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Abstract. The Synthetic Aperture Radar (SAR) echo simulation is to obtain the SAR original 
echo signal by performing reverse operation on the pre-set SAR image. The traditional 
platforms used to implement the simulation algorithms like central processing unit (CPU) + 
graphic processing unit (GPU) and digital signal processor (DSP) + field programmable gate 
array (FPGA) have disadvantages such as high power consumption or complicated 
programming. In order to make up for these shortcomings, the implementation structure of the 
SAR echo simulation algorithm was improved to be applicable on the heterogeneous 
embedded platform with the basic SAR simulation algorithms digitized and decomposed. Base 
on the improved structure, a mobile GPU based heterogeneous computing platform with one 
multiprocessor system-on-chip (MPSoC) and multiple GPUs was designed to implement SAR 
echo simulation algorithm. The platform can simultaneously utilize the real-time nature of 
register transfer level (RTL) design and the ease of programming on GPU. It can achieve 
relatively faster computing power at lower power consumption and has the characteristics of 
miniaturization and mobility. 

1. Introduction 
SAR is a kind of imaging radar used for remote sensing to create two-dimensional or three-
dimensional images of scene objects. Its high resolution, strong transmissivity and long detection 
range make it highly military and civil value. However, the acquisition of the real SAR echo data 
requires the support of airborne or spaceborne radar, which requires high cost so that it is necessary to 
develop a SAR echo simulator.  

When the traditional platform performs SAR echo simulation algorithm based on general-purpose 
computer, it takes too much time to simulate the scene with large amount of data, so it is difficult to 
realize real-time echo simulation. Most computing platforms that can be used for real-time echo 
simulation are based on FPGAs and DSPs. As a programmable device, FPGA has a wealth of logical 
computing resources and has the advantage of flexible configuration. A large number of independent 
multiply operations in echo simulation can be implemented in a highly parallel manner by means of 
hardware resources such as dedicated multipliers in the FPGA. Wang et al [1] designed a platform of 
four FPGAs to realize the generation of SAR echo signals and optimized the implementation of the 
slant range calculation, which is the most computationally intensive part of the entire algorithm. 
Although implementing the algorithm with FPGA can achieve its real-time parallel computing ability 
and flexibility, it has the disadvantages of large programming workload and high logic design 
difficulty. Chen [2] used DSP and FPGA to realize the fast simulation of radar echo. The DSP chip is 
responsible for the process of range direction information integration. The FPGA chip mainly 
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completes the process of slant range calculation, FFT, complex multiplication and IFFT. The 
cooperation between different computing units is realized by the heterogeneous form, but the multi-
core parallel computing capability of the DSP chip is insufficient, so there is still room for 
improvement in the process of range direction information integration. 

The rapid development of GPU provides a promising and efficient computing platform for SAR 
echo simulation. Li [3] realized SAR echo simulation algorithm on the GPU, but only stayed on a 
single GPU for optimization. Jing et al [4] implemented SAR echo simulation algorithm on dual GPUs. 
The SAR echo simulation using GPU platforms described above is still based on a desktop or server 
platform and has the problems of large volume and high power consumption, which is not suitable for 
scenarios with high mobility requirements. Therefore, it is necessary to design a SAR echo simulation 
platform that combines high performance, low power consumption and small size for these scenarios. 
On the other hand, with the demand of machine learning and deep learning, embedded GPU 
processors have been greatly developed, such as NVIDIA's Tegra series SoC.  

In order to further improve the integration and mobility of the SAR echo simulators, this paper 
proposed an embedded heterogeneous computing platform based on one MPSoC and multiple 
embedded GPU processors. By arranging different computing tasks on different processors, the real-
time SAR echo simulation can be realized on the embedded platform with high integration, small size 
and low power consumption. 

