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Abstract.  The probability distribution of the total entropy production in the 
non-equilibrium steady state follows a symmetry relation called the fluctuation 
theorem. When a certain part of the system is masked or hidden, it is dicult 
to infer the exact estimate of the total entropy production. Entropy produced 
from the observed part of the system shows significant deviation from the 
steady state fluctuation theorem. This deviation occurs due to the interaction 
between the observed and the masked part of the system. A naive guess would 
be that the deviation from the steady state fluctuation theorem may disappear 
in the limit of small interaction between both parts of the system. In contrast, 
we investigate the entropy production of a particle in a harmonically coupled 
Brownian particle system (say, particle A and B) in a heat reservoir at a 
constant temperature. The system is maintained in the non-equilibrium steady 
state using stochastic driving. When the coupling between particle A and B is 
infinitesimally weak, the deviation from the steady state fluctuation theorem 
for the entropy production of a partial system of a coupled system is studied. 
Furthermore, we consider a harmonically confined system (i.e. a harmonically 
coupled system of particle A and B in harmonic confinement). In the weak 
coupling limit, the entropy produced by the partial system (e.g. particle A) 
of the coupled system in a harmonic trap satisfies the steady state fluctuation 
theorem. Numerical simulations are performed to support the analytical 
results. Part of these results were announced in a recent letter, see Gupta and 
Sabhapandit (2016 Europhys. Lett. 115 60003).
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1.  Introduction

Stochastic thermodynamics [49–51] aims to extend the classical thermodynamics [4] to 
small-scale systems. These small-scale systems may be a polystyrene bead (Brownian 
particle), enzymes, DNA or RNA molecules, etc, in a fluctuating environment called a 
heat bath that is in equilibrium with a well-defined temperature T. Within the frame-
work of stochastic thermodynamics, the notion of thermodynamical observables such 
as work, entropy production, heat exchange, etc, can be defined at the level of a trajec-
tory of a non-equilibrium ensemble. The heat exchange by a small system with the sur-
rounding equilibrium environment, work done by external forces on the small system, 
and the change in its internal energy satisfy the first law of thermodynamics (energy 
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conservation) even for a single stochastic trajectory of any time duration τ . Since the 
work done on such small systems is comparable to the thermal energy kBT  (where kB is 
the Boltzmann’s constant), once in a while, it is expected to observe the reverse action 
of these systems by consuming heat from the surrounding bath. For a large-scale sys-
tem, we call it the violations of the second law of thermodynamics. Fluctuation theorems 
[9–11, 13, 14, 18, 19, 23, 28, 30, 46–49] are the relations that measure this violation in 
terms of the ratio of the probability of positive entropy production to that of negative 
entropy production. There has been a great amount of research on understanding the 
validity of fluctuation theorems for various stochastic quantities such as heat exchange, 
work, power injection, and entropy production, etc [7, 8, 15–17, 24, 27, 32, 34, 35, 44, 
45, 55–61].

Consider a system in contact with a heat bath of constant temperature, and is 
maintained out of equilibrium using a steady supply of energy provided by an external 
driving such as time-dependent external fields, stochastic forces, periodic driving, shear 
flow, etc. Similarly, a system can also be driven away from equilibrium by connecting 
its ends to heat and/or particle reservoirs of dierent temperatures and/or chemical 
potentials. In general, a stochastic quantity A such as work, heat exchange, power 
injection or entropy production, etc, is a functional of the fluctuating trajectories. 
Hence, these quantities are described by probability distributions. When the probabil-
ity distribution of A satisfies the relation

P (A = +aτ)

P (A = −aτ)
∼ eaτ ,� (1)

for a large time τ , we say that a fluctuation theorem holds for A. Here sign ‘∼’ implies 
the logarithmic equality:

lim
τ→∞

1

τ
ln

P (A = +aτ)

P (A = −aτ)
= a.� (2)

The quantity A is an extensive quantity that scales with the observation time τ . 
Therefore, it is clear from (1) that, as the observation time gets longer, the system will 
appear as time irreversible, which is consistent with the second law of thermodynam-
ics. As an example, consider a thermal conductor connected to a temperature gradient, 
and let A be the amount of heat that flows for a duration τ . The quantity A is taken 
to be positive when heat flows down the temperature gradient, and it is considered 
negative when the heat flows in the opposite direction. When the observable A is mea-
sured along the stochastic trajectories emanating from the steady state ensemble, the 
resulting fluctuation theorem is called the steady state fluctuation theorem (SSFT). It 
is shown in [48, 49] that, if A denotes the total entropy production, incorporating the 
change in the system entropy and the entropy change of the surrounding bath in a 
given observation time, then the SSFT is valid for A for all time, i.e. in this case, the 
sign ‘∼’ is replaced by the equality sign ‘  =  ’ in (1).

Consider a system of n interacting degrees of freedom (DOFs). The timescale of 
relaxation of these DOFs is much larger than that of the bath DOFs. The state of the 
system at a time t ∈ [0, τ ] is represented by x(t) := (x1(t), x2(t), . . . , xn(t)) in the phase 
space, which evolves according to stochastic dynamics. In practice, there can be some 
technical diculties due to which one cannot access the whole system. Suppose m-DOFs 
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of the system are experimentally observed, which we call a subsystem or partial system, 
i.e. xs(t) := (x1(t), x2(t), . . . , xm(t)) where m  <  n. In such case, the observable statistics 
of a partial system might not be same as that of a complete system. In fact, a lot of 
work has been done in the area of partial measurement. For example, Shiraishi et al 
[52] showed that the partial entropy production for a subset of all transitions satisfies 
the integral fluctuation theorem. Similarly, Kawaguchi et al [26] proved the integral 
fluctuation theorem for the hidden entropy production. Rahav et al [41] defined an 
entropy production for coarse-grained dynamics (i.e. coarse-grained entropy) and the 
deviation from the fluctuation theorem was studied. The eect of coarse-graining on the 
entropy production can also be seen in [31, 40]. Mehl et al [33] experimentally studied 
the deviation from the fluctuation theorem for the total entropy production by observ-
ing one of the beads (partial entropy production as defined later) in the non-equilibrium 
steady state of a coupled paramagnetic bead system with the interaction strength. 
Similarly, Borrelli et al [3] investigated the fluctuation theorem for the entropy produc-
tion of one of the single-electron boxes in a system of coupled single-electron boxes. 
In [29], Lacoste et al showed that the Gallavotti–Cohen symmetry [30] is present in a 
purely ratchet model and this symmetry is preserved for flashing ratchets only when 
one includes both chemical and mechanical DOFs in the description. In an experimen-
tal work, Ribezzi-Crivellari et al [42] inferred the full work distribution from the partial 
work measurement using the Crooks fluctuation theorem. Similar studies on partial 
observation can also be found in [1, 2, 5, 6, 12, 25, 36–39, 54]. In all above references, 
the cause of the partial observation was either due to coarse-graining or the inacces-
sibility of certain DOFs. Within the context of fluctuation of entropy production, the 
total entropy production of a subsystem may not obey the SSFT when the interactions 
among DOFs of the complete system are significantly large. In contrast to a naive 
understanding, we [21] have given a mechanism under which such partial measurement 
leads to a new fluctuation theorem for total entropy production of a partial system in 
the limit of vanishing interaction among the observed and hidden DOFs. Moreover, we 
have briefly reported a technique to nullify the eect of the weak coupling of hidden 
variables on the observed ones using harmonic confinement. Similarly, in [22], we have 
shown the deviation from the steady state fluctuation theorem for entropy production 
of a partial system in a heat transport model in the weak coupling limit.

In this paper, we consider two dierent model systems where two Brownian par-
ticles are interacting harmonically with each other in the absence of a confining poten-
tial (model 1) and in the presence of harmonic confinement (model 2), in a heat bath 
at temperature T. In contrast to [22], each particle is driven using an external sto-
chastic Gaussian force. The given system generates entropy. Here, we consider two 
definitions of total entropy production of one of the particles in the coupled system: 
partial and apparent entropy production (see section 4). In the non-equilibrium steady 
state, fluctuation theorem for both definitions of entropy productions and also for both 
model systems is tested. Part of the results were announced earlier in [21] without giv-
ing details.

The remainder of the paper is organized as follows. We first give a brief outline 
of the paper in section 2. In section 3, we present model 1. The definitions of partial 
and apparent entropy production ∆SA

tot are introduced in section 4. Section 5 contains 
the Fokker–Planck equation  for the moment-generating function of the partial and 
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apparent entropy production and its formal solution in the large time limit. Further, 

we invert the moment-generating function 〈e−λ∆SA
tot〉 ≈ g(λ)e(τ/τγ)µ(λ), to obtain the 

probability density function P (∆SA
tot). In section 6, we show the computation of µ(λ) 

in the limit of coupling strength tending to zero (δ → 0). The large deviation func-
tion I(s), asymmetry function f(s) = I(s)− I(−s), and the fluctuation theorem are 
discussed in section 7. In section 8, we give the comparison of numerical simulations 
with the analytical predictions. We discuss the results for model 2 in section 9. The 
method of numerical simulation is explained in section 10. Finally, we summarize our 
paper in section 11. In appendix A, we present the complete calculation to obtain the 
moment generating function of the partial and apparent entropy production for model 
1. A discussion on branch point singularities of µ(λ) and the contour that distinguishes 
regions of dierent possibilities of singularities is given in appendix B. We discuss the 
large deviation function and its continuity properties in appendix C and appendix D, 
respectively, in the limit δ → 0. The continuity properties of the asymmetry function 
f(s) in the limit δ → 0 are shown in appendix E. The computation of the moment-
generating function of the partial and apparent entropy production for model 2 is given 
in appendix F.

2. Outline

Let us first outline this paper, before jumping into the details. We consider a sys-
tem (model 1) of two Brownian particles (say A and B) with a harmonic coupling 
(with a dimensionless coupling parameter δ) and driven by external random forces (see 
figure 2), which evolves by the Langevin equations (4)–(6). We consider the entropy 
production due to only one of the particles (particle A) defined by (7), which we term 
as the partial entropy production. We also introduce another entropy production that 
we term as apparent entropy production, which is defined by considering only particle 
A, an uncoupled particle (as if the second particle is not present), although in the com-
putation the full dynamics is taken into account. In fact, for the ease of computation, 
both the definitions of the entropy production can be combined into a single expres-
sion given by (14). At large time, the probability density function of the time-averaged 

entropy production s = (τ/τγ)
−1∆SA

tot, of the partial system, follows the large deviation 
form p(s) ∼ exp

[
(τ/τγ)I(s)

]
, given by (52). To compute the large deviation function 

I(s), we first obtain the moment generating function as 〈e−λ∆SA
tot〉 ≈ g(λ)e(τ/τγ)µ(λ) for 

large τ , where µ(λ) is given by (32) and the prefactor g(λ) is given by (A.38). For δ = 0, 
i.e. when particle A is uncoupled from B, µ(λ), which we denote by µ0(λ) and is given 
by (37), has two branch-point λ± respectively (see figure 1(a)) with λ+ + λ− = 1. Both 
µ0(λ) and g0(λ) (i.e. g(λ) for δ = 0, given by (39)) follow the Gallavotti–Cohen sym-
metry µ0(λ) = µ0(1− λ) and g0(λ) = g0(1− λ), which ensures that the fluctuation theo-
rem is satisfied (at least for large τ ). The large deviation function I(s) obtained by the 
Legendre transform of µ0(λ) follows the symmetry I(s)− I(−s) = s (see figure 1(c)). 
Moreover, I(s) → λ∓s as s → ±∞, giving I(s)− I(−s) → [λ+ + λ−]s as s → ∞, which 
is consistent with the above large deviation symmetry as λ+ + λ− = 1. Now, for 

δ > 0, the branch points shift to new locations λ
(δ)
±  respectively (see figure 1(b)) and 
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I(s) → λ
(δ)
∓ s as s → ±∞, giving I(s)− I(−s) → [λ

(δ)
+ + λ

(δ)
− ]s as s → ∞. However, now 

λ
(δ)
+ + λ

(δ)
− �= 1 (see figure 1(c)), and hence, the fluctuation theorem is not satisfied as 

s → ∞. Naively, one would expect that λ
(δ)
± → λ± as δ → 0. However, it turns out to 

be the case of singular perturbation (see section 6), where λ
(δ)
±  as δ → 0, do not always 

tend to λ±, rather, in some parameter regime, either one or both of λ
(δ)
±  tend to new 

values λ̃±. Whenever it happens, it makes the eventual slope of I(s)− I(−s) as s → ∞ 
dierent from unity, which is a deviation from the fluctuation theorem. We next confine 
(see figure 8) the above two particle-coupled system in a harmonic potential (model 2, 

see section 9). In this case, we always find that λ
(δ)
± → λ± as δ → 0, and consequently, 

the fluctuation theorem is satisfied (see figure 10).

3. Model 1

Consider two Brownian particles (say, A and B) in an aqueous medium at a constant 
temperature T. For simplicity, we consider the motion along one dimension. Both of 
these particles are interacting with each other with a harmonic spring of stiness k. The 
schematic diagram of the system is shown in figure 2. The Hamiltonian H(y, vA, vB) of 
the coupled Brownian particle system is

H(y, vA, vB) =
1

2
mv2A +

1

2
mv2B +

1

2
ky2,� (3)

where m is the mass of each particle, y = xA − xB is the relative position of particle A 
with respect to particle B, and vA and vB are velocities of particle A and B, respectively.

The given system is maintained in the non-equilibrium steady state using external 
stochastic Gaussian forces. Let f A(t) and f B(t) be the external forces acting on particle A 

Figure 1.  (a) For δ = 0, µ0(λ) has two branch-points at λ± respectively and the 
two branch-cuts in (−∞,λ−) and (λ+,∞) are shown by the thick red line. (b) For 

δ > 0, the branch-points shift to new locations λ(δ)
±  respectively. (c) For δ = 0, the 

fluctuation theorem dictates that I(s)− I(−s) = s, i.e. the slope is unity. On the 

other hand, for δ > 0, the slope as s → ∞, tends to λ(δ)
+ + λ

(δ)
− , which need not be 

unity.
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and B, respectively. The dynamics of the coupled Brownian particle system is described 
by the following underdamped Langevin equations [62]

ẏ = vA(t)− vB(t),� (4)

mv̇A = −γvA(t) + ηA(t)− ky(t) + fA(t),� (5)

mv̇B = −γvB(t) + ηB(t) + ky(t) + fB(t),� (6)
where the dot represents a time derivative and γ the dissipation constant. The ther-
mal Gaussian noises ηA(t) and ηB(t) are acting on the particles A and B, respec-
tively, from the heat bath. These thermal Gaussian noises have mean zero and 
correlation 〈ηi(t)ηj(t′)〉 = 2Dδijδ(t− t′), where D = γT . Similarly, the external forces 
f A(t) and f B(t) have mean zero and correlation 〈 fA(t) fA(t′)〉 = 2Dθδ(t− t′) and 
〈 fB(t) fB(t′)〉  =  2Dθα2δ(t− t′). In this paper, we consider two dierent choices of exter-
nal forces: (1) both external forces are independent of each other, and (2) the force on 
particle B is correlated with that on particle A: fB(t) = αfA(t). Moreover, the external 
force f i(t) is uncorrelated with the thermal Gaussian noise ηi(t) for all time. Notice that 
a physical system, where the external forces due an electric field would be correlated 
with each other, could be a coupled colloidal particle system with dierent electric 
charges on them. Here, we consider three dimensionless parameters: (1) strength of 
force θ acting on particle A relative to that of the bath, (2) strength of force α2 acting 
on particle B relative to that on particle A, and (3) coupling parameter δ = 2km/γ2. 
For convenience, we set Boltzmann’s constant kB = 1 throughout the calculation.

