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Abstract. In this paper, we investigate the problem of direction of arrival (DOA) estimation of 
unfolded coprime arrays with successive-MUSIC algorithm which cascades multiple signal 
classification (MUSIC) algorithm and rotational invariance techniques (ESPRIT).We propose 
An algorithm with low computational complexity and high estimation accuracy, which first use 
ESPRIT algorithm for initial estimation, then according to the results of initial estimation 
narrow the search scope, finally, more accurate estimation results are obtained by MUSIC 
algorithm. Compared with the traditional MUSIC algorithm, this algorithm only needs to 
conduct a small range of angle search, which greatly reduces the algorithm complexity. 
Compared with the traditional ESPRIT algorithm, this algorithm also effectively improves the 
angle estimation performance of the algorithm. Moreover, comparing with traditional coprime 
linear arrays, the enhanced degrees of freedom (DOFs) can be achieved due to larger array 
aperture, Simulations are presented to validate the superiority of the proposed algorithm. 

1. Introduction 
In recent years, a new array structure coprime array [1-3] has aroused wide interest, its advantage is to 
provide a larger array aperture [4], improved estimation performance [5] and enhanced DOFs [6]. A 
large number of effective algorithms are applied to DOA estimation in coprime array. Such as ESPRIT, 
MUSIC [7], PARAFAC algorithm as well as others. The effective estimation algorithms of coprime 
array are mainly defuzzification methods and spatial smoothing algorithms [8].  The DOA estimation 
of two submatrices is carried out by defuzzification method respectively, and the only DOA estimation 
value is obtained by comparing the estimation results with the mutual quality characteristics of 
subarray elements. Although the method is easy to implement, the space degree of freedom is greatly 
reduced by the method of estimating two submatrices separately.  

In this paper, we investigate the problem of DOA estimation of unfolded coprime arrays. The 
unfolded coprime array is obtained by reversing one of the coprime linear arrays (CLA) to the right of 
the origin. We proposed a low complexity and high DOA estimation precision of algorithm, by 
combining the ESPRIT - MUSIC cascading algorithm and unfolded coprime array. on the one hand 
the proposed algorithm can play coprime array on the advantages of effectively improve spatial 
degrees of freedom, on the other hand, the proposed algorithm can fully combine the advantages of 
MUSIC algorithm and ESPRIT algorithm, improve the estimation accuracy of the algorithm while 
effectively reducing the complexity of the algorithm. numerical simulation verified the effectiveness 
of the proposed algorithm. 
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2. Data Model 
Consider unfolded coprime arrays configuration which consists of two uniform linear subarrays, The 
spacing of the subarray to the left of the origin is 𝑑1 = 𝑁𝜆/2 , the number of subarray elements is 𝑀, 
the spacing of the subarray to the left of the origin is 𝑑2 = 𝑀𝜆/2 , the number of subarray elements is 
𝑁, where 𝑀 and 𝑁 are coprime integers and 𝜆 denotes the signal wavelength. Its array topology is 
shown in figure 1. 
 

0

0

Subarray 1

Subarray 2

 
Figure 1. Unfold coprime arrays structure  

 
The unfolded coprime arrays composed of subarray 1 and subarray 2 overlaps at the origin, and the 

positions of other subarrays elements do not overlap except at the origin. The position of each array 
element on the expanded matrix can be expressed as 

𝐿𝑠 = {(−𝑚1𝑑1, 0), |𝑚1 = 0,1,2⋯𝑀 − 1} ∪ {(0,𝑚2𝑑2), |𝑚2 = 0,1,2⋯𝑁 − 1}          (1) 

The origin of the arrays can be Shared by two subarrays, so the number of unfolded coprime arrays 
is 𝑀 +  𝑁 −  1, but can provide 𝛰 (𝑀𝑁) degrees of freedom. 

