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Abstract
The theoretical predictions in the standard model (SM) and measurements on
the anomalous magnetic dipole moments (MDM) of muons and electrons have
great precision, hence the MDMs of muon and electron have close relation
with the new physics (NP) beyond the SM. Recently, a negative ∼2.4σ dis-
crepancy between the measured electron MDM and the SM prediction results
from a recent improved determination of the fine structure constant. Combined
with the long-lasting muon MDM discrepancy which is about ∼3.7σ, it is
difficult to explain both the magnitude and opposite signs of the deviations in a
consistent model, without introducing large flavor-violating effects. The ana-
lysis shows that they can be explained in the minimal supersymmetric
extension (MSSM) of the SM with local B−L gauge symmetry (B-LSSM).
Comparing with the MSSM, new parameters in the B-LSSM can affect the
theoretical predictions on lepton MDMs, and the effects of them are explored.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The anomalous magnetic dipole moments (MDM) of lepton al [1] have been one of the most
precisely measured and calculated quantities in elementary particle physics, which also
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provides one of the strongest tests of the SM. For the muon MDM, the discrepancy between
the measured muon MDM and the SM prediction has existed for a long time [2, 3], which
may be a hint of new physics (NP) and reads [4, 5]

º - =  ´m m m
-a a a 2.74 0.73 10 . 1exp SM 9( ) ( )

In addition, aμ is being measured at Fermilab and J-PARC, and the upcoming results are
expected to have a better accuracy.

However, a negative ∼2.4σ discrepancy between the measured electron MDM and the
SM prediction appears, due to a recent precise measurement of the fine structure constant,
which changes the situation that the electron MDM is consistent with the measurement. The
negative ∼2.4σ discrepancy reads [6, 7]

º - = -  ´ -a a a 8.8 3.6 10 . 2e e e
exp SM 13( ) ( )

It is obvious that the signs of !aμ and !ae are opposite. Even if the NP effects are
considered, the MDMs of muon and electron are related without any flavor violation in the
lepton sector as

´m
m




a

a
m m 4.2 10 , 3

e
e

2 2 4 ( ) 

both sign and magnitude have discrepancies (which may disappear due to the latest lattice
results [8]).

In extensions of the SM, the supersymmetry is considered as one of the most plausible
candidates. The discrepancies between !aμ, !ae have been exhaustively studied, and the
results show that the discrepancies can be explained by requiring new sources of flavor
violation [9–13], introducing a single CP-even scalar with sub-GeV mass that couples dif-
ferently to muons and electrons [14–16], introducing a light complex scalar that is charged
under a global U(1) under which the electron is also charged but muon not [17], introducing
axion-like particles with lepton-flavor violating couplings [18, 19], enhancing the SUSY
electron Yukawa coupling and reverse the sign of the muon Yukawa coupling by the SUSY
threshold correction in the lepton sector [20] or requiring smuons are much heavier than
selectrons to arrange the sizes of bino-slepton and chargino-sneutrino contributions differ-
ently between the electron and muon sectors [21]. For non-supersymmetric BSM models, the
authors of [22] put forward two models with new scalar and fermionic matter which can
explain the discrepancies without explicit lepton flavor violation or universality violation
beyond the lepton mass effects already present in the SM, and the discrepancies can also be
explained in a three-loop neutrino mass model based on an E6 Grand Unified Theory [23]. In
this work, we will show that, in the MSSM with local B−L gauge symmetry (B-LSSM)
[24–26], without introducing explicit flavor mixing and requiring smuons are much heavier
than selectrons, approximate values of the trilinear scalar terms Te in the soft supersymmetry
breaking potential, slepton mass term ME and btan can also account for the discrepancies. In
addition, with respect to the MSSM, the effects of new parameters in the B-LSSM are also
explored.

