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Abstract

The cosmic microwave background (CMB) monopole temperature evolves with the inverse of the cosmological
scale factor, independent of many cosmological assumptions. With sufficient sensitivity, real-time cosmological
observations could thus be used to measure the local expansion rate of the universe using the cooling of the CMB.
We forecast how well a CMB spectrometer could determine the Hubble constant via this method. The primary
challenge of such a mission lies in the separation of Galactic and extra-Galactic foreground signals from the CMB
at extremely high precision. However, overcoming these obstacles could potentially provide an independent,
highly robust method to shed light on the current low-/high-z Hubble tension. An experiment with 3000 linearly
spaced bins between 5GHz and 3THz with a sensitivity of 1 -mJy yr sr 1 per bin, could measure H0 to 3% over
a 10 yr mission, given current foreground complexity. This sensitivity would also enable high-precision
measurements of the expected ΛCDM spectral distortions, but remains futuristic at this stage.

Unified Astronomy Thesaurus concepts: Cosmic microwave background radiation (322)

1. Introduction

Measurements of the expansion of the universe serve as a
cornerstone of modern cosmology. The two most precise
methods to infer the current expansion rate, H0, are (i) “direct”
observations using SNe Ia as standard candles, calibrated using
Cepheid variables or other local objects with precise distance
measurements, and (ii) “indirect” determinations using the
standard-ruler sound horizon measured by cosmic microwave
background (CMB) anisotropy observations. The latter method
can also be employed without CMB data by using baryon
acoustic oscillation, Big Bang nucleosynthesis, and weak
lensing data(e.g., Abbott et al. 2018). These methods infer the
Hubble constant via physics at opposite ends of cosmic history,
providing an important consistency check on ΛCDM cosmol-
ogy. Current results from the SH ES0 team, using Cepheids in
the Large Magellanic Cloud to calibrate the distance ladder,
yield H0=74.03±1.42 kms−1Mpc−1(Riess et al. 2019).
Planck observations of the CMB anisotropies result in
H0=67.4±0.50 kms−1Mpc−1, indicating a 4.4σ tension
with SH ES0 (Planck Collaboration et al. 2018).

The discrepancy in H0 derived by these two methods has
garnered much attention and led to the development of a variety of
cosmological and experimental explanations (see Knox & Millea
2020, for some examples). Several additional pathways have been
used to measure H0 including the use of different observables to
build the distance ladder (Freedman et al. 2019; Huang et al.
2020); strong gravitational lensing of quasars(Shajib et al. 2019;
Wong et al. 2019); gravitational waves as standard sirens(The
LIGO Scientific Collaboration et al. 2019); and many others, as
well as reanalyses of these data with new methods(Reid et al.
2013; Jimenez et al. 2019; Kozmanyan et al. 2019). In this paper
we forecast the use of real-time cosmology to measure H0 from
the Hubble cooling of the CMB monopole temperature. Similar
real-time cosmological methods have been proposed using

redshift drift (e.g., using the Sandage–Loeb test Sandage 1962;
Loeb 1998).
The time evolution of the temperature of the CMB monopole

provides a local measurement of the universal expansion rate,
without requiring use of a distance ladder. Additionally, the
theoretical assumptions for this type of measurement are extremely
minimal and allow for a direct measurement of the time evolution
of the scale factor, without assuming a particular cosmology. The
evolution of the CMB monopole temperature with the scale factor
is a well-known result: µ -T aCMB

1. This relation cannot be easily
modified without introducing noticeable CMB spectral distortions
(e.g., Chluba 2014). The only underlying assumptions involved in
this relation are as follows:

1. Photons are massless.
2. The CMB is thermal radiation (i.e., if the photon

distribution function was far from Planckian, then TCMB

would not be a meaningful quantity).
3. The first law of thermodynamics is valid.
4. The expansion of space is isotropic.

