
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

1

Generating Test Data for Path Coverage Based on Genetic
Algorithm

Shuping Fan1, Baoying Ma2, Nianmin Yao3, Yan Zhang1*, Chunyan Xia1 and Dan
Zhang1
1 School of Computer and Information Technology, Mudanjiang Normal University,
Mudanjiang 157011, China
2 School of Health Management, Mudanjiang Medical University, Mudanjiang 157011,
China
3 School of Computer Science and Technology, Dalian University of Technology,
Dalian 116024, China
Corresponding author: Yan Zhang (E-mail: zhangyan@mdjnu.cn)

Abstract. Test data generation is an important part of software testing. The imbalance of data
crossing program branches is often ignored in generating test data. As a result, there is much
data crossing some branches while little data crossing other branches. To solve the
phenomenon so as to generate test data effectively, we introduce branch balance and program
balance in the evolutionary generation of test data. First, the number of individuals crossing the
true and false branch of each branch node on the target path are computed. Then, the
calculation methods of branch balance and program balance are given. Finally, the fitness
value function which considers the change of program balance before and after an individual
joining is presented. And an individual that can improve the balance will be retained in the
evolution process. Experiments show that our method is better than the other method in
running time and success rate.

1. Introduction
Software testing is a time-consuming and labor-consuming work, whose goal is to find as many errors
as possible with less test data to reduce the cost of software development. An efficient and feasible
method to generate test data automatically is of great significance to test process [1]. Path coverage is
a test criteria with the highest coverage in white-box testing, which refers to selecting enough test data
so that every possible path of the program can be executed at least once. In this paper, we consider the
balance of individuals crossing program branches, which is used to generate test data in Genetic
Algorithm (GA). So an individual crossing new branch or improving the program balance will obtain
higher fitness value and it will be preserved in the evolution process to enhance the efficiency of test
data generation.

2. Related Work
In recent years, many scholars have studied the application of evolutionary theory to generate test data
satisfying path coverage, and they have developed many new methods for automatically generating
test data covering target paths. Ahmed et al. [2] proposed a method to generate multi-path test data for
the first time by transforming the test data generation problem into a multi-objective optimization
problem, which enables the application of GA to generate multiple test data crossing multiple target
paths at one time. Gong et al. [3] presented to generate regression test data based on the existing test

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

2

data. Dang et al. [4] proposed to generate executable paths for weak mutation testing by examining the
correlation between the true branches of mutation statements, so that test data covering these paths can
kill all mutants. Ding et al. [5] used a complete model for fast generation of test data from the
perspective of engineering practice of software testing, which realized the path representation for key
point. It improved the efficiency for test data generation. In addition, some scholars have discussed the
application of other technologies in test data generation. For example, Yao et al. [6] proposed to
integrate with neural network, which can effectively reduce the time consumption of running programs
comparing with previous methods. Reference [7] applied the capture technology of rare data, which
protected these data traversing nodes that are difficult to cover, and then they calculated the individual
contribution degree to the generation test data to adjust the individual fitness value.

The goal of software testing is to realize the sufficiency and comprehensiveness of program testing.
Though the above techniques effectively generate test data covering target path by applying
evolutionary algorithm, they do not consider the balance of test data traversing program branches. If a
balanced mechanism is introduced during the evolution of test data so that the generated data can
traverse multiple branches in a balanced way, thus the generation efficiency of test data covering target
path will undoubtedly be improved.

Therefore, we introduced the balanced mechanism in the evolution of test data. After test data
running the program, the number of individuals traversing each branch node on target path is counted,
and the fitness function is designed according to it so individuals that can improve the program
balance are retained to improve the generation efficiency of test data.

3. Basic Concepts
For convenience, the concept of Control Flow Diagram is given.

(1) Control Flow Diagram
Control Flow Diagram called CFD is a graphical representation of the program control structure,

which is a directed graph G (N, E, s, e), where N is called the set of nodes in G and each node
corresponds to a program statement, and E is a set of edges. i j(n ,n) is called a edge of G, and it

indicates that there is control flow from in to jn . Generally, the CFD of each program contains a

unique entry node s and exit node e. The Figure 1(b) shows the CFD of the program, and the source
program is in Figure 1(a) [8].

(a) Source program (b) Control Flow Diagram

Figure 1. Source program and its CFD

(2) Branch nodes
In the CFD, nodes with an out-degree greater than or equal to two are called branch nodes.

