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Abstract. Test data generation is an important part of software testing. The imbalance of data 
crossing program branches is often ignored in generating test data. As a result, there is much 
data crossing some branches while little data crossing other branches. To solve the 
phenomenon so as to generate test data effectively, we introduce branch balance and program 
balance in the evolutionary generation of test data. First, the number of individuals crossing the 
true and false branch of each branch node on the target path are computed. Then, the 
calculation methods of  branch balance and program balance are given. Finally, the fitness 
value function which considers the change of program balance before and after an individual 
joining is presented. And an individual that can improve the balance will be retained in the 
evolution process. Experiments show that our method is better than the other method in 
running time and success rate. 

1. Introduction 
Software testing is a time-consuming and labor-consuming work, whose goal is to find as many errors 
as possible with less test data to reduce the cost of software development. An efficient and feasible 
method to generate test data automatically is of great significance to test process [1]. Path coverage is 
a test criteria with the highest coverage in white-box testing, which refers to selecting enough test data 
so that every possible path of the program can be executed at least once. In this paper, we consider the 
balance of individuals crossing program branches, which is used to generate test data in Genetic 
Algorithm (GA). So an individual crossing new branch or improving the program balance will obtain 
higher fitness value and it will be preserved in the evolution process to enhance the efficiency of test 
data generation. 

2. Related Work 
In recent years, many scholars have studied the application of evolutionary theory to generate test data 
satisfying path coverage, and they have developed many new methods for automatically generating 
test data covering target paths. Ahmed et al. [2] proposed a method to generate multi-path test data for 
the first time by transforming the test data generation problem into a multi-objective optimization 
problem, which enables the application of GA to generate multiple test data crossing multiple target 
paths at one time. Gong et al. [3] presented to generate regression test data based on the existing test 
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data. Dang et al. [4] proposed to generate executable paths for weak mutation testing by examining the 
correlation between the true branches of mutation statements, so that test data covering these paths can 
kill all mutants. Ding et al. [5] used a complete model for fast generation of test data from the 
perspective of engineering practice of software testing, which realized the path representation for key 
point. It improved the efficiency for test data generation. In addition, some scholars have discussed the 
application of other technologies in test data generation. For example, Yao et al. [6] proposed to 
integrate with neural network, which can effectively reduce the time consumption of running programs 
comparing with previous methods. Reference [7] applied the capture technology of rare data, which 
protected these data traversing nodes that are difficult to cover, and then they calculated the individual 
contribution degree to the generation test data to adjust the individual fitness value. 

The goal of software testing is to realize the sufficiency and comprehensiveness of program testing. 
Though the above techniques effectively generate test data covering target path by applying 
evolutionary algorithm, they do not consider the balance of test data traversing program branches. If a 
balanced mechanism is introduced during the evolution of test data so that the generated data can 
traverse multiple branches in a balanced way, thus the generation efficiency of test data covering target 
path will undoubtedly be improved. 

Therefore, we introduced the balanced mechanism in the evolution of test data. After test data 
running the program, the number of individuals traversing each branch node on target path is counted, 
and the fitness function is designed according to it so individuals that can improve the program 
balance are retained to improve the generation efficiency of test data. 

3. Basic Concepts 
For convenience, the concept of Control Flow Diagram is given. 

(1) Control Flow Diagram 
Control Flow Diagram called CFD is a graphical representation of the program control structure, 

which is a directed graph G (N, E, s, e), where N is called the set of nodes in G and each node 
corresponds to a program statement, and E is a set of edges. i j( n ,n )  is called a edge of G, and it 

indicates that there is control flow from in  to jn . Generally, the CFD of each program contains a 

unique entry node s and exit node e. The Figure 1(b) shows the CFD of the program, and the source 
program is in Figure 1(a) [8]. 

 

     
(a) Source program                                                 (b) Control Flow Diagram 

Figure 1. Source program and its CFD 
 
(2) Branch nodes 
In the CFD, nodes with an out-degree greater than or equal to two are called branch nodes. 

,ଵ݁݀݋݊ ,ସ݁݀݋݊  ଺ in Figure 1(b) are all branch nodes. As the switch statement can be expressed as݁݀݋݊
a double-branch selection structure, and according to Z-path coverage [9], the loop structure can also 
be converted into a double-branch selection structure basing on the number of times the loop body 
executing zero and at least once. Therefore, switch nodes and loop nodes are all regarded as branch 
nodes in this paper. 
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 (3) True and false branches of branch nodes 
The two edges starting from the branch node are the true and false branches of the branch node 

respectively. When the predicate of a branch node is true, the true branch of the branch node is 
executed, otherwise the false branch is executed.  

