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Abstract. In order to guarantee the UAV video uplink in heterogeneous networks, a novel 
access network selection mechanism was proposed in this paper. Due to the unknown Channel 
State Information(CSI), the issue was first modeled as the Multi-Armed Bandit (MAB) 
problem. Then, the reward function was built and the Quality of Experience (QoE) of video 
was considered. By means of three typical solving algorithms, decisions could be made 
between utilization and exploration. The simulation results show that the mechanism can 
effectively solve the network selection problem of video transmission in heterogeneous 
networks. 

1. Introduction 
The rapid development of Internet of Things and aviation technologies has made aerial photography 
through Unmanned Aerial Vehicles (UAVs) more and more popular. Video streaming captured by the 
UAVs could be sent to the ground by all kinds of wireless networks in real time. The overlaps of 
heterogeneous wireless networks indeed provide more convenience for UAV communication. But, at 
the same time, they also trigger the access network selection problem. Because of the particularity of 
video transmission service, the selection strategy needs to start from the application layer and take into 
account the characteristics of different wireless channels. 

Due to the time-varying property of wireless channel and the mobility of UAV, the bandwidth of 
access network will not always keep the same. This bandwidth fluctuation adds uncertainties to the 
selection of access network. At the same time, due to channel fading effect and other reasons, packet 
loss is inevitable in video transmission, which is always random and increases the complexity of 
network selection. In the case of unknown CSI, the UAV needs to constantly perceive the transmission 
environment, learn from the network, so as to provide reference for their next decision. Therefore, the 
solution of this problem will be a sequential decision-making process, which can be solved by the 
Multi-Armed Bandit (MAB)[1] model.  As a classical reinforcement learning algorithm, the model has 
been widely used in many aspects, such as spectrum access and networks handover[2,3]. It generally 
includes a decision maker and multiple optional arms. The decision maker needs to make selection 
among the optional arms and keep a balance between utilization and exploration.  

Traditional access network selection methods often focus on Quality of Service(QoS) of the 
network, ignoring the needs of users. When considering the special scenario of UAV video 
transmission, it is necessary to start from the perspective of improving QoE for users. The main 
contributions of this paper are as follows:  
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 The network selection mechanism of UAV video uplink is modeled as a Multi-Armed Bandit 
problem, and the optimization objective is determined. 

 Based on a QoE function according to video content classification, the reward function of the UAV 
video transmission is established. 

 The access network selection model is solved by three different algorithms. 
 The model is verified by some simulations and the differences of the three solving algorithms are 

analyzed. 

2. Network Selection Model Based on MAB 
We consider a specific service area W in the communication. It is in the overlap area of M  
heterogeneous access networks, as shown in the red circular area in figure 1. UAV D performs video 
shooting and uplink missions during flight. Assuming that UAV D is always flying in area W and T is 
the total transmission time slots of video, the optional access network set can be expressed as 

{ (1), (2), , ( )}s s s T S   , and the reward function set is { (1), (2), , ( )}u u u TU  . 
 

 

Figure 1. System Model 
 
Because the CSI of each access network is time-varying, we will make a statistical description of 

its uncertainty. It is assumed that the CSI remains unchanged in each slot, and the changes between 
different slots follow an independent and identical distribution. First, in the slot [1,2,..., ]i T , the 

transmission rate that the network v  can carry, i.e. the available channel bandwidth of v , is a fixed 
value, ( )vr i . Then, in this slot, the bandwidth information vectors of M  heterogeneous networks can 

be expressed as 1 2( ) { ( ), ( ), ( )}Mi r i r i r i   . The total mean bandwidth vector of the M  networks is 

1 2{ , , , }MR R R   . Similarly, in the slot i , the packet loss rate of the network v  is set to a fixed 

value ( )vl i . Then the packet loss information vector of M channels can be expressed as 

1 2( ) { ( ), ( ), , ( )}Mi l i l i l i   , and the mean vector of M channels is 1 2{ , , , }ML L L   .  

