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Abstract. With the rapid development of semantic Web and big data technology, ontology data 
has the characteristics of large-scale, high-speed growth and diversity which big data has. On 
one hand, the conventional ontology reasoners do not scale well for large amounts of 
ontologies because they are designed for run on a single machine. On the other hand, the 
existing scalable reasoners are not perfect enough, for example, to completely support the 
widely used Semantic Web Rule Language (SWRL) rules. This paper presents an 
implementation for SWRL scalable parallel reasoning using the Spark SQL programming 
model, and optimizes and processes some of the problems in the implementation. 

1. Introduction 
In the field of Semantic Web[1][2], based on RDF [3], RDFS [4] and OWL [5], W3C has introduced 
SWRL [6] with more logical expression ability combining description logic and rule. With the rapid 
development of the Semantic Web and big data technologies, ontology data has presented big data 
characteristics such as large-scale, high-speed growth, and diversity. To this end, researchers have 
introduced distributed computing technology into the field of Semantic Web research to explore high-
efficiency ontology reasoning methods in distributed environments [7][8][9][10]. 

In our previous work [11], based on the analysis of existing semantic reasoning algorithms, 
combined with Spark SQL[12] which is a newer and higher level parallel computing platform with 
structured data processing capabilities, we proposed a SWRL parallel reasoning method based on 
Spark SQL. This paper is about the specific implementation of the method. We implemented SWRL 
parallel reasoning based on Spark SQL and optimized the parallel reasoning algorithm to improve 
performance. 

2. Preliminary 

2.1. SWRL Semantic Reasoning 
A RDF triple, which is a triple of resource <s, p, o>, asserts that the relationship denoted by the 
predicate is held between the subject and object of the triple. RDF defines a simple graph model to 
denote relationships between resources using the format of RDF triple. 

Based on RDF, both RDFS and OWL define a set of rules respectively with the ability to represent 
implicit information. SWRL not only includes the RDFS/OWL Horst semantics, but also can be used 
to express application-specific semantics. Reasoning is the process of deducing implicit information 
from existing RDF data by using the RDFS or OWL or SWRL reasoning rules. Given an RDF graph 
G, some new triples denoted as T can be derived from the RDFS or OWL or SWRL rules. Add T to G 
then we can obtain a bigger RDF graph G’. The process from G to G’ is called reasoning [13]. 
Reasoning is an iterative process that does not end until new results are not derived. 
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A SWRL rule r has the form (1), where B = B0∧⋯∧Bm is the body of the rule, and H = H0∧⋯∧ 
Hn is the head of the rule. Both Bi and Hj are RDF atoms, which are triples of resources or variables. Bi 
is a body atom, and Hj is a head atom. To make a rule safe, SWRL constrain that a variable in the head 
must occur at less one time in the body. 

 B0∧⋯∧Bm ⇒ H0∧⋯∧Hn (1) 

A variable substitution [10][14] ߮௧
?௫ is an operation that apply to an atom to replace the occurrences 

of the variable ?x with a resource t. A substitution application (SA) A[φ] is a triple obtained by 
applying a substitution φ to an atom A. Composition of substitutions φ1 and φ2 is also a substitution 
and defined as usual in [15]. Given a fact base I and a rule r, the inference result r(I) is the smallest set 
containing Hj(r)[φ] (for each 0≤j≤n) for each substitution φ such that Bi(r)[φ]∈I (for each 0≤i≤m). 

2.2. Our Previous Work: SWRL Parallel Reasoning Method with Spark SQL 
We divide the SWRL rule execution procedure into three stages [11]: (1) finding SA set for each body 
atom (FindSA), (2) joining SA sets of all the body atoms of the rule to find out the variable 
substitutions of the rule head (JoinSA) (3) applying the variable substitutions of the rule head to each 
atom of the rule head (ApplySH). SQL queries are executed by Spark SQL to implement parallelized 
rule execution.  

Take the following rule r1 given in [10] as an example. The reasoning process is shown in figure 1. 

r1:  B0: (?x, worksFor, ?y1) ∧ B1: (?y1, subOrganizationOf, ?y2) ⇒ H0: (?x, worksFor, ?y2) 

 

Figure 1. The execution workflow of rule r1 
 
The SQL statements of the three stages are as follows: 
FindSA: 

SELECT t0 AS ?x, t2 AS ?y1 FROM fb WHERE t1='worksFor' 

SELECT t0 AS ?y1, t2 AS ?y2 FROM fb WHERE t1='subOrganizationOf' 

JoinSA: 

SELECT body0.?x, body1.?y2 FROM body0, body1 WHERE body0.?y1=body1.?y1 

ApplySH: 