,ଵ݁݀݋݊ ,ସ݁݀݋݊ ଺ in Figure 1(b) are all branch nodes. As the switch statement can be expressed as݁݀݋݊
a double-branch selection structure, and according to Z-path coverage [9], the loop structure can also
be converted into a double-branch selection structure basing on the number of times the loop body
executing zero and at least once. Therefore, switch nodes and loop nodes are all regarded as branch
nodes in this paper.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

3

 (3) True and false branches of branch nodes
The two edges starting from the branch node are the true and false branches of the branch node

respectively. When the predicate of a branch node is true, the true branch of the branch node is
executed, otherwise the false branch is executed.

4. Calculation of the Program Balance
From the CFD in Figure 1(b), it can be seen that the number of test data crossing the sequence node
and its direct successor node must be equal. Therefore, the sequence nodes are not considered in the
calculation of the program balance to reduce calculation cost. After all the corresponding data of
individuals run the program, the program balance is calculated. According to individuals crossing the
true and false branches of each branch node, first we calculate the branch balance of each branch node,
then we take the sum of all the branch balance as the program balance.

4.1. Calculation of Branch Balance
The branch balance is used to indicate the balance of test data crossing the true and false branches of a
branch node. Supposing the number of branch nodes on target path is ݊. After the corresponding data
of all individuals run the program, the number of individuals crossing the true and false branch of the
kth branch node in the tth generation population is counted. Here denote it as ܰ݉ݑ௞்ሺݐሻ and
݇) ሻ respectively, so the branch balance of the kthݐ௞ிሺ݉ݑܰ ൌ 1,2⋯ , ݊ሻ branch node can be expressed
as:

ܾܾ௞ሺݐሻ ൌ ൜
																									0															, ሻݐ௞்ሺ݉ݑܰ ൌ ሻݐ௞ிሺ݉ݑܰ	 ൌ 0

ሻݐ௞்ሺ݉ݑܰ| െ ,ሻݐ௞்ሺ݉ݑሺܰݔܽ݉/|ሻݐ௞ிሺ݉ݑܰ ,ሻሻݐ௞ிሺ݉ݑܰ else
 (1)

Where ݉ܽݔሺܰ݉ݑ௞்ሺݐሻ, .ሻݐ௞ிሺ݉ݑܰ ሻ andݐ௞்ሺ݉ݑܰ ሻሻ is to get the maximum value ofݐ௞ிሺ݉ݑܰ
From Eq. (1), we can see that the defined branch balance actually reflects the balance of all individuals
crossing the true and false branches of the kth branch node. If the difference in the number of
individuals crossing the true and false branches is small, the value is small, which indicates that the
individuals crossing the true and false branches of the node are more evenly. It is not difficult to obtain
that the smaller of the branch balance, the better.

4.2. Calculation of Program Balance
According to Eq. (1), the branch balance of all branch nodes on the target path is calculated, and the
sum of the branch balance of all branch nodes is taken as the program balance, as is seen in Eq. (2).
According to the definition of the branch balance, the smaller the program balance is, the better of the
program balance is. The smaller value reflects data crossing the program in a balanced way.

ሻݐሺܾ݌ ൌ ∑ ܾܾ௞ሺݐሻ
௡
௞ୀଵ (2)

Taking the program in Figure 1 as an example. Supposing the chosen target path is “s,1,3,4,6,8, e”,
which means that there are three branch nodes on the path, they are ݊݁݀݋ଵ, ݊݁݀݋ସ, ଺. Assuming݁݀݋݊
there are four individuals ݔଵ~ݔସ in the population, and the number of individuals crossing the true
branch and the false branch of the branch node of ݊݁݀݋ଵ in the 6th generation are ܰ݉ݑଵ்ሺ6ሻ = 3 and
ଵிሺ6ሻ݉ݑܰ = 1 respectively. The branch balance of ݊݁݀݋ଵ is further calculated according to Eq.
(1):ܾܾଵሺ6ሻ ൌ ଵ்ሺ6ሻ݉ݑܰ| െ ,ଵ்ሺ6ሻ݉ݑሺܰݔܽ݉/|ଵிሺ6ሻ݉ݑܰ ଵிሺ6ሻሻ݉ݑܰ ൌ |3 െ 1|/maxሺ3,1ሻ 	ൎ
0.67.

