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Abstract
The moment problem related to the extended Lotka–Volterra system 
(sometimes also called the hungry Lotka–Volterra system or the Narita–Itoh–
Bogoyavlensky lattice) over finite fields is introduced. It turns out the moment 
problem could be used to design an algorithm for decoding multiple BCH-
Goppa codes over the same finite field simultaneously. When multiple codes 
have the same error locations, the algorithm requires fewer known syndromes 
and has lower computational complexity than running the decoding algorithm 
in Nakamura (1996 Phys. Lett. A 223 75–81) multiple times.

Keywords: BCH-Goppa code, extended Lotka–Volterra lattice, moment 
problem

1.  Introduction

The finite nonperiodic Toda equation over finite fields has shown its importance to the theory 
of error-correcting codes [1–4]. The pioneering work on this issue is that Faybusovish applied 
quotient difference (qd) algorithm to the decoding procedure of Goppa codes [1], where the 
qd algorithm [5] is indeed a discrete-time version of the Toda equation. Shirota suggested that 
the Stieltjes method for the eigenvector of a Jacobi matrix that appears in the Lax representa-
tion also works in the decoding approach to the Reed–Solomon codes (RS codes) [6]. Later, 
Nakamura put forward a method to transform the BCH-Goppa decoding procedure [7] into 
the moment problem of the finite nonperiodic Toda equation and proposed a new BCH-Goppa 
decoding algorithm through a Lax representation of finite Toda equation [2]. Further work 
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on this topic is a new BCH-Goppa decoding algorithm derived from the discrete-time finite 
Toda molecule [3]. The idea of the algorithm is to calculate a continued fraction expansion 
of rational approximant of the formal Laurent series over a finite field through qd algorithm 
[8]. In fact, the famous Berlekamp–Massey algorithm in coding theory [9, 10] may naturally 
follow from solving the problem of rational approximant of the formal Laurent series over a 
finite field. These works promote the development of other related subjects such as orthogonal 
polynomials [11, 12], combinatorics [10], continued fractions [13] etc.

Since Toda type lattices and their discretizations have been studied extensively over the last 
fifty years, we expect them to shed more light to decoding algorithms. Inspired by the corre
sponding tau functions and the spectral problems, we would investigate a family of modifica-
tions of the Toda lattice called the extended Lotka–Volterra lattice.

The Lotka–Volterra system

dak

dt
= ak (ak+1 − ak−1) ,� (1)

is an integrable system, which is intimately related to the Toda equation [14, 22]

duk

dt
= uk(bk+1 − bk),

dbk

dt
= 2(u2

k − u2
k−1).� (2)

The moment problem and linearized deformation equation of the finite Lotka–Volterra system 
can be regarded as a reduced form of that for the finite nonperiodic Toda equation [14–16]. 
The extended Lotka–Volterra lattice

dak

dt
= ak




M∏
j=1

ak+j −
M∏

j=1

ak−j


 , for fixed M ∈ N� (3)

was proposed by Narita [17], Itoh [18], and Bogoyavlensky [19–21] as a generalization of the 
Lotka–Volterra lattice. Sometimes it is called the Narita–Itoh–Bogoyavlensky lattice or the 
hungry Lotka–Volterra lattice, but for our convenience, we shall call it the extended Lotka–
Volterra lattice throughout the paper. It can also be linearized via the Moser’s map [14, 22]. To 
the best of our knowledge, there is not any decoding algorithm corresponding to the extended 
Lotka–Volterra lattice (3) available in the literature. The main purpose of this paper is to pro-
pose a BCH-Goppa decoding algorithm based on the moment problem related to the extended 
Lotka–Volterra system (3). This algorithm could be used to find errors for multiple codewords 
over the same field GF(qu) simultaneously. Compared with running the BCH-Goppa decoding 
algorithm in [2] for a single code multiple times, our approach seems more efficient in the case 
that the multiple codes have the same error locations.

The outline of this paper is as follows: in section 2, some basic facts of moment problem 
and coding theory are provided and a brief review of the BCH-Goppa decoding algorithm with 
the context of moment problem is given. In section 3, the moment problem of the extended 
Lotka–Volterra systems (3) is introduced. In section 4, the corresponding decoding procedure 
for multiple codewords is designed and some numerical examples are presented. Section 5 is 
devoted to conclusion.

2.  Basic notations of moment problem and BCH-Goppa decoding

In this section, some basic facts with adaptive symbols on the moment problem [23, 24] and 
the coding theory [25] are given to make this paper self-contained.

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202



3

2.1.  Moment problem

Assume f (z) admits an expression as

f (z) =
∫ ∞

−∞

dµ(λ)
z − λ

, dµ(λ) =
n∑

j=1

r2
j δ(λ− λj)dλ,

where δ(z) is the delta function. If we define the moments 〈zk〉 under the discrete Stieltjes 
measure µ(z) as

〈zk〉 =
∫ ∞

−∞
zkdµ(z) =

n∑
j=1

λk
j r2

j ,

then it is obvious that

f (z) =
n∑

j=1

r2
j

z − λj
=

1
z

∑n
j=1 r2

j

1 − λj

z

=

∞∑
k=0

〈zk〉
zk+1 .� (4)

In this paper, the moment problem is to find a parametric Stieltjes measure µ(z) from given 
moments 〈zk〉.

2.2.  Introduction to BCH-Goppa decoding

Let N, K, q, u, l and r be positive integers, where r + K � N , q is a power of a prime, q and 
N are coprime.

Definition 2.1 (BCH code).  Let α be a primitive Nth root of unity over a finite 
field GF(qu), i.e. αN = 1. A cyclic code of length N over GF(q) is called a BCH code, if 
αl,αl+1, · · · ,αl+r−1 are roots of its generator polynomial G(x). In other words, all the BCH 
codes can be equivalently written as

C = {c(x) =
N−1∑
j=0

cjx j ∈ GF(q)(x)|c(αl) = c(αl+1) = . . . = c(αl+r−1) = 0}.

If N  =  qu  −  1, i.e. α is a primitive element of GF(qu), then the BCH code is called primitive.

Definition 2.2 (RS code).  A Reed–Solomon code is a primitive BCH code with u  =  1. 

The generator of such a code has the form G(x) =
∏l+r−1

j=l (x − α j) where α is a primitive in 
GF(q).

Definition 2.3 (Goppa code).  Let M(x) be a (monic) polynomial of degree r over 
GF(qu). Let L = {α0, . . . ,αN−1} ⊂ GF(qu) such that α0, . . . ,αN−1 are mutually distinct ele-
ments of the finite field GF(qu) and M(αj) �= 0 for j = 0, . . . , N − 1. We define the Goppa 
code Γ(L, M) with the Goppa polynomial M(x) to be the set of code words c = (c0, . . . , cN−1) 
over GF(q) for which

N−1∑
j=0

cj

x − αj
= 0 (mod M(x)).
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We now introduce the parity check matrix for a kind of code C in the coding theory, which 
means a matrix such that cH� = 0 for every c = (c0, . . . , cN−1) ∈ C .