It is generally believed that the SM is only the low energy approximation of a more
fundamental, unified theory. When B−L symmetry [27–32] is introduced, where B repre-
sents the baryon number and L represents the lepton number, respectively, the corresponding
heavy neutral vector boson can be considered as a possible remnant of unification [33]. The
cosmological baryon asymmetry at temperatures much below the grand unified mass with
spontaneously broken local B−L symmetry are analyzed in [34, 35]. In this work, we focus
on the B-LSSM which can be obtained by extending the MSSM with local B−L gauge
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symmetry. Compared with the MSSM, the gauge symmetry group of B-LSSM is extended to
Ä Ä Ä -SU SU U U3 2 1 1L Y B L( ) ( ) ( ) ( ) . The invariance under the additional gauge group

U(1)B−L imposes the R-parity conservation which is assumed in the MSSM to avoid proton
decay. R-parity conservation can be maintained if U(1)B−L symmetry is broken spontaneously
[36]. U(1)B−L symmetry is broken by two additional Higgs singlets that carry B−L charge,
and the large Majorana masses for the right-handed neutrinos are generated by these Higgs
fields. Combining with the Dirac mass term, three neutrinos obtain tiny masses by the see-saw
mechanism, which can explain the tiny neutrino masses naturally [37]. The model can also
help to understand the origin of R-parity and its possible spontaneous violation in the
supersymmetric models [38–40]. Since the B−L symmetry is radiatively broken at TeV
scale, the model can implement the soft leptogenesis naturally [41, 42]. In addition, there are
many more candidates for the dark matter (DM) in comparison to the MSSM: new neutralinos
corresponding to the gauginos of U(1)B−L and additional Higgs singlets, as well as CP-even
and -odd sneutrinos, the relic density and annihilations of these new DM candidates have
been studied in [43–46]. Since both the additional Higgs singlets and right-handed (s)neu-
trinos release additional parameter space from the LEP, Tevatron and LHC constraints, the
little hierarchy problem of the MSSM is also alleviated [47–53].

The paper is organized as follows. In section 2, the B-LSSM and the contributions to
al

NP are discussed briefly. Then we explore the effects of Te, ME, btan and new parameters
in the B-LSSM on ma e,

NP by varying the values of them, in section 3. Conclusions are
summarized in section 4.

2. B-LSSM and the contributions to al
NP▵

In the B-LSSM, the dominant contributions to lepton MDMs at the one-loop level come from
the chargino-sneutrino loop (charginos, and sneutrinos are loop particles) and the neutralino-
slepton loop (neutralinos and sleptons are loop particles). Then the lepton MDM can be
written as a=an+ac, where an denotes the lepton MDM results from the neutralino-
slepton loop, and a c denotes the lepton MDM results from the chargino-sneutrino loop. In our
previous work [54], we have discussed the muon MDM, and some two-loop Barr-Zee type
diagrams are considered. The results show that the two-loop Barr-Zee type diagrams can
make important corrections to the muon MDM. In this work, we consider the two-loop Barr-
Zee type corrections, the corresponding one-loop and two-loop diagrams are depicted in
figures 1 and 2, respectively. In the following analysis, we adopt the formulas in our previous

Figure 1. Feynman diagrams contribute to the lepton MDM. (1) represents the
contributions toal

NP from charged scalars, while (2) represents the contributions from
charged fermions.
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work. In this sector, we present the dominant differences between the B-LSSM with the
MSSM, and the new contributions to lepton MDMs in the B-LSSM are discussed.

In the B-LSSM, the chiral superfields and their quantum numbers are listed in table 1.
From the table we can see that two chiral singlet superfields h1ˆ , h2ˆ and three generations of
right-handed neutrinos are introduced in the B-LSSM, which allows for a spontaneously
broken U(1)B−L without necessarily breaking R-parity. The superpotential of the B-LSSM can
be written as

n m h h n h n= + - ¢ +nW W Y L H Y , 4ij i j x ij i j
MSSM

, 2 1 2 , 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

where WMSSM is the superpotential of the MSSM. There is a !L=2 trilinear soft breaking
term n h nYx ij i j, 1ˆ ˆ ˆ in the B-LSSM, which leads to a splitting between the real and imaginary parts
of the sneutrino. As a result, there are twelve states in the sneutrino sector: six scalar
sneutrinos and six pseudoscalar ones [55, 56]. Equation (4) shows that the right handed
neutrinos obtain large Majorana masses since the expected size of the u1,2 is ∼10 TeV, while
the Dirac masses can be obtained by the terms nnY L Hij i j, 2