4. Partial and apparent entropy production

Incomplete information can be of two types: (1) the observer knows the full system, 
but intentionally observes the part of the system (i.e. partial information), and (2) the 
observer is not aware of a hidden part of the system (i.e. apparent information). In both 

Figure 2.  Two Brownian particles (A and B) are coupled with a spring of coupling 
parameter δ = 2km/γ2 (dimensionless). The whole system is in contact with a heat 
bath of constant temperature T. The external stochastic Gaussian forces f A(t) and 
f B(t) are acting on the particles A and B, respectively.

https://doi.org/10.1088/1742-5468/ab54b6
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scenarios, actual information of the system is lost. In this paper, we have two models of 
a stochastically driven coupled Brownian particle system (particle A and B) in a heat 
bath (sections 3 and 9). The observable in this paper is the total entropy production of 
particle A in the coupled Brownian particle system in a steady state.

Let us first consider model 1. The total entropy production due to particle A in the 
coupled Brownian particle system (partial entropy production) is

∆S̄A
tot = −QA

T
− ln

PA
ss [vA(τ)]

PA
ss [vA(0)]

.� (7)

In the above equation, QA =
∫ τ

0
dt [ηA(t)− γvA(t)]vA(t) is the heat absorbed by the 

Brownian particle A of the coupled system from the heat bath, and PA
ss (vA) is the 

steady state probability distribution of the velocity of particle A obtained after inte-
grating the joint distribution Pss(y, vA, vB) obtained from (4)–(6) over the relative dis-
tance y  and the velocity of particle B. Thus,

PA
ss [vA(τ)] =

e−v2A(τ)/(2HP )

√
2πHP

,� (8)

where HP is given by

HP = lim
τ→∞

〈[vA(τ)− 〈vA(τ)〉]2〉

=
D[(2 + θ + α2θ)mk + 2(1 + θ)γ2]

2mγ(γ2 +mk)
,

�
(9)

for both choices of external forces. In (7), the first and second terms on the right-hand 
side are, respectively, the entropy change in the bath and the system entropy produc-
tion due to particle A in the coupled system shown in figure 2 [48, 49].

Using (5), (7) and (8), we rewrite the partial entropy production ∆S̄A
tot as

∆S̄A
tot =

1

T

∫ τ

0

dt [ fA(t)− ky(t)]vA(t)−
1

2

[
m

T
− 1

HP

]
[v2A(τ)− v2A(0)].� (10)

In the above equation, the integral shown on the right-hand side follows the Stratonovich 
rule of integration [51].

In the case of apparent entropy production, the observer is not aware of the hidden 
particle present in the system. Let us call particle B the hidden particle. Therefore, 
he/she constructs the total entropy production for particle A as follows. Since, for the 
observer, particle A is the only one present in the heat bath (she/he being unaware of 
the presence of particle B), its velocity evolves according to the following underdamped 
Langevin equation:

mv̇A = −γvA(t) + ηA(t) + fA(t).� (11)
Therefore, apparent entropy production for particle A is obtained by substituting k  =  0 
in (10):

∆S̃A
tot =

1

T

∫ τ

0

dt fA(t)vA(t)−
1

2

[
m

T
− 1

HA

]
[v2A(τ)− v2A(0)].� (12)

In the above equation,

https://doi.org/10.1088/1742-5468/ab54b6
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HA = HP

∣∣
k=0

=
D(1 + θ)

mγ
.� (13)

Both definitions of entropy production (see (10) and (12)) can be jointly written as

∆SA
tot =

1

T

∫ τ

0

dt fA(t)vA(t)−
Πk

T

∫ τ

0

dt y(t)vA(t)−
1

2

[
m

T
− 1

H

]
[v2A(τ)− v2A(0)],

�

(14)

where Π = 1 and Π = 0 correspond to partial and apparent entropy production, respec-
tively, and H = ΠHP + (1− Π)HA.

It is important to note that in both types of incomplete information, the underly-
ing dynamics of the coupled system is given by (4)–(6) [21]. Therefore, we compute the 
distribution of ∆SA

tot (14) subject to the actual dynamics given by (4)–(6).
The column vector U = (y, vA, vB)

T  is linearly dependent on thermal Gaussian 
noises and external stochastic Gaussian forces (see (4)–(6)). Therefore, the steady state 
distribution of U is a Gaussian distribution (see (A.13)). Notice that the quantity ∆SA

tot 
depends on thermal and external noises quadratically (see (4)–(6), and (14)). Therefore, 
the distribution P (∆SA

tot) is expected to be non-Gaussian.
We define

W =
1

T

[∫ τ

0

dt fA(t)vA(t)− Πk

∫ τ

0

dt y(t)vA(t)

]
.� (15)

While the first term inside the bracket is the work done by the stochastic external force 
f A(t) on Brownian particle A [20, 44], the second term is the interaction energy. Both 
of these terms are scaled by the temperature T of the heat bath.

In this paper, we give two model systems (sections 3 and 9) driven away from the 
equilibrium. The quantity of interest is the entropy production from a part (e.g. par-
ticle A) of the coupled system. The steady state fluctuation theorem (1) would not be 
satisfied for the partial and apparent entropy productions as we are observing a part 
of the coupled system. An interesting question arises: what would happen if one takes 
the limit of coupling tending to zero? Therefore, the aim of this paper is to understand 
the steady state fluctuation theorem for such entropy productions in the weak coupling 
limit (δ → 0).

5. Probability density function and fluctuation theorem

The entropy production ∆SA
tot (14) can be written as

∆SA
tot = W − 1

2

[
m

T
− 1

H

]
[v2A(τ)− v2A(0)],� (16)

where the quantity W is a functional of the stochastic trajectories and the second term 
on the right-hand side depends on the initial vA(0) and the final velocity vA(τ) of the 
Brownian particle A. Therefore, the conditional moment generating function for ∆SA

tot 
is

https://doi.org/10.1088/1742-5468/ab54b6
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Z(λ,U , τ |U0) =
〈
e−λ∆SA

totδ[U − U(τ)]
〉
U0

= ZW (λ,U , τ |U0) e
(λ/2)(mT−1−H−1)(UTΣU−UT

0 ΣU0),
� (17)

where ZW (λ,U , τ |U0) =
〈
e−λW δ[U − U(τ)]

〉
U0

, and Σ is a square matrix whose elements 

are given by Σij = δi2δij with {i, j} = {1, 2, 3}. In the above equation, angular brackets 
represent the average over the set of all trajectories from the fixed initial variable U0 
to the final variable U, and λ is the conjugate variable with respect to ∆SA

tot in the 
Fourier transform.

The evolution of the restricted moment generating function ZW (λ,U , τ |U0) is gov-
erned by the following Fokker–Planck equation [43]

∂ZW (λ,U , τ |U0)

∂τ
= LλZW (λ,U , τ |U0)� (18)

with the initial condition ZW (λ,U , τ = 0|U0) = δ(U − U0). In the above equation, the 
Fokker–Planck operator Lλ is

Lλ =
1

m

∑
i=A,B

[
∂H
∂xi

∂

∂vi
− ∂H

∂vi

∂

∂xi

]
+

D(1 + θ)

m2

∂2

∂v2A
+

γvA
m

(1 + 2λθ)
∂

∂vA

+
γ

m
(vB + 2CλαθvA)

∂

∂vB
+ γ

[
2

m
+

λ

D

(
ΠkyvA +

Dθ

m

)]
+

λ2γ2v2
A
θ

D

+
D(1 + θα2)

m2

∂2

∂v2B
+

2CDθα

m2

∂2

∂vA∂vB
,

�

(19)

where we have used the correlation parameter C defined as

C =

{
0 for 〈 fA(t) fB(t′)〉 = 0 ∀ t, t′,

1 for fB(t) = αfA(t).
� (20)

It is dicult to obtain the solution of the Fokker–Planck equation (18). Nevertheless, a 
formal solution of it in the large time limit (τ → ∞) can be written as

ZW (λ,U , τ |U0) = χ(U0,λ)Ψ(U ,λ)e(τ/τγ)µ(λ) + . . . ,� (21)

where τγ = m/γ is the characteristic time, µ(λ) is the largest eigenvalue of the 
Fokker–Planck operator Lλ, and the corresponding right eigenfunction is Ψ(U ,λ): 
LλΨ(U ,λ) = µ(λ)Ψ(U ,λ). In (21), χ(U0,λ) is the projection of the initial state onto the 
left eigenvector of the Fokker–Planck operator Lλ corresponding to the largest eigen-
value µ(λ). These left and right eigenfunctions satisfy the normalization condition: ∫
dU χ(U ,λ)Ψ(U ,λ) = 1.
The moment-generating function Z(λ) for ∆SA

tot is obtained by integrating the 
restricted moment-generating function Z(λ,U , τ |U0) given in (17), over the initial state 
U0 sampled from the steady state distribution Pss(U0) and the final state U:

Z(λ) =

∫
dU

∫
dU0 Pss(U0) Z(λ,U , τ |U0)

= g(λ) e(τ/τγ)µ(λ) + . . . ,
� (22)
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where

g(λ) =

∫
dU

∫
dU0 Pss(U0)χ(U0,λ)Ψ(U ,λ) e(λ/2)(mT−1−H−1)(UTΣU−UT

0 ΣU0).

�

(23)

To obtain the probability density function for ∆SA
tot, we invert the moment-gener-

ating function Z(λ) using the inverse Fourier transformation in the complex λ space

P (∆SA
tot = sτ/τγ) =

1

2πi

∫ +i∞

−i∞
dλ Z(λ) eλsτ/τγ ,� (24)

where s = ∆SA
totτγ/τ  is the scaled variable. The contour of integration in the above 

equation is along the imaginary axis through the origin of the complex λ-plane. In the 
large-τ  limit (τ � τγ), using (22), we get

P (∆SA
tot = sτ/τγ) ≈

1

2πi

∫ +i∞

−i∞
dλ g(λ)e(τ/τγ)hs(λ),� (25)

in which hs(λ) = µ(λ) + λs.
The above integral can be approximated using the saddle-point method provided 

both µ(λ) and g(λ) are the analytic function of λ [53]. Thus,

P (∆SA
tot = sτ/τγ) ≈

g(λ∗)e(τ/τγ)hs(λ∗)

√
2πτ/τγ|h′′

s(λ
∗)|

,� (26)

where λ∗(s) is the saddle point solution of

∂µ(λ)

∂λ

∣∣∣∣
λ=λ∗

= −s,� (27)

and

h′′
s(λ

∗) :=
∂2hs(λ)

∂λ2

∣∣∣∣
λ=λ∗

.� (28)

The fluctuation theorem estimates the ratio of the probability of positive total entropy 
production and that of negative total entropy production where the latter one is

P (∆SA
tot = −sτ/τγ) ≈

1

2πi

∫ +i∞

−i∞
dλ g(λ)e(τ/τγ)[µ(λ)−λs].� (29)

If both functions µ(λ) and g(λ) satisfy Gallavotti–Cohen (GC) symmetry [30], i.e. 
µ(λ) = µ(1− λ) and g(λ) = g(1− λ), after some simplifications, we obtain

P (∆SA
tot = −sτ/τγ) ≈

e−sτ/τγ

2πi

∫ 1+i∞

1−i∞
dλ g(λ)e(τ/τγ)[µ(λ)+λs],

where the contour of integration is along the imaginary axis at Re(λ) = 1 of the com-
plex λ-plane. In the absence of singularity in µ(λ) and g(λ) between (1− i∞, 1 + i∞) 
and (−i∞, +i∞), the contour of integration can be shifted from Re(λ) = 1 to the origin 
of the complex λ-plane. Therefore, we get
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P (∆SA
tot = −sτ/τγ) ≈

e−sτ/τγ

2πi

∫ +i∞

−i∞
dλ g(λ)e(τ/τγ)[µ(λ)+λs].� (30)

From (25) and (30), we obtain the relation

P (∆SA
tot = sτ/τγ)

P (∆SA
tot = −sτ/τγ)

≈ esτ/τγ .� (31)

The above relation is the fluctuation theorem for ∆SA
tot in the steady state for a time 

segment τ . Notice that the sign ‘≈’ indicates that the above identity is true for a large 
time τ . Therefore, the criteria for any observable to satisfy the fluctuation theorem in 
the steady state are: (1) the corresponding µ(λ) and prefactor g(λ) should be analytic 
functions for λ ∈ [0, 1], and (2) both of these functions must obey GC symmetry.

6. Moment-generating function

The computation of Z(λ) can be done using a method developed in [27] and detailed in 
appendix A. We obtain (see (A.28))

µ(λ) = − 1

4π

∫ ∞

−∞
du ln

[
1 +

h(u,λ)

q(u)

]
.� (32)

The prefactor term g(λ) is given in (A.38).
In the above equation, the function h(u,λ) for the first choice of forces (i.e.C = 0) is

h(u,λ) = 4θλ(1− λ)
[
u4 + (1− δ)u2 + δ2(2− Π)/4]− λδ2

{
λα2θ2(Π− 1)2 + λΠ2

− Πθ[α2 + λ{1− Π(1 + α2)}]
}

� (33)
whereas for the second choice of forces (i.e. C = 1)

h(u,λ) = 4θλ(1− λ)
[
u4 + (1− δ)u2 + δ2/2]− 4θλ(1− λΠ)δαu2 − λδ2

[
λΠ2

+ θ{Π− Πλ(2− Π) + α(λΠ− 1)(2 + αΠ)}
]
.

� (34)
The function

q(u) = (1 + u2)
[
u2 + (u2 − δ)2

]
� (35)

is same for both choices of external forces and also for both definitions of entropy 
production.

In the case of a single Brownian particle (see figure 2 with δ  =  0) in the heat bath 
at a temperature T and driven by an external Gaussian white noise, µ(λ) given in (32) 
reduces to

µ0(λ) = − 1

4π

∫ ∞

−∞
du ln

[
1 +

4θλ(1− λ)

u2 + 1

]
,� (36)

which can be solved exactly, and it is given by

µ0(λ) = [1− ν(λ)]/2, where� (37)
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ν(λ) =
√

4θ(λ+ − λ)(λ− λ−)� (38)

in which

λ± = [1±
√
1 + θ−1]/2.

