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Abstract. The performance of existing speech enhancement algorithms based on deep learning 
is not ideal in complex noise environment. To improve the problem, a bidirectional optimized 
hybrid network named BLSTM-DNN is constructed based on bidirectional long-short term 
memory (BLSTM) network and fully-connected deep neural network (DNN). This structure 
uses BLSTM to extract high-level information including past and future temporal context of 
noisy speech. Next, fully-connected DNN fits the high-level information to ideal ratio mask 
(IRM). Finally, the IRMs estimated by the BLSTM-DNN are used to enhance the noisy speech. 
Experimental results show that the proposed method can effectively improve the speech quality 
and intelligibility under unknown noise conditions.  

1. Introduction 
Recently, with the development of deep learning technology, deep neural networks have been widely 
used in the field of speech enhancement due to their simple network structure, powerful modeling 
capabilities and good fitting effects [1]. For example, Wang et al. [2] learn a variety of complementary 
features under the DNN framework to further improve the performance of speech enhancement. Li et 
al. use DNN to achieve noise classification and denoising [3]. However, although contextual 
information can be incorporated into the training of the DNN through frame expansion [2], that cannot 
be represented by the DNN in the long-term acoustic model. Recurrent neural networks (RNNs) can 
correctly represent that relationship between the previous frame and the current frame [4]. But because 
of signal internal structure and the lack of nonlinear activation function, the gradient of RNN will 
gradually vanish and explode after multi-stage propagation, which makes RNNs difficult to capture 
the long-term contextual information [5]. Long short-term memory networks may alleviate this 
problem by introducing a series of gates and the concepts of memory cell to dynamically control the 
flow of information, which makes the networks have long-term memory [6]. In order to access past 
and future context information, Graves et al. [7] propose a Bidirectional long-short term memory 
(BLSTM) networks based on LSTM, which integrate forward and backward contextual information 
into the model to simulate the timing variation of speech and noise over a longer period of time [8] 
and improve the speech enhancement performance. However, more network parameters and lower 
fitting efficiency result in the BLSTM model not easily converging in speech enhancement tasks [9]. 

In this paper, a novel speech enhancement algorithm named BLSTM-DNN is proposed based on 
the advantage of BLSTM and DNN to capture the contextual information a while improving the 
matching efficiency of the networks, which combined the advantages of BLSTM and DNN to jointly 



CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012027

IOP Publishing

doi:10.1088/1757-899X/719/1/012027

2

optimize them. Bidirectional context information for noisy speech is extracted by BLSTM, which is 
used by DNN to fit the training target. The effectiveness of the proposed algorithm is verified by 
experiments from the aspects of enhanced speech quality and intelligibility as well as the waveform 
and spectrogram. 

2. Bidirectional Optimized Speech Enhancement  
 

Figure 1. Schematic diagram of the proposed speech enhancement algorithm. 
 
The proposed system is shown in figure 1. In the training phase, the noisy speech is decomposed into 
time-frequency units, and the Mel-frequency cepstral coefficients (MFCC), amplitude modulation 
spectrogram (AMS), relative spectral transform and perceptual linear prediction (RASTA-PLP) and 
gammatone frequency (GF) are extracted from the time-frequency units as the inputs of BLSTM-DNN 
[10]. High-level abstraction information of noisy features is extracted by BLSTM, which is used to fit 
the IRM by DNN. In the enhancement phase, the complementary features of the test noisy speech are 
input into the trained BLSTM-DNN to estimate IRMs. It is used to weight the noisy speech to 
synthesize the enhanced speech. 

2.1.BLSTM-DNN Hybrid Model Construction 
In order to further incorporate past and future context into model to simulate the temporal changes of 
speech as well as noise in a longer time range and improve the fitting ability of the network, the 
BLSTM-DNN bidirectional optimized hybrid model is constructed. The topology of the model is 
shown in figure. 2. The input layer 𝑥 = (𝑥1,𝑥2,⋯ , 𝑥𝑇) is a frame-level complementary feature vector, 
where 𝑇 = 246 represents the feature vector dimension. The first three layers are BLSTM layers, 
each of which consists of a forward LSTM layer and a backward LSTM layer. The remaining two 
layers are fully connected DNN layers. 