All of these assumptions have already been validated
experimentally at extremely high precision.
Thus, the quantities TCMB and a can be mapped exactly onto

one another. The evolution of the temperature of the CMB with
time then provides an unambiguous, direct measurement of

º =H a

a t t0 0( )∣ . The primary obstacle comes in the form of
Galactic and extra-Galactic foregrounds that obscure our view
of the CMB (Abitbol et al. 2017). Experimental challenges
arise in the sensitivity, stability, and calibration requirements
necessary for such an observation. In this paper we present the
method and forecast noise levels required to measure the
Hubble constant using the cooling of the CMB.
The time evolution of the monopole as a probe for H0 has been

proposed previously (Zibin et al. 2007). We take the additional
step of propagating the uncertainties on TCMB to H0 and present
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example noise curves to produce such a measurement, including a
detailed treatment of foregrounds. Studies of the time evolution of
the CMB angular power spectrum and forecasts for observations
have also been conducted (Lange et al. 2007; Zibin et al. 2007;
Moss et al. 2008). In particular, Lange & Page (2007) found that
the change in the power spectrum could in principle be detected
over the course of a century.

2. Method

2.1. Hubble Cooling of TCMB

The monopole temperature of the CMB, hereafter denoted
ºT TCMB, decreases in time with the scale factor as

=T t T a t . 10( ) ( ) ( )

The time derivative of T is then = -T t H t T t( ) ( ) ( ) . This can be
evaluated to first order, taking = = ´- -H 70 km s Mpc 7.20

1 1

- -10 yr11 1 as an example and T0= 2.725 K,6

= = - -T H T 0.20 nK yr . 20 0 0
1 ( )

Therefore the temperature of the CMB decreases by 2 nK over
a 10 yr period. One could thus in principle measure the real-
time cooling of the CMB due to the expansion of space and
from this infer the value of the Hubble constant.

2.2. Requirements to Measure H0

The simplest method to measure the Hubble constant from
the monopole temperature would amount to fitting for the slope
of T as it decreases in time. The model is linear in time with a
slope of H T0 0,

= -T t T H T t. 30 0 0( ) ( )

We have in mind a future version of the COBE/FIRAS
experiment, where the data can be reduced in discrete time

intervals to evaluate the monopole temperature of the CMB
repeatedly over the mission duration. For example, the mission
could take data continuously for 10 yr, potentially mapping out
large portions of the sky, and the monopole CMB temperature
would be inferred from these data every year. Given the
expected level of cooling, we can then propagate uncertainties
from T(t) to H0 and determine what sensitivity to T(t) is required
to measure H0 with a given precision.
We make some simplifying assumptions that will allow us to

analytically calculate the uncertainty on H0 using an ordinary
least-squares estimator. First, we assume that T(t) is measured
with (foreground-marginalized) uncertainty σT in discrete
uniform time intervals with spacing Δt, such that t= kΔt,
where k= 1,2..., N. The mission duration is thus ttotal= NΔt
with N data points. Second, the uncertainties on T(t) are time-
independent, parameter-independent, and Gaussian uncorre-
lated.7 The foreground-marginalized uncertainty σT can then be
written in terms of an effective sensitivity sT of the experiment
such that,

s =
D

s

t
, 4T

T ( )

where sT is understood as the effective sensitivity to T of the
experiment after data reduction and foreground marginaliza-
tion. The SI units for σT and sT are K and K s , respectively.
With these assumptions, we can use a linear least-squares
regression to propagate the uncertainties from T(t) to H0 and
solve this in the limit that H0Δt=1 and s TT 00  ,

s =
-

»
s

T t

N

N

s

T t

12

1
12 . 5H

T T

0 total
3 2

2

2
0 total

3 20 ( )

Figure 1 shows the uncertainty on H0 as a function of
mission duration and effective sensitivity. To minimize the
uncertainty on H0 requires minimizing sT and maximizing ttotal,

Figure 1. Hubble constant uncertainty as a function of mission duration for different effective sensitivities to T. The scaling of sH0 depends on mission duration to the
−3/2, as the noise averages down with the square root of time and the signal increases linearly in time. An experiment with effective monopole temperature sensitivity

=s 0.06 nK yrT could measure H0 to 3% in about 11 yr (see Equation (5)).