Assuming that the number of individuals crossing the true branch of nodeସ	and	node଺ are 2, 4
respectively, crossing the false branch of these two nodes are 2 and 0 respectively. Then the branch
balance of the	 ݇ th (݇ ൌ 2,3) branch node can be calculated in the same way. The values are
ܾܾଶሺ6ሻ=0 and ܾܾଷሺ6ሻ=1. Finally, according to the calculation method in Eq. (2), the program balance
is achieved. ܾ݌ሺ6ሻ ൌ ∑ ܾܾ௞ሺ6ሻ

଺
௞ୀଵ ൎ 0.67 ൅ 0 ൅ 1 ൎ 1.67.

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

4

5. Evolutionary Generation of Test Data
To check whether an individual can improve the program balance, the method used is: after deleting an
individual, recalculate the branch balance of each branch node on the target path, then calculate the
program balance. So the effect of the individual basing on the change of the program balance before
and after deleting the individual can be computed, and finally the effect is taken as fitness value of the
individual.

5.1. Calculation of Program Balance after an Individual Deletion
To calculate the fitness value of an individual, this section gives the calculation method of program
balance after deleting an individual. Supposing the number of individuals crossing the true branch and
false branch of the kth branch node after deleting the individual ݔ௪ is 	ܰ݉ݑ௞்

ᇱ ሺݔ௪, ሻݐ and
௞ி݉ݑܰ

ᇱ ሺݔ௪, ሻݐ respectively, the branch balance of the kth branch node 	 can be expressed as
ܾܾ௞

ᇱ ሺݔ௪, :ሻݐ

ܾܾ௞
ᇱ ሺݔ௪, ሻݐ ൌ ൜

																																																0		, ௞்݉ݑܰ
ᇱ ሺݔ௪, ሻݐ ൌ ௞ி݉ݑܰ

ᇱ ሺݔ௪, ሻݐ ൌ 0
௞்݉ݑܰ|

ᇱ ሺݔ௪, ሻݐ െ ௞ி݉ݑܰ
ᇱ ሺݔ௪, |ሻݐ ௞்݉ݑሺܰݔܽ݉

ᇱ ሺݔ௪, ,ሻݐ ௞ி݉ݑܰ
ᇱ ሺݔ௪, ⁄ሻሻሻݐ , else

 (3)

So we get the program balance after ݔ௪ is deleted, which can be expressed as:

,௪ݔᇱሺܾ݌ ሻݐ ൌ ∑ ܾܾ௞
ᇱ ሺݔ௪, ሻݐ

௡
௞ୀଵ (4)

5.2. Calculation of Individual Fitness Value
Generally speaking, individuals with higher fitness value in current population will be copied to the
next generation with large probability. In the paper, the calculation of an individual fitness value
consider the program balance obtained before and after deleting an individual ݔ௪. And according to
the change on the program balance, we get the fitness value of ݔ௪, which can be expressed as:

݂ሺݔ௪, ሻݐ ൌ ൜
௪ᇱܾ݌ ሺݐሻ െ ,ሻݐሺܾ݌ ௪ᇱܾ݌ ሺݐሻ ൐ ሻݐሺܾ݌
											0, ௪ᇱܾ݌															 ሺݐሻ ൑ ሻݐሺܾ݌

 (5)

As is seen from Eq. (5) that the change of program balance before and after deleting ݔ௪ is
considered when calculating the individual fitness value. If the deletion of ݔ௪ increases the program
balance, that is, the existence of ݔ௪ can effectively improve the program balance, then ݔ௪ is
preferentially retained in the evolution process. If there are multiple individuals like this at the same
time, it can be ensured that the greater improvement on the program balance, the larger fitness value of
an individual gets by Eq. (5). On the other hand, if the deletion of ݔ௪ leaves the program balance
unchanged or reduced, that is, ݔ௪ cannot improve the program balance, then the individual should be
deleted by setting its fitness value to 0.

