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Abstract. We provide a systematic and updated discussion of a research line carried out by
our group over the last few years, in which gravity is modified at cosmological distances by
the introduction of nonlocal terms, assumed to emerge at an effective level from the infrared
behavior of the quantum theory. The requirement of producing a viable cosmology turns out
to be very stringent and basically selects a unique model, in which the nonlocal term describes
an effective mass for the conformal mode. We discuss how such a specific structure could
emerge from a fundamental local theory of gravity, and we perform a detailed comparison of
this model with the most recent cosmological datasets, confirming that it fits current data
at the same level as ΛCDM.

Most notably, the model has striking predictions in the sector of tensor perturbations,
leading to a very large effect in the propagation of gravitational wave (GWs) over cosmological
distances. At the redshifts relevant for the next generation of GW detectors such as Einstein
Telescope, Cosmic Explorer and LISA, this leads to deviations from GR that could be as
large as 80%, and could be verified with the detection of just a single coalescing binary with
electromagnetic counterpart. This would also have potentially important consequences for
the search of the counterpart since, for a given luminosity distance to the source, as inferred
through the GW signal, the actual source redshift could be significantly different from that
predicted by ΛCDM. At the redshifts relevant for advanced LIGO/Virgo/Kagra the effect is
smaller, but still potentially observable over a few years of runs at target sensitivity.
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1 Introduction

The infrared (IR) dynamics of quantum field theories with massless particles can in general
be highly non-trivial. In General Relativity (GR), where the coupling constant GN = 1/M2

Pl

has the dimension of inverse mass squared, perturbation theory is organized in powers of
GNE

2, with E a typical energy scale, and one might think that the IR limit E → 0 is
fully perturbative, contrary to the large energy limit, where an UV completion is needed at
the latest at E ' MPl. In fact, several lines of investigation indicate that this conclusion
might be too naive. Already for pure gravity in flat space a non-trivial vacuum structure
at infinity emerges, relating the asymptotic symmetries of flat space-time (the BMS group)
to soft theorems and memory effects, leading to the conclusion that the vacuum in GR
is not unique [1]. In de Sitter space the Feynman propagator grows without bounds for
large separations, leading to IR divergences in gauge-invariant scattering processes [2]; the
strongest divergence comes from the propagator of the conformal mode, a point that will be
relevant in the following. Infrared divergences also appear when performing computation of
physical quantities during inflation [3]. When gravity is coupled to massless fields, further
non-trivial dynamics for the conformal mode of the metric, σ, arises through the conformal
anomaly. The latter gives a contribution to the quantum effective action that, in flat four-
dimensional space-time, is proportional to (2σ)2, i.e. is fourth-order in the derivatives. In
turn, this leads to a propagator for the conformal mode Gσ(x, x′) ∝ log(x − x′)2, which
again grows without bounds in the IR, leading to the possibility of non-trivial large-distance
dynamics, including the possibility of non-trivial IR fixed points [4, 5]. IR divergences are
the sign that something is missing in our understanding of the physics, and that the long-
distance behavior of the theory could be different from that suggested by a perturbative
analysis. A nontrivial IR dynamics could of course be relevant for understanding the origin
of dark energy, and indeed the idea that quantum effects in gravity could have cosmological
relevance already appeared in older works [6].

In the presence of strong IR effects a system often reacts by generating a mass scale
dynamically. At first, it might seem that this is precluded for the gravitational field, since a
mass term would be forbidden by diffeomorphism invariance. However, once quantum effects
enter into play, the relevant quantity is no longer the fundamental action of the theory, but
rather the quantum effective action. Whenever the theory has massless particles, such as the
graviton in GR, the quantum effective action unavoidably develops nonlocal terms. As we
will review in section 2, with nonlocal terms it is possible to construct gauge-invariant mass
terms for gauge fields, and diffeomorphism-invariant mass terms for different modes of the
gravitational field. The question then arises whether, in the IR limit of GR, a nonlocal mass
term of this form could emerge. This question is very difficult to answer, since it basically
involve non-perturbative physics,1 and non-perturbative techniques for gravity are still far
from being fully established. After recalling in section 2.3 some generic features that are
important for understanding the proper way of dealing with nonlocal terms, in section 2.4 we
will discuss tentative evidence, both from lattice gravity and from functional renormalization
group equations, that suggests that the generation of such a mass scale is in principle possible.
We will also stress that one can generate very specific nonlocal structures, rather than the
most general nonlocal theory. If one assumes the generation of nonlocal terms relevant in

1Although a possibly simpler alternative is provided by theories with extra dimensions, that, when projected
onto a four-dimensional brane, can indeed induce nonlocal terms relevant in the IR, as we will illustrate below
with the example of the DGP model.

– 1 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

the IR as a sensible working hypothesis, the next question is what terms can give a viable
cosmology, consistent with the wealth of current data. Of course, ideally one would like to
derive the form of the nonlocal terms from first principle, and then study their consequences.
Given the difficulty of such a top-down approach, it make sense to start by a study of the
cosmological consequences of possible nonlocal terms. This turns out to be already a rather
interesting study; summarizing previous work our group, we will indeed see that the condition
of obtaining a viable cosmology are very stringent, and basically select a single model (the so-
called RT model), among a large class of alternatives that have been studied. In this model,
the nonlocal term corresponds to a diff-invariant mass for the conformal mode. We will then
perform in section 3 an updated and detailed study of the phenomenological consequences
of the RT model, including comparison with the most recent cosmological datasets, as well
as predictions for gravitational-wave (GW) detectors that could turn out to be the smoking
gun of this model.

2 Nonlocal mass terms for gauge and gravitational fields

In this section we review how one can construct nonlocal mass terms for gauge fields and
for different components of the gravitational field, while preserving gauge or diffeomorphism
invariance, respectively. Even if the formal manipulations might seem to hold already at
the level of the classical action, we will recall in section 2.3 that these nonlocal terms only
make sense at the level of quantum effective action, i.e. must be considered as generated by
quantum effects (we will recall in section 2.3.3 some basic properties of the quantum effective
action). Indeed, writing such nonlocal terms directly at the level of the fundamental action,
one would run into fatal problems with ghost-like degrees of freedom and with causality. In
contrast, nonlocal terms routinely appears at the level of quantum effective actions, and, in
this context, create no problems with causality or with ghosts.

2.1 Nonlocal and gauge-invariant mass term for gauge fields

The simplest example is given by massive electrodynamics [7]. Consider the Proca action for
a massive photon coupled to an external conserved current jµ

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
m2
γ AµA

µ − jµAµ
)
. (2.1)

The equation of motion derived from this action is ∂µF
µν −m2

γA
ν = jν . Acting with ∂ν on

both sides and using ∂νj
ν = 0 one finds m2

γ ∂νA
ν = 0, so, for mγ 6= 0, we get ∂νA

ν = 0.
Note that this condition, that in massless electrodynamics can be obtained as a choice of
gauge, is here obtained dynamically from the equations of motion; indeed, the action (2.1)
is not gauge invariant, and there is no gauge freedom to fix. Then, using this condition, the
equation of motion becomes (2−m2

γ)Aµ = jµ. In summary, the equations of motion derived
from eq. (2.1) can be written as

(2−m2
γ)Aµ = jµ , ∂νA

ν = 0 , (2.2)

and describe the three degrees of freedom of a massive spin-1 particle. Now, let us compare
this with the nonlocal action

S =

∫
d4x

[
−1

4
Fµν

(
1−

m2
γ

2

)
Fµν − jµAµ

]
. (2.3)
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The corresponding equation of motion is(
1−

m2
γ

2

)
∂µF

µν = jν . (2.4)

The action (2.3) is nonlocal but gauge invariant. We can therefore impose ∂µA
µ = 0 as a

choice of gauge, and then eq. (2.4) reduces to (2−m2
γ)Aµ = jµ. We therefore get back the

two equations in (2.2), showing that eqs. (2.1) and (2.3) provide two equivalent formulations
of the same classical theory. The equivalence of the two theories can also be shown by using
the “Stückelberg trick”, as originally done in [7]. One introduces the Stückelberg field ϕ
and replaces

Aµ → Aµ + (1/mγ)∂µϕ , (2.5)

in the Proca action (2.1), which becomes

S[Aµ, ϕ] =

∫
d4x

[
−1

4
FµνF

µν − 1

2
m2
γAµA

µ − 1

2
∂µϕ∂

µϕ−mγA
µ∂µϕ− jµAµ

]
. (2.6)

We have added a new degrees of freedom ϕ, but we have gained a gauge symmetry, defined
by the transformation

Aµ → Aµ − ∂µθ , ϕ→ ϕ+mγθ , (2.7)

since the combined transformation leaves invariant the right-hand side of eq. (2.5). The
equations of motion obtained from the action (2.6) are

∂µF
µν = m2

γA
ν +mγ∂

νϕ+ jν , (2.8)

2ϕ = −mγ∂µA
µ . (2.9)

Equation (2.9) can be formally solved by ϕ(x) = −mγ2
−1(∂µA

µ). Inserting this into eq. (2.8)
we get eq. (2.4) [or, equivalently, inserting it into S[Aµ, ϕ], eq. (2.6), we get eq. (2.3)]. Thus,
eq. (2.3) provides an alternative description of a massive photon which is explicitly gauge
invariant, but nonlocal. An equivalent way of expressing the same result is to observe that the
Ward identities of QED do not forbid a photon mass term [8]. Indeed, they only imply that
the photon self-energy Σµν is transverse, so that, in momentum space, it can be written as

Σµν(p) =

(
gµν −

pµpν
p2

)
F (p2) . (2.10)

If, in the limit p2 → 0, F (p2) 6= 0, then the photon acquires a nonzero mass, which is precisely
the one described by the nonlocal term in eq. (2.3).

It is interesting to rewrite the nonlocal mass term in a way that will be useful to make
contact with the gravitational case [9]. We separate the gauge field into its transverse and
longitudinal parts,

Aµ = AT
µ + ∂µα , (2.11)

where ∂µAT
µ = 0. Under a gauge transformations Aµ → Aµ − ∂µθ, we have α → α − θ and

AT
µ → AT

µ , so AT
µ is gauge invariant. To invert eq. (2.11) we take the divergence, which

gives ∂µAµ = 2α. This can be formally inverted as α = 2−1∂µAµ. Substituting this into
AT
µ = Aµ − ∂µα we get

AT
µ = Aµ −

1

2
∂µ∂

νAν ≡ P νµAν , (2.12)

– 3 –
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where

P νµ ≡ δνµ −
∂µ∂

ν

2
(2.13)

is a nonlocal operator. The transverse part AT
µ is therefore a gauge-invariant and nonlocal

functional of the gauge field Aµ. In terms of AT
µ , it is straightforward to check that the

action (2.3) can be rewritten as

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
m2
γA

T
µA

Tµ

)
− jµAµ . (2.14)

We can further replace Aµ with AT
µ in the kinetic term, since Fµν = ∂µAν − ∂νAµ =

∂µA
T
ν −∂νATµ , and in jµAµ, since jµ∂µα vanishes upon integrating by parts and using current

conservation. This is a consequence of the fact that α is a pure gauge degree of freedom and
can be set to zero with a gauge transformation.

In the case of massive electrodynamics the nonlocality is only apparent, since we have
seen that the nonlocal term in the equation of motion (2.4) can be made local with the gauge
choice ∂µA

µ = 0. In this sense, the above manipulations can be performed even at the level of
fundamental action, since anyhow the nonlocality can be gauged away. Less trivial examples
can be constructed where the nonlocality is genuine (and therefore, as we will review in
section 2.3, only makes sense at the level of quantum effective action). In particular, the
non-abelian generalization of the nonlocal mass term in eq. (2.3) is

m2
g

2
Tr

∫
d4xFµν

1

2
Fµν , (2.15)

where Fµν = F aµνT
a, 2ab = Dac

µ D
µ,cb and Dab

µ = δab∂µ − gfabcAcµ is the covariant derivative.
This nonlocal term corresponds to giving a mass mg to the non-abelian gauge bosons, plus
extra nonlocal interaction terms that, altogether, reconstruct a gauge-invariant quantity.
This nonlocal mass term cannot be reduced to a local term with a gauge choice, and has
been postulated to appear in the quantum effective action of QCD, in order to reproduce
non-perturbative results on the running of the strong coupling constant and on the gluon
propagator in the IR, obtained from operator product expansions and from lattice QCD [10–
12]. It is therefore an example of a nonlocal term that can appear in a quantum effective
action because of strong IR effects.

2.2 Nonlocal and diff-invariant mass term for the conformal mode

2.2.1 Linearized GR in nonlocal variables

We now discuss possible generalizations of the above construction to the gravitational field.
A possible route is to begin with gravity linearized over Minkowski space. First of all,
it is useful to see how linearized gravity can be rewritten in terms of nonlocal variables,
analogous to ATµ of the previous section (we follow the discussion in [9, 13]). We begin by

writing gµν = ηµν + κhµν , where κ = (32πG)1/2. To quadratic level, the Einstein-Hilbert
action becomes

S
(2)
EH =

1

2

∫
d4xhµνEµν,ρσhρσ , (2.16)
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where Eµν,ρσ is the Lichnerowicz operator,2 while the interaction with matter with energy-
momentum tensor Tµν , to linear order in hµν , is given by

S
(1)
int =

κ

2

∫
d4xhµνT

µν . (2.17)

The linearized equations of motion derived from S
(2)
EH + S

(1)
int are therefore

Eµν,ρσhρσ = −κ
2
Tµν . (2.18)

We next decompose the metric as

hµν = hTT
µν +

1

2
(∂µεν + ∂νεµ) +

1

3
ηµνs , (2.19)

where hTT
µν is transverse (∂µhTT

µν = 0) and traceless (ηµνhTT
µν = 0), and therefore has five

independent components.3 We have therefore decomposed the 10 independent components
of the symmetric tensor hµν into the five components of hTT

µν , the four components of εµ,
and the scalar s. Under a linearized diffeomorphism hµν → hµν − (∂µξν + ∂νξµ) we have
εµ → εµ − ξµ while hTT

µν and s are gauge invariant. Thus εµ describes the four pure gauge

degrees of freedom, while s plus the five components of the TT tensor hTT
µν describe the six

gauge-invariant degrees of freedom of the gravitational field. Notice that, at this linearized
level, s is equivalent to the conformal mode of the metric. Indeed, restricting to the scalar
sector (i.e. setting εµ = 0 and hTT

µν = 0) and writing gµν = e2σηµν , comparison with eq. (2.19)
shows that, at the linear level, 2σ = s/3.

Similarly to the electromagnetic case of section 2.1, the quantities that appear in the
right-hand side of eq. (2.19) are nonlocal functionals of the original metric perturbation hµν .
The inversion of eq. (2.19) is straightforward [9]. It is convenient to further separate εµ into
its transverse and longitudinal parts, εµ = εTµ + ∂µα, where ∂µεTµ = 0. Then, taking the
trace of eq. (2.19) we get h = (4/3)s + 2α, while contracting eq. (2.19) with ∂µ∂ν , gives
∂µ∂νhµν = 2[s/3 + 2α]. Combining these equations we get

s =

(
ηµν − 1

2
∂µ∂ν

)
hµν , α = −1

3

1

2

(
ηµν − 4

2
∂µ∂ν

)
hµν . (2.20)

We can now extract εTµ by applying ∂µ to eq. (2.19) and using the above expressions for α

and s. This gives εTµ = 22−1P ρµ∂σhρσ. Finally, substituting these expressions into eq. (2.19)
we get

hTT
µν = hµν −

1

3

(
ηµν −

∂µ∂ν
2

)
h− 1

2
(∂µ∂

ρhνρ + ∂ν∂
ρhµρ) +

1

3
ηµν

1

2
∂ρ∂σhρσ

+
2

3

1

22
∂µ∂ν∂

ρ∂σhρσ . (2.21)

2The Lichnerowicz operator is defined by Eµν,ρσ ≡ 1
2
(ηµρηνσ+ηµσηνρ−2ηµνηρσ)2+(ηρσ∂µ∂ν+ηµν∂ρ∂σ)−

1
2

(ηµρ∂σ∂ν + ηνρ∂σ∂µ + ηµσ∂ρ∂ν + ηνσ∂ρ∂µ), where 2 = ηµν∂µ∂ν is the flat-space d’Alembertian. We use
the signature ηµν = (−,+,+,+) and MTW [14] sign conventions.

3We assume here 3 + 1 spacetime dimensions. See [13] for the corresponding equations in d+ 1 spacetime
dimensions, with d generic.
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These results can be written more compactly using the projector Pµν = ηµν − (∂µ∂ν/2). In
particular,

s = Pµνhµν , (2.22)

hTT
µν =

(
P ρµP

σ
ν −

1

3
PµνP

ρσ

)
hρσ . (2.23)

The fact that this expression for hTT
µν is indeed transverse and traceless is easily checked by

using the properties of Pµν , ∂µPµν = 0, ηµνP ρµP σν = P ρσ and ηµνPµν = 3.

Plugging the decomposition (2.19) into the action (2.16) one finds that εµ cancels (an
obvious consequence of the fact that it is a pure gauge mode), and [13]

S
(2)
EH =

1

2

∫
d4x

[
hTT
µν 2(hµν)TT − 2

3
s2s

]
. (2.24)

Performing the same decomposition as in (2.19) for the energy-momentum tensor, the lin-
earization of the interaction term becomes

S
(1)
int =

κ

2

∫
d4x

[
hTT
µν (Tµν)TT +

1

3
sT

]
, (2.25)

where T = ηµνTµν . The equations of motion (2.18) derived from S
(2)
EH + S

(1)
int can then be

rewritten as

2hTT
µν = −κ

2
TTT
µν , 2s =

κ

4
T . (2.26)

At first, eq. (2.26) can be surprising, because it seems to imply that hTT
µν and s describe six

radiative gauge-invariant degrees of freedom. Of course, we know that in GR only the two
degrees of freedom associated to the helicities ±2 are radiative, while the remaining four
gauge-invariant degrees of freedom are non-radiative and satisfy Poisson equations. Further-
more, the sign of the kinetic term of s in eq. (2.24) is such that the scalar s seems to be a
ghost! As discussed in [13], the resolution of this apparent paradox is related to the nonlocal
relation between the original metric perturbation hµν and the variables {hTT

µν , s}. The fact
that this relation is nonlocal in time, and not only in space, implies that the initial data
assigned on hµν on a given time slice are not sufficient to provide initial data on {hTT

µν , s}, so

a naive counting of degrees of freedom in terms of {hTT
µν , s} goes wrong.4 Notice that this is

different from what happens in the standard 3 + 1 decomposition of the metric perturbations
over flat space,

h00 = 2ψ , h0i = βi + ∂iγ

hij = −2φδij +

(
∂i∂j −

1

3
δij∇2

)
λ+

1

2
(∂ivj + ∂jvi) +HTT

ij , (2.27)

4A simple example to understand what exactly goes wrong, again discussed in [13], is provided by a scalar
field φ that satisfies a Poisson equation ∇2φ = ρ. If one introduces a field φ̃ related to φ by a nonlocal relation
such as φ̃ = 2−1φ, the original Poisson equation can be rewritten as 2φ̃ = ρ̃, where ρ̃ ≡ ∇−2ρ, so now φ̃
looks like a propagating degree of freedom. However, for ρ = 0 the original equation ∇2φ = ρ (with vanishing
boundary conditions at infinity) only has the solution φ = 0. If we want to rewrite this equation in terms of φ̃
without introducing spurious degrees of freedom we must therefore supplement the equation 2φ̃ = ρ̃ with the
condition that, when ρ̃ = 0, the only acceptable solution is φ̃ = 0, which precisely kills the radiative solution.
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where vi and βi are transverse spatial vectors, ∂iβ
i = 0 and ∂iv

i = 0, and HTT
ij is transverse

and traceless with respect to the spatial indices, ∂jHTT
ij = 0 and δijHTT

ij = 0. Indeed, this
decomposition only involves spatial derivatives and therefore its inversion is nonlocal in space
but local in time. From these variables, one can form six variables that are invariant under
linearized gauge transformations: the two Bardeen variables, Φ = −φ− (1/6)∇2λ and Ψ =
ψ− γ̇ + (1/2)λ̈, that are scalars under spatial rotations; the spatial vector Ξi = βi − (1/2)v̇i,
which, being transverse, has only two independent components; and the spatial tensor HTT

ij ,
which is already gauge-invariant (again, at the linearized level) and, being transverse and
traceless (and carrying only spatial indices, contrary to hTT

µν ), also has only two independent
components. Standard analysis (see e.g. [15, 16] or chapter 18 of [17]) then shows that, after
performing the same decomposition for the energy-momentum tensor, namely

T00 = ρ , T0i = Si + ∂iS ,

Tij = Pδij +

(
∂i∂j −

1

3
δij∇2

)
Σ +

1

2
(∂iΣj + ∂jΣi) + Σij , (2.28)

where ∂iΣ
i = 0, ∂iS

i = 0, ∂iΣij = 0 and δijΣij = 0, the linearized equations of motion can
be rewritten as

∇2Φ = −4πGρ , ∇2Ψ = −4πG(ρ− 2∇2Σ) , (2.29)

∇2Ξi = −16πGSi , 2HTT
ij = −16πGΣij . (2.30)

We then get the standard result that only the two degrees of freedom of the tensor perturba-
tions obey a wave equation, while the remaining gauge-invariant degrees of freedom described
by Φ, Ψ and Ξi obey Poisson equations, and therefore are non-radiative.

