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Abstract
We study the convergence of density operators of linear quantum systems 
towards their steady states in trace norm. We give compact and intuitive 
necessary and sufficient conditions for such linear quantum systems to 
have pure Gaussian steady states in terms of the Hamiltonian and coupling 
operators. Furthermore, using the nullifiers concept in Gu et al (2009 Phys. 
Rev. A 79), we show that set of the nullifiers of these states are spanned by 
the coupling operators and other operators obtained via the commutation of 
Hamiltonian and coupling operators.
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1.  Introduction

Over the last two decades, quantum information processing has received considerable atten-
tion. While most of the initial concepts were first developed for discrete quantum variables 
(e.g. qubits), subsequent developments have also investigated the use of continuous variables; 
e.g. quadratures of optical fields [2–4]. The central resource for continuous-variable quantum 
information processing are pure Gaussian states [5]. Recent work has shown that reservoir 
engineering (i.e. control of dissipative dynamics) is an efficient approach to construct pure 
Gaussian states [6–10].
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In [11] the dissipative dynamics of a linear QSDE describing the evolution of position 
and momentum operators has been analyzed for the case that the density operator of the 
system is always Gaussian. Using the covariance formalism given in [12, 13] and the fact 
that Gaussianity is preserved in linear QSDEs dynamics [14], an algebraic condition was 
formulated to verify whether the steady state of the linear QSDE is a pure state. However, it 
is not clear whether this result also applies when the initial system density operator is a non-
Gaussian state. Non-Gaussian states can arise from a nonlinearity as required in universal 
quantum computing [5, 15].

For most applications of reservoir engineering, the uniqueness of the steady state is desir-
able [8, 16]. Moreover, sometimes it is also useful consider the distance between a steady state 
and the current system state, and the rate at which it will converge to the steady state. The 
evolution of the density operators related to linear QSDEs can be analyzed by analogy to the 
evolution of probability distributions corresponding to Ornstein–Uhlenbeck processes [14]. A 
convergence analysis for linear QSDEs has also been considered in the mathematical physics 
community via the analysis of quantum Fokker–Planck models [17–19]. In [19], the asymp-
totic stability properties of quantum Fokker–Planck models have been carefully studied using 
results from quantum Markovian semigroups. They gave an algebraic condition on when the 
density operator of a linear QSDE converges to a particular steady state.

In this work, we study the Hurwitz property of the constant dynamic system matrix for lin-
ear QSDEs, which can be used to infer the convergence of a quantum system’s state towards 
its steady state. We further give alternative necessary and sufficient conditions so that the 
steady state is a pure Gaussian state. The conditions are algebraically simpler to validate 
compared to the conditions given in [11]. Essentially, we show that the steady states of linear 
quantum systems are pure Gaussian states if and only if every coupling operator is a nullifier 
of the steady states, and the Hamiltonian and coupling operators generate the set of nullifiers 
via commutation. Using the stability notion in [20], we then show that this steady state is glob-
ally exponentially stable in the trace norm, which is one of the distance measures between two 
density operators that is frequently used in quantum information processing [21].

Some of the material in this paper was presented the 2019 European Control Conference 
(ECC 2019). Compared to the conference paper, this paper is significantly expanded. Section 3 
discusses the purity criterion and stability properties of linear QSDEs describing quantum sys-
tems dynamics with multiple modes, which are not discussed in the conference paper. Also, 
the relation between purity criteria given in [11] and nullifier concept [1] has been made clear 
in this paper. Furthermore, full proofs of the results have been presented in this paper.

The paper is organized as follows. We will start with the case of linear QSDEs describing 
single mode quantum systems in section 2 where we give a convergence analysis for its steady 
state and a necessary and sufficient criterion for these QSDEs to have a pure Gaussian steady 
state. Section 3 gives a generalization of the results for the single mode case and their relation 
to some previous work. The last section gives some conclusions.

1.1.  Notation

The imaginary unit 
√
−1  is denoted by ı. Hilbert space adjoints, are indicated by ∗. We also 

use ∗ for complex conjugate, where for a matrix whose elements are operators on a Hilbert 
space, the adjoint transpose will be denoted by †; i.e. (X∗)� = X†. For single-element opera-
tors we will use ∗ and † interchangeably. Throughout the article, H  is the system’s Hilbert 
space, and B(H ),S(H ) are the bounded linear operator and density operator classes on 
the Hilbert space H  respectively. The quantum master equation for the density operator ρ  is 
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determined by L∗(ρ), while the quantum Markovian generator for an operator X is given by 
L(X); see [22] for more detailed definitions.