Considering unfolded coprime arrays, it is divided into subarray 1 and subarray 2. The array 
manifolds of subarray 1 and subarray 2 are defined as follows 

𝒂1(𝜃𝑘) = [𝑒𝑗2𝜋(𝑀−1)𝑑1 𝑠𝑖𝑛 𝜃𝑘/𝜆,⋯ , 𝑒𝑗2𝜋𝑑1 𝑠𝑖𝑛 𝜃𝑘/𝜆, 1]𝑇                             (2) 

𝒂2(𝜃𝑘) = [1, 𝑒−𝑗2𝜋𝑑2 𝑠𝑖𝑛 𝜃𝑘/𝜆,⋯ , 𝑒−𝑗2𝜋(𝑀−1)𝑑2 𝑠𝑖𝑛 𝜃𝑘/𝜆]𝑇                        (3) 

The direction matrix of subarray 𝑖 is defined as 

𝑨𝑖 = [𝒂𝑖(𝜃1),𝒂𝑖(𝜃2),⋯ ,𝒂𝑖(𝜃𝑘)]                                                     (4) 

The source matrix is defined as 

𝑺 = [𝒔𝟏, 𝒔𝟐,⋯ , 𝒔𝑲]𝑻                                                                      (5) 

Among, 𝒔𝑘 = [𝑠𝑘(1), 𝑠𝑘(2),⋯ , 𝑠𝑘(𝐽)], (𝑘 = 1,2,⋯ ,𝐾), 𝐽 represents snapshots. 
Then, the received signal of the subarray 𝑖 is defined as 

𝑿𝑖 = 𝑨𝑖𝑆 + 𝑁𝑖                                                                         (6) 

Among,𝑵𝑖 represents noise matrix. 
Considering the whole arrays, it is no longer divided into subarray 1 and subarray 2. The array 

manifold of the unfolded coprime arrays is defined as 

𝒂(𝜃𝑘) = [𝑒
𝑗2𝜋(𝑀−1)𝑑1 𝑠𝑖𝑛𝜃𝑘

𝜆 ,⋯ , 𝑒
𝑗2𝜋𝑑1 𝑠𝑖𝑛𝜃𝑘

𝜆 , 1]𝑇1, 𝑒−
𝑗2𝜋𝑑2 𝑠𝑖𝑛𝜃𝑘

𝜆 ,⋯ , 𝑒−
𝑗2𝜋(𝑁−1)𝑑2 𝑠𝑖𝑛𝜃𝑘

𝜆 ]𝑇    (7) 

The direction matrix is defined as 

𝑨 = [𝒂(𝜃1),𝒂(𝜃2),⋯ ,𝒂(𝜃𝑘)]                                                 (8) 

Then, the received signal of the arrays is defined as 

𝑿 = 𝑨𝑺 + 𝑵                                                                           (9) 

Among, 𝑵 ∈ 𝐶(𝑀+𝑁−1)×𝐽 represents noise matrix. 
Get 𝐽 snapshot to obtain unfolded coprime arrays covariance matrix 𝑹� estimated 
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𝑹� = 1
𝐽
∑ 𝑿(𝑗)𝑿𝐻(𝑗)𝐽
𝑗=1                                                              (10) 

The eigenvalue decomposition of the signal covariance matrix can be expressed as 

𝑹� = 𝑬𝑆𝑫𝑠𝑬𝑆𝐻 + 𝑬𝑁𝑫𝑁𝑬𝑁𝐻                                                           (11) 

3. The Proposed Algorithm 
In this section, we first use ESPRIT algorithm to make the initial estimation, and then use the result of 
the initial estimation to determine the angle search range. Finally, we use MUSIC algorithm to 
complete the signal angle parameter estimation. 

3.1. Initial Estimation 
Firstly, the direction matrix 𝑨𝑖 and receiving signal matrix 𝑿𝑖 of subarray 𝑖 are divided into equations 
(12) and (13) respectively 

𝑨𝑖 = �
𝑎𝑖1
𝑨𝑖2� = �𝑨𝑖1𝑎𝑖2

�                                                                   (12) 

𝑿𝑖 = �
𝑥𝑖1
𝑿𝑖2� = �𝑿𝑖1𝑥𝑖2

�                                                                   (13) 

Among, 𝑨𝑖1  and 𝑨𝑖2 are matrices composed of 𝑀𝑖 − 1  rows before 𝑨𝑖  and 𝑀𝑖 − 1  rows after 𝑨𝑖 
respectively. 𝑿𝑖1 and 𝑿𝑖2 are matrices composed of 𝑀𝑖 − 1 rows before 𝑨𝑖  and 𝑀𝑖 − 1 rows after 𝑨𝑖 
respectively. Then the construction matrix 𝒁𝑖  can be obtained by combining the output of 𝑿𝑖1 and 𝑿𝑖2. 