Comparing the decompositions (2.19) and (2.27) one finds that the field s can be written
explicitly as a nonlocal function of the Bardeen variables as [13]

s = 6Φ− 22−1∇2(Φ + Ψ) . (2.31)

Just as in the example discussed in footnote 4, the apparent radiative nature of s in eq. (2.26)
is an artifact due to this nonlocal relation, that introduces a spurious degree of freedom
associated to the homogeneous equation 2s = 0. Indeed, from eq. (2.29), ∇2(Φ + Ψ) is fully
determined by the source terms, and vanishes if the latter vanish. Thus, in order to eliminate
this spurious degree of freedom we must supplement eq. (2.26) with the condition that s = 0
when T = 0, i.e. we must discard again the homogeneous solution of eq. (2.26) (and similarly
for the helicities 0,±1 of hTT

µν ) At the quantum level, this implies that there are no creation
and annihilation operators associated to s, and s cannot appear on the external legs of a
Feynman diagram. Therefore, the apparent ghost-like nature of s in eq. (2.24) is fictitious
and, of course, in General Relativity there is no actual ghost.

2.2.2 Nonlocal mass terms at the linearized level

As we have seen, the use of the variables {hTT
µν , s} is not convenient if we want to count the

independent degrees of freedom of the theory and determine their radiative/non-radiative
nature; for those purposes it is better to work directly with the original metric perturbation
hµν , or with the variables of the 3+1 decomposition (2.27), or with the ADM decomposition.
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However, the variables {hTT
µν , s} have the advantage that one can very easily see how a diff-

invariant nonlocal mass term can be naturally written for different modes of the gravitational
field, at the linearized level. Quite trivially, we can just modify eq. (2.24) into

Γ(2) =
1

2

∫
d4x

[
hTT
µν (2−m2

1)(hµν)TT − 2

3
s(2 +m2

2)s

]
, (2.32)

for some masses m1 and m2.5 This is analogous to eq. (2.14) in the case of a massive gauge
field. These mass terms are clearly diff-invariant, since hTT

µν and s are diff-invariant (again,
at the linearized level). On the other hand, because of the relations (2.22), (2.23), once
rewritten in terms of hµν they will be nonlocal. We have indeed used the notation Γ, rather
than S, to stress that, because of the nonlocality, this modification makes sense at the level
of the quantum effective action Γ, rather than for the fundamental action S.

To go beyond the linearized approximation, we can search for covariantizations of these
expressions, as we will do in section 2.2.3. The second term gives a mass to s or, equivalently,
to the conformal mode. The models that we will study in the following will be covariantiza-
tions of the above expression, with m2

1 = 0 and m2
2 ≡ m2 > 0. We are therefore assuming

that there exists a mechanism that, in the quantum effective action, generates a mass for the
conformal mode, while leaving hTT

µν massless. At the phenomenological level this is required
by the fact that, as we will review in appendix A, among a large class of models explored,
only those of this form appear to have a viable cosmological evolution. At the theoretical
level, this is also suggested by various arguments, that will be discussed in section 2.4, that
identify the conformal mode as the main candidate for producing strong IR quantum effects.
Thus, we will look for a covariantization of a quantum effective action that, at quadratic
level, has the form

Γ(2) =
1

2

∫
d4x

[
hTT
µν 2(hµν)TT − 2

3
s(2 +m2)s

]
, (2.33)

so that the linearized equations of motion (2.26) are modified into6

2hTT
µν = −κ

2
TTT
µν , (2 +m2)s =

κ

4
T . (2.34)

To perform the covariantization, it is now convenient to go back to the original metric per-
turbation hµν . Using eq. (2.22), we immediately see that eq. (2.33) can be rewritten as

Γ(2) =
1

2

∫
d4x

[
hµνEµν,ρσhρσ −

2

3
m2(Pµνhµν)2

]
, (2.35)

while eq. (2.34) is equivalent to

Eµν,ρσhρσ −
2

3
m2PµνP ρσhρσ = −κ

2
Tµν . (2.36)

In view of the covariantization, it is also convenient to rescale hµν → hµν/κ, so that now
gµν = ηµν + hµν ,

Γ(2) =
1

64πG

∫
d4x

[
hµνEµν,ρσhρσ −

2

3
m2(Pµνhµν)2

]
, (2.37)

5We have chosen the signs in front of m2
1 and m2

2 so that m2
1 > 0 and m2

2 > 0 corresponds to ‘non-tachyonic’
masses, independently of the signs in front of the 2 operators.

6As we will recall in section 2.3.3, the quantum effective action actually generates the equations of motion
for the vacuum expectation values of the corresponding operators.
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and

Eµν,ρσhρσ −
2

3
m2PµνP ρσhρσ = −16πGTµν . (2.38)

2.2.3 Covariantizations: RT and RR models

We now look for possible covariantizations of the above expressions. Covariantizations, when
they exists, are in general not unique. However, some choices can be more natural than
others. We will see that, starting from the equation of motion (2.38) or from the quantum
effective action (2.37), one ends up quite naturally with two different covariantizations, that
define two possible models.

Let us start from the covariantization of eq. (2.38). The linearization of the Einstein

tensor Gµν is G
(1)
µν = −(1/2)Eµν,ρσhρσ, so the term Eµν,ρσhρσ = −2G

(1)
µν in eq. (2.38) is uniquely

promoted to −2Gµν in the full covariant theory, by the requirement that we recover GR for
m = 0. The nontrivial part is the covariantization of the mass term. At linear level the Ricci
scalar becomes R(1) = −(ηρσ2− ∂ρ∂σ)hρσ, that can be rewritten as R(1) = −2(P ρσhρσ), so

P ρσhρσ = −2−1R(1) . (2.39)

Therefore eq. (2.36) is equivalent to

− 2G(1)
µν +

2

3
m2Pµν2

−1
η R(1) = −16πGTµν , (2.40)

where the notation 2η stresses that, until now, the 2 operator was the one with respect to

the flat metric ηµν . After promoting G
(1)
µν to Gµν , if we want to preserve energy-momentum

conservation ∇µTµν = 0, we must promote Pµν2
−1
η R(1) to a transverse tensor, whose covari-

ant derivative vanishes. To this purpose it is useful to observe that, in a generic Riemannian
manifold, any symmetric tensor Sµν can be decomposed as

Sµν = ST
µν +

1

2
(∇µSν + ∇νSµ) , (2.41)

where ∇µST
µν = 0 [18, 19]. The extraction of the transverse part of a tensor is itself a nonlocal

operation. In flat space, where ∇µ → ∂µ, proceeding as we have done in the derivation of
eqs. (2.20)–(2.21), one finds that

ST
µν = Sµν −

1

2η
(∂µ∂

ρSρν + ∂ν∂
ρSρµ) +

1

22
η

∂µ∂ν∂
ρ∂σSρσ . (2.42)

Using this expression we can easily check that, in flat space, for a tensor Sµν of the form
Sµν(x) = ηµνA(x), we have ST

µν = PµνA(x).7 Thus, to linear order in an expansion over flat

space, the term Pµν2
−1
η R(1) in eq. (2.40) is the same as the transverse part of the tensor

(ηµν2
−1
η R(1)), that we denote as (ηµν2

−1
η R(1))T , and eq. (2.40) is the same as

G(1)
µν −

1

3
m2(ηµν2

−1
η R(1))T = 8πGTµν . (2.44)

7This could be derived even more simply by observing that, in flat space, where ∂µ commutes with 2η and
therefore with 2−1

η , we can write

ηµνA = (ηµν − 2
−1
η ∂µ∂ν)A+ (1/2)∂µ(2−1

η ∂νA) + (1/2)∂ν(2−1
η ∂µA) = PµνA+ (1/2)(∂µSν + ∂νSµ) , (2.43)

where Sµ = 2−1
η ∂µA. Since ∂µ(ηµν − 2−1

η ∂µ∂ν)A = (∂ν − ∂ν)A = 0, PµνA is transverse, so PµνA = ST
µν .
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In this form, there is a natural covariantization given by

Gµν −
1

3
m2
(
gµν2

−1R
)T

= 8πGTµν , (2.45)

where now 2−1 is the inverse of the covariant 2 operator with respect to the generic metric
gµν , and the operation of taking the transverse part is the fully covariant operation defined by
eq. (2.41). Equation (2.45) defines the so-called RT model, where R stands for the occurrence
of the Ricci scalar and T for the extraction of the transverse part. This is the model that was
first proposed in [20] (through a rather different route that we will review in appendix A).
It was the first model of this class of nonlocal theories that looked cosmologically viable
and even today, after the study of many alternative possibilities, it turns out to be the only
viable one; the reasons that gradually eliminated all other alternatives will be discussed in
appendix A. This model will therefore be the main focus of this paper. Notice that it is
defined at the level of a nonlocal equation of motion rather than by a (quantum effective)
action. Indeed, there is no known nonlocal action from which eq. (2.45) can be derived.

A different covariantization emerges naturally if we rather start from the quantum effec-
tive action (2.16). As usual, d4x (1/4)hµνEµν,ρσhρσ becomes d4x

√
−gR while, using eq. (2.39),

(Pµνhµν)2 is the same as (2−1
η R(1))2, which is naturally covariantized into (2−1R)2. Thus,

a natural covariantization of eq. (2.37) is

ΓRR =
1

16πG

∫
d4x
√
−g

[
R− m2

6
(2−1R)2

]
=

1

16πG

∫
d4x
√
−g

[
R− m2

6
R

1

22
R

]
, (2.46)

where in the last line we have integrated 1/2 by parts.8 This gives the model that was first
proposed in [21]; we will refer to it as the RR model, after the two occurrences of the Ricci
scalar in the nonlocal term.

The RT and RR model by construction coincide to linear order in an expansion over flat
space. However, they are otherwise different, and have different cosmological predictions. As
we will see in appendix A, the RR model shared most of the phenomenologically attractive
properties of the RT model, such as viable cosmological background evolution, stable cosmo-
logical perturbations, good fit to Cosmic Microwave Background (CMB), Baryon Acoustic
Oscillations (BAO), type Ia Supernovae (SNe) and structure formation data. However, we
will also see that it does not pass the constraints from Lunar Laser Ranging, contrarily to
the RT model, which is completely immune to it and, to date, passes all the observational
tests. Thus, in this paper we will mostly focus on the RT model. Still, the RR model can
be useful to illustrate some concepts in a somewhat simpler setting, also because of its rel-
atively simple quantum effective action, and we will therefore also occasionally use it for
pedagogical purposes.

2.3 Aspects of effective nonlocal theories

A correct treatment of nonlocal terms involves a few subtle points. It is particularly important
to make clear that the nonlocality that we have introduced is not fundamental, i.e. it does
not appear at the level of the fundamental action of the theory, that in our case could even

8Note that the inversions of the 2 operator (and therefore also the integration by parts above) until now
have been somewhat formal operations. We will justify them in more detail in section 2.3.3.
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simply be Einstein-Hilbert gravity. Indeed, fundamental actions with nonlocal terms have
problems with causality, and extra (typically ghost-like) degrees of freedom. However, even
when the fundamental theory is local, if it contains massless particles (such as the graviton in
GR) the corresponding quantum effective action will be unavoidably nonlocal, and this sort
of nonlocality is not associated to any pathology. The same happens when nonlocal terms
appear from a fundamental higher-dimensional theory, as in the DGP example, see eq. (2.72)
below. These issues have been reviewed at length in [22, 23] (see also [24–27]). Here, for
completeness, we summarize them briefly.

2.3.1 Localization and degrees of freedom

A nonlocal quantum effective action can be rewritten in local form by introducing auxiliary
fields (see also [26–32]). This is quite convenient for working out the predictions of the theory
(e.g. for studying the equations of motions of the theory, the cosmological perturbations, etc.),
but requires some care at the level of interpretation, in order not to confuse the auxiliary
fields with actual degrees of freedom of the theory. As a simple example, consider the theory
of a massive photon discussed in section 2.1. We have seen that it can be formulated as a
local but non gauge-invariant theory, as in eq. (2.1), or as a gauge-invariant theory at the
price of nonlocality, as in eq. (2.3). One might also get a theory that is at the same time local
and gauge-invariant, by introducing an auxiliary anti-symmetric tensor field Uµν defined by
Uµν = 2−1Fµν . In this way, one gets a local and gauge-invariant action written in terms of
the two fields Aµ and Uµν . The equations of motion of the theory can then be rewritten as9

∂µF
µν = jν +m2∂µU

µν , 2Uµν = Fµν . (2.47)

While the steps leading to eq. (2.47) are formally correct, this local and gauge-invariant
formulation seems to suggest that the theory has many more degrees of freedom than the
Proca theory of a massive photon that was our starting point: we apparently have a massless
gauge-invariant vector field Aµ, which carries two degrees of freedom, interacting with an
antisymmetric tensor field Uµν , which apparently carries six degrees of freedom. This seems
very different from the three degrees of freedom of a massive vector field from which we
started. Of course, new degrees of freedom cannot pop out from nowhere, and the delicate
point here is the passage from an equation such as Uµν = 2−1Fµν to the equation 2Uµν =
Fµν , i.e. the inversion of the 2 operator. By itself, the most general solution of an equation
such as 2Uµν = Fµν is given by a solution of the inhomogeneous equation plus the most
general solution of the associated homogeneous equation 2Uµν = 0. The latter carries with
itself the six degrees of freedom associated to Uµν . Clearly, if we want this local and gauge-
invariant formulation to be equivalent to the original Proca theory, we cannot accept the
most general solution of 2Uµν = Fµν . In other words, the initial condition of the auxiliary
field Uµν cannot be taken as independent, but must be fixed in terms of the initial condition
of the two transverse and the longitudinal components of Aµ, so that the theory indeed still
has three independent degrees of freedom. In this sense, Uµν is just an auxiliary field, and
does not carry independent degrees of freedom. In particular, at the quantum level there are
no creation/annihilation operators associated to it.

9This can be easily seen by implementing the definition Uµν = 2−1Fµν by adding to the action a term
λµν(2Uµν −Fµν), where λµν is a Lagrange multiplier, and taking the variations with respect to Aµ, U

µν and
λµν . A combination of the two latter equations gives λµν = −(m2/4)Uµν , and the remaining two equations
give eq. (2.47). Of course, eq. (2.47) can also be verified more simply by comparison with eq. (2.4).
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A similar example, worked out in detail in [22], is given by the Polyakov quantum
effective action in two dimensions. For two-dimensional gravity coupled to conformal matter
it is possible to compute exactly the quantum effective action by integrating the conformal
anomaly. This leads to the famous Polyakov quantum effective action, which can be written,
in terms of the conformal mode, in a local form which is not explicitly invariant under
diffeomorphism; equivalently, one can write it in a form which is nonlocal but diff-invariant.
In the latter form the Polyakov quantum effective action is proportional to R2−1R. One
could further rewrite the theory in a form which is both local and diff-invariant by introducing
an auxiliary field U = −2−1R. However, in this case where the computation of the quantum
effective action can be performed explicitly, it is easy to check that U is not an independent
degree of freedom that popped out from nowhere; rather, its initial conditions are fixed in
terms of the initial conditions of the conformal factor σ, the precise relation being simply
Uin = 2σin, U̇in = 2σ̇in [22].

In the following we will use a similar localization procedure for the RR and RT models.
As in the examples above, the auxiliary fields that will be introduced are not new independent
degrees of freedom; rather, their initial conditions should be understood as fixed in terms
of the initial conditions on the metric, and there are no creation/annihilation operators
associated to them (and, therefore, no issues of ghosts at the quantum level). If one had an
explicit derivation of the nonlocal term from a fundamental theory, one would in principle be
able to determine explicitly their initial conditions in terms of those on the metric. In practice,
lacking such a derivation, these initial conditions must be taken as free phenomenological
parameters. One might fear that this significantly reduces the predictive power of the theory.
However, we will see in section 3 that, in the cosmological context in which we are interested,
this introduces only very limited freedom, both at the level of background evolution and of
cosmological perturbations, since these initial conditions turn out to be associated mostly to
irrelevant directions in parameter space.

2.3.2 Localization of the RR and RT models

We next show how to write nonlocal gravity in a local form. We write the equations both
for the RR model, and for the RT model that will eventually be our main focus, since the
comparison between the two models can be instructive, and also the manipulations of the
equations of the RR model are somewhat simpler. To write the RR model in a local form we
introduce two auxiliary fields U and S, defined by U = −2−1R and S = −2−1U [21]. This
can be implemented at the Lagrangian level by introducing two Lagrange multipliers ξ1, ξ2

into eq. (2.46),

ΓRR =
1

16πG

∫
d4x
√
−g

[
R

(
1− m2

6
S

)
− ξ1(2U +R)− ξ2(2S + U)

]
. (2.48)

The variation with respect to the Lagrange multipliers ξ1, ξ2 gives 2U = −R and 2S = −U ,
while the variation with respect to S and U , combined with 2U = −R and 2S = −U , gives
ξ1 = (m2/6)S and ξ2 = (m2/6)U . Then, the variation with respect to hµν , combined with
the above relations, gives Gµν = (m2/6)Kµν + 8πGTµν , where

Kµ
ν ≡ 2SGµν − 2∇µ∂νS + 2δµν2S + δµν ∂ρS∂

ρU − 1

2
δµνU

2 −
(
∂µS∂νU + ∂νS∂

µU
)
. (2.49)

Thus, the RR model is formally written as a scalar-tensor theory, with two scalar fields U and
S, although, as we have discussed in section 2.3.1, U and S are not independent degrees of
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freedoms, and their initial conditions are in principle fixed in terms of the initial conditions of
the metric. In particular, there are no independent solutions associated to the homogeneous
equations 2U = 0 and 2S = 0, and no corresponding quanta at the quantum level.