SELECT DISTINCT ?x AS t0, 'worksFor' AS t1, ?y2 AS t2 FROM headSa 

3. SWRL Parallel Reasoning Implementation with Spark SQL 

3.1. Reasoning Implementation for a Rule 
As mentioned above, the reasoning of a rule is to use Spark SQL to execute the SQL statements of the 
three stages of the rule's reasoning plan (FindSA, JoinSA and ApplySH). The SQL statements for the 
three stages are already generated in the generateing rule planning step. 
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Algorithm 1 shows the process of reasoning a rule by sequentially executing these SQL statements 
of the three stages. Firstly call the Spark DataFrame's createOrReplaceTempView function to register 
the input triples library tb as a SQL temporary view. Then call the findSa function to find the 
substitution application (SA) set of each rule body atom. This is done by executing the previously 
generated SQL statement findBodyAtomSaSql to query in the view of tb. The SA data sets of each rule 
body atom are each registered as a SQL temporary view. Then call the joinSa function to join the SA 
sets of all the rule body atoms to find the variable substitution of the rule header. This is done by 
executing the previously generated SQL statement joinSaSql to query in the view of the SA data set of 
each rule body atom obtained in the FindSA phase. The variable substitution data set of the rule header 
is registered as a SQL temporary view. Then call the applySh function to apply variable substitution to 
each rule header atom. This is done by executing the previously generated SQL statement 
applyHeadAtomSaSql to query in the view of the variable substitution data set of the rule header 
obtained in the JoinSA phase. Union the triple sets obtained by each rule header atom to get the rule's 
reasoning result triple set. 

 

Algorithm 1. Reasoning a rule with Spark SQL 
Input: rulePlan (reasoning plan of a rule), tb (current triples) 
Output: (derived triples by the rule) 
def reasoningRule(rulePlan: RulePlan, tb: DataFrame): DataFrame = { 
  tb.createOrReplaceTempView(TB_VIEW_NAME) 
  findSa(rulePlan.findSaPlan) 
  joinSa(rulePlan.joinSaPlan) 
  return applySh(rulePlan.applyShPlan) 
} 
def findSa(findSaPlan: List[FindBodyAtomSaPlan]) = { 
  for (findBodyAtomSaPlan <- findSaPlan) 
    findBodyAtomSa(findBodyAtomSaPlan) 
} 
def findBodyAtomSa(findBodyAtomSaPlan: FindBodyAtomSaPlan) = { 
  val bodyAtomSa = spark.sql(findBodyAtomSaPlan.findBodyAtomSaSql) 
  bodyAtomSa.createOrReplaceTempView(findBodyAtomSaPlan.bodyAtomName) 
} 
def joinSa(joinSaPlan: JoinSaPlan) = { 
  val headSa = spark.sql(joinSaPlan.joinSaSql) 
  headSa.createOrReplaceTempView(HEADSA_VIEW_NAME) 
} 
def applySh(applyShPlan: List[ApplyHeadAtomSaPlan]): DataFrame = { 
  var headTriples = createEmptyTripleDataFrame() 
  for (applyHeadAtomSaPlan <- applyShPlan) { 
    val headAtomTriples = applyHeadAtomSa(applyHeadAtomSaPlan) 
    headTriples = headTriples.union(headAtomTriples) 
  } 
  return headTriples 
} 
def applyHeadAtomSa(applyHeadAtomSaPlan: ApplyHeadAtomSaPlan): DataFrame = {
  return spark.sql(applyHeadAtomSaPlan.applyHeadAtomSaSql) 
} 

3.2. Reasoning Implementation for Rule Base 
The reasoning process of a rule base is divided into two steps: the first step is to parse each rule to 
generate the reasoning plan in the form of SQL statements with Spark SQL and save it; the second 
step is to execute the reasoning plan SQL statements with Spark SQL for reasoning. The first step and 
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the second step are separable. The performance of the reasonor is mainly determined by the second 
step. We did some work to improve the performance of the second step. Here, we explain the 
implementation of the second step. 

To put it simply, the second step of the reasoning process is to execute the rule's reasoning plan one 
by one, add the derived new triple facts into the fact base, and loop the reasoning until no new facts 
are derived, then the reasoning ends. However, in practice, the implementation of the reasoning 
process is more complicated due to the DAG mechanism of the Spark computing framework. 

The reasoning of the rule base requires iterative calculations. Therefore, Spark's calculation process 
DAG will be particularly long. The entire DAG calculation needs to be completed before the result is 
obtained. During this period, datasets with a large amount of lineage will be generated, which will 
result out of memory. Therefore, it is necessary to truncate the lineage. It is a possible way to truncate 
the lineage by Spark's checkpoint mechanism. However, checkpoint stores data in the disk file system, 
writes many files to the file system every short time, and does not automatically delete the previous 
checkpoint file, which is detrimental to the file system performance of the entire cluster. Therefore, we 
use the method of writing and then reading the file in our own program to truncate the lineage. In 
terms of time efficiency, there is not much difference with Spark's checkpoint mechanism, but it does 
not generate a lot of files, which improves space efficiency. 

If the new triples that are reasoned by a rule are added to the triple library tb, and tb is applied to 
the next rule to reason more new triples, then the iterative reasoning process will cause tb to generate a 
large amount of lineage. Since the triple library tb may be large, frequently truncating the lineage of tb 
by writing and then reading the file will affect system performance. To resolve this problem, we have 
improved the algorithm to avoid the large amount of lineage of tb by using intermediate results. 