Theorem 2.1 ([25]).  The BCH code has the parity check matrix of the form

H =




1 αl . . . αl(N−1)

1 α(l+1) . . . α(l+1)(N−1)

...
...

...
1 α(l+r−1) . . . α(l+r−1)(N−1)




.

Theorem 2.2 ([25]).  The Goppa code has the parity-check matrix of the form

H =




M(α0)
−1 M(α1)

−1 . . . M(αN−1)
−1

M(α0)
−1α0 M(α1)

−1α1 . . . M(αN−1)
−1αN−1

...
...

...
M(α0)

−1αr−1
0 M(α1)

−1αr−1
1 . . . M(αN−1)

−1αr−1
N−1




.

Assume that the sent codeword is c = (c0, . . . , cN−1) and the received codeword is 
b = (b0, . . . , bN−1) = c + e, where e = (e0, . . . , eN−1) is the unknown error, a decoding prob-
lem is to find the error e from the syndrome sequence

s = (S0, S1, . . . , Sr−1) = bH� = eH�,

where H is the corresponding parity check matrix. Define the syndrome polynomial as

S(x) =
N−1∑
k=0

Skxk,

where Sj  may be readily computed from the remainder. The main idea of the BCH-Goppa 
decoding [7] is to find polynomials ω(z) and σ(z) such that

ω
( 1

x

)

σ
( 1

x

) =

N−1∑
k=0

Skxk+1 = xS(x) (mod xr+1),� (5)

deg(σ(x)) �
⌊

r
2

⌋
, deg(ω(x)) �

⌊
r
2

⌋
− 1,� (6)

from which one can know the error positions by factoring the error-locator polynomial σ(x), 
and consequently obtain the error values.

In the BCH case, let G(x) be the generator polynomial. If G(x) has degree 
N  −  K, we encode an information sequence (a0, a1, . . . , aK−1) as a polynomial 
a(x)G(x) = (a0 + a1x + . . .+ aK−1xK−1)G(x). The encoder transmits the codeword 
c(x) =

∑N−1
j=0 cjx j satisfying the condition c(x) = a(x)G(x). (For the sake of simplicity, let 

a(x) = 1 in this paper.) The received word can be expressed by the polynomial b(x) =
∑N−1

j=0 bjx j, 
and then the error word will be given by e(x) =

∑N−1
j=0 ejx j =

∑N−1
j=0 bjx j −

∑N−1
j=0 cjx j .

Let J = { j|ej �= 0} be the positions where an error occurs. Define P as the number of 
errors. Then, in the BCH case, the syndromes are

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202



5

Sk = b(α(l+k)) =

N−1∑
j=0

bjα
j(l+k) =

∑
j∈J

ejα
j(l+k) = e(α(l+k))

for k = 0, . . . , r − 1. Similarly, in the Goppa case,

Sk =

N−1∑
j=0

M(αj)
−1bjα

k
j =

∑
j∈J

M(αj)
−1ejα

k
j .

for k = 0, . . . , r − 1.
Observing that the syndromes are finite summations with number P related to the errors, 

and the expansion of ω(z)
σ(z)  is similar to (4), it was shown by Nakamura that the P-error decod-

ing process to find out ej, j ∈ J from S0, . . . , S2P−1, can be seen as a moment problem and can 
be solved with the help of the moment problem related to the Toda lattice according to the 
following diagram designed in [2]:

{uk, bk} (8)
−→ {r2

p,λp} −→ {ej,α j}
(10) ↑ �� (9) ↑ want
{∆k, ∆̃k} ←−

(11) {hk} ←− {Sk/S0}.
� (7)

2.3.  Decoding as a moment problem related to Toda lattice

On one hand, the finite Toda equation has the Lax representation dL
dt = [B, L], where

L =




b1 u1

u1 b2
. . .

. . . . . . uP−1

uP−1 bP




and B =




0 u1

−u1 0
. . .

. . . . . . uP−1

−uP−1 0




are both tridiagonal matrices. Consider the rational function

f (z) = E�
1 (zI − L)−1E1, where E1 = (1, 0, . . . , 0)�.� (8)

It has not only the partial fraction expansion

f (z) =
P∑

p=1

r2
p

z − λp
with

P∑
p=1

r2
p = 1,

but also the series expansion

f (z) =
∞∑

k=0

hk

zk+1 ,

where

h0 = 1 and hk =

P∑
p=1

λk
pr2

p.� (9)

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202
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On the other hand, a solution of the Toda equation can be constructed by the direct formula

uk =

√
∆k−1∆k+1

∆k
, k = 1, 2, . . . , P − 1,

bk = ∆̃k
∆k

− ∆̃k−1
∆k−1

, k = 1, 2, . . . , P,
� (10)

where ∆k, ∆̃k are determinants of Hankel type constructed from the moments, that is

∆k =

∣∣∣∣∣∣∣∣∣∣

h0 h1 . . . hk−1

h1 h2 . . . hk

...
...

...
hk−1 hk . . . h2k−2

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, . . .

∆̃1 = h1, ∆̃k =

∣∣∣∣∣∣∣∣∣∣

h0 h1 . . . hk−2 hk

h1 h2 . . . hk−1 hk+1
...

...
...

...
hk−1 hk . . . h2k−3 h2k−1

∣∣∣∣∣∣∣∣∣∣
, k = 2, 3, . . . .

� (11)

Therefore, if one wants to find out the error, one can firstly calculate Sk from the received 
codeword and then construct the determinant ∆k, ∆̃k to calculate uk, bk  if ∆k �= 0 for 
k = 1, 2, . . . , P. Finally, consider the partial fraction expansion of the rational function f (z) 
to get ej,αj.

Remark 2.1.  Here we remark that, since L is symmetric, the numerator and denominator of 
the rational function f (z) can be obtained by recursion relationship with coefficients u2

k  and bk. 
Hence the square root in the definition of uk (10) will not cause any problem.

3.  Moment problem related to extended Lotka–Volterra lattice

In this section, we focus on the moment problem related to the extended Lotka–Volterra lattice

das

dt
= as




M∏
j=1

as+j −
M∏

j=1

as−j


� (12)

and show how to solve certain coding problem by using the corresponding moment problem 
in the following section.

3.1.  From bi-orthogonal polynomials to extended Lotka–Volterra latttice

The extended Lotka–Volterra lattice (12) can be derived from the bi-orthogonal polynomi-
als defined in [26, 27]. For a fixed positive integer M, let {Pn(z)}∞n=0 and {Qs(z)}∞n=0 be two 
classes of adjacent monic polynomials satisfying the bi-orthogonal condition

〈Pn(z), Qs(z)〉M = hnδn,s, n, s = 0, 1, . . . ,

where the bilinear functional has the form

〈 f (z), g(z)〉M =

∫ ∞

−∞
f (zM)g(z)w(z)dµ(z).