It is interesting to observe that exactly the same local formulation is obtained if we
introduce a single auxiliary field S = 2−2R rather than the pair S = −2−1U and U =
−2−1R. For the constraint equations this is evident, as the equation 22S = R is equivalent
to the system of two equations 2S = −U and 2U = −R (also from the point of view of the
initial conditions on the auxiliary fields). As for the Einstein equations, they also remain the
same. Indeed, let us consider the quantum effective action

ΓRR =
1

16πG

∫
d4x
√
−g
[
R

(
1− m2

6
S

)
− ξ

(
22S −R

)]
. (2.50)

From the variation with respect to the Lagrange multiplier ξ and the auxiliary field S, we
obtain the constraints 22S = R and ξ = −(m2/6)S. The variation with respect to the
metric is more easily evaluated on the action obtained integrating by parts the 22 operator
in eq. (2.50), i.e.

ΓRR =
1

16πG

∫
d4x
√
−g
[
R

(
1− m2

6
S

)
− (2ξ)(2S) + ξR

]
. (2.51)

The Einstein equations following from the variation of eq. (2.51) with respect to the metric
will then contain both ξ and S. However ξ is traded for S using ξ = −(m2/6)S and, after
this step, we find Gµν = (m2/6)Kµν + 8πGTµν , with

Kµ
ν ≡ 2SGµν − 2∇µ∂νS+ 2δµν2S− δµν ∂ρS∂ρ2S−

1

2
δµν (2S)2 + ∂µS∂ν2S+ ∂νS∂

µ2S . (2.52)

Introducing the definition U = −2S, one can immediately see that the expression for Kµ
ν

given in eq. (2.52) coincides with eq. (2.49), showing the equivalence of the two methods.
For the RT model the localization proceeds by defining again U = −2−1R. We also

introduce Sµν = −Ugµν = gµν2
−1R and we extract its transverse part STµν by using eq. (2.41).

Thus, eq. (2.45) is localized in terms of an auxiliary scalar field U and the auxiliary four-vector
field Sµ that enters through eq. (2.41). The equations of motion then read [20, 33]

Gµν +
m2

6
(2Ugµν + ∇µSν + ∇νSµ) = 8πGTµν , (2.53)

2U = −R , (2.54)

(δµν2 + ∇µ∇ν)Sµ = −2∂νU , (2.55)

where eq. (2.55) is obtained by taking the divergence of eq. (2.41) with Sµν = −Ugµν .
The equations of motion of the RT model have a suggestive property in connection with the
cosmological constant problem. Let us perform a shift U(x)→ U(x)+u0, with u0 a constant.
Equations (2.54) and (2.55) are invariant while eq. (2.53) becomes

Gµν +
m2

6
(2Ugµν + ∇µSν + ∇νSµ) = 8πG (Tµν − λgµν) , (2.56)

where λ = m2u0/(24πG). Thus, u0 (or, equivalently, the initial condition on U) generates a
cosmological constant, and one could chose u0 to cancel any vacuum energy term in Tµν .
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It is also instructive to consider the equations of motion of the RR and RT models
linearized over flat space, eq. (2.38), that were our starting point, and write them in terms
of the auxiliary fields and of the metric variables of the 3 + 1 decomposition (2.27). Since,
by construction, the RR and RT model coincide when linearized over flat space, we use the
RR model, whose localization is slightly simpler, since it involves two scalar fields U and S,
rather than U and Sµ for the RT model. One then finds that eqs. (2.29)–(2.30) are modified
into [21]

∇2
[
Φ− (m2/6)S

]
=− 4πGρ , Φ−Ψ− (m2/3)S = −8πGΣ , (2.57)

∇2Ξi =− 16πGSi , 2HTT
ij = −16πGΣij , (2.58)

(2 +m2)U =− 8πG(ρ− 3P ) , 2S = −U , (2.59)

Equation (2.59) is needed to close the system, since S appears in eq. (2.57). Equations (2.57)
and (2.58) shows that the original metric perturbations Φ, Ψ and Ξi remain non-radiative
variables that satisfy Poisson equations, just as in GR.10 The auxiliary fields U and S satisfy
Klein-Gordon equations, but, as we have seen, their initial conditions are fixed in terms of the
initial conditions on the metric, and therefore are not free radiative degrees of freedom either.
From these equations it is also clear that the conformal mode s remains a non-propagating
degree of freedom also in the RT or RR models. Indeed, combining the two equations in (2.57)
we get

∇2(Φ + Ψ) = 2∇2

(
Φ− m2

6
S

)
+ 8πG∇2Σ

= −8πG∇2(ρ− Σ) . (2.60)

Then, from eq. (2.31) we get (again at the linearized level over flat space)

s = 6Φ− 22−1∇2(Φ + Ψ)

= 6Φ + 16πG2−1∇2(ρ− Σ) . (2.61)

We see that the nonlocal term in s is fully determined by the energy-momentum tensor, in
particular by the density ρ and by the anisotropic stress Σ that enters in Tij through eq. (2.28).
Thus, s remains a non-radiative degree of freedom, exactly as in GR, and vanishes if ρ = 0
and Σ = 0.

2.3.3 Causality and the quantum effective action

We next discuss why nonlocal terms would induce problems with causality if added at the
level of a fundamental action, while they do not in a quantum effective action.

To illustrate the problem with causality of a nonlocal fundamental action, consider for
instance an action with a nonlocal term proportional to (1/2)

∫
d4xϕ2−1ϕ where ϕ is a

scalar field [13]. To complete the definition of this term we must specify the Green’s function
G(x, x′) used to define 2−1, and then

1

2

∫
d4xϕ(x)(2−1ϕ)(x) ≡ 1

2

∫
d4xd4x′ ϕ(x)G(x, x′)ϕ(x′) . (2.62)

10This should be contrasted with what happens when one linearizes massive gravity with a Fierz-Pauli
mass term, in which case Φ becomes a radiative field that satisfies (2 − m2)Φ = source term [16, 34, 35].
The fact that, for m = 0, (2 − m2)Φ does not reduces to its GR counterpart ∇2Φ is a reflection of the
van Dam-Veltman-Zakharov (vDVZ) discontinuity of linearized massive gravity.
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Consider now the contribution of this term to the equation of motion. Taking the variation
with respect to ϕ, we get

1

2

δ

δϕ(x)

∫
dx′dx′′ϕ(x′)G(x′;x′′)ϕ(x′′) =

1

2

∫
dx′[G(x;x′) +G(x′;x)]ϕ(x′) ≡ 2−1

symϕ , (2.63)

where 2−1
sym is the inverse d’Alembertian with respect to the symmetrized Green’s function

[G(x;x′) + G(x′;x)]/2. Thus, independently of the choice of G(x, x′), in the equations of
motion we end up with a symmetric Green’s function. Since the retarded Green’s function
is not symmetric, it cannot be obtained from such a variation. The equations of motion
obtained from a nonlocal classical action are therefore in general acausal. This is one of the
reasons why a fundamental action must be local.

The situation is however completely different for the quantum effective action. Let us
recall, following standard textbook material, that, for a scalar field ϕ(x) with fundamental
action S[ϕ], the quantum effective action is obtained by introducing an auxiliary source J(x)
and defining the generating functional of the connected Green’s function W [J ] from

eiW [J ] ≡
∫
Dϕ eiS[ϕ]+i

∫
Jϕ , (2.64)

where
∫
Jϕ is a notation for

∫
d4xJ(x)ϕ(x). Then δW [J ]/δJ(x) = 〈0|ϕ(x)|0〉J . We will use

the notation 〈0|ϕ(x)|0〉J ≡ φ[J ] for the vacuum expectation value of the field ϕ(x) in the
presence of the source J(x). The quantum effective action Γ[φ] is defined as a functional
of φ (rather than of the original field ϕ), obtained by performing the Legendre transform,
Γ[φ] ≡ W [J ] −

∫
φJ , where J = J [φ] is obtained by inverting φ = φ[J ]. As a consequence,

one immediately finds that

δΓ[φ]/δφ(x) = −J(x) . (2.65)

From the path integral representation (2.64) it is also easy to show that

eiΓ[φ] =

∫
Dϕ e

iS[φ+ϕ]−i
∫ δΓ[φ]

δφ
ϕ
. (2.66)

Thus, the physical meaning of the quantum effective action Γ[φ] is that it is a functional of
φ(x) = 〈0|ϕ(x)|0〉, obtained by integrating out the quantum fluctuations around it. From
eq. (2.65) we also see that Γ[φ] is the quantity whose variation gives the exact equations of
motion for the expectation values of the field, which by construction include (in principle,
exactly, if one were able to compute Γ exactly) the contribution of the quantum fluctuations.

It is clear a priori that the quantum effective action obtained from a local and causal
fundamental action cannot have problems with causality. To see explicitly how this comes
out, one must take into account that, as we have seen, Γ does not give the equations of
motion of the original field, but rather of its vacuum expectation value. We must however
distinguish between the in-out and the in-in expectation values. The effective action com-
puted using the standard Feynman path integral gives the equations of motion of the in-out
vacuum expectation value, which are indeed acausal, because they involve the 2−1 operator
constructed with the Feynman propagator. However, there is nothing wrong with this, since
in-out matrix elements are not directly observable. Rather, they just appear in intermedi-
ate steps of the computation of observables, such as scattering cross section, and indeed the
Feynman propagator appears everywhere in quantum field theory computations. In contrast,
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the in-in matrix elements of the field are observables; for instance, 〈0in|ϕ(t,x)|0in〉 is the vac-
uum expectation value of the quantum field ϕ at a given time t. To obtain the equations of
motion of the in-in matrix elements one must evaluate the path integral in Γ by using the
Schwinger-Keldish prescription. As a result, the in-in matrix elements automatically obey
causal equations of motions in which the retarded propagator appears [36–38]. In practice,
the result of the computation with the Schwinger-Keldish path integral turns out to be equiv-
alent to that obtained by just performing a formal variation of the quantum effective action,
without specifying the Green’s function used to define 2−1, and then replacing the resulting
occurrences of 2−1 in the equations of motion with the 2−1 operator defined with respect
to the retarded Green’s function (see section 12.1.6 of [38] for a pedagogical discussion in
the quantum mechanical case, and [39] for a proof valid for the one-loop quantum effective
action in curved space).11

2.4 Possible mechanisms for the generation of an IR mass scale

2.4.1 Perturbative loop corrections

We next discuss possible mechanisms for the generation of these nonlocal terms. We be-
gin by observing that perturbative loop corrections due to massive matter fields cannot be
responsible for them [40]. In gravity the one-loop corrections induced by matter fields can
produce nonlocal form factors in the quantum effective action, associated to terms quadratic
in the curvature [39, 41–45] (see [46–48] for reviews). The resulting quantum effective action
has the form

Γone−loop =

∫
d4x
√
−g
[
m2

Pl

2
R−RkR(2)R− CµνρσkW (2)Cµνρσ +GB

]
, (2.67)

wherem2
Pl = 1/(8πG), Cµνρσ is the Weyl tensor and ‘GB ’ denotes a similar nonlocal term that

reduces to the topological Gauss-Bonnet term when its form factor is set to one. Consider the
contribution to the form factor from a particle of mass M . When the particle is very massive
compared to the energies or curvatures involved (so M much heavier than the center of mass
energy E in a scattering experiment, or M much larger than the Hubble parameter H(t) in
a cosmological setting), according to the usual decoupling theorem, the particle decouples
and its contribution to the form factor is local and suppressed by a factor O(2/M2) � 1.
A nonlocal contribution instead emerges when the particle is light compared to the energy
scale involved. In that case, the result has the form [44, 45, 49, 50]

kR

(
−2
M2

)
= α log

(
−2
M2

)
+ β

(
M2

−2

)
+ γ

(
M2

−2

)
log

(
−2
M2

)
+ δ

(
M2

−2

)2

+ . . . , (2.68)

and similarly for kW . In [51] it was observed that the logarithmic terms and the term
(M2/2) have little effect on the cosmological evolution in the present epoch, so one might
hope that the leading term is actually given by the term M4/22, which is the operator
that appears in the RR model. Comparison with eq. (2.46) then shows that we must have
M4 = O(m2m2

Pl) and therefore m = O(M2/mPl). Since the expansion (2.68) is valid, today,

11This also justifies the integration by parts of 2−1 that we have performed when constructing the RR model
in eq. (2.46). At the level of the quantum effective action we can simply define 2−1 with a symmetric Green’s
function, G(x, x′) = G(x′, x), which ensure a formal hermiticity of the action and for which the validity of the
integration by parts of 2−1 is easily established (see appendix A of [9]). In any case, the equations of motion
for the in-in expectation values will come automatically with a retarded Green’s function.

– 16 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

only if M � H0, such loop corrections could only generate a nonlocal term m2R2−2R
with m = O(M2/mPl) � H0(H0/mPl). In contrast, we will see that the requirement of
obtaining a dynamical dark energy density today of the order of the observed value fixes m
to be of order H0. Thus, loop corrections from light particles, i.e. (hypothetical) massive
particles with masses M � H0, fall short from providing the required value of m by a
factor O(H0/mPl) ∼ 10−52. On the other hand, in the present cosmological epoch particles
with a mass M � H0 are heavy compared to the relevant curvature scale fixed by H0 and
only give local contributions to the form factor, furthermore suppressed by O(H2

0/M
2)� 1.

Thus, perturbative loop corrections are totally irrelevant to the IR dynamics of gravity.12

Furthermore, they produce a generic nonlocal structure such as that given in eq. (2.67),
while we have already anticipated that, for phenomenological reasons, we need a very specific
nonlocal structure such as that in (2.45).

2.4.2 Nonlocal terms from extra dimensions

The above discussion shows that we must look for a different mechanism for the generation
of nonlocal terms relevant in a cosmological setting. The Dvali-Gabadadze-Porrati (DGP)
model [52], even if by now ruled out phenomenologically, still provides an instructive example
of how a theory with a four-dimensional brane in a space with infinite extra dimensions can
be rewritten as a four-dimensional covariant theory with nonlocal terms. The DGP action is

SDGP =
M3

5

2

∫
d5X
√
−GR(G) +

M2
4

2

∫
d4x
√
−g R(g) + SM , (2.69)

where XA = {xµ, y} are the five-dimensional bulk coordinates, GAB(X) is the 5d metric, and
M5 is the 5d Planck mass; the 4d coordinates, metric and Planck mass are denoted as xµ,
gµν(x) and M4, respectively. The 4d metric gµν(x) is defined as the pullback of the 5d metric,
gµν(x) = GAB[X(x)]∂µX

A∂νX
B. The matter action, SM , is localized on the 4d brane.

One can expand the action to quadratic order over flat space, writing GAB(x, y) =
ηAB + HAB(x, y). Away from the brane, the corresponding equations of motions are just
the 5d linearized Einstein equations in vacuum. One then finds that it is possible to write
explicitly the solutions of the 5d equations of motion for HAB(x, y) in terms of the 4d metric
perturbation on the brane, hµν(x), which plays the role of a boundary value in the equation
of motion for HAB(x, y) (the computation is described in detail in section IX.A of ref. [53]).
For instance, for the (A = µ,B = ν) components of HAB, the result (for a flat brane located
at y = 0) is of the form

Hµν(x, y) = e−|y|
√
−2 hµν(x) , (2.70)

where
√
−2 is the formal square root of the d’Alembertian operator. Expanding the ac-

tion (2.69) to quadratic order in HAB, substituting the solution for HAB(x, y) in terms of the
boundary value hµν(x), and integrating the explicit y dependence, one obtains an equivalent

12Note that this cannot be cured by including a large number N of particles with M � H0 in the loops, as
has been suggested. Since, for large N , the form factor kR(2) is proportional to N , in that case we rather get
m2 ∼ NM4/m2

Pl and therefore, given that M � H0, we now get m �
√
NH0(H0/mPl). To obtain m ∼ H0

we would then need N ∼ (mPl/H0)2 ∼ 10104. Apart from the fact that existence of such a huge number of
hypothetical particles with m < H0 is very implausible, this would result in enhancing all loop corrections of
gravity by this factor

√
N , and therefore the scale of quantum gravity would become mPl/

√
N ∼ H0 in all

observables.
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nonlocal four-dimensional linearized action,

S
(2)
DGP =

1

64πG

∫
d4x

[
hµνEµν,ρσhρσ −m(hµν

√
−2hµν − h

√
−2h)

]
+

1

2

∫
d4xhµνT

µν ,

(2.71)
where m = 2M3

5 /M
2
4 and, as usual, M2

4 ≡ m2
Pl = 1/(8πG). This has the form of Fierz-Pauli

massive gravity, with the mass term m2 replaced by m
√
−2.13 We can now rewrite this

expression in a form that involves only the linearized Einstein tensor.14 The computation
can be nicely performed following the steps in section 3 of [9]. That computation was done
for Fierz-Pauli massive gravity, but goes through without any changes in our case, with the
replacement m2 → m

√
−2. The strategy, which is analogous to that used in section 2.1

to rewrite the Proca action in nonlocal form, is to introduce a Stückelberg field Aµ by
the replacement hµν → hµν + (1/m)(∂µAν + ∂νAµ), to obtain a theory that is explicitly
invariant under linearized diffeomorphisms hµν → hµν − (∂µξν + ∂νξµ), Aµ → Aµ + mξµ,
and then integrate out Aµ using its own equations of motion, as in [7, 53, 56, 59]. The
result can then be read from eq. (3.19) of [9], by replacing m2 → m

√
−2. Using furthermore

Eµν,ρσhρσ = −2G
(1)
µν (and rescaling hµν → hµν/κ) we get(

1 +
m√
−2

)
G(1)
µν = 8πG

(
Tµν −

1

3
PµνT

)
. (2.72)

At the linearized level, this nonlocal four-dimensional equation of motion is completely equiv-
alent to the local five-dimensional DGP model. Notice that the extra term on the right-hand
side, that survives in the limit m = 0, is a reflection of the vDVZ discontinuity of the
linearized theory.

One could then in principle look for the correct covariantization that would give back the
DGP model at the full nonlinear level.15 Independently of the correct covariantization (that
should also reproduce the absence of the vDVZ discontinuity in the full nonlinear theory),
for our purposes the above analysis is instructive because it shows how a nonlocal term,
relevant in the IR, can in principle emerge from a theory with infinite extra dimensions. It
also shows that, with a mechanism of this kind, one will generate a very specific and peculiar
nonlocal structure, rather than the most general expression quadratic in the curvatures that
is obtained from perturbative corrections, as in eq. (2.67).

Another interesting example of this type is given by the Karch-Randall model [60],
which is a five-dimensional theory of gravity with a negative cosmological constant, giving
rise to an AdS5 spacetime, in which is embedded a 4d brane such that the induced metric
on the brane is AdS4. The peculiar feature of this compactification is that, despite the fact
that four-dimensional general covariance is preserved, still it does not have a massless spin-2
state, but rather a tower of massive spin-2 states. As discussed in [61], from the point of
view of an effective four-dimensional action the corresponding mass term cannot be obtained

13The meaning of the formal expression
√
−2 can be better understood by looking at the momentum

dependence of the corresponding propagator in momentum space, −i/(p2 + m
√
p2). This propagator has a

branch cut that corresponds to a continuum of resonances, the so-called ‘resonance graviton’ [54–56].
14We put in a more precise form a result discussed in [57, 58].
15A tempting guess for the correct covariantization is obtained by observing that the term PµνT can be

eliminated in favor of PµνR
(1), where R(1) is the linearized Ricci tensor, by taking the trace of eq. (2.72), so

that eq. (2.72) can be rewritten as
(
1 +m/

√
−2
)

[G
(1)
µν − 1

6
PµνR

(1)] = 8πGTµν . As we already observed below

eq. (2.42), at linear level the transverse part of a tensor ηµνA(x) is PµνA(x), so PµνA = (ηµνA)T . Then, one

is naturally led to
[(

1 + m√
−2

) (
Gµν − 1

6
gµνR

)]T
= 8πGTµν .
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from terms quadratic in the curvature, and it was suggested that the proper description is
in terms of a nonlocal effective action.

