some given location. We have 
shown that the transient character of the process makes this probability always less 
than one, and how this leads to a restricted form of non-ergodicity: on the one hand, it 
is unlikely that a single path is representative of all the properties of the model, even 
when the observation time tends to infinity, but, on the other hand, some observables 
can be accurately estimated from any realization of the process.

Figure 7.  Cayley–Klein hyperbolic geometry. In this case, the segment in red 
corresponds to the absolute of the Beltrami–Klein model in one dimension: any 
point of the hyperbola maps into a point in the segment.

Figure 8.  Distances in the projective segment. Here we show Euclidean distances 
of equally spaced points in the hyperbolic geometry. Note how the sites are closer 
as |n| increases what biases the walk towards the ending points.
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Finally, we provide an interpretation of our site-dependent transition probabilities 
by resorting to geometrical arguments. We leave for a future work the search for alter-
native models based on the interaction of a discrete medium with an external potential 
that can account for the emergence of these same hyperbolic transitions rates, the 
extension of the dynamics to geometries of higher dimensions, and the study of how 
the process can be transformed from the discrete to the continuum, and thus compared 
with similar existing models [24–26].
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