In the above equation (38), the branch points λ+ > 1 and λ− < 0. Moreover, the branch 
points obey λ− + λ+ = 1. In this case, one can also compute the prefactor term exactly, 
and it is given by

g0(λ) =
2
√

ν(λ)

1 + ν(λ)
.� (39)

Here, both µ0(λ) and g0(λ) are analytic functions of λ ∈ (λ−,λ+) and both of them 
obey GC symmetry, i.e. µ0(λ) = µ0(1− λ) and g0(λ) = g0(1− λ). Hence, the SSFT is 
satisfied (see section 5). However, the function µ(λ) does not satisfy the GC symmetry 
in the presence of coupling (δ �= 0). Therefore, the steady state fluctuation theorem 
would not be satisfied for both partial and apparent entropy productions.

In the following, we show how to compute the integral given in (32) (i.e. for δ �= 0). 
We rewrite this integral using integration by parts

µ(λ) =
1

4π

∫ +∞

−∞
du

u
[
h′(u,λ)q(u)− h(u,λ)q′(u)

]

q(u)
[
q(u) + h(u,λ)

] ,� (40)

where ′ represents a derivative with respect to u. In the above integrand, the factors in 
the denominator are polynomials in the variable u2. Therefore, the denominator can be 
factored in terms of the roots of the polynomials:

q(u) + h(u,λ) =
∏
j

(u2 − u2
j) and q(u) =

∏
k

(u2 − w2
k).

This gives a set of simple poles in the complex u-plane. Consequently, evaluating the 
integral by using the residue theorem, and using q(uj) + h(uj,λ) = 0 and q(wk)  =  0, 
gives

µ(λ) =
i

2

[∑
j

uj −
∑
k

wk

]
,� (41)

where {uj } and {wk} are the zeros of the polynomials [q(u) + h(u,λ)] and q(u), respec-
tively, that lies on the upper half of the complex u-plane. Clearly, {uj } are functions 
of λ while {wk} are independent of λ. The computation of µ(λ) using these residues is 
quite cumbersome. Nevertheless, one can compute µ(λ) numerically provided the range 
of λ is known within which µ(λ) remains a real function. The range of λ depends on 
the choice of θ and α for given δ. In the absence of coupling, the saddle point λ∗

0(s) (see 
(C.4)) stays within the branch point singularities of µ0(λ), i.e. λ

∗
0(s) → λ± as the scaled 

parameter s → ∓∞. Therefore, we expect that the saddle point λ∗(s) (see (27)) hits 
either of the branch point singularities of µ(λ) as s → ±∞. To obtain these singularities 
for δ > 0, we analyze the argument of the logarithm in the integrand of (32), i.e. the 
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terms q(u) and q(u) + h(u,λ). In all the four cases, we find that the function q(u) given 
in (35), is always positive for any real u ∈ (−∞,∞). We also find that,

h(u,λ) = b(u)λ− p(u)λ2,� (42)

where the functions b(u) and p(u) are dierent for all four cases (see (33) and (34)). In 
all cases, p(u) is always positive for any real u ∈ (−∞,∞). The two roots

λ±(u) =
b(u)±

√
b2(u) + 4p(u)q(u)

2p(u)
,� (43)

of the quadratic polynomial q(u) + h(u,λ), are always real for any real u ∈ (−∞,∞). 
Moreover, λ+(u) is positive and λ−(u) is negative. For a given u, the integrand in (32) 
is real only within the range λ ∈ (λ−(u),λ+(u)). Therefore, µ(λ) is real only within the 

range λ ∈
(
λ
(δ)
− ,λ

(δ)
+

)
, where

λ
(δ)
− = max

u
λ−(u) and λ

(δ)
+ = min

u
λ+(u).

The equation for the extremum is given by

∂λ±(u)

∂u

∣∣∣∣
u=u∗

±

= 0.� (44)

Consequently, the solution of the equation
[√

b2(u∗
±) + 4p(u∗)q(u∗

±)± b(u∗
±)

][
p(u∗

±)b
′(u∗

±)− p′(u∗
±)b(u

∗
±)

]

± 2p(u∗
±)

[
p(u∗

±)q
′(u∗

±)− p′(u∗
±)q(u

∗
±)

]
= 0

�
(45)

gives u∗
±. Notice that the above equation is true for all δ. In the weak coupling limit 

(δ → 0), we can find u∗
± using (45). This gives λ±(u) → λ

(δ)
±  as u → u∗

±.
In figure 3, we plot λ±(u) given in (43), for dierent values of θ and α against u. 

For 0 < δ < 1 (dotted, dashed, and dot-dashed lines), we find that λ+(u) has either 
one minimum located at u  =  0 (see figure 3(a)) or two minima located at u = ±u∗

+ (see 
figure 3(b)) (where u∗

+ → 0 as δ → 0) depending on the parameters θ and α. This is 
determined by whether

∂2λ+(u)

∂u2

∣∣∣
u=0

> 0 or
∂2λ+(u)

∂u2

∣∣∣
u=0

< 0.� (46)

In the first case, we get λ
(δ)
+ → λ̃+ < λ+ as δ → 0, whereas in the latter case λ

(δ)
+  conv

erges to λ+ as δ → 0. Similarly, we get λ
(δ)
− → λ̃− > λ− (see figure  3(c)) or λ− (see 

figure 3(d)) depending on whether

∂2λ−(u)

∂u2

∣∣∣
u=0

< 0 or
∂2λ−(u)

∂u2

∣∣∣
u=0

> 0.� (47)

Setting λ′′
±(0) = 0 gives the contour in (α, θ) space separating dierent possibilities of 

pair of branch point singularities (λ
(δ)
− ,λ

(δ)
+ ) of µ(λ), and these singularities and the 

equations of contours are given in table 1. Using these equations (see table 1) in the 
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limit δ → 0, the phase diagrams can be obtained for dierent possibilities of Π and C 
and are shown in figure 4.

In the following, we show how µ(λ) behaves near the branch point singularities. We 
write µ(λ) = µa(λ) + µs(λ) near the branch point, where µa(λ) and µs(λ) are the analytic 
and the singular part of µ(λ), respectively. We now analyze the roots of q(u) + h(u,λ) 

with respect to the variable u, near a branch point. Let us consider the case λ
(δ)
+ → λ̃+. 

Using (42) and writing λ̃+ − λ = ε near the branch point (where ε > 0), we get

A(u)− εB(u)−O(ε2) = 0,� (48)

where

A(u) = q(u) + b(u)λ̃+ − p(u)λ̃2
+,

B(u) = b(u)− 2p(u)λ̃+.

The left side of (48) is a polynomial in u2. Since the minimum is located at u  =  0, the 

branch point λ̃+ satisfies the equation A(0) = 0. Therefore, two of the roots u2
1± of (48) 

are of O(ε) for small ε, which are given by

Figure 3.  Dierent possibilities of the variation of λ±(u) (see (43)) with respect 
to u are shown for dierent values of θ and α in which dotted, dashed, and 
dot-dashed lines correspond to 0 < δ < 1 (coupling is present) whereas solid lines 
indicate the δ = 0 case (coupling is absent). All dotted, dashed, and dot-dashed 
lines correspond to (a) λ′′

+(0) > 0, (b) λ′′
+(0) < 0, (c) λ′′

−(0) < 0, and (d) λ′′
−(0) > 0 

(see (46) and (47)).
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Table 1.  Branch point singularities and equations of contours for phase diagrams 
in figure 4. Their explicit values are given in appendix B.

Partial entropy production Apparent entropy production

(Π = 1) (Π = 0)

Uncorrelated 
forces

Branch point singularities: 

(λ−, λ̃+) in region I

Branch point singularities: 
(λ−,λ+) in region I

(λ̃−, λ̃+) in region II (λ−, λ̃+) in region II
(λ̃−, λ̃+) in region III

(C  =  0) Equation of contour: 
r1(θ,α, δ) = 0

Equation of contour: 
r2(θ,α, δ) = 0

r3(θ,α, δ) = 0

Correlated forces Branch point singularities: 

(λ−, λ̃+) in region I

Branch point singularities: 
(λ−,λ+) in region I

(λ̃−, λ̃+) in region II (λ̃−,λ+) in region II
(C  =  1) Equation of contour: 

r4(θ,α, δ) = 0
Equation of contour: 
r5(θ,α, δ) = 0

Figure 4.  The phase diagrams corresponding to dierent choices of Π (where 
Π = 1 and Π = 0 represent the case for partial and apparent entropy production, 
respectively) and C (see (20)) are shown in the limit of weak coupling (i.e. δ → 0). 
The axis (not shown) that corresponds to δ is perpendicular to the plane of the 
paper. Black solid contour for given Π and C (see table 1) separates regions of 
dierent branch point singularities in µ(λ).
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u2
1± =

2B(0)

A′′(0)
ε+O(ε2).

On the other hand, dierentiating the equation

q(u) + b(u)λ+(u)− p(u)λ2
+(u) = 0

with respect to u, and using the condition λ′
+(0) = 0, we get B(0)/A′′(0) = −1/λ′′

+(0). 
Since, λ′′

+(0) > 0, we finally get

u1± = ±i

√
2ε√

λ′′
+(0)

+O(ε).� (49)

The other roots are of O(1) which, at the leading order, satisfy the reduced equa-
tion u−2A(u)  =  0. Similarly, we can find the behavior near λ̃−. Thus, from (41), we find 
the nature of the singularities near a branch point as:

µs(λ) =



− 1√

2λ′′
+(0)

√
λ̃+ − λ as λ → λ̃+,

− 1√
−2λ′′

−(0)

√
λ− λ̃− as λ → λ̃−.

� (50)

Note that ±λ′′
±(0) diverges as δ → 0. Therefore, µs(λ) goes to zero as δ → 0.

In the other two cases where λ
(δ)
± → λ±, the singular behaviors of µ(λ) near the 

singularities in the limit δ → 0 are same as that of µ0(λ). In all cases, away from the 
singularities, µ(λ) → µ0(λ) as δ → 0.

In order to invert the moment-generating function Z(λ), we need g(λ), which is 
dicult to obtain (see (A.38)). Since we are interested in the weak coupling limit 
(0 < δ � 1), we can approximate the prefactor g(λ) with that of the free particle g0(λ) 
(see appendix C):

g(λ) ≈ g0(λ),

where g0(λ) is given in (39).
In the region I of figures 4(b) and (d), the branch point singularities of µ(λ) are λ± 

in the limit of coupling tending to zero. We expect that the function µ(λ) would obey 
the GC symmetry and both µ(λ) and g0(λ) are analytic functions for λ ∈ (λ−,λ+) in 
the weak coupling limit. Therefore, the steady state fluctuation theorem might hold for 
apparent entropy production in those regions (see section 5).

7. Large deviation function, asymmetry function and fluctuation theorem

The probability density function p(s) can be written as (see (26))

p(s) = P (∆SA
tot = sτ/τγ) τ/τγ,� (51)

and its large deviation form is [53]

p(s) ∼ e(τ/τγ)I(s).� (52)
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In the above equation, I(s) := hs(λ
∗) is the large deviation function and is given for all 

cases in appendix C. The continuity properties of I(s) in the limit δ → 0 are shown in 
appendix D. When the probability density function p(s) obeys the fluctuation theorem, 
it satisfies

lim
τ/τγ→∞

τγ
τ
ln

p(s)

p(−s)
= s.� (53)

One can define an asymmetry function f(s) as

f(s) =
τγ
τ
ln

p(s)

p(−s)
.� (54)

In the large time limit (τ → ∞),

f(s) = I(s)− I(−s).� (55)
The asymmetry function f(s) and its continuity properties for all cases in the limit 
δ → 0 are discussed in appendix E.

When p(s) obeys the fluctuation theorem, we find that f(s) = s for all s. We plot 
the asymmetry functions f(s) (for s  >  0) given in (55) against the scaled variable 

s = ∆SA
totτγ/τ  for partial entropy production (in figures  5(a) and (b)) and apparent 

entropy production (in figures 5(c)–(e)) for the first choice of external forces (i.e. C  =  0). 
Similarly, for the second choice of external forces (i.e. C = 1), we plot the asymmetry 

functions f(s) given in (55) against the scaled variable s = ∆SA
totτγ/τ  for partial entropy 

production (in figures 5(f) and (g)) and apparent entropy production (in figures 5(h) and 
(i)). These plots are shown for fixed δ = 0.1 (magenta dashed line) and δ = 0.01 (blue 
dotted line). Moreover, in the limit δ → 0 (black solid line), the asymmetry functions 
f(s) given in appendix E are shown for each case. Therefore, we see that as the coupling 
parameter δ decreases, the asymmetry function f(s) converges to that of δ → 0 case.

Thus, the asymptotic expression for the asymmetry function f(s) in the limit δ → 0 
and for large s (s → ∞) are given as (see appendix E)

f(s) =




µ0(λ−)− µ0(λ̃+) + (λ− + λ̃+)s region I of figure 4(a),

µ0(λ̃−)− µ0(λ̃+) + (λ̃− + λ̃+)s region II of figure 4(a),

µ0(λ−)− µ0(λ+) + (λ− + λ+)s region I of figure 4(b),

µ0(λ−)− µ0(λ̃+) + (λ− + λ̃+)s region II of figure 4(b),

µ0(λ̃−)− µ0(λ̃+) + (λ̃− + λ̃+)s region III of figure 4(b),

µ0(λ−)− µ0(λ̃+) + (λ− + λ̃+)s region I of figure 4(c),

µ0(λ̃−)− µ0(λ̃+) + (λ̃− + λ̃+)s region II of figure 4(c),

µ0(λ−)− µ0(λ+) + (λ− + λ+)s region I of figure 4(d),

µ0(λ̃−)− µ0(λ+) + (λ̃− + λ+)s region II of figure 4(d),

� (56)

where λ-s are given in appendix B. Note that the asymmetry function is an odd func-
tion of s, i.e. f(−s) = −f(s). From the above equation and figures 5(c) and (h), it is 
clear that the steady state fluctuation theorem (f(s) = s) is satisfied only in the region 
I of figures 4(b) and (d) in the weak coupling limit.
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In figure 6, we show a comparison of theoretical predictions of the probability density 
function p(s) (red dashed line) given by (51) and the asymmetry function f(s) (red 
dashed lines) given by (54) with the numerical simulations (circles) for time τ/τγ = 50 
((a) and (b)) and τ/τγ = 150 ((c) and (d)). The parameters α and θ are taken from 
figure  4(a) (Π = 1 and C  =  0). For all these figures, we set the coupling parameter 
δ = 0.1 and the temperature of the heat bath T  =  1.