2.2.BLSTM-based Bidirectional Optimization 
Figure 2 shows that the BLSTM layer scans the input sequence in two opposite directions and 
connects to the same output layer. The output layer is updated by the backward hidden layer from t=T 
iteration to 1 and the forward hidden layer from t=1 iteration to T, which is used to calculate the 
forward hidden sequence, the backward hidden sequence and the output sequence. That bidirectional 
optimization process can further simulate the temporal context between speech and noise. This process 
is implemented by the following formulas: 

 ℎ𝑡���⃗ = 𝐻�𝑊𝑥ℎ��⃗ 𝑥𝑡 + 𝑊ℎ��⃗ ℎ��⃗ ℎ𝑡−1 + 𝑏ℎ��⃗ � (1) 

 ℎ𝑡�⃖�� = 𝐻�𝑊𝑥ℎ⃖��𝑥𝑡 + 𝑊ℎ⃖��ℎ⃖��ℎ⃖�𝑡−1 + 𝑏ℎ⃖��� (2) 

 𝑦𝑡 = 𝑊ℎ⃖��𝑦ℎ�⃗ 𝑡 + 𝑊ℎ⃖��𝑦ℎ⃖�𝑡 + 𝑏𝑦 (3) 

Where ℎ�⃗ = (ℎ1����⃗ ,⋯ ,ℎ𝑡���⃗ ,⋯ ,ℎ𝑇����⃗ )  denotes the forward hidden layer sequence. 
ℎ⃖� = (ℎ1����⃗ ,⋯ ,ℎ𝑡���⃗ ,⋯ ,ℎ𝑇����⃗ )  denotes the backward hidden layer sequences. 𝑦𝑙 = (𝑦1,⋯ ,𝑦𝑡 ,⋯ ,𝑦𝑇) 
indicates the output sequence after bidirectional optimization of the lth (l=1, 2, 3) BLSTM layer. 𝐻 
denotes the activation function of hidden state. 𝑊𝑥ℎ, 𝑊ℎℎ and 𝑊ℎ𝑦 represent the weight matrix of 
the input layer-hidden layer, the hidden layer-hidden layer and the hidden layer-output layer, 
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respectively. 𝑏ℎ��⃗ , 𝑏ℎ⃖�� and 𝑏𝑦 represent the bias of the forward and backward hidden sequences and 
the offset of the output vector, respectively. 𝑡 = (1,2,⋯ ,𝑇) indicates the time index in the iterative 
process. 
 

 
 
The forward hidden sequence ℎ�⃗  and the backward hidden sequence ℎ⃖� for the BLSTM layer are 

obtained by optimizing the cell state 𝑐𝑡 in each memory module (shown in figure 3) as follows: 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑥𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑐𝑐𝑡−1 + 𝑏𝑖) (4) 

 𝑓𝑡 = 𝜎�𝑊𝑥𝑥𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑐𝑐𝑡−1 + 𝑏𝑓� (5) 

 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑡𝑡ℎ(𝑊𝑥𝑥𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (6) 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑥𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑐𝑐𝑡−1 + 𝑏0) (7) 

 ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑡𝑡ℎ(𝑐𝑡) (8) 

Where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝑐𝑡 represent the input gate, the forgetting gate, the output gate and the cell, 
respectively. The dimension of them is the same as the hidden layer vector ℎ𝑡. 𝑊ℎ𝑖 denotes the 
hidden layer-input gate weight matrix. 𝑊𝑥𝑥 denotes the input layer-output layer weight matrix. 𝑐𝑡 is 
the cell state at time t. ℎ𝑡 is the hidden layer state at timet, and σ(∙) is the sigmoid function. 