Taking the program in Figure 1 as an example. In the 6th generation, when deleting xଵ, assuming
that the number of individuals crossing the true and false branch of ݊݁݀݋ଵ is ܰ݉ݑଵ்

ᇱ ሺݔଵ, 6ሻ=3,
ଵி݉ݑܰ	

ᇱ ሺݔଵ, 6ሻ ൌ 0 respectively, thus the branch balance of ݊݁݀݋ଵ after deleting ݔଵcan be calculated,
ܾܾଵ

ᇱ ሺݔଵ, 6ሻ ൌ ଵ்݉ݑܰ|
ᇱ ሺݔଵ, 6ሻ െ ଵி݉ݑܰ

ᇱ ሺݔଵ, 6ሻ|/݉ܽݔሺܰ݉ݑଵ்
ᇱ ሺݔଵ, 6ሻ, ଵி݉ݑܰ

ᇱ ሺݔଵ, 6ሻሻ ൌ |3 െ 0|/
maxሺ3,0ሻ ൌ 1. In the same way, we get the branch balance of ݊݁݀݋ସ and ݊݁݀݋଺. So the program
balance in this case can be calculated. Supposing the program balance after deleting ݔଵ by Eq. (4)
is :	ܾ݌ᇱሺݔଵ, 6ሻ ൌ ∑ ܾܾ௞

ᇱ ሺݔଵ, ሻݐ
௡
୩ୀଵ ൌ 1. And the program balance after deleting other individuals	can be

calculated in the same way, supposing the program balance after deleting ݔଶ~ݔସ are ܾ݌ᇱሺݔଶ, 6ሻ ൌ
3, ,ଷݔᇱሺܾ݌	 6ሻ ൌ 2 , and ܾ݌ᇱሺݔସ, 6ሻ ൌ 2.5	respectively . As the program balance calculated before
deleting ݔଵ is pbሺ6ሻ ൎ 1.67, and the value after deleting it is ܾ݌ᇱሺݔଵ, 6ሻ ൌ 1. Since ܾ݌ᇱሺݔଵ, 6ሻ ൏
,ଵݔଵ can be calculated according to Eq. (5), ݂ሺݔ ሺ6ሻ, the fitness value ofܾ݌ 6ሻ ൌ 0. Similarly, we get
݂ሺݔଶ, 6ሻ ൌ 1.33,		݂ሺݔଷ, 6ሻ ൌ 0.33,݂ሺݔସ, 6ሻ ൌ 0.83. As ݂ሺݔଶ, 6ሻ ൐ ݂ሺݔ௜, 6ሻሺ݅ ൌ 1,2,3ሻ, it shows that
 ଶ can improve the original program balance to the greatest extent in all individuals. Besides, bothݔ
݂ሺݔଷ, 6ሻ and ݂ሺݔସ, 6ሻ are greater than 0, which indicates that both ݔଷ and ݔସcan effectively improve
the balance of program coverage. These three individuals will have a greater probability to be
preserved in evolution process. The fitness value of ݔଵ is 0 and it will be deleted in the evolution

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

5

process. It can be seen that the proposed method can effectively distinguish the effect of different
individuals on the program balance.

6. Experiments
To validate the effectiveness of our method, we apply it to triangle classifier program in [7], a
benchmark program commonly used in software testing. The program is written in C language. The
selected comparison method is described in reference [10]. The two methods adopt the same
experimental parameters. Comparing the evaluation times, running time and success rate to find the
test data covering the target path, which are used in [7]. The evaluation times means sum of
evolutionary generations all individuals in one experiment. The smaller the evaluation times and the
shorter the running time, the better the performance of the algorithm, and the success rate refers to the
ratio of the number of experiments that successfully generate the test data to the total number of
experiments within the maximum running generation. All results are the average values by many
experiments. The experimental results are shown in Table 1.

Table 1. Experimental Results of Triangle Classification Program

Experimental settings The proposed method The method in [10]
Data
range

Population
size

Maximum
generation

Evaluation
times

Time
(ms)

Success
Rate(%)

Evaluation
times

Time
(ms)

Success
rate(%)

[1,128] 30 3000 4966.0 19.7 100 41974.0 84.9 100
[1,256] 50 8000 7750.0 20.5 100 337880.0 628.3 40
[1,512] 80 10000 11226.7 32.7 100 670917.3 1285.1 33.3

[1,1024] 150 30000 28690.0 74.4 100 3415370.0 7217.0 46.7
[1,2048] 300 80000 65360.0 256.7 100 8003560.0 19422.8 66.7

As can be seen from Table 1:
(1) When the data range is [1,128], the average value of evaluation times in [10] and our method

are 41974.0 and 4966.0 respectively, which is more than our method. When the data range is [1,2048],
the value in [10] is 8003560, which is also more than ours of 65360. For different experimental
conditions in Table 1, the evaluation times of our method are obviously less than that of the other
method. This shows that comparing with the similar method in [10], ours can successfully generate
test data with less evaluation times. That is because less generations of GA is used to get the terminal
conditions of GA by our method.