In the following, we give quantitative measures to describe how much the theoretical 
predictions are closer to the numerical simulation results. In the case of probability 
density function, we choose two dierent measures at time τ/τγ: (1) the Kullback–
Leibler divergence:

Figure 5.  The analytical asymmetry function f(s) given in (55) against the scaled 

variable s = ∆SA
totτγ/τ  for s  >  0. Partial entropy production in (a)–(b) (C = 0) 

and (f)–(g) (C = 1), and apparent entropy production in (c)–(e) (C  =  0) and (h)–(i) 
(C = 1), where s∗1 and s∗2 are given in appendix C. These plots are shown for 
coupling parameter δ = 0.1 (magenta dashed line) and δ = 0.01 (blue dotted line). 
The asymmetry function in the limit δ → 0 (black solid line) is also shown for 
respective cases (see appendix E).

https://doi.org/10.1088/1742-5468/ab54b6


Entropy production for a partially observed harmonic system

20https://doi.org/10.1088/1742-5468/ab54b6

J. S
tat. M

ech. (2020) 013204

DKL(τ/τγ) =

∫
ds ps(s) ln

ps(s)

pt(s)
,

and (2) the weighted norm:

Dp(τ/τγ) =

√∫
ds ps(s)[ ps(s)− pt(s)]2,

where p s(s) is the probability density function obtained from the numerical simulation 
(after smoothing the data using the appropriate width of the binning) and p t(s) is the 
analytical prediction of the probability density function. We find that for time τ/τγ = 50, 
DKL(50) = 0.087 4399.... and Dp(50) = 0.548 4667.... whereas DKL(150) = 0.031 3721... 
and Dp(150) = 0.358 8365... at time τ/τγ = 150. Similarly, we define a measure in the 
case of asymmetry function as

Figure 6.  A comparison of the analytical probability density function p(s) (red 
dashed lines) given by (51) and the asymmetry function f(s) (red dashed line) 
given by (54) with the numerical simulations (circles) is shown for time τ/τγ = 50 
((a) and (b)) and τ/τγ = 150 ((c) and (d)). The parameters θ and α are taken from 
figure  4(a) for the case of partial entropy production (Π = 1 and C  =  0). The 
coupling parameter δ and the temperature of the heat bath are fixed in all of the 
above figures and taken to be δ = 0.1 and T  =  1, respectively. This comparison 
indicates that as the observation time relative to viscous relaxation time gets 
longer, the agreement between theoretical prediction and the numerical simulation 
becomes better.
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Df (τ/τγ) =

√∫
ds [ fs(s)− ft(s)]2,

where again the subscripts t and s, respectively, refer to the theory and simulation. 
We find that Df (50) = 0.000 304 931... and Df (150) = 0.000 060 3556.. Therefore, we see 
that as the observation time increases, the distance between theoretical predictions and 
numerical simulations decreases. Hence, the agreement between these two gets better.

For the first choice of external forces, the comparison of analytical asymmetry 
function f(s) (red dashed line) given by (54), with the numerical simulations (circles) 
are shown for partial (in figures  7(a) and (b)) and apparent entropy production (in 
figures 7(c)–(e)). Similarly, for the second choice of external forces, we compare the 
analytical predictions of the asymmetry function f(s) (red dashed lines) given in (54), 
with the numerical simulations (circles) for partial (in figures 7(f) and (g)) and apparent 
entropy production (in figures 7(h) and (i)). Here, we take δ = 0.1, T  =  1, and the obser-
vation time τ/τγ = 150. These figures  indicate that there is nice agreement between 
theoretical prediction and numerical simulation.

9. Model 2

In the previous model, we considered a harmonically coupled Brownian particle sys-
tem (i.e. particle A and B) in a heat bath driven away from equilibrium using external 
stochastic Gaussian forces. We showed that even in the limit δ → 0, one might see 
the deviation from the SSFT for partial and apparent entropy production. Here, we 
consider a system consisting of two Brownian particles (say particle A and B) of mass 
m coupled by a harmonic spring of stiness k in a harmonic trap of stiness k0. The 
whole system is in contact with a thermal bath at constant temperature T. Notice that 
this model system is dierent from model 1 (see figure 2) because of the presence of 
a confining potential. The schematic diagram of this model is shown in figure 8. The 
Hamiltonian of this coupled system is given as

Hκ(xA, xB, vA, vB) =
1

2
mv2A +

1

2
mv2B +

1

2
k0x

2
A +

1

2
k0x

2
B +

1

2
k(xA − xB)

2,� (57)

where m is the mass of each particle, and xA(xB) and vA(vB) are the position and 
velocity of particle A (particle B), respectively. In the above equation, the subscript κ 
indicates the presence of the harmonic trap. Suppose particle A and B are driven using 
stochastic Gaussian forces f A(t) and f B(t), respectively. The Langevin equations of the 
above coupled system are

ẋA = vA,� (58)

ẋB = vB,� (59)

mv̇A = −γvA − (k + k0)xA + kxB + fA(t) + ηA(t),� (60)

mv̇B = −γvB + kxA − (k + k0)xB + fB(t) + ηB(t).� (61)

https://doi.org/10.1088/1742-5468/ab54b6


Entropy production for a partially observed harmonic system

22https://doi.org/10.1088/1742-5468/ab54b6

J. S
tat. M

ech. (2020) 013204

The properties of thermal Gaussian noise ηi(t) and external force f i(t) are introduced 
in section 3.

For this model system, we can define the partial and apparent entropy production 
as described in section 4, which can be jointly written as

∆SA
tot = W − 1

2
ŨT H̃−1Ũ +

1

2
ŨT
0 H̃−1Ũ0,� (62)

where Ũ = (xA, vA)
T . In the above equation,

W =
1

T

∫ τ

0

dt fA(t)vA(t) +
Πk

T

∫ τ

0

dt xB(t)vA(t),� (63)

H̃−1 = Π(Ξ̃P − H̃−1
P ) + (1− Π)(Ξ̃A − H̃−1

A ),� (64)

where

H̃P ,A =

(
H11

P ,A 0

0 H33
P ,A

)
,� (65)

Figure 7.  The comparison of analytical asymmetry functions f(s) (red dashed 
line) given in (54) with the numerical simulation results (circles). Partial entropy 
production in (a)–(b) (C  =  0) and (f)–(g) (C  =  1) and apparent entropy production 
in (c)–(e) (C  =  0) and (h)–(i) (C  =  1). We take δ = 0.1, τ/τγ = 150, and T  =  1.
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in which subscripts P and A correspond to partial and apparent entropy productions, 
respectively.

The matrix element H11
P  for the first choice of external forces is given by

H11
P = Dm

δ3(2 + θ + α2θ) + 16κ(1 + θ)(δ + κ) + 2δ2(2 + θ + α2θ)(1 + κ)

4γ3κ(δ + κ)(2δ + δ2 + 4κ)
,

whereas for second choice of external forces

H11
P = Dm

δ3{2 + θ(1 + α)2}+ 16κ(1 + θ)(δ + κ) + δ2(2 + θ + α2θ)(1 + κ) + 4δκθ(δ + 2κ)

4γ3κ(δ + κ)(2δ + δ2 + 4κ)
.

On the other hand, H33
P  is the same for both choices of external forces

H33
P =

D[4(1 + θ)(δ + 2κ) + δ2(2 + θ + α2θ)]

2mγ(2δ + δ2 + 4κ)
.

Matrix elements H11
A  and H33

A  are given as

H11
A =

Dm(1 + θ)

γ3κ
, and H33

A =
D(1 + θ)

mγ
.

In the above equations, κ = k0m/γ2 is the strength of the harmonic trap.
The entropy production (62) depends on the thermal Gaussian noises ηi(t) and 

external stochastic Gaussian forces f i(t) quadratically. Therefore, its probability density 
function is expected to be non-Gaussian, and is obtained by inverting the moment-
generating function, which is given as

Zκ(λ) = 〈e−λ∆SA
tot〉 = gκ(λ) e

(τ/τγ)µκ(λ) + . . . .� (66)

Figure 8.  A harmonically coupled Brownian particle system (particle A and B) in 
a heat bath of a constant temperature T is shown. Each particle has mass m. The 
coupling strength between particle A and B is δ = 2km/γ2 (dimensionless). The 
whole system in confined in a harmonic trap of strength κ = mk0/γ

2 (dimensionless). 
The external stochastic forces f A(t) and f B(t) are acting on particle A and B, 
respectively.
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Complete computation of the moment-generating function Zκ(λ) in the large time limit 
is shown in appendix F. In the above equation, the prefactor gκ(λ) is obtained as given 
in (F.37). The function µκ(λ) in (F.24) has the following form

µκ(λ) = − 1

4π

∫ ∞

−∞
du ln

[
1 +

hκ(u,λ)

qκ(u)

]
,� (67)

where qκ(u) is

qκ(u) = [(κ− u2)2 + u2][(δ + κ− u2)2 + u2].� (68)

The form of hκ(u,λ) for the first choice of forces, i.e. for uncorrelated forces, is given as

hκ(u,λ) = 4θλ(1− λ)u2[u4 + (1− 2κ− δ)u2 + κ2 + κδ + (2− Π)δ2/4]

−λδ2u2[λα2θ2(Π− 1)2 + λΠ2 + θΠ{λ(1 + α2)Π− λ− α2}],�
(69)

whereas for the second choice of forces, i.e. for fB(t) = αfA(t), it is

hκ(u,λ) = 4θλ(1− λ)u2[u4 + (1− 2κ− δ)u2 + κ2 + κδ + (2− Π)δ2/4]

−λu2[θδα(λΠ− 1){4(κ− u2) + δ(2 + αΠ)}+ λΠδ2(Π− θ(1− Π))].
� (70)

In the case of a single Brownian particle confined in a harmonic trap and driven by 
external stochastic Gaussian forces in the non-equilibrium steady state, µκ(λ) → µ0

κ(λ) 
is

µ0
κ(λ) = − 1

4π

∫ ∞

−∞
du ln

[
1 +

h0
κ(u,λ)

q0κ(u)

]
,� (71)

where h0
κ(u,λ) = 4θλ(1− λ)u2 and q0κ(u) = (κ− u2)2 + u2. Computation of the above 

integral yields (37): µ0
κ(λ) = µ0(λ). One can also obtain the prefactor g0κ(λ) for this case, 

which is given by

g0κ(λ) =
4ν(λ)

[1 + ν(λ)]2
.� (72)

Notice that both functions µ0
κ(λ) and g0κ(λ) are independent of the strength of the 

harmonic trap κ. In (71) and (72), the superscript 0 corresponds to δ = 0 (coupling is 
absent). Both µ0

κ(λ) and g0κ(λ) are analytic functions for λ ∈ (λ−,λ+). Moreover, they 
obey GC symmetry. Therefore, in this case, the total entropy production satisfies the 
SSFT.

But in our case, µκ(λ) does not obey GC symmetry for large coupling δ. Thus, one 
may not expect the validity of the SSFT for the total entropy production of the partial 
system (partial and apparent entropy production) for the large value of the coupling 
parameter δ.

The analytical computation of the prefactor gκ(λ) is dicult to obtain as it requires 
the computation of matrices H̄1(λ), H̄2(λ), and H̄3(λ) (see (F.25)–(F.27)), which is not 
illuminating to us. Since our aim is to understand the fluctuation theorem for the par-
tial system in the weak coupling limit (δ → 0), we approximate gκ(λ) by the prefactor 
of the moment generating function of a stochastically driven single Brownian particle 
in a harmonic trap, i.e. gκ(λ) ≈ g0κ(λ) (see (72)) [21].
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In the following, we used the method described in section 6 to evaluate the int
egral for µκ(λ). First consider the integral of µ0

κ(λ) for a single Brownian particle in a 
harmonic trap given in (71). The arguments in the logarithm in the integrand of µ0

κ(λ) 
are q0κ(u) and [h0

κ(u,λ) + q0κ(u)]. While the function q0κ(u) is always positive for all real 
values of u, the function [h0

κ(u,λ) + q0κ(u)] may have any sign. To understand the sign, 
we solve the quadratic equation

h0
κ(u,λ) + q0κ(u) = 0

K1(u)λ
2 −K2(u)λ− q0κ(u) = 0,

� (73)

in λ where K1(u) = K2(u) = 4θu2. The roots of the above quadratic equation are

λ̄0
±(u) =

K2(u)±
√

K2
2(u) + 4K1(u)q0κ(u)

2K1(u)
.� (74)

In figures 9(a) and (b), we show the variation of λ̄0
±(u) (solid lines) against u at fixed 

trap strength κ = 2. In the complex λ-plane, we see that µ0
κ(λ) is a real function for 

λ ∈ (λmax,λmin) where λmin = min{λ̄0
+(u)} and λmax = max{λ̄0

−(u)}. In this case, the 
extrema of functions λ̄0

±(u) occur at u∗ = ±
√
κ (see figure 9). Therefore,

λ̄0
±(u

∗ = ±
√
κ) = λ± = [1±

√
1 + θ−1]/2.� (75)

This implies µ0
κ(λ) is a real function within (λ−,λ+). Similarly, we can find the domain 

within which µκ(λ) is a real quantity. For δ �= 0 (coupling is present), the argument 
of the logarithm in the integrand of (67) are qκ(u) and [hκ(u,λ) + q(u)] where qκ(u) is 
clearly a positive function for all real values of u. To see the domain, we write the qua-
dratic equation

hκ(u,λ) + qκ(u) = 0

K3(u)λ
2 −K4(u)λ− qκ(u) = 0,

� (76)

in λ. The function qκ(u) is given in (68), and one can find K3(u) and K4(u) from (69) and 
(70) for both definitions of entropy production and for both choices of external forces. 
The roots of the quadratic equation (76) are

λ̄±(u) =
K4(u)±

√
K2

4(u) + 4K3(u)qκ(u)

2K3(u)
.� (77)

Figures 9(a) and (b) show the variation of λ̄±(u) (dotted and dashed lines) against u for 
0 < δ < 1 at fixed trap strength κ = 2. We have also compared the given curve with 
the δ = 0 case (solid lines). It is clear from figure 9 that λ̄±(u) converges to λ̄0

±(u) in the 
limit of coupling tending to zero. Therefore, one can use perturbation theory to evalu-
ate u* in the limit δ → 0. For the first choice of forces and both definitions of entropy 
production, we see that

u∗ = ±
[√

κ+
δ

4
√
κ
+O(δ2)

]
,� (78)
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whereas for the second choice of forces,

u∗ =





±
[
√
κ+ δ(1−α)

4
√
κ

+O(δ2)

]
PEP,

±
[
√
κ+

δ[1+2α(θ+
√

θ(1+θ))]

4
√
κ

+O(δ2)

]
AEP,

� (79)

where PEP and AEP stand for partial and apparent entropy production.
For each case, we substitute u* in (77). In the limit δ → 0, we get λ̄±(u

∗) → λ± where 
λ± are given in (75). When λ ∈ (λ−,λ+), g

0
κ(λ) is also an analytic function. Therefore, 

one can directly use the saddle-point approximation to compute the probability density 
function for ∆SA

tot (see section 5) and it has the following large deviation form [53]

p(s) ∼ e(τ/τγ)K(s),� (80)

where K(s) = µκ(λ̄
∗) + λ̄∗s in which λ̄∗ is the saddle point obtained by solving the 

equation

∂µκ(λ)

∂λ

∣∣∣∣
λ=λ̄∗

= −s.� (81)

Therefore, the asymmetry function in the large time limit is given by

f(s) = K(s)−K(−s).� (82)

9.1. Numerical simulation

In figure 10, we compare the analytical results (dashed lines) of asymmetry function 
f(s) using (82) with the numerical simulation results (squares) for partial entropy pro-
duction for the first choice of external forces (a), apparent entropy production for the 
first choice of external forces (b), partial entropy production for the second choice of 

Figure 9.  Variation of λ̄±(u) against u for 0 < δ < 1 (dotted and dashed lines) and 
δ = 0 (solid lines) at a trap strength κ = 2.
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external forces (c), and apparent entropy production for the second choice of external 
forces (d). All of these results are obtained for fixed trap strength κ = 2.0, coupling 
parameter δ = 0.01 and the observation time relative to relaxation time τ/τγ = 20, and 
the temperature of the bath T  =  1. A discussion on the timescale above, where the 
analytical results are expected to match with the numerical simulations, is given in 
section 11. Figure 10 shows a very good agreement between theoretical predictions and 
numerical simulation.