2.  Stability of single mode linear quantum systems and purity of their steady 
states

In this section, we will give an analysis of linear QSDEs describing the dynamics of a single 
mode quantum system and their stability. Consider a quantum system with Hamiltonian and 
coupling operator given by

H =
1
2

x�Mx, L = C�x,� (1)

where x = [q p]� are the position and momentum operators, M = M� ∈ R2×2, C ∈ C2×1. 
The dynamics of this quantum system can be described by the following linear QSDEs,

dx = Axdt + B∗dA + BdA∗,� (2a)

where

A = ΣM − γ

2
I,� (2b)

B = ıΣC, γ = ıB†Σ�B,� (2c)

and Σ is the skew-symmetric matrix 
[

0 1
−1 0

]
. The processes dA∗, dA, are the annihilation 

and creation processes of the quantum field [23] according to the equation Equivalently, the 
dynamics in (2) can also be described by the evolution of the unitary operator Ut [23, theorem 
26.3, corollary 26.4]:

dUt =

[
tr
[
(S − I) dΛ�

t

]
+ dA†

t L − L†SdAt −
(

1
2
L†L + iH

)
dt
]

Ut.� (3)

Within physics community, the evolution of an open quantum system is usually described 
using a quantum master equation, which is analogous to the Kolmogorov equation for a clas-
sical diffusion process [22]:

L∗(ρt) = −ı [H, ρt] + L�ρtL
∗ − 1

2
L†Lρt −

1
2
ρtL

†L.� (4)

In this section, we will give a condition about the convergence of density operators corre
sponding to the QSDEs (2a) towards the steady state, without assuming that system’s density 
operator initially is a Gaussian state. Using the transformation given in [14, exercise A.25], 
one can transform the Wigner–Fokker–Planck (WFP) dynamics in [19] into a standard master 
equation. The corresponding QSDEs (2a) of the transformed master equation have the matrix 
A given by

A =

[
0 1

−ω2 −γ̃/2

]
,� (5)

where ω  is the frequency of the harmonic confinement potential, and γ̃  is a constant related 
to the dissipation. Here, we consider a form of QSDEs which commonly appears in quantum 
optics, and does not necessarily fit into the form in (5). In the following proposition, we will 
give a relation between A being Hurwitz, and the dissipation characteristics of the constant B.
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Proposition 2.1.  For linear QSDEs of the form (2a), the matrix A is Hurwitz only if γ > 0. 
Moreover, if the Hamiltonian H is either a positive or negative operator, then A is Hurwitz if 
and only if γ > 0.

Proof.  By definition, A is Hurwitz if Re (λ(A)) < 0, for all eigenvalues λ(A) of A. Evalu-
ating the characteristic function of A using (2b), we have

det(λI − A) = λ2 + λγ + (m11m22 − m2
12 + γ2/4),� (6)

where mij denotes the elements of M. When A is Hurwitz, then we must have γ > 0. Moreo-
ver, when ±H is assumed to be positive, then ±M is positive semi-definite. Using the fact that 
±M is positive semi-definite, it follows that m11m22 − m2

12 � 0 and one can clearly see from 
(6) that A is Hurwitz if and only if γ > 0 which completes the proof.� □ 

Proposition 2.1 implies that when the Hamiltonian is either a positive or negative operator, 
then it becomes irrelevant to the overall system stability; that is, the linear QSDE stability 
property is preserved even if the Hamiltonian is changed to another positive or negative opera-
tor. Let us define the covariance matrix Pt =

1
2 tr ((xx� + (xx�)�)ρt), and define V as follow:

V(P∗) = AP∗ + P∗A� +
1
2
(B∗B� + BB†).� (7)

Notice that for linear QSDEs with A Hurwitz, both tr (xρt) and Pt  converge [11]. The steady 
state covariance matrix is given by the solution of V(P∗) = 0 in (7). Since the steady state of 
the linear QSDE (2a) will be a Gaussian state regardless of the initial state [24, equation 5.80, 
[14, section 5.6.1] and a Gaussian state is uniquely determined by tr (xρt) and Pt , then a linear 
QSDE with A Hurwitz has a unique steady state which is Gaussian. Due to the one to one 
correspondence between Wigner functions and density operators and the uniqueness of the 
steady state, by [20, remark 18], as expected, this steady state is weakly globally asymptoti-
cally stable (WGA-stable). That is, for any ρ  as an initial state and any bounded operator A, 

lim
t→∞

tr (A(ρt − ρ∗)) = 0, where ρ∗ is the Gaussian steady state. This fact can be restated in 
the following proposition.

Proposition 2.2.  Linear QSDEs of the form (2a) with a Hurwitz A matrix have unique 
WGA-stable steady states.