Next, we model the network selection problem as an online learning problem based on the MAB. 
The heterogeneous network set {1,2, , }M   can be regarded as a set of optional arms, each of 

which corresponds to a certain reward { (1), (2), , ( )}q q q M  . Because of the randomness of 
CSI, the value of this reward will change in different time slots, and its expected value in all the time 
remains unchanged, which is recorded as 1 2{ , , , }M  μ  . As a decision maker, UAV D needs to 

continuously select an arm from the set of optional arms  , so as to make a selection in an access 
network. Generally speaking, the selection set made in different time slots can be recorded as 

{ (1), (2), , ( )}MAB MAB MABs s s T MABS   , and the corresponding reward function set is 

{ (1), (2), , ( )}MAB MAB MABu u u TMABU  . We record the historical information of this reward, and 

feedback this information to the system continuously for decision-making. Therefore, the reward  
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function is not only an evaluation method of current slot selection strategy, but also a reference basis 
for future decision-making. The selection and feedback process is iterated until the selection results do 
not change, and the algorithm converges, when the UAV will ultimately choose the arm (access 
network) that maximizes the cumulative reward function. The optimal selection strategy 

arg maxopt
s

S  μ  is called Deterministic Stationary Policy (DSP). 

Because of the unknown CSI, UAV D is not always able to make optimal judgments. Therefore, 
there will be a difference between the actual choice and the optimal choice, also known as regret value, 
which can be used to measure and judge the performance of decision-making. When the actual 
selection vector is MABS  and the reward function vector is MABU , the regret value can be expressed as 

*

1

( ) [ ( )]
i

MAB
k

R i i E u k


   MABS , where * max  μ  is the optimal selection reward expectation.  

When UAV D transmits video in M  heterogeneous access networks, we expect greater cumulative 
reward through continuous decision-making. This problem can be described as 

1

arg max ( )

   . .  , 

         {1,2, , }

i

MAB
k

u k

s t

i T





 


MAB
S

MAB

S

S S


                        (1) 

MABS  is the vector of selection results in different time slots in the iteration process.   

3. QoE-oriented Reward Function  
In order to effectively evaluate whether the access network selection algorithm can meet the needs of 
video users, we consider using QoE as a part of the reward function. We hope to establish a good 
matching relationship between CSI observations and users' real viewing experience by reasonably 
setting QoE-oriented reward functions in each slot. Usually, video QoE is closely related to the bit rate 
of video coding, packet loss rate in the network and frame rate in video playback. In this paper, we 
assume that the frame rate is a fixed value. This part of the reward function can be modeled as a 
function of bandwidth information vector, packet loss information vector and access network selection 
strategy of heterogeneous networks, { [ ( ), ( )], ( ), ( )}K i i i i   QoEU = S . [ ( ), ( )]i i S  represents 

the network selection vectors made by UAV D in M  networks with CSI of ( )i  and ( )i  in each 
slot.  

In addition to the above three factors of bit rate, packet loss rate and frame rate, the impact of video 
content characteristics on QoE can not be ignored. Literature [4] proposes that video can be divided 
into three categories: Slight Movement (SM), Gentle Walking (GW) and Rapid Movement (RM). In 
practical applications, the video uplinked by UAV may totally cover the three categories mentioned 
above. Assuming that the selected network in the slot i  is ( )s i  , the channel rate is ( )sr i  and 

packet loss rate is ( )sl i , then the reward function QoE can be expressed as[5] 

5

1 3
2

( ) ( )
4

1 ( )
( ) ln[ ] ( )

( )
( ) { , ( ), ( ), ( )}

( ) s

s

QoE s s c l i

r i
c c f

c
u i K s i r i l i

c e 

 


 

  
 


                      (2) 

{1,2,3}   represents that the video segment in current slot can be classified into one of the three 

categories mentioned above. 1 2 3 4 5( ), ( ), ( ), ( ), ( )c c c c c      represents the relevant constants when 

video content belongs to different categories and their typical value can be found in [5]. f  is frame 
Rate for Video. 
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In addition to the QoE, the reward function also needs to take into account the related cost. This 
paper considers the difference between QoE function and cost as the reward function, 

QoE COSTU = U - U . Usually, the cost needs to consider two factors: channel bandwidth leasing and 

energy consumption, which are linearly related to video transmission rate. If the correlation coefficient 
of the total loss of each network is set as 1 2{ , ,..., }M  λ , then, the total reward function of the 

slot can be expressed as ( ) ( ) ( ) ( ) ( )QoE COST QoE s su i u i u i u i r i     . 