2. SAR Echo Simulation Algorithm and it’s Embedded Design 

2.1. SAR Echo Simulation Algorithm 
The most commonly used detection pulse in SAR is the linear frequency modulation (LFM) pulse, 
which can be written as 

 
2

0( ) ( )exp( 2 )r r rs j f K                                                    (1) 

where   is the time variable in seconds, rK  is the LFM rate in hertz per second, 0f  is the carrier 

frequency in hertz and ( )r   is the window in time domain or the pulse envelope. Suppose a single 

point target is located in the beam footprint, the baseband echo of the single point target can be written 
as [5] 

 
2

0 0 0( , ) ( 2 ( ) / ) ( ) exp{ 4 ( ) / }exp{ ( 2 ( ) / ) }r a c rs A R c j f R c j K R c                  (2) 

where '
0 0 exp( )A A j  is the complex backscatter coefficient,  and   are the fast time variable 

and slow time variable, respectively, in seconds, ( )a   is the antenna pattern, c  is the speed of light 

in meter per second, and ( )R   is the slant range of the point target in meter. 
In a more general scenario, there should be continuous targets or scatter points which make up the 

whole surface target reference scene in the beam footprint. Thus the backscatter coefficient becomes 
to be a three dimensional function with two dimension according to the scatter surface and the other in 
the slow time  , and we call it as range direction scatter function (RDSF). With this function denoted 

as ( , ) '( , ) exp{ ( , )}g g j        , the baseband echo of the surface targets can be written as 

 ( , ) ( , )bbs g h        (3) 

where ( , )h    is the impulse response of the unified single target and it is formulated as [5] 

 
2

0( , ) ( 2 ( ) / ) ( ) exp{ 4 ( ) / }exp{ ( 2 ( ) / ) }r a c rh R c j f R c j K R c                    (4) 

It is difficult to directly implement equation (3) and equation (4) since they are the continuous form. 
Another problem in implementing equation (3) and equation (4) is that the parameters in them are 
coupled. For example, both ( , )g    and ( )R   is not only space variant but also slow time variant.   
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In order to simplify the problem, for   can be seen as a discrete variable, which indicates the 
sampling time in the azimuth direction, equation (3) and equation (4)  can be rewritten as [5] 

 
2
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Where  

                                0( , ) ( , ) ( )exp{ 4 ( ) / }t i i a i c ig g j f R c                                                  (7) 

With a dedicated i , equation (6) can be regarded to execute a two dimensional convolution for 
there is a two dimensional scatter surface. Moreover equation (5) represents the i-th sampling along 
the slow time and meanwhile it is the i-th range direction echo. 

There are three important implications in equation (3)-(6): 
(1) With different slow time (azimuth) sampling point, equation (5) and equation (6) are 

independent. That means although slow time sampling i  is sequencing in the real world, it doesn't 

matter that the k-th sample is calculated earlier than the l-th one, even if k l . It is also doesn't matter 
that they are calculated at the same time, thus range direction echo can be calculated in parallel. 

(2) Although ( , ), 0,1,..., 1t ig i I     in equation (7) is two dimensional in the scatter surface for 

a dedicated i , dimension reduction could be employed via a digitization of equation (6) and equation 

(7) in order to ease the implementation. 
(3) In equation (6), the convolution calculation requires massive calculation resources. 
As mentioned above in implication (2), the discrete sampling in range (resulting in range cells) and 

discrete scatter surface are introduced so that RDSF in equation (7) can be approximately expressed as 

 _ _ 0
_

( , ) ( , ) ( ) exp{ 4 ( ) / }t n rc i n rc i a i c rc i
n rc

g g j f R c             (8) 

where _n rc  denotes the index of the scatter points located in the same range cell. According to the 
calculation of the RDSF in equation (8), all of the scatter points in the whole two dimensional scatter 
surface should be traversed and there are 4 steps of calculation for each dedicated azimuth sample: 

(1) for every scatter point, the slant range is calculated and then it is approximate to a proper range 
cell, 

(2) for every scatter point, the phase modulation term 0exp{ 4 ( ) /rc ij f R c   is calculated, 

(3) for every scatter point, the backscatter coefficient _( , )n rc ig    and the antenna pattern 

modulation ( )a i c   are multiplied, and finally, 

(4) for every range cell, all scatter points located in are integrated. 
For the 4 steps above to calculate the RDSF in equation (8), the range cells and scatter points are 

located in the range-azimuth two dimensional surface, and it doesn’t matter which range cell or which 
scatter point is calculated first. That means they can be calculated simultaneously, and the only 
requirement is that equation (8) is calculated before equation (6). 

