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Abstract

Strong gravitational lensing is a promising probe of the substructure of dark matter halos. Deep-learning methods
have the potential to accurately identify images containing substructure, and differentiate weakly interacting
massive particle dark matter from other well motivated models, including vortex substructure of dark matter
condensates and superfluids. This is crucial in future efforts to identify the true nature of dark matter. We
implement, for the first time, a classification approach to identifying dark matter based on simulated strong lensing
images with different substructure. Utilizing convolutional neural networks trained on sets of simulated images, we
demonstrate the feasibility of deep neural networks to reliably distinguish among different types of dark matter
substructure. With thousands of strong lensing images anticipated with the coming launch of Vera C. Rubin
Observatory, we expect that supervised and unsupervised deep-learning models will play a crucial role in

determining the nature of dark matter.

Unified Astronomy Thesaurus concepts: Dark matter (353); Strong gravitational lensing (1643); Convolutional

neural networks (1938)

1. Introduction

The canonical candidate for dark matter is a weakly
interacting massive particle (WIMP). Indeed, extensions of
the standard model (SM) generally include WIMPs of mass
100 GeV that accurately reproduce the observed dark matter
density; realizing what is known as the WIMP miracle.
However, WIMPS have thus far evaded detection, both by
direct detection (Goodman & Witten 1985; Drukier et al. 1986;
Akerib et al. 2017; Cui et al. 2017; Aprile et al. 2018) and
colliders (e.g., Aaboud et al. 2019). There are also hints at
cracks in the WIMP paradigm, for example, the core versus
cusp problem: observations of halos have consistently shown
that actual dark matter halos lack cusps (Burkert 1996) like that
of the Navarro-Frenk—White (NFW) profile found from
simulation (Navarro et al. 1996). This motivates the considera-
tion of alternatives to the WIMP paradigm.

An interesting possibility is condensate models of dark matter,
both Bose—Einstein (BEC; Sin 1994; Hu et al. 2000; Silverman
& Mallett 2002; Sikivie & Yang 2009; Berezhiani &
Khoury 2015; Hui et al. 2017; Ferreira et al. 2019) and
Bardeen—Cooper—Schreifer (BCS; Alexander & Cormack 2017;
Alexander et al. 2018). These build on the decades-long study of
axion dark matter (Abbott & Sikivie 1983; Dine & Fischler 1983;
Preskill et al. 1983) and the realization that axions, arising as the
Goldstone boson of a spontaneously broken global U(1)
symmetry, are the field theory definition of superfluidity
(Schmitt 2015). In these models, dark matter is a quasi-particle
excitation of the fundamental degrees of freedom that comprise
the condensate. For a specific choice of the effective field theory
of the superfluid, this reproduces the baryonic Tully—Fisher
relation (Berezhiani & Khoury 2015, 2016).

These condensate models have the interesting property that
they can form vortices (Rindler-Daller & Shapiro 2012), line-
like defects that are a nonrelativistic analog to cosmic strings
(Brandenberger 1994, 2014). If they exist, vortices constitute a
substructure component for dark matter halos. The detection of
vortices would be a smoking gun for superfluid dark matter

(SFDM). We are thus lead to discriminate between different
models of dark matter by probing substructure in halos.

A promising method to detect substructure is from strong
gravitational lensing images. Observations of strongly lensed
quasars have been used to infer the presence of substructure
(Mao & Schneider 1998; Dalal & Kochanek 2002; Hsueh et al.
2017). Additionally, high resolution images with the Atacama
Large Millimeter/submillimeter Array have inferred the
presence of subgalactic structure (Hezaveh et al. 2016).
Extended lensing images, in particular, can serve as a very
sensitive probe (Koopmans 2005; Vegetti & Koopmans
2009a, 2009b). Given strong lensing has already proven to
be a powerful probe of dark matter substructure, it is logical to
extend this to distinguishing between the different types that
may be characteristic of specific dark matter models.

Bayesian likelihood analyses can be implemented to
determine if a given dark matter model is consistent with a
set of lensing images. Indeed, such analyses have been
conducted searching for particle dark matter substructure
(Vegetti et al. 2010; Daylan et al. 2018). However, Bayesian
analysis of strong lensing images is notoriously computation-
ally expensive, and machine-learning methods have been
demonstrated to achieve a speed-up of several orders of
magnitude (Hezaveh et al. 2017). In this work we take the
latter approach, and with condensate models of dark matter in
mind, implement a deep-learning algorithm to identify
specific types of dark matter in simulated lensing images;
that is, we consider the search for substructure as a
classification problem.