ˆ ˆ ˆ . Then three neutrinos obtain tiny
masses naturally by the see-saw mechanism, and the neutrino Yukawa couplings do not have
to be tiny to gain accord with neutrino mass limits. In addition, sneutrino masses are enlarged
by the additional superpartners of the right-hand neutrinos in the B-LSSM, which plays a
suppressive role to the contributions to lepton MDMs from the chargino-sneutrino loop,

Figure 2. The two-loop Barr-Zee type diagrams contribute to the lepton MDM, the
corresponding contributions toal

NP are obtained by attaching a photon to the internal
particles in all possible ways.

Table 1. Chiral superfields and their quantum numbers in the B-LSSM [58].

Superfields Spin 0 Spin 1
2 -U SU SU U1 2 3 1Y L C B L( ) ⨂ ( ) ⨂ ( ) ⨂ ( )

Q̂ Q̃ Q 2 3, , ,1
6

1
6

( )
D̂ dc˜ d c -1 3, , , 1

6
1
3( )¯

Û uc˜ u c - -1 3, , , 1
6

2
3( )¯

L̂ L̃ L - -2 1, , , 1
2

1
2( )

Ê ec˜ e c 1 11, , , 1
2( )

n̂ nc˜ ν c 1 10, , , 1
2( )

H1ˆ H1 H1˜ - 2 1 0, , ,1
2( )

H2ˆ H2 H2˜ 2 1 0, , ,1
2( )

h1ˆ H1 h1˜ (0,1,1,−1)
h2ˆ H2 h2˜ (0,1,1,1)
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according to the decoupling theorem. Then the soft breaking terms of the B-LSSM are
generally given as

l l l l h h n

h n n h h

= + - + - +

+ + - -

m n

h h

¢ ¢ ¢ ¢ ¢ ¢  M M B T H L

T m m

1

2
2

h.c. , 5

BB B B B B B
ij

i
c

j

x
ij

i
c

j
c

soft soft
MSSM

1 2 2

1
2

1
2 2

2
2

1 2

[ ( ˜ ˜ ˜ ˜ ) ˜ ˜ ˜ ˜

˜ ˜ ˜ ] ∣ ˜ ∣ ∣ ˜ ∣ ( )˜ ˜

where soft
MSSM is the soft breaking terms of the MSSM, l l ¢,B B

˜ ˜ represent the gauginos of
U(1)Y, -U 1 B L( )( ) correspondingly, and ¢MB is the B′ gaugino mass. Compared with the
MSSM, there are three additional neutralinos in the B-LSSM, which can make contributions
to lepton MDMs through the neutralino-slepton loop, and the two-loop Barr-Zee type
diagrams shown in figures 2(a), (b). In addition, as the Higgs fields receive vacuum
expectation values [57]:

h h h h h h

= + + = + +

= + + = + +

H v H i H H v H i H

u i u i i

1

2
Re Im ,

1

2
Re Im ,

1

2
Re Im ,

1

2
Re Im , 6

1
1

1 1
1

1
1

2
2

2 2
2

2
2

1 1 1 1 2 2 2 2

( ) ( )

˜ ( ˜ ˜ ) ˜ ( ˜ ˜ ) ( )

the local gauge symmetry Ä Ä -SU U U2 1 1L Y B L( ) ( ) ( ) breaks down to the electromagnetic
symmetry U(1)em. Conveniently, we can define = + = +u u u v v v,2

1
2

2
2 2

1
2

2
2 and

b¢ =tan u

u
2

1
in analogy to the ratio of the MSSM VEVs b =tan v

v
2

1
( ). b¢tan appears in the

mass matrix of the slepton, which indicates that b¢tan can affect the numerical results through
the neutralino-slepton loop by affecting the slepton masses.

