
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

1

Implementation of SAR Echo Simulation Algorithm on
Heterogeneous Embedded Computing Platform

Xiaoyu Hou1, Daying Quan1, Wei Fan1, Xiaoping Jin1 and Hengliang Liu2

1Key Laboratory of Electromagnetic Wave Information Technology and Metrology of
Zhejiang Province, College of Information Engineering, China Jiliang University,
Hangzhou, China
2Hangzhou Jianpu Information Co. Ltd., Hangzhou, China
Email: 862376302@qq.com; qdy@cjlu.edu.cn; l312361206@163.com

Abstract. The Synthetic Aperture Radar (SAR) echo simulation is to obtain the SAR original
echo signal by performing reverse operation on the pre-set SAR image. The traditional
platforms used to implement the simulation algorithms like central processing unit (CPU) +
graphic processing unit (GPU) and digital signal processor (DSP) + field programmable gate
array (FPGA) have disadvantages such as high power consumption or complicated
programming. In order to make up for these shortcomings, the implementation structure of the
SAR echo simulation algorithm was improved to be applicable on the heterogeneous
embedded platform with the basic SAR simulation algorithms digitized and decomposed. Base
on the improved structure, a mobile GPU based heterogeneous computing platform with one
multiprocessor system-on-chip (MPSoC) and multiple GPUs was designed to implement SAR
echo simulation algorithm. The platform can simultaneously utilize the real-time nature of
register transfer level (RTL) design and the ease of programming on GPU. It can achieve
relatively faster computing power at lower power consumption and has the characteristics of
miniaturization and mobility.

1. Introduction
SAR is a kind of imaging radar used for remote sensing to create two-dimensional or three-
dimensional images of scene objects. Its high resolution, strong transmissivity and long detection
range make it highly military and civil value. However, the acquisition of the real SAR echo data
requires the support of airborne or spaceborne radar, which requires high cost so that it is necessary to
develop a SAR echo simulator.

When the traditional platform performs SAR echo simulation algorithm based on general-purpose
computer, it takes too much time to simulate the scene with large amount of data, so it is difficult to
realize real-time echo simulation. Most computing platforms that can be used for real-time echo
simulation are based on FPGAs and DSPs. As a programmable device, FPGA has a wealth of logical
computing resources and has the advantage of flexible configuration. A large number of independent
multiply operations in echo simulation can be implemented in a highly parallel manner by means of
hardware resources such as dedicated multipliers in the FPGA. Wang et al [1] designed a platform of
four FPGAs to realize the generation of SAR echo signals and optimized the implementation of the
slant range calculation, which is the most computationally intensive part of the entire algorithm.
Although implementing the algorithm with FPGA can achieve its real-time parallel computing ability
and flexibility, it has the disadvantages of large programming workload and high logic design
difficulty. Chen [2] used DSP and FPGA to realize the fast simulation of radar echo. The DSP chip is
responsible for the process of range direction information integration. The FPGA chip mainly

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

2

completes the process of slant range calculation, FFT, complex multiplication and IFFT. The
cooperation between different computing units is realized by the heterogeneous form, but the multi-
core parallel computing capability of the DSP chip is insufficient, so there is still room for
improvement in the process of range direction information integration.

The rapid development of GPU provides a promising and efficient computing platform for SAR
echo simulation. Li [3] realized SAR echo simulation algorithm on the GPU, but only stayed on a
single GPU for optimization. Jing et al [4] implemented SAR echo simulation algorithm on dual GPUs.
The SAR echo simulation using GPU platforms described above is still based on a desktop or server
platform and has the problems of large volume and high power consumption, which is not suitable for
scenarios with high mobility requirements. Therefore, it is necessary to design a SAR echo simulation
platform that combines high performance, low power consumption and small size for these scenarios.
On the other hand, with the demand of machine learning and deep learning, embedded GPU
processors have been greatly developed, such as NVIDIA's Tegra series SoC.