6 The forecast for sH0 depends on the true value of the current CMB temperature
T0 but the change in sH0 is small given the current sub-mK constraints on T0 from
COBE/FIRAS (Fixsen et al. 1996, 2011).

7 This is not entirely true as the CMB photon noise is one of the dominant
noise sources and therefore the noise depends on TCMB. However, the change
in the CMB photon noise over these timescales is negligible.
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as expected. The uncertainty on H0 has a linear dependence on
sT and a 3/2 scaling with the mission duration. The power of
3/2 comes from the signal increasing linearly with time and the
noise averaging down as the square root of time. The term in
the square root is nearly independent of N for N> 2 and so the
choice of N (or how to divide up the data for a mission with
fixed duration) is not too important.

We can then calculate the effective sensitivity sT to measure
H0 at a given precision X, where s=X H H0 0 is the detection
significance of H0:

=s
X

t0.056

1 yr
nK yr . 6T

total
3 2

[ ] ( )
⎛
⎝⎜

⎞
⎠⎟

For a 10 yr mission this gives

=s
X

1.8
nK yr . 7T ( )

To be comparable with the state-of-the-art measurements of H0

with 3% uncertainties or less requires X30, thus an effective
experiment sensitivity of s 0.059 nK yrT for a 10 yr
mission. We will compare this benchmark noise level to
recently proposed and upcoming experiments in the next
section.

3. Results

3.1. Foreground Assumptions

One of the main limitations in making this measurement is
the problem of separating out the CMB signal from a variety of
microwave foreground signals. We use the Fisher matrix
methodology described in Abitbol et al. (2017) to forecast
uncertainties on parameters given an experimental noise model
and a parametric model for the sky signals. The relevant CMB
signals include the y-distortion, relativistic correction to y, μ-
distortion, and hydrogen and helium recombination lines. The
foregrounds included in the model are:

1. Galactic synchrotron (3 parameters).
2. Galactic free–free (1 parameter).
3. Galactic anomalous microwave emission (1 parameter).
4. Galactic thermal dust (3 parameters).
5. Integrated extra-Galactic CO line emission (1 parameter).
6. Cosmic infrared background (CIB; 3 parameters).

for a total of 12 foreground parameters and 5 CMB distortion
parameters (see Abitbol et al. 2017, for a detailed description
of the model parameterization). At this level of precision, the
foregrounds might be much more complex and more general
modeling (e.g., as in Chluba et al. 2017, to account for spatial
averaging effects) would be required. Additional foregrounds
such as atomic and molecular lines in our Galaxy or zodiacal
emission will contribute as well, but are ignored in this
forecast, assuming spatial information can be used to mask or
constrain them.

3.2. Sensitivity Calculation

In order to fit for all the foreground and spectral distortion
parameters, we require an experiment with broad frequency
coverage and high sensitivity. As seen in Figure 2, the time-
evolution signal is six orders of magnitude below the
foregrounds and also below the other spectral distortion
signals. As an example of a currently feasible mission, we
begin by taking the sensitivity from the previously proposed,
absolutely calibrated Fourier transform spectrometer (FTS),
Primordial Inflation Explorer (PIXIE). The example PIXIE
frequency coverage spans 15 GHz to 3 THz in 15 GHz wide
channels and has a per-channel sensitivity of approximately

-5 Jy yr sr 1.8 The sensitivity was derived in Kogut et al.
(2011) assuming photon noise limited detectors and a 4 cm sr2

etendu. The photon noise is dominated by the CMB, thermal
dust, and zodiacal emission. Enhanced versions of PIXIE, using