From figures 10(a)–(d), it is clear that the slope of asymmetry function f(s) is unity 
in the limit δ → 0, which indicates that both definitions of total entropy production of 
the partial system satisfy the SSFT.

Figure 10.  The asymmetry functions f(s) (for s  >  0) against the scaled variable 

s = ∆SA
totτγ/τ . (a) Partial entropy production for the first choice of external 

forces, (b) apparent entropy production for the first choice of external forces, 
(c) partial entropy production for the second choice of external forces, and (d) 
apparent entropy production for the second choice of external forces. The solid 
lines correspond to the case when there is no coupling between particle A and B 
(δ = 0), i.e. f(s) = s whereas the squares and dashed lines, respectively, correspond 
to numerical simulations and analytical predictions. For all the above figures, 
we choose κ = 2.0, δ = 0.01, T  =  1, and τ/τγ = 20. A discussion on the timescale 
above, where the analytical results are expected to match with the numerical 
simulations, is given in section 11.
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10. Method of simulation

To obtain the probability density function for ∆SA
tot, i.e. p(s) = P (∆SA

tot)τ/τγ , in the 
numerical simulation, we first discretize the Langevin equations given in (4)–(6), up to 
an order of time segment ∆τ . Discretization of the total entropy production for particle 
A in the coupled system given in (14) is as follows. While the first two terms of (14), i.e. 
W in (15), are functional of stochastic trajectories, the third term is the boundary term 
that depends on the initial vA(0) and the final variable vA(τ) of particle A. Notice that 
for both definitions of entropy production, the initial conditions are drawn from the 
steady state distribution of the full system (see (A.13)). The functional W given in (15), 
which involves integrals that follow the Stratonovich rule of integration, is discretized 
as the following

W =

(τ/∆τ)−1∑
n=0

[
√

2γTθ/∆τ f̃∆τ
A (tn)− Πky(tn)] [vA(tn +∆τ) + vA(tn)]

∆τ

2T
,� (83)

where tn = n∆τ , and f̃∆τ
A (tn) is a Gaussian random variable with mean zero and vari-

ance one at each time step tn.
We construct the histogram for ∆SA

tot for both definitions of entropy production 
and also for both choices of external forces using W given in the above equation, and 
the boundary terms as given in (14) for R number of realizations. Similarly, we can 

obtain the probability density function p(s) = P (∆SA
tot)τ/τγ for model 2 in the numer

ical simulation.

11. Summary

We have considered two model systems: (model 1) a system of two Brownian particles 
coupled by a harmonic spring of stiness k, and (model 2) a harmonically coupled 
Brownian particle system in a harmonic confinement of stiness k0. In both cases, the 
system is in contact with a heat bath of constant temperature. Each particle is driven 
by an external Gaussian white noise. Here we have considered two dierent choices 
of forces: (1) both forces are uncorrelated with each other, and (2) both of them are 
correlated with each other. The strength of the force acting on particle A relative to 
strength of the noise from the bath is θ, whereas the ratio of strength of the force 
acting on particle B to that on particle A is α2. A dimensionless coupling parameter 
δ = 2km/γ2 is also introduced. For model 2, the strength of the harmonic trap is 
expressed as κ = k0m/γ2 (dimensionless). In the presence of external driving, the given 
systems reach a non-equilibrium steady state and produce entropy. Evidently, the 
total entropy production from the combined system (A  +  B) satisfies the fluctuation 
theorem. The central question we asked in this paper is whether the fluctuation theo-
rem holds for a partial system in the weak coupling limit (δ → 0). Therefore, we have 
focused on total entropy production due to one of the particle (partial and apparent 
entropy production) in both coupled systems. For model 1, we have plotted phase 
diagrams (see figure 4) in (α, θ) plane in the limit δ → 0, and the SSFT is satisfied for 
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apparent entropy production only in region I of figures 4(b) and (d). In the case of 
model 2, both definitions of entropy production satisfy the SSFT in the weak coupling 
limit. Numerical simulations are also done to verify the analytical results and they are 
in good agreement.

To understand why the trap helps to nullify the eect of weak coupling of the hid-
den DOFs on the observed ones, let us consider the overdamped case from (60) and 
(61), where, in the presence of the trap, the relative spacing y = (xA − xB) evolves 
according to the overdamped Langevin equation given as

ẏ = −δ + κ

τγ
y +

η(t) + f(t)

γ
.� (84)

Here, η(t) = ηA(t)− ηB(t) and f(t) = fA(t)− fB(t) are the thermal Gaussian noise and 
external force in the relative frame, respectively.

First consider the case when there is no harmonic confinement (κ = 0). In this case 
the force due to the coupling becomes important when y ∼ O(τγ/δ). The typical tim-
escale, above which we can see the eect of coupling, is given by the diusive scale 

ty ∼ y2 ∼ O(τ 2γ/δ
2) as, for y � O(τγ/δ), the eect of coupling is negligible. Therefore, 

when the observation time τ  is much larger than ty , we see a finite contribution to the 
medium entropy production from the term δy as it becomes comparable to the external 
force f A even in the weak coupling limit (δ → 0) (see (14)).

On the other hand (κ �= 0 and δ � κ), the variance of y  is proportional to τ 2γ/(δ + κ) 
in the limit τ � τγ/κ. Therefore, in the presence of the harmonic confinement, y  typi-
cally scales as y ∼ O(τγ/

√
κ) when τ � τγ/κ, and the force from the coupling term 

δy ∼ O(δτγ/
√
κ) is much smaller than the external force f A(t) for τ � τγ/κ. Thus, in 

this limit (δ → 0), the contribution to the medium entropy production from the term δy 
is vanishingly small. Therefore, the SSFT holds for both definitions of entropy produc-
tion in the presence of a harmonic confinement in the weak coupling limit (i.e. δ � κ).

The asymmetry function f(s) (see (55)) may have a negative slope [22] but in the 
present case, it only has a positive slope. The physical origin of the positive and nega-
tive slopes is not clear to us. It might be dependent on the choice of the system studied. 
Therefore, it would be interesting to understand the physical origin of this behavior in 
future.

Appendix A. Calculation of the moment generating function: Model 1

In this section, we compute the moment-generating function Z(λ) of partial and appar-
ent entropy production for model 1 for both choices of external forces using the method 
described in [27]. The model system shown in figure  2 evolves according to under-
damped Langevin (4)–(6). We rewrite these equations in the matrix form as

ẏ = ATV (t),� (A.1)

mV̇ = −γV (t)− kAy(t) + F (t) + ξ(t),� (A.2)

where V = (vA, vB)
T , A  =  (1, −  1)T, F = ( fA, fB)

T , and ξ = (ηA, ηB)
T .
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Finite time Fourier transform and its inverse for a time-dependent quantity Q(t) 
are defined as

Q̃(ωn) =
1

τ

∫ τ

0

dt Q(t)e−iωnt,� (A.3)

Q(t) =
∞∑

n=−∞

Q̃(ωn)e
iωnt,� (A.4)

with ωn = 2πn/τ .
Using (A.3), we write (A.1) and (A.2) as

ỹ(ωn) = ATG(ωn)[F̃ (ωn) + ξ̃(ωn)]−
ATG(ωn)

2τ
[(γ + imωn)A∆y + 2m∆V ],

� (A.5)

Ṽ (ωn) = iωnG(ωn)[F̃ (ωn) + ξ̃(ωn)] +
G(ωn)

τ
[kA∆y − iωnm∆V ],� (A.6)

where ∆y = y(τ)− y(0), ∆V = V (τ)− V (0), Φ = kAAT , and G(ωn) = [(iγωn −mω2
n)I + Φ]−1  

in which I is the identity matrix. From the above equations, we can obtain ỹ(ωn) and 
ṽA(ωn) as

ỹ(ωn) = [G11(ωn)−G12(ωn)][η̃A(ωn) + f̃A(ωn)− η̃B(ωn)− f̃B(ωn)]−
qT1 ∆U

τ
,

� (A.7)

ṽA(ωn) = iωn[G11(ωn){η̃A(ωn) + f̃A(ωn)}+G12(ωn){η̃B(ωn) + f̃B(ωn)}] +
qT2 ∆U

τ
,

� (A.8)
where

qT1 =

[
γ + imωn

2
ATG(ωn)A,m{G11(ωn)−G12(ωn)}, m{G12(ωn)−G11(ωn)}

]
,

qT2 = [k{G11(ωn)−G12(ωn)},−imωnG11(ωn),−imωnG12(ωn)],

and ∆U = (∆y, ∆V T )T . In the above equations, the Green’s function matrix ele-
ments are G11(ωn) = (iγωn −mω2

n + k)[iωn(γ + imωn)(2k −mω2
n + iγωn)]

−1 and 
G12(ωn)  =  k[iωn(γ + imωn)(2k −mω2

n + iγωn)]
−1.

Therefore, the row vector UT (τ) = [y(τ),V T (τ)] is

UT (τ) = lim
ε→0

∞∑
n=−∞

e−iωnεŨT (ωn)

= lim
ε→0

∞∑
n=−∞

e−iωnε[ỹ(ωn), Ṽ
T (ωn)].

�
(A.9)

Using (A.5) and (A.6), we see that
∞∑

n=−∞

e−iωnε
ATG

2τ
[(γ + imωn)A∆y + 2m∆V ] ,

∞∑
n=−∞

e−iωnε
1

τ

[
kAT ∆y − iωnm∆V T

]
GT ,
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go to zero as τ → ∞. This is because, in the large-τ  limit, the summations can be con-
verted into integrals. As all the poles lie in the upper half of the complex ω-plane, the 
contribution to integrals is zero. Therefore, (A.9) reduces to

UT (τ) = lim
ε→0

∞∑
n=−∞

e−iωnε[{F̃ T (ωn) + ξ̃T (ωn)}GTA, iωn{F̃ T (ωn) + ξ̃T (ωn)}GT ]

= lim
ε→0

∞∑
n=−∞

e−iωnε [(1− C){qT3 (η̃A + f̃A) + qT4 (η̃B + f̃B)}+ C(η̃Al
T
1 + η̃Bl

T
2 + f̃Al

T
3 )],

� (A.10)
where

qT3 = lT1 = (G11 −G12, iωnG11, iωnG12),

qT4 = lT2 = (G12 −G11, iωnG12, iωnG11),

lT3 = [(1− α)(G11 −G12), iωn(G11 + αG12), iωn(G12 + αG11)],

and the parameter C is given in (20). For convenience, we define Gij = [G(ωn)]ij, 

G∗
ij = [G(−ωn)]ij, f̃i = f̃i(ωn), f̃

∗
i = f̃i(−ωn), η̃i = η̃i(ωn), and η̃∗i = η̃i(−ωn).

From (A.10), we see that U depends linearly on the thermal Gaussian noises and 
external stochastic Gaussian forces. Therefore, the mean and correlation are sucient 
to obtain the probability density function of it. Computing the average over thermal 
Gaussian noises and external stochastic Gaussian forces yields

〈U(τ)〉 = 0,� (A.11)

〈U(τ)UT (τ)〉 = D

π

∫ ∞

−∞
dω

[
(1− C){(1 + θ)q3q

†
3 + (1 + α2θ)q4q

†
4}+ C(l1l

†
1 + l2l

†
2 + θl3l

†
3)
]
,

� (A.12)
where † denotes the transpose of the matrix and complex conjugation operation ∗  
(i.e. ωn → −ωn).

Thus, the steady state distribution of the coupled system is

Pss(U) =
e−

1
2
UTM−1U

√
(2π)3 detM

, where Mij = 〈U(τ)UT (τ)〉ij.� (A.13)

The functional W, given in (15), can be written as

W = W1 −W2, where� (A.14)

W1 =
1

T

∫ τ

0

dt fA(t)vA(t),� (A.15)

W2 =
Πk

T

∫ τ

0

dt y(t)vA(t).� (A.16)

Using (A.4), we write W1 as

W1 =
τ

2T

∞∑
n=−∞

[f̃A(ωn)ṽA(−ωn) + f̃A(−ωn)ṽA(ωn)].� (A.17)
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Substituting ṽA(ωn) from (A.8) in the above equation yields

W1 =
τ

2T

∞∑
n=−∞

[
iωn{G11f̃

∗
A(η̃A + f̃A) +G12f̃

∗
A(η̃B + f̃B)−G∗

11f̃A(η̃
∗
A + f̃ ∗

A)

−G∗
12f̃A(η̃

∗
B + f̃ ∗

B}+
fAq

†
2∆U

τ
+

f ∗
A∆UT q2

τ

]
.

�

(A.18)

Similarly, using (A.4), we write W2 as

W2 =
Πkτ

2T

∞∑
n=−∞

[ỹ(ωn)ṽA(−ωn) + ỹ(−ωn)ṽA(ωn)].� (A.19)

Substituting ỹ(ωn) and ṽA(ωn) from (A.7) and (A.8), respectively, in the above equa-
tion, we get

W2 =
Πkτ

2T

∞∑
n=−∞

[
iωn[{G11(η̃A + f̃A) +G12(η̃B + f̃B)}(G∗

11 −G∗
12)(η̃

∗
A + f̃ ∗

A − η̃∗B − f̃ ∗
B)

− {G∗
11(η̃

∗
A + f̃ ∗

A) +G∗
12(η̃

∗
B + f̃ ∗

B)}(G11 −G12)(η̃A + f̃A − η̃B − f̃B)]

+
q†2∆U

τ
(G11 −G12)(η̃A + f̃A − η̃B − f̃B)−

iωn

τ
q†1∆U [G11(η̃A + f̃A) +G12(η̃B + f̃B)]

+
iωn

τ
∆UT q1[G

∗
11(η̃

∗
A + f̃ ∗

A) +G∗
12(η̃

∗
B + f̃ ∗

B)] +
∆UT q2

τ
(G∗

11 −G∗
12)(η̃

∗
A + f̃ ∗

A − η̃∗B − f̃ ∗
B)

− ∆UT (q1q
†
2 + q2q

†
1)∆U

τ 2

]
.