Applications of machine- and deep-learning methods are
abound in cosmology (Ntampaka et al. 2019) and the physical
sciences more broadly (Carleo et al. 2019). In particular, this
approach has been applied to strong gravitational lensing
(Hezaveh et al. 2017; Perreault Levasseur et al. 2017;
Morningstar et al. 2018, 2019), and most recently, to the study
of particle dark matter subhalos (Brehmer et al. 2019).
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The treatment of substructure searches as a classification
problem compliments the existing approaches of statistical
detection (Cyr-Racine et al. 2016, 2019; Brennan et al. 2019;
Diaz Rivero et al. 2018; Diaz Rivero et al. 2018) and
identification of individual substructures (e.g., Hezaveh et al.
2016). This work can be interpreted as an intermediate step
before the latter: we train and implement a convolutional
neural network (CNN) to distinguish different classes of
substructure in lensing images that can then be further
processed to find the position, mass, and other properties, of
individual substructures.

The overarching goal of this work is to undertake a theory-
agnostic approach to dark matter searches. As a first step, we
first present the results of an implementation of a supervised
neural network to distinguish between two different types of
dark matter. Given the vast number of models and considerable
theoretical uncertainty on the nature of dark matter, it would
then be advantageous to implement an unsupervised machine-
learning algorithm to identify various potential dark matter
signals in the strong lensing images.

The structure of this paper is as follows: in Section 2 we
review dark matter substructure, and in Section 3 we consider
as a prototypical example the substructure of SFDM. We
construct simulated lensing images in Section 4 and in
Section 5 a neural network to analyze them. We present our
results in Section 6, and discuss the implications for detection
in Section 7. We close with a discussion of future work in
Section 8.

2. Dark Matter Substructure and Strong Gravitational
Lensing

The ACDM paradigm predicts that density fluctuations
present in the the early universe evolve to become the large-
scale structure of the universe via hierarchical structure
formation. This model envisions small halos merge together
forming larger and larger structures leading to the DM halos
that we see today (Kauffmann et al. 1993). It is also expected
from simulation that subhalos can avoid significant tidal
disruption and remain largely intact. On large scales ACDM
is consistent with the cosmic microwave background, galaxy
clustering, and weak lensing (Heymans et al. 2012; Anderson
et al. 2014; Planck Collaboration 2016). However, on
smaller scales the verdict is less clear. A classic example is
the missing satellites problem (Bullock & Boylan-Kolch 2017;
though see Kim et al. 2018 for a differing take). Indeed,
different types of particle dark matter can have vastly different
substructure on subgalactic scales. For example, the greater
streaming length of WDM (Bode et al. 2001; Abazajian 2006)
and emergent properties of self-interacting dark matter
(Spergel & Steinhardt 2000) can prevent the formation of
small-scale substructure. Thus, while large-scale structure for
different types of DM can appear identical, careful attention
to structure on subgalactic scales can be a powerful tool to
distinguish DM models.

A powerful probe of the gravitationally bound structures of
dark matter is strong gravitational lensing. Given a matter over
or under density, the deflection angle along the line of sight is
given by an integral over the induced gravitational potential
(Narayan & Bartelmann 1997),
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where Y is the distance along the line of sight, x; is the distance
to the source, and W(r) is the gravitational potential. In the thin
lens approximation (Narayan & Bartelmann 1997), valid in the
limit that the thickness of the lensing galaxy is small compared
to the distance to the lens, this takes a simplified form,
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where Dy s, D;, and Dy are the angular diameter distances from
the lens to the source, from the observer to the lens, and from
the observer to the source, respectively, and z is the distance
along the line of sight. From this expression one can
straightforwardly compute the lensing due to any gravitational
potential .

The gravitational potential is in turn determined by matter
density via the Poisson equation, V?¥ o p. The linearity of
this equation implies that the total lensing due to the separate
contributions, e.g., of a halo and halo substructure, is simply
the sum of the individual contributions. That is,

o = arss + Qpalo + Othalo—subs 3)

where o g5 is the external shear due to large-scale structure,
and Othalo halo—sub are the lensing due to the halo and halo
substructure respectively.