As summarized, to calculate equation (3)-(8) an embedded architecture can be proposed. 
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2.2. Embedded Design of SAR Echo Simulation Algorithm 
The embedded architecture of SAR echo simulation algorithm is presented in Figure 1. For the parallel 
nature of calculation along the azimuth samples, the whole task is firstly partitioned into sub routine 
for several azimuth sample subsets, which could be parallel assigned to separate processing units, thus 
all the range direction echoes of these subsets are computed in parallel. Then inside the procedure in 
every separate processing unit, there is a repetition to traverse all azimuth points in the corresponding 
subsets. Meanwhile there are two kinds of different requirements on calculation in these procedures: 
one is RDSF calculation which requires parallel calculation along all scatter points; the other is the 
convolution of scatter function and the detection pulse which requires massive and real-time 
computing. 
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Figure 1. Embedded architecture of SAR echo simulation algorithm	
 
With the different requirements of the calculation tasks depicted in Figure 1, different kinds of 

processing units could be properly adapted. For task partitioning, small amount of computing but 
relatively complex controlling is required, so an ARM processor may be suitable to be employed. For 
RDSF calculation, because the two-dimensional massive scatter points need to be processed in parallel, 
GPUs are suitable to be used. And finally, due to massive and real-time calculation of convolution, 
FPGAs are most suitable for it. 

3. Prototype Design of Heterogeneous SAR Echo Simulator 

3.1. Hardware Design 
Base on the architecture depicted in Figure 1 and the analysis presented above, a heterogeneous 
computing platform featuring in one MPSoC and four GPUs is proposed in Figure 2. The 
heterogeneous platform is mainly composed of an MPSoC as the central control node, GPU 
computing nodes, switching nodes and a storage system. GPU computing nodes and switching nodes 
are connected through PCIe interface. Switching nodes and the central control node are connected 
through SRIO interface. 
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The central control node uses the XILINX’s Zynq-7000 series MPSoC. GPU computing nodes use 
the NVIDIA’s JETSON Tegra X2 modules. Switching nodes use the XC7K70T from XILINX's 
Kintex-7 series FPGA, which is used to implement the communication interconnection between the 
central control node and all GPU computing nodes. The fabricated platform prototype is shown in        
Figure 3. 
 

MPSOC

GPU3 GPU4

GPU1 GPU2
Memory

SW SW

SW SW

        

Figure 2. MPSoC+4 GPUs platform structure       Figure 3. The fabricated simulator prototype 

3.2. Software Design 

3.2.1. Software architecture. Porting the architecture in Figure 1 into hardware prototype shown in 
Figure 2 and        Figure 3, the proposed software architecture for implementation is presented in 
Figure 4. PS of Zynq SoC is used to partition calculation tasks for different azimuth sample subsets 
and assign them to GPUs. GPUs are employed to calculate the RDSF. Finally PL of Zynq SoC is 
mainly responsible for convolution operations. 
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Figure 4. Software architecture of SAR echo simulation algorithm 

3.2.2. Zynq SoC software. When PS of Zynq SoC initializes the tasks and scene data, it sends the data 
to GPU0, GPU1, GPU2 and GPU3, so that they can calculate the point target echoes at the sampling 
time of 4N, 4N+1, 4N+2 and 4N+3 respectively. Thus the azimuth samples are equally partitioned into 
four subsets and an average payload along the four GPUs are achieved. 

When GPUs send the RDSF according to an azimuth sampling time to PL of Zynq SoC, the PL 
adopts a convolution engine to perform the convolution in frequency domain, with the detection pulse 
in frequency domain preset by PS. The convolution in frequency domain performs the procedure of 
FFT on RDSF, multiplication of detection pulse in frequency domain and finally IFFT operation, 
which decrease the computation complexity. PL mainly implements the convolution engine and 
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multiplexes along all azimuth samples, so the workload of RTL programming is highly reduced. When 
PL of Zynq SoC completes convolution, the final result is summarized on PS of Zynq SoC. 