In the B-LSSM, there is a new gauge group U(1)B−L, which introduces a new gauge
coupling constant gB and new gauge boson Z′. The updated experimental data [59] shows that
the new gauge boson mass ¢ M 4.05 TeVZ at 95% Confidence Level (CL). An upper bound
on the ratio between ¢MZ and gB at 99% CL is given in [60, 61] as >¢M g 6 TeVZ B . In
addition, since there are two Abelian groups in the B-LSSM, and the invariance principle
allows the Lagrangian to include a mixing term between the strength tensors of gauge fields
corresponding to the two Abelian groups, a new effect arises in the B-LSSM: the gauge
kinetic mixing. Then the form of covariant derivatives can be redefined as

= ¶ - -
¢

¢

¢

¢
m m

m

m-

D i Y B L
g g

g g

A

A
,

,

,
. 7Y YB

BY B L

Y

BL

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

As long as the two Abelian gauge groups are unbroken, the basis can be changed as:

= ¶ - -
¢

¢

¢

¢

= ¶ - -

m m
m

m

m
m

m

-

D i Y B L
g g

g g
R R

A

A

i Y B L
g g

g

A

A

,
,

,

,
,

0, , 8

Y YB

BY B L

T
Y

BL

Y B

B

Y

BL

1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ( )

where R is a 2×2 orthogonal matrix. As a result, gauge mixing is introduced in various
kinetic terms of Lagrangian by the new definition of covariant derivatives. Interesting
consequences of the gauge kinetic mixing arise in various sectors of the model. Firstly, a new
gauge coupling constant gY B is introduced, and new gauge boson Z′ mixes with the Z boson
in the MSSM at the tree level. Correspondingly, new gaugino l ¢B

˜ also mixes with bino at the
tree level, the mixing mass term ¢MBB is introduced. Then the gauge kinetic mixing leads to
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the mixing between h hH H, , ,1
1

2
2

1 2˜ ˜ at the tree level, andl ¢B
˜ mixes with the two higgsinos in

the MSSM, which means that the new gauge coupling constant gY B can affect the numerical
results through the neutralino-slepton loop. Meanwhile, additional D-terms contribute to the
mass matrices of sleptons. On the basis L e, c( ˜ ˜ ), the slepton mass matrix is given by

m

m
=

-

-
m

m v T v Y

v T v Y m

,
1

2
1

2
,

, 9e

eL e e

e e eR

2

2
1 2

1 2
2*

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )

( )
( )˜

† †

= + - + - + + -

+ +

= + - + + + -

+ +

m g g g u u g g g g g v v

m
v

Y Y

m g g g u u g g g g v v

m
v

Y Y

7
1

8
2 2

2
,

1

24
2 2 2 2

2
. 10

eL B B Y B YB B Y B

L e e

eR B B Y B YB B Y B

e e e

2
1
2

2
2

1
2

2
2 2

1
2

2
2

2 1
2

2
2
2

1
2

1
2 2

2
2

1
2

2 1
2

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

( )

˜
†

˜
†

It can be noted that b¢tan and new gauge coupling constants gB, gY B in the B-LSSM can
affect numerical results by affecting the slepton masses.

3. Numerical analyzes

The numerical results of maNP andae
NP are displayed in this section. The relevant SM input

parameters are chosen as =m 80.385 GeVW , = = ´ -m m90.1876 GeV, 5.11 10 GeVZ e
4 ,

a= =mm m0.105 GeV, 1 128.9Zem ( ) . Since the tiny neutrino masses affect the numerical
analysis negligibly, we take Yν=Yx=0 approximately.

Since the contribution of heavy Z′ boson is highly suppressed, we take =¢M 4.2 TeVZ in
the following analysis. In our previous work [62], the rare processes gB Xs¯ and

m m + -Bs
0 are discussed in detail, and we take the charged Higgs boson mass

=M 1.5 TeVH to satisfy the experimental data on these processes. In addition, in order to
satisfy the constraints from the experiments [63], for those parameters in higgsino,
gaugino and sneutrino sectors, we appropriately fix m= = =M M 0.3 TeV1