The well studied case is the lensing due to the spherical
substructures expected from hierarchical structure formation in
the context of noninteracting particle dark matter. However, as
mentioned in the 1, other types of substructure can exist in
models of dark matter outside the WIMP paradigm. As a
prototypical example, we will consider dark matter conden-
sates, namely superfluids, which exhibit substructure in the
form of vortices. We now proceed to develop this in detail.

3. Case Study: Dark Matter Superfluidity

The canonical example of a condensate dark matter model is
axion dark matter. Axions were introduced as a solution to the
strong-CP problem of the SM (Peccei & Quinn 1977,
Weinberg 1978; Wilczek 1978), and soon thereafter proposed
as a dark matter candidate (Abbott & Sikivie 1983; Dine &
Fischler 1983; Preskill et al. 1983). It was later argued that
axions could form a Bose-Einstein condensate and exhibit
superfluidity (Sin 1994; Hu et al. 2000; Silverman &
Mallett 2002; Hui et al. 2017; Sikivie & Yang 2009; Berezhiani
& Khoury 2015; Ferreira et al. 2019).

To emphasize the superfluid nature of axions, we can
rewrite the field equations in terms of fluid equations. Being
comprised of extremely light particles at an incredibly high
number density, axion dark matter is well described by a
coherent scalar field. Moreover, because dark matter as we
observe it is cold, the system is well described by a
nonrelativistic limit. The Euler and continuity equations of
classical fluid mechanics emerge in this nonrelativistic limit,
defined via the decomposition

o, t) = ,/5—30 (d(x, e Mt/ 4 cc) 4)
2m
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and the limit |¢| < mc?|¢|/% (Hui et al. 2017). If we now
define the fluid density p and velocity v by
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then the nonrelativistic limit of the Klein—Gordon equation
becomes

|
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These are the Madelung equations in an expanding universe,
which are the continuity and Euler equations of fluid
mechanics, with the addition of the second term on the right
of the lower equation, referred to as the quantum pressure.

Parallel to the development of axions has been the study of
condensate phases of non-Abelian gauge theories such as the
SM’s Quantum Chromo-Dynamics (QCD). Starting from the
realization that neutrons can undergo a BCS transition to a
superfluid in the interior of neutron stars (Baym et al. 1969), it
was found that at high enough densities, the quarks themselves
could form Cooper pairs and undergo a BCS transition to a
superfluid or superconducting state (Alford et al. 1998; for a
review see, e.g., Alford et al. 2008). These developments have
spurred on the study of neutron star physics (for reviews, see
Lombardo & Schulze 2001; Dean & Hjorth-Jensen 2003; Page
et al. 2013; Haskell & Sedrakian 2018), which with the
observation of gravitational waves from a neutron star binary
merger (Abbott et al. 2017), may be on the cusp of a
breakthrough.

Bringing together these disparate developments, it was
shown in Alexander et al. (2018) that a QCD-like theory could
lead to superfluidity on cosmological scales, and constitute a
scenario for SFDM, providing a BCS analog to the axion’s
BEC. The natural embedding of this scenario in inflationary
cosmology, with the fundamental degrees of freedom produced
in huge numbers as a side effect of baryogenesis, leads to a
scenario of dark matter with observables from all stages of the
evolution of the universe.

What these variant scenarios of SFDM have in common is
the existence of vortices. Let us now see explicitly how vortex
structures come out of superfluid halos. As per Equation (4),
we can model SFDM with a macroscopic complex scalar
function ¢(r) that is described by the Lagrangian,

/2 1 1
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The first term on the r.h.s of Equation (7) is the kinetic term, the
second an effective interaction potential with coupling strength
\ = 4n/i%a/m where a is the s-wave scattering length with a
cross section o = 8ma?, and the last term is the coupling to the
Newtonian gravitational potential . This system is completely
described by the time-dependent Gross—Pitaevski equation and
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the Poisson equation,
. 2
it = [ ~L=92 4 mo — 2102 s, ®)
2m m?

V2® = 4xGm|¢[*, 9

where V? is the spatial Laplacian and we take ¢ = 1. The wave
function ¢ can be written in terms of the modulus and phase,

o(r, 1) = |81(r, N0, (10)

in terms of which the equation of motion becomes two equations,
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These equations form a system of quantum—mechanical
hydrodynamic equations with a bulk velocity v = #/mVS.