𝒁𝑖 = �𝑿𝑖1𝑿𝑖2
� = �𝑨𝑖1𝑨𝑖2

� 𝑺 + 𝑵𝑖                                                        (14) 

Among, 𝑺 is source matrix, 𝑵𝑖 represents noise matrix.𝑨𝑖2 = 𝑨𝑖1𝜱𝑖 ,𝜱𝑖 = 𝑑𝑖𝑎𝑔{𝑒−𝑗𝜇𝑖1 ,⋯ , 𝑒−𝑗𝜇𝑖𝑘}. 
𝜱𝑖 represents the rotation operator matrix. 

To estimate direction of arrival (DOA) 𝜃�𝑘
𝑖𝑛𝑖  which is based on matrix 𝒁𝑖 . It is necessary to 

estimate 𝜱𝑖.The signal subspace composed of 𝑿𝑖1 and 𝑿𝑖2 rotates phase 𝜇𝑖𝑘. 
The covariance matrix 𝑹𝑖𝑧 = 𝒁𝑖𝒁𝑖𝐻 is constructed for 𝒁𝑖, and the signal subspace 𝑬𝑖𝑧 is obtained by 
eigenvalue decomposition. Then there is a matrix 𝑻𝑖 that makes the following equation valid 

𝑬𝑖𝑧 = �𝑬𝑖1𝑬𝑖2
� = � 𝑨𝑖1

𝑨𝑖1𝜱𝑖
�𝑻𝑖                                                      (15) 

Among，𝑬𝑖1 is composed of lines one to 𝑀𝑖 − 1 of 𝑬𝑖𝑧 ,and 𝑬𝑖1 = 𝑨𝑖1𝑻𝑖, 𝑬𝑖2 is composed of lines 
𝑀𝑖 of 𝑬𝑖𝑧 to the last line, and 𝑬𝑖2 = 𝑨𝑖1𝜱𝑖𝑻𝑖  without considering the influence of noise 

𝑬𝑖2 = 𝑬𝑖1𝑻𝑖−1𝜱𝑖𝑻𝑖                                                            (16) 

In this case 

𝑻𝑖−1𝜱𝑖𝑻𝑖 = 𝑬𝑖1+ 𝑬𝑖2                                                             (17) 

Comparisons between 𝜃�𝑘1
𝑖𝑛𝑖and 𝜃�𝑘2

𝑖𝑛𝑖  obtained by subarray 1 and subarray 2 of the unfolded 
coprime arrays. then get initial estimation 𝜃�𝑘

𝑖𝑛𝑖. 

3.2. Accurate Estimation 
After get 𝜃�𝑘

𝑖𝑛𝑖, through the use of MUSIC algorithm space spectrum function in the interval[𝜃�𝑘
𝑖𝑛𝑖 −

𝛥,𝜃�𝑘
𝑖𝑛𝑖 + 𝛥] (𝛥 is a small value) within the search theta or get more precise 𝜃�𝑘. 

Pmusic(𝜃𝑘) = 1
𝒂𝐻(𝜃𝑘)𝑬𝑁𝑬𝑁

𝐻𝒂(𝜃𝑘)                                                      (18) 
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Among, 𝒂(𝜃𝑘) is obtained by 𝑬𝑁 according to (11). By looking for the crest to estimate the direction 
of arrival (DOA), The maximum 𝐾 peaks relative to 𝜃�𝑘 are the Angle parameters of 𝐾 sources to be 
estimated. 
Remark 1. The number of source searches are required in the case of multiple sources. 

3.3. Detailed Steps of the Proposed Algorithm 
Step 1. Compute 𝑹� and perform eigen decomposition of 𝑹� to obtain 𝑬�𝑛. 
Step 2. Compute 𝜃�𝑘1

𝑖𝑛𝑖and 𝜃�𝑘2
𝑖𝑛𝑖 according ESPRIT algorithm. 

