
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

1

SWRL Parallel Reasoning Implementation with Spark SQL

Wan Li, Huaai Kang, Dongbo Ma and Weiwei Wei

Software and Information School, Beijing Information Technology College, Beijing,
China.
Email: lee_wan@sina.com

Abstract. With the rapid development of semantic Web and big data technology, ontology data
has the characteristics of large-scale, high-speed growth and diversity which big data has. On
one hand, the conventional ontology reasoners do not scale well for large amounts of
ontologies because they are designed for run on a single machine. On the other hand, the
existing scalable reasoners are not perfect enough, for example, to completely support the
widely used Semantic Web Rule Language (SWRL) rules. This paper presents an
implementation for SWRL scalable parallel reasoning using the Spark SQL programming
model, and optimizes and processes some of the problems in the implementation.

1. Introduction
In the field of Semantic Web[1][2], based on RDF [3], RDFS [4] and OWL [5], W3C has introduced
SWRL [6] with more logical expression ability combining description logic and rule. With the rapid
development of the Semantic Web and big data technologies, ontology data has presented big data
characteristics such as large-scale, high-speed growth, and diversity. To this end, researchers have
introduced distributed computing technology into the field of Semantic Web research to explore high-
efficiency ontology reasoning methods in distributed environments [7][8][9][10].

In our previous work [11], based on the analysis of existing semantic reasoning algorithms,
combined with Spark SQL[12] which is a newer and higher level parallel computing platform with
structured data processing capabilities, we proposed a SWRL parallel reasoning method based on
Spark SQL. This paper is about the specific implementation of the method. We implemented SWRL
parallel reasoning based on Spark SQL and optimized the parallel reasoning algorithm to improve
performance.

2. Preliminary

2.1. SWRL Semantic Reasoning
A RDF triple, which is a triple of resource <s, p, o>, asserts that the relationship denoted by the
predicate is held between the subject and object of the triple. RDF defines a simple graph model to
denote relationships between resources using the format of RDF triple.

Based on RDF, both RDFS and OWL define a set of rules respectively with the ability to represent
implicit information. SWRL not only includes the RDFS/OWL Horst semantics, but also can be used
to express application-specific semantics. Reasoning is the process of deducing implicit information
from existing RDF data by using the RDFS or OWL or SWRL reasoning rules. Given an RDF graph
G, some new triples denoted as T can be derived from the RDFS or OWL or SWRL rules. Add T to G
then we can obtain a bigger RDF graph G’. The process from G to G’ is called reasoning [13].
Reasoning is an iterative process that does not end until new results are not derived.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

2

A SWRL rule r has the form (1), where B = B0∧⋯∧Bm is the body of the rule, and H = H0∧⋯∧
Hn is the head of the rule. Both Bi and Hj are RDF atoms, which are triples of resources or variables. Bi
is a body atom, and Hj is a head atom. To make a rule safe, SWRL constrain that a variable in the head
must occur at less one time in the body.

 B0∧⋯∧Bm ⇒ H0∧⋯∧Hn (1)

A variable substitution [10][14] ߮௧
?௫ is an operation that apply to an atom to replace the occurrences

of the variable ?x with a resource t. A substitution application (SA) A[φ] is a triple obtained by
applying a substitution φ to an atom A. Composition of substitutions φ1 and φ2 is also a substitution
and defined as usual in [15]. Given a fact base I and a rule r, the inference result r(I) is the smallest set
containing Hj(r)[φ] (for each 0≤j≤n) for each substitution φ such that Bi(r)[φ]∈I (for each 0≤i≤m).

2.2. Our Previous Work: SWRL Parallel Reasoning Method with Spark SQL
We divide the SWRL rule execution procedure into three stages [11]: (1) finding SA set for each body
atom (FindSA), (2) joining SA sets of all the body atoms of the rule to find out the variable
substitutions of the rule head (JoinSA) (3) applying the variable substitutions of the rule head to each
atom of the rule head (ApplySH). SQL queries are executed by Spark SQL to implement parallelized
rule execution.