In order to further improve the integration and mobility of the SAR echo simulators, this paper
proposed an embedded heterogeneous computing platform based on one MPSoC and multiple
embedded GPU processors. By arranging different computing tasks on different processors, the real-
time SAR echo simulation can be realized on the embedded platform with high integration, small size
and low power consumption.

2. SAR Echo Simulation Algorithm and it’s Embedded Design

2.1. SAR Echo Simulation Algorithm
The most commonly used detection pulse in SAR is the linear frequency modulation (LFM) pulse,
which can be written as

2

0() ()exp(2)r r rs j f K        (1)

where  is the time variable in seconds, rK is the LFM rate in hertz per second, 0f is the carrier

frequency in hertz and ()r  is the window in time domain or the pulse envelope. Suppose a single

point target is located in the beam footprint, the baseband echo of the single point target can be written
as [5]

2

0 0 0(,) (2 () /) () exp{ 4 () / }exp{ (2 () /) }r a c rs A R c j f R c j K R c                 (2)

where '
0 0 exp()A A j is the complex backscatter coefficient,  and  are the fast time variable

and slow time variable, respectively, in seconds, ()a  is the antenna pattern, c is the speed of light

in meter per second, and ()R  is the slant range of the point target in meter.
In a more general scenario, there should be continuous targets or scatter points which make up the

whole surface target reference scene in the beam footprint. Thus the backscatter coefficient becomes
to be a three dimensional function with two dimension according to the scatter surface and the other in
the slow time  , and we call it as range direction scatter function (RDSF). With this function denoted

as (,) '(,) exp{ (,)}g g j       , the baseband echo of the surface targets can be written as

 (,) (,)bbs g h     (3)

where (,)h   is the impulse response of the unified single target and it is formulated as [5]

2

0(,) (2 () /) () exp{ 4 () / }exp{ (2 () /) }r a c rh R c j f R c j K R c                 (4)

It is difficult to directly implement equation (3) and equation (4) since they are the continuous form.
Another problem in implementing equation (3) and equation (4) is that the parameters in them are
coupled. For example, both (,)g   and ()R  is not only space variant but also slow time variant.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

3

In order to simplify the problem, for  can be seen as a discrete variable, which indicates the
sampling time in the azimuth direction, equation (3) and equation (4) can be rewritten as [5]

2

0

(,) (2 () /) ()

exp{ 4 () / } exp{ (2 () /) }, 0,1,..., 1

i r i a i c

i r i

h R c

j f R c j K R c i I

       

    

  

    
 (5)

 0

2

2

(,) (,),

((,) () exp{ 4 () / })

(2 () /) exp{ (2 () /) }

(,) (2 () /) exp{ (2 () /) , 0,1,..., 1

bb i i

i a i c i

r i r i

t i r i r i

s g h

g j f R c

R c j K R c

g R c j K R c i I

   
      

     

       

 
  

  

     

 (6)

Where

 0(,) (,) ()exp{ 4 () / }t i i a i c ig g j f R c           (7)

With a dedicated i , equation (6) can be regarded to execute a two dimensional convolution for
there is a two dimensional scatter surface. Moreover equation (5) represents the i-th sampling along
the slow time and meanwhile it is the i-th range direction echo.

There are three important implications in equation (3)-(6):
(1) With different slow time (azimuth) sampling point, equation (5) and equation (6) are

independent. That means although slow time sampling i is sequencing in the real world, it doesn't

matter that the k-th sample is calculated earlier than the l-th one, even if k l . It is also doesn't matter
that they are calculated at the same time, thus range direction echo can be calculated in parallel.