Step 3. Obtain source angle initial estimates of 𝜃�𝑘
𝑖𝑛𝑖according to the subarray 1 and subarray 2 

coprime relations. 
Step 4. Through one-dimensional MUSIC algorithm in [𝜃�𝑘

𝑖𝑛𝑖 − 𝛥,𝜃�𝑘
𝑖𝑛𝑖 + 𝛥]  for spectral peaks 

searching. 
Step 5. Obtain 𝜃�𝑘 by the maximum 𝐾 peaks. 

4. Performance Analysis 

4.1. Complexity Analysis 
In this part, we evaluate the complexity calculation of the proposed algorithm and compare it with 
other related methods. For ESPRIT algorithm, the major complexity calculation is caused by the 
covariance matrix calculation, eigenvalue decomposition. Suppose that the number of elements of 
subarray 1 is 𝑀 , the number of elements of subarray 2 is 𝑁, the covariance matrix calculation needs 
𝑂{𝐽(𝑀2 +𝑁2)} and eigenvalue decomposition of the covariance matrix requires 𝑂{𝑀3 + 𝑁3}. The 
complexity required to obtain 𝜳𝑖 is  𝑂{2𝐾3 + 3𝐾2(𝑀 +𝑁 − 2)}，and eigenvalue decomposition of 
𝜳𝑖 requires 𝑂{2𝐾3}. Consequently, the total complexity of ESPRIT is given by {4𝛫3 + 𝑀3 + 𝑁3 +
(𝑀2 + 𝑁2)𝐽 + 3𝐾2(𝑀 + 𝑁 − 2)}. For the proposed algorithm, the major complexity calculation is 
caused by using ESPRIT for initial estimation and MUSIC for spectral peak searching. The required 
complexity of local range MUSIC algorithm search is 𝛰{𝑛1[(𝑃 − 𝐾)(2𝑃 + 1)]} , so the total 
complexity of proposed algorithm is given by 𝛰{𝑛1[(𝑃 − 𝐾)(2𝑃 + 1)] + 4𝛫3 + 𝑀3 + 𝑁3 +
(𝑀2 + 𝑁2)𝐽 + 3𝐾2(𝑀 + 𝑁 − 2)}.For MUSIC algorithm, the calculation of covariance, eigenvalue 
decomposition and spectral peak searching requires  O{𝑛[(𝑃 − 𝐾)(2𝑃 + 1)] + 𝑃3 + 𝑃2𝐽} .Among, 
total number of elements 𝑃 equals 𝑀 + 𝑁 − 1, 𝑛1,𝑛 is the number of peak searches, 𝐾 is the number 
of sources, 𝐽 represents the number of snapshots. where 𝑛1 = 60/Δ and 𝑛 = 2𝐾/Δ  represent the search 
times corresponding to finding peaks and the search interval of spectral peak is 𝛥 = 0.01. 

We summarize the computational complexity of above algorithms in Table 1. Moreover, Figure 2 
depicts the complexities of the different algorithms versus different 𝑁, where 𝑀 = 4, 𝐾 = 3, 𝐽 = 500. 
The complexity comparison versus snapshots is given in Fig. 3, where 𝑀 = 4, 𝑁 = 5 and 𝐾 = 3. It is 
observed from Figs. 2 and 3 that the complexity of the proposed algorithm is Significantly lower than 
MUSIC algorithm but is slightly higher than ESPRIT algorithm. It can be concluded that the 
complexity of the algorithm mainly comes from peaks search. Because the proposed algorithm greatly 
reduces the number of peaks searches, the complexity is greatly reduced. 

 
Table 1. Complexity of different methods. 

Algorithm Computational complexity 

Proposed 𝛰{𝑛1[(𝑃 − 𝐾)(2𝑃 + 1)] + 4𝛫3 + 𝑀3 +𝑁3 + (𝑀2 + 𝑁2)𝐽
+ 3𝐾2(𝑀 + 𝑁 − 2)} 

Esprit 𝛰{4𝛫3 + 𝑀3 + 𝑁3 + (𝑀2 + 𝑁2)𝐽 + 3𝐾2(𝑀 + 𝑁 − 2)} 
MUSIC O{𝑛[(𝑃 − 𝐾)(2𝑃 + 1)] + 𝑃3 + 𝑃2𝐽} 
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Figure 2. Complexities versus different 𝑁       Figure 3. Complexities versus different snapshots 

4.2. Advantages 
The main advantages of the proposed algorithm are summarized as follows: 
1) The proposed algorithm can achieve high resolution one-dimensional DOA estimation. 
2) The proposed algorithm compared with the MUSIC algorithm, the complexity is greatly reduced. 