In what follows, we will prove that the only possibility for linear QSDEs of the form (2a) 
with A is Hurwitz to have a pure steady state is if the Hamiltonian and the coupling operator 
satisfy 

[
H,L†L

]
= 0. Let us write the coupling operator L in the following form

L = µa + νa†,� (8)

where µ, ν ∈ C and γ = |µ|2 − |ν|2. Now introduce a constant γ̂ = γ/L, with L = |µ|2 + |ν|2 
and r = tanh−1(

√
(1 − γ̂)/(1 + γ̂)). When γ̂ > 0, it is possible to find the solution 

L|ξ〉 = 0|ξ〉 which is given by the following squeezed state [25, pp 158–161]

|ξ〉 = 1√
cosh(r)

∞∑
n=0

(−1)n

√
(2n)!

2nn!
eınθ tanh(r)n|2n〉.� (9)

It was argued in [19, lemma 9.1, corollary 9.1], that the only possible occasion where the 
steady state of a class of QSDEs (2a) where the matrix A of the form (5) can be pure is when [
H,L†L

]
= 0. In the following proposition, we also show that this is the case for general linear 
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QSDEs in the form (2a). Recall also that the dark states of the master equation (4) are the 
subset of system’s Hilbert space which are not affected by dissipative dynamics. This subset 
is defined as DL,H = {|ψ〉 ∈ H : L|ψ〉 = 0,H|ψ〉 = λH|ψ〉,λH ∈ R} [6]. Roughly speak-
ing, we show that there exists no subspace S  of H  that is orthogonal to DL,H, such that 
L|ψ〉 ∈ S , ∀|ψ〉 ∈ S ; implying that the only steady state is a dark state; see also [6, theorem 
2].

Proposition 2.3.  Linear QSDEs of the form (2a) with A Hurwitz have a pure steady state 
if and only if 

[
H,L†L

]
= 0.

Proof.  Suppose 
[
H,L†L

]
= 0, and let |ξ〉 be an eigenstate of L such that 0|ξ〉 = L|ξ〉, 

which exists since γ̂ > 0 when A is Hurwitz by proposition 2.1. Since 
[
H,L†L

]
= 0, then 

0|ξ〉 = HL†L|ξ〉 = L†LH|ξ〉. Therefore |ξ〉 is also an eigenstate of H. For this |ξ〉, L∗(|ξ〉〈ξ|) = 0. 
Hence ρ∗ = |ξ〉〈ξ| is a steady state of (2a).

Now suppose the steady state is pure. Then there exists a |ψ〉 ∈ H  satisfying 
L∗(|ψ〉〈ψ|) = 0. Therefore, we can write

Q|ψ〉〈ψ|+ |ψ〉〈ψ|Q† = L|ψ〉〈ψ|L†,� (10)

where Q = ıH+ 1
2L

†L. To satisfy (10), since the RHS of (10) has rank one, then |ψ〉 must 
be an eigen state of Q. In this case, it is also an eigenstate of L, [6, theorem 1]. Suppose 
L|ψ〉 = λl|ψ〉, and Q|ψ〉 = λ|ψ〉 for λ,λl ∈ C. Then (10) is equivalent to

(λ+ λ∗)|ψ〉〈ψ| = |λl|2 |ψ〉〈ψ|.� (11)

Therefore, Re {(λ)} = |λl|2
2 . Now, the only possible case that Q and L have the same ei-

genstate is when λl = 0. Otherwise, if λl �= 0 then λl = 〈L〉 = C� 〈x〉 = 0. Therefore, we 
observe that

0|ψ〉〈ψ| = Q|ψ〉〈ψ|+ |ψ〉〈ψ|Q† = ıH|ψ〉〈ψ| − |ψ〉〈ψ|ıH.

Hence |ψ〉 must also be an eigenstate of H. Now let us rewrite H in terms of annihilation and 
creation operators as below:

H =
1
2
[
a†a

] [m̂11 m̂12

m̂∗
12 m̂22

] [
a
a†

]
,

with m̂11 = m̂22 = (m11 + m22)/2, m̂12 = ım12 + (m11 − m22)/2. Since A is Hurwitz 
µ �= 0. Moreover, without loss of generality, assume that ν �= 0. Otherwise, we will have 
m̂12 = m̂22 = 0, and hence 

[
H,L†L

]
= 0. When λl = 0, |ψ〉 = |ξ〉 as defined in (9). Expand-

ing |ξ〉, and using the relation sn+1 = −(ν/µ)(
√

n/
√

n + 1)sn−1, we arrive at the following 
equation

2H|ξ〉 =
∞∑

n=0

[
(2n + 1)m̂11 + m̂12H(n − 2)

−µ

ν
n + m̂∗

12
−ν

µ
(n + 1)

]
sn|n〉,

where H(n) is the Heavyside function. Equating H|ξ〉 = λH|ξ〉, for n  =  0 we obtain 
m̂11 + m̂∗

12(−ν/µ) = λH , and for n � 2 we obtain m̂12 = 2m̂11(µ
∗ν)/(|µ|2 + |ν|2). Hence, 

we obtain

M F Emzir et alJ. Phys. A: Math. Theor. 53 (2020) 055301
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H =
m̂11

|µ|2 + |ν|2
[
a†a

] [|µ|2 µ∗ν

ν∗µ |ν|2

] [
a
a†

]
− m̂11(|µ|2 − |ν|2)

2
.