(2) Although (,), 0,1,..., 1t ig i I    in equation (7) is two dimensional in the scatter surface for

a dedicated i , dimension reduction could be employed via a digitization of equation (6) and equation

(7) in order to ease the implementation.
(3) In equation (6), the convolution calculation requires massive calculation resources.
As mentioned above in implication (2), the discrete sampling in range (resulting in range cells) and

discrete scatter surface are introduced so that RDSF in equation (7) can be approximately expressed as

 _ _ 0
_

(,) (,) () exp{ 4 () / }t n rc i n rc i a i c rc i
n rc

g g j f R c           (8)

where _n rc denotes the index of the scatter points located in the same range cell. According to the
calculation of the RDSF in equation (8), all of the scatter points in the whole two dimensional scatter
surface should be traversed and there are 4 steps of calculation for each dedicated azimuth sample:

(1) for every scatter point, the slant range is calculated and then it is approximate to a proper range
cell,

(2) for every scatter point, the phase modulation term 0exp{ 4 () /rc ij f R c  is calculated,

(3) for every scatter point, the backscatter coefficient _(,)n rc ig   and the antenna pattern

modulation ()a i c   are multiplied, and finally,

(4) for every range cell, all scatter points located in are integrated.
For the 4 steps above to calculate the RDSF in equation (8), the range cells and scatter points are

located in the range-azimuth two dimensional surface, and it doesn’t matter which range cell or which
scatter point is calculated first. That means they can be calculated simultaneously, and the only
requirement is that equation (8) is calculated before equation (6).

As summarized, to calculate equation (3)-(8) an embedded architecture can be proposed.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

4

2.2. Embedded Design of SAR Echo Simulation Algorithm
The embedded architecture of SAR echo simulation algorithm is presented in Figure 1. For the parallel
nature of calculation along the azimuth samples, the whole task is firstly partitioned into sub routine
for several azimuth sample subsets, which could be parallel assigned to separate processing units, thus
all the range direction echoes of these subsets are computed in parallel. Then inside the procedure in
every separate processing unit, there is a repetition to traverse all azimuth points in the corresponding
subsets. Meanwhile there are two kinds of different requirements on calculation in these procedures:
one is RDSF calculation which requires parallel calculation along all scatter points; the other is the
convolution of scatter function and the detection pulse which requires massive and real-time
computing.

Task partitioning
along azimuth

samples

Azimuth
sample
subset 1

Range direction
scatter function

(RDSF)
calculation

Convolution of
scatter function

and the detection
pulse

W
ith

 th
e

wh
ol

e a
zi

m
ut

h
sa

m
pl

e s
ub

se
ts

tra
ve

rs
ed

Processing in
parallel

(traversing all
scatter points in

the scene)

Massive and
real-time

calculation
required

Azimuth
sample
subset 2

Azimuth
sample
subset 3

Processing
in parallel

Figure 1. Embedded architecture of SAR echo simulation algorithm	

With the different requirements of the calculation tasks depicted in Figure 1, different kinds of

processing units could be properly adapted. For task partitioning, small amount of computing but
relatively complex controlling is required, so an ARM processor may be suitable to be employed. For
RDSF calculation, because the two-dimensional massive scatter points need to be processed in parallel,
GPUs are suitable to be used. And finally, due to massive and real-time calculation of convolution,
FPGAs are most suitable for it.

3. Prototype Design of Heterogeneous SAR Echo Simulator

3.1. Hardware Design
Base on the architecture depicted in Figure 1 and the analysis presented above, a heterogeneous
computing platform featuring in one MPSoC and four GPUs is proposed in Figure 2. The
heterogeneous platform is mainly composed of an MPSoC as the central control node, GPU
computing nodes, switching nodes and a storage system. GPU computing nodes and switching nodes
are connected through PCIe interface. Switching nodes and the central control node are connected
through SRIO interface.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

5

The central control node uses the XILINX’s Zynq-7000 series MPSoC. GPU computing nodes use
the NVIDIA’s JETSON Tegra X2 modules. Switching nodes use the XC7K70T from XILINX's
Kintex-7 series FPGA, which is used to implement the communication interconnection between the
central control node and all GPU computing nodes. The fabricated platform prototype is shown in
Figure 3.

MPSOC

GPU3 GPU4

GPU1 GPU2
Memory

SW SW

SW SW

Figure 2. MPSoC+4 GPUs platform structure Figure 3. The fabricated simulator prototype

3.2. Software Design

3.2.1. Software architecture. Porting the architecture in Figure 1 into hardware prototype shown in
Figure 2 and Figure 3, the proposed software architecture for implementation is presented in
Figure 4. PS of Zynq SoC is used to partition calculation tasks for different azimuth sample subsets
and assign them to GPUs. GPUs are employed to calculate the RDSF. Finally PL of Zynq SoC is
mainly responsible for convolution operations.