1

2 2
1

2
,

=nm diag 1, 1, 1 TeV( ) , Tx=Tν=0.1 TeV, for simplicity, where mν is the right-handed
sneutrino soft mass matrix. All of the parameters fixed above affect the following numerical
analysis negligibly. When the leading-log radiative corrections from stop and top particles are
included [64–66], right SM-like Higgs boson mass can be obtained with appropriate para-
meters in squark sector, which is irrelevant with the theoretical predictions of lepton MDMs.
The nature of the DM candidate, the sneutrino in the B-LSSM, has been studied in [46], the
results show that the sneutrino masses in our chosen parameter space can obtain
right DM abundance. Furthermore, we take soft breaking slepton mass matrix

=m M M Mdiag , ,L e E E E, ( )˜ ˜ and the trilinear coupling matrix Te=diag(AL, AL,AL), where
Te=AL×Ye is not employed in our definition. In order to conveniently discuss the dis-
crepancies between !aμNP and ae

NP, we define

=
´ -

m
m

R
a 10 2.74

0.73
, 11

NP 9

( )
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=
´ +

R
a 10 8.8

3.6
. 12e

e
NP 13

( )

It is obvious that Rμ,e denotes the standard deviations between the B-LSSM predictions and
experiments, and =mR 0e, indicates that the theoretical predictions on aμ,e are at the
corresponding experimental central values, when the NP contributions are considered.

Then taking = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV, =g 0.4B , = -g 0.4Y B , b¢ =tan
1.15,ME=1.5 TeV, we present Rμ (solid lines) and Re (dashed lines) versus AL in figure 3 for

b =tan 10, 30, 50, where the gray area denotes the experimental 3σ interval. In the plotting,
we adopt Rμ,e defined in equations (11) and (12), respectively, as the y-axis, without changing
anything. Equations (11) and (12) show that Rμ;−3.7 and Re;2.4 when =ma 0e,

NP .
Combining equations (9) and (10) and the concrete expressions of lepton MDM at the one-
loop level in our previous work [54], we can see that if we do not count the suppressive factor
ml
2, the dominant contribution from the neutralino-slepton loop an is proportional

to b m b b m b- + -vA m m M vA mtan 2 tan tan 2 tanL l l LR L l
2 2( ) ( ( ) ) approximately,

where = -M m m 2LR eL
l

eR
l2 2( ) . The dominant contribution from the chargino-sneutrino loop

a c is proportional to btan approximately. Hence, the contributions from an are negative when
AL is negative, and the sign of an can be changed when b m b>vA mtan 2 tanL l. Forae

NP,
the dominant contributions come from an, hence the NP contributions to ae

NP are negative
when b m b<vA mtan 2 tanL l, and positive when b m b>vA mtan 2 tanL l, approxi-
mately. As we can see from the picture, the NP contributions to ae

NP are negative when
AL−0.02 TeV for b =tan 10, AL−0.1 TeV for b =tan 30, AL−0.3 TeV for

b =tan 50, and the NP contributions to ae
NP are positive when the values of AL are larger

than these values correspondingly. It is obvious that the maximum value of AL increases with
the increasing of btan when the NP contributions to ae

NP are negative, which results from
that an is suppressed by large btan , while a c is enhanced by large btan , and the signs of an,
a c are opposite in this case.

When AL=−3 TeV, b =tan 10, if we do not count the suppressive factor ml
2, the

dominant contributions to ma e,
NP come from the neutralino sector, which are negative and have

Figure 3. Taking = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV, =g 0.4B , = -g 0.4Y B ,
b¢ =tan 1.15, ME=1.5 TeV, Rμ (solid lines) and Re (dashed lines) versus AL for
b =tan 10, 30, 50 are plotted, where the gray area denotes the experimental 3σ

interval.
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a enhancing factor 1/mμ,e, hence the contributions toae
NP is larger than maNP. As we can see

from the picture, maNP receives quite small and negative contributions when AL=−3 TeV,

b =tan 10, while ae
NP receives quite large and negative contributions. In addition, when

AL=−3 TeV, b =tan 30, 50, the contributions from an have a suppressive factor b1 tan ,
while the contributions from a c are enlarged by large btan . Forae

NP, an is enhanced vastly
by 1/me, hence even an is suppressed by b1 tan and a c is enhanced by btan , the con-
tributions from an are still larger than ac. As we can see from the picture, ae

NP is negative
and decreases with the increasing of btan when AL=−3 TeV. But for maNP, the enhancing
factor of an is 1/mμ<1/me, hence the contributions from a c are larger than an when

b =tan 30, 50, and maNP receives positive contributions in this case. Rμ≈Re when

b =tan 30, 50 does not indicate »m a ae
NP NP, if we do not count the suppressive factor

ml
2, the contributions to ae

NP are negative, while the contributions to maNP are positive.