Take the following rule r1 given in [10] as an example. The reasoning process is shown in figure 1.

r1: B0: (?x, worksFor, ?y1) ∧ B1: (?y1, subOrganizationOf, ?y2) ⇒ H0: (?x, worksFor, ?y2)

Figure 1. The execution workflow of rule r1

The SQL statements of the three stages are as follows:
FindSA:

SELECT t0 AS ?x, t2 AS ?y1 FROM fb WHERE t1='worksFor'

SELECT t0 AS ?y1, t2 AS ?y2 FROM fb WHERE t1='subOrganizationOf'

JoinSA:

SELECT body0.?x, body1.?y2 FROM body0, body1 WHERE body0.?y1=body1.?y1

ApplySH:

SELECT DISTINCT ?x AS t0, 'worksFor' AS t1, ?y2 AS t2 FROM headSa

3. SWRL Parallel Reasoning Implementation with Spark SQL

3.1. Reasoning Implementation for a Rule
As mentioned above, the reasoning of a rule is to use Spark SQL to execute the SQL statements of the
three stages of the rule's reasoning plan (FindSA, JoinSA and ApplySH). The SQL statements for the
three stages are already generated in the generateing rule planning step.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

3

Algorithm 1 shows the process of reasoning a rule by sequentially executing these SQL statements
of the three stages. Firstly call the Spark DataFrame's createOrReplaceTempView function to register
the input triples library tb as a SQL temporary view. Then call the findSa function to find the
substitution application (SA) set of each rule body atom. This is done by executing the previously
generated SQL statement findBodyAtomSaSql to query in the view of tb. The SA data sets of each rule
body atom are each registered as a SQL temporary view. Then call the joinSa function to join the SA
sets of all the rule body atoms to find the variable substitution of the rule header. This is done by
executing the previously generated SQL statement joinSaSql to query in the view of the SA data set of
each rule body atom obtained in the FindSA phase. The variable substitution data set of the rule header
is registered as a SQL temporary view. Then call the applySh function to apply variable substitution to
each rule header atom. This is done by executing the previously generated SQL statement
applyHeadAtomSaSql to query in the view of the variable substitution data set of the rule header
obtained in the JoinSA phase. Union the triple sets obtained by each rule header atom to get the rule's
reasoning result triple set.

Algorithm 1. Reasoning a rule with Spark SQL
Input: rulePlan (reasoning plan of a rule), tb (current triples)
Output: (derived triples by the rule)
def reasoningRule(rulePlan: RulePlan, tb: DataFrame): DataFrame = {
 tb.createOrReplaceTempView(TB_VIEW_NAME)
 findSa(rulePlan.findSaPlan)
 joinSa(rulePlan.joinSaPlan)
 return applySh(rulePlan.applyShPlan)
}
def findSa(findSaPlan: List[FindBodyAtomSaPlan]) = {
 for (findBodyAtomSaPlan <- findSaPlan)
 findBodyAtomSa(findBodyAtomSaPlan)
}
def findBodyAtomSa(findBodyAtomSaPlan: FindBodyAtomSaPlan) = {
 val bodyAtomSa = spark.sql(findBodyAtomSaPlan.findBodyAtomSaSql)
 bodyAtomSa.createOrReplaceTempView(findBodyAtomSaPlan.bodyAtomName)
}
def joinSa(joinSaPlan: JoinSaPlan) = {
 val headSa = spark.sql(joinSaPlan.joinSaSql)
 headSa.createOrReplaceTempView(HEADSA_VIEW_NAME)
}
def applySh(applyShPlan: List[ApplyHeadAtomSaPlan]): DataFrame = {
 var headTriples = createEmptyTripleDataFrame()
 for (applyHeadAtomSaPlan <- applyShPlan) {
 val headAtomTriples = applyHeadAtomSa(applyHeadAtomSaPlan)
 headTriples = headTriples.union(headAtomTriples)
 }
 return headTriples
}
def applyHeadAtomSa(applyHeadAtomSaPlan: ApplyHeadAtomSaPlan): DataFrame = {
 return spark.sql(applyHeadAtomSaPlan.applyHeadAtomSaSql)
}

3.2. Reasoning Implementation for Rule Base
The reasoning process of a rule base is divided into two steps: the first step is to parse each rule to
generate the reasoning plan in the form of SQL statements with Spark SQL and save it; the second
step is to execute the reasoning plan SQL statements with Spark SQL for reasoning. The first step and

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

4

the second step are separable. The performance of the reasonor is mainly determined by the second
step. We did some work to improve the performance of the second step. Here, we explain the
implementation of the second step.

