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Abstract. Detecting vehicles in aerial images is one of the core components for intelligent 
transportation system. This task is challenging due to the comparably small size of the target 
objects, the complex background and multi-perspective views. It is particularly difficult for the 
real-time detection cases where only several tens of milliseconds delays are allowed. In this 
paper, we propose an approach to detect vehicles from aerial images with different resolutions 
and perspectives in an approximate real-time manner. The proposed model is robust and can 
detect vehicles in various detection scenarios. It can detect vehicles from an image within 47 
milliseconds. We evaluate our method on a challenging data set of original aerial images over 
Munich and our data set collected using an unmanned aerial vehicle (UAV). The experimental 
results have demonstrated that our proposed method is superior to the state-of-the- art 
algorithms with respect to accuracy, recall and detection time. 

1. Introduction 
With the rapid development of UAV [1], it has been widely adopted in many application domains, 
such as intelligent transportation systems. UAV is equipped with automatic positioning and stability 
system of small high-altitude operating platform. UAV can easily collect video or images which are 
generally used for the object detections. 

For vehicle detection problem using UAV, the traditional detection methods are not appropriate as 
they are trained on the car camera images. Compared with the traditional perspective of car cameras, 
UAV images generally cover a larger range of objects which is considered to be able to facilitate the 
object detections. There are a lot of problems for approaches which are based on aerial images [2], 
such as low detection accuracy, slow detection speed and unstable detection results when cope with 
multi-resolution and multi-perspective images [3]. This work is motivated by aforementioned 
challenging difficulties. Specifically, we propose a fast vehicle detection approach which is robust to 
the practical application scenes. It is also compatible with a variety of resolutions and multiple 
perspectives. The detection speed is very fast and can reach 21 FPS with high detection accuracy. 

In order to rapidly detect vehicles, a fully convolutional neural networks (FCNN) [4] is chosen as a 
fast feature extractor. Then, a unified detection for labeling and localization is performed on the 
feature set extracted by FCNN. Multi-resolution vehicle detection scheme is then introduced to the 
basic vehicle detector, which makes it compatible with various resolution aerial images. Moreover, a 
multi-perspective vehicle detection scheme is also integrated into the proposed vehicle detectors 
making it to be able to work on aerial images collected from a variety of different shooting 
perspectives. 

We evaluate the proposed approaches on two data sets to demonstrate the efficacy of the proposed 
vehicle detector. One data set is Munich Images adopted in [2], another data set is collected by us 
which contain multi-resolution and multi- perspective UAV images. In this paper, the detection 
accuracy rate, recall rate and detection time are chosen as the evaluation criteria of performance. 

Our main contributions can be summarized as follows: 1) This approach adopts FCNN to extract 
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the features of images, which makes the detection speed very fast. The anchor box extracted in FCNN 
is utilized to localize the objects which is particularly suitable for small object detection. 2) A traffic 
flow detection method based on weak supervised learning is proposed to solve the problem of 
annotation data of aerial traffic image. 3) We designed a joint training model using the aerial image of 
multi-resolution and multi-perspective which can achieve a good model robustness. 4) We have 
collected a set of aerial images of multi-resolution and multi-perspective as shown in Fig. 1, in order 
to simulate the practical detection scene. 

 

  
Figure 1. Aerial images with four shooting perspectives. (a) height = 90m and θ = 90o. (b) height = 

120m and θ = 90o. (c) height = 90m and θ = 45o. (d) height = 120m and θ = 45o 

2. Related Work 
In recent years, the deep learning algorithm has achieved great success in the field of image detection 
and recognition. [5, 6] are state-of-the-art methods based on region proposal, the advantage of those 
algorithms is detection accuracy. There are some state-of-the-art methods not based on region proposal, 
such as [7, 8], the advantage of those algorithms is detection speed. Whether it is based on region 
proposal, those algorithms have achieved good results from high resolution situations, but they acquire 
poor results when target object is small or images are low pixel. In the literatures, Kaiming et al. 
proposed deep residual network of extracting highly descriptive features, [9] and it can improve the 
accuracy of small objects detection and recognition, but it is time consuming. It is difficult that the 
detection method has high detection accuracy and high detection speed simultaneously. After 
successful in face recognition, deep learning has been rapidly applied to many fields. However, many 
fields do not have public data sets as many as face recognition. In some fields, annotation data is very 
scarce, for example, medical domain [10] and aviation[11] domain. Therefore, more and more people 
study the effect of using semi-supervised [12] or weak-supervised [13,14,15] deep learning method 
instead of strong supervised deep learning method to train with less annotation data and achieve a 
large amount of annotation data to train the model results. Changyu Jiang et al. proposed a weak 
supervised vehicle learning algorithm for deep learning [16]. This algorithm uses image-level 
annotation data to train the first few layers of convolutional layers in the detection network and then 
uses a small amount of annotation data fine-tune the model to obtain an efficient detection model. 