Figure 2. Sky signals and sensitivities. In dotted purple is a representative model for the total foregrounds(Abitbol et al. 2017). CMB spectral distortion signals are
shown in the solid (and partially dashed) curves, with the Compton-y distortion in red, relativistic correction to y in cyan, chemical potential μ distortion in green, and
hydrogen and helium recombination lines in yellow. The change in the CMB monopole after one year is plotted in blue. The signals are plotted with respect to a
nominal CMB blackbody at 2.725K, with the negative parts shown as dashed curves. Two example sensitivity curves are plotted in black, one with linearly spaced
bins and one with log spaced bins. Both example sensitivities are designed to give a 3% measurement of H0 with a 10 yr mission duration (the sensitivity per year is
shown). The shaded region shows the approximate sensitivity range from recently proposed spectral distortion missions achievable with current technology.

8 PIXIE also includes channels beyond 3 THz, but these are not useful for our
purposes.
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multiple FTS copies, have been considered more recently
(André et al. 2014; Kogut et al. 2019). The primary way to
improve the sensitivity for an FTS is to increase the etendu (not
the number of detectors as is typical with imaging experi-
ments), thereby increasing the number of photons collected and
improving the signal-to-noise by a factor of the square root of
the etendu. There is also a trade-off between the FTS frequency
resolution and sensitivity per channel. Given a fixed optical
loading and integration time, increasing the frequency resolu-
tion by a factor m would decrease the sensitivity per channel
linearly by m.9

The PIXIE sensitivity is not high enough to detect H0, so we
increase the sensitivity to produce two example noise curves that
would measure H0 to 3%, shown in Figure 2. To achieve this we
generate two example noise curves with broad frequency
coverage and fine resolution and then set the sensitivity to
realize a 3% measurement of H0. The example sensitivities are
meant to serve as a guideline for what a future experiment might
need to measure H0. The first example has 2995 1GHz wide
channels linearly spaced between 5GHz and 3THz. The
sensitivity per channel is -1.0 mJy yr sr 1 at low frequencies
and turns up due to photon noise and low-pass filters at high
frequencies (following the PIXIE noise behavior). The second
example sensitivity curve has 1000 channels log-spaced between
5GHz and 3THz. The channel width begins at 30MHz and
increases to 20GHz with a sensitivity of -7.5 mJy yr sr 1 per
channel (again following the shape derived from the PIXIE
noise). For comparison, PIXIE and other recently proposed
spectral distortion missions reach sensitivities between 0.1 and
10 -Jy yr sr 1 per channel, depending on the specific config-
uration(Kogut et al. 2011, 2019; Chluba et al. 2019).

It is also worth noting that the raw instrument sensitivity of
these examples is in the same range as recently proposed CMB
imaging missions, such as the NASA-proposed Probe of
Inflation and Cosmic Origins (PICO) satellite(Hanany et al.
2019). The overall sensitivity after combining all of PICO’s 21
frequency channels (noise-only) is m»0.5 1 K– -arcmin,

obtained in a five-year mission. Averaging this over the full
sky corresponds to a monopole sensitivity of 0.04–0.08nK,
i.e., 0.09 0.18 nK yr– . Evaluated at 150 GHz, this corresponds
to -0.02 0.04 Jy sr 1– , i.e., -0.04 0.09 Jy yr sr 1– , only a factor
of a few larger than the per-channel sensitivities suggested
here. While it is true that this exercise compares the per-
channel sensitivity of the hypothetical mission here to the
coadded sensitivity of all PICO channels, we note that the most
sensitive PICO channels are only a factor of ≈2–3 less
sensitive than the coadded value used here.