To put it simply, the second step of the reasoning process is to execute the rule's reasoning plan one
by one, add the derived new triple facts into the fact base, and loop the reasoning until no new facts
are derived, then the reasoning ends. However, in practice, the implementation of the reasoning
process is more complicated due to the DAG mechanism of the Spark computing framework.

The reasoning of the rule base requires iterative calculations. Therefore, Spark's calculation process
DAG will be particularly long. The entire DAG calculation needs to be completed before the result is
obtained. During this period, datasets with a large amount of lineage will be generated, which will
result out of memory. Therefore, it is necessary to truncate the lineage. It is a possible way to truncate
the lineage by Spark's checkpoint mechanism. However, checkpoint stores data in the disk file system,
writes many files to the file system every short time, and does not automatically delete the previous
checkpoint file, which is detrimental to the file system performance of the entire cluster. Therefore, we
use the method of writing and then reading the file in our own program to truncate the lineage. In
terms of time efficiency, there is not much difference with Spark's checkpoint mechanism, but it does
not generate a lot of files, which improves space efficiency.

If the new triples that are reasoned by a rule are added to the triple library tb, and tb is applied to
the next rule to reason more new triples, then the iterative reasoning process will cause tb to generate a
large amount of lineage. Since the triple library tb may be large, frequently truncating the lineage of tb
by writing and then reading the file will affect system performance. To resolve this problem, we have
improved the algorithm to avoid the large amount of lineage of tb by using intermediate results.

Algorithm 2. Reasoning rule base with Spark SQL
Input: rulesPlan (reasoning plans of rules), tb0 (original triples)
Output: (derived triples)
def reasoningRules(rulesPlan: List[RulePlan], tb0: DataFrame): DataFrame = {
 var tb = tb0
 var derived = createEmptyTripleDataFrame()
 var tbLoop0 = tb0.union(derived)
 var loopDerived = createEmptyTripleDataFrame()
 var hasDerived = true
 do {
 hasDerived = false
 for (rulePlan <- rulesPlan) {
 val ruleDerived = reasoningRule(rulePlan, tb)
 loopDerived = loopDerived.union(ruleDerived).except(tbLoop0)
 loopDerived = loopDerivedTruncateLineage(loopDerived)
 tb = tbLoop0.union(loopDerived)
 }
 if (!loopDerived.isEmpty()) {
 derived = derived.union(loopDerived).except(tb0)
 derived = derivedTruncateLineage(derived)
 tbLoop0 = tb0.union(derived)
 loopDerived = createEmptyTripleDataFrame()
 hasDerived = true
 }
 } while (hasDerived)
 return derived
}

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

5

Algorithm 2 shows the iterative reasoning process of the rule base. Where tb0 is the original triples
library before starting the inference, and derived is all the new triples that have been reasoned before
starting a loop of reasoning on the rule base, tbLoop0 is the triples library before starting a loop of
reasoning on the rule base, loopDerived is the new triples reasoned in current loop, ruleDerived is the
new triples reasoned in current rule. Using tb0 union derived to update tbLoop0, using tbLoop0 union
loopDerived to update tb, using loopDerived union ruleDerived to update loopDerived itself, using
derived union loopDerived to update derived itself. To truncate lineage on loopDerived and derived
that avoid the large amount of lineage of tb, and the loopDerived that is frequently truncated is small,
while the larger derived (which is a subset of tb, smaller than tb) is truncated less frequently (once per
loop).

3.3. Eliminating Duplicated Facts
It is inevitable that some results of the rules duplicate the facts in the knowledge base during the rule
execution process. The duplicated facts not only degrade system performance but also increase
management overhead. However, removing duplication also bring additional computation to the
reasoner. Existing systems adopt a series of duplication elimination strategies [8][9][10]. We used
several strategies to remove all duplicated facts, as follows: (1) removing all duplications before the
reasoning process begins; (2) using the DISTINCT clause to remove duplications in the derived data
in the ApplySH stage of each rule; (3) after each rule is reasoned, use the except method to eliminate
the duplications in loopDerived and the duplications between loopDerived and tbLoop0; (4) after each
time looping through all the rules, use the except method to eliminate the duplications in derived and
the duplications between derived and tb0.