Therefore, 
[
H,L†L

]
= 0.� □ 

The criterion in proposition 2.3 is equivalent the condition that the M and C matrices 
satisfy

MΣ(C∗C�) = (C∗C�)ΣM.� (12)

The following corollary is then immediate from the proof of the previous proposition.

Corollary 2.1.  Linear QSDEs of the form (2a) have a unique pure Gaussian steady state 
if and only if the Hamiltonian is either a positive or negative operator, 

[
H,L†L

]
= 0 and A is 

Hurwitz.

Proof.  If the Hamiltonian is either a positive or negative operator where 
[
H,L†L

]
= 0 and 

A is Hurwitz, then it has a unique pure steady state by proposition 2.3. Now suppose that the 
steady state is unique and Gaussian. From the existence of the pure Gaussian steady state, then 
the solution P∗ > 0 of V(P∗) = 0 in (7) exists. Therefore, the matrix A corresponding to this 
Hamiltonian and coupling operator is Hurwitz. Moreover, since A is Hurwitz then 

[
H,L†L

]
= 0. 

Therefore, the Hamiltonian H is of the form H = x�(αC∗C� + ıβΣ)x = αL†L + β,α,β ∈ R. 
Therefore, the Hamiltonian is either a positive or negative operator up to a constant β.� □ 

In proposition 2.2, all steady states of the linear QSDEs are asymptotically stable in the 
weak sense. If the steady state is pure, a stronger stability condition can be obtained if we 
assume that the quantum dynamical semigroups arising from (2a) are uniformly continuous 
[26, 27]. Under this assumption, we can use quantum Lyapunov stability to conclude a global 
exponential stability condition of the steady state ρ∗ [20]. That is, for any initial density opera-
tor ρ0 and steady state ρ∗, there exists β,κ > 0 such that ‖ρt − ρ∗‖1 � β ‖ρ0 − ρ∗‖1 exp(−κt) 
for all t � 0, where ‖·‖1 is the trace operator norm; see [20, definition 9]. Let us first recall the 
quantum Lyapunov stability of [20]; see also [28].

Lemma 2.1.  [20] Let V ∈ B(H ) be a self-adjoint operator with strictly increasing spec-
trum value such that

tr (V(ρ− ρ∗)) > 0, ∀ρ ∈ S(H )\ρ∗.� (13)

If there exists k1  >  0 and k2 ∈ R such that

tr (L(V)ρ) � −k1tr (Vρ) + k2 < 0, ∀ρ ∈ S(H )\ρ∗,� (14)

then ρ∗ is globally exponentially stable (GE-stable).

Proposition 2.4.  The pure Gaussian steady states of single mode linear QSDEs of the 
form (2a) are GE-stable.

Proof.  Choose a candidate Lyapunov operator V = L†L. By corollary 2.1, A is Hurwitz, and 
hence γ̂ > 0. According to proposition 2.3, the steady density operator is given by ρ∗ = |ξ〉〈ξ|, 
where tr (Vρ∗) = 0. Calculating the generator of V , using L in the form (8), we obtain

M F Emzir et alJ. Phys. A: Math. Theor. 53 (2020) 055301
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L(V) = L(L†L) =
1
2

(
L† [L†L,L

]
+
[
L†,L†L

]
L
)

� (15)

= −L2γ̂L†L = −L2γ̂V .� (16)

Since V  is a positive operator for which tr (Vρ) can only be zero if ρ = ρ∗, it follows that

tr (L(V)ρ) = −L2γ̂tr (Vρ) < 0, ∀ρ ∈ S(H )\ρ∗.� (17)

Hence ρ∗ is GE-stable.� □ 

Remark 2.1.  In [29, theorem 2], exponential convergence to the steady state for linear 
QSDEs with perturbed Hamiltonians has also been established. The main difference between 
their result and what we obtain here is that the convergence in proposition 2.4 is given in trace 
norm. Also, we only consider Hamiltonians which are quadratic in q and p . In [29] conv
ergence is given in Hilbert–Schmidt operator norm and also this paper allows for quadratic 
Hamiltonians with some smooth bounded perturbations.