Note that the curl of the bulk velocity is null. This seems to
imply that an SFDM halo would not have angular momentum.
However, this would not be the case in reality. Thus the bulk
velocity must contain a singularity; this is the vortex. Note that
an integral over a closed contour around such a vortex would
be nonzero

95 VS - di = 21d . (12)
C m

Here d is an integer called the winding number. This implies
that angular momentum of the vortex is quantized.

Solutions describing vortices in dark matter halos were
found in Rindler-Daller & Shapiro (2012). The vortex solution
is characterized by a density profile that can be parameterized
as Rindler-Daller & Shapiro (2012),

0, r>rn
pV(r, Z) - vaI:(r>uv - 1], r < Vv’

r

where r is the radial coordinate in cylindrical coordinates, r, is
the core-radius of the vortex solution, and «, is a scaling
exponent. This effectively models the vortex as a tube. On
distance scales much larger than r,, the vortex can be
approximated as a line of density p,.

The values of these parameters, most importantly the density
and total mass of the vortices, as well as the expected number
density in realistic dark matter halos, varies widely across the
literature. For example, the total amount of vortices in halos
ranges from 340 vortices in the M31 halo with assumed
constituent particle mass m = 107> eV (Silverman &
Mallett 2002) to N = 10** vortices in a typical DM halo for
m = 1eV (Berezhiani & Khoury 2015). In Banik & Sikivie
(2013) it is shown that vortices can have mutual attraction and,
over time, coalesce into a single, more massive vortex.

We also note that other substructure exists in superfluid
scenarios, such as the recently found thin-disk solutions
(Alexander et al. 2019). These have a lensing signal which
interpolates between that of a vortex and a spherical halo,
depending on the orientation of the disk.

Finally, we note the relation of vortices to cosmic strings.
The latter is often explained as the relativistic analog to vortices
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Figure 1. Lens images for particle substructure (left) and superfluid substructure (right). Simulated with PyAutoLens.
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Figure 2. Residuals image for particle substructure (left) and superfluid-like substructure (right). Both are 1% of the halo mass. The black dots represent positions of

subhalos and the dashed line represents the position of a vortex.

(see, e.g., Brandenberger 1994, 2014), formed during a phase
transition in a relativistic quantum field theory. As such, cosmic
stings have a transverse velocity that is close to the speed of
light. In spite of this, much of the work on strong lensing by
cosmic strings (Sazhin et al. 2007; Gasparini et al. 2008;
Morganson et al. 2010) has approximated them as stationary or
nonrelativistic, and hence effectively behaving as vortices.
While we do not use these results directly, the lensing images
generated in the following section agree with the results
obtained in the cosmic string literature.

4. Strong Lensing Images

At this moment strong lensing data is limited to a handful of
images. However, the upcoming completion of the Vera C.
Rubin Observatory (VRO), formally the Large Synoptic
Survey Telescope , will lead to thousands of strong lensing
images that can be analyzed (Verma et al. 2019). In this work
we have chosen to simulate our lensing images using the
package PyAutoLens (Nightingale & Dye 2015; Nightingale
et al. 2018). Written in Python, it can produce a variety of
simulated strong lensing images where the user can adjust,
among many possibilities, the mass of the halo, include
substructure, light profiles, and mass profiles.

In addition to the simulation of the lensing itself, we also
consider the addition of noise and the modifications induced by

a point-spread function (PSF) on our observation. Thus, we can
vary the level of noise in our images and include a PSF that is
in line with real world instruments like Hubble or the future
VRO, in this case subarcsecond resolution. Following Daylan
et al. (2018), we approximate the PSF as an Airy disk whose
first zero-crossing occurs at a radius of o < 1”7. This
approximation is valid when noise is dominated by diffraction,
which we assume to be the case.

The lensing image due to a single vortex embedded in a halo,
with the vortex mass 1% that of the halo, and that of spherical
substructure, as studied in Daylan et al. (2018), are shown in
Figure 1. To quantify the effect of the substructure we subtract
from each image the lensing image due the halo alone, and
show the result (the “residuals”) in Figure 2 for vortex and
spherical substructure. From these images one can appreciate
that the difference in lensing is primarily in the the morphology
of the signal, making this an ideal task for classification with
a CNN.