The performance of DOA estimation is better than ESPRIT algorithm, and very close to the high 
complexity of the MUSIC algorithm. 

3) With the same array element number, the unfolded coprime arrays have a larger array aperture 
than that of CLA and ULA. 

5.  Simulation Results 
The DOA estimation performance of the MUSIC algorithm, ESPRIT algorithm and proposed 
algorithm in unfolded coprime arrays was evaluated by 1000 Monte Carlo simulations. The Root 
Mean Square Error (RMSE) is defined as 

𝑅𝑀𝑆𝐸 = 1
𝐾
∑ � 1

1000
∑ ��𝜃�𝑘,𝑙 − 𝜃𝑘�

2�1000
𝑙=1

𝐾
𝑘=1                                              (19) 

Among, 𝜃�𝑘,𝑙 is the estimated value of 𝜃𝑘 in Monte Carlo simulation. Assuming that there are three 
sources in space, the angular information: 𝜃1 = 10° ,𝜃2 = 30°，𝜃3 = 50° , 𝑀  and 𝑁 represent the 
number of elements of subarray 1 and subarray 2, 𝑑1 = 𝑁𝜆/2 ,𝑑2 = 𝑀𝜆/2 .𝑑1 and 𝑑2 represent the 
spacing of elements of subarray 1 and subarray 2, 𝐽 represents the number of snapshots, respectively. 

5.1. RMSE Results of the Proposed Algorithm  
Figure 4 gives the parameter estimation performance of the proposed algorithm with unfolded coprime 
arrays versus snapshots, where 𝑁 = 5,𝑀 = 4 . As depicted in Fig. 4, The number of snapshots 
increases, the sampling data increases. The DOA estimation performance of the algorithm becomes 
better as the snapshots increases. Figure 5 gives the parameter estimation performance of the proposed 
algorithm with unfolded coprime arrays versus 𝑁, where 𝐽 = 200,𝑀 = 4. As depicted in Fig. 5, Array 
element number increases, namely diversity gain increases. The DOA estimation performance of the 
algorithm becomes better as the array number increases. 
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Figure 4. RMSE performance versus snapshots     Figure 5. RMSE performance versus 𝑁 

5.2. RMSE Results of Different Methods 
Figure 6 gives the parameter estimation performance of the proposed algorithm, MUSIC algorithm 
and ESPRIT algorithm with unfolded coprime arrays under the same conditions, where 𝐽 = 200,𝑀 =
4,𝑁 = 5. As depicted in Fig. 6, Array element number increases, namely diversity gain increases. The 
DOA estimation performance of the algorithm becomes better as the array number increases. the 
parameter estimation performance the proposed algorithm is very close to MUSIC algorithm but is 
Significantly higher than ESPRIT algorithm. 
 

 
Figure 6. RMSE performance of different algorithms versus SNR 

6. Conclusion 
In this paper, we propose a low computational complexity and high estimation accuracy algorithm 
which cascades MUSIC and ESPRIT with unfolded coprime arrays. From the perspective of DOA 
estimation performance, this algorithm uses spectral peak search in a small range, so the DOA 
estimation performance of this algorithm is very close to MUSIC algorithm, and better than ESPRIT 
algorithm using eigenvalue decomposition. In terms of the complexity of the algorithm, since the 
algorithm uses local search instead of traversing the whole angle range, the complexity of the 
algorithm is far lower than that of the MUSIC algorithm, but only slightly higher than that of ESPRIT 
algorithm. Therefore, the algorithm is of great significance for the research on DOA estimation of 
unfolded coprime arrays. Numerical simulations corroborate the superiority of the algorithm in terms 
of computational complexity and estimation performance. 
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