Remark 2.2.  It is also worth noticing that for the case of single mode, the passive linear QS-
DEs as considered in [30–32] correspond to the case where γ̂ = 1, and m11 = m22, m12 = 0. 
Using (12), we could easily verify that passive linear QSDEs have a pure Gaussian steady 
state. In fact, since γ̂ = 1, this Gaussian state is the vacuum state. Notice however that linear 
QSDEs that have a pure Gaussian steady state need not be passive. As an example, using (8), 
if we let 0 < γ̂ < 1, θ = 0, L  >  0 and the Hamiltonian H = L†L, by propositions 2.1 and 2.3 
the matrix A is Hurwitz and the steady state of these linear QSDEs is a pure Gaussian state. 
However, these linear QSDEs are not passive; see example 2.2 for a simulation of the case 
with γ̂ = 1

2.

Example 2.1.  Consider a single mode optical parametric oscillator (OPO) with Hamilto-

nian H = ı
4 (εa†2 − ε∗a2), ε �= 0, ε ∈ C. The OPO is coupled to a vacuum field, where the 

coupling operator is given by L =
√
γa. The corresponding M and C matrices are given by

M =
1
2

[
−Im {ε} Re {ε}
Re {ε} Im {ε}

]
, C� =

√
γ

2
[
1 ı

]
.

Based on corollary 2.1, since M is indefinite, we can conclude that the OPO system is not 

purifiable. In fact, the eigenvalues of A (2b) are given by −γ ± |ε|
2 . Proposition 2.2 implies 

that this OPO will only be WGA-stable if and only if |ε|2 < γ. Evaluating the algebraic con-
dition in (12), one can verify that the OPO will only have a pure state if γ = 0. However, if 
γ = 0, the matrix A (2b) is not Hurwitz. Hence no positive γ  can make the OPO system have 
a pure Gaussian steady state; see also [11]. A straightforward verification also shows that the 
OPO will never have a pure steady state even if the coupling operator is given by an L in the 
form (8).

Example 2.2.  Consider linear QSDEs with a coupling operator L given by (8) with L  =  10, 
and γ̂ = 0.5, and H = L†L. The corresponding A matrix is Hurwitz. To demonstrate the global 
exponential convergence of the system’s density operator towards the steady state, we simu-
late these linear QSDEs using a truncated Hilbert space quantum master equation with several 
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pure random initial density operators [33, 34]. The results of this simulation are given in fig-
ure 1. It can be seen in figures 1(a) and (b) that irrespective of the initial density operators, the 
expected value of the Lyapunov candidate operator V = H and the distance to the steady state 
are decreasing exponentially. Moreover, figure 1(c) also shows that the density operators from 
different initial conditions converge to a pure steady state; see also figure 1(d) for the Wigner 
function of the density operator for different times taken from the first sample of the master 
equation simulation.

3.  Multiple modes

In this section, we will analyze some of the properties of linear QSDEs for the case of mul-
tiple modes. Consider a quantum system P  which comprises of n modes and interacts with 
m vacuum fields. For this case, we let x� = [q1 p1 · · · qn pn]. The Hamiltonian of this sys-
tem is given by H = 1

2 x�Mx, the coupling matrix is given by L = C�x, and the scattering 

matrix is S ∈ Cm×m, where M ∈ R2n×2n, C =
[
C�

1 · · · C�
n

]� ∈ C2n×m, Ci ∈ C2×m and 
SS† = S∗S� = I. Also let 

[
C̃1 · · · C̃m

]
= C, where C̃i ∈ C2n×1, and Li = C̃�

i x corre-
sponds to a coupling operator for ith field. The linear QSDEs corresponding to this multi-
mode quantum system are as follows:

dx = Axdt + B∗dA+ BdA∗.� (18)

In this equation, dA, dA∗ are the annihilation and creation processes for the m vacuum fields, 
A = AH + AL, with AH = ΣnM, and AL = ΣnN, N = ı

2 (CC† − C∗C�), B = ıΣnCS∗, 
where the skew symmetric matrix Σn = In×n ⊗Σ. As in the case of single mode, we write 
AL = − 1

2Γ.

3.1.  Stability of multi-mode linear quantum systems

In multiple mode case, generally we cannot write the matrix A in the form of (2b). Therefore, 
the stability results that we have obtained for the single mode case may not hold for the gen-
eral multi mode case. Obviously, the weak stability property as given in proposition 2.2 is car-
ried over to the multiple-mode case. Now we examine the case of decoupled two-mode linear 
QSDEs where the Hamiltonian H is either a positive or negative operator, and both the Γ and 
M matrices are given as follows:

M =




m11 m12 0 0
m12 m22 0 0
0 0 m33 m34

0 0 m34 m44


 , Γ =

[
γ1 0
0 γ2

]
⊗ I2×2.