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202
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If the weight function w(z) satisfies
∫ ∞

−∞
z(M+1) jw(z)dµ(z) = gj

and
∫ ∞

−∞
z(M+1) j+1w(z)dµ(z) = · · · =

∫ ∞

−∞
z(M+1) j+Mw(z)dµ(z) = 0,

then it is not hard to prove that the polynomials Pn(z) and Qn(z) can be expressed as

P(M+1)k+m(z) =
zm

G(m)
k

∣∣∣∣∣∣∣∣∣∣

gm gm+1 · · · gm+k−1 1
gm+M gm+M+1 · · · gm+M+k−1 zM+1

...
...

...
...

gm+kM gm+kM+1 · · · gm+kM+k−1 z(M+1)k

∣∣∣∣∣∣∣∣∣∣
and

Q(M+1)k+m(z) =
zm

G(m)
k

∣∣∣∣∣∣∣∣∣∣∣∣

gm gm+1 · · · gm+k

gm+M gm+M+1 · · · gm+M+k

...
...

...
gm+M(k−1) gm+M(k−1)+1 · · · gm+M(k−1)+k

1 zM+1 · · · z(M+1)k

∣∣∣∣∣∣∣∣∣∣∣∣
,

� (13)

where k = � n
M+1�, m = 0, 1, . . . , M and

G(m)
0 = 1, G(m)

1 = gm,

G(m)
k =

∣∣∣∣∣∣∣∣∣

gm gm+1 · · · gm+k−1

gm+M gm+M+1 · · · gm+M+k−1
...

...
...

gm+M(k−1) gm+M(k−1)+1 · · · gm+M(k−1)+k−1

∣∣∣∣∣∣∣∣∣
.

� (14)

The polynomials Qs(z) have the following recurrence relation

zMQs(z) = Qs+M(z) + asQs−1(z)� (15)

where

a(M+1)k+m =




G(0)
k+1G(M)

k−1

G(0)
k G(M)

k

for m = 0,

G(m)
k+1G(m−1)

k

G(m−1)
k+1 G(m)

k

for m = 1, . . . , M.
� (16)

If we take a single parameter deformation of measure µ(x),

dµ(z, t) = exp(zM(M+1)t)dµ(z, 0).

then the moments admit the time evolution

dgj

dt
= gj+M ,

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202
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which results in the the recursion relationship of polynomials

dQs(z)
dt

= −
M∏

j=0

as−M+jQs−(M+1)(z).� (17)

The compatibility condition of (15) and (17) leads to the extended Lotka–Volterra lattice (12). 
This implies that the Lax pair of the finite extended Lotka–Volterra lattice reads

dL
dt

= [B, L]
� (18)

where B and L are n × n matrices

L =




M︷ ︸︸ ︷
0 · · · 0
a1 0 · · ·

a2
. . .
. . .

1

0 1
. . . . . .

. . . . . . 1

. . . . . . 0
. . . . . .

...
an−1 0




,

� (19)

B =




0
... 0

0
. . .

−
∏M

j=0 a1+j
. . . . . .

. . . . . .
. . . . . .

−
∏M

j=0 an−M−1+j

. . .
. . .

0 · · · 0︸ ︷︷ ︸
M+1




.

� (20)

3.2.  Linearization of extended Lotka–Volterra lattice

In this section, we adopt Moser’s approach [14, 22] and Bogoyavlensky’s method [28] to 
introduce a set of rational functions to give an integrable linearization of the extended Lotka–
Volterra lattice (12).

Assume that all eigenvalues of (19) are simple. Consider the vth element of resolvent oper-
ator R(z)  =  (zI  −  L)−1 for v = 1, 2, . . . , M . Define the function

fv(z) = E�
v (zI − L)−1Ev =

n∑
j=1

ρj,v

z − λj
, Ev = (

v−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)�,� (21)

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202
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where the vth element of Ev  is 1 and other elements of Ev  are zero. Moreover, zfv(z) → 1 as 
z → ∞, thus we have

n∑
j=1

ρj,v = 1.� (22)

In fact, fv(z) is the element of the vth row and vth column of R(z) so it can be expressed by

fv(z) =
Mv,v(z)
|zI − L|� (23)

where Mv,v(z) is the (v, v) cofactor of the matrix (zI − L). Since only 3 diagonals of L are 
nonzero, Mv,v(z) and |zI − L| can be computed quickly through recurrence relations.

Remark 3.1.  If we set Tj (z) to be the determinant of the matrix obtained from the last j  rows 
and last j  columns of zI  −  L, we have recurrence relations

Tj(z) = zTj−1(z)−
M∏

l=1

an−j+lTj−1−M(z) for j = M + 1, ..., n,

Tj(z) = z j for j = 0, ..., M.

Besides, it is not hard to see that

Mv,v(z) = zv−1Tn−v(z).

Although we can consider all the rational functions fv(z), v = 1, . . . , n, the ones for 
v = M + 1, . . . , n can be expressed by the linear combinations of the ones for v = 1, . . . , M 
by the above recurrence relations.

Remark 3.2.  Some of ρj,v could be zero, which implies that the error values of some codes 
can be zero in the coding theory. See example 4.5 for more details.

We define κ = exp 2πi
M+1 so that κM+1 = 1. Let Q be a diagonal matrix with the diagonal 

entries Qjj = κ j, j = 1, . . . , n. It follows that

Q−1LQ = κ−1L.

Since

Q−1(zI − L)−1Q = [Q−1(zI − L)Q]−1 = (zI − κ−1L)−1 = κ(κzI − L)−1,

one can obtain

Q−1R(z)Q = κR(κz),

which leads to

fv(z) = E�
v R(z)Ev = E�

v Q−1R(z)QEv = E�
v κR(κz)Ev = κfv(κz).� (24)

By substituting the expansion (21) into (24), we get

fv(z) =
n∑

j=1

ρj,v

z − λj
= κ

n∑
j=1

ρj,v

κz − λj
=

n∑
j=1

ρj,v

z − κ−1λj
.

Y Pan et alJ. Phys. A: Math. Theor. 53 (2020) 055202
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Hence the corresponding residues ρj, ρk  are identical when there exists an integer m such that 
λj = κmλk. In the case that all eigenvalues are simple, there are � n

M+1� sets of nonzero eigen-
values λp,v  with the same residues ρp and zero eigenvalue with the corresponding residue.

For simplicity, we mainly consider the case that n = (M + 1)P, In this case, the eigenval-
ues are simple and all the eigenvalues are nonzero. If we define P = n

M+1 and group the terms 
in (21) by the identical residues, then it turns out that fv(z) has the following form

fv(z) =
P∑

p=1

(M + 1)zMρp,v

zM+1 − λM+1
p

.

Let

hMu+v−1 =

P∑
p=1

(M + 1)ρp,vλ
(M+1)u
p and hv−1 = 1.� (25)

Then the expansion (21) becomes

fv(z) =
∑P

p=1
(M+1)zMρp,v

zM+1−λM+1
p

=
∑∞

u=0

∑P
p=1 (M+1)ρp,vλ

(M+1)u
p

z(M+1)u+1

=
∑∞

u=0
hMu+v−1

z(M+1)u+1 .