Range Direction
Scatter Function

Calculation
Range Direction
Scatter Function

Calculation
Range Direction
Scatter Function

Calculation

Task
partitioning along
azimuth samples

Convolution
engine

PS

PL Detection
pulse in

frequency
domain Range direction

scatter function
（RDSF）
calculation

GPU0

TX2

GPU1
GPU2

GPU3

	

Figure 4. Software architecture of SAR echo simulation algorithm

3.2.2. Zynq SoC software. When PS of Zynq SoC initializes the tasks and scene data, it sends the data
to GPU0, GPU1, GPU2 and GPU3, so that they can calculate the point target echoes at the sampling
time of 4N, 4N+1, 4N+2 and 4N+3 respectively. Thus the azimuth samples are equally partitioned into
four subsets and an average payload along the four GPUs are achieved.

When GPUs send the RDSF according to an azimuth sampling time to PL of Zynq SoC, the PL
adopts a convolution engine to perform the convolution in frequency domain, with the detection pulse
in frequency domain preset by PS. The convolution in frequency domain performs the procedure of
FFT on RDSF, multiplication of detection pulse in frequency domain and finally IFFT operation,
which decrease the computation complexity. PL mainly implements the convolution engine and

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

6

multiplexes along all azimuth samples, so the workload of RTL programming is highly reduced. When
PL of Zynq SoC completes convolution, the final result is summarized on PS of Zynq SoC.

3.2.3. GPU software. RDSF in equation (8) is calculated by a four-step procedure as discussed in
chapter 2.1, which can be divided into two stages with high parallelism respectively. Two kernel
functions are opened for these two stages in each GPU. In the first kernel function, each point target
corresponds to one thread. In each thread, the calculation of slant range, range cell, phase modulation
term, backscatter coefficient and antenna pattern modulation are implemented. In the second kernel
function, different threads in the same block correspond to the product term in Equation (8) of
different point targets in the same range cell. In each block, the accumulation of RDSF is implemented
by using the reduction algorithm. For a dedicated azimuth sample, the procedure to calculate RDSF is
presented in Figure 5.

Kernel function 1 Kernel function 2

GPU3
GPU2

GPU1

...

lock 1B

lock 0B Thread 0 Thread 1 ...

Thread 0 Thread 1 ...

Thread 0 Thread 1 ...

...

GPU0

GPU3
GPU2

GPU1

...

Thread 0 Thread 1 Thread K-1...

Thread 0 Thread 1 ...

Thread 0 Thread 1 ...

...

GPU0

0

0 1 K‐1

0

0 1

......

Reduction algorithm for
multiple point targets

integration

K/2‐1

K/2‐1

K/2+1K/2

 Calculation of slant
range and range cell

 Calculation of phase
modulation term

 Calculation of
backscatter coefficient

 Calculation of antenna
pattern modulation

Range direction
scatter coefficient
for a point targe

alock B N

Thread 1rN 

Thread 1rN 

Thread 1rN 

lock 0B

lock 1B

lock J-1B

Thread K-1

Thread K-1

Thread
ID

Figure 5. GPU kernel function operation diagram

In the first kernel function, it is assumed that the size of surface target reference scene is a rN N
pixels, where aN is the sample number of azimuth direction and rN is the sample number of range

direction. At each sampling instant, a rN N threads are opened, where aN is the number of blocks

and rN is the number of threads in each block. In each thread, slant range, phase and range cell of the

corresponding point target are calculated.
In the second kernel function, it is assumed that there are J range cells in the result of the former

and there are 1 2, ,..., JK K K points in different range cells. Suppose that
1 2max{ , }JK K K K ,...,

and K is integer powers of 2. J K threads are opened. When the number of points in a range cell is
less than K, the value in the corresponding thread is assigned to 0. Then, the accumulation of product
term in Equation (8) in the same range cell is realized by reduction algorithm. In the reduction
algorithm, at the first step, the algorithm simultaneously implements the addition of the 0th and the

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

7

(/ 2)K th, the 1st and the (/ 2 1)K  th, ..., thus obtaining / 2K addition results. After 2log K steps,

we get the RDSF of the corresponding rang cell.