When ±M � 0, m11m22 − m2
12 � 0 and m33m44 − m2

34 � 0. Hence, evaluating the eigenval-
ues of A for this case as in proposition 2.1, one can verify that A is Hurwitz if and only if both 
γ1 and γ2 are strictly positive. Generalization to n mode decoupled linear QSDEs is then triv-
ial. This result is to be expected since in the decoupled case, there is no interaction between the 
modes and the stability of the overall system is determined by the stability of each mode. In 
the single mode case, proposition 2.1 implies that when the Hamiltonian is either a positive or 
negative operator, the stability of linear QSDE depends only on the coupling operators. While 
this result is carried over to decoupled multiple mode linear QSDEs, it is not clear whether it 
also holds when both M and Γ are allowed to be coupled. For this case, we need to consider 
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whether A being Hurwitz is related to AL  being Hurwitz. It is well-known that since Σn is 
non-singular and both Σn, N are skew-symmetric, AL  is derogatory where each eigenvalue 
multiplicity is greater than or equal to two [35]. Moreover, AL  is also similar to I2×2 ⊗ ÂL 
[36], where ÂL ∈ Cn×n. The following proposition gives a direct extension of proposition 2.1 
to a class of multiple mode linear QSDEs of the form (18).

Proposition 3.1.  For linear QSDEs of the form (18), A is Hurwitz only if tr(Γ) > 0. More-
over, if the Hamiltonian H is either a positive or negative operator and AH and AL  commute, 
then A is Hurwitz if and only if AL  is.

Proof.  For the first part, we see that if A is Hurwitz and since elements of A are real, then the 
sum of the eigenvalues of A is negative; i.e. 

∑2n
i=1 λi < 0. However 

∑2n
i=1 λi = tr(A) = − 1

2 tr(Γ). 
For the second part, we claim that since ±M is positive semi-definite, then the eigenvalues 
of ΣnM are imaginary or zero. Without loss of generality, assume that M is positive semi-
definite. Otherwise we can substitute M by −M. Let λ be an eigenvalue of ΣnM. Assume 
λ �= 0, since for λ = 0, the claim is true. Let

Ψ =

(
I Σn

√
M√

M λI

)
.

Using the Schur decomposition, the solutions to 0 = det(Ψ) = det(λI −Σn
√

M
√

M) 
= det(λI −

√
MΣn

√
M), for non-zero λ are purely imaginary since 

√
MΣn

√
M is skew sym-

metric. Since A and AL  commute, by the Frobenius theorem [37], there exists an invertible 
V such that AH = V−1THV and AL = V−1TLV, where TH , TL  are complex upper-triangular 
matrices. As the eigenvalues of a triangular matrix are the diagonal entries [38], then the ei-
genvalues of TH + TL  are of the form ıω + β, where ω ∈ R and β is an eigenvalue of TL. The 
result then follows by using a similarity transformation.� □ 

The following result is then an immediate consequence of proposition 3.1 as an analog of 
corollary 2.1:

Corollary 3.1.  For linear QSDEs of the form (18) where the Hamiltonian is either a posi-
tive or negative operator and 

[
H,L†L

]
= 0, then A is Hurwitz if and only if AL  is Hurwitz.

The matrix AL  depends on the coupling operators of the vacuum fields connected to the 
quantum system. In the following proposition, we show that in order to have AL  Hurwitz, it is 
necessary to have n linearly-independent coupling operators.

Proposition 3.2.  In order to have AL  Hurwitz, rank (C) has to be greater than or equal 
to n.

Proof.  In order to have AL  Hurwitz, it is necessary to have Γ of rank 2n. The matrix Σn is 
invertible, therefore we obtain

rank (Γ) = rank (Σn(CC† − C∗C�)) = rank (CC† − C∗C�) � 2 rank (C),

which is always less than 2n if rank (C) < n.� □ 
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3.2.  Purity of steady states for multiple-mode linear QSDEs

In this subsection, we give alternative necessary and sufficient conditions for linear QSDEs 
of the form (18) to have a pure Gaussian steady state. The conditions previously established 
in [11] implicitly relied on the fact that the Gaussianity of the density operator is preserved 
in linear QSDEs. However, a more general condition is also true. That is, the necessary and 
sufficient condition also holds when the initial density operator is non-Gaussian. This follows 
from the fact that for linear QSDEs, the steady state is always Gaussian regardless of the initial 
state; see proposition 2.2. Now let us recall the result from [11].