� (26)

Let λ1, . . . ,λn and ψ1, . . . ,ψn be the left eigenvalues and the left eigenvectors of the opera-
tor L. There exists coefficients η1,v, . . . , ηn,v such that

E�
v = η1,vψ1 + . . .+ ηn,vψn.

Then we have

ψjR(z) =
1

z − λj
ψj,

fv(z) = E�
v R(z)Ev =

n∑
j=1

ηj,vψjEv

z − λj
=

n∑
j=1

ρj,v

z − λj

so that ρj,v = ηj,vψjEv. There is no difficulty to carry out

dR(z)
dt

= [B, R(z)]

leading to

dfv(z)
dt = E�

v
dR(z)

dt Ev = −E�
v R(z)BEv

=
∏M

m=0 av+mE�
v R(z)EM+v+1 =

∏M
m=0 av+m

∑n
j=1

ηj,vψjEM+v+1

z−λj
.

�
(27)

Denote ψj,k = ψjEk. For L defined in (19), it has the recursive relationships

a1ψj,2 = λjψj,1, · · · , aMψj,M+1 = λjψj,M ,
ψj,1 + aM+1ψj,M+2 = λjψj,M+1, · · · , ψj,v + aM+vψj,M+v+1 = λjψj,M+v,

which leads to

ψj,M+v+1 =
λM+1

j −
∑v

k=1
∏M−1

l=0 ak+l∏M
l=0 av+l

ψj,v.� (28)
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Then, one can obtain

dfv(z)
dt

=
n∑

j=1

λM+1
j −

∑v
k=1

∏M−1
l=0 ak+l

z − λj
ρj,v

by substituting the expression (28) into (27). Assume that λj is independent of time, then we 
have

df (z)
dt

=
n∑

j=1

dρj,v

dt

z − λj
=

n∑
j=1

λM+1
j −

∑v
k=1

∏M−1
l=0 ak+l

z − λj
ρj,v

and subsequently

dρj,v

dt
= (λM+1

j −
v∑

k=1

M−1∏
l=0

ak+l)ρj,v.

Adding the above equations for the index j  from 1 to n, by using the condition (22), we obtain

0 =

n∑
j=1

ρj,vλ
M+1
j −

v∑
k=1

M−1∏
l=0

ak+l.

On account of (25), we have

v∑
k=1

M−1∏
l=0

ak+l =

n∑
j=1

ρj,vλ
M+1
j =

P∑
p=1

(M + 1)ρp,vλ
M+1
p = hM+v−1.

It follows that

dhMu+v−1

dt
= hM(u+1)+v−1 − hM+v−1hMu+v−1.

Introducing gj  with

gMu+v−1

gv−1
= hMu+v−1 and

d
dt

log gv−1 = hM+v−1,

for u = 1, 2, . . . , rv − 1 and v = 1, 2, . . . , M, it follows that

dgj

dt
= gj+M

for j = 0, . . . , (M + 1)(P − 1). Here rv denotes the number in (30).

Remark 3.3.  Here the evolution of moments is discussed for completeness. However, no 
time is involved in the following decoding problem since there is no need for the time evo
lution.

4.  Decoding as a moment problem related to extended Lotka–Volterra lattice

In this section, we show that the moment problem related to the extended Lotka–Volterra in 
the previous section could be used to design a decoding algorithm for multiple codewords. 
The decoding process is based on a similar diagram to (7), given by
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{a(M+1)k+m} (21)
−→ {ρp,v,λM+1

p } −→ {ej,v,α j}
(16) ↑ �� (25) ↑ goal

{G(m)
k } ←−

(14) {gMu+v−1} ←− {Su,v/S0,v}
� (29)

for k = 0, . . . , P − 1, m = 0, . . . , M, p = 1, . . . , P, u = 0, . . . , rv − 1, v = 1, . . . , M, where 
n = (M + 1)P, and rv denotes the number in (30).

4.1.  Relation between coding theory and moment problem

Suppose that one sent M codes with sent codewords cv = (c0,v, c1,v, . . . , cN−1,v), the 
received codewords bv = (b0,v, b1,v, . . . , bN−1,v) and the errors ev = (e0v , e1,v, . . . , eN−1,v) for 
v = 1, 2, . . . , M.

In the BCH code case, define the syndromes as

Su,v =

N−1∑
j=0

bj,vα
j(u+lv) =

∑
j∈J

ej,vα
j(u+lv), u = 0, 1, . . . , rv − 1.

Let J = { j|∃v, ej,v �= 0} be the positions where at least one error occurs and P be the number 
of elements in J. We connect the syndromes with moments by setting

ρj,v =

{
ej,vα

jlv

(M+1)
∑

j′∈J ej′ ,vα
j′ lv

, for j ∈ J,

0, otherwise,

and

λM+1
p =

{
α j, j ∈ J,
0, otherwise,

which leads to

Su,v =
∑
j∈J

ej,vα
j(u+lv) = gMu+v−1

and

hMu+v−1 =

M∑
p=1

(M + 1)ρp,vλ
(M+1)u
p =

∑
j∈J ej,vα

j(u+lv)

∑
j′∈J ej′,vα j′lv

=
Su,v

S0,v
.

Define the error-locator polynomial as σ(x) =
∏

j∈J

(
x − α j

)
 and the error-value polynomial 

of the vth code as ωv(x) =
∑

j∈J ej,vα
jlv
∏

k∈J\{ j}(x − αk).
Then, we have

ωv(x)
σ(x)

=
∑
j∈J

ej,vα
jlv

x − α j =

∞∑
u=0

Su,v

xu+1 =
S0,vfv(z)

zM ,

where the rational function fv(z) defined in (26) and x  =  zM+1. Hence, we can get errors by 
calculating the partial fraction expansion of fv(z) produced by L as (21), where L is con-
structed by the aj  defined by (16).
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In the Goppa code case, the corresponding syndromes can be expressed as

Su,v =

N−1∑
j=0

M(αj)
−1bj,vα

u
j =

∑
j∈J

M(αj)
−1ej,vα

u
j , u = 0, 1, . . . , rv − 1.

Define the error-locator polynomial as σ(x) =
∏

j∈J (x − αj) and the error-value polynomial 
of the vth code as ωv(x) =

∑
j∈J M(αj)

−1ej,v
∏

k∈J\{ j}(x − αk). Then, by setting

ρp,v =

{
M(αj)

−1ej,v exp(αjt)
(M+1)

∑
j′∈J M(αj′ )

−1ej′ ,v exp(αj′ t) , j ∈ J,

0, otherwise,

and

λM+1
p =

{
αj, j ∈ J,
0, otherwise,

we get gMu+v−1 = Su,v, hMu+v−1 = Su,v
S0,v

 and

ωv(x)
σ(x)

=
∑
j∈J

Mv(αj)
−1ej,v

x − αj
=

∞∑
u=0

Su,v

xu+1 =
S0,vfv(z)

zM .

The above calculation suggests that the multiple BCH-Goppa decoding problem may be for-
mally solved according to the diagram (29).