 
Table 1. Test results of PESQ 

Noise SNR (dB) DNN BLSTM BLSTM-DNN 

Babble 

10 3.026 3.442 3.483 
5 2.765 3.036 3.188 
0 2.425 2.816 2.841 
-5 1.997 2.467 2.498 

White 

10 2.832 3.019 3.106 
5 2.659 2.778 2.821 
0 2.316 2.420 2.445 
-5 1.913 2.041 2.058 

Figure 3. Block diagram of a 
single memory module in BLSTM 

Figure 2. 
Topology 
diagram 
of the 

BLSTM-
DNN 
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2.3.DNN-based Fitting Process  
The formula for network iteration of the fully-connected DNN layers (𝑙 = 4,5) is as follows: 

 𝑦𝑙 = 𝜑�𝑊𝑙𝑦𝑙−1 + 𝑏𝑙� (9) 

Where 𝑦𝑙, 𝑊𝑙 and 𝑏𝑙represent the output of the activation units, weight matrix and the bias of 
𝑙th DNN layer, respectively. 𝜑 represents the ReLU activation function. The function of fully 
connected DNN layers is efficiently fit the training target through gradient descent and error 
backpropagation. 

Table 2. Test results of STOI 

Noise SNR (dB) DNN BLSTM BLSTM-DNN 

Babble 

10 0.944 0.9509 0.9544 
5 0.891 0.9004 0.9155 
0 0.806 0.8112 0.8452 
-5 0.655 0.7336 0.7376 

White 

10 0.957 0.9580 0.9597 
5 0.921 0.9216 0.9216 
0 0.862 0.8701 0.8715 
-5 0.788 0.7957 0.8016 

 
Table 3. Test results of LSD 

Noise SNR (dB) DNN BLSTM BLSTM-DNN 

Babble 

10 6.312 4.065 4.062 
5 7.319 4.567 4.543 
0 8.952 6.792 6.514 
-5 11.634 7.540 6.929 

White 

10 7.821 4.239 4.184 
5 8.932 4.948 4.283 
0 10.271 5.418 5.405 
-5 11.700 6.413 5.552 

3. Experimental Results and Analysis 

3.1.Experimental Data 
288 clean utterances of the experiments come from the NTT corpus. 100 noise types are from TIMIT 
database in training stage to improve the generalization capacity of unseen environments. This paper 
selects 200 utterances, which are corrupted with each noise type at 10dB,5dB, 0dB and -5dB to build 
training set. The remaining 88 utterances are used to construct the test set for each combination of 
noise types and SNR levels. Babble, white and factory2 from the NOISEX-92 corpus are used to 
evaluate on unseen noise types. All the signals are sampled at 16kHz rate. The frame length and shift 
are 320 and 160 samples, respectively. In order to verify the effectiveness of the proposed algorithm, 
we select on complementary features speech enhancement model based on DNN [2] as the first 
contrast algorithm, and complementary features speech enhancement model based on BLSTM as the 
second contrast algorithm. Both DNN and BLSTM model have 4 hidden layers with 1024 nodes for 
each layer. The Dropout ratio is 0.2, and the number of iterations is set to 50. 

3.2.Speech Enhancement Performance Comparison  

3.2.1.Objective performance evaluation. The test results of Segmental Signal to Noise Ratio (SegSNR), 
Evaluation of Speech Quality (PESQ), Log-Spectral Distortion (LSD) and Short-time Objective 
Intelligibility (STOI) are shown in table 1, table 2, table3 and table4, respectively. It can be seen from 
the tables that the objective test results of the BLSTM-DNN model are better than the BLSTM and 
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DNN models. Because BLSTM can further incorporate bidirectional temporal context and simulate 
the temporal variation of speech and noise in a longer time, and makes the model have the 
high-efficiency fitting ability that the BLSTM model does not. 
 