Lemma 3.1 ([11, theorem 1]).  Suppose a linear QSDE of the form (18) has a Hurwitz A 
matrix. Then the following conditions are equivalent:

	 (i)	�The steady state is pure.
	(ii)	�The steady state covariant matrix P∗ satisfies:

(P∗ +
ı

2
Σn)C = 0,� (19a)

		

Figure 1.  Quantum master equation  simulations of the linear QSDEs in example 
2.2 with 20 different initial pure density operators. (a) 〈Vt〉. (b) Trace norm distance 
between current density operator and the steady state, d(ρt, ρ∗) ≡ ‖ρt − ρ∗‖1. (c) Purity 
of ρt . (d) Wigner function of one sample quantum master equation.
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ΣnMP∗ + P∗MΣ�
n = 0.� (19b)

	(iii)	�The following equation holds:

0 = KΣnC,� (20)

K =
[
C (MΣ�

n )C · · · (MΣ�
n )2n−1C

]�
.� (21)

In order to check whether a linear QSDE has a pure steady state or not without solving for 
the steady state covariance matrix, condition (20) can be used. In the following, we will give 
an analog to proposition 2.3 for multiple-mode QSDEs, which reduces the conditions to be 
validated in condition (20) of lemma 3.1. The new criteria are then found to be related to the 
concept of nullifiers and are found to be useful for establishing the GE-stability of the steady 
state of linear quantum systems of the form (18).

Proposition 3.3.  Suppose linear QSDEs of the form (18) have a Hurwitz A matrix. Let k 
be the minimum integer such that rank (K̂) = n, where

K̂ =
[
C (MΣ�

n )C · · · (MΣ�
n )k−1C

]�
.� (22)

Then, then the steady state of the linear QSDEs is pure if and only if

C�Σn
[
K̂�(MΣ�

n )kK̂�
]
= 0.� (23)

In particular, when rank (C) = n and A is Hurwitz, the steady state is pure if and only if (23) 
is satisfied with k  =  1, or equivalently, for any i, j ∈ {1, · · · , m}

[Li,Lj] = 0,� (24a)

[[Li,H] ,Lj] = 0.� (24b)

Proof.  For the sufficiency of (23), let us define a subspace K = ker(K̂Σ�
n ). The di-

mension of K = 2n − rank (K̂Σn) = n. It is easy to verify that (23) is equivalent to 
K̂Σn

[
K̂� (MΣ�

n )kC
]
= 0. Since K̂ΣnK̂� = 0 and rank (K̂) = n, any y ∈ K  is in the 

range of K̂�. Moreover, since K̂Σn(MΣ�
n )kC = 0, MΣn is invariant on K . Therefore, for 

any integer k′ > k  and any i, (MΣ�
n )k′C̃i ∈ K . Therefore, K̂Σn(MΣ�

n )k′C = 0, which im-
plies KΣnK� = 0. Thus (20) is satisfied by the Cayley–Hamilton theorem.

For the necessity proof, lemma 3.1 implies that the steady state of linear QS-
DEs of the form (18) is pure if and only if (20) holds. As before, (20) is equivalent to 

K̃Σn
[
K̃� (MΣ�

n )nC
]
= 0, where K̃� = K̂�(k = n). It now remains to prove that K̃� 

has rank greater than or equal to n. Suppose that this is not true. Then since C has at least 
rank one (otherwise A will not be Hurwitz by proposition 3.1), then the range of (MΣ�

n )nC 
is a subset of the range of K̃�. This implies that K� has rank less than n. However, since 
A is Hurwitz, then rank (

[
Re (K�) Im (K�)

]
) = 2n [11, lemma 1]. This implies that 

2n = rank (
[
Re (K�) Im (K�)

]
) � 2rank (K�) < 2n, a contradiction. Therefore, (20) 

implies (23).
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The special case follows since when the rank of C is n, then y ∈ K  can be written as a lin-
ear combination of C̃i . For conditions (24), we notice that C̃�

i ΣnC̃j = 0 for all i, j ∈ {1, · · ·m} 
is equivalent to [Li,Lj] for any i, j. For (24b), notice that for any i, j, C̃�

i Σ�
n MΣnC̃j = 0. There-

fore, by the previous step [Ki,Lj] = 0, where Ki = (MΣnC̃i)
�x. However, Ki = ı [Li,H]. 

Therefore, for any i, j, [[Li,H] ,Lj] = 0 which completes the proof.� □ 

For the single mode case, proposition 2.1 implies that if A is Hurwitz, then the solu-
tion L|ξ〉 = 0|ξ〉 exists and proposition 2.3 shows that ρ∗ = |ξ〉〈ξ| is the only steady 
state that is also a dark state in DL,H. The following consequence of proposition 3.3 
shows that the steady state in proposition 3.3 also belongs to the set of dark states 
D{Li},H = {|ψ〉 ∈ H : Li|ψ〉 = 0, ∀i,H|ψ〉 = λH|ψ〉,λH ∈ R}; see also [39].