3.3. Forecasts

The Fisher forecast allows us to calculate the uncertainty on
the CMB monopole temperature T after one year of integration
given the sky model and sensitivity. We assume the example
mission evaluates the CMB temperature by analyzing the
foreground and CMB monopole sky signal each year for 10 yr.
We then use Equation (5) to propagate the uncertainty from T
to H0. This assumes the signals are all time-dependent and have
to be fit for in each year of integration, which is discussed in
more detail in the next section.
Table 1 presents the results of these forecasts. We include

forecasts without CMB spectral distortions and without fore-
grounds to highlight that the foregrounds, which degrade the
sensitivity to H0 by several orders of magnitude, are the
dominant hurdle for this type of measurement. The choice of
bandwidth and frequency resolution of the experiment is a
critical one, which depends on the signals and assumed
foreground complexity. The log-spaced noise curve attempts to
address this by placing more channels at low- and intermediate-
frequencies (300 GHz) than the linearly spaced channel
configuration that is natural to an FTS. This can be seen by
comparing the nominal and without-foreground cases of
Table 1. Both sensitivity curves measure H0 to 3% (as
designed) in the nominal case. The degradation from fore-
grounds is a factor of ≈60 for the log-spaced sensitivity and a
factor of ≈150 for the linearly spaced sensitivity, meaning the
log-spaced sensitivity is significantly more robust to fore-
grounds. In principle the frequency resolution and sensitivity
curve could be optimized given the known CMB spectral
distortion and foreground signals to minimize variance and
bias; we leave this to future work.

Table 1
Uncertainty on H0 for the Two Example Noise Curves with Different Modeling Assumptions

Scenario s pK yrT ( ) s - -km s MpcH
1 1

0 ( ) s=X H H0 0 s H %H 00 ( )

Linearly spaced noise curve 54 2.1 33 3.0%
... without foregrounds 0.35 0.014 5100 0.020%
... without CMB distortions 1.3 0.050 1400 0.071%
... time-independent 17 0.66 110 0.94%

Log spaced noise curve 54 2.1 33 3.0%
... without foregrounds 0.88 0.034 2100 0.049%
... without CMB distortions 3.0 0.12 600 0.17%
... time-independent 17 0.66 110 0.94%

Note. The first column describes the modeling scenario, the second column gives the resulting effective sensitivity, the third column shows the forecast for sH0, and
the last two columns list the detection significance in units of standard deviations and percent. We use a Fisher matrix to calculate sT given a noise curve and a
parametric model for the signals, both as a function of frequency. The CMB and foreground signals are discussed in Section 3.1 and the noise curves are discussed in
Section 3.2. The propagation from sT to sH0 is given by Equation (5). The cases without CMB spectral distortions and without foregrounds are shown to emphasize
how dramatically the foregrounds degrade the results. The forecast labeled “time-independent” uses a noise curve integrated over 10 yr to represent the potential gain
from incorporating time-independent constraints. This gives a best-case forecast and would result in a better than 1% measurement of H0 with both noise curves. See
Section 3.4 for the discussion and motivation of the time-independent results. In all cases the total mission duration is 10 yr (and note sT is listed in pico-kelvin yr ).

9 The inverse relation between frequency resolution and sensitivity per
channel means one loses a factor of m when averaging channels post-hoc.
Thus, one cannot take observations with a very fine frequency resolution and
average them together in the analysis without paying a penalty in signal-to-
noise.
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3.4. Time-independent Signals

The Fisher forecast assumed that all the signals have to be fit
for each year and that they are uncorrelated between years. This
is not true in that all the CMB signals are being redshifted by the
same amount and some of the foreground signals will not exhibit
detectable time-variability on such short timescales, while others
likely will. Assuming an ideal experiment with excellent stability
over the mission would allow for the time-dependence of the
CMB spectral distortions to be explicitly modeled with fewer
parameters than the fully time-dependent version. This would
improve the resulting constraint on H0. Additionally, the
foreground time variations could be parameterized as well
(e.g., with a polynomial in time) and again reduce the
dimensionality of the problem. However, in practice time-
dependent systematic effects might reduce some of these gains.