4. Calculation of the Program Balance 
From the CFD in Figure 1(b), it can be seen that the number of test data crossing the sequence node 
and its direct successor node must be equal. Therefore, the sequence nodes are not considered in the 
calculation of the program balance to reduce calculation cost. After all the corresponding data of 
individuals run the program, the program balance is calculated. According to individuals crossing the 
true and false branches of each branch node, first we calculate the branch balance of each branch node, 
then we take the sum of all the branch balance as the program balance. 

4.1. Calculation of Branch Balance 
The branch balance is used to indicate the balance of test data crossing the true and false branches of a 
branch node. Supposing the number of branch nodes on target path is ݊. After the corresponding data 
of all individuals run the program, the number of individuals crossing the true and false branch of the 
kth branch node in the tth generation population is counted. Here denote it as ܰ݉ݑ௞்ሺݐሻ  and 
݇) ሻ respectively, so the branch balance of the kthݐ௞ிሺ݉ݑܰ ൌ 1,2⋯ , ݊ሻ branch node can be expressed 
as: 

ܾܾ௞ሺݐሻ ൌ ൜
																									0															, ሻݐ௞்ሺ݉ݑܰ ൌ ሻݐ௞ிሺ݉ݑܰ	 ൌ 0

ሻݐ௞்ሺ݉ݑܰ| െ ,ሻݐ௞்ሺ݉ݑሺܰݔܽ݉/|ሻݐ௞ிሺ݉ݑܰ ,ሻሻݐ௞ிሺ݉ݑܰ else
                   (1) 

Where ݉ܽݔሺܰ݉ݑ௞்ሺݐሻ,  .ሻݐ௞ிሺ݉ݑܰ ሻ andݐ௞்ሺ݉ݑܰ ሻሻ is to get the maximum value ofݐ௞ிሺ݉ݑܰ
From Eq. (1), we can see that the defined branch balance actually reflects the balance of all individuals 
crossing the true and false branches of the kth branch node. If the difference in the number of 
individuals crossing the true and false branches is small, the value is small, which indicates that the 
individuals crossing the true and false branches of the node are more evenly. It is not difficult to obtain 
that the smaller of the branch balance, the better. 

4.2. Calculation of Program Balance 
According to Eq. (1), the branch balance of all branch nodes on the target path is calculated, and the 
sum of the branch balance of all branch nodes is taken as the program balance, as is seen in Eq. (2). 
According to the definition of the branch balance, the smaller the program balance is, the better of the 
program balance is. The smaller value reflects data crossing the program in a balanced way. 

ሻݐሺܾ݌ ൌ ∑ ܾܾ௞ሺݐሻ
௡
௞ୀଵ                                                               (2) 

Taking the program in Figure 1 as an example. Supposing the chosen target path is “s,1,3,4,6,8, e”, 
which means that there are three branch nodes on the path, they are ݊݁݀݋ଵ,  ݊݁݀݋ସ,  ଺. Assuming݁݀݋݊
there are four individuals ݔଵ~ݔସ in the population, and the number of individuals crossing the true 
branch and the false branch of the branch node of ݊݁݀݋ଵ in the 6th generation are ܰ݉ݑଵ்ሺ6ሻ = 3 and 
ଵிሺ6ሻ݉ݑܰ  = 1 respectively. The branch balance of ݊݁݀݋ଵ  is further calculated according to Eq. 
(1):ܾܾଵሺ6ሻ ൌ ଵ்ሺ6ሻ݉ݑܰ| െ ,ଵ்ሺ6ሻ݉ݑሺܰݔܽ݉/|ଵிሺ6ሻ݉ݑܰ ଵிሺ6ሻሻ݉ݑܰ ൌ |3 െ 1|/maxሺ3,1ሻ 	ൎ 
0.67. 

Assuming that the number of individuals crossing the true branch of nodeସ	and	node଺ are 2, 4 
respectively, crossing the false branch of these two nodes are 2 and 0 respectively. Then the branch 
balance of the	  ݇ th (݇ ൌ 2,3 ) branch node can be calculated in the same way. The values are 
ܾܾଶሺ6ሻ=0 and ܾܾଷሺ6ሻ=1. Finally, according to the calculation method in Eq. (2), the program balance 
is achieved. ܾ݌ሺ6ሻ ൌ ∑ ܾܾ௞ሺ6ሻ

଺
௞ୀଵ ൎ 0.67 ൅ 0 ൅ 1 ൎ 1.67. 
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5. Evolutionary Generation of Test Data  
To check whether an individual can improve the program balance, the method used is: after deleting an 
individual, recalculate the branch balance of each branch node on the target path, then calculate the 
program balance. So the effect of the individual basing on the change of the program balance before 
and after deleting the individual can be computed, and finally the effect is taken as fitness value of the 
individual. 