 

Algorithm 2. Reasoning rule base with Spark SQL 
Input: rulesPlan (reasoning plans of rules), tb0 (original triples) 
Output: (derived triples) 
def reasoningRules(rulesPlan: List[RulePlan], tb0: DataFrame): DataFrame = { 
  var tb = tb0 
  var derived = createEmptyTripleDataFrame() 
  var tbLoop0 = tb0.union(derived) 
  var loopDerived = createEmptyTripleDataFrame() 
  var hasDerived = true 
  do { 
    hasDerived = false 
    for (rulePlan <- rulesPlan) { 
      val ruleDerived = reasoningRule(rulePlan, tb) 
      loopDerived = loopDerived.union(ruleDerived).except(tbLoop0) 
      loopDerived = loopDerivedTruncateLineage(loopDerived) 
      tb = tbLoop0.union(loopDerived) 
    } 
    if (!loopDerived.isEmpty()) { 
      derived = derived.union(loopDerived).except(tb0) 
      derived = derivedTruncateLineage(derived) 
      tbLoop0 = tb0.union(derived) 
      loopDerived = createEmptyTripleDataFrame() 
      hasDerived = true 
    } 
  } while (hasDerived) 
  return derived 
} 
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Algorithm 2 shows the iterative reasoning process of the rule base. Where tb0 is the original triples 
library before starting the inference, and derived is all the new triples that have been reasoned before 
starting a loop of reasoning on the rule base, tbLoop0 is the triples library before starting a loop of 
reasoning on the rule base, loopDerived is the new triples reasoned in current loop, ruleDerived is the 
new triples reasoned in current rule. Using tb0 union derived to update tbLoop0, using tbLoop0 union 
loopDerived to update tb, using loopDerived union ruleDerived to update loopDerived itself, using 
derived union loopDerived to update derived itself. To truncate lineage on loopDerived and derived 
that avoid the large amount of lineage of tb, and the loopDerived that is frequently truncated is small, 
while the larger derived (which is a subset of tb, smaller than tb) is truncated less frequently (once per 
loop). 

3.3. Eliminating Duplicated Facts 
It is inevitable that some results of the rules duplicate the facts in the knowledge base during the rule 
execution process. The duplicated facts not only degrade system performance but also increase 
management overhead. However, removing duplication also bring additional computation to the 
reasoner. Existing systems adopt a series of duplication elimination strategies [8][9][10]. We used 
several strategies to remove all duplicated facts, as follows: (1) removing all duplications before the 
reasoning process begins; (2) using the DISTINCT clause to remove duplications in the derived data 
in the ApplySH stage of each rule; (3) after each rule is reasoned, use the except method to eliminate 
the duplications in loopDerived and the duplications between loopDerived and tbLoop0; (4) after each 
time looping through all the rules, use the except method to eliminate  the duplications in derived and 
the duplications between derived and tb0. 

3.4. SWRL Reasoning Implementation with RDFS/OWL/SWRL Reasoning Rules 
SWRL reasoning is the process of deducing implicit information from existing RDF data by using the 
RDFS/OWL/SWRL reasoning rules. A rule dependency exists when the evaluation results of a rule 
trigger another rule execution. Thus improper rule evaluation order will conduct unnecessary job 
running and bring significant performance degradation [9][10]. We optimize the execution order of 
RDFS and OWL rules according to the method in [9]. Optimizing the execution order of SWRL rules 
is what we will do in the future. The SWRL reasoning implementation with the RDFS/OWL/SWRL 
reasoning rules is shown in Algorithm 3. 
 

Algorithm 3. Reasoning RDFS/OWL/SWRL rule base with Spark SQL 
Input: rdfsRulesPlan (reasoning plans of RDFS rules), owlRulesPlan (reasoning plans of OWL 

rules), swrlRulesPlan (reasoning plans of SWRL rules), tb0 (original triples) 
Output: (derived triples) 
def reasoningMixedRules(rdfsRulesPlan: Dataset[RulePlan], owlRulesPlan: Dataset[RulePlan], 

swrlRulesPlan: Dataset[RulePlan], tb0: DataFrame): DataFrame = { 
  val rulesPlan = rdfsRulesPlan.union(owlRulesPlan).union(swrlRulesPlan).collect.toList 
  return reasoningRules(rulesPlan, tb0) 
} 

4. Conclusion and Future Work 
In our previous work, based on the analysis of existing semantic reasoning algorithms, combined with 
Spark SQL which is a newer and higher level parallel computing platform with structured data 
processing capabilities, we proposed a SWRL parallel reasoning method based on Spark SQL. This 
paper is about the specific implementation of the method. We implemented SWRL parallel reasoning 
based on Spark SQL and optimized the parallel reasoning algorithm to improve performance. In the 
future work, we intend to further improve the reasoning system and use large data sets to evaluate our 
system. 
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