There exist a number of literatures about vehicle detection from aerial images. Rodney LaLonde et 
al. proposed a multi-frame multi-object detection method based on FCNN [17], the performance is 
superior when compared with many state-of-the-art methods. Nassim Ammour et al. proposed deep 
learning approaches to extract highly descriptive features of Vehicle Detection in UAV Images [18], 
and them method outperformed state-of-the-art methods in terms of accuracy and computational cost. 

(b) 

(d) 

(a) 

(c) 
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Yongzheng Xu et al. proposed a combination of the Viola–Jones + SVM algorithm and an HOG + 
SVM algorithm for vehicle detection in UAV Images [19], which uses a detector switching strategy 
based the different descending trends of detection speed of both algorithms to improve detection 
efficiency. Kang Liu et al. applied a fast binary detector using integral channel features in a soft-
cascade structure for vehicle detection in UAV Images, and estimated the orientation and type of the 
vehicles [2]. All of the above algorithms are based on aerial images of the same shooting perspective, 
and they seldom consider the practical issues on vehicle detection using UAV images with different 
perspectives. 

3. Our Approach 
This section describes the whole process the proposed vehicle detection network. The design idea of a 
unified detection network is described. 

3.1. Unified Detection Network 
In this paper, we propose a fast vehicle detection network based on FCNN detection framework which 
unifies bounding box prediction and object prediction. As shown in Fig. 2, FCNN is used to directly 
convert image from the pixel space to the feature space, then the feature map is divided into N×N grids, 
each grid is responsible for predicting object of the center point falling within it. This detection network 
predicts whether a grid contains an object or not and predicts the possible location of objects 
simultaneously. 

 

 
Figure 2. A Unified vehicle detection network based on FCNN. FCNN is used to extract the feature of 
the input image. Feature map is divided into N×N grids. Feature map is encoded by softmax. A tensor is 

used for object annotation and object localization of box 
 
Let 𝑔𝑜 and 𝑔𝑡 denote prediction value and truth value whether grid g contains an object or not, and 

the range of its value is {0, 1}. The loss of 𝑔  at grid g is calculated as (1). 

ℒ𝑜𝑏(𝑔) =  (𝑔𝑜− 𝑔𝑡)
2
                                                             (1) 

Let ℒ𝑑𝑒(𝑔) denote detection loss of grid g. The overall loss of the network is calculated as (2). 

ℒ = ∑𝑔ϵG ℒ𝑜𝑏(𝑔) + ∑𝑔ϵG 𝑔𝑜𝑡 ∗ ℒ𝑑𝑒𝑡(𝑔)                                              (2) 

Where 𝒈𝒐𝒕 = 𝒈𝒐 ∗ 𝒈 , G denotes all grids in the feature map. The first term in (2) represents the 
cumulative loss when 𝒈𝒐 is different from 𝒈𝒕. The latter term in (2) represents the cumulative loss 
when 𝒈𝒐 is same as 𝒈𝒕. 

Due to the easy-to-collect but not easily annotated nature of the aerial data of the subject, we also 
employ weak supervised learning as illustrated in Fig. 2 with the target of improving the vehicle 
detection accuracy. As shown in Fig. 3. 
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Figure 3. A vehicle detection network based on weakly supervised. The top half is used to generate 

weakly labeled data. The lower half will use weakly labeled data for training 
 
Each unlabeled image will first extract several candidate boxes using the selective search [20] 

algorithm, and then classify these candidate boxes using a network similar to LeNet. Finally, the result 
of the rough annotation is filtered by the non-maximal suppression algorithm. In the rough annotation 
process, a network similar to LeNet is used to classify the candidate boxes which contains two 
convolution layers, two maximum pooling layers, two fully connected layers and a lost layer. 

