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Abstract. The fingerprint characteristic of mobile terminal’s signal is unique and it can be used 
to identify the source of the signal. In all the characteristics, the characteristic of transient 
signals has been more favoured because of the greater diversity. However, the duration of 
transient signal is extremely short and difficult to accurately detect. Therefore, in order to 
successfully obtain the fingerprint characteristic, most of the research results are based on the 
laboratory environment. In this paper, through the methods of differential constellation 
trajectory and neural network, we realize the extraction and recognition of fingerprint 
characteristic of mobile phone’s transient signal in the real environment. Meanwhile, by 
controlling the distance between the terminal and the base station, we also studied the 
recognition of fingerprint characteristic under different noise conditions. 

1. Introduction 
With the development of smart phones, wireless communication plays an increasingly important role 
in people's lives. Especially since this year, 5G will gradually become the new mainstream 
communication standard.  However, no matter how the communication standard is updated, GSM has 
a status that cannot be ignored in the history of communication. In this paper, we will mainly consider 
the fingerprint characteristic of GSM signal, especially the GSM 900M frequency band (Figure 1 is 
the corresponding band diagram). 
 

 
Figure 1. GSM 900M band diagram 

 
Since the first day of wireless communication, electronic attack and defence at the information 

level has followed. With the development of technologies such as mobile payment, wireless network 
terminals are increasingly vulnerable to various information intrusion methods: WIFI phishing attacks, 
data sniffing attacks, etc. to overcome these problems, people usually need to perform various 
encryption and authentication on the transmitted information. In this process, people usually need to 
complete operations such as key generation, key agreement, and key distribution. This will cause a lot 
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of waste on communication resources, and will bring a series of security problems. The uniqueness of 
the fingerprint characteristic of mobile terminal’s signal provides the possibility to solve the above 
problems. 

RF fingerprint characteristic is the characteristic vector or vector set extracted from the received 
wireless signal that uniquely identifies the transmitter individual and embodying the hardware 
characteristics of the wireless device transmitter. The characteristic has a certain stability; the 
characteristics are the same when the detection conditions are the same. Which means if the conditions 
of the two communication terminals do not change, the fingerprint characteristic of them will not 
change. If the adversary joins this communication, the characteristic will change because the 
conditions of communication have changed. 

In 2003, Hall et.al. firstly propose RF fingerprinting in the identification of wireless device 
terminals [1]. RF fingerprinting uses the characteristic information extracted by the transient part of 
the mobile terminal transmitter signal to uniquely identify the terminal, and builds an anti-intrusion 
detection system that recognizes the RF fingerprint of IEEE 802.11b devices and successfully 
countered attacks such as MAC address cloning [2]. The characteristic is unique when the terminal is 
powered on, and divide terminal fingerprint characteristic recognition process into three stages: the 
transient starting point detection stage, the signal characteristic extraction stage and the signal 
characteristic recognition stage [3]. This concept is also applied to the field of ZigBee, Bluetooth and 
GSM terminals [4-9].   

According to the timing of signal acquisition, the RF fingerprinting can be divided into transient 
RF fingerprint features and steady-state RF fingerprint features. Transient RF fingerprint refers to the 
characteristics of electromagnetic waves when the transmitter is turned on and off. This signal is 
determined by the hardware itself. Steady-state characteristics are characteristics of the signal itself, 
such as frequency offset, amplitude error, phase error, IQ offset, IQ imbalance, etc. Transient 
characteristic duration is very short, need to determine the starting point, difficult to collect. Steady-
state characteristic has lower requirements for acquisition equipment, easy to collect. However, the 
steady-state characteristic may change, have lower difference, and it is not possible to extract 
identifiable characteristic in a signal. Therefore, transient characteristic better reflect terminal 
differences. And in transient signal-based RF fingerprinting, detecting the starting point of a transient 
signal is a critical step. 

In order to more clearly depict the characteristics of transient signals, a method based on 
differential constellation trajectory map is used for RF fingerprint characteristic extraction [10]. In 
[10], the USRP equipment is used to draw the differential constellation using the signals generated by 
QPSK, BPSK, MSK, etc. The corresponding graphics are extracted, and the relevant characteristic are 
extracted to verify the reliability and practicability of the proposed method. It is also confirmed that in 
the device recognition process, the wireless terminals can be identified without extracting the a priori 
information of the transmitter. 

The rest of the article is structured as follows: Section 2 gives the introduction of fingerprint 
characteristic extraction method, the differential constellation trajectory. Section 3 gives the 
introduction of fingerprint characteristic recognition method, the neural network and machine learning. 
Section 4 gives the specific experimental methods and experimental results. 