Observe also that, in the example of DGP, the mass scale m is given by m = 2M3
5 /M

2
4 ,

i.e. is a combination of the five-dimensional and four-dimensional Planck masses, that were
already explicitly present in the fundamental action (2.69). We will next explore a different
possibility, namely that such a mass is generated dynamically by non-perturbative IR effects
in gravity.

2.4.3 Dynamical mass generation

In this subsection we will discuss indications, from various non-perturbative techniques, in
favor of the possibility of a dynamical mass generation in the IR limit of four-dimensional
quantum gravity, in particular in relation to the conformal mode.

Lattice gravity. A possible non-perturbative tool is provided by lattice gravity, based
either on a simplicial decomposition of the space-time manifold in Euclidean space (see [62]
for review), or on causal dynamical triangulations (see [63, 64] for reviews).

In Euclidean quantum gravity one starts from a lattice discretization of the path integral
over all Euclidean metrics, weighted with the Euclidean version of the Einstein-Hilbert action
with bare cosmological constant Λ0 and bare Newton constant G0, and a suitable choice
of the lattice measure (and possibly terms quadratic in the curvature). Euclidean lattice
gravity is not at the same level of development as, say, lattice QCD, due to the difficulty
of finding clear evidence for UV fixed points where one could take a nontrivial continuum
limit, so the results should be taken with some qualifications. Still, numerical simulations
indicate the existence of a critical coupling Gc such that, for G0 < Gc, the lattice collapses
into a degenerate collection of long, elongated simplices, and the four-dimensional geometry
collapses into an effective two-dimensional manifold [62]. This phase, that takes place for
G0 < Gc and therefore also in the perturbative regime G0 → 0, is interpreted as a result of
the conformal mode instability in the Euclidean path integral for gravity. As the manifold
collapses it reaches an effective dimension equal to two, where the Einstein-Hilbert action
becomes a topological invariant, so the instability shuts off and the geometry does not collapse
further. In contrast, for G0 > Gc the system is in a smooth phase. This is interpreted as
an effect of the integration measure, that at sufficiently strong coupling suppresses singular
spike-like curvature singularities that, in the phase G0 < Gc, trigger the conformal mode
instability. At the critical point the correlation length diverges, so a continuum limit can
be taken, and, in the vicinity of the critical point the renormalized Newton’s constant runs
as [65–69] (see also [62, 70] for reviews)

G(k2) = GN

[
1 +

(
Λ2

grav/k
2
) 1

2ν +O
(
Λ2

grav/k
2
) 1
ν

]
, (2.73)

where ν is a critical index which, within the numerical accuracy, turns out to be consistent
with ν = 1/3, and Λgrav is a renormalization-group invariant mass scale which is dynamically
generated, analogous to ΛQCD in QCD. The expression (2.73) is only valid in the far UV
regime |k2| � Λ2

grav, and is not directly applicable to the IR regime relevant for cosmology.
The above results point toward the possibility of dynamical mass generation in the IR

regime of quantum gravity, but do not yet give hints on what would be the precise role of this
mass scale. Recent work using causal dynamical triangulation (CDT), however, indicates
precisely the dynamical generation of a mass for the conformal mode [71]. In CDT one
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defines the path integral from a sum over Lorentzian geometries, weighted with the factor
eiSL , where SL is the Einstein-Hilbert action in Lorentzian signature, discretized through
triangulations of space-time in terms of simplices with time-like and space-like edges. The
four-dimensional lengths of the space-like and time-like edges are defined as `2s = a2 and
`2t = −αa2, respectively, where a is the lattice spacing and α > 0. The analytic continuation
to α < 0 transforms the factor eiSL in the Lorentzian path integral into e−SE , where SE is
the Euclidean Einstein-Hilbert action, allowing the use of tools from statistical physics and
Monte Carlo techniques for the numerical evaluation of the path integral. Note however that
the sum now is not over all (discretized) Euclidean geometries, but only over those that have
a causal, Lorentzian, origin, i.e. those that, in the above sense of analytic continuation in
α, can be obtained from a Wick rotation of discretized Lorentzian geometries. Thus, the
approach to quantum gravity of causal dynamical triangulation is a priori different from
that of Euclidean quantum gravity, meant as a sum over all Euclidean geometries.16 Using
numerical simulation of CDT it is possible to measure non-perturbatively the two-point
correlation function of the fluctuations of the spatial three-volumes. The latter is related to
the two-point function of the conformal mode, and ref. [71] showed that the numerical results
provide evidence for a massive conformal mode, i.e. for a linearized nonlocal quantum effective
action of the form (2.33) [or, equivalently (2.37)], whose covariantizations can be provided by
the RR or RT models. A caveat of the result is that the simulation was performed at a single
value of the coupling (κ0,∆) of the theory (which are related to the bare Newton constant
and the parameter α), but the approach to the continuum was not studied. Still, this is a
first indication that a mass for the conformal mode could indeed be generated dynamically
in quantum gravity.

Functional renormalization group equations. In quantum field theory, exact renor-
malization group (RG) equations, such as the Polchinski equation [72] and the Wetterich
equation [73], provide, in principle, an equivalent way of computing exactly a path integral,
by transforming the functional integration into a functional differential equation. As such,
both the path integral formulation and the functional renormalization group equations can be
taken as equivalent non-perturbative definitions of a quantum field theory. In practice, just
as the evaluation of the functional integral for an interacting theory requires approximations
methods (perturbation theory, semiclassical methods such as instantons, etc.) or numerical
evaluation through a lattice formulation, the functional RG equation, to be reduced to a
manageable form, requires a truncation of the space of action functionals, projecting the in-
trinsically infinite-dimensional RG flow onto a manifold of finite (and manageable) dimension.
In the end, the reliability of the non-perturbative results obtained depends on whether the
truncation catches the most important features, and is the main uncertainty of the method.
Still, functional RG method can provide important insight into the non-perturbative behav-
ior of a theory. For gravity, functional renormalization group techniques have been developed
particularly in connection with the asymptotic safety program, i.e. the search for a non-trivial
UV fixed point (see [74] for review). More recently, these tools are being applied to the study

16The unboundedness of the Euclidean Einstein-Hilbert action, due to the fact that the conformal mode has
a kinetic term with the ‘wrong’ sign, is now regularized by the lattice spacing a. In the limit a→ 0 it would
again reappear; however, similarly to what we have seen in the case of Euclidean gravity, near a nontrivial fixed
point it can happen that configurations with unbounded action are suppressed by the integration measure
and play no role in the continuum limit, and this is indeed what happens near the fixed points obtained from
causal dynamical triangulations [63]. This competition between configuration with unbounded action and
entropy is precisely what gives rise to the Kosterlitz-Thouless transition in the two-dimensional XY-model.
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of the IR behavior of gravity. It should be pointed out that the study of the IR behavior
of Einstein-Hilbert gravity at the quantum level is completely independent from the issue of
its UV completion. Independently of whether the latter is given by a non-trivial UV fixed
point, string theory, or other options, we know that gravity, at, say, the laboratory or solar
system scales, is very well described by the Einstein-Hilbert action, and we ask how this
theory evolves with the RG flow as we run toward even lower energy scales. A number of
recent functional RG studies, with different approximations, have found indication of strong
quantum gravity effect in the IR [75–78]. The possibility of dynamical mass generation, in
the functional RG language, is signaled by the fact that, running toward the IR, the RG flow
encounters a singularity at some momentum scale k. An instance of this phenomenon was
already found for some RG trajectories in [79], where, in a truncation of the theory including
only the Einstein-Hilbert term

∫
d4x
√
−g R and the cosmological constant term

∫
d4x
√
−g,

it was found that, evolving the RG flow toward the IR, for some trajectories the running
of Newton’s constant hits a singularity and terminates at a finite scale kterm. Of course,
in general the singularity can be an artifact of the truncation. The same happens using
functional RG equations in QCD; in that case, a simple truncation of the space of possible
terms in the action is not sufficient, and a reliable description of the IR limit involves also
nonlocal terms in the truncation ansatz [79], such as the one in eq. (2.15). Thus, by itself
a RG flow that, within some truncation, becomes singular in the IR, can be a hint that a
mass scale is generated and that at this scale nonlocal terms, that have not been included
in the truncation, become important. For our purposes, an interesting observation is that
a dynamical scale also appears using functional renormalization group equations because of
the dynamics of the conformal mode. Indeed, in the functional RG approach, the would-be
‘wrong’ sign of the kinetic term of the conformal mode leads to functional differential equa-
tions that are perfectly well defined, contrary to the Euclidean path integral formulation, but
‘backward-parabolic’, i.e. the resulting flow toward the IR is not well defined, and reaches a
singularity at a finite energy scale [77, 80]. It is quite natural to expect that, at this scale,
nonlocal terms associated to the conformal mode, such as those defining the RR or RT mod-
els, become important to resolve the singularity and allow for a smooth flows that extends
in the IR down to k → 0.

A related interesting result is the one discussed in ref. [75], where it is found that,
truncating the theory so to include only fluctuations of the transverse-traceless modes, there
are strong non-perturbative infrared renormalization effects, that screen the cosmological
constant. Together, these results can suggest a scenario where the cosmological constant
is screened by strong IR effects due to the TT modes fluctuations; at the same time, the
conformal mode fluctuations are responsible for generating a new IR mass scale and the
nonlocal term that defines the RT model (2.45), that, as we have seen, at the linearized level
is simply a mass term for the conformal mode. This nonlocal term, in turn, generates a
viable dynamical dark energy model, as we will see in section 3.

It is also important to stress that, contrary to the perturbative corrections as in
eq. (2.68), that unavoidably induce the most general structures consistent with the sym-
metries of the theory, it is perfectly conceivable, and indeed quite natural, that a non-
perturbative phenomenon such as a dynamical mass generation could produce a mass for the
conformal mode while still leaving massless the hTT

µν mode, as in eq. (2.33). Indeed, even in
the usual Higgs mechanism of the Standard Model, the photon remains massless while the
W± and Z0 get a mass. In our context, this is particularly natural because the conformal
mode appears to be the most ‘problematic’ one, both because it is the mode of the grav-
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itational field with the strongest IR divergences in de Sitter space [2] and because of the
conformal mode instability in Euclidean quantum gravity.17

Finally, we comment on the naturalness and the numerical value of the mass scale that
would be generated dynamically. For simplicity, we illustrate the argument using the RR
model, so that we can explain the argument in the more immediate language of the quantum
effective action. Equation (2.46) can be rewritten as

ΓRR =
m2

Pl

2

∫
d4x
√
−g

[
R− 1

6
m2R

1

22
R

]
=

∫
d4x
√
−g

[
m2

Pl

2
R−RΛ4

RR

22
R

]
, (2.74)

where ΛRR = (1/12)m2m2
Pl. In this form, it is clear that ΛRR should be taken as the

fundamental scale generated dynamically, corresponding to a dimensionless form factor
kR(2) = Λ4

RR/2
2 in RkR(2)R, while the parameter m is just a derived quantity intro-

duced for convenience. The value of a scale generated generated dynamically in this way
cannot be predicted, just as we cannot predict the value of ΛQCD, and can only be obtained
by comparison with the observation. In our case, as we will see below, we need m = O(H0)
in order to have a dark energy that becomes important near the present epoch.18 Therefore,

ΛRR = O(H0mPl)
1/2 = O(meV) . (2.75)

The same holds for the RT model, as we see by rewriting eq. (2.45) as

m2
PlGµν − Λ4

RT

(
gµν2

−1R
)T

= Tµν , (2.76)

where we have now defined Λ4
RT = (1/3)m2

Plm
2. Thus, in the RR or RT model dark energy can

be explained by the dynamical generation of an energy scale whose value, of the order of the
milli-eV (or some orders of magnitude smaller, see footnote 18), even if cannot be predicted,
is not particularly surprising from the point of view of quantum field theory. This is different
from attempts at explaining dark energy through the introduction of some particle of mass
m, in which case m is the fundamental scale and should be fixed to the extremely small value
m ∼ H0 ∼ 10−33 eV. Notice also that there is no problem of technical naturalness associated
to a scale such as ΛRT since, just as ΛQCD, a mass scale which is generated dynamically in
this way is a renormalization group invariant.

3 Phenomenology of the RT model

We now have all the elements for working out the predictions of nonlocal gravity. We focus
on the RT model, that eventually turns out to be the most interesting phenomenologically.
In order to make the paper self-contained, we begin by reviewing material on the background

17Indications for dynamical generation of a mass scale may also come from the running of the coupling
constant associated to terms quadratic in the curvature [81], and in particular the Gauss-Bonnet term, whose
coupling is asymptotically free and generates an IR scale through dimensional transmutation, exponentially
suppressed, with respect to the Planck mass, by instanton effects [82, 83].

18More precisely, we will see in section 3.1.2 that the model has a significantly different evolution if initial
conditions of order one are set during radiation dominance or during an earlier inflationary phase. In the
former case m ∼ H0 with a numerical coefficient of order one, while in the latter case m can be numerically
much smaller than H0. Equation (2.75) therefore only holds in the former case.
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evolution already discussed and reviewed in [20, 22, 23, 84]. We will then move to a detailed
discussion of the perturbations and an updated comparison with the cosmological data.
We will finally discuss GW propagation in the RT model and show that this leads to very
interesting effects that could be detected in the near future with GW detectors.

3.1 Background evolution

3.1.1 Equations in FRW

We consider a spatially flat Friedman-Robertson-Walker (FRW) background, ds2 = −dt2 +
a2(t)dx2. For symmetry reasons the spatial component Si of the auxiliary field Sµ must
vanish, since there is no preferred spatial direction,19 and the only variables are U(t) and
S0(t), together with the FRW scale factor a(t). Eqs. (2.53)–(2.55) then become [20]

H2 − m2

9
(U − Ṡ0) =

8πG

3
ρ (3.1)

Ü + 3HU̇ = 6Ḣ + 12H2 , (3.2)

S̈0 + 3HṠ0 − 3H2S0 = U̇ , (3.3)

where we have written Tµν = diag(−ρ, p, p, p), and the dot denotes the derivative with respect
to cosmic time t. It is convenient to define Y = U − Ṡ0, h = H/H0, and Ωi(t) = ρi(t)/ρc(t),
where i = M,R,DE labels radiation, matter and dark energy, respectively, and ρc(t) =
3H2(t)/(8πG). We will also use the standard notation ΩM ≡ ΩM (t0), ΩR ≡ ΩR(t0) and
ΩDE ≡ ΩDE(t0) (where t0 is the present value of cosmic time) for the present values of Ωi(t).
We henceforth use the dimensionless variables

x ≡ ln a(t) (3.4)

instead of cosmic time t, and we denote df/dx = f ′. Then the Friedmann equation (3.1)
reads

h2(x) = ΩMe
−3x + ΩRe

−4x + γY (x) , (3.5)

where

γ ≡ m2/(9H2
0 ) . (3.6)

19A recent paper [85] has studied the evolution of the RT model in FRW by setting Sµ(t) =
(S0(t), v(t), v(t), v(t)) and claimed that this is the most general ansatz consistent with the rotational invariance
of FRW. This is clearly wrong, since this ansatz selects a privileged spatial direction S(t) = v(t)(x̂ + ŷ + ẑ),
and therefore breaks the rotational invariance of FRW. The authors of [85] appear to have made confusion
with the fact that, for a perfect fluid in FRW, Tµν has the form diag(−ρ, p, p, p). Obviously, the trace T ii of
a tensor is invariant under spatial rotations, while a spatial vector Si is not! With a rotation we can bring
the unit vector (x̂ + ŷ + ẑ)/

√
3 onto the ẑ axis, and in this frame the choice of [85] becomes S(t) =

√
3v(t)ẑ.

This ansatz therefore is not consistent with the isotropy of FRW at the background level. Perturbations over
FRW do not have to respect the isotropy, so Si will be non-vanishing at the perturbative level. As we will
discuss in section 3.2.1, the vector Si contributes to scalar perturbations through fluctuations of the form
Si = ∂i(δS). Since the i-th component of the vector S = (v(t), v(t), v(t)) can be written as Si = ∂i[v(t)r],
where r = |x|, what ref. [85] is actually doing is to add to the background solution of the model an unphysical
scalar perturbation δS(t, r) = v(t)r that grows in space without bounds, radially from an arbitrarily chosen
origin. Treating Si correctly as a perturbation, the full equation for its evolution is not the one given in
eq. (2.4) of ref. [85]. Rather, it involves all other first-order quantities [see eqs. (A.6)-(A.10) of [86] for the full
set of equations] and, as we will review in section 3.2.1, the corresponding perturbations are stable.
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This shows that there is an effective DE density

ρDE(t) = ρ0γY (x) , (3.7)

where ρ0 = 3H2
0/(8πG). Using U(x) and Y (x), eqs. (3.2) and (3.3) take the form

Y ′′ + (3− ζ)Y ′ − 3(1 + ζ)Y = 3U ′ − 3(1 + ζ)U , (3.8)

U ′′ + (3 + ζ)U ′ = 6(2 + ζ) , (3.9)

where, using eq. (3.5),

ζ(x) ≡ h′

h
= − 3ΩMe

−3x + 4ΩRe
−4x − γY ′

2(ΩMe−3x + ΩRe−4x + γY )
. (3.10)

3.1.2 Initial conditions; the parameter ∆N

As a next step, we discuss the initial conditions on the auxiliary fields (we follow refs. [22, 87]).
To get a first analytic understanding we observe that, in any given cosmological epoch, such
as radiation dominance (RD), matter dominance (MD), or an earlier inflationary de Sitter
(dS) phase, ζ(x) has an approximately constant value ζ0, with ζ0 = 0 in dS, ζ0 = −2 in
RD and ζ0 = −3/2 in MD. In the approximation of constant ζ eq. (3.9) can be integrated
analytically, and has the solution [20]

U(x) =
6(2 + ζ0)

3 + ζ0
x+ u0 + u1e

−(3+ζ0)x . (3.11)

The first term on the right-hand side is a particular solution of the inhomogeneous equation,
while u0 and u1 parametrize the most general solution of the homogeneous equation 2U =
U ′′ + (3 + ζ0)U = 0. The initial conditions on U , i.e. U(xin) and U ′(xin), are in one-to-one
correspondence with the choice of the solutions of homogeneous equation, i.e. with u0 and u1.
The constant u0 corresponds to the reintroduction of a cosmological constant, as we have seen
in eq. (2.56). Our aim is to see if we can obtain a self-accelerated evolution from the nonlocal
term, without introducing by hand a cosmological constant, and we will therefore set u0 = 0.
A non-vanishing u0 could always be reintroduced later, and, not surprisingly, produces an
evolution that is intermediate between that of the RT model with u0 = 0 and that ΛCDM,
see section 7.4 of [22]. The other solution of the homogeneous equation, proportional to
e−(3+ζ0)x, is instead a decaying mode, in all cosmological phases. Thus, the solution with
initial conditions U(xin) = U ′(xin) = 0 has a marginally stable direction, corresponding to
the possibility of reintroducing a cosmological constant, and a stable direction, i.e. is an
attractor in the u1 direction. Consider next eq. (3.8). Using eq. (3.11) and solving for Y (x)
we get [20]

Y (x) = − 2(2 + ζ0)ζ0

(3 + ζ0)(1 + ζ0)
+

6(2 + ζ0)

3 + ζ0
x+ u0 −

6(2 + ζ0)u1

2ζ2
0 + 3ζ0 − 3

e−(3+ζ0)x

+a1e
α+x + a2e

α−x , (3.12)

where α± = (1/2)[−3 + ζ0 ±
√

21 + 6ζ0 + ζ2
0 ]. In both RD and MD we have α+ < 0 and

α− < 0, so both modes are decaying. This means that, if we start the evolution deep
in the RD phase, with u0 = 0 in order not to have a cosmological constant, and u1 ∼
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a1 ∼ a2 ∼ O(1), the solution will quickly approach the one obtained with initial conditions
U(xin) = U ′(xin) = Y (xin) = Y ′(xin) = 0. We will refer to this solution as the ‘minimal’
RT model.