If we limit the NP corrections to ma e,
NP in 3σ interval, the experimental results prefer

AL0.4 TeV for b =tan 30, 50, nd −0.4AL0.1 TeV for b =tan 10. It can be noted
that the allowed region of AL for b =tan 10 is limited strictly in our chosen parameter space.
According to [67], the contributions to maNP can be enhanced by large μ. However, the
allowed region of AL for b =tan 10 can be enlarged when μ−20 TeV (the additional
minus sign comes from the different definition of μ in [67]), which is not the region of μ we
are interested in. μ appears in the expression of an as μ×ml, the effect of μ toae

NP is highly
suppressed by small me, hence we do not discuss the effect of μ in the following analysis. In
addition, it can be noted that AL affects the numerical results less obviously with the
increasing of btan . Because AL affects the numerical results mainly by affecting the con-
tributions of an, and AL appears in the expression as bA tanL , which indicates that the effect
of AL is suppressed by large btan .

Assuming AL=−1 TeV, Rμ (solid lines) and Re (dashed lines) versus ME are plotted in
figure 4 for b =tan 10, 30, 50, where the gray area denotes the experimental 3σ interval, the
dotdashed lines denote the experimental 2σ bounds, the dotted lines denote the corresponding

Figure 4. Taking = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV, =g 0.4B , = -g 0.4Y B ,
b¢ =tan 1.15, AL=−1 TeV, Rμ (solid lines) and Re (dashed lines) versus ME for
b =tan 10, 30, 50 are displayed, where the gray area denotes the experimental 3σ

interval, the dotdashed line denote the experimental 2σ bounds, and the dotted lines
denote the corresponding decoupling limits for Rμ, Re.
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decoupling limits for Rμ and Re. It can be noted in the picture that, with the increasing of ME,
the theoretical predictions on Rμ and Re decouple to the corresponding SM predictions, which
coincides with the decoupling theorem. In our chosen parameter space, the region of ME is
excluded by Rμ for b =tan 10, if we limit the NP corrections to maNP in 3σ interval. In

addition, if we limit the NP corrections to ma e,
NP in 2σ interval, the numerical results show that

ME is limited in the region ME2 TeV for b =tan 30 and ME1.7 TeV for b =tan 50.
Compared with the MSSM, there are some new parameters in the B-LSSM, we

take b =tan 30, ME=1.2 TeV, = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV, and scan the
parameter space shown in table 2. In the scanning, we keep the slepton masses

> =m i500 GeV 1, ,6Li ( ··· ), the Higgs boson mass in experimental 3σ interval, to avoid the
range ruled out by the experiments [63]. Then we plot Rμ versus b¢tan in figure 5(a), Re

versus b¢tan in figure 5(b). The picture shows that Rμ increases with the increasing of b¢tan ,
while Re decreases with the increasing of b¢tan , which indicates that b¢tan , gB, gYB can affect
the numerical results, and the effects of them are comparable. Due to our definition of Rμ,e,
both maNP and ae

NP increase with the increasing of b¢tan . Equation (10) shows that the
lepton masses decrease with the increasing of b¢tan when < <g g g2Y B B Y B∣ ∣ ∣ ∣, which
indicates that the theoretical predictions on ma e,

NP can be enhanced by large b¢tan in this case.
In addition, it can be noted that the NP contributions to the muon MDM are positive, while
the NP contributions to the electron MDM are negative, in our chosen parameter space. It
results from that, when b =tan 30, the contributions from an to al

NP are proportional to

bm

1

tanl
approximately, while the contributions from a c are proportional to btan . When

AL<0 TeV, an is negative, ac is positive. Forae
NP, although an is suppressed by b1 tan ,

and a c is enhanced by btan , when b =tan 30, but the enhancing factor 1/me is large enough
to have >a an c∣ ∣ , hence the contributions toae

NP are negative. But for maNP, the enhancing

Figure 5. Taking b =tan 30, ME=1.2 TeV, = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV,
and scanning b¢tan in the range (1.02–1.5), gB in the range (0.1–0.7), gY B in the range
(−0.7∼−0.1), then Rμ (a) and Re (b) versus b¢tan are plotted.