2. Differential Constellation Trajectory 
In digital communication, the constellation trajectory is directly processed by processing the sampled 
signal in the complex plane. It can provide a convenient way to study the relationship between the I/Q 
signals and visually represent the relationship between the signals. 

When using oversampling to collect the radio frequency fingerprint characteristic, the constellation 
trajectory can be obtained by drawing the constellation map through the determined sampling points. 
This is because the nonlinear response of the amplifier and the interference factors from the filter are 
expressed in the constellation trajectory map, and the received signal characteristics are more closely 
distinguished in the transmitter signal transmission. 
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Under normal circumstances, there will exists errors such as frequency offset between the 
transmitter and the receiver, which will lead to instability of the constellation trajectory map. For a 
giving transmit signal  

𝑺(𝑡) = 𝑿(𝑡)𝑒−2𝜋𝑗𝑡𝑓𝑐𝑡1                                                        (1) 

Then, in the ideal experimental case, the receiving signal is 

𝒀(𝑡) = 𝑺(𝑡)𝑒2𝜋𝑗𝑡+𝜑𝑓𝑐𝑡2                                                       (2) 

If there is a deviation between the receiving end and the transmitting signal, for example, 𝑓𝑐𝑡1 and 
𝑓𝑐𝑡2 have a deviation Δ𝑓, then  

𝒀(𝑡) = 𝑿(𝑡)𝑒2𝜋𝑗𝑡+𝜑Δ𝑓                                                        (3) 

Obviously, the constellation trajectory map is a time-dependent function. It will rotate over time 𝑡, 
and makes us difficult to compare different images through the constellation. To overcome this 
problem, we need to differentially process the data under the premise of retaining the frequency offset. 
Then  

𝑫(𝑡) = 𝒀(𝑡) ∗ 𝒀∗(𝑡 + 𝑛) = 𝑿(𝑡) ∙ 𝑿(𝑡 + 𝑛)𝑒−2𝜋𝑗𝜃𝑛                               (4) 

Although the image after the difference still rotates, the rotation is a stable value and is related to 
the frequency offset, so that we can better observe the characteristics of the frequency offset. 

3. Neural Network and Machine Learning 
Since the 1980s, neural networks have developed very rapidly. In our experiment, we mainly used 3 
different neural network schemes. We will introduce them separately. 

3.1. BP Neural Network 
BP neural network is currently the most widely used neural network architecture for its ability to learn 
complex multidimensional mappings. It is a nonlinear dynamic systeme. It is made up of many simple 
processing units, and the larger the number, the better the recognition effect. 

The main feature of BP neural network is that the signal is forward propagating and the error is 
back propagating. The model of BP neural network is shown in the figure 2 below: 
 

 
Figure 2. 3-layer BP neural network 
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The process of BP neural learning network is mainly divided into two stages, the first stage to the 
forward propagation of the output layer; the second stage is the error return to the input layer back 
propagation. The input to the neuron includes the sum of its deviation and the weighted input. The 
output of a neuron depends on the input of the neuron and its transfer function. The network 
implements the calculation by mapping the input values to the output values. The specific mapping 
problem to be performed determines the number of inputs and the number of outputs from the network. 
Therefore, we need to choose the best BP neural network structure according to the type of problem. 

3.2. ALEXNET Neural Network 
Compared with BP neural networks, ALEXNET neural networks are more mature and more complex. 
AlEXNET has five layers of convolution, three layers of fully connected network (see Figure 3). At 
the same time, ALEXNET can use two GPUs for calculation at the same time, which greatly improves 
the computational efficiency. 
 

 
Figure 3. ALEXNET neural network training structure 

3.3. Support Vector Machines 
Support Vector Machine (SVM) is a new machine learning algorithm based on statistical learning 
theory with the goal of minimizing structural risk. It is mainly composed of 3 parts: Preprocessor, 
SVM classifier, and decision system. The preprocessor is to process the data into the form of SVM. 
The SVM classifier is the core component of the SVM system and needs to be used to train data 
training to achieve performance. Finally, the judgment equations in the decision system are pained to 
determine the category in which the object is located. 

SVM was originally designed for binary classification problems. It need to construct a suitable 
multi-class classifier when dealing with multiple types of problems. In this paper, we combine our 
SVM classifier with the histogram of oriented gradients (HOG) feature to complete our experiments. 