The situation becomes more interesting if we start the evolution during a primordial
phase of de Sitter-like inflation, before RD. In dS there is a growing mode with α+ =
(−3 +

√
21)/2 ' 0.79. Then Y will grow during dS (exponentially in x, so as a power of

the scale factor), and will then decrease again during RD and MD. In general, a growing
mode during MD or the late RD phase would be fatal to the viability of the model, because
any perturbation of the initial conditions would result in an activation of the unstable mode,
and would bring the solution very far from a FRW solution driven by Tµν , as in standard
cosmology (this is indeed a criterium that ruled out several other nonlocal models, as we will
recall in appendix A). For the evolution during an early dS phase the situation is, however,
different [22, 87]. Indeed, let us denote by xin the value of x = ln a at a time, during inflation,
when we set initial conditions u1 ∼ a1 ∼ a2 ∼ O(1), and by xend the value when inflation
ends and RD begins (we neglect for simplicity an intermediate reheating phase). We use
the notation

xend − xin = log (aend/ain) ≡ ∆N , (3.13)

so ∆N is the number of e-folds from the time where we set initial condition of order one, to
the end of a de Sitter phase of inflation. Thus, if Y (xin) has a generic value of order one (i.e.,
is not fine-tuned to zero), by the end of inflation

Y (xend) ' exp{αdS
+ ∆N} ' exp{0.79∆N} . (3.14)

The evolution of U can be computed similarly, using eq. (3.11). During a quasi-de Sitter
phase of inflation, starting from a value of order one, we get

U(xend) ' 4∆N . (3.15)

The important point is that, despite the exponential growth in eq. (3.14), even for very
large values of ∆N the corresponding DE density ρDE(x) = ρ0γY (x) has no effect on the
inflationary dynamics. This is due to the fact that ρ0 = 3H2

0/(8πG) ∼ (10−3eV)4 is extremely
small compared to the energy density during inflation. For instance, if Y (xin) = O(1) and
we take ∆N = 60, at the end of inflation we get Y (xend) = O(1020). Even with such a large
value of Y , we have

[ρ0Y (xend)]1/4 ∼ 10−3eV × Y 1/4(xend) ∼ 102 eV . (3.16)

This is totally negligible compared to the inflationary scale M , that has typical values, say,
of order 1013 GeV. Thus, during the inflationary phase the evolution of the scale factor is
the same as in standard GR without the nonlocal term. So, the important conclusion is
that, at the level of background evolution, there is no evident pathology associated with the
exponential growth of Y (x). Rather, one will have to study in detail the evolution through
dS, RD and MD to see if it gives a viable and interesting background cosmology. As we will
recall below, following [22, 87], indeed the corresponding background evolution is viable, and
also quite interesting. As discussed in [87], even at the level of cosmological perturbations this
growth during de Sitter is innocuous, again because of the smallness of the scale associated
to the nonlocal term with respect to the inflationary scale.

Equations (3.14) and (3.15) give the values of Y (x) and U(x) when they enter the
subsequent RD phase (apart from some minor modification due to reheating). As we will
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see explicitly in section 3.1.3, even if in the RD and MD phases the solution obtained with
vanishing initial conditions is an attractor, the fact that Y (x) enters the RD phase with
an exponentially large value gives an evolution that is sensibly different from that of the
minimal model, simply because there is not enough time to relax to zero this exponentially
large value by the end of the MD phase and the beginning of the current DE-dominated phase,
when (having chosen m of order H0) the energy scale associated to Y eventually becomes
comparable to the total energy density. Thus, there is a residual dependence of the dark
energy evolution near the present cosmological epoch, from the value ∆N that determines,
through eqs. (3.14) and (3.15), the values of the auxiliary field when the enter the RD phase.

The conclusion is that, at the level of the background cosmological evolution, our igno-
rance on the initial conditions of the auxiliary fields can be reabsorbed into a single parameter
∆N , that gives the number of e-folds from the moment when these fields have initial condi-
tions O(1) during inflation, until the end of inflation (plus the parameter u0, that corresponds
to reintroducing a cosmological constant, and that we will set to zero).

As discussed in [23], no further freedom emerges at the level of cosmological pertur-
bations. Indeed, at the perturbation level we must consider all Fourier modes of the per-
turbations, so in principle we should assign the initial conditions on δUk(x), δYk(x) and on
their first time derivatives, at an initial time xin. The fact that the auxiliary fields do not
represent arbitrary degrees of freedom but are fixed in terms of the metric means that the
initial conditions for the perturbations of the auxiliary fields will be of order of the metric
perturbations. One can therefore ask what happens if we start with initial conditions of this
order of magnitude. The explicit numerical study in [23] shows that the effect of such a
change in the initial conditions of the perturbations is completely negligible.

In the rest of this paper we will study the predictions of the RT model for a few
values of ∆N . For this purpose, it is useful to recall that, for inflation taking place at a scale
Minfl = (ρinfl)1/4, assuming instantaneous reheating, the minimum number of e-folds required
to solve the flatness and horizon problems is (see e.g. section 21.1 of [17])

(∆N)min ' 64− log
1016 GeV

Minfl
. (3.17)

In the following, beside the ‘minimal’ model defined by initial conditions of order one during
RD, which is equivalent to setting ∆N = 0 (or, equivalently, ∆N of order one), we will
study also the cases ∆N = 34, 50, 64 that, according to eq. (3.17), approximately correspond
to the minimum value of ∆N for Minfl = {103, 1010, 1016}GeV, respectively. These values
are chosen because Minfl = 103 GeV corresponds to inflation at the electroweak scale, which
is on the lower range of possible inflationary scales, while Minfl = 1016 GeV is the highest
value consistent with the non-detection of tensor perturbations in the CMB anisotropies,
and Minfl = 1010 GeV is an intermediate value which is quite often considered as a typical
inflationary scale.

Of course, the number of e-folds during inflation at a given scale does not need to be the
minimum required to solve the flatness and horizon problems and, for a given value of Minfl,
we could chose a higher value of ∆N . We have therefore studied also how the results change
increasing ∆N for a fixed value of Minfl. As already pointed out in [87], increasing ∆N
the results eventually saturate to a limiting curve (as a function of redshift). In particular,
setting Minfl = 1016 GeV, we find that this limiting curve is reached, within sub-percent level
accuracy, already for ∆N ' 70. In the following, beside the cases (Minfl = 103 GeV,∆N =
34), (Minfl = 1010 GeV,∆N = 50) and (Minfl = 1016 GeV,∆N = 64), we will also show the

– 26 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

results for (Minfl = 1016 GeV,∆N = 100), that represents the limiting curve for the various
background quantities as a function of redshift. For brevity, we will refer to these cases as
the RT model with ∆N = 34, 50, 64 and 100, respectively. We have checked that the same
limiting curve is obtained starting from a different value of Minfl and raising again sufficiently
∆N . This behavior is due to a scaling property of the equations when Y starts from a very
large value at the beginning of RD [87].

A quite interesting aspect of the cosmological evolution of the RT model with initial
conditions set during inflation, that will emerge clearly from the discussion below, is that
the behavior of dark energy at the present epoch depends on the existence and duration (as
quantified by ∆N) of a phase of primordial inflation, providing an unexpected connection
between early- and late-time cosmology.

3.1.3 Results: ρDE(z), wDE(z), H(z)

Given the initial conditions and a choice of values for the cosmological parameters ΩM and h0

(defined as usual from H0 = 100h0 km s−1Mpc−1), the numerical integration of the equations
for the background evolution, eqs. (3.5)–(3.9), is straightforward.20 In the following figures we
show the results for the minimal RT model and for the RT model with ∆N = 34, 50, 64, 100.

The upper left panel of figure 1 shows the evolution of the dark energy density ρDE(x),
normalized to the total energy density ρtot(x) = ρM (x) + ρR(x) + ρDE(x), as a function
of x [recall that here x = ln a, and we normalize the scale factor so that a(t0) = 1]. For
orientation, matter-radiation equilibrium is at x ' −8.1, at the present epoch x = 0, and
x > 0 corresponds to the cosmological future. We see from the plot that the DE density
due to the nonlocal term is negligible until the relatively recent cosmological epoch, when
eventually dominates.

20In practice, in the numerical implementation of our integration routine, we consider that the transition
between inflation and RD takes place when, extrapolating backward in time the present energy density in
radiation ρR,0, the energy density in radiation ρR,0/a

4 becomes equal to M4
infl, i.e. when the scale factor has

the value a? given by a? = ρ
1/4
R,0/Minfl (notice that the quantity Minfl defined in this way corresponds to the

actual inflationary scale only in the approximation of instantaneous reheating). Using ρ
1/4
R,0 ' 2.41× 10−4 eV,

the corresponding value of x = log a is x? ' −65.9 + log(1016 GeV/Minfl). Assuming that initial conditions
of order one have been set ∆N e-folds earlier, at the inflation-RD transition we take Y = exp{0.79∆N} and
U = 4∆N . The numerical integration through the full RD phase would be numerically difficult, and not
necessary, since we know that, until we are deep in RD, the solution for Y evolves according to the slowest-
decaying mode, which decays as exp{−0.70x} and the solution for U stays constant. Thus, at a value x0 still
deep into RD (we take x0 = −15; RD-MD equilibrium is at x ' −8.1) we have U(x0) = 4∆N , U ′(x0) = 0,
Y (x0) = exp{0.79∆N − 0.70(x0 − x?)} and Y ′(x0) = −0.70Y (x0). At this point we start the numerical
evolution with these initial conditions. To produce figure 1, for the minimal model and for ∆N = 34, 50, 64
we have used the respective mean values for ΩM and h0 from table 2, obtained from our MCMC chains.
For the limiting curves ∆N = 100 we have not rerun our MCMC and we have used the same values as for
∆N = 64, which is an excellent approximation since we see from table 2 that, for large ∆N , the variation in
the parameters are very small (and would give effects totally unappreciable on the scale of the figures). A final
detail is that, in ΛCDM, assuming flatness and fixing ΩM and ΩR, directly fixes ΩΛ from ΩM+ΩR+ΩΛ = 1, and
one can immediately integrate the evolution equations. In contrast, in the nonlocal model, once fixed ΩM and
ΩR (and assuming flatness), the remaining parameter in the equations is γ, which is fixed by trials and errors
until the value of the dark energy energy fraction today, ΩDE, obtained from the solution of the equations,
satisfies the condition ΩM + ΩR + ΩDE = 1, i.e. ΩDE ' 0.7. The corresponding values of γ turn out to be γ '
5.13555×10−2 for the minimal model, and γ ' {2.69512×10−3, 1.0321×10−3, 3.73915×10−4, 1.94944×10−11}
for ∆N = 34, 50, 64, 100, respectively. For the mass m this means m/H0 ' 0.68 for the minimal model, and
m/H0 ' {0.16, 0.10, 0.06, 4.2 × 10−8} for ∆N = 34, 50, 64, 100. We perform the numerical integration of the
differential equations both with Mathematica and with CLASS, and we check the consistency of the results.

– 27 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

-3 -2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

x

ρ
D
E
(x
)/
ρ
to
t(
x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

z

ρ
D
E
(z
)/
ρ
0

0 1 2 3 4 5

-1.05

-1.00

-0.95

-0.90

z

w
D
E
(z
)

Figure 1. Upper left panel: ρDE(x) normalized to the total energy density ρtot(x) as a function
of x. Upper right panel: ρDE(z) normalized to the critical energy density today, ρ0, as a function
of redshift z. Lower panel: the DE equation of state wDE(z) as a function of redshift. The curves
correspond to the minimal RT model (blue solid line) and the RT model with ∆N = 34 (magenta,
dashed), ∆N = 50 (green, dot-dashed), ∆N = 64 (cyan, dotted) and ∆N = 100 (black solid line).

When ρDE(x) is normalized to ρtot(x), which includes the contribution of ρDE(x) itself,
the result for the minimal model and for the RT models with large ∆N look all very similar,
and the various curves are basically indistinguishable. However, the individual behaviors of
ρDE(x) are quite different. This is shown in the upper right panel of figure 1, where ρDE

is shown as a function of the redshift z [related to x by x = − log(1 + z)], and normalized
to the constant critical energy density today ρ0. We see that, as we approach the present
epoch from large z, in the minimal model ρDE increases, until it reaches the present value
ρDE/ρ0 ' 0.7, which is fixed by our choice of ΩM ' 0.3. In contrast, for large ∆N , ρDE

starts from a very large value deep in RD (a consequence of the large value of the auxiliary
field Y at the end of inflation), and then decreases for most of its evolution, until the present
epoch. This behavior can be understood observing that, for ∆N = 0, the evolution of Y
is determined by the particular solution of the inhomogeneous equation (3.8), which stays
close to zero during RD and then starts to increases with time during MD, until we enter in
a regime dominated by DE; in contrast, for large ∆N the solution starts from a very large
initial value at the beginning of RD and then decays according to the decaying modes of
the associated homogeneous equation, until, close to the recent epoch, the decaying modes
have become smaller than the solution of the inhomogeneous equation, that takes over, so
the solution for Y starts to rise again.

As mentioned before, for sufficiently large ∆N , the results saturate toward a limiting
curve, independent of the chosen value of Minfl. As explained in [87], this is due to the fact
that, for sufficiently large ∆N , an increase in the initial values of Y at the beginning of
RD is exactly compensated by a decrease in γ, and we end up on the same solution. This
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Figure 2. Relative difference of Hubble rate with respect to ΛCDM for the minimal RT model (blue
solid line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed), ∆N = 64
(cyan, dotted) and ∆N = 100 (black solid line).

RT, minimal ∆N = 34 ∆N = 50 ∆N = 64 ∆N = 100

w0 −1.041 −1.034 −1.053 −1.066 −1.077

wa −0.023 +0.127 +0.218 +0.283 +0.335

Table 1. Values of w0 and wa for the RT model, minimal and with various values of ∆N .

limiting curve is shown as the black solid line in figure 1, obtained for definiteness setting
(Minfl = 1016 GeV,∆N = 100). For instance, in this and in all similar plots below, on the
scale of the figure all the curves with Minfl = 1016 GeV and ∆N >∼ 70 are indistinguishable,
and fall on this asymptotic curve.

The lower panel in figure 1 shows the DE equation of state, defined as usual from the
conservation equation

ρ̇DE + 3H(1 + wDE)ρDE = 0 . (3.18)

The different evolutions of ρDE for the minimal model and for large ∆N result in different,
and quite distinctive behaviors of wDE as a function of redshift. For the minimal model
wDE(z) is always on the ‘phantom’ side, wDE(z) < −1, while, for large ∆N , the evolution
exhibits ‘phantom crossing’ at z ' 0.30−0.35. In all cases, we see that the DE density starts
to dominate near the present cosmological epoch, and its equation of state corresponds to
accelerated expansion. Thus, the nonlocal term generates a dynamical DE density that drives
an accelerated expansion of the Universe at the current cosmological epoch. This is already a
very non-trivial result: it means that giving a mass to the conformal mode, and covariantizing
it as discussed in section 2.2.3, provides an explanation for the observed accelerated expansion
of the Universe.

Figure 2 shows the relative difference [HRT(z) − HΛCDM(z)]/HΛCDM(z) between each
RT model (minimal and with ∆N = 34, 50, 64, 100) and ΛCDM. Once again, the predictions
of each model are computed using the respective mean values of the cosmological parameters
in table 2. At z = 0 the difference between the various curves is due to the different mean
values for H0, and at large z (but still within MD) it is determined by the different mean
values for ΩM . We see that, at z = 0, the minimal RT model differs from ΛCDM by about
1%, while the RT models with large ∆N give a prediction for H0 basically indistinguishable
from that of ΛCDM. Away from z = 0, |∆H(z)|/H(z) is of order 0.5% or less. The evolution
with redshift is, however, quite distinctive, with ∆H(z)/H(z) oscillating and changing sign
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Figure 3. The DE equation of state wDE(z) from the numerical integration of the equations (blue
solid lines), compared with the parametrization (3.19) (magenta dashed lines) for RT minimal (upper
left panel) and RT with ∆N = 34 (upper right), ∆N = 50 (lower left) and ∆N = 64 (lower right).

as z increases. These differences with respect to ΛCDM can be compared to a compilation
of measurements of H(z) at different redshifts. We will perform this test in section 3.3, after
having performed the Bayesian parameter estimation for the models.

It is interesting to compare the actual predictions of the model to the results obtained
with the standard (w0, wa) parametrization wDE(a) = w0 + (1 − a)wa [88, 89], or, in terms
of redshift,

wDE(z) = w0 +
z

1 + z
wa . (3.19)

Setting w0 ≡ w(a = 1) and wa ≡ −(dw/da)|a=1 we get the values of w0 and wa given in
table 1. In figure 3 we compare the actual numerical result for w(z) to the fit provided by this
parametrization. We see that, for large ∆N , the parametrization (3.19) is not very accurate
beyond some value of z, with the range in z shrinking as ∆N increases.