Lensing images were generated with parameters and their
distributions given in Table 1. We have included the light from
the lensing galaxy and nonnegligible backgrounds and noise.
We have also accounted for other instrumental effects like the
PSF, which we have modeled after the expected resolution of
VRO, as well as shear effects. Example images can be found
for each class in Figure 3.
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Table 1
Parameters with Distributions and Priors Used in the Simulation of Strong
Lensing Images

Lensing Galaxy—Sérsic Light Profile

Parameter Distribution Priors Details
0, Fixed 0 X position
0, Fixed 0 y position
z Fixed |uniform 0.5 | Redshift
[0.4, 0.6]
e Uniform [0.5, 1.0] Axis ratio
16} Uniform [0, 27] Orientation relative to y axis
1 Fixed 12 Intensity of emission (arbitrary
units)
n Fixed 25 Sérsic index
R Fixed |uniform 0.5 ][0.5, 2] Effective radius

Dark Matter Halo—Spherical Isothermal

Parameter Distribution Priors Details

0, Fixed 0 X position
0, Fixed 0 y position
Og Fixed 1.2 Einstein radius

External Shear

Parameter Distribution Priors Details
Yext Uniform [0.0, 0.3] Magnitude
Dext Uniform [0, 27] Angle

Lensed Galaxy—Sérsic Profile

Parameter Distribution Priors Details
r Uniform [0, 1.2] Radial distance from center
Dok Uniform [0, 27] Angular position of galaxy
from y-axis
z Fixed |uniform 1.0 | Redshift
[0.8, 1.2]
e Uniform [0.7, 1.0] Axis ratio
¢ Uniform [0, 27] Orientation relative to y-axis
1 Uniform [0.7, 0.9] Intensity of emission (arbitrary
units)
n Fixed 1.5 Sérsic index
Fixed 0.5 Effective radius
Vortex
Parameter Distribution Priors Details
0, Fixed |normal 0 [[0.0, 0.5] X position
0, Fixed |normal 0 [[0.0, 0.5] y position
1 Fixed |uniform 1.0 | Length of vortex
[0.5, 2.0]
o, Uniform [0, 27] Orientation from y-axis
Myort Fixed 0.01 My Total mass of vortex
Spherical
Parameter Distribution Priors Details
r Uniform [0, 1.0] Radial distance from center
Osph Uniform [0, 27] Angular position of substructure
from y-axis
N Fixed |poisson 25 |u=25 Number of substructures
Mgup Fixed 0.01 Myao Total mass of subhalos

Note. Where two values are given, the first corresponds to Section 6.1. and the
second corresponds to Section 6.2. Note that only a single type of substructure was
used per image.

Alexander et al.

5. Network and Training

In this work we take a supervised approach to establish a set
of performance benchmarks for identifying different types of
dark matter substructure. We, therefore, simulate the expected
lensing effects from a variety of substructures and train a CNN
to distinguish among them.

As the total mass constrained in the substructure is likely a
small fraction of the total lensing mass, it may prove
challenging to distinguish dark matter with traditional methods.

The addition of noise and other astrophysical backgrounds
makes this an even more challenging task. Deep-learning
methods are more amenable to identifying subtle morphologies
in images. This is the approach we take in this work.

CNN are the natural choice for working with images. There
are several pretrained networks openly available, e.g., ResNet
(or residual neural network; He et al. 2015), AlexNet
(Krizhevsky et al. 2017), DenseNet (Huang et al. 2016), and
VGG (Simonyan & Zisserman 2014). For ResNet, the defining
feature is that residual networks can skip layers all together in
training. This, in practice, helps speed up the learning rate of
the network by allowing the network to train fewer layers in the
initial stages of learning. For this reason we will focus on
ResNet, and return to a detailed algorithm comparison in
Section 6.

During training we make use of data augmentation (see, e.g.,
Krizhevsky et al. 2017) via translation and rotations up to 90°.
These all constitute invariant transformations with respect to
the underlying substructure that allow the network to learn the
actual structure in images. Thus data augmentation aims to
increase our learning efficiency by seeing the same image in
new ways several times.