In an image, the appearance and the shape of the object can be described by gradient of the shape 
and the colour. Therefore, we can divide the image into individual cell elements, and analyze every 
individual cell element. For easy calculations, we can also normalize the date in each cell. 
Normalization can also achieve better results for changes in the color of image. Then, we can process 
the graphical gradients and features between cell and cell. According to all these results, we can draw 
the direction histogram to form the characteristic of each image for comparative recognition. Figure 4 
gives the implementation process of HOG. 
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Figure 4.  The implementation process of HOG 

4. Our Experiments 
The experimental equipment we experimented with includes hardware devices and software devices. 
On the software device, we chose GNU Radio. We use it to write data processing modules, and 
integrated the modules to form a complete wireless communication system model. On the hardware 
devices, we use Hack Rf and USRP devices as our transmitter and receiver, respectively. The Hack Rf 
(see Figure 5) is a software radio external device that mainly use to transmit and receive signals, and 
to mix and sample the signals. The USRP (Figure 6) is also a general-purpose software radio 
peripheral. It handles high-speed general-purpose operations such as up-and-down conversion, 
interpolation, and extraction. 
 

 
Figure 5. The Hack Rf 

 

 
Figure 6. The USRP 

 
After we obtain the signals by the Hack RF. We first perform GMSK modulation on the received 

GSM signal. Then, we analyse the modulation results by means of spectrum analysis, frequency 
finding and filtering. So as to facilitate our SDCCH detection. With SDCCH, we can extract the 
transient characteristics of the signal, and then draw a differential constellation trace. Finally, by the 
neural networks and machine learning algorithms, we identify and classify the signals. Figure 7 gives 
the process of our experiment. 
 

 
Figure 7. The process of fingerprint characteristic of signal 

4.1. Characteristic Extraction 
Before processing the acquired data, we use the GNUradio device to map the differential constellation 
traces of the GMSK modulated signals under ideal conditions. After the GMSK modulation of the 
transmitted signal, it is received by the USRP and then processed directly by GNUradio, and the 
interference caused by noise and multipath can be almost ignored. Set a delay amount during the 

Windous 
detection 

Image 
normalizat

ion 
Gradient 

calculation 

Cell block 
gradient 

histogram 
weight 

calculation 

Cell block 
contrast 

normalizat
ion 

combinati
on 

Original 
signal 

Signal 
acquisition 

and 
processing 

SDCCH 
detection 

Extracting 
the 

transient 
characteris

tics 

Drawing 
differential 
constellati
on trace 

Characteri
stic 

Recognitio
n 



CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012034

IOP Publishing

doi:10.1088/1757-899X/719/1/012034

6

 
 
 
 
 
 

receiving process, and delay and differentially calculate the signal each time. Then a differential 
constellation trajectory map in an ideal state can be obtained. 

For the single GSM signal that has been acquired, we use Matlab to draw the differential 
constellation for processing. Then we select the appropriate differential value to directly process the 
data differentially. By this method, a differential constellation trajectory of single GSM signal with 
obvious features can be obtained. 

In order to better reflect the differential constellation, we performed a visualization process to mesh 
the differential constellation trajectory map, by giving red, green and blue colors according to the 
density. The higher the density, the closer the color is to red. Note that, when drawing differential 
constellation trajectories, there will be different results with different interval difference. Figure 8 
gives some example of differential constellation trajectory maps with different interval difference. 

When choosing the appropriate differential interval, the differential constellation trajectory map 
will have a better contour, and it will also have a better shape on the curve near the center inside the 
contour. When the difference interval is large, the image contour will form a wide range of distortion, 
and it will not exhibit a good range of polymerization. The center curve will become blurred and 
cannot be a good recognition standard. When the difference interval is too small, it can be found that 
the constellation trajectory maps no longer exhibits a circular range that can be clearly observed, but 
the range appears to decrease, and the aggregation is too obvious. Furthermore, When the difference 
interval is close to 1, the image becomes a single line and no longer provides any feature information. 
Therefore, appropriate differential spacing is a great help for getting good fingerprint features. 
 

 
Figure 8. Differential constellation trajectory maps with different interval difference (From left to 

right, followed by smaller intervals, appropriate intervals, larger intervals) 
 

From the differential constellation, we can observe both steady-state and transient characteristics. 
Due to the slot structure of GSM, the transient characteristics of the transmitter at the guard interval 
are fully reflected in the curve near the center of the contour of the differential constellation trajectory 
map. It is generated due to the differential data of the fading data of the guard interval, and the 
differential data of the fading data of the partial guard interval and the header bits of the frame, which 
represent the characteristics of the transmitter at the transmission interval of the base station. 
Compared with the traditional wavelet transform and instantaneous frequency, envelope and other 
methods, the differential constellation trajectory map directly shows these data in a curve, which is 
more intuitive. 