Table 2. Taking b =tan 30, ME=1.2 TeV, = =¢ ¢M M 0.6 TeVB BB , m¢ = 0.8 TeV,
the scanning parameters for figure 5.

Parameters Min Max Step

b¢tan 1.02 1.5 0.01
gB 0.1 0.7 0.02
gY B −0.7 −0.1 0.02
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factor 1/mμ is not large enough to have >a an c∣ ∣ in this case, and as a result, the con-
tributions to maNP are positive.

In the B-LSSM, there are three additional mass terms in the neutralino sector. In order to
see how ¢MBB , ¢MB and μ′ affect the theoretical predictions on ma e,

NP, we take b¢ =tan 1.15,
=g 0.4B , = -g 0.4Y B , and scan the parameter space shown in table 3. It can be noted in the

table that we take the minimum values of ¢MBB and ¢MB equal to 0 TeV, because the gaugino
masses still can be large enough to satisfy the experimental upper bounds on gaugino masses
even if the values of ¢MBB and ¢MB are very small. Then we plot Rμ and Re versus ¢MBB in
figures 6(a) and (b), respectively. In the scanning, we keep the gaugino masses >100 GeV, to
avoid the range ruled out by the experiments. From the picture we can see that, in our chosen
parameter space, both Rμ and Re are in the experimental 2σ interval with the changing of new
parameters ¢MBB , ¢MB and μ′. In addition, ¢MB and μ′ affect the numerical results more
obviously with larger ¢MBB . Because ¢MBB is the mixing term between lB

˜ and l ¢B
˜ , the mixing

between lB
˜ andl ¢B

˜ is stronger with larger ¢MBB , which leads that ¢MB can affect the numerical
results more obviously. As a result, three additional mass terms in the neutralino sector of
B-LSSM can affect the theoretical predictions on Rμ and Re.

4. Summary

In the frame work of B-LSSM, we focus on the muon and electron discrepancies, which
results from a recent improved determination of the fine structure constant. Also in the
calculation, some two-loop Barr-Zee type diagrams are considered. Without introducing
explicit flavor mixing and requiring smuons are much heavier than selectrons, we find that
appropriate values of the trilinear scalar term Te in the soft supersymmetry breaking potential,

Figure 6. Taking b¢ =tan 1.15, =g 0.4B , = -g 0.4Y B , and scanning ¢MBB , ¢MB in the
range 0–3 TeV, μ′ in the range 0.1–3 TeV, then Rμ (a) and Re (b) versus ¢MBB are
plotted.

Table 3. Taking b¢ =tan 1.15, =g 0.4B , = -g 0.4Y B , the scanning parameters for
figure 6.

Parameters Min Max Step

¢MBB (TeV) 0 3 0.1

¢MB (TeV) 0 3 0.1
μ′(TeV) 0.1 3 0.1
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slepton mass term ME and btan can also account for the discrepancies. Considering the
constraints from updated experimental data, the numerical results show that, if we limit the
NP corrections to ma e,

NP in 2σ interval, the experimental results on aμ and ae favor minus Te,
small ME (ME2 TeV) and large btan , in our chosen parameter space. In addition, there are
new parameters b¢tan , gB, gY B, ¢MBB , ¢MB and μ′ in the B-LSSM with respect to the MSSM,
all of them can affect the theoretical predictions on ma e,

NP through the neutralino-slepton loop,
and ¢MBB , ¢MB , μ′ can also make contributions to lepton MDMs through the considered two-
loop Barr-Zee type diagrams.
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