3.2 Scalar perturbations

3.2.1 Formalism

Cosmological scalar perturbations for the RR and RT model (in the minimal case) have been
studied in detail in [86, 90] (see also [22] for review). Here, after recalling the basic formalism,
we will extend the results to the RT model with large ∆N and we will present updated results
on various indicators of cosmological perturbations, using the values of the cosmological
parameters that will be determined in section 3.3 by the comparison with observations. We
work in the Newtonian gauge, where, in the scalar perturbation sector, the perturbed FRW
metric has the form

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdx
idxj , (3.20)
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Figure 4. k3/2Ψ(a; k) in ΛCDM (gray dashed line), the minimal RT model (blue solid line) and
RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted)
for κ = 0.1 (upper left panel), κ = 1 (upper right) and κ = 5 (lower panel). On the scale of these
figures, the results for κ = 5 are indistinguishable among the models, while for κ = 1 one can barely
distinguish some small differences in the cosmological future, x > 0. Observe that the quantity that
we plot is k3/2Ψ(a; k) multiplied by a factor 105. Matter-radiation equilibrium is at x ' −8.1, and in
this region one sees the usual transition between two different plateaux in Ψ.

where Φ and Ψ are the Bardeen variables. We similarly perturb the auxiliary fields, writing

U(t,x) = Ū(t) + δU(t,x) , Sµ(t,x) = S̄µ(t) + δSµ(t,x) , (3.21)

where, in this section, background quantities are denoted with an overbar. In FRW, S̄i
vanishes because at the background level there is no preferred spatial direction, but its
perturbation δSi is non-vanishing. As with any vector, we can decompose it into a transverse
and longitudinal part, δSi = δST

i + ∂i(δS), where ∂i(δS
T
i ) = 0. Since we are considering

scalar perturbations, we only retain δS. Thus, in the RT model the metric perturbations in
the scalar sector are described by Ψ,Φ, δU, δS0 and δS. It is convenient to trade S0 and S for

V = H0S0 , Z = H2
0S , (3.22)

so we eventually work with the variables {Ψ,Φ, δU, δV, δZ}.21 We similarly perform the usual
expansion of the energy-momentum tensor, writing

T 0
0 = −(ρ̄+ δρ) , T 0

i = (ρ̄+ p̄)vi , T ij = (p̄+ δp)δij + Σi
j , (3.23)

21Note that here we are using coordinates (t,x), where t is cosmic time, and S0 ≡ St is the µ = 0 component
of Sµ with respect to these coordinates. If one rather uses conformal time η, defined as usual by dt = a(η)dη,
then the corresponding µ = 0 component Sη is related to St by Sη = aSt and then V = H0a

−1Sη. In
appendix A of [86], where the perturbation equations for the RT model where first computed, the equations
are written in conformal time and the notation S0 is used for Sη.
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where ρ̄ and p̄ are the unperturbed density and pressure. The matter perturbation variables
are therefore δρ, δp, vi, and the anisotropic stress tensor Σi

j , which is symmetric and traceless,

Σi
i = 0. The pressure perturbations can be written as δp = c2

sδρ, where c2
s is the speed of

sound of the fluid, and we define as usual δ ≡ δρ/ρ̄ and θ ≡ δij∂ivj , with δR, θR referring to
radiation and δM , θM to matter. We only consider the contribution to Tµν from radiation
and non-relativistic matter, so Σi

j = 0. We transform the perturbation equations to Fourier
space and we denote comoving momenta by k. We further define

k̂ = k/(aH) , θ̂ = θ/(aH) . (3.24)

We also use

κ ≡ k/keq , (3.25)

where keq = aeqHeq is the wavenumber of the mode that enters the horizon at matter-
radiation equilibrium. Numerically, keq ' 0.014h0 Mpc−1 ' 0.010 Mpc−1. To illustrate our
numerical results, we use as reference values κ = 0.1, 1 and 5 (or just κ = 0.1 and 1, when
the results for κ = 5 turn out to be graphically indistinguishable from κ = 1). The mode
with κ = 5 entered inside the horizon already during RD, while the mode κ = 1 reentered
at matter-radiation equality. In contrast, the mode with κ = 0.1 was outside the horizon
during RD and most of MD, and re-entered at z ' 1.5.

The full set of equations for the perturbations are given by eqs. (A.6)-(A.10) of [86].
In figure 4 we show the time evolution of the Fourier modes of the Bardeen variable Ψk for
the RT model (minimal and with ∆N = 34, 50, 64), obtained from the numerical integration
of these perturbation equations, and we compare with the result in ΛCDM, for κ = 0.1,
κ = 1 and κ = 5. We actually plot k3/2Ψk, whose square gives the variance of the field
per unit logarithmic interval of momentum. We see that, up to the present time x = 0,
the evolution of the scalar perturbations is well-behaved, and very close to that of ΛCDM,
and become closer and closer as k increases. This can be understood from the fact that any
instability induced by the nonlocal term on the cosmological evolution can only develop on
a timescale t such that mt is (much) larger than one. However, we have seen that m is of
order H0, and in fact numerically smaller, with m ' 0.68H0 for the minimal RT model and
even smaller for large ∆N , see footnote 20. Thus, any instability induced by the nonlocal
term can only develop on a timescale larger or equal than to a few times H0, and therefore
in the cosmological future, where these modes could eventually enter a non-linear regime.

3.2.2 Indicators of deviations from GR: (Geff , η) and (µ,Σ)

The full set of perturbation equations is needed for implementing the model into a Boltzmann
code and comparing its predictions to CMB, BAO and SNe observations, as we will do in
section 3.3. For a first qualitative understanding, however, it is convenient to introduce some
simpler indicators of deviations from ΛCDM. One such quantity is the effective Newton’s
constant, which is defined so that the modified Poisson equation for the Fourier modes Φk

can be rewritten as in GR, with G replaced by Geff(x, k) [recall that here x ≡ ln a(t) is used
to parametrize the time evolution, and should not be confused with a spatial variable],

k2Φk(x) = 4πGeff(x; k)a2ρ0 (3.26)

×
[
ΩRe

−4x

(
δR,k(x) +

4

k̂2
θ̂R,k(x)

)
+ ΩMe

−3x

(
δM,k(x) +

3

k̂2
θ̂M,k(x)

)]
.
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Figure 5. Geff/G as a function of z for fixed κ, for the minimal RT model (blue solid line) and for
RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted),
for κ = 0.1 (left panel) and κ = 1 (right panel).

Its explicit expression in terms of the perturbed fields can be read from eq. (A.6) of [86],

Geff(x; k)

G
= 1 + γ

δUk + h
(
2ΨkV̄

′ + Ψ′kV̄ − δV ′k
)

+ 3h2
(
δZk− 1

2δZ
′
k

)
+ 3h

(
ΨkV̄ − 1

2δVk

)
ΩRe−4x

(
δR,k(x) + 4

k̂2
θ̂R,k(x)

)
+ ΩMe−3x

(
δM,k(x) + 3

k̂2
θ̂M,k(x)

) .

(3.27)

From this expression one finds that, for sub-horizon modes, i.e. in the limit k̂ � 1, we
have [86, 90]

Geff(x; k)

G
= 1 +O

(
1

k̂2

)
. (3.28)

As we will see in section 3.4.2, this property, which is not shared by other modified gravity
models and in particular by the RR nonlocal model, is crucial, since it allows the RT model to
evade limits on the time variation of the (effective) Newton’s constant obtained from Lunar
Laser Ranging.

Together with Geff , a second useful indicator is [91]

η(x; k) =
Φk(x) + Ψk(x)

Φk(x)
, (3.29)

which, in GR, vanishes in the absence of anisotropic stress. Alternatively, two useful quan-
tities are the functions µ(x; k) [92] and Σ(x; k) [91] which are defined through22

Ψ = [1 + µ(x; k)]ΨGR Ψ− Φ = [1 + Σ(x; k)](Ψ− Φ)GR , (3.30)

where the subscript denotes the same quantities computed in GR, assuming a ΛCDM model
with the same value of ΩM as the modified gravity model. The advantage of this parametriza-
tion is that it separates the modifications to the motion of non-relativistic particles, which is
described by µ, from the modification to light propagation, which is encoded in Σ. Therefore
µ is sensitive to structure formation and Σ is sensitive to lensing.

In figure 5 we show the numerical results for the effective Newton constant as a function
of redshift, for the minimal RT model and for the RT model with ∆N = 34, 50, 64, for κ = 0.1

22In the literature the quantity that we call 1 + µ is sometimes denoted by µ, and similarly our 1 + Σ is
sometimes denoted by Σ. Our definitions are such that, in GR, µ = Σ = 0.
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Figure 6. |(Geff/G) − 1| as a function of k for fixed z, for the minimal RT model (blue solid line)
and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan,
dotted), on a logarithmic scale. The three panels refers to z = 0 (upper left panel), z = 0.5 (upper
right) and z = 1 (lower panel). The sign of (Geff/G) − 1 is such that, close to the vertical axis,
Geff/G > 1 for the minimal model and Geff/G < 1 for the other cases, and the sign changes each time
the logarithmic plot has a downward spike.
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Figure 7. η as a function of z, for the minimal RT model (blue solid line) and for RT with ∆N = 34
(magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left
panel) and κ = 1 (right panel).

and 1. We see that, already for κ = 0.1 (i.e. k = 0.1keq ' 0.001 Mpc−1), Geff differs by G by
less than 1%, and, for higher values of k, Geff goes quickly to G, in agreements with eq. (3.28)
(for instance, in the plot for κ = 5, |Geff/G| would always be below 1.001). For these values
of k, there are also some oscillations as a function of z and, for given z, the envelop of
the oscillations reproduces the 1/k2 behavior found analytically in eq. (3.28). Notice that,
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Figure 8. Σ as a function of z, for the minimal RT model (blue solid line) and for RT with ∆N = 34
(magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left
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Figure 9. µ as a function of z, for the minimal RT model (blue solid line) and for RT with ∆N = 34
(magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left
panel) and κ = 1 (right panel).

because of eq. (3.28), on small scales Geff reduces to the standard Newton’s constant G probed
by solar system or by laboratory experiments. However, at typical cosmological scales such
as k ∼ keq, its value is different, even at z = 0. In particular, in the RT models with large
∆N , on these scales Geff < G, i.e. gravity is weakened on cosmological scales, while for the
minimal RT model it is strengthened. Figure 6 shows, on a logarithmic scale, the dependence
of |(Geff/G) − 1| on the wavenumber k, for three different values of the redshift, z = 0, 0.5
and 1.

Fig 7 shows η as a function of z, again for κ = 0.1 and 1, while in figures 8 and 9 we
show the same results for the indicators Σ and µ. Notice in particular that both Σ and µ
have a rather non-trivial dependence on k for cosmological scales k ∼ keq. We see from the
plots that, at small redshifts, in the RT model with large ∆N , for k = 0.1keq both Σ and µ
are positive (with 1 + Σ higher by about 5% than the ΛCDM value of unity, and µ by about
10% in z = 0), while for k = keq or larger the situation is reversed and Σ and µ become
negative at small z.

Another useful derived quantity is the growth rate f(z, k) ≡ d log δM/d ln a. As is well
known, in ΛCDM, for the typical wavenumbers relevant for structure formation, f(z, k) is
basically independent of wavenumber k and very well fitted by f(z) = [ΩM (z)]γ with γ a
constant, numerically close to 0.55. More precisely, writing f(z) = [ΩM (z)]γ(z), the function
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Figure 10. The function γ(z) related to the growth rate f(z) by f(z) = [ΩM (z)]γ(z), for ΛCDM
(gray solid line), for the minimal RT model (blue solid line) and for RT with ∆N = 34 (magenta,
dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted).

γ(z) for ΛCDM is shown as the gray solid line in figure 10, so it is indeed approximately
constant and given numerically by γ ' 0.55, within percent level accuracy. We find that the
fit f(z) = [ΩM (z)]γ(z) also holds for the RT model, again with a function γ(z) independent of
the wavenumber k. The corresponding functions γ(z) are shown in figure 10 for the RT model,
minimal and with large ∆N . We see that, for large values of ∆N , γ(z) is indeed independent
of z within percent level accuracy, just as in ΛCDM, and again is given numerically by
γ ' 0.55.23 For the minimal RT model the variation of γ(z) with redshift is somewhat
larger, but still it stays between 0.55 − 0.56 up to z = 2. Notice that the growth index γ is
a useful quantity only as long as we are in the epoch where DE is still important. When we
are deep into MD, ΩM (z)→ 1, and [ΩM (z)]γ → 1 independently of γ.

Two main conclusions emerge from this study of the cosmological perturbations of the
RT model in the scalar sector. First, they are well-behaved. This is already a rather non-
trivial result. Several modified gravity models have indeed been ruled out by the presence of
instabilities in their perturbations. This was for instance the case for the DPG model [52],
which opened the way to the study of IR modifications of GR and has a self-accelerated
solution [93, 94] but had a ghost-like instability on the self-accelerated branch [95–99]. Mas-
sive gravity [100–102] has difficulties already in obtaining a viable background FRW evolu-
tion [103], while in bigravity [104] a background FRW solutions exist, but, in a branch of
solutions that has a dynamical dark energy, the cosmological perturbations have instabilities
in both the scalar and tensor sectors [105–111] (see [112] for a recent comprehensive review
of modifications of GR at the cosmological scale). Thus, already the fact of producing quite
naturally a viable cosmological background evolution with self-acceleration, and stable scalar
perturbations, is a non-trivial results.

The second conclusion that emerges from this study is that, both in the background
evolution and in the scalar perturbations, the RT model is very close to ΛCDM, with de-
viations of at most a few percent, for all ∆N . This already indicates that the model is a
good candidate for fitting well the current cosmological observations. In the next section
we will confirm this conclusion by comparing the RT model with ΛCDM from the point of
view of the quality of the fit to the cosmological observations, and we will perform Bayesian
parameter estimation for the values of the cosmological parameters.

23Of course the growth index, traditionally denoted by γ, should not be confused with the parameter γ of
the RT model, defined in eq. (3.6)!
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3.3 Comparison with cosmological observations

We now perform a detailed comparison with cosmological observations, using the most recent
cosmological datasets in order to update the results presented in [113, 114] for the minimal
RT model, and in [115] for the RT model with large ∆N . As in these previous works, we
implement the perturbations of the RT model computed in [86] into the CLASS cosmological
Boltzmann code [116] (v2.7), that we have modified so to describe the background evolution
and scalar perturbations of the RT model. Our code has been tested against other Einstein-
Boltzmann solvers in [117], and the most recent version is publicly available on GitHub [118]
(evolved from [119]).

3.3.1 Datasets and methodology

For ΛCDM, the Planck baseline analysis uses six independent cosmological parameters: the
Hubble parameter today H0 = 100h0 km s−1Mpc−1, the physical baryon and cold dark matter
density fractions today ωb = Ωbh

2
0 and ωc = Ωch

2
0, respectively, the amplitude As and

tilt ns of the primordial scalar perturbations, and the reionization optical depth τre. Note
that, assuming flatness, the energy fraction ΩΛ associated to a cosmological constant is a
derived parameter, fixed by the flatness condition. In the RT model we have a mass scale m
[or, equivalently, the dimensionless parameter γ, eq. (3.6)] which replaces the cosmological
constant, and again can be taken as a derived parameter, fixed by the flatness condition.
Thus, for the RT model, we can take the same six independent cosmological parameters, as
in ΛCDM.

An important extension, however, is provided by the sum of neutrino masses,
∑

νmν .
As discussed in [120], their inclusion can a priori be important when comparing a modified
gravity model to ΛCDM. Oscillation experiments give a lower limit

∑
νmν >∼ 0.06 eV [121]

(assuming a normal mass hierarchy dominated by the heaviest neutrino mass eigenstate). In
the Planck baseline analysis the sum of neutrino masses is kept fixed to this minimum allowed
value. As discussed in the Planck papers [122, 123], there is actually no compelling theoretical
reason for this choice, and there are other possibilities, including a degenerate hierarchy with∑

νmν >∼ 0.1 eV. The choice of fixing the sum of neutrino masses to the minimum allowed
values is justified by the fact that, in ΛCDM, letting the sum of neutrino masses as a free
parameter, one finds that its marginalized posterior is peaked in zero, and if we let it vary
with the prior

∑
νmν ≥ 0.06 eV the data drive

∑
νmν back to the prior (see figure 34

of [123]). In contrast, in a modified gravity model, the posterior for
∑

νmν could be peaked
at a value higher than the lower bound 0.06 eV.24 A uniform comparison of a modified gravity
model with ΛCDM therefore requires to let

∑
νmν as a free parameter in both models, as

we have done in [23] and as we will do below. We will denote by νΛCDM the ΛCDM model
in which

∑
νmν is added to the list of free parameters.

In summary, we will perform Bayesian parameter estimation for both νΛCDM and the
RT model (minimal, and with ∆N = 34, 50, 64), and we will compare the quality of their fits
to the datasets discussed below, using, as free parameters,

θ = {H0, ωb, ωc, As, ns, τre,
∑

νmν} . (3.31)

For CMB, SNe and BAO we use the following likelihoods:

24This is indeed what happens in the RR nonlocal model [23, 120], and we will find that this also happens
for the minimal RT model.
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• For CMB we use the Planck 2018 data release, using the low-` temperature-only like-
lihood, the low-` EE likelihood, and the high-` temperature and polarization plik
likelihood described in ref. [124], as well as the lensing likelihood based on tempera-
ture+polarization map-based lensing reconstruction [125]. This provides a significant
update of our previous studies based on the Planck 2015 data release.

• For type Ia supernovae we use the likelihood of the Pantheon type Ia supernova sam-
ple [126], which includes data from the Pan-STARRS1 (PS1) Medium Deep Survey.
This updates our previous study based on the JLA [127] dataset.

• For BAO we still use the likelihoods of the BAO detection of the 6dF Galaxy Sur-
vey [128] and the BAO scale measurement of SDSS DR7 Main Galaxy Sample [129],
and we update the SDSS data using the power spectrum of BAO from the Data Release
12 [130].

For the RT model the initial conditions of the perturbations of the auxiliary fields δU
and δSµ are set to zero. As we have already shown in [23], taking different initial conditions,
of the order of the metric perturbations (which is their natural scale, since, as discussed in
section 2.3.1, the initial conditions on the auxiliary fields are in principle fixed by the initial
conditions on the metric perturbations) has a totally negligible effect.