In all, in order to solve the problem of UAV D's access selection in heterogeneous networks, we 
need to find a strategy to maximize the cumulative reward function by using the MAB model 

( ) 1

arg max { { ,s( ), ( ), ( )} ( )}

   . .  {1,2, , }, ( ) , {1,2,3}

i

s s s s
s i k

K k r k l k r k

s t i T s i

 




  

  

MABS

 

                     (3) 

When using regret value to measure the performance, the expected reward of each network can be 

expressed as { , }K     μ , and the regret value is 
1

( ) max [ ( )]
i

MAB
k

R i i E u k


   MABS μ� . 

4. Solution Algorithms  
In Section 2, we have modeled the network selection as the MAB problem. Then, how to balance the 
utilization and exploration of the MAB becomes very crucial. We adopt three algorithms to solve the 
problem. 

4.1.  -Greedy Algorithm[6] 
 -Greedy Algorithm first sets a smaller probability value (0,1)  . As the decision maker,  UAV D 

will choose the arm with the largest expected reward with probability 1  , and the other 1M   arms 
with small probability  . Suppose that in slot i , the choice made by UAV D is network v . Then in 
slot 1i  , the probability that D still takes the access network v  as the selection arm is

1 /        arg max
( 1)

/                 v

M if v
p i

M otherwise

 


  
  




. Suppose the average sampling value of the reward 

is { (1), (2), , ( )}q q q M  , then 

( ) arg maxMABs i                                                                 (4) 

4.2. UCB Algorithm[7] 
The basic idea of UCB Algorithm is to maintain confidence intervals of various expected rewards by 
using appropriate centralized inequalities. With the increasing number of samples, the confidence 
interval of sample expectations becomes more and more tight, so that the real average reward can be 
estimated more accurately. Let { (1), (2), , ( )}A A A M   represent a cumulative value of the 
number of times each arm has been selected, then 

ln
( ) arg max[ ]

2MAB
s

i
s i





 






                                               (5) 

4.3. SoftMax Algorithm[8] 
In SoftMax Algorithm, the probability of an arm being selected is related to both its own expected 
reward and all the expected reward of other arms. This probability is the ratio of the two. The 
improved SoftMax Algorithm based on Boltzmann exploration can be expressed as 



CTCE 2019

IOP Conf. Series: Materials Science and Engineering 719 (2020) 012044

IOP Publishing

doi:10.1088/1757-899X/719/1/012044

5

 
 
 
 
 
 

( )

( )

1

( ) arg max[ ]
q v

MAB M
v q k

k

e
s i

e











                                                  (6) 

5. Simulations and Analyses 
We conduct some simulations to evaluate the mechanism. The number of arms is set 3, which means 
there are three networks for selection. Firstly, we assume that the video transmitted by UAV D has fast 
moving speed, and it belongs to RM class. We compare the three solving algorithms under different 
parameters in figure 2. As the number of iterations increases, all curves tend to be smooth. This means 
all of the three algorithms will make the model converge to a stable state. ‘Selection ratio’ means the 
probability a network would be selected. From figure 2(a), 2(c) and 2(e) we can find SoftMax 
Algorithm has the fastest convergence rates. All of its choices are closer to zero or one, which means 
we could make a clear judgement of selection. The reward values of MOS in figure 2(b), 2(d) and 2(f) 
have similar trend.  
 

The Performance of  -Greedy Algorithm, under Different   

 
(a)     (b) 

The Performance of SoftMax Algorithm, under Different   

 
(c)     (d) 

The Performance of UCB Algorithm, under Different   
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(e)     (f) 

Figure 2. The Results of Three Algorithms under Different Parameters 
 
Then, we set 0.05      and analyze the performance of different algorithms when three 

different types of video, SM, GW and RM, appear randomly. Five algorithms are compared, including 
the ideal one which brings expection MOS and the no learning one which is completely random 
selection. The MOS results are shown in figure 3. We can find that the results of SoftMax Algorithm 
is most close to the ideal one, while the worst one is no learning algorithm.  

 

 

Figure 3. Comparison of Different Algorithms when Video Types are Random 

6. Conclusion 
By taking the video content classification and unknown CSI into consideration, this paper proposes an 
access network selection mechanism oriented to video QoE. The sequential decision-making problem 
is described as the MAB model. And three different algorithms are adopted to effectively solve it. The 
simulation results show that the SoftMax Algorithm outperform other solving method, and the 
proposed mechanism could effectively solve the problem of access network selection of UAV video 
transmission in heterogeneous networks. 
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