It is also necessary to know the number of syndromes needed for decoding. As is known, 
we need to construct the matrix L of size (M + 1)P × (M + 1)P and calculate

ωv(x)
σ(x)

=
S0,vfv(z)

zM ,

where x  =  zM+1. The last aj  involved in L is

a(M+1)(P−1)+M =
G(M)

P G(M−1)
P−1

G(M−1)
P G(M)

P−1 ,

where the last gj  to be involved is the last element of

G(M)
P =

∣∣∣∣∣∣∣∣∣

gM gM+1 · · · gM+P−1

g2M g2M+1 · · · g2M+P−1
...

...
. . .

...
gPM gPM+1 · · · gPM+P−1

∣∣∣∣∣∣∣∣∣
.

Therefore, if there exist P′ and Q′ such that

P′ =

⌊
P − 1

M

⌋
, P − 1 = P′M + Q′,

we get the last element

gPM+P−1 = g(P+P′)M+Q′ = SP+P′,Q′+1,
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which means the minimum number of the needed syndromes {S0,v, S1,v, . . . , Srv−1,v} is

rv − 1 =




P +

⌊
P−1

M

⌋
for v = 1, 2, . . . , P − M

⌊
P−1

M

⌋
,

P +

⌊
P−1

M

⌋
− 1 for v = P − M

⌊
P−1

M

⌋
+ 1, . . . , M.

� (30)

4.2.  Decoding algorithm for multiple BCH codes

For decoding M sets of received BCH codes, we may design the decoding algorithm according 
to four major steps.

	 (i)	�For M sets of known syndromes {S0,v, S1,v, . . . , Srv−1,v} over the finite field GF(qu), where 
v = 1, 2, . . . , M, let

gMu+v−1 = Su,v, u = 0, 1, . . . , rv − 1.

		 Calculate the determinants

G(m)
0 = 1, G(m)

1 = gm,

G(m)
k =

∣∣∣∣∣∣∣∣∣

gm gm+1 · · · gm+k−1

gm+M gm+M+1 · · · gm+M+k−1
...

...
...

gm+M(k−1) gm+M(k−1)+1 · · · gm+(M+1)(k−1)

∣∣∣∣∣∣∣∣∣

		 for

m = 0, 1, . . . , M, k = 2, 3, . . . , P.

	(ii)	�Introduce the matrix of (M + 1)P × (M + 1)P

L =




M︷ ︸︸ ︷
0 · · · 0
a1 0 · · ·

a2
. . .
. . .

1

0 1
. . . . . .

. . . . . . 1

. . . . . . 0
. . . . . .

...
a(M+1)(P−1)+M 0




,

		 where

a(M+1)k+m =




G(0)
k+1G(M)

k−1

G(0)
k G(M)

k

for m = 0,

G(m)
k+1G(m−1)

k

G(m−1)
k+1 G(m)

k

for m = 1, . . . , M
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		 for k = 0, 1, . . . , P − 1.
	(iii)	�Compute the rational function of the vth row and vth column element of (zI  −  L)−1

fv(z) = E�
v (zI − L)−1Ev, Ev = (

v−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)�.

	(iv)	�Factor the polynomials σ(x) and w(x) and calculate the partial fraction expansions

S0,vfv(z)
zM �

ωv(x)
σ(x)

=
∑
j∈J

ej,vα
jlv

x − α j
,

� (31)

		 where x  =  zM+1, to get the errors.

Remark 4.1.  All of the calculations are over the finite field GF(qu).

Remark 4.2.  As for M received Goppa codes, the similar decoding could be implemented 
by replacing (31) with

S0,vfv(z)
zM �

ωv(x)
σ(x)

=
∑
j∈J

Mv(αj)
−1ej,v

x − αj
.

Remark 4.3.  It is noted that some of the denominators appearing in a(M+1)k+m in step (ii) 
may be equal to zero. If

G(m)
1 �= 0, G(m)

2 �= 0, · · · , G(m)
k−1 �= 0,

for all 0 � m � M, and G(l)
k = 0 for some 0 � l � M, the number of error can be de-

coded by this algorithm becomes k  −  1. However, sometimes, G(m)
k = 0 is avoidable by 

changing the orders of codes. For example, set the syndrome sequence of the second 
code to be {S0,1, S1,1, . . . , Sr−1,1} and set the syndrome sequence of the first code to be 
{S0,2, S1,2, . . . , Sr−1,2}.

Remark 4.4.  Our decoding algorithm for multiple BCH-Goppa codes might be more ef-
ficient than running the decoding algorithm in [2] for a single code multiple times. When the 
errors happen at the same locations, comparing with the P-error decoding for the BCH-Goppa 
codes by M times, the number of syndromes we need to know becomes PM  +  P rather than 
2MP, and the number of P-order determinants needed for calculation in step (i) becomes 
M  +  1 rather than 2M. This means that our decoding algorithm for multiple BCH-Goppa 
codes is of less condition and lower complexity than running the decoding algorithm in [2] 
for a single code multiple times. However, if the intersection of the error location sets of 
any two codes is empty, their algorithm has a better performance. In this case, the number 
of the required syndromes in our algorithm is MP  +  P, while 2P in their algorithm, where 

P =
∑M

j=1 Pj and Pj  denotes the number of errors in the j th codewords. And, in step (i) we 
need to compute P-order determinants, where P =

∑M
j=1 Pj, while in [2] the highest order of 

determinants is only max{Pj, j = 1, 2, . . . , M}.
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4.3.  Decoding examples

One special case is M  =  1, that is one P-error BCH-Goppa decoding. In this case we have 

r − 1 = P +

⌊
P−1

M

⌋
= 2P − 1 and

gk = Sk, k = 0, 1, . . . , 2P − 1.

The determinants turn into

G(m)
0 = 1, G(m)

1 = Sm,

G(m)
k =

∣∣∣∣∣∣∣∣∣

Sm Sm+1 · · · Sm+k−1

Sm+M Sm+2 · · · Sm+k

...
...

...
Sm+k−1 Sm+k · · · Sm+2(k−1)

∣∣∣∣∣∣∣∣∣
,

m = 0, 1, k = 2, 3, . . . , P.

The elements in Jacobi matrix L can be computed by



a2k =
G(0)

k+1G(1)
k−1

G(0)
k G(1)

k

,

a2k+1 =
G(1)

k+1G(0)
k

G(0)
k+1G(1)

k

,

for k = 0, 1, . . . , P − 1. Then, the error can be found by factoring σ(x) and w(x) obtained by 
the rational function fv(z)

S0,vfv(z)
zM �

ωv(x)
σ(x)

=
∑
j∈J

ej,vα
jl

x − α j , x = z2.

An example is shown as below to demonstrate this decoding process.

Example 4.1 (BCH code, 3-error decoding, M = 1, q = 2, u = 4, N = 15, l = 1, r = 6). 
Suppose α ∈ GF(24) is the root of the irreducible polynomial x4  +  x  +  1 over GF(2), which 
results in α15 = 1. Consider the extension field

GF(24) = {γ0 + γ1α+ γ2α
2 + γ3α

3, γj ∈ GF(2), j = 0, 1, 2, 3} = (γ0, γ1, γ2, γ3).