After having determined in this way the mean values of the parameters of the models
(ΛCDM and RT, minimal and with various ∆N), we will use these values to compare the
models with further datasets, namely measurements of H(z) (“cosmic chronometers”) and
fσ8 data.25

3.3.2 Comparison with CMB, BAO, SNe, cosmic chronometers and fσ8

Fit to CMB+BAO+SNe and Bayesian parameter estimation. Table 2 shows the
results for the Bayesian parameter estimation and the resulting χ2 for νΛCDM and the
RT model (minimal, and with ∆N = 34, 50, 64), using the combined CMB+SNe+BAO
data. Beside the values of the seven fundamental independent parameters given in (3.31), we
also give some useful derived parameters, namely ΩM , the reionization redshift zre, and the
amplitude of matter density fluctuations in spheres of radius 8h−1

0 Mpc, σ8. In the last line we

25Some technical details on our MCMC. We use the statistical framework Cobaya 2.0.2 (https://github.
com/CobayaSampler/cobaya, developed by Jesus Torrado and Antony Lewis) to let Markov chains sample the
posterior distribution for the cosmological parameters. Cobaya uses the sampler developed for CosmoMC [131,
132] tailored for parameter spaces with a speed hierarchy (it also implements the “fast dragging” procedure
described in [133]). We determine the best-fit cosmological parameters as follows. For each model, we select
from its Markov Chain samples the N samples that are closest to the highest-posterior sample and fit a
generic quadratic function using least squares. In practice, we choose N = 5d2 where d = 28 is the total
number of parameters including the fiducial ones and the factor 5 is chosen as a compromise between locality
and numerical stability. The norm used to determine the closest samples is Euclidean after normalization
of the sample coordinates by their standard deviations as estimated from all samples of the chain. We then
identify the convex subspace of the quadratic fit using an eigen-decomposition of the Hessian. Finally, we
minimize the quadratic fit within the convex subspace under the constraint that some of the parameters
must be positive (for example the neutrino mass). Given the Markov Chain samples, this procedure gives a
best-fit candidate within seconds of runtime. The posterior is then evaluted at the candidate point predicted
by this procedure. Typically, the prediction and the actual evaluation are close. The values for χ2 given
here are always corresponding to the true evaluation at the predicted minimum. We consistently get better
results following this method than using Cobaya’s BOBYQA [134–136] minimizer, which takes into account
the previous samples only via their covariance matrix. A python notebook is available at https://github.

com/AndreasFinke/quadfit.
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Parameter νΛCDM RT, minimal RT, ∆N = 34 RT, ∆N = 50 RT, ∆N = 64

H0 67.89± 0.47 68.74+0.59
−0.51 67.95± 0.48 67.90± 0.47 67.88± 0.48∑

νmν [eV ] < 0.057 (at 1σ) 0.071+0.024
−0.066 < 0.048 (at 1σ) < 0.044 (at 1σ) < 0.041 (at 1σ)

ωc 0.1193± 0.0009 0.1120± 0.0009 0.1191± 0.0009 0.1190± 0.0009 0.1189± 0.0009

100ωb 2.242± 0.013 2.237± 0.013 2.243± 0.013 2.244± 0.013 2.244± 0.013

ln(1010As) 3.045± 0.014 3.043± 0.014 3.047± 0.014 3.048+0.013
−0.015 3.049± 0.014

ns 0.9665± 0.0036 0.9649± 0.0036 0.9670± 0.0036 0.9673± 0.0035 0.9672± 0.0035

τre 0.0555± 0.0072 0.0537± 0.0072 0.0565± 0.0073 0.0572+0.0065
−0.0075 0.0575± 0.0071

ΩM 0.3085± 0.0060 0.3029+0.0061
−0.0070 0.3075± 0.0061 0.3076± 0.0060 0.3076± 0.0060

zre 7.76± 0.72 7.60± 0.73 7.86± 0.72 7.93± 0.70 7.96± 0.70

σ8 0.8164+0.0097
−0.0068 0.823+0.0130

−0.0087 0.8141+0.0089
−0.0067 0.8134+0.0088

−0.0064 0.8129+0.0084
−0.0066

∆χ2 0 1.30 -0.48 -0.20 -0.00

Table 2. Mean values (with 1σ errors) of the parameters for νΛCDM and the RT model (minimal,
and with ∆N= 34, 50, 64), using CMB, BAO and SNe. H0 is in units of km s−1 Mpc−1. The last
line gives the difference in the χ2 of each given model with respect to νΛCDM. The RT model with
∆N = 34 or with ∆N = 50 fits the data slightly better than νΛCDM, but the difference is not
statistically significant.

show the differences in χ2, with respect to the value for νΛCDM. We recall that, for models
with the same number of free parameters, as νΛCDM and the RT models, the conventional
interpretation is that a difference |∆χ2| ≤ 2 implies statistical equivalence between the two
models, while 2<∼ |∆χ2|<∼ 6 suggests “weak evidence” in favor of the model with lower χ2,
and |∆χ2| & 6 indicates “strong evidence” in favor of the model with lower χ2. Thus, all
models considered fit the data at a statistically equivalent level.26

The result of Bayesian parameter estimation shows that all models with large ∆N give
predictions extremely close to those of νΛCDM, consistently with the analysis of the previous
sections, that showed that these models are very close to ΛCDM both in the background
evolution and in the cosmological perturbations. The minimal RT model differs a bit more,
and in particular predicts a slightly higher value of H0, which in any case is not enough
to significantly relieve the tension with the local H0 measurement [137, 138]. Indeed, as
discussed in [139, 140], it might not be possible to solve the H0 tension, together with other
potential tensions within ΛCDM, with a modification of only the late-Universe dynamics (as
in our nonlocal model). The other difference of the minimal RT model is that it predicts a
non-zero value for the sum of the neutrino masses, while all other models considered only
give an upper bound.

Figures 11 and 12 show the two-dimensional likelihoods for (ΩM , σ8), (ΩM , H0) and
(
∑

νmν , H0). The pattern that emerges, from this and similar plots, is that the RT model
with large values of ∆N is extremely close to ΛCDM, as we already saw from table 2, while
the minimal RT model has some more significant differences, such as a slightly higher value
of H0 (although, as mentioned above, not enough to significantly decrease the tension with
local measurements), of σ8, and of the sum of neutrino masses.

26Note that ∆N is not a free parameter varied so to minimize the χ2. Rather, we have used a very limited
sample of values of ∆N , chosen a priori on the basis of the fact that, according to the relation (3.17), they
correspond to significant choices for the inflationary scale Minfl, see the discussion below eq. (3.17).
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Figure 11. Left panel: the two-dimensional likelihood in the (ΩM , σ8) plane for νΛCDM (red), the
minimal RT model (blue) and the RT model with ∆N = 64 (green). The stars are the best-fit values
of the parameters (note that the values reported in table 2 are rather the mean values). Right panel:
the same for (ΩM , H0).

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21

m

66.6

67.2

67.8

68.4

69

69.6

70.2

H
0

RT, minimal
v CDM
RT, N = 64

Figure 12. As in figure 11, for (
∑
νmν , H0).

νΛCDM RT, minimal ∆N = 34 ∆N = 50 ∆N = 64

∆χ2 0 −1.13 0.22 0.42 0.57

Table 3. Values of ∆χ2, with respect to νΛCDM, for the RT model, minimal and with various values
of ∆N , from the fit to a compilation of measurements of H(z).

νΛCDM RT, minimal ∆N = 34 ∆N = 50 ∆N = 64

∆χ2 0 1.41 −0.05 −0.18 −0.28

Table 4. Values of ∆χ2, with respect to νΛCDM, for the RT model, minimal and with various values
of ∆N , from the fit to a compilation of measurements of fσ8.

Cosmic chronometers. Another useful observational test is provided by measurements
of H(z) at different redshifts (“cosmic chronometers” [141]). We use a compilation of 36
measurements of H(z) between z = 0.07 and z = 2.34, given in table I of [142]. Using the
respective prediction for H(z) in ΛCDM and in the RT models (with the respective mean val-
ues of ΩM and H0 from table 2, obtained from the MCMC comparison to CMB+BAO+SNe)
to fit these H(z) measurements, we find the difference in χ2, with respect to νΛCDM, shown
in table 3. The corresponding reduced χ2, all of order 0.63− 0.64, show that, by themselves,
all the models fits these data well.
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Figure 13. A collection of measurements of fσ8 and the corresponding predictions of νΛCDM and
of the RT model, minimal and with ∆N = 34, 50 and 64. The curve for the minimal RT model is
the upper one, while all others are almost indistinguishable on this scale. The data points are from
6dF GRS [144] (red), SDSS LRG [145] (green), BOSS CMASS [146] (purple), WiggleZ [147] (orange),
VIPERS [148] (black) and BOSS DR12 [130] (cyan).

Structure formation and fσ8 data. The properties of the models with respect to struc-
ture formation are already partly tested by the inclusion of BAO in our MCMC analysis. We
further compare the models to a set of measurements of fσ8, using the datapoints that we
already used in [23].27

Figure 13 shows the data and the predictions of ΛCDM and of the RT model, minimal
and with ∆N = 34,∆N = 50,∆N = 64, obtained using for each model the respective mean
values of ΩM and H0 from table 2. The corresponding differences of χ2, with respect to
the value in νΛCDM, are given in table 4. We see that, once again, the differences between
ΛCDM and the RT model with various ∆N are not statistically significant. From the plots
of Geff in figure 5 we see that at low k (upper left panel) the minimal RT model predicts
Geff/G > 1, while the RT models with large ∆N predict Geff/G < 1. The data favor a
weakening of gravity at these scales, so the RT models with large ∆N are slightly preferred
with respect to ΛCDM, and the minimal RT model is slightly disfavored, but in all cases at
a statistically insignificant level.

Finally, figure 14 shows the relative difference in the linear power spectrum of the RT
models with respect to ΛCDM (each one computed using their respective mean values of the
cosmological parameters) as a function of k, for z = 0 (left panel), and as as a function of z,
for the mode with k = 0.1/Mpc (right panel).

The conclusion of this analysis is that, on the one hand, the RT model, for all values of
∆N , is very close to ΛCDM at the level of background evolution and scalar perturbations, and

27Actually, many more measurement exists: ref. [143] provides a compilation of 63 measurement of fσ8

from 2006 to 2018. However, as stressed in [143], many of these datapoints are correlated, due to overlap in
the galaxy samples used, and no covariance matrix is available for the full dataset, nor for most of its subsets.
Furthermore, one must also take care of the fact that different datapoints have been obtained with different
fiducial cosmologies, and that survey systematic may vary with time of publication and lead to inhomogeneities
in the data. Therefore the use of the full dataset, without the appropriate covariance matrix and corrections,
would lead to results of dubious interpretation.
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Figure 14. Relative difference of total linear matter power spectrum, with respect to best-fit ΛCDM,
for the minimal RT model (blue solid line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50
(green, dot-dashed) and ∆N = 64 (cyan, dotted). Left panel: as a function of k, at z = 0. Right
panel: as a function of redshift, for the mode with k = 0.1/Mpc.

fits the observations at the same level as ΛCDM. On the other hand, the deviations, which
for both the background and scalar perturbations are typically at the percent or sub-percent
level, could in principle be within reach for future missions. For instance, assuming that
the function µ(a, k) that characterizes deviations from the Poisson law is scale independent
and parametrizing its dependence on the scale factor as µ(a) = µsa

s, a future survey such
as Euclid [149], for fixed cosmological parameters, is expected to measure µs with an error
∆µs = 0.0046 for s = 1 and ∆µs = 0.014 for s = 3 [150]. The RT model has indeed been
selected by the Dark Energy Science Collaboration (DESC) of the Large Synoptic Survey
Telescope (LSST), among a few modified gravity models, for further studies and development
of dedicated pipelines [151].

3.4 Recovery of GR at short scales

3.4.1 Solar system constraints and absence of vDVZ discontinuity

Any cosmological model that modifies GR on cosmological scale must also be able to repro-
duce the successes of GR at much smaller scales, such as the solar system and laboratory
scales. In theories that introduces extra fields, as in scalar-tensor theories, or extra polariza-
tion of the gravitons, as in massive gravity, this is highly non-trivial. The linearized theory
does not reduce to GR, and screening mechanisms involving the non-linearities of the theory
are needed. In the RT model, in contrast, the situation is much simpler. Already at the
linear level the theory reduces smoothly to GR, and there is no discontinuity such as the
vDVZ discontinuity of massive gravity. These issues have been discussed at length in [20, 33]
and here we summarize these results, for completeness.

GR limit in the linearization over Minkowski space. Let us consider first the GR
limit for the RT model linearized over flat space. In this case eq. (2.45) reduces to eq. (2.38).
In order to compute the matter-matter interaction induced by this coupling of Tµν with hµν
we proceed as follows [20]. We use the gauge invariance of the linearized theory to fix the
De Donder gauge ∂µ[hµν−(1/2)hηµν ] = 0. Going in momentum space, the resulting equation
can be solved for the Fourier transform h̃µν(k), obtaining

h̃µν(k) =
16πG

k2

[
T̃µν(k)− ηµνk

2

2(k2 −m2)
T̃ (k) +

m2

3(k2 −m2)

(
ηµν −

kµkν
k2

)
T̃ (k)

]
, (3.32)
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where T = ηµνTµν . Plugging this result into the linearized interaction term28

Sint =
1

2

∫
d4xhµνT

µν , (3.33)

and using kµT̃µν(k) = 0 we get

Sint = 8πG

∫
d4k

(2π)4
T̃µν(−k)∆µνρσ(k)T̃ρσ(k) , (3.34)

where

∆µνρσ(k) =
1

2k2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) +

1

6

[
1

k2
− 1

k2 −m2

]
ηµνηρσ . (3.35)

The term in the first line is the usual GR result due to the exchange of the helicities ±2
of a massless graviton. The term in brackets vanishes for m → 0. Therefore the RT model
has no vDVZ discontinuity, and reduces smoothly to GR as m → 0. In the regime where
a linearization over flat space is adequate, for modes with |k2| � m2 the predictions of
the RT model differ from the predictions of GR by a factor 1 + O(m2/k2). We have seen
that the comparison with cosmological observations fixes m ∼ H0 (or even smaller for large
∆N , see footnote 20). For |k| = (1 a.u.)−1 (as appropriate to solar system experiments),
m2/k2 ∼ (1 a.u./H−1

0 )2 ∼ 10−30, and the predictions of the RT model are indistinguishable
from that of GR.

The absence of vDVZ discontinuity can also be understood observing that the term in
bracket in eq. (3.35) induces a matter-matter interaction

8πG

∫
d4k

(2π)4

1

6
T̃ (−k)

[
1

k2
− 1

k2 −m2

]
T̃ (k) . (3.36)

Comparing with eq. (2.33) one realizes that the two terms in brackets corresponds to the
exchange of the helicity zero component of hTT

µν and of the trace mode s. In GR, where

s is massless and both hTT
µν and s appear with a 2 factor in the quadratic lagrangian [see

eq. (2.24)] these two terms cancel exactly, while here the cancellation is only partial but
is recovered for m → 0. Notice that both the helicity zero component of hTT

µν and s are
non-propagating degrees of freedom in GR and remain non-propagating in the RT model.
We have indeed seen in eqs. (2.57)–(2.59) that, in the RR or RT models linearized over flat
space, the only radiative degree of freedom of the metric are still given by the helicity ±2
modes described by HTT

ij and s remains non-radiative, see eq. (2.61). Exactly as in GR, the

negative sign in front of the 1/(k2 − m2) term in eq. (3.36), which would correspond to a
ghost if it were due to a propagating particle, is therefore innocuous from the point of view
of quantum vacuum stability. The helicity zero component of hTT

µν and s are not associated
to creation/annihilation operators and cannot appear on the external lines of a Feynman
diagram.29

28In [20] the overall factor 1/2 was missed in Sint.
29Notice that, in GR, vacuum stability it is not related to the fact that the contribution of s to the interac-

tion (3.34) is canceled by the contribution of the helicity zero component of hTT
µν . This is a cancelation that, in

the language of Feynman graphs, takes place only in the internal lines. However, if s were a propagating degree
of freedom it would also appear in external lines, where it would induce vacuum decay into negative-energy
ghost states plus positive-energy particles (and this, of course, cannot be canceled by graphs with the helicity
zero mode of hTT

µν on external lines, since these contribute to different S-matrix elements). The crucial point
for vacuum stability in GR is rather that s is non-propagating, so it is not associated to creation/annihilation
operators and cannot appear on the external lines (just as A0 in electrodynamics).
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GR limit for the Schwarzschild solution. After having checked the recovery of the
GR limit in Minkowski space, let us consider the GR limit for the Schwarzschild solution,
by studying the static spherically symmetric solution of the RT model. A typical issue of
massive gravity theories is that they become non-linear when r is smaller than a distance,
the Vainshtein radius, which is parametrically larger than the Schwarzschild radius rS of the
source; e.g. rV = (GM/m4)1/5 in the theory defined by adding a Fierz-Pauli mass term to the
Einstein-Hilbert action [152, 153], and rV = (GM/m2)1/3 [154] in the dRGT theory [100, 101].
For m = O(H0) and M = M�, we have (GM/m2)1/3 ∼ 100 pc. Since linearized theory only
holds for r > rV , in massive gravity in the whole range of distances probed by solar system
and laboratory experiments the linearized expansion is not valid, and one must show that
a Vainshtein mechanism is at work, i.e. that the inclusion of classical non-linearities restore
the continuity with GR at r � rV . Explicit examples of this type have indeed been found
for the dRGT theory [155, 156].

For the RT model, however, the situation is much simpler, and the limit m → 0 of
the Schwarzschild solution is smooth. The Schwarzschild solution in the RT model has been
worked out in [33]. In the limit r � rS , the result for the metric is

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θ dφ2) , (3.37)

where

A(r) = 1− rS
r

[
1 +

1

3
(1− cosmr)

]
, (3.38)

B(r) = 1 +
rS
r

[
1− 1

3
(1− cosmr) +

1

3
mr sinmr

]
, (3.39)

In the limit mr � 1 (but still r � rS), eqs. (3.38) and (3.39) give

A(r) ' 1− rS
r

(
1 +

m2r2

6

)
, (3.40)

and (to first order in rS/r) B(r) = 1/A(r).30 For comparison, in massive gravity the analo-
gous computation gives [53, 152]

A(r) = 1− 4

3

rS
r

(
1− rS

12m4r5

)
. (3.41)

The factor 4/3 in front of rS/r is due to the extra contribution coming from the exchange
of the helicity-0 graviton, and gives rise to the vDVZ discontiuity. In contrast, no vDVZ
discontinuity is present in eq. (3.40). Furthermore, in eq. (3.41) the correction blows up as
r decreases, and for r ∼ rV = (GM/m4)1/5 it becomes of the order of the leading term,
signaling the breakdown of the linearized approximation. In eq. (3.40), in contrast, the
correction becomes smaller and smaller as r decreases, and perturbation theory is valid at
all scales r � m−1, until we arrive at r ' rS , where eventually also GR becomes non-linear.

In conclusion, in the RT model (as well as in the RR model, where the analysis is very
similar), in static situations GR is smoothly recovered, with correction O(m2r2). Given that

30The solution for the auxiliary field U = −2−1R is given simply by U(r) = (rS/r) cosmr. For the auxiliary
field Sµ(x), in spherical coordinates only the component Sr(r) is non-vanishing, and furthermore depends only
on r. It is convenient to define V (r) from Sr(r) = B1/2(r)rV (r). The (not very illuminating) solution for
V (r) is given in eq. (3.8) of [33], and reduces to V (r) ' −rS/(2r) for r � rS .
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m is of order H0, these corrections are utterly negligible for all r of order of solar system
scale or smaller; e.g. m2r2 ∼ 10−30 for r of order of the Earth-Sun distance. Even on galactic
scales these corrections to GR are totally irrelevant, with m2r2 ∼ 10−17 for r = 10 kpc.

3.4.2 Limits on time variation of Geff from Lunar Laser Ranging

The above results show that, in a static situation, the RT and RR models recover all successes
of GR at short scales. As was pointed out in [157], this is not yet sufficient to guarantee
that these models are viable at solar system scales. Another crucial test comes from the
limit on the time variation of Newton’s constant from Lunar Laser Ranging (LLR). The
current observational result is Ġ/G = (7.1 ± 7.6) × 10−14 yr−1 [158]. This measurement is
so accurate that, even if performed at the Earth-Moon scale over the last few decades, it
provides significant constraints on cosmological models. Indeed, if we rewrite this limit in
terms of the Hubble parameter today, using H0 ' h0 × (9.777752 Gyr)−1, we get

Ġ

G
= (0.99± 1.06)× 10−3

(
0.7

h0

)
H0 . (3.42)

Quite generally, in modified gravity models Newton’s constant becomes time dependent on
cosmological scale. The scale for the time variation today is given by H0, so on cosmological
scales one typically finds Ġ/G ' H0. If, in a given modified gravity model, this result
holds also down to the scale of the solar system and of the Earth-Moon system, then the
bound (3.42) is violated and the model is ruled out.

In the case of the RT model, however, we have seen in eq. (3.28) that Geff reduces to
G at small scales. Therefore, it has no time dependence and the RT model satisfies trivially
the LLR limit. The situation is different for the RR model (and for other modified gravity
models, see appendix A). Indeed, in the RR model, for sub-horizon modes, one finds [86, 157]

Geff(t)

G
=

[
1− 1

3
m2S̄(t)

]−1 [
1 +O

(
1

k̂2

)]
, (3.43)

where S̄(t) is the background cosmological solution for the auxiliary field S. This dependence
on S can be traced to the term 2SGµν in Kµν , see eq. (2.49). If one plugs here the solution for
S̄(t) corresponding to the FRW background, one finds that Geff(t)/G is of order H0, and the
bound (3.42) is violated. In this case one cannot appeal to non-linear screening mechanisms,
since we have seen that the RR model (just as the RT model) has a smooth limit m→ 0, so
the linearized expansion can be trusted.