We utilize 150,000 training and 15,000 validation images.
The binary cross—entropy loss was minimized with the Adam
optimizer in batches of 200 over a total of at most 20 epochs.
The learning rate starts with a value of 1 x 10~* and is reduced
by a factor of 10 when the validation loss is not improved for
three consecutive epochs. The networks were implemented
using the PyTorch package and run on a single NVIDIA Titan
K80 GPU. We use the well-established area under the ROC
curve (AUC) as a metric for classifier performance

6. Results

As discussed in previous sections, we are interested in
identifying and classifying substructure in strong gravitational
lensing images. We do this with a supervised CNN, which
requires that the classes be identified from the outset. In
addition to the vortex and spherical subhalo substructure
classes discussed in Section 4, there remains the possibility that
an image may not have any detectable substructure at all, e.g.,
if the Einstein radius of the substructure is predominantly
smaller than the PSF of the detector. Given this, we introduce
an additional class: no substructure present.

In what follows we will train a multiclass classifier to predict
the three classes: vortex, spherical, and no-substructure. We
train three additional binary classifiers to distinguish between
the two most probable classes predicted by the multiclass
classifier. Thus, we are training an initial, higher level classifier,
our multiclass classifier, which specializes in determining the
best two models for a given image. We can then pass the image
to a binary classifier that specializes in distinguishing between
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Figure 3. Example simulated images for all three classes.

1.0 ( /— A v
7/
4
7/
/7
//
0.8 ,
7/
/
o /,
] 0.6 /7
2 /
'ﬁ | //
& ’
] l’
Z 0.4
4
= ’
/7
/
/
/
0.2 ,/ = No Sub (area = 0.99816)
’ = Part. DM Sub (area = 0.98453)
/, = SF DM Sub (area = 0.96766)
,/ Macro-average (area = 0.98353)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4. ROC curve for multiclass substructure classification with ResNet, as
discussed in Section 6.1.

the two most probable classes as chosen by the multiclass
classifier. We do this using realistic mock lensing images as
described in Section 4, with parameters and their distributions
given in Table 1.

We start by considering an idealized population of physical
systems, with, e.g., the distance to the lensed and lensing
galaxy the same in each image. This could plausibly be the case
if a very large data set was first divided into subsets exhibiting
roughly constant properties. This is useful for comparison to
Daylan et al. (2018), which held fixed the number of subhalos,
and as a playground for performance tests of differing network
architectures. We then consider a less-idealized population of
images, with several additional physical properties of the halo
and substructure allowed to vary. The parameters for each case
are given in Table 1.

6.1. A Multiclass Classifier for Substructure Morphology

To begin, we consider similar parameters as images
simulated in Daylan et al. (2018), which used probabilistic

1.0 -
e - ’
’
Vs
Vs
Vs
0.8 //
Vs
Vs
3y »”
s ‘ R4
v 0.6 ‘ p
2 7
&= Vs
wn
’
& R4
S04 e
= | /
’
/
/
65 // —— ResNet
' ,’ AlexNet
,’ —— DenseNet
’ —
P VGG
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5. Comparison of architechures. Shown is the ROC curve averaged
across substructure types for Resnet, Alexnet, VGG, and DenseNet.

cataloging to identify spherical substructure. We differ with
Daylan et al. (2018) by modeling the spherical substructure as
point masses as opposed to truncated—-NFW profiles, and of
course by the inclusion of vortex-like substructure. Similar to
Daylan et al. (2018), we have chosen a fixed value of 25
subhalos.

We use a pretrained network as described in Section 5. The
ROC-AUC curves for substructure classification by ResNet are
shown in Figure 4. As can be appreciated from the AUC scores
of 0.998, 0.985, and 0.968, for images with no substructure,
spherical subhalos, and vortices, respectively, our algorithm
achieves excellent classification.

For the sake of comparison, we repeat this with differing
choices of architecture, namely VGG, DenseNet, and AlexNet.
The resulting ROC curves (averaged over substructure types)
are shown in Figure 5. While ResNet, VGG, and DenseNet
show comparable performance, AlexNet performs considerably
worse. The other three architectures were otherwise indis-
tinguishable, with the exception that, as expected, ResNet is
more computationally efficient than both VGG and DenseNet.
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Figure 6. ROC curve for multiclass substructure classification with ResNet,
including additional variations across the population of images, as discussed in
Section 6.2.