Table 4. Test results of SegSNR 

Noise SNR (dB) DNN BLSTM BLSTM-DNN 

Babble 

10 0.864 2.272 2.377 
5 -1.951 0.622 1.967 
0 -6.409 -4.275 1.262 
-5 -14.845 -10.063 -8.509 

White 

10 3.503 3.942 4.411 
5 1.167 1.354 2.208 
0 -0.870 -0.982 0.074 
-5 -3.237 -2.510 -2.420 

3.2.2. Comparison of waveform and spectrogram. In order to compare the speech enhancement effects 
of DNN, BLSTM and BLSTM-DNN visually, figure 4 shows the waveform and spectrogram of the 
proposed algorithm and the contrast algorithm with factory2 noise at SNR = -5dB. We can know from 
the spectrogram that the speech enhanced by BLSTM-DNN is more similar with pure speech, because 
BLSTM layers could build long-term dependence of noisy speech to better preserve the temporal 
context information. Besides, the speech enhanced with BLSTM-DNN has less background noise, 
especially in the non-speech segment. That indicates that the fully connected DNN could efficiently fit 
speech information processed by BLSTM layers to the training target to achieve better denoising 
performance. The experimental results show that BLSTM-DNN has better denoising performance than 
BLSTM and DNN, which is consistent with the objective test results. 

4. Conclusion 
The proposed algorithm can bi-directionally model the temporal context information of noisy speech, 
and simulate the timing changes of speech and noise in a longer period through BLSTM. In addition, 
the high-level information extracted by the BLSTM quickly fits the IRM by using the efficient fitting 
ability of the DNN. It ensures that the deep neural network has a good fitting ability while modeling 
the temporal relationship of the speech. Compared with the comparison algorithm, the proposed 
algorithm improves the quality and intelligibility in unseen noise conditions. 
 

  
Figure 4. Speech enhancement effect samples with -5dB factory2 noise 

(a),(f)Waveform and spectrogram of clean speech (b),(g)waveform and spectrogram of noisy 
speech(c),(h) waveform and spectrogram of speech with DNN (d),(i) waveform and spectrogram of 
speech with BLSTM  (e),(j) waveform and spectrogram of enhanced speech with BLSTM-DNN 

A
m

pl
itu

de
 

Fr
eq

ue
nc

y/
H

z 
 



CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012027

IOP Publishing

doi:10.1088/1757-899X/719/1/012027

6

5. Acknowledgments 
This work was supported by Beijing Municipal Natural Science Foundation Cooperation Beijing 
Education Committee (No. 201910005007) and the National Natural Science Foundation of China (No. 
61871007). 

6. Reference 
[1] Li R, Sun X, Liu Y, et al. Multi-resolution auditory cepstral coefficient and adaptive mask for 

speech enhancement with deep neural network[J]. EURASIP Journal on Advances in Signal 
Processing, 2019, 2019(1): 22. 

[2] Wang Y, Narayanan A, Wang D L. On training targets for supervised speech separation[J]. 
IEEE/ACM transactions on audio, speech, and language processing, 2014, 22(12): 1849-1858. 

[3] Li R, Liu Y, Shi Y, et al. ILMSAF based speech enhancement with DNN and noise 
classification[J]. Speech Communication, 2016, 85: 53-70.  

[4] Mehri S, Kumar K, Gulrajani I, et al. SampleRNN: An unconditional end-to-end neural audio 
generation model[J]. arXiv preprint arXiv:1612.07837, 2016. 

[5] Tang Z, Shi Y, Wang D, et al. Memory visualization for gated recurrent neural networks in 
speech recognition[C]//2017 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2017: 2736-2740.  

[6] Sun L, Du J, Dai L R, et al. Multiple-target deep learning for LSTM-RNN based speech 
enhancement[C]//2017 Hands-free Speech Communications and Microphone Arrays (HSCMA). 
IEEE, 2017: 136-140.  

[7] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and 
other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610.  

[8] Cheng G, Huang L, Sun J, et al. Bidirectional LSTM with Extended Input Context[C]//2018 
11th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2018: 
364-368. 

[9] Wang Q, Du J, Dai L R, et al. A multiobjective learning and ensembling approach to 
high-performance speech enhancement with compact neural network architectures[J]. 
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 2018, 26(7): 
1181-1193.  

[10] Chen J, Wang Y, Wang D L. A feature study for classification-based speech separation at low 
signal-to-noise ratios[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 
2014, 22(12): 1993-2002. 