It is not hard to see that there exists a one-to-one map from the cyclic group generated by 
α to GF(24):

α0 = (1, 0, 0, 0), α = (0, 1, 0, 0), α2 = (0, 0, 1, 0), α3 = (0, 0, 0, 1),
α4 = (1, 1, 0, 0), α5 = (0, 1, 1, 0), α6 = (0, 0, 1, 1), α7 = (1, 1, 0, 1),
α8 = (1, 0, 1, 0), α9 = (0, 1, 0, 1), α10 = (1, 1, 1, 0), α11 = (0, 1, 1, 1),
α12 = (1, 1, 1, 1), α13 = (1, 0, 1, 1), α14 = (1, 0, 0, 1).

Note that this map will be helpful for simplifying the calculations.
By considering the minimal polynomials mi(x) of αi for i = 1, 2, . . . , 6, then we obtain a 

polynomial

G(x) = x10 + x8 + x5 + x4 + x2 + x + 1
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as the least common multiple of m1(x), m2(x), . . . , m6(x). Thus we construct a BCH code with 
the generator polynomial G(x). This example is based on a sent code

c = (1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0).

When we receive a codeword

b = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0),

we can calculate syndromes

{S0, S1, S2, S3, S4, S5} = {1, 1,α10, 1,α10,α5}.

Then the determinants are obtained as follows:

G(0)
0 = 1, G(0)

1 = 1, G(0)
2 = α5, G(0)

3 = 1,

G(1)
0 = 1, G(1)

1 = 1, G(1)
2 = α10, G(1)

3 = α5,

which results in the tridiagonal matrix L being

L =




0 1
1 0 1

α5 0 1
α5 0 1

1 0 1
1 0




.

By calculating the (1, 1)th element of (λI − L)−1, we obtain

f1(z) =
z5 + α5z

z6 + z4 + α5

so that by setting x  =  z2 we have

ω1(x)
σ(x)

� S0
f1(z)

z
=

x2 + α5

x3 + x2 + α5 =
α3

x − α3 +
α5

x − α5 +
α12

x − α12 .

Eventually, the error is found, i.e. e = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0).

Next, we give an example of the algorithm with M  =  2 for multiple BCH codes. The rela-
tionship becomes

{a3k+m} −→ {ρp,v,λ3
p} −→ {ej,v,α j}

↑ � ↑ goal

{G(m)
k } ←− {h2u+v−1} ←− {Sv

k/Sv
0}
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for v = 1, 2 and m = 0, 1, 2. The elements in Jacobi matrix can be computed by




a3k =
G(0)

k+1G(2)
k−1

G(0)
k G(2)

k

,

a3k+1 =
G(1)

k+1G(0)
k

G(0)
k+1G(1)

k

,

a3k+2 =
G(2)

k+1G(1)
k

G(1)
k+1G(2)

k

for k = 0, 1, . . . , P − 1.

Example 4.2 (BCH code, 3-error decoding, M = 2, q = 3, u = 3, N = 13, l1 = 1,  
l2 = 7, r1 = 5, r2 = 4). Suppose α ∈ GF(33) is a root of the irreducible polynomial 
x3 + x2 + x + 2 over GF(3), then we obtain α13 = 1 and the extension field

GF(33) = {γ0 + γ1α+ γ2α
2, γj ∈ GF(3), j = 0, 1, 2}.

Every element of the cyclic group generated by α can be one-to-one mapped into an ele-
ment (γ0, γ1, γ2) in GF(33):

α0 = (1, 0, 0), α1 = (0, 1, 0), α2 = (0, 0, 1), α3 = (1, 2, 2),
α4 = (2, 2, 0), α5 = (0, 2, 2), α6 = (2, 1, 0), α7 = (0, 2, 1),
α8 = (1, 2, 1), α9 = (1, 0, 1), α10 = (1, 0, 2), α11 = (2, 2, 1),
α12 = (1, 1, 1).

Let us consider two BCH codes with the generator polynomials

G1(x) = x9 + x8 + 2x7 + x5 + 2x3 + 2x2 + 2

satisfying G1(α) = G1(α
2) = G1(α

3) = G1(α
4) = G1(α

5) and

G2(x) = x9 + x7 + x6 + 2x4 + x2 + 2x + 2

satisfying G2(α
7) = G2(α

8) = G2(α
9) = G2(α

10) = 0. And the two sent codes are

c1 = (2, 0, 2, 2, 0, 1, 0, 2, 1, 1, 0, 0, 0)

and

c2 = (2, 2, 1, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0).

Assume that the two codewords we received are respectively

b1 = (2, 1, 2, 2, 2, 1, 0, 2, 1, 0, 0, 0, 0)

and

b2 = (2, 1, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0).

By calculation, we obtain the syndromes

S0,1 = α5, S1,1 = α11, S2,1 = α2, S3,1 = 2α2, S4,1 = α8,
S0,2 = 2α10, S1,2 = 2α4, S2,2 = 2α6, S3,2 = α5,
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resulting in
g0 = α5, g2 = α11, g4 = α2, g6 = 2α2, g8 = α8,
g1 = 2α10, g3 = 2α4, g5 = 2α6, g7 = α5.

Then we have the determinants

G(0)
0 = 1, G(0)

1 = α5, G(0)
2 = 2α, G(0)

3 = α9,

G(1)
0 = 1, G(1)

1 = 2α10, G(1)
2 = α4, G(1)

3 = 2α7,

G(2)
0 = 1, G(2)

1 = α11, G(2)
2 = 2α, G(2)

3 = α10.

and the matrix

L =




0 0 1
2α5 0 0 1

2α 0 0 1
2α11 0 0 1

α11 0 0 1
α9 0 0 1

α5 0 0 1
α8 0 0

α6 0




.

The corresponding rational functions fv(z) are

f1(z) =
z8 + 2α8z5 + 2α9z2

z9 + 2α2z6 + α11z3 + 2α ,
f2(z) =

z8 + 2αz5 + α11z2

z9 + 2α2z6 + α11z3 + 2α

and by setting x  =  z3 we get

ω1(x)
σ(x)

� S0,1
f1(z)

z2 =
α5(x2 + 2α8x + 2α9)

x3 + 2α2x2 + α11x + 2α
=

α

x − α
+

2α4

x − α4 +
2α9

x − α9
,

ω2(x)
σ(x)

� S0,2
f2(z)

z2 =
2α10(x2 + 2αx + α11)

x3 + 2α2x2 + α11x + 2α
=

2α7

x − α
+

α2

x − α4 +
α11

x − α9 .

Thus, the error of the first code is

e1 = (0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0)

and the error of the second code is

e2 = (0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0).