6.2. Toward a Representative Population of Images

We now allow the training data to be a more diverse set of
physical systems, as may be the case with actual data. We
allow for variation in the distance to the lensing and lensed
galaxy, the galaxy size, and importantly, the intensity of the
background and noise, allowing the background to become
nonnegligible. With regards to substructure, we vary the
position of the vortex, and for spherical substructure consider
the number of halos to be taken from a Poisson draw with mean
25. The details of all parameters and the specific distributions
from which we draw values for simulation are all included in
Table 1.

Utilizing the same ResNet architecture and running for 20
epochs while updating the learning rates, training our multi-
class classifier obtains good results with a macro-averaged
AUC of 0.969. The ROC curve is shown in Figure 6. Training
of binary classifiers for 20 epochs results in near perfect
classification with AUC scores near unity for distinguishing
between images with and without substructure. The network
also excels at distinguishing between different types of
substructure achieving an AUC value 0.955. ROC curves for
the binary classifiers are shown in Figure 7.

7. Toward the Detection of Substructure

To complete the analysis of this work, we establish the
detection threshold for our network. To do so, we change the
total mass of the substructure while holding all other
parameters constant. Of course, in practice, it would be
possible to train for more epochs, to use a deeper network, to
add more training images, etc., and to push our threshold
further. We implement this by simulating sets of 50,000
training and 5000 validation images at different total fractions
of the halo mass for each class. We train each set on the same
architecture, here ResNet, for 10 epochs. The metric we use to
parameterize the ability of the network to learn is the AUC.

Alexander et al.

The AUC score for varying fraction of the halo mass
contained in both types of substructure is shown in Figure 8.
From this one can appreciate that the AUC rapidly deteriorates
for a substructure mass below 107> &~ 0.3% of the halo mass.
From this we conclude that a CNN, given the fixed computing
resources stated above, can reliably identify lensing images
containing a substructure provided that its collective mass
constitutes at least a fraction of a percent of the dark matter in
the halo.

8. Discussion and Conclusion

It is well established that substructure can constrain dark
matter models. In this work we have proposed it may even
identify the nature of dark matter. Motivated by the significant
theoretical uncertainty as to the nature of dark matter, in this
work we have considered the study of substructure as a
classification problem, and investigated the feasibility of using
a machine-learning architecture to distinguish different types of
substructure in strong lensing images.

Utilizing a simple supervised CNN, trained on simulated
images, we have demonstrated that it is indeed feasible for a
network to reliably distinguish among different types of dark
matter substructure. This compliments existing approaches to
substructure, namely the statistical detection (Cyr-Racine et al.
2016, 2019; Diaz Rivero et al. 2018; Diaz Rivero et al. 2018;
Brennan et al. 2019) and the pinpointing of individual
substructures (e.g., Hezaveh et al. 2016), and could be used
as a part of a data analysis pipeline in the latter task.

A major caveat of this analysis has been the reliance on
simulated lensing images. There are theoretical uncertainties in
both the properties of individual substructures, and the
population level statistics of host halos and their substructure.
The latter leads to an uncertainty as to whether the training
sample is an accurate representation of the underlying
population. To overcome this difficulty, one may implement
domain adaption, wherein the network is trained with the
express goal of performing well on a target data set with
different properties from the training set.

It is also interesting to consider future implementations of
unsupervised models for identifying the morphology of the
substructure. This would allow the analysis to be fully agnostic
as to the true nature of dark matter, in recognition of the
possibility that dark matter could be outside the scope of
current theoretical expectations. One path in this direction is to
implement an auto-encoder to learn the underlying substructure
of real images. With thousands of galaxy—galaxy strong lensing
images expected in the next few years (Verma et al. 2019),
there should be ample data for training.

Finally, we note that deep learning may be amenable to
searching for dark matter vortices in other observational
windows, analogous to searches for cosmic strings in the
cosmic microwave background (Ciuca et al. 2019; Ciuca &
Herndndez 2019) and 21 cm (Brandenberger et al. 2010;
McDonough & Brandenberger 2013). We leave this, and the
development of an unsupervised approach, to future work.

The authors thank Cora Dvorkin, Javad Hashemi, Shirley
Ho, and David Spergel, for useful discussions. One of the
authors thanks Robert Brandenberger for encouragement to
work on this topic more than 20 years ago.
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