3.4. SWRL Reasoning Implementation with RDFS/OWL/SWRL Reasoning Rules
SWRL reasoning is the process of deducing implicit information from existing RDF data by using the
RDFS/OWL/SWRL reasoning rules. A rule dependency exists when the evaluation results of a rule
trigger another rule execution. Thus improper rule evaluation order will conduct unnecessary job
running and bring significant performance degradation [9][10]. We optimize the execution order of
RDFS and OWL rules according to the method in [9]. Optimizing the execution order of SWRL rules
is what we will do in the future. The SWRL reasoning implementation with the RDFS/OWL/SWRL
reasoning rules is shown in Algorithm 3.

Algorithm 3. Reasoning RDFS/OWL/SWRL rule base with Spark SQL
Input: rdfsRulesPlan (reasoning plans of RDFS rules), owlRulesPlan (reasoning plans of OWL

rules), swrlRulesPlan (reasoning plans of SWRL rules), tb0 (original triples)
Output: (derived triples)
def reasoningMixedRules(rdfsRulesPlan: Dataset[RulePlan], owlRulesPlan: Dataset[RulePlan],

swrlRulesPlan: Dataset[RulePlan], tb0: DataFrame): DataFrame = {
 val rulesPlan = rdfsRulesPlan.union(owlRulesPlan).union(swrlRulesPlan).collect.toList
 return reasoningRules(rulesPlan, tb0)
}

4. Conclusion and Future Work
In our previous work, based on the analysis of existing semantic reasoning algorithms, combined with
Spark SQL which is a newer and higher level parallel computing platform with structured data
processing capabilities, we proposed a SWRL parallel reasoning method based on Spark SQL. This
paper is about the specific implementation of the method. We implemented SWRL parallel reasoning
based on Spark SQL and optimized the parallel reasoning algorithm to improve performance. In the
future work, we intend to further improve the reasoning system and use large data sets to evaluate our
system.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012020

IOP Publishing

doi:10.1088/1757-899X/719/1/012020

6

5. Acknowledgment
This work was supported in part by the Beijing Municipal Education Commission Science and
Technology Plan Project (KM201710857001).

6. References
[1] Tim Berners-Lee. Semantic Web Road Map. September 1998.

http://www.w3.org/DesignIssues/Semantic.html.
[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,

2001, 284(5):35-43.
[3] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.

http://www.w3.org/TR/rdf-concepts/.
[4] W3C. RDF Schema. http://www.w3.org/TR/rdf-schema/.
[5] W3C. OWL 2 Web Ontology Language: Profiles. https://www.w3.org/TR/owl2-profiles/.
[6] W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/.
[7] Li Ren. Research on Key Technologies of Large-Scaled Semantic Web Ontologies Querying

and Reasoning based on Hadoop. Chongqing University PhD thesis. 2013.
[8] Urbani, J., Kotoulas, S., Maassen, J., et al.:WebPIE: a web-scale parallel inference engine using

MapReduce. J. Web Semant. 17(44), 59-75 (2012).
[9] Gu, R., Wang, S., Wang, F., et al.: Cichlid: efficient large scale RDFS/OWL reasoning with

Spark. In: IPDPS, pp. 700-709 (2015).
[10] Haijiang Wu, Jie Liu, Tao Wang, Dan Ye, Jun Wei, Hua Zhong. Parallel Materialization of

Datalog Programs with Spark for Scalable Reasoning. 17th International Conference on Web
Information System Engineering (WISE 2016), pp. 363-379.

[11] Wan Li, Huaai Kang, Dongbo Ma and Weiwei Wei. SWRL Parallel Reasoning Method with
Spark SQL. 18th IEEE/ACIS International Conference on Computer and Information Science
(ICIS 2019), pp. 270-273.

[12] Spark SQL, DataFrames and Datasets Guide. http://spark.apache.org/docs/latest/sql-
programming-guide.html

[13] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu, “Sor: a practical system for
ontology storage, reasoning and search,” in Proceedings of the 33rd international conference on
Very large data bases. VLDB Endowment, 2007, pp. 1402–1405.

[14] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Boston (1995).
[15] Ullman, J.D.: Principles of Database and Knowledge-base Systems, vol. I. Computer Science

Press, New York (1988).