�

(A.20)

The restricted moment-generating function ZW (λ,U , τ |U0) for W is

ZW (λ,U , τ |U0) =
〈
e−λW δ[U − U(τ)]

〉
U0

=

∫
d3σ

(2π)3
eiσ

TU
〈
eE(τ)

〉
U0

,
�

(A.21)

where the angular brackets represent the average over the set of all trajectories for fixed 
initial U0 and the final variable U. In the above equation, we have used the integral 
representation of the Dirac delta function and E(τ) = −λW − iσTU(τ). Substituting W 
and U(τ) from (A.15) and (A.10), respectively, in E(τ) yields

E(τ) =
∞∑
n=1

[
−λτ

T
ζTnCnζ

∗
n + ζTn αn + αT

−nζ
∗
n −

λΠk

Tτ
|qn|2

]

− λτ

2T
ζT0 C0ζ0 + ζT0 α0 −

λΠk

2Tτ
q20,

�

(A.22)

where Cn = CI
n − ΠkCII

n  and |qn|2 = ∆UT (q1q
†
2 + q2q

†
1)∆U .

When the correlation parameter C  =  0, the matrices CI
n and CII

n  are
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CI
n =




0 0 iωnG11 0

0 0 iωnG12 0

−iωnG
∗
11 −iωnG

∗
12 iωn[G11 −G∗

11] −iωnG
∗
12

0 0 iωnG12 0


 ,

CII
n =




C11 C12 C13 C14

C∗
12 C22 C23 C24

C∗
13 C∗

23 C33 C34

C∗
14 C∗

24 C∗
34 C44


 .

The matrix elements of CII
n  are given as

C11 = iωn[G
∗
11G12 −G11G

∗
12],

C12 = iωn[|G12|2 − |G11|2],
C11 = C13 = C33 = −C22,

C12 = C14 = C34,

C∗
12 = C23,

C22 = C24 = C44.

The column vector αn is

αn = −λ

T




aT11∆U

aT21∆U

aT31∆U

aT41∆U


− ie−iωε




qT3 σ

qT4 σ

qT3 σ

qT4 σ


 ,

in which

aT11 = Πk[iωnG11q
†
1 − (G11 −G12)q

†
2],

aT21 = Πk[iωnG12q
†
1 − (G12 −G11)q

†
2],

aT31 = Πk[iωnG11q
†
1 − (G11 −G12)q

†
2] + q†2,

aT41 = Πk[iωnG12q
†
1 − (G12 −G11)q

†
2],

and the row vector containing thermal Gaussian noises and external Gaussian stochas-

tic forces in the frequency domain is ζT = (η̃
A
, η̃

B
, f̃

A
, f̃

B
).

When the correlation parameter C  =  1, the matrices CI
n and CII

n  are

CI
n =




0 0 iωnG11

0 0 iωnG12

−iωnG
∗
11 −iωnG

∗
12 iωn[{G11 −G∗

11}+
α{G12 −G∗

12}]


 ,

CII
n =



C11 C12 C13

C∗
12 C22 C23

C∗
13 C∗

23 C33


 ,

where the matrix elements of CII
n  are
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C11 = iωn[G
∗
11G12 −G11G

∗
12],

C12 = iωn[|G12|2 − |G11|2],
C13 = iωn[G12(G

∗
11 + αG∗

12)−G11(G
∗
12 + αG∗

11)],

C22 = −iωn[G
∗
11G12 −G11G

∗
12],

C23 = iωn[|G11|2 − |G12|2 + α(G11G
∗
12 −G12G

∗
11)],

C33 = iωn(1− α2)[G∗
11G12 −G11G

∗
12].

The column vector αn is

αn = −λ

T



bT11∆U

bT21∆U

bT31∆U


− ie−iωε



lT1 σ

lT2 σ

lT3 σ


 , in which

bT11 = Πk[iωnG11q
†
1 − (G11 −G12)q

†
2],

bT21 = Πk[iωnG12q
†
1 − (G12 −G11)q

†
2],

bT31 = Πk[iωn(G11 + αG12)q
†
1 − (1− α)(G11 −G12)q

†
2] + q†2,

and the row vector containing thermal Gaussian noises and external Gaussian stochas-

tic force in the frequency domain is ζTn = (η̃A, η̃B, f̃A).
Therefore, we get

〈eE(τ)〉U0 =

〈
exp

[
−λτ

2T
ζT0 C0ζ0 + ζT0 α0 −

λΠk

2Tτ
q20

]〉

×
∞∏
n=1

〈
exp

[
−λτ

T
ζTnCnζ

∗
n + ζTn αn + αT

−nζ
∗
n −

λΠk

Tτ
|qn|2

]〉
.

�

(A.23)

Here, the angular brackets show the average for each n � 1 term according to the dis-
tribution given by

P (ζn) =





exp[−ζTn Λ−1ζ∗n]
π4 detΛ

, for C = 0,

exp[−ζTn Λ−1ζ∗n]
π3 detΛ

, for C = 1,

� (A.24)

whereas for n  =  0 term, the average is taken with respect to the distribution

P (ζ0) =





exp[− 1
2
ζT0 Λ−1ζ0]√

(2π)4 detΛ
, for C = 0,

exp[− 1
2
ζT0 Λ−1ζ0]√

(2π)3 detΛ
, for C = 1.

� (A.25)

The diagonal matrix Λ given above is

Λ =

{
(2D/τ) diag(1, 1, θ,α2θ) for C = 0,

(2D/τ) diag(1, 1, θ) for C = 1.

After computing the averages, we get
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〈eE(τ)〉U0 = e(τ/τγ)µ(λ)e
1
2

∑∞
n=−∞(αT

−nΩ
−1
n αn−λΠk

Tτ
|qn|2),� (A.26)

where Ωn = (Λ−1 + λτ Cn/T ).
In the large time limit (τ/τγ → ∞), we convert the summation into an integral, 

which gives

〈eE(τ)〉U0 ≈ e(τ/τγ)µ(λ)e−
1
2
σTH1σ+i∆UTH2σ+

1
2
∆UTH3∆U ,� (A.27)

where

µ(λ) = − τγ
4π

∫ ∞

−∞
dω ln[det (ΛΩ)],� (A.28)

H1 =
τ

2π

∫ ∞

−∞
dω ρTΩ−1φ,� (A.29)

H2 = − τ

2π

∫ ∞

−∞
dω e−iωεaT1Ω

−1φ,� (A.30)

H3 =
τ

2π

∫ ∞

−∞
dω

[
aT1Ω

−1a2 −
λΠk

Tτ
(q1q

†
2 + q2q

†
1)

]
.� (A.31)

The vectors ρT , aT1 , φ, and a2 are given in table A1, where

c11 = −Πk[iωG∗
11q1 + (G∗

11 −G∗
12)q2],

c12 = −Πk[iωG∗
12q1 + (G∗

12 −G∗
11)q2],

c13 = −Πk[iωG∗
11q1 + (G∗

11 −G∗
12)q2] + q2,

c14 = −Πk[iωG∗
12q1 + (G∗

12 −G∗
11)q2],

d11 = −Πk[iωG∗
11q1 + (G∗

11 −G∗
12)q2],

d12 = −Πk[iωG∗
12q1 + (G∗

12 −G∗
11)q2],

d13 = −Πk[iω(G∗
11 + αG∗

12)q1 + (G∗
11 −G∗

12)(1− α)q2] + q2.

Therefore, we write the restricted moment-generating function for W using (A.21) as

Table A1.  The vectors ρT , aT1 , φ, and a2 for both choices of external forces.

Vectors C  =  0 C  =  1

ρT (q∗3, q∗4, q∗3, q∗4) (l∗1, l∗2, l∗3)
aT1 −λ/T (c11, c12, c13, c14) −λ/T (d11, d12, d13)
φ




qT3
qT4
qT3
qT4






lT1
lT2
lT3




a2

              − λ
T




aT11
aT21
aT31
aT41




    − λ
T



bT11
bT21
bT31



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ZW (λ,U , τ |U0) ≈ e(τ/τγ)µ(λ)e
1
2
∆UTH3∆U

∫
d3σ

(2π)3
eiσ

TU e−
1
2
σTH1σ eiσ

THT
2 ∆U .

� (A.32)
The integration over σ yields

ZW (λ,U , τ |U0) ≈
e(τ/τγ)µ(λ)e

1
2
∆UTH3∆U

√
(2π)3 detH1(λ)

e−
1
2
(UT+∆UTH2)H

−1
1 (U+HT

2 ∆U).� (A.33)

Factorizing the above equation in terms of the initial U0 and the final variable U (see (21)) 
gives the condition (H3 −H2H

−1
1 HT

2 −H−1
1 HT

2 ) + (H3 −H2H
−1
1 HT

2 −H2H
−1
1 )T = 0, 

therefore

ZW (λ,U , τ |U0) ≈
e(τ/τγ)µ(λ)e−

1
2
UTL1(λ)Ue−

1
2
UT
0 L2(λ)U0

√
(2π)3 detH1(λ)

,� (A.34)

where

L1(λ) = H−1
1 +H−1

1 HT
2 ,

L2(λ) = −H−1
1 HT

2 .

From the above equation, one can find the steady state distribution for the coupled 
system by substituting λ = 0 and taking the limit τ → ∞:

ZW (0,U , τ → ∞|U0) = Pss(U) =
exp[−1

2
UTH−1

1 (0)U ]√
(2π)3 detH1(0)

.� (A.35)

Moreover, one can see from (A.12) that 〈U(τ)UT (τ)〉 = H1(0).
Using (17), the restricted moment-generating function for ∆SA

tot is given as

Z(λ,U , τ |U0) ≈
e(τ/τγ)µ(λ)e−

1
2
UT L̃1(λ)Ue−

1
2
UT
0 L̃2(λ)U0

√
(2π)3 detH1(λ)

,� (A.36)

where the matrices L1(λ) and L2(λ) modify to

L̃1(λ) = L1(λ)− λΣ

[
m

T
− 1

H

]
,

L̃2(λ) = L2(λ) + λΣ

[
m

T
− 1

H

]
.

The moment-generating function Z(λ) is obtained by integrating Z(λ,U , τ |U0) over the 
initial variable U0 with respect to the steady state distribution Pss(U0) and the final 
variable U,

Z(λ) =

∫
dU

∫
dU0 Pss(U0) Z(λ,U , τ |U0)

= g(λ) e(τ/τγ)µ(λ) + . . . ,
� (A.37)

where the prefactor g(λ) is

g(λ) =
[
det[H1(λ)H1(0)L̃1(λ)] det [H

−1
1 (0) + L̃2(λ)]

]−1/2

.� (A.38)
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Appendix B. Equations of contours and branch point singularities

In this section, we discuss the equation of contours for figure 4 which separates the 
regions of dierent branch point singularities in µ(λ).

For parameters Π = 1, C  =  0, and 0 < δ < 1, we see that λ′′
+(0) > 0 and the sign of 

λ′′
−(0) is determined by a function r1(θ,α, δ). Therefore, the equation of the contour in 

this case is given by

r1(θ,α, δ) = 0, where� (B.1)

r1(θ,α, δ) = −1− θ(α2 − 3)(2 + θ + θα2) + δ[1 + θ(1 + α2)]2.

We plot the phase diagram in (α, θ) plane using (B.1) in the weak coupling limit (δ → 0) 
as shown in figure 4(a). In this case, the pair of branch point singularities in the limit 

δ → 0 are (λ−, λ̃+) and (λ̃−, λ̃+) in regions I and II, respectively, of figure 4(a) where

λ̃+ = 1,� (B.2)

λ̃− = −(1 + θ + θα2)−1.� (B.3)

For parameters Π = 0, C  =  0, and 0 < δ < 1, the sign of λ′′
+(0) and λ′′

−(0) is determined 
by functions r2(θ,α, δ) and r3(θ,α, δ), respectively. Therefore, the equations of contours 
in this case are given by

r2(θ,α, δ) = 0,� (B.4)

r3(θ,α, δ) = 0,� (B.5)
where

r2(θ,α, δ) = −4 + α4θ2 + 4α2θ[θ +
√
θ(2 + θ + θα2)]− δ(2 + θα2)2,

r3(θ,α, δ) = 4− α4θ2 − 4α2θ[θ −
√
θ(2 + θ + θα2)] + δ(2 + θα2)2.

Using (B.4) and (B.5), we plot the phase diagram in (α, θ) plane as shown in figure 4(b) 
in the limit δ → 0. In this case, the pair of branch point singularities in the limit δ → 0 

are (λ−,λ+), (λ−, λ̃+), and (λ̃−, λ̃+) in regions I, II and III, respectively, of figure 4(b) 
where

λ̃± =
θ ±

√
θ(2 + θ + θα2)

2θ + θ2α2
.� (B.6)

For parameters Π = 1, C  =  1, and 0 < δ < 1, we see that λ′′
+(0) > 0 and the sign of 

λ′′
−(0) is determined by a function r4(θ,α, δ). Therefore, the equation of the contour in 

this case is given by

r4(θ,α, δ) = 0, where� (B.7)

r4(θ,α, δ) = −1− θ(α− 1)(3 + α)[2 + (1 + α)2θ] + 2δ[1− θ(1− α2){2 + (1 + α)2θ}]
− δ2[1 + θ(1 + α)2]2.
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We use (B.7) to plot the phase diagram in (α, θ) plane in the limit δ → 0 as shown in 
figure 4(c). In this case, the pair of branch point singularities in the limit δ → 0 are 

(λ−, λ̃+) and (λ̃−, λ̃+) in regions I and II, respectively, of figure 4(c) where

λ̃+ = 1,� (B.8)

λ̃− = −[1 + θ(1 + α)2]−1.� (B.9)

Finally, for parameters Π = 0, C  =  1, and 0 < δ < 1, we see that λ′′
+(0) < 0 and the sign 

of λ′′
−(0) is determined by a function r5(θ,α, δ). Therefore, the equation of the contour 

in this case is given by

r5(θ,α, δ) = 0, where� (B.10)

r5(θ,α, δ) = 1 + 2αθ(1 + α)− 2α
√
θ[2 + θ(1 + α)2]− δ2.

In the limit δ → 0, the phase diagram in (α, θ) plane is shown using (B.10) in figure 4(d), 
and the pair of branch point singularities in the limit δ → 0 are (λ−,λ+) and (λ̃−,λ+) 
in regions I and II, respectively, of figure 4(d) where

λ̃− =
θ(1 + α)−

√
θ[2 + θ(1 + α)2]

2θ
.� (B.11)

In all above cases, λ± are given by (38).