The class label y(i)  ∈ {0,1} indicates that the problem is a dichotomous problem, and the loss layer 
uses a logistic regression  to calculate the loss. Logistic regression function is given as, 

                                                                  (3) 

where θ is the model parameter and x is the input eigenvector. To train the model parameter θ, Lcls   
is denoted as, 

                                                (4) 

where Lcls is classification loss and m is the number of pictures annotated in the training set. 
Our network is a two-step one. After training a rough flow detection model using weak supervision, 

the algorithm uses a traffic detection network based on FCNN. When calculating the prediction loss, the 
image is treated as annotation data. Because there is some noise in the data learned by the weak 
supervisor used in the training process of the network, we can reduce the impact of noise on the model 
training by modifying the loss function. The improved network loss function is given as, 
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                               (5) 

Where ̅Pij  represents the probability that the true box corresponding to the j-th target detection box 
in the i-th grid containing  a car. 

The loss function is mainly divided into three parts. The 1-3 items of (5) are the first part, indicating 
that the prediction box has the classification loss corresponding to the real position, the fourth items is the 
second part, indicating that the predicted box does not find the loss corresponding to the real box, and the 
fifth item is the third section, which indicates the classification loss of each grid. After the weak 
supervision and training, the first part is mainly modified, that is, when the prediction box can find 
the corresponding box in the annotation data, ̅Pij  is the weight of the first part of the loss. This weakly 
supervised training method can integrate the model into the characteristics of more target vehicles, and 
finally use the strong supervised training method to make the model converge. 

4. Experiment 
We evaluate our approach on two different data sets, one is Munich Images adopted form [2], and 
another one is UAV image data sets collected by us including images of different heights and different 
perspectives. The evaluation criteria are detection time and AP (Average Precision). Rigorous 
experiments are performed on these two data sets to verify the efficacy of the proposed approach. 

Our data set is collected from UAV Images, we use UAV to take video on five different roads with 
different flying height and shooting angle, a total of 40 videos are collected, accumulating up to 400 
minutes. A total of 3000 images were captured from the video, which evenly includes four shooting 
scenarios (1.height = 90m and θ = 90o; 2.height = 120m and θ = 90o; 3.height = 90m and θ = 45o; 
4.height = 120m and θ = 45o). We randomly choose 2000 images as training data set which contain 
32646 cars, and the rest 1000 images as testing data set which contain 17548 cars. The image size is 
800×450 pixels. The results on our UAV Images are reported in Table 1. 

 
Table 1. Results on Our UAV Images 

Method Ground Truth AP (%) Time (ms) 
Liu-Mattyu’s 17548 76.1 76 
Faster RCNN 17548 57.4 257 
SSD 17548 63.5 39 
yolo v2 17548 60.5 29 
Ours 17548 88.8 47 
 
Our method achieves the best detection accuracy on our UAV images with multi-resolutions and 

multi-perspectives images,  which reaching high detection accuracy of 88.8% AP. Yolo v2 has the fastest 
detection speed with 28 milliseconds per frame, but the performance is not good in terms of detection 
accuracy. Our method detects an image of 800×450 pixels only took 47 milliseconds which are an 
approximate real-time speed. Resolution of cars is lower in our UAV Images than Munich Images, it 
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difficult to detect vehicle on our UAV Images. And the result of other methods proved that vehicle 
detection is more difficult on our UAV Images. As shown in Fig. 4, our detection results are compared 
with Liu-Mattyu’s to verify the robustness of the proposed approach. 

5. Conclusion 
We proposed a robust model that can detect vehicles on aerial images of different resolutions and 
perspectives at approximate real-time speed. This model is very suitable for vehicles detection in aerial 
images with different detection scene. The method of multi-resolution and multi-perspective training is 
effective, it can improve the robustness of the detector. Our method outperformed state-of-the-art 
methods for vehicle detection on multi-resolution and multi-perspective aerial images. It is a good idea 
to detect the road [23] and then detect the vehicle. As future work, the performance could be further 
improved by using information which extracts from video frames [24] by LSTM [25], the speed of the 
detector would still keep fast for vehicles detection in aerial videos. 
 

  
  

Figure 4. Comparison of detection results on four different perspectives. (a) Results of Liu-Mattyu’s 
method. (b) Results of our method. When θ close to 90o, the results of our method and Liu-Mattyu’s 

method are almost the same. However, when θ close to 45o, the detection result of Liu-Mattyu’s method 
is not good, and there are many cars that are not detected. But our detection results are still great on 
four different perspectives. It indicates that our method is more robust than Liu-Mattyu’s method on 

multi-resolution and multi-perspective aerial images 
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