The Galactic foregrounds exhibit intrinsic time variability
from physical processes in the evolution of the Galaxy. These
features should be small over tens of years, but given that the
dynamical timescale of the Galaxy is on the order of
10–100Myr, we might expect changes in the foreground
intensity on order of » - -10 10mission duration

Gal. time scale
6 7– , comparable to

the size of the signal of interest. A similar argument can be
made for the extra-Galactic foregrounds. The integrated CO
and CIB will exhibit both intrinsic time evolution due to galaxy
evolution as well as extrinsic redshifting with the expansion of
space. The redshifting of the extra-Galactic signals will be the
same as the CMB and could therefore be modeled in the same
way, potentially even improving the H0 constraint.

Ideally we would calculate the uncertainties from a full
frequency-time model with years × number of parameters per
year ≈120 total parameters. The inversion of the Fisher matrix
turns out to be numerically difficult in this case, as the signals are
nearly degenerate for small variations in the parameters. Instead,
we forecast the time-independent gains by bounding the forecast
from above and below. The fully time-dependent forecast that we
presented previously serves as the upper bound. For the lower
bound we use a 10 yr sensitivity in the forecasts, which represents
the assumption that all of the signals are time-independent over the
mission’s duration. The constraint on H0 in the time-independent
case is then approximately a factor of three better than the time-
dependent case. The full time-frequency model would give a result
between these bounds, as shown in Table 1.

4. Discussion

Measuring the expansion of space from the cooling of the CMB
benefits from being theoretically direct and requiring few
cosmological assumptions as suggested by Zibin et al. (2007).
However, it suffers from a variety of practical difficulties,
including marginalization over foreground signals and requiring
high sensitivity, fine frequency resolution, long-term stability, and
precise calibration. The target sensitivity at this time seems out of
reach given the requisite spectral sensitivity and resolution, without
significant investment. The suggested log-spaced channels in
principle are possible with an FTS with a time-dependent
modulated mirror speed, but the sensitivity per channel would
no longer be uniform in this case. In this sense the target sensitivity
might be difficult to achieve using a single FTS but could
potentially be approximated by multiple complementary FTS
instruments, such as the instrument discussed for Super-PIXIE
(Kogut et al. 2019). An FTS is not necessarily the only approach,
and a futuristic focal plane with many frequency channels

(hundreds to thousands) might be more appropriate depending
on the optimal sensitivity curve. Additionally, new foreground
analysis methods and optimization of the sensitivity curve are
under investigation and might alleviate some of the instrumental
requirements. It should also be noted that an experiment capable of
measuring H0 from the cooling of the CMB would also detect
CMB spectral distortions at high significance(e.g., Hill et al.
2015), thereby testing our understanding of the early universe and
particle physics (e.g., Chluba et al. 2019), which provides further
strong motivation.
We find that this conclusion is primarily a foreground problem,

as the foregrounds are what drive the strict instrument require-
ments. Without foregrounds an optimal sensitivity configuration
would require far fewer channels and would be achievable with
current technology. For example, modifying PIXIE to have
100GHz wide channels would significantly improve the
sensitivity per channel and allow for a 1σ measurement of H0,
without foregrounds. The calibration and long-term stability are
then the primary experimental challenges.
A variety of additional complexities may arise other than the

foregrounds and their variability when considering signals at this
level. The experiment stability will be a primary concern, requiring
sub-nK stability over 10 yr. Additional contributions to the
monopole might also have to be carefully considered. For example,
the dipole and higher order multipoles will leak into the monopole
given a partial sky average and light aberration (Chluba 2011;
Balashev et al. 2015; Yasini & Pierpaoli 2017). The dipole itself
changes due to our Galactic motion(Moss et al. 2008) and the local
gravitational potential from our Galaxy and Local Group contribute
a Sachs–Wolfe like blueshifting to the monopole. There are
potentially other CMB spectral distortions such as the residual
distortion that results from time-dependent energy injection in the
early universe(Chluba & Jeong 2014). However, we are only
interested in the time-evolution of the monopole and all these
signals should not vary significantly over short timescales. Finally,
the initial value of T is not important and could even be biased to
some degree without significantly affecting the constraint on H0

from the slope of T(t). Therefore these issues are likely to be
subdominant to the foreground problem.
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