It follows from c  =  b  −  e that original codes are

c1 = (2, 0, 2, 2, 0, 1, 0, 2, 1, 1, 0, 0, 0)

and

c2 = (2, 2, 1, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0)

respectively.
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The method can also be used to decode a Goppa code and a RS code. Some examples are 
given for M  =  3. The relationship becomes

{a4k+m} −→ {ρp,v,λ4
p} −→ {ev

j ,α j}
↑ � ↑ goal

{G(m)
k } ←− {h3u+v−1} ←− {Sv

k/Sv
0}

for v = 1, 2, 3 and m = 0, 1, 2, 3. The elements in the matrix L can be computed according to



a4k =
G(0)

k+1G(3)
k−1

G(0)
k G(3)

k

, a4k+1 =
G(1)

k+1G(0)
k

G(0)
k+1G(1)

k

,

a4k+2 =
G(2)

k+1G(1)
k

G(1)
k+1G(2)

k

, a4k+3 =
G(3)

k+1G(2)
k

G(2)
k+1G(3)

k

,

for k = 0, 1, . . . , P − 1.

Example 4.3 (Goppa code, 2-error decoding, M = 3, q = 3, u = 3, N = 13,  
r1 = 3, r2 = 3, r3 = 2).  Suppose α ∈ GF(33) is the root of the irreducible polynomial 
x3 + x2 + x + 2 over GF(3) and consider the extension field

GF(33) = {γ0 + γ1α+ γ2α
2, γj ∈ GF(3), j = 0, 1, 2}.

As indicated in the above example, we have α13 = 1 and αi, i = 1, 2 . . . , 12 are mutually dis-
tinct.

Consider three Goppa codes Γ(L, M1), Γ(L, M2) and Γ(L, M3) over the same finite field 
GF(33), where L = {1,α, . . . ,α12} with the Goppa polynomials

M1(z) = z4 + z + 2, M2(z) = z4 + 1, M3(z) = z4 + 2z + 1.

If three codewords we sent are

c1 = (2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 2, 2),

c2 = (1, 2, 0, 2, 1, 0, 0, 2, 2, 2, 1, 2, 1),

c3 = (1, 1, 1, 1, 1, 0, 1, 0, 0, 2, 2, 1, 2)

and the received codewords are respectively

b1 = (2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 2, 1),

b2 = (1, 2, 0, 2, 1, 0, 0, 2, 2, 2, 2, 2, 2),

b3 = (1, 1, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 0).

We compute the syndromes by using the received codewords

S0,1 = 2α3, S1,1 = α10, S2,1 = 2,
S0,2 = 2α4, S1,2 = α3, S2,2 = 2α10,
S0,3 = 1, S1,3 = 2α11,
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and then we have

g0 = 2α3, g3 = α10, g6 = 2,
g1 = 2α4, g4 = α3, g7 = 2α10,
g2 = 1, g5 = 2α11.

The determinants are

G(0)
0 = 1, G(0)

1 = 2α3, G(0)
2 = 1,

G(1)
0 = 1, G(1)

1 = 2α4, G(1)
2 = 2α8,

G(2)
0 = 1, G(2)

1 = 1, G(2)
2 = α7,

G(3)
0 = 1, G(3)

1 = α10, G(3)
2 = α9,

so that the matrix L is obtained

L =




0 0 0 1
α 0 0 0 1

2α9 0 0 0 1
α10 0 0 0 1

2 0 0 0 1
2α7 0 0 0

α3 0 0
α5 0




.

Next, we compute the rational functions

f1(z) =
z7 + α10z3

z8 + 2α6z4 + α9
,

f2(z) =
z7 + 2α7z3

z8 + 2α6z4 + α9
,

f3(z) =
z7 + 2α9z3

z8 + 2α6z4 + α9
.

Let x  =  z4 and calculate the partial fraction expansions

ω1(x)
σ(x)

� S0,1
f1(z)

z3 =
2α3(x + α10)

x2 + 2α6x + α9 =
α6

x − α10 +
α2

x − α12
,

ω2(x)
σ(x)

� S0,2
f2(z)

z3 =
2α4(x + 2α7)

x2 + 2α6x + α9 =
2α9

x − α10 +
2α3

x − α12
,

ω3(x)
σ(x)

� S0,3
f3(z)

z3 =
(x + 2α9)

x2 + 2α6x + α9 =
α8

x − α10 +
2α7

x − α12
.
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Since
M1(α

10) = 2α7, M1(α
12) = 2α11, M2(α

10) = 2α4,

M2(α
12) = 2α10, M3(α

10) = 2α5, M3(α
12) = 2α6,

we eventually get error values

e10,1 = 2, e12,1 = 2, e10,2 = 1, e12,2 = 1, e10,3 = 2, e12,3 = 1,

leading to

e1 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2},

e2 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1},

e3 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1}.

Example 4.4 (RS code, 3-error decoding, M  =  3, q = 24, u = 1, N = 15, r1 = 4, r2 = 4,  
r3 = 4, l1 = 1, l2 = 5, l3 = 14).  Consider the extension field

GF(24) = {γ0 + γ1α+ γ2α
2 + γ3α

3, γj ∈ GF(2), j = 0, 1, 2, 3} = (γ0, γ1, γ2, γ3),

where α ∈ GF(24) is the root of the irreducible polynomial x4  +  x  +  1 over GF(2). Recall that 
we have α15 = 1.

Assume that we have three generator polynomials

G1(x) =
4∏

i=1

(x − αi) = x4 + α13x3 + α6x2 + α3x + α10,

G2(x) =
8∏

i=5

(x − αi) = x4 + α2x3 + α14x2 + x + α11,

G3(x) =
17∏

i=14

(x − αi) = x4 + α11x3 + α2x2 + α12x + α2,

and the sent codewords are

c1 = (α10,α3,α6,α13, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c2 = (α11, 1,α14,α2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c3 = (α2,α12,α2,α11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

If the received words are

b1 = (α9,α3,α5,α10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
b2 = (1, 1,α, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
b3 = (α9,α12,α7,α7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
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then the syndromes known from remainder are

S0,1 = α6, S1,1 = 1, S2,1 = α2, S3,1 = α8,
S0,2 = α12, S1,2 = α9, S2,2 = α5, S3,2 = α2,
S0,3 = α12, S1,3 = α2, S2,3 = α14, S3,3 = α8.

It follows that gj  are

g0 = α6, g3 = 1, g6 = α2, g9 = α8,
g1 = α12, g4 = α9, g7 = α5, g10 = α2,
g2 = α12, g5 = α2, g8 = α14, g11 = α8,

and the determinants are

G(0)
0 = 1, G(0)

1 = α6, G(0)
2 = α11, G(0)

3 = α14,

G(1)
0 = 1, G(1)

1 = α12, G(1)
2 = α8, G(1)

3 = α,

G(2)
0 = 1, G(2)

1 = α12, G(2)
2 = α13, G(2)

3 = 1,

G(3)
0 = 1, G(3)

1 = 1, G(3)
2 = α3, G(3)

3 = α4.