5.1. Calculation of Program Balance after an Individual Deletion 
To calculate the fitness value of an individual, this section gives the calculation method of program 
balance after deleting an individual. Supposing the number of individuals crossing the true branch and 
false branch of the kth branch node after deleting the individual ݔ௪  is 	ܰ݉ݑ௞்

ᇱ ሺݔ௪, ሻݐ  and 
௞ி݉ݑܰ

ᇱ ሺݔ௪, ሻݐ  respectively, the branch balance of the kth branch node 	 can be expressed as 
ܾܾ௞

ᇱ ሺݔ௪,  :ሻݐ

ܾܾ௞
ᇱ ሺݔ௪, ሻݐ ൌ ൜

																																																0		, ௞்݉ݑܰ
ᇱ ሺݔ௪, ሻݐ ൌ ௞ி݉ݑܰ

ᇱ ሺݔ௪, ሻݐ ൌ 0
௞்݉ݑܰ|

ᇱ ሺݔ௪, ሻݐ െ ௞ி݉ݑܰ
ᇱ ሺݔ௪, |ሻݐ ௞்݉ݑሺܰݔܽ݉

ᇱ ሺݔ௪, ,ሻݐ ௞ி݉ݑܰ
ᇱ ሺݔ௪, ⁄ሻሻሻݐ , else

      (3) 

So we get the program balance after ݔ௪ is deleted, which can be expressed as: 

,௪ݔᇱሺܾ݌ ሻݐ ൌ ∑ ܾܾ௞
ᇱ ሺݔ௪, ሻݐ

௡
௞ୀଵ                                                       (4) 

5.2. Calculation of Individual Fitness Value 
Generally speaking, individuals with higher fitness value in current population will be copied to the 
next generation with large probability. In the paper, the calculation of an individual fitness value 
consider the program balance obtained before and after deleting an individual ݔ௪. And according to 
the change on the program balance, we get the fitness value of ݔ௪, which can be expressed as: 

݂ሺݔ௪, ሻݐ ൌ ൜
௪ᇱܾ݌ ሺݐሻ െ ,ሻݐሺܾ݌ ௪ᇱܾ݌ ሺݐሻ ൐ ሻݐሺܾ݌
											0, ௪ᇱܾ݌															 ሺݐሻ ൑ ሻݐሺܾ݌

                                       (5) 

As is seen from Eq. (5) that the change of program balance before and after deleting ݔ௪  is 
considered when calculating the individual fitness value. If the deletion of ݔ௪ increases the program 
balance, that is, the existence of ݔ௪  can effectively improve the program balance, then ݔ௪  is 
preferentially retained in the evolution process. If there are multiple individuals like this at the same 
time, it can be ensured that the greater improvement on the program balance, the larger fitness value of 
an individual gets by Eq. (5). On the other hand, if the deletion of ݔ௪ leaves the program balance 
unchanged or reduced, that is, ݔ௪ cannot improve the program balance, then the individual should be 
deleted by setting its fitness value to 0. 

Taking the program in Figure 1 as an example. In the 6th generation, when deleting xଵ, assuming 
that the number of individuals  crossing the true and false branch of ݊݁݀݋ଵ  is ܰ݉ݑଵ்

ᇱ ሺݔଵ, 6ሻ=3, 
ଵி݉ݑܰ	

ᇱ ሺݔଵ, 6ሻ ൌ 0 respectively, thus the branch balance of ݊݁݀݋ଵ after deleting ݔଵcan be calculated, 
ܾܾଵ

ᇱ ሺݔଵ, 6ሻ ൌ ଵ்݉ݑܰ|
ᇱ ሺݔଵ, 6ሻ െ ଵி݉ݑܰ

ᇱ ሺݔଵ, 6ሻ|/݉ܽݔሺܰ݉ݑଵ்
ᇱ ሺݔଵ, 6ሻ, ଵி݉ݑܰ

ᇱ ሺݔଵ, 6ሻሻ ൌ |3 െ 0|/
maxሺ3,0ሻ ൌ 1. In the same way, we get the branch balance of ݊݁݀݋ସ and ݊݁݀݋଺. So the program 
balance in this case can be calculated. Supposing the program balance after deleting ݔଵ by Eq. (4) 
is :	ܾ݌ᇱሺݔଵ, 6ሻ ൌ ∑ ܾܾ௞