4. Test Results and Analysis
In the echo simulation experiment, the simulation platform parameters are shown in Table 1. The echo
simulation of surface target reference scene used in this paper is shown in Figure 6 and its size is 1024
× 1024 pixels. The echo simulation is performed by the heterogeneous computing platform and then
the generated echo data is imaged by the Rang-Doppler algorithm, which is shown in Figure 7.

Table 1. Simulation platform parameters.

Parameter Value
CUDA version 9.0

CUDA core number 256*4
Memory size 8GB

Memory bandwidth 58.3GB/S

Figure 6. Original image of the simulated surface target Figure 7. The simulated SAR image

In order to evaluate the performance of the architecture designed in this paper, the paper compares

the time consumption and typical power consumption with literature [1], [3] and [6]. The test results
are shown in Table 2. Compared with the traditional CPU+GPU architecture, the simulator proposed
in this paper not only takes less time but also consumes less power. The time consumption of literature
[3] is 114 times that of this paper, while the power consumption is 1.5 times that of this paper. The
time consumption of literature [6] is 44 times that of this paper, while the power consumption is 6.8
times that of this paper. Compared with FPGA architecture, there is still a certain gap in computing
performance, but the GPU modules used in this paper are low-power products and totally the proposed
simulator prototype typically consumes less power.

Table 2. Comparison to results of different platforms.

Platform architecture Main device Main device Time consuming
(ms)

Typical power
consumption(W)

Zynq SoC+GPU
(This paper)

XC7Z100 +
4*Tegra X2

1024*1024 3.87 45

CPU+GPU[3] GeForce GT620M 1024*1338 441.6 70
CPU+GPU[6] Tesla K20C 1024*1024 172 310

FPGA[1] 4* StratixII 1000*1000 2.0 80

The detailed time-consuming decomposition of the simulator prototype proposed in this paper is

shown in Table 3. It can be seen that it takes most of the time for data transmission, which means
wider bandwidth of data interaction among multiple devices is required.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012031

IOP Publishing

doi:10.1088/1757-899X/719/1/012031

8

Table 3. Time-consuming composition.

Component Time consuming(ms)
Calculation 0.73

Data transmission 3.14
Total 3.87

5. Conclusion
This paper digitized and decomposed the basic SAR simulation algorithm, proposed an embedded
implementation structure, and designed a heterogeneous computing platform based on one MPSoC
and multiple GPUs to implement the proposed algorithm. Compared with traditional platforms, the
proposed platform features in higher integration, smaller size, better mobility, and higher energy
efficiency.

6. Acknowledgements
This research was supported in part by Natural Science Foundation of Zhejiang Province, China, under
Grants No. LY17F010012.

7. References
[1] Hongxian Wang, Yinghui Quan, Mengdao Xing and et al, 2010 Fast Implementation Method of

SAR Echo Simulation Based on FPGA Systems Engineering and Electronics 32 2284-89
[2] Lulu Chen, 2014 SAR Echo Signal Simulation Fast Parallel Algorithm and Engineering

Implementation Method Xidian University
[3] Bo Li 2014 Research and Implementation of GPU-based SAR Echo Signal Simulation Xidian

University
[4] Guobin Jing, Yunji Zhang and Zhenyu Li, 2016 Efficient Implementation Method of GPU-

based SAR Echo Simulation Systems Engineering and Electronics 38 2493-98
[5] Cumming, Ian G. and Frank H. Wong 2005 Digital processing of synthetic aperture radar data:

Algorithms and implementation (Boston: Artech House) pp 141-147
[6] Yunji Zhang, 2015 GPU-based SAR Echo Simulation and Imaging Method Xidian University