After the differential constellation trajectory map is drawn, it is easy to find that in the differential 
constellation trajectory map of different devices, there will be a certain difference in the contour curve. 
And this is the key to the fingerprint recognition of mobile devices. Through the difference between 
the contour and the curve within the contour, we can effectively classify different terminal devices. 

In addition, we found that there are still differences in the differential constellation traces of 
different terminal signals over longer distances. This means that the differential constellation 
trajectory can still be used as an important feature to identify the terminal signal under certain 
interference conditions. 
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4.2. Characteristic Recognition 
In this chapter, we will realize the characteristic recognition of terminal signals from different angles 
through three different methods. They are BP neural network, ALEXNET neural network and Support 
Vector Machine, respectively. 

4.2.1. BP Neural Network. This experiment uses the neural network tool system nntool that comes 
with Matlab to realize the construction of BP network. We only need to input the length of the vector 
and the number of output classifications, and then we can get a good neural network after training. 

First, we perform binary recognition on the obtained 41*41 differential constellation trajectory map 
and convert the image into a matrix. Then, we input the obtained matrix into the BP network training 
box as the basic, and train and tested autonomously another part of the samples. 

Here, we set up three layers of hidden layers, which are 25, 12, and 1 neuron, as shown in the 
figure 9. It can be seen that the BP neural network responds very well to our data, and only with a 
short training layer number, we have obtained considerable classification results, as shown in the 
figure 10. 
 

 
Figure 9. BP Neural Network 
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Figure 10. Training performance of BP 

 
We also process the RF fingerprint of the terminal equipment tested in a noisy environment, and 

identify the single picture when the trained model has been deployed to determine whether it can 
successfully match the data in the sample library. Although the vast majority of samples have been 
identified. Unfortunately, one sample was misidentified. The reason is because BP needs to convert 
the original differential constellation trace map into binary data when inputting data. This can cause 
some data distortion and even loss of critical data. 

4.2.2. ALEXNET neural network. ALEXNET can directly process the differential constellation trace 
map (41*41*3) without binarization. This means that the image can be fully recognized for 
recognition without losing some of the key information that can be avoided. 
First, we input the differential constellation trace map drawn by the close-range terminal GSM data 
into the ALEXNET neural network system. Training parameters are shown in Table 1. 
 

Table 1. Training parameters of AVERNET 

Training Parameter Value 
Training Sample Set 200 
Minimum Batch Size for Each Training Iteration 30 
Maximum Number of Training Cycles 30 
Initial Learning Rate 0.0001 
Network Verification Frequency (Iterations) 30 
Data for Verification during Training Auto 

 
The training results (as shown in Figure 11) show that the training speed is very fast, and all test 

samples can be correctly classified, and excellent experimental results are obtained (Root mean square 
error (RMSE) and Loss Value Function (LOSS) are both reduced to a very low range, as shown in 
Figure 12). 
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Figure 11. The training results of AVERNET 

 

 
Figure 12. The RMSE and LOSS of training 

 
After that, we imported the trained neural network and input the differential constellation trace map 

drawn under the loud noise into the SOFTMAX with the connection layer, which obtained a good 
recognition effect. The results show that the recognition of the constellation map in the ALEXNET 
training network has achieved a recognition rate of 98.5%. 

4.2.3. Support Vector Machine. 
As mentioned earlier, the SVM system is more about the binary classification problem. In order to use 
the SVM system, we took the fitcecoc function carried by MATLAB to complete our experiment. We 
input the extracted HOG features and the required classification labels through fitcecoc. Then, we can 
classify them with SVM, create sample sets, and predictively identify them by predict function. 

As with the ALEXNET experiment, we used SVM for machine learning processing with a sample 
set of 200 different constellation trajectory maps and tested the test set. The results show that the 
recognition of the constellation map in the SVM has also achieved a recognition rate of minimum 85%. 
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5. Conclusion 
In this paper, by analysing the terminal GSM transient signal, the differential constellation trajectory 
representing the signal fingerprint characteristics are obtained. Then, according to these fingerprint 
characteristics, the characteristic recognition of the wireless terminal device is realized by means of 
neural network and machine learning. Our experiments show that BP neural network, AVERNET 
neural network and SVM have excellent recognition ability for differential constellation trajectory 
feature recognition under reasonable training conditions. Moreover, the recognition of AVERNET 
neural network and SVM is more accurate than BP neural network. 
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