Next, by calculating aj  one can obtain the matrix L

L =




0 0 0 1
α6 0 0 0 1

1 0 0 0 1
α3 0 0 0 1

α5 0 0 0 1
α6 0 0 0 1

α5 0 0 0 1
α2 0 0 0 1

1 0 0 0 1
α5 0 0 0

α9 0 0
α14 0




.

The rational functions fv(z) are

f1(z) =
z11 + α10z7 + α12z3

z12 + α13z8 + α9z4 + α5
,

f2(z) =
z11 + αz7 + α3z3

z12 + α13z8 + α9z4 + α5
,

f3(z) =
z11 + α7z7 + α5z3

z12 + α13z8 + α9z4 + α5
.

By setting x  =  z4 we get

ω1(x)
σ(x)

� S0,1
f1(z)

z3 =
α6(x2 + α10x + α12)

x3 + α13x2 + α9x + α5 =
α13

x − 1
+

α11

x − α2 +
α12

x − α3
,
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ω2(x)
σ(x)

� S0,2
f2(z)

z3 =
α12(x2 + αx + α3)

x3 + α13x2 + α9x + α5 =
α12

x − 1
+

α2

x − α2 +
α2

x − α3
,

ω3(x)
σ(x)

� S0,3
f3(z)

z3 =
α12(x2 + α7x + α5)

x3 + α13x2 + α9x + α5 =
α11

x − 1
+

α10

x − α2 +
α5

x − α3 .

By use of the formula (31), we get the error values

e0,1 = α13, e2,1 = α9, e3,1 = α9,

e0,2 = α12, e2,2 = α7, e3,2 = α2,

e0,3 = α11, e2,3 = α12, e3,3 = α8

resulting in

e1 = (α13, 0,α9,α9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
e2 = (α12, 0,α7,α2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
e3 = (α11, 0,α12,α8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Finally, we give an example to demonstrate our algorithm may also work for the case that 
the error-locations are different.

Example 4.5 (RS code, 4-error decoding, M  =  3, q = 24, u = 1, N = 15, r1 = 6,  
r2 = 5, r3 = 5, l1 = l2 = l3 = 1).  Consider the extension field

GF(24) = {γ0 + γ1α+ γ2α
2 + γ3α

3, γj ∈ GF(2), j = 0, 1, 2, 3} = (γ0, γ1, γ2, γ3),

where α ∈ GF(24) is the root of the irreducible polynomial x4  +  x  +  1 over GF(2). Again, we 
have α15 = 1.

Assume that the three generator polynomials are

G1(x) =
6∏

j=1

(x − α j),

G2(x) = G3(x) =
5∏

j=1

(x − α j),

in other words, we consider the sent codes

c1 = (α6,α9,α6,α4,α14,α10, 1, 0, 0, 0, 0, 0, 0, 0, 0),

c2 = c3 = (1,α,α5,α2,α7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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If the received words are

b1 = (α6,α9,α6,α,α14,α5, 1, 0, 0, 0, 0, 0, 1, 0, 0),

b2 = (1,α9,α5,α2,α7, 1, 0, 0, 0, 0, 0, 0,α13, 0, 0),

b3 = (1, 1,α5,α10,α7,α4, 0, 0, 0, 0, 0, 0, 0, 0, 0),

we first calculate the syndromes and obtain

S0,1 = 1, S1,1 = 1, S2,1 = α10, S3,1 = 1, S4,1 = α10, S5,1 = α5,
S0,2 = α2, S1,2 = α13, S2,2 = α12, S3,2 = α14, S4,2 = α3,
S0,3 = 1, S1,3 = α8, S2,3 = α2, S3,3 = α7, S4,3 = α10.

It follows that gj  are

g0 = 1, g3 = 1, g6 = α10, g9 = 1, g12 = α10, g15 = α5,
g1 = α2, g4 = α13, g7 = α12, g10 = α14, g13 = α3,
g2 = 1, g5 = α8, g8 = α2, g11 = α7, g14 = α10.

Subsequently, we obtain the determinants

G(0)
0 = 1, G(0)

1 = 1, G(0)
2 = α14, G(0)

3 = α3, G(0)
4 = α8,

G(1)
0 = 1, G(1)

1 = α2, G(1)
2 = α9, G(1)

3 = α12, G(1)
4 = α3,

G(2)
0 = 1, G(2)

1 = 1, G(2)
2 = α, G(2)

3 = α6, G(2)
4 = α10,

G(3)
0 = 1, G(3)

1 = 1, G(3)
2 = α9, G(3)

3 = α4, G(3)
4 = α14.

Then we have the matrix L by calculating aj 

L =




0 0 0 1
α2 0 0 0 1

α13 0 0 0 1
1 0 0 0 1

α14 0 0 0 1
α8 0 0 0 1

α9 0 0 0 1
α8 0 0 0 1

α10 0 0 0 1
α14 0 0 0 1

α2 0 0 0 1
α5 0 0 0 1

α10 0 0 0 1
α 0 0 0

α13 0 0
α6 0




.
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The rational functions fv(z) are

f1(z) =
z15 + αz11 + α5z7 + α6z3

z16 + α4z12 + αz8 + α5z4 + α6
,

f2(z) =
z15 + α13z11 + α2z7 + α12z3

z16 + α4z12 + αz8 + α5z4 + α6
,

f3(z) =
z15 + α5z11 + α14z7 + α7z3

z16 + α4z12 + αz8 + α5z4 + α6
.

By setting x  =  z4 we get

ω1(x)
σ(x)

� S0,1
f1(z)

z3 =
x3 + αx2 + α5x + α6

x4 + α4x3 + αx2 + α5x + α6 =
α3

x − α3 +
α5

x − α5 +
α12

x − α12
,

ω2(x)
σ(x)

� S0,2
f2(z)

z3 =
α2(x3 + α13x2 + α2x + α12)

x4 + α4x3 + αx2 + α5x + α6 =
α4

x − α
+

α10

x − α12
,

ω3(x)
σ(x)

� S0,3
f3(z)

z3 =
x3 + α5x2 + α14x + α7

x4 + α4x3 + αx2 + α5x + α6 =
α5

x − α
+

α7

x − α3 +
α6

x − α5 .

By use of the formula (31), we get the error values

e3,1 = 1, e5,1 = 1, e12,1 = 1,

e1,2 = α3, e12,2 = α13,

e1,3 = α4, e3,3 = α4, e5,3 = α,

leading to

e1 = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0),
e2 = (0,α3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,α13, 0, 0),
e3 = (0,α4, 0,α4, 0,α, 0, 0, 0, 0, 0, 0, 0, 0, 0).

5.  Conclusion

In this paper, the moment problem related to a category of extended Lotka–Volterra systems is 
used for decoding multiple BCH-Goppa codes. When the errors of the multiple codes happen 
at the same locations, our algorithm needs fewer known syndromes and lower complexity than 
applying the single BCH-Goppa decoding algorithm in [2] multiple times.

As a future work, we would try to introduce the full-discrete version of the extended 
Lotka–Volterra systems over finite fields to design a new decoding algorithm involving the 
recursion relation.
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