Of course, the FRW metric has no direct relevance for the Earth-Moon system. The
latter, just as the solar system, does not expand with the Hubble flow. However, the point
is that a scalar field, such as S, that evolves on a background that interpolates between the
Schwarzschild solution at short scales and the FRW solution at large distances, in general
inherits a time dependence on small scales from the matching with the solution at large
distances. As an extreme example, in GR one can consider the Einstein-Straus space-time,
in which, inside a sphere of radius r0, the metric is taken to be exactly the static Schwarzschild
metric generated by the mass M , while in the exterior it is given by a FRW solution with
energy density ρ (see e.g. [159, 160] for review). The two metrics are then matched by
requiring that the induced metric on the boundary surface Σ agrees on the two sides. This
fixes the matching radius r0, that, with respect to the Schwarzschild coordinates of the
interior, turns out to be given by M = (4/3)πr3

0ρ, where ρ is the energy density in FRW. In
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this case the solution for the metric is exactly static in the interior region, so it describes a
limiting case in which the cosmological expansion in the inner region is perfectly screened.
Nevertheless, if one studies the propagation of a scalar field obeying the equation 2φ = 0 in
this metric, one finds that the solution for the field in the inner region is time dependent [160].
This is due to the fact that we must impose a matching condition for the scalar field at the
surface Σ, and in this way the field inherits a time dependence even in the inner region.

For the RR model, a detailed analysis of the solution for the scalar field S in a back-
ground that interpolates between the static solution at short distances and FRW at large
distances has been performed in [161]. A useful way of studying the problem is to follow the
time evolution of the auxiliary fields U and S of the RR model, starting before the epoch of
structure formation. At that time the FRW metric holds everywhere, and U and S evolve
with time according to the cosmological background solutions Ū(t) and S̄(t). As structures
form and become non-linear, the analysis of [161] shows that the solutions for U and S remain
of the form

U(t,x) = Ū(t) + δU(t,x) , S(t,x) = S̄(t) + δS(t,x) , (3.44)

where δU(t,x) and δS(t,x) remain small perturbations of Ū(t) and S̄(t), respectively. In
essence, the physical reason behind this result is that, even when structures become non-
linear, e.g. in the formation of galaxies, clusters, etc., the metric perturbation Φ never become
large. In non-linear structure formation are rather the second spatial derivatives of Φ that
become large compared to their values in the linear regime, in particular the Laplacian
of Φ, which is related to the density contrast and can become huge; however, the spatial
derivatives of Φ never enter in the equations that govern the dynamics of the auxiliary fields
U and S. Indeed, in a perturbed FRW metric, to first order in Φ, the explicit expression of
the d’Alembertian is

2U = −(1 + 2Φ)(Ü + 3HU̇)− 4Φ̇U̇ + a−2(1− 2Φ)∇2U , (3.45)

so spatial derivatives of Φ do not appear. As a result, non-linear structure formation does not
stop the time evolution that the auxiliary fields inherited from the earlier epoch described by
a spatially homogeneous FRW solutions. Near massive bodies, the perturbations δU(t,x),
δS(t,x) just reduce to the static solutions U(r), S(r) studied in the previous subsection, and
remain small as long as r is larger than the Schwarzschild radius of the massive bodies (recall
for instance that U(r) = (rS/r) cosmr, which is much smaller that one for r � rS). So, in
the end, at the Earth-Moon system scale, the solution for S is, with good approximation, the
sum of the cosmological and static solutions, S(t,x) = S̄(t) + Sstatic(r).

31 A study of purely
static solutions misses the term S̄(t), because assumes from scratch that the solution is time-
independent. This time dependence induces a time-dependence of the Newton’s constant,
such that the RR model violates the limit (3.42). This rules out the RR model. We will see
in appendix A that this problem affects also other nonlocal models that were proposed in
the literature.

As we have seen in eq. (3.28), in the RT model, in contrast, the effective Newton’s
constant on small scales reduces to G, and looses all dependence on the auxiliary fields, so it
passes without problems also the LRR constraint.

31This was also shown to happen exactly in models, such as galileons or k-essence, in which a field ϕ
has a shift symmetry ϕ → ϕ + const. In this case, thanks to the shift symmetry, near the present epoch
t0 the equation of motion of the field admits an exact solution with separation of variables of the form
ϕ(t, r) = ϕstatic(r) + ϕcosmo(t0) + (t− t0)ϕ̇cosmo(t0) [162]. See also [163] for a related example.
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3.5 Tensor perturbations and modified GW propagation

Until now we have studied the cosmological consequences of the theory at the level of back-
ground evolution and scalar perturbations. We now turn to tensor perturbations, i.e. grav-
itational waves (GWs) propagating in FRW. We will see, following [115, 164, 165], that the
RT model has striking predictions in the tensor sector, that could be detected in the near
future by GW detectors.

3.5.1 Tensor perturbations in GR

Let us begin by recalling that, in GR, the evolution of tensor perturbations over FRW is
governed by the equation

h̃′′A + 2Hh̃′A + k2h̃A = 16πGa2σ̃A , (3.46)

where h̃A(η,k) are the Fourier modes of the GW amplitude, and we use the index A = +,×
to label the two polarizations. We are using now conformal time η, related as usual to cosmic
time t by dt = a(η)dη, and a(η) is the scale factor. In this section the prime denotes the
derivative with respect to cosmic time η, and H = a′/a. The source term σ̃A(η,k) is related
to the helicity-2 part of the anisotropic stress tensor (see e.g. [17]). In the following we will
be interested in the free propagation between source and observer, and we will set it to zero.
It is convenient to introduce a field χ̃A(η,k) from

h̃A(η,k) =
1

a(η)
χ̃A(η,k) . (3.47)

Then eq. (3.46) becomes

χ̃′′A +

(
k2 − a′′

a

)
χ̃A = 0 . (3.48)

For modes well inside the horizon, such as the GWs targeted by ground-based and space-
born detectors, the term a′′/a ∼ 1/η2 is totally negligible with respect to k2; for instance,
for a GW with a frequency f ∼ 102 Hz, as typical of ground-based interferometers, (kη)−2 ∼
(500 km/H−1

0 )2 ∼ 10−41. We can then neglect the term a′′/a in eq. (3.48), which then
becomes a standard a wave equation for χ̃A, that tells us that GWs propagate at the speed
of light (that we have set here equal to unity).

The factor 1/a in eq. (3.47) tells us how the GW amplitude decreases as it propagates
across cosmological distances, from the source to the observer. For inspiraling binaries this
factor combines with other factors coming from the transformation of masses and frequency
from the source frame to the detector frame (see e.g. section 4.1.4 of [166]), to produce the
well-known dependence of the GW amplitude h̃A(η,k) ∝ 1/dL(z), where dL is the luminosity
distance to the source. This is the origin of the fact that coalescing binaries are ‘standard
sirens’, i.e. their waveform allows a direct reconstruction of the luminosity distance to the
source [167–179]. In GR, for a cosmological model with energy density ρDE(z), the relation
between luminosity distance and redshift is

dL(z) =
1 + z

H0

∫ z

0

dz̃√
ΩM (1 + z̃)3 + ΩR(1 + z̃)4 + ρDE(z̃)/ρ0

. (3.49)

Therefore, a simultaneous measurement of dL and of the redshift z (with an electromagnetic
counterpart, or the study of the dL − z relation with statistical methods) allows us to get
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cosmological information. In particular, for sources at small redshift, z � 1, eq. (3.49)
reduces to the Hubble law dL(z) ' H−1

0 z, so from a measurement at such redshifts we can
get a measurement of H0. This has indeed been possible with the detection of the binary
neutron star (BNS) coalescence GW170817, which is at a redshift z ' 0.01, and has given the
value H0 = 70.0+12.0

−8.0 km s−1 Mpc−1 [180]. The detection of coalescences at higher redshift
could in principle allow us to access also the DE equation of state.

3.5.2 Tensor perturbations in modified gravity

As we will see, the free propagation of tensor perturbations in the RT model is governed by
an equation of the form

h̃′′A + 2H[1− δ(η)]h̃′A + k2h̃A = 0 , (3.50)

for a given function δ(η). It is however instructive to first work out the implications of
eq. (3.50) with a generic function δ(η), since this equations appears in many other modified
gravity models. Indeed, in a generic modified gravity model both the “friction term” 2Hh̃′A
and the term k2h̃A in eq. (3.46) are modified. As we will recall below, the models that modify
the k2h̃A term predict a speed of gravity different from the speed of light. The observation
of GW170817 and of the associated GRB has set a limit |cgw − c|/c < O(10−15) [181], so
such models are ruled out.32 In particular, a large class of Horndeski theories and other
modifications of GR have been ruled out by this limit [183–186]. It turns out that the
models that survive this constraint still modify the friction term. A propagation equation of
the form (3.50) was indeed first found in some scalar-tensor theories of Horndeski type [187–
190] and in the RR nonlocal model [23, 164]. In [191] it was shown that it also takes place
in many other Horndeski-type theories that pass the test on speed of gravity (such as f(R)
theories, Jordan-Brans-Dicke, galileon cosmology, etc.), in Degenerate Higher Order Scalar-
Tensor (DHOST) theories, and in bigravity. Similar effects take place in theories with extra
dimensions, as originally found in [192] (see also [193]), although in this case they are due to
the loss of gravitons to the bulk and, in general, are not described by eq. (3.50) (see also [194]
for a discussion a modified GW propagation within the effective field theory approach to dark
energy, [195, 196] for general formalisms for testing gravity with GW propagation, and [197–
199] for further related work in the context of scalar-tensor theories).

Let us then study first the general consequences of eq. (3.50) (we closely follow the
discussion in [164, 165]). We proceed as in the GR case, except that now, to eliminate the
friction term, we must introduce χ̃A(η,k) from

h̃A(η,k) =
1

ã(η)
χ̃A(η,k) , (3.51)

where ã now satisfies
ã′

ã
= H[1− δ(η)] . (3.52)

Then we get

χ̃′′A +

(
k2 − ã′′

ã

)
χ̃A = 0 . (3.53)

32Although it could still in principle happen that there is dependence on wavenumber that allows for cgw 6= c
for modes k well below the frequencies probed by LIGO/Virgo and restore cgw = c to sufficient accuracy at
LIGO/Virgo frequencies. This could be motivated in some models [182].
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Once again, inside the horizon the term ã′′/ã is totally negligible. The remaining equation,

χ̃′′A + k2χ̃A = 0 , (3.54)

shows that GWs still propagate at the speed of light. This is a consequence of the fact that
the term k2χ̃A in eq. (3.50) is the same as in GR. If the coefficient of this term had been
different, we would get a speed of GWs cgw 6= c.

As we see from eq. (3.51), the effect of the modified friction term is that now the
amplitude of h̃A is proportional to 1/ã rather than 1/a. Then, in the propagation from the
source to the observer, the amplitude is multiplied by a factor ãemis/ãobs ≡ ã(z)/ã(0), instead
of a factor aemis/aobs = a(z)/a(0), where the labels refer to the emission time (at redshift z)
and the observation time, at redshift zero, respectively. Therefore

h̃A ∝
ã(z)

ã(0)

a(0)

a(z)

1

dL(z)
=
ã(z)

a(z)

1

dL(z)
, (3.55)

where dL(z) is the usual notion of luminosity distance (note that, since only the ratios
ã(z)/ã(0) and a(z)/a(0) enter, without loss of generality we can choose the normalizations
ã(0) = a(0) = 1). Equation (3.55) motivates the introduction of a ‘GW luminosity distance’
d gw
L (z) [164], related to the standard luminosity distance appropriate for electromagnetic

signals, that we henceforth denote by d em
L (z), by d gw

L (z) = [a(z)/ã(z)] d em
L (z). Rewriting

eq. (3.52) as (log a/ã)′ = δ(η)H(η) and integrating, we get [164]

d gw
L (z) = d em

L (z) exp

{
−
∫ z

0

dz′

1 + z′
δ(z′)

}
. (3.56)

In modified gravity, the quantity extracted from a measurement of the GW amplitude of a
coalescing binary is d gw

L (z), rather than d em
L (z). To avoid misunderstandings, notice that

the actual distance traveled by GWs from the source to the observer is the same as the
distance traveled by electromagnetic signals. Equation (3.56) is simply a convenient way of
expressing the fact that, in modified gravity, the amplitude of the GW decreases in a different
way during the propagation, so that, for a coalescing binary, the observed amplitude, rather
than depending only on d em

L (z) and on the inclination of the orbit, as in GR, it further
depends on δ(z), in such a way that the combined dependence on d em

L (z) and δ(z) can be
reabsorbed into the quantity d gw

L (z).33

3.5.3 Predictions of the RT model

We now discuss GWs in the RT model, focusing on the signal from coalescing binaries at
cosmological distances.34 First of all, notice that this model only changes the gravitational
part of the action but not the matter action, so the coupling to matter is unchanged, and
at the linearized level, is still given by the usual hµνT

µν coupling. Thus, the source term
in eq. (3.46) is not affected. Furthermore we have seen that, at short scales, such as the
distance between the two bodies in a coalescing binary, the RT model reduces to GR to huge
accuracy, so there is no appreciable modification to the orbital dynamics of a binary system,
and the waveform produced by a coalescing binary in the region far from the source (where

33A different effect is provided by the fact that, in brane models, a gravitational signal can travel along
geodesics in the extra dimensions, while electromagnetic signals are confined to the (3+1)-dimensional brane.
This can lead to delays between the arrival time of a GW and the associated electromagnetic signal [200–202].

34See [165] for a discussion of how modified GW propagation affects the ISW effect.
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the 1/r GW behavior sets in, but still the expansion of the Universe can be neglected) is
the same as in GR. In the signal received by a coalescing binary, the only difference will
then come from the free propagation of the GW from the source to the observer, across
cosmological distances.

The equation governing the free propagation of tensor perturbations in the RT model
has been computed in [114], and is35

h̃′′A + [2H− 3γV̄ aH0]h̃′A + k2h̃A = 0 . (3.57)

So the ‘friction term’ 2Hh̃′A is modified with respect to GR, but the term k2h̃A is not. Thus,
first of all we see that the RT model passes the constraints from the speed of GWs. As we
have mentioned, this is a non-trivial constraint that has ruled out many modified gravity
theories. Equation (3.57) is of the form (3.50), with

δ(η) =
3γV̄ (η)H0

2H(η)
, (3.58)

where we have used H = aH. Recall that, for the RT model in a FRW background, we
have defined the auxiliary field V from V = H0S0, where S0 is the µ = 0 component
[in coordinates (t,x)] of the auxiliary four-vector field Sµ of the RT model, see eq. (3.22).
Recalling the definition (3.6) of γ, we can also write eq. (3.58) as

δ(η) =
m2S̄0(η)

6H(η)
. (3.59)

Using the numerical solution of the background evolution equation of the RT model studied in
section 3.1, we can therefore immediately compute δ and d gw

L /d em
L , as functions of the redshift.

The results are shown in figure 15 (see also [115]). These results are quite spectacular, in
particular at large ∆N . For instance, for ∆N = 64, at large z the ratio d gw

L /d em
L tends

asymptotically to a value ' 1.65, corresponding to a 65% deviation from GR, a truly huge
effect. In the limit of large ∆N [exemplified here by the case (Minfl = 1016 GeV,∆N = 100);
as we mentioned, for Minfl = 1016 GeV this asymptotic curve is actually reached already at
∆N >∼ 70], at large z the ratio d gw

L /d em
L reaches a value ' 1.80, i.e. a 80% deviation from

GR! Similarly, at z = 0, δ(0), in the limit of large ∆N , saturates to a value −1.11, so, in
eq. (3.50), near z = 0 the term 1− δ(0) ' 2.11 is more than twice the GR value.

This is very surprising because we have seen that, for all values of ∆N , the RT model
differs from ΛCDM by less that 1% at the level of background evolution (see figure 2), and by
a few percent to below percent level, depending on wavenumber, for the scalar perturbations,
see e.g. figures 5–14. This is indeed what allows the model to fit well the current cosmological
observations. One would have then naturally guessed that also in the tensor perturbation
sector the differences would be of the same order. Instead, for large ∆N , they are much
bigger, a very good news for GW experiments.

It is interesting to understand better how it is possible to have large deviations in the
tensor sector when the background evolution and the scalar perturbations are much closer to

35Note that eq. (5.1) of ref. [114] was written with a different definition of the auxiliary field V . Denoting
by Ṽ the definition used there, by Sη the µ = 0 component of Sµ in coordinates (η,x) and by S0 the µ = 0
component of Sµ in coordinates (t,x), we have Ṽ ≡ Sη = aS0 = aV/H0, where V is the definition used
here. The equation written in appendix A.1 of [114], where is described the implementation in CLASS of the
perturbations of the model, are also written denoting by V the quantity that we are here calling Ṽ .
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Figure 15. The functions δ(z) (left panel) and d gw
L (z)/d em

L (z) (right panel), for the minimal RT
model (blue solid line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed)
and ∆N = 64 (cyan, dotted) and ∆N = 100 (black solid line).
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Figure 16. The quantity γV̄ (x) for the minimal RT model (blue solid line) and for RT with ∆N = 34
(magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted) and ∆N = 100 (black
solid line), using for each model its own mean values of H0 and ΩM .

ΛCDM. Technically, the fact that δ(z = 0) becomes of order one, and therefore, accordingly
to eq. (3.50), gives a significant correction to the GR result, can be traced to the evolution
of the auxiliary field V (η), that determines δ(η) through eq. (3.58). The behavior of γV (η)
is shown in figure 16, as a function of x = ln a(η). We see that, in the evolution for large
∆N , it becomes indeed of order one (in absolute value) near the present epoch. In contrast,
at the level of background evolution, the deviations from the GR behavior are encoded in
the DE equation of state, which, according to eqs. (3.7) and (3.18), is related to Y by
1 + wDE = −Y ′/(3Y ), where Y = U − Ṡ0 = U − hV ′. Therefore, the deviation of wDE from
−1 is controlled by a different combination, and in particular is not sensitive to the numerical
value of γV (η). Rather, in the approximation where we neglect U compared to V ′ [and we
approximate (hV )′ ' hV ′′], it is sensitive to V ′′/V ′. It is therefore perfectly possible to have
large deviations in the tensor perturbations even when the background evolution is close to
ΛCDM. Concerning scalar perturbations, the crucial difference is that they satisfy Poisson-
like equations, rather than a dynamical propagation equation involving the 2 operator. The
modified Poisson equation in the RT model reads [see eq. (A.6) of [86]]

k̂2Φ + 3(Φ′ −Ψ) =
3

2h2

[
δρ

ρ0
+ γ

(
δU − hδV ′ + 2hΨV̄ ′ + hΨ′V̄

)]
. (3.60)

Then γV (η) only affects the source term; as we have seen, it becomes of order one in the recent
epoch, but, by that time, all modes of cosmological interest are well inside the horizon, so

– 51 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

0 1 2 3 4
0.985

0.990

0.995

1.000

1.005

1.010

z
d L
em
,R
T
(z
)/
d L
Λ
C
D
M
(z
)

Figure 17. The ratio of d em
L (z) computed in the RT model to the luminosity distance of ΛCDM

for the minimal RT model (blue solid line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50
(green, dot-dashed) and ∆N = 64 (cyan, dotted) and ∆N = 100 (black solid line), using for each