Corollary 3.2.  Suppose a linear QSDE of the form (18) has a Hurwitz A matrix and a pure 
steady state ρ∗ = |ξ〉〈ξ|. Then for any i, Li|ξ〉 = 0|ξ〉. Furthermore |ξ〉 belongs to the set of 
dark states D{Li},H.

Proof.  By [6, theorem 1], |ξ〉 must be the eigen-state of any Li. Suppose the condi-
tion above holds, but for some i, Li|ξ〉 = λl|ξ〉, λl �= 0. Since A is Hurwitz, we have 
λl = 〈L〉i = C̃�

i 〈x〉 = 0, a contradiction. The remaining part follows directly from (24).� □ 

Proposition 3.3 and corollary 3.2 imply that when there are less than n linearly independ-
ent coupling operators, there are more than one possible members (up to the phase number) 
the set of the dark states D{Li},H. In this case, the full characterization of the unique steady 
state is achieved by using the condition for k  >  1 in (23). Moreover, the operators Ki = K̂ix, 
where K̂i is the ith row of K̂ correspond to the nullifiers of |ξ〉; i.e. for any i, Ki|ξ〉 = 0|ξ〉. 
These nullifiers include the systems coupling operators {Lj}. It is well known that the space 
of nullifiers (linear in x) is n-dimensional, and any state |φ〉 in an n-mode quantum system is 
uniquely determined by a set of n linearly independent nullifiers [1]. Straight forward verifica-
tion also confirms that there are at most n linearly independent coupling operators {Li} for lin-
ear quantum systems. This is in-line with the fact that the space of nullifiers is n-dimensional.

Remark 3.1.  In terms of the notions of nullifiers, proposition 3.3 implies that the steady 
state of a linear quantum system, where A is Hurwitz, is a pure Gaussian state if and only if 
every coupling operator is a nullifier of the steady state, and any nullifier Ki and the Hamilto-
nian operator H construct another nullifier Kj via commutation; i.e. Kj = [Ki,H].

The steady state ρ∗ = |ξ〉〈ξ| is equal to a unique ground-state of the positive operator 
V = x�K̂†K̂x. For the general multiple-mode case, linear QSDEs where the conditions in 
corollary 2.1 are satisfied will also have pure Gaussian steady states if the condition on the 
coupling operators (24a) is satisfied. In this case, the steady state is uniquely determined by 
the coupling operators {Li}. An example of linear quantum system which has a pure Gaussian 
steady state but rank (C) < n is the two-mode OPO system in serial configuration considered 
in [11, example 2]. Notice that for this example, the constant k  =  2 in (23), and the matrix A 
is Hurwitz due to a contribution from the matrix M. We give a final result on the stability of 
linear QSDEs of the form (18) with pure Gaussian steady state which essentially generalizes 
proposition 2.4 to the multiple mode case:

Proposition 3.4.  The pure Gaussian steady states of linear quantum systems of the form 
(18) with Hurwitz A matrix are GE-stable.

M F Emzir et alJ. Phys. A: Math. Theor. 53 (2020) 055301
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Proof.  Select a Lyapunov candidate operator V = x�K̂†K̂x so that the ground state 
of V  is uniquely given by the steady state ρ∗. Evaluating the generator of V  we obtain 
L(V) = x�(NΣnK̂†K̂ + K̂†K̂ΣnN + K̂†K̂ΣnM − MΣnK̂†K̂)x. Notice that from the 
argument in the proof of proposition 3.3, MΣn is invariant on the span of the columns of 

K̂�. Also NΣnK̂† = − ı
2 C∗C�ΣnK̂† by (23). Therefore, there exist Φ,Ω ∈ Ckm×km such 

that MΣnK̂� = K̂�Φ� and NΣnK̂� = − ı
2 K̂�Ω�. Hence, we can write L(V) = −x�K̂† 

(R + R†)K̂x , where R = ı
2Ω+Φ. Notice that K̂A = −RK̂. Hence for any left eigenvec-

tor v� of R  with eigenvalue λ, v�K̂ is a left eigenvector of A with eigenvalue −λ. Hence 
Re {λ} > 0, which implies that R + R† is positive definite. Therefore, there exists σ > 0 
such that L(V) � −σV . Since V  is a positive operator and tr (Vρ) can only be zero if ρ = ρ∗, 
it follows that ρ∗ is GE-stable by lemma 2.1.� □ 

4.  Conclusions

In this article, we have given necessary and sufficient conditions for linear quantum systems to 
have pure Gaussian steady states. We have shown that nullifiers of these states can be spanned 
by operators obtained via commutation of the Hamiltonian and coupling operators. We have 
also considered whether these states are globally exponentially stable in the trace norm.
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