Appendix C. The large deviation function

The large deviation function (LDF) is defined by

I(s) = lim
(τ/τγ)→∞

1

(τ/τγ)
lnP (∆SA

tot = sτ/τγ).� (C.1)

Therefore, from (26) we get

I(s) := hs(λ
∗) = µ(λ∗) + λ∗s.� (C.2)

First, consider the case when particle A is isolated from particle B (δ = 0) (see sec-
tion 6). In this case, µ0(λ) is analytic only within a finite region bounded by a pair of 
branch point singularities at λ±. Here λ− < 0 and λ+ > 1 with λ+ + λ− = 1, where λ± 
are given in (38). In this case, g0(λ) is also analytic within this region λ ∈ (λ−,λ+).

The solution of the equation

µ′
0(λ

∗
0) = −s,� (C.3)

gives the saddle point

λ∗
0(s) =

1

2

[
1− s√

s2 + θ

√
1 +

1

θ

]
.� (C.4)

It follows that

λ∗
0(s) =

{
λ− +O(1/s2) as s → +∞,

λ+ −O(1/s2) as s → −∞.� (C.5)
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Therefore, as s decreases from ∞ to −∞, the saddle point λ∗
0(s) moves from λ− to λ+ 

on the real λ line.
Thus, the LDF I0(s) is given by

I0(s) = µ0(λ
∗
0(s)) + λ∗

0(s)s

=

{
µ0(λ−) + λ−s+O(1/s) as s → +∞,

µ0(λ+) + λ+s−O(1/s) as s → −∞.
� (C.6)

In the presence of a non-zero coupling (δ > 0), µ(λ) has branch points at λ
(δ)
± . In this 

case, the LDF I(s) is related to µ(λ) by

I(s) = µ(λ∗) + λ∗s with µ′(λ∗) = −s,

where we have assumed that g(λ) is analytic in the region λ ∈
(
λ
(δ)
− ,λ

(δ)
+

)
. In case g(λ) 

has a singularity within this range, we can change the above LDF. However, we are 
interested in the δ → 0 limit and in this limit we can write g(λ) = g0(λ) + δcg1(λ), with 
c  >  0, where the function g1(λ) may have singularities. It is clear that the singularities 
of g1(λ) are not going to contribute to the PDF in the δ → 0 limit [21].

Now, we see from section 6 in the limit δ → 0, λ
(δ)
+ → λ̃+ (see figure 3(a)) or λ+ 

(see figure  3(b)) and λ
(δ)
− → λ̃− (see figure  3(c)) or λ− (see figure  3(d)). In general, 

we can write the µ(λ) around these singularities. Consider a case when λ
(δ)
− → λ̃− 

and λ
(δ)
+ → λ+, near λ̃−, we can write µ(λ) = µa(λ) + µs(λ) where µa(λ) and µs(λ) are, 

respectively, the analytic and singular part of µ(λ). Evidently, µa(λ) → µ0(λ) as δ → 0. 

On the other hand, for the singular part near λ̃−, for small δ, µs(λ) ∝ −δ

√
λ− λ̃− 

(see (50)). Note that, for δ → 0, if λ
(δ)
− → λ̃− instead of λ−, then it is necessary that 

λ− < λ̃− < 0. In the limit δ → 0, when s increases from −∞ to ∞, the saddle point 

λ∗(s) moves from λ+ to λ̃− on the real λ line. For [λ∗(s)− λ̃−] � δ2, the saddle point 
is dominated by the equation µ′

a(λ
∗) = −s, which in the limit δ → 0 reduces to (C.3). 

Therefore, the LDF is the same I0(s) that has been obtained for the uncoupled case. 

On the other hand, for [λ∗(s)− λ̃−] � δ2, the saddle point is dominated by the singular 
part of the saddle point equation, which results in λ∗(s) = λ̃− +O(δ2/s2). This gives 

I(s) = µa

[
λ̃− +O(δ2/s2)

]
+ λ̃−s+O(δ2/s). Thus, in the limit δ → 0, we get

I(s) =

{
I0(s) for s < s∗1,

µ0(λ̃−) + λ̃−s for s > s∗1,
� (C.7)

where s∗1 is given by

λ∗
0(s

∗
1) = λ̃−� (C.8)

with λ∗
0(s) is the saddle point given in (C.4) for the uncoupled case (δ = 0).

A similar calculation can be done for the case when λ
(δ)
− → λ− and λ

(δ)
+ → λ̃+, in the 

limit δ → 0

I(s) =

{
µ0(λ̃+) + λ̃+s for s < s∗2,

I0(s) for s > s∗2,
� (C.9)

where s∗2 is given by
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λ∗
0(s

∗
2) = λ̃+,� (C.10)

with λ∗
0(s) the solution of (C.3).

Since λ∗
0(s) is a monotonically decreasing function of s and λ̃+ > λ̃−, we have s∗2 < s∗1, 

and for the case when λ
(δ)
− → λ̃− and λ

(δ)
+ → λ̃+ , in the limit δ → 0

I(s) =





µ0(λ̃+) + λ̃+s for s < s∗2,

I0(s) for s∗2 < s < s∗1,

µ0(λ̃−) + λ̃−s for s > s∗1.
� (C.11)

Finally, when λ
(δ)
− → λ− and λ

(δ)
+ → λ+, in the limit δ → 0, we get

I(s) = I0(s) for all s.� (C.12)

Appendix D. Second-order discontinuity of the large deviation function

Consider a case where the LDF given by (C.7) has the following form

I(s) =

{
µ0(λ

∗
0) + λ∗

0s for s < s∗1,

µ0(λ̃−) + λ̃−s for s > s∗1,

where λ∗
0(s) is the solution of (C.3) and s∗1 is given by (C.8). Evidently, I(s∗1−) = I(s∗1+), 

where s∗1± = limε→0(s
∗
1 ± ε).

Taking a derivative with respective to s, for s > s∗1 we have I ′(s) = λ̃−. On the other 
hand, for s < s∗1 we get

I ′(s) = λ∗
0(s) +

dλ∗
0

ds
[µ′

0(λ
∗
0) + s] .

Note that the prime ′ represents the derivative with respect to s (λ∗
0) on the left- 

(right-) hand side of above equation. Now using equations  (C.3) and (C.8), we have 
I ′(s∗1−) = I ′(s∗1+).

For the second derivatives, for s > s∗1 we have I ′′(s) = 0. On the other hand, for 
s < s∗1, we get

I ′′(s) =
dλ∗

0

ds
= − 1

µ′′
0(λ

∗
0)
.

Therefore, I ′′(s1−) = −1/µ′′
0(λ̃−) whereas I ′′(s1+) = 0—the second derivative is discon-

tinuous across s = s∗1.
Similarly, one can show that the LDF has second-order discontinuities across s∗1 and 

s∗2 for the other cases also.

Appendix E. The asymmetry function and its discontinuity

In this section, we analyze the asymmetry function, which is defined as follows

f(s) = I(s)− I(−s),� (E.1)
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in the limit δ → 0. We analyze below f(s) only for s  >  0, as for s  <  0 it can be obtained 
from the relation f(−s) = −f(s).

When λ
(δ)
− → λ− and λ

(δ)
+ → λ+, in the limit δ → 0, evidently f(s) = s for all s. 

Now, for the situation when λ
(δ)
− → λ̃− and λ

(δ)
+ → λ+ in the limit δ → 0, we analyze the 

asymmetry function using the expression of the LDF given by (C.7). Here, for brevity, 
we denote

I1(s) = µ0(λ̃−) + λ̃−s.

From (C.4), λ∗
0(s) + λ∗

0(−s) = 1, and λ∗
0(0) = 1/2. Since λ∗

0(s) is a monotonically decreas-
ing function of s, we have λ∗

0 > 1/2 for s  <  0 and λ∗
0 < 1/2 for s  >  0. Therefore, s∗1 is 

always positive as λ̃− < 0. Now, for s∗1 > 0, we get

f(s) =

{
I0(s)− I0(−s) = s for 0 � s < s∗1,

I1(s)− I0(−s) for s > s∗1.

Since the LDF has a second-order discontinuity at s∗1, it is evident that f(s) also has a 
second-order discontinuity at s∗1. The asymptotic expression of f(s), as s → ∞, is given 
by

f(s) =
[
µ0(λ̃−)− µ0(λ+)

]
+ [λ̃− + λ+]s+ . . . .

When λ
(δ)
− → λ− and λ

(δ)
+ → λ̃+ in the limit δ → 0, we again, for brevity, denote

I2(s) = [µ(λ̃+) + λ̃+s]

in (C.9). Since λ̃+ > 0, we get s∗2 < 0 for λ̃+ > 1/2 and s∗2 > 0 for 0 < λ̃+ < 1/2. Now 
when s∗2 < 0 we get

f(s) =

{
I0(s)− I0(−s) = s for 0 � s < −s∗2,

I0(s)− I2(−s) for s > −s∗2.

On the other hand, when s∗2 > 0, we get

f(s) =

{
I2(s)− I2(−s) = 2λ̃+s for 0 � s < s∗2,

I0(s)− I2(−s) for s > s∗2.

Again, from the second-order discontinuity of the LDF, it is evident that f(s) also 
exhibits a second-order discontinuity at |s∗2|. The asymptotic expression of f(s), as 
s → ∞, is given by

f(s) =
[
µ0(λ−)− µ0(λ̃+)

]
+ [λ̃+ + λ−]s+ . . . .

When λ
(δ)
− → λ̃− and λ

(δ)
+ → λ̃+ in the limit δ → 0, for the case s∗2 > 0, we get

f(s) =



I2(s)− I2(−s) = 2λ̃+s for 0 � s < s∗2,

I0(s)− I2(−s) for s∗2 < s < s∗1,

I1(s)− I2(−s) for s > s∗1.

On the other hand, for s∗2 < 0, there may be two cases: (1) −s∗2 < s∗1 and (2) −s∗2 > s∗1. 
In the first case, we have
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f(s) =




I0(s)− I0(−s) = s for 0 � s < −s∗2,

I0(s)− I2(−s) for − s∗2 < s < s∗1,

I1(s)− I2(−s) for s > s∗1,

whereas for the second case, we get

f(s) =




I0(s)− I0(−s) = s for 0 � s < s∗1,

I1(s)− I0(−s) for s∗1 < s < −s∗2,

I1(s)− I2(−s) for s > −s∗2.

From, the second-order discontinuities of the LDF at the points s∗1 and s∗2, it is evident 
that f(s) also exhibits second-order discontinuity at the points s∗1 and |s∗2|. Moreover, in 
all cases, for s > max(s∗1, |s∗2|), we have

f(s) =
[
µ0(λ̃−)− µ0(λ̃+)

]
+ [λ̃+ + λ̃−]s.

Appendix F. Calculation of moment generating function: Model 2

In this section, we use the method developed in [27] and recently used in [34, 35, 44, 45] 
to compute the moment-generating function for partial and apparent entropy produc-
tion for model 2. The Langevin (58)–(61) for the coupled system shown in figure 8, can 
be written in the matrix form as

Ẋ = V (t),� (F.1)

mV̇ = −γV (t)− Φ̄X(t) + ξ(t) + F (t),� (F.2)

where X(t) = (xA(t), xB(t))
T , V (t) = (vA(t), vB(t))

T , ξ(t) = (ηA(t), ηB(t))
T , 

F (t) = ( fA(t), fB(t))
T , and the matrix Φ̄ is given by

Φ̄ =

(
k0 + k −k

−k k0 + k

)
.

Using the finite time Fourier transform defined in appendix A, one can write (F.1) and 
(F.2) in frequency domain as

X̃(ωn) = Ḡ[F̃ (ωn) + ξ̃(ωn)]−
Ḡ

τ
[(imωn + γ)∆X +m∆V ],� (F.3)

Ṽ (ωn) = iωnḠ[F̃ (ωn) + ξ̃(ωn)] +
Ḡ

τ
[Φ̄∆X − imωn∆V ],� (F.4)

where ∆X = X(τ)−X(0), ∆V = V (τ)− V (0), and Ḡ(ωn) = [(−mω2
n + iγωn)I + Φ̄]−1 is 

the Green’s function symmetric matrix in which I is the identity matrix.
We calculate UT (τ) = [XT (τ),V T (τ)] as

UT (τ) = lim
ε→0

∞∑
n=−∞

e−iωnε
[
X̃T (ωn), Ṽ

T (ωn)
]
.� (F.5)

https://doi.org/10.1088/1742-5468/ab54b6


Entropy production for a partially observed harmonic system

43https://doi.org/10.1088/1742-5468/ab54b6

J. S
tat. M

ech. (2020) 013204

Using (F.3) and (F.4) in the above equation, we see that the following terms

lim
ε→0

1

2π

∫ ∞

−∞
dω e−iωε[(imω + γ)∆XT +m∆V T ]ḠT → 0

lim
ε→0

1

2π

∫ ∞

−∞
dω e−iωε[∆XT Φ̄T − imω∆V T ]ḠT → 0.

This is because, in the large time limit (τ → ∞), we can convert the summation into 
integration over ω, and the contour of integration (clockwise) is a semicircle in the 
lower half of the complex ω-plane with the center at the origin and all the poles in the 
upper half of complex ω-plane. Therefore, UT (τ) becomes

UT (τ) = lim
ε→0

∞∑
n=−∞

e−iεωn
[
(1− C){(η̃A + f̃A)QT

1 + (η̃B + f̃B)QT
2 }

+ C(η̃ART
1 + η̃BRT

2 + f̃ART
3 )
]
,

� (F.6)

where

QT
1 = RT

1 = (Ḡ11, Ḡ12, iωnḠ11, iωnḠ12),

QT
2 = RT

2 = (Ḡ12, Ḡ11, iωnḠ12, iωnḠ11),

RT
3 = [Ḡ11 + αḠ12, Ḡ12 + αḠ11, iωn(Ḡ11 + αḠ12),

iωn(Ḡ12 + αḠ11)],

and Ḡij = [Ḡ(ωn)]ij. From (F.6), one can easily find the mean and correlation of U(τ), 
and these are

〈U(τ)〉 = 0,� (F.7)

〈U(τ)UT (τ)〉 =Tγ

π

∫ ∞

−∞
dω

[
(1− C){(1 + θ)Q1Q†

1 + (1 + θα2)Q2Q†
2}+ C{R1R†

1

+R2R†
2 + θR3R†

3}
]
.