3.2.3. GPU software. RDSF in equation (8) is calculated by a four-step procedure as discussed in 
chapter 2.1, which can be divided into two stages with high parallelism respectively. Two kernel 
functions are opened for these two stages in each GPU. In the first kernel function, each point target 
corresponds to one thread. In each thread, the calculation of slant range, range cell, phase modulation 
term, backscatter coefficient and antenna pattern modulation are implemented. In the second kernel 
function, different threads in the same block correspond to the product term in Equation (8) of 
different point targets in the same range cell. In each block, the accumulation of RDSF is implemented 
by using the reduction algorithm. For a dedicated azimuth sample, the procedure to calculate RDSF is 
presented in Figure 5. 
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Figure 5. GPU kernel function operation diagram 
 

In the first kernel function, it is assumed that the size of surface target reference scene is a rN N
pixels, where aN  is the sample number of azimuth direction and rN  is the sample number of range 

direction. At each sampling instant, a rN N  threads are opened, where aN  is the number of blocks 

and rN  is the number of threads in each block. In each thread, slant range, phase and range cell of the 

corresponding point target are calculated. 
In the second kernel function, it is assumed that there are J range cells in the result of the former 

and there are 1 2, ,..., JK K K points in different range cells. Suppose that 
1 2max{ , }JK K K K ,...,  

and K is integer powers of 2. J K  threads are opened. When the number of points in a range cell is 
less than K, the value in the corresponding thread is assigned to 0. Then, the accumulation of product 
term in Equation (8) in the same range cell is realized by reduction algorithm. In the reduction 
algorithm, at the first step, the algorithm simultaneously implements the addition of the 0th and the 
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( / 2)K th, the 1st and the ( / 2 1)K  th, ..., thus obtaining / 2K addition results. After 2log K steps, 

we get the RDSF of the corresponding rang cell. 

4. Test Results and Analysis 
In the echo simulation experiment, the simulation platform parameters are shown in Table 1. The echo 
simulation of surface target reference scene used in this paper is shown in Figure 6 and its size is 1024 
× 1024 pixels. The echo simulation is performed by the heterogeneous computing platform and then 
the generated echo data is imaged by the Rang-Doppler algorithm, which is shown in    Figure 7. 
 

Table 1. Simulation platform parameters. 

Parameter Value 
CUDA version 9.0 

CUDA core number 256*4 
Memory size 8GB 

Memory bandwidth 58.3GB/S 
 

                             

Figure 6. Original image of the simulated surface target   Figure 7. The simulated SAR image 
 
In order to evaluate the performance of the architecture designed in this paper, the paper compares 

the time consumption and typical power consumption with literature [1], [3] and [6]. The test results 
are shown in Table 2. Compared with the traditional CPU+GPU architecture, the simulator proposed 
in this paper not only takes less time but also consumes less power. The time consumption of literature 
[3] is 114 times that of this paper, while the power consumption is 1.5 times that of this paper. The 
time consumption of literature [6] is 44 times that of this paper, while the power consumption is 6.8 
times that of this paper. Compared with FPGA architecture, there is still a certain gap in computing 
performance, but the GPU modules used in this paper are low-power products and totally the proposed 
simulator prototype typically consumes less power. 

 
Table 2. Comparison to results of different platforms. 

Platform architecture Main device Main device Time consuming 
(ms) 

Typical power 
consumption(W)

Zynq SoC+GPU 
(This paper) 

XC7Z100 + 
4*Tegra X2 

1024*1024 3.87 45 

CPU+GPU[3] GeForce GT620M 1024*1338 441.6 70 
CPU+GPU[6] Tesla K20C 1024*1024 172 310 

FPGA[1] 4* StratixII 1000*1000 2.0 80 
 
The detailed time-consuming decomposition of the simulator prototype proposed in this paper is 

shown in Table 3. It can be seen that it takes most of the time for data transmission, which means 
wider bandwidth of data interaction among multiple devices is required. 
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Table 3. Time-consuming composition. 

Component Time consuming(ms) 
Calculation 0.73 

Data transmission 3.14 
Total 3.87 

5. Conclusion 
This paper digitized and decomposed the basic SAR simulation algorithm, proposed an embedded 
implementation structure, and designed a heterogeneous computing platform based on one MPSoC 
and multiple GPUs to implement the proposed algorithm. Compared with traditional platforms, the 
proposed platform features in higher integration, smaller size, better mobility, and higher energy 
efficiency. 
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