ᇱ ሺݔଵ, ሻݐ
௡
୩ୀଵ ൌ 1. And the program balance after deleting other individuals	can be 

calculated in the same way, supposing the program balance after deleting ݔଶ~ݔସ  are ܾ݌ᇱሺݔଶ, 6ሻ ൌ
3, ,ଷݔᇱሺܾ݌	 6ሻ ൌ 2 , and ܾ݌ᇱሺݔସ, 6ሻ ൌ 2.5	respectively . As the program balance calculated before 
deleting ݔଵ  is pbሺ6ሻ ൎ 1.67, and the value after deleting it is ܾ݌ᇱሺݔଵ, 6ሻ ൌ 1. Since  ܾ݌ᇱሺݔଵ, 6ሻ ൏
,ଵݔଵ can be calculated according to Eq. (5), ݂ሺݔ ሺ6ሻ, the fitness value ofܾ݌ 6ሻ ൌ 0. Similarly, we get 
݂ሺݔଶ, 6ሻ ൌ 1.33,		݂ሺݔଷ, 6ሻ ൌ 0.33,݂ሺݔସ, 6ሻ ൌ 0.83. As ݂ሺݔଶ, 6ሻ ൐ ݂ሺݔ௜, 6ሻሺ݅ ൌ 1,2,3ሻ, it shows that 
 ଶ can improve the original program balance to the greatest extent in all individuals. Besides, bothݔ
݂ሺݔଷ, 6ሻ and ݂ሺݔସ, 6ሻ are greater than 0, which indicates that both ݔଷ and ݔସcan effectively improve 
the balance of program coverage. These three individuals will have a greater probability to be 
preserved in evolution process. The fitness value of ݔଵ is 0 and it will be deleted in the evolution 
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process. It can be seen that the proposed method can effectively distinguish the effect of different 
individuals on the program balance. 

6. Experiments 
To validate the effectiveness of our method, we apply it to triangle classifier program in [7], a 
benchmark program commonly used in software testing.  The program is written in C language. The 
selected comparison method is described in reference [10]. The two methods adopt the same 
experimental parameters. Comparing the evaluation times, running time and success rate to find the 
test data covering the target path, which are used in [7]. The evaluation times means sum of 
evolutionary generations all individuals in one experiment. The smaller the evaluation times and the 
shorter the running time, the better the performance of the algorithm, and the success rate refers to the 
ratio of the number of experiments that successfully generate the test data to the total number of 
experiments within the maximum running generation. All results are the average values by many 
experiments. The experimental results are shown in Table 1. 
 

Table 1. Experimental Results of Triangle Classification Program 

Experimental settings The proposed method The method in [10] 
Data 
range 

Population 
size 

Maximum 
generation 

Evaluation 
times 

Time
(ms)

Success 
Rate(%)

Evaluation 
times 

Time 
(ms) 

Success 
rate(%)

[1,128] 30 3000 4966.0 19.7 100 41974.0 84.9 100 
[1,256] 50 8000 7750.0 20.5 100 337880.0 628.3 40 
[1,512] 80 10000 11226.7 32.7 100 670917.3 1285.1 33.3 

[1,1024] 150 30000 28690.0 74.4 100 3415370.0 7217.0 46.7 
[1,2048] 300 80000 65360.0 256.7 100 8003560.0 19422.8 66.7 

 
As can be seen from Table 1: 
(1) When the data range is [1,128], the average value of evaluation times in [10] and our method 

are 41974.0 and 4966.0 respectively, which is more than our method. When the data range is [1,2048], 
the value in [10] is 8003560, which is also more than ours of 65360. For different experimental 
conditions in Table 1, the evaluation times of our method are obviously less than that of the other 
method. This shows that comparing with the similar method in [10], ours can successfully generate 
test data with less evaluation times. That is because less generations of GA is used to get the terminal 
conditions of GA by our method.  

 (2) The average running time required by our method is less than that of [10] for different 
experimental conditions. For example, When the data range is [1,2048], the average running time of 
[10] is 19422.8ms and 256.7ms of our method, which is less than the value in [10]. Besides, under 
different data ranges, population size and maximum evolution generations in Table 1, our method all 
consumes less time. This is because the method in [10] considers the layer proximity and branch 
distance when calculating the fitness value, which needs large amount of computation and consumes 
more time. Our method mainly needs to calculate the branch balance  and program balance before and 
after an individual joining, which needs  less time. 

 (3) From the average success rate, the value of the proposed method can all reach 100% in 
different conditions, while the method in [10] can't. For example, When the data range is [1,1024], the 
value of [10] is 46.7%, which is obvious lower than our method. It demonstrates the effectiveness of 
the proposed method in generating test data. 

We can conclude from the experimental results above that compared with the method in [10] , our 
method is advantageous in evaluation times, running time and success rate for triangle classifier 
program. 

7. Conclusion 
The paper presents a test data generation method based on GA. After all the corresponding data of 
individuals run the program, the number of test data traversing each branch node on the target path is 
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counted. Based on this, a calculation method for the effect of individuals on the program balance is 
designed. The individual traversing the new path is preferentially retained. If all the generated data do 
not traverse the new path, the effect of each individual on the program balance is calculated. 
Furthermore, the fitness value of individuals which can improve the program balance and the test data 
generation efficiency is raised. So these individuals will be retained in evolution process. Experimental 
results show that the test data generation efficiency of our method is higher than that of the 
comparison method. However, the experimental results are just on the triangle classification program, 
and we will further study the experiments on other programs in the future. 
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