 (2) The average running time required by our method is less than that of [10] for different
experimental conditions. For example, When the data range is [1,2048], the average running time of
[10] is 19422.8ms and 256.7ms of our method, which is less than the value in [10]. Besides, under
different data ranges, population size and maximum evolution generations in Table 1, our method all
consumes less time. This is because the method in [10] considers the layer proximity and branch
distance when calculating the fitness value, which needs large amount of computation and consumes
more time. Our method mainly needs to calculate the branch balance and program balance before and
after an individual joining, which needs less time.

 (3) From the average success rate, the value of the proposed method can all reach 100% in
different conditions, while the method in [10] can't. For example, When the data range is [1,1024], the
value of [10] is 46.7%, which is obvious lower than our method. It demonstrates the effectiveness of
the proposed method in generating test data.

We can conclude from the experimental results above that compared with the method in [10] , our
method is advantageous in evaluation times, running time and success rate for triangle classifier
program.

7. Conclusion
The paper presents a test data generation method based on GA. After all the corresponding data of
individuals run the program, the number of test data traversing each branch node on the target path is

CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012070

IOP Publishing

doi:10.1088/1757-899X/719/1/012070

6

counted. Based on this, a calculation method for the effect of individuals on the program balance is
designed. The individual traversing the new path is preferentially retained. If all the generated data do
not traverse the new path, the effect of each individual on the program balance is calculated.
Furthermore, the fitness value of individuals which can improve the program balance and the test data
generation efficiency is raised. So these individuals will be retained in evolution process. Experimental
results show that the test data generation efficiency of our method is higher than that of the
comparison method. However, the experimental results are just on the triangle classification program,
and we will further study the experiments on other programs in the future.

8. Acknowledgement
This study was jointly funded by the Research Projects of Basic Scientific Research Business
Expenses in Institutions of Higher Learning of Heilongjiang Province(Grant Nos.1353ZD003 and
2018-KYYWFMY-0104); the Scientific and Technological Plan Project of Mudanjiang City (Grant
Nos.Z2018g023, Z2016s0027 and Z2018g022); the Science and technology research project of
Mudanjiang Normal University(Grant No.YB2019003);the National Natural Science Foundation of
China (Grant No. 61573362); the Natural Science Foundation of Heilongjiang(Grant No. F2016039);
and the Innovation Foundation of Science and Technology of Dalian (Grant No. 2018J12GX045).

9. References
[1] MIAO X X, ZENG P J. Research on an Automatic Generation Algorithm of Test Data[J].

Measurement and control technology. 2018, 37, 36-38.
[2] Ahmed M A, Hermadi I. GA-based multiple paths test data generator [J]. Computers and

Operations Research. 2008, 35(10): 3107-3124.
[3] Gong D W, Ren L. Evolutionary Generation of Regression Test Data [J]. Chinese Journal of

Computers. 2014, 3: 489-499.
[4] Dang X Y, Gong D W, Yao X J. Feasible path generation of weak mutation testing based on

statistical analysis [J]. Chinese Journal of Computers. 2016, 39(19): 1-17.
[5] Ding R, Dong H B, Zhang Y. Fast Automatic Generation Method for Software Testing Data

Based on Key-Point Path[J]. Journal of Software, 2016, 27(4): 814-827.
[6] Yao X J, Gong D W, Li B. Evolutional Test Data Generation for Path Coverage by Integrating

Neural Network[J]. Journal of Software. 2016, 27(4): 828-838.
[7] Zhang Y, Gong D W. Evolutionary Generation of Test Data for Paths Coverage Based on Scarce

Data Capturing[J]. Chinese Journal of Computers. 2013, 36(12): 2429-2439.
[8] Xia C Y, Zhang Y, Song L. Evolutionary generation of test data for paths coverage based on

node probability[J]. Journal of Software, 2016,27(4):802-813
[9] Xia H, Song X, Wang L. Research of test case auto generating based on Z path coverage[J].

Modem Electronics Technique. 2006, 6: 92-94.
[10] McMinn P. Evolutionary search for test data in the presence of state behavior [D]. University of

Sheffield, England, 2005

