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Abstract. In this paper, based on recursive least square algorithm and resonant magnetic 
coupling wireless power transmission technology, the magnetic coupling mutual inductance 
value, which is a significant factor affecting the transmission power and efficiency of wireless 
transmission system, is predicted. According to the characteristics of the system, a 
mathematical model of LCC-P-type topology structure is established. Through mathematical 
deduction and analysis, combined with MATLAB/Simulink simulation results are obtained, 
and its feasibility is verified by experimental results. 

1. Introduction 
Wireless Power Transmission (WPT) is a technology that can obtain electric power without direct 
contact.  

The resonant magnetic coupling (RMC) WPT studied in this paper is a hot way of WPT at present. 
Because of its high efficiency, long distance, low loss, low radiation, selective transmission and other 
advantages, this method has been widely applied in the field of WPT. In the RMC WPT system, 
monitoring of transmission status can greatly ensure the safe operation and coordinated control of the 
system. However, the detection process is cumbersome and the cost is high. Therefore, the purpose of 
this paper is to find out the key electrical parameters of the primary side which can reflect the overall 
parameters of the system by studying the equivalent circuit model of the RMC WPT system, and 
finally realize the monitoring of the electrical parameters of the RMC WPT device measurement. 

2. WPT System Based on LCC-P Topology 

2.1. Selection of Topological Structure 
Generally, RMC WPT systems have five typical topologies: SS-type topology, SP-type topology, PS-
type topology, PP-type topology and LCC-P-type topology. In practical experiments, it is found that 
when the frequency of the WPT system is close to the resonant frequency, the series (S) structure will 
lead to a large primary current, which is often unable to work at the resonant frequency. The LCC-P-
type topology, because of the existence of series inductance L3, can produce stable power transfer even 
if the coil deviates or the load changes. It generates a constant current in the transmission coil [1], so 
that the current in the transmission coil does not rise very much. Therefore, it can make the WPT 
system work at a frequency that is very close to the resonance point, and in the theoretical calculation, 
it can also produce stable power transfer. It can be assumed that the system works in a fully resonant 
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state, which greatly simplifies the theoretical calculation. Therefore, this paper takes the WPT system 
with LCC-P topology as an example for structural analysis.  

The equivalent circuit model of WPT system with LCC-P-type topology is shown in figure 1. up is 
a high frequency AC voltage source. L1, C1, L3, C3, L2 and C2 constitute primary and secondary side 
resonance networks respectively. R1, R2 and R3 are the internal resistances of L1, L2 and L3 respectively 
(because the conductance of capacitors is very small, the influence of capacitance conductance on the 
model is neglected here). M  is the mutual inductance between primary and secondary coils. RL is the 
load resistor that is connected to simulate the charging of different types of wireless charging devices 
in the resonant circuit. I1 and I2 are the primary and secondary side high frequency resonance current, 
respectively. 

 

 

Figure 1. The equivalent circuit model of WPT system with LCC-P-type topology 

2.2. Mapping Relation of Electrical Parameters between Primary Side and Secondary Side 
Before theoretical analysis, some assumptions need to be made: 

1) Circuit parameters L1, L2, L3, C1, C2, C3, R1, R2 and R3 are known quantities measured. 
2) Under normal operating conditions, these circuit parameters do not change much, so they are 

generally considered constant [2-3]. 
3) The internal resistance R1, R2 and R3 of the coil inductances L1, L2 and L3 of the primary and 

secondary sides are very small relative to the inductance value, and their influence on the resonance 
frequency can be neglected. When the system works in the full resonance state, it can be considered 
that the frequency of the high frequency AC voltage (the frequency used in the WPT system in this 
study is about 300 kHz) is satisfied 
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After the above hypothesis analysis, in the equivalent circuit model of the new LCC-P topology, the 
L1 and C1, L3 and C3 of the primary side are fully resonant, while the L2 and C2 of the secondary side 
are fully resonant. The theoretical analysis based on this is as follows. 

In this WPT system, if the effective value phasor of high frequency AC voltage up is set to 

0p pU U  


, that is, the effective value of up is Up, and the initial phase angle is 0°, the loop 

equation can be formulated according to the equivalent circuit model 
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Among them, 1I


 and 2I
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 are the effective phasors of the primary and secondary AC currents i1 and 

i2 respectively. 
Solute the (2) equation yields a current parameter expression of the follows for the primary side 
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M

L2 C2

R2

RL

i2

up

R1

C3 L1

i1
L3

R3

C1



CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012039

IOP Publishing

doi:10.1088/1757-899X/719/1/012039

3

2
1 2 2

1 3 2

2 2 2
1 3 2

( )( )

( )( )

L
p

L

p
L

R R
I U

M R R R R

j M
I U

M R R R R






    

 
   

 

 
                                            (3) 

From the deduction of formula (2) ~ (3), it can be seen that the current parameters of the primary 
and secondary sides are not only related to the parameters of WPT system itself, but also to the high 
frequency AC voltage. However, the key electrical parameters of the primary side, which can reflect 
the overall parameters of the system, should not change with the change of high frequency AC voltage, 
so these parameters are not the key electrical parameters we are looking for. In the next section, we 
will look for the primary key electrical parameters that can reflect the overall parameters of the 
system. 

2.3. Key Electrical Parameters of Primary Side 
In the actual experiment, the high frequency AC voltage is realized by inverters. The circuit structure 
is shown in figure 2. Ud is the input DC voltage of the primary side, Cd is the large capacitor parallel to 
Ud, S1~S4 is the full bridge inverter, D1~D4 is the feedback diode (or continuous current diode), and up 
is the equivalent input voltage of the resonant circuit, that is, the resonant circuit. 
 

 

Figure 2. LCC-P-type Topological Equivalent Circuit Model with Inverter 
 
When the phase difference between positive and negative voltage of up is 180°, the Fourier series 

expansion shows that the fundamental effective value of high frequency AC voltage on the primary 
side has the following quantitative relationship with the primary input DC voltage Ud: 

2

4d pU U


                                                                  (4) 

According to the law of conservation of power, the input power of the inverters should be equal to 
the output power, ignoring the power loss caused by the inverters. From this we can get: 
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Because the WPT system is in full resonance state at this time, and the dimension of 
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 are in phase, the relationship between DC 

voltage Ud and current Id can be obtained by combining formula (3), (4) and (5): 
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5. Conclusion 
In this paper, through research and design, the key electrical parameters of the primary side which can 
reflect the overall parameters of the system are found. Thus, the key electrical parameters of the 
primary side can be adjusted timely and accurately according to the changes of the electrical 
parameters corresponding to the secondary side. The monitoring of the electrical parameters of the 
RMC WPT device is realized. The experimental results show that the error is within the allowable 
range, the accuracy of the RLS algorithm is higher, and the convergence speed is faster. Therefore, the 
safe operation and coordinated control of RMC WPT system are greatly guaranteed. 
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