�

(F.8)

Since U  is linear in thermal Gaussian noises and external stochastic Gaussian forces, the 
steady state distribution can be written using the mean and correlation given above:

P (U , τ → ∞|U0) = P full
ss (U) = e−

1
2
UTM−1U

√
(2π)4 detM

,� (F.9)

where Mij = 〈U(τ)UT (τ)〉ij.
Using (F.3) and (F.4), we write x̃B(ωn) and ṽA(ωn) as

x̃B(ωn) = Ḡ12(η̃A + f̃A) + Ḡ11(η̃B + f̃B)−
1

τ
QT

3∆U ,� (F.10)

ṽA(ωn) = iω[Ḡ11(η̃A + f̃A) + Ḡ12(η̃B + f̃B)] +
1

τ
QT

4∆U ,� (F.11)

where
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QT
3 =[(γ + iωnm)Ḡ12, (γ + iωnm)Ḡ11,mḠ12,mḠ11],

QT
4 =

(
[ḠΦ̄]11, [ḠΦ̄]12,−iωnmḠ11,−iωnmḠ12

)
.

From (63), W can be written as a sum of W1 and W2:

W = W1 +W2, where� (F.12)

W1 =
1

T

∫ τ

0

dt fA(t)vA(t),� (F.13)

W2 =
Πk

T

∫ τ

0

dt xB(t)vA(t).� (F.14)

Using the finite time Fourier transform, we write W1 as

W1 =
τ

2T

∞∑
n=−∞

[f̃A(ωn)ṽA(−ωn) + f̃A(−ωn)ṽA(ωn)].� (F.15)

Substituting ṽA(ωn) from (F.11) in the above equation, we get

W1 =
τ

2T

∞∑
n=−∞

[
iωn{Ḡ11(η̃A + f̃A)f̃

∗
A + Ḡ12(η̃B + f̃B)f̃

∗
A

− Ḡ∗
11(η̃

∗
A + f̃ ∗

A)f̃A − Ḡ∗
12(η̃

∗
B + f̃ ∗

B)f̃A}+
f̃AQ†

4∆U
τ

+
f̃ ∗
A∆UTQ4

τ

]
,

�

(F.16)

where Ḡ∗
ij = [Ḡ(−ωn)]ij.

Similarly, we can write W2 as

W2 =
Πkτ

2T

∞∑
n=−∞

[x̃B(ωn)ṽA(−ωn) + x̃B(−ωn)ṽA(ωn)].� (F.17)

Substituting x̃B(ωn) and ṽA(ωn) from (F.10) and (F.11), respectively, in the above equa-
tion, we get

W2 =
Πkτ

2T

∞∑
n=−∞

[
iωn

{
[Ḡ11(η̃A + f̃A) + Ḡ12(η̃B + f̃B)][Ḡ

∗
12(η̃

∗
A + f̃ ∗

A) + Ḡ∗
11(η̃

∗
B + f̃ ∗

B)]− [Ḡ12(η̃A + f̃A)

+ Ḡ11(η̃B + f̃B)][Ḡ
∗
11(η̃

∗
A + f̃ ∗

A) + Ḡ∗
12(η̃

∗
B + f̃ ∗

B)]
}
+

Q†
4∆U
τ

[Ḡ12(η̃A + f̃A) + Ḡ11(η̃B + f̃B)]

+
∆UTQ4

τ
[Ḡ∗

12(η̃
∗
A + f̃ ∗

A) + Ḡ∗
11(η̃

∗
B + f̃ ∗

B)] +
iωn∆UTQ3

τ
[Ḡ∗

11(η̃
∗
A + f̃ ∗

A) + Ḡ∗
12(η̃

∗
B + f̃ ∗

B)]

− iωnQ†
3∆U
τ

[Ḡ11(η̃A + f̃A) + Ḡ12(η̃B + f̃B)]−
∆UT (Q3Q†

4 +Q4Q†
3)∆U

τ 2

]
.

�

(F.18)

The restricted moment generating function for W is given as
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Zκ
W(λ,U , τ |U0) = 〈e−λWδ[U − U(τ)]〉U0

=

∫
d4σ̄

(2π)4
eiσ̄

TU〈eE(τ)〉U0 ,
� (F.19)

where we have use the integral representation of the Dirac delta function. In the above 
equation, E(τ) = −λW − iσ̄TU(τ). Using (F.6) and (F.12), we write E(τ) as

E(τ) =
∞∑
n=1

[
−λτ

T
ζTn Cnζ∗n + ζTn βn + βT

−nζ
∗
n +

λΠk

Tτ
|Qn|2

]
− λτ

2T
ζT0 C0ζ0 + ζT0 β0 +

λΠk

2Tτ
Q2

0,� (F.20)

where Cn = CI
n +ΠkCII

n  and |Qn|2 = ∆UT (Q3Q†
4 +Q4Q†

3)∆U .
For uncorrelated forces (〈 fA(t) fB(t′)〉 = 0 for all t, t′), the row vector 

ζTn = (η̃A, η̃B, f̃A, f̃B), the matrix CI
n is

CI
n =




0 0 iωnḠ11 0

0 0 iωnḠ12 0

−iωnḠ
∗
11 −iωnḠ

∗
12 iωn[Ḡ11 − Ḡ∗

11] −iωnḠ
∗
12

0 0 iωnḠ12 0


 ,

and the matrix CII
n  is

CII
n =




C11 C12 C13 C14
C∗
12 C22 C23 C24

C∗
13 C∗

23 C33 C34
C∗
14 C∗

24 C∗
34 C44




whose matrix elements are

C11 =− C22 = C33 = −C44 = C13 = iωn[Ḡ11Ḡ
∗
12 − Ḡ12Ḡ

∗
11],

C12 =C14 = C34 = −C23 = iωn[|Ḡ11|2 − |Ḡ12|2],
C24 =− C11,
C∗
ij =Cij(−ωn).

The column vector βn is given by

βn = −λ

T




āT11∆U
āT21∆U
āT31∆U
āT41∆U


− ie−iεωn




QT
1 σ̄

QT
2 σ̄

QT
1 σ̄

QT
2 σ̄


 , in which

āT11 = −Πk(iωnQ†
3Ḡ11 −Q†

4Ḡ12),

āT21 = āT41 = −Πk(iωnQ†
3Ḡ12 −Q†

4Ḡ11),

āT31 = −Πk(iωnQ†
3Ḡ11 −Q†

4Ḡ12) +Q†
4.

For the second choice of external forces (i.e. fB(t) = αfA(t)), the row vector 
ζTn = (η̃A, η̃B, f̃A), the matrix CI

n is
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CI
n =




0 0 iωnḠ11

0 0 iωnḠ12

−iωnḠ
∗
11 −iωnḠ

∗
12 iωn[(Ḡ11 − Ḡ∗

11)+

α(Ḡ12 − Ḡ∗
12)]


 ,

and the matrix CII
n  is

CII
n =



C11 C12 C13
C∗
12 C22 C23

C∗
13 C∗

23 C33




whose matrix elements are

C11 =− C22 = iωn[Ḡ11Ḡ
∗
12 − Ḡ∗

11Ḡ12],

C12 =iωn[|Ḡ11|2 − |Ḡ12|2],
C13 =− C23 = C11 + αC12,
C33 =(1− α2)C11,
C∗
ij =Cij(−ωn).

The column vector βn in this case is given by

βn = −λ

T



c̄T11∆U
c̄T21∆U
c̄T31∆U


− ie−iεωn



RT

1 σ̄

RT
2 σ̄

RT
3 σ̄


 , in which

c̄T11 =− Πk(iωnQ†
3Ḡ11 −Q†

4Ḡ12),

c̄T21 =− Πk(iωnQ†
3Ḡ12 −Q†

4Ḡ11),

c̄T31 =− Πk[iωnQ†
3(Ḡ11 + αḠ12)−Q†

4(Ḡ12 + αḠ11)] +Q†
4.

Therefore, we get

〈eE(τ)〉U0 =

〈
exp

[
− λτ

2T
ζT0 C0ζ0 + ζT0 β0 +

λΠk

2Tτ
Q2

0

]〉

×
∞∏
n=1

〈
exp

[
− λτ

T
ζTn Cnζ∗n + ζTn βn + βT

−nζ
∗
n +

λΠk

Tτ
|Qn|2

]〉
.

�

(F.21)

In the above equation, the angular brackets represent the average over the joint 
Gaussian distribution of thermal and external noises ζn. For terms n � 1, the average 
is done independently on each term using the distribution (A.24). Similarly, for n  =  0, 
the average is computed with respect to the distribution (A.25).

Computation of averages yields

〈eE(τ)〉U0 = e(τ/τγ)µκ(λ)e
1
2

∑∞
n=−∞(βT

−nΩ̄
−1
n βn+

λΠk
Tτ

|Qn|2),� (F.22)

where Ω̄n = (Λ−1 + λτCn/T ). In the large time limit (τ/τγ → ∞), we convert the sum-
mation into integration. Therefore, we get

https://doi.org/10.1088/1742-5468/ab54b6


Entropy production for a partially observed harmonic system

47https://doi.org/10.1088/1742-5468/ab54b6

J. S
tat. M

ech. (2020) 013204

〈eE(τ)〉U0 ≈ e(τ/τγ)µκ(λ)e−
1
2
σ̄T H̄1σ̄+i∆UT H̄2σ̄+

1
2
∆UT H̄3∆U ,� (F.23)

where

µκ(λ) = − τγ
4π

∫ ∞

−∞
dω ln

[
det (ΛΩ̄)

]
,� (F.24)

H̄1 =
τ

2π

∫ ∞

−∞
dω ρ̄T Ω̄−1φ̄,� (F.25)

H̄2 = − τ

2π

∫ ∞

−∞
dω e−iωεāT1 Ω̄

−1φ̄,� (F.26)

H̄3 =
τ

2π

∫ ∞

−∞
dω

[
āT1 Ω̄

−1ā2 +
λΠk

Tτ
(Q3Q†

4 +Q4Q†
3)

]
.� (F.27)

The vectors ρ̄T , āT1 , φ̄, and ā2 are given in table F1, where

b̄11 = Πk[iωḠ∗
11Q3 + Ḡ∗

12Q4],

b̄12 = Πk[iωḠ∗
12Q3 + Ḡ∗

11Q4] = b̄14,

b̄13 = Πk[iωḠ∗
11Q3 + Ḡ∗

12Q4] +Q4,

d̄11 = Πk[iωḠ∗
11Q3 + Ḡ∗

12Q4],

d̄12 = Πk[iωḠ∗
12Q3 + Ḡ∗

11Q4],

d̄13 = Πk[iω(Ḡ∗
11 + αḠ∗

12)Q3 + (Ḡ∗
12 + αḠ∗

11)Q4] +Q4.

The restricted moment-generating function for W can be written as

Zκ
W(λ,U , τ |U0) ≈ e(τ/τγ)µκ(λ)e

1
2
∆UT H̄3∆U

∫
d4σ̄

(2π)4
eiσ̄

TU e−
1
2
σ̄T H̄1σ̄ eiσ̄

T H̄T
2 ∆U .

� (F.28)

Computing the integration over σ̄, we get

Zκ
W(λ,U , τ |U0) ≈

e
1
2
∆UT H̄3∆U

√
(2π)4 det H̄1(λ)

e(τ/τγ)µκ(λ)e−
1
2
(UT+∆UT H̄2)H̄

−1
1 (U+H̄T

2 ∆U).

�

(F.29)

We factorize the above equation in terms of the initial and the final variable (see appen-
dix A), which implies (H̄3 − H̄2H̄

−1
1 H̄T

2 − H̄−1
1 H̄T

2 ) + (H̄3 − H̄2H̄
−1
1 H̄T

2 − H̄2H̄
−1
1 )T = 0. 

Therefore, we get

Zκ
W(λ,U , τ |U0) ≈

e(τ/τγ)µκ(λ)e−
1
2
UT L̄1(λ)Ue−

1
2
UT
0 L̄2(λ)U0

√
(2π)4 det H̄1(λ)

,� (F.30)

where

L̄1(λ) = H̄−1
1 + H̄−1

1 H̄T
2 ,

L̄2(λ) = −H̄−1
1 H̄T

2 .
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In the case of partial entropy production and for both choices of external forces, the 

steady state distribution Pss(Ũ) can be obtained by integrating P full
ss (U) given in (F.9), 

over xB and vB. Therefore, we get

Pss(Ũ) =
exp[−1

2
ŨT H̃−1

P Ũ ]√
(2π)2 det H̃P

.� (F.31)

Similarly, in the case of apparent entropy production, the steady state distribution 

P̃ss(Ũ) can be obtained from (58) and (60) at k  =  0 and given by

P̃ss(Ũ) =
exp[−1

2
ŨT H̃−1

A Ũ ]√
(2π)2 det H̃A

.� (F.32)

In (F.31) and (F.32), Ũ = (xA, vA)
T , and the matrices H̃P and H̃A are given in (65).

The system entropy production of particle A in the coupled system is given by

∆SA
sys =

Π

2
[UTH−1

P U − UT
0 H−1

P U0]

+
1− Π

2
[UTH−1

A U − UT
0 H−1

A U0],
�

(F.33)

where

H−1
P = diag(1/H11

P , 0, 1/H33
P , 0),

H−1
A = diag(1/H11

A , 0, 1/H33
A , 0),

UT = (xA, xB, vA, vB).

Total entropy production of particle A in the coupled system given in (62) can be writ-
ten as

∆SA
tot = W − 1

2
UTH−1U +

1

2
UT
0 H−1U0,� (F.34)

Table F1.  The vectors ρ̄T , āT1 , φ̄, and ā2 are shown.

Vectors C  =  0 C  =  1

ρ̄T (Q∗
1,Q∗

2,Q∗
1,Q∗

2) (R∗
1,R∗

2,R∗
3)

āT1 − λ/T (b̄11, b̄12, b̄13, b̄14) − λ/T (d̄11, d̄12, d̄13)

φ̄



QT
1

QT
2

QT
1

QT
2






RT

1

RT
2

RT
3




ā2

             − λ
T




āT11
āT21
āT31
āT41




     − λ
T



c̄T11
c̄T21
c̄T31



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where

H−1 = Π(ΞP −H−1
P ) + (1− Π)(ΞA −H−1

A ).

The diagonal matrices ΞP  and ΞA are given by

ΞP = diag((k + k0)/T , 0,m/T , 0),

ΞA = diag(k0/T , 0,m/T , 0).

Therefore, the restricted moment generating function for ∆SA
tot (see (F.34)) is given as

Zκ(λ,U , τ |U0) ≈
e(τ/τγ)µκ(λ)e−

1
2
UT ˜̄L1(λ)Ue−

1
2
UT
0
˜̄L2(λ)U0

√
(2π)4 det H̄1(λ)

,� (F.35)

with

˜̄L1(λ) = L̄1(λ)− λH−1,

˜̄L2(λ) = L̄2(λ) + λH−1.

The moment-generating function is obtained by integrating over the initial steady state 
distribution and the final variable

Zκ(λ) =

∫
dU

∫
dU0P

full
ss (U0)Zκ(λ,U , τ |U0)

≈ gκ(λ)e
(τ/τγ)µκ(λ),

� (F.36)

where

gκ(λ) =
[
det[H̄1(λ)H̄1(0)

˜̄L1(λ)] det [H̄
−1
1 (0) + ˜̄L2(λ)]

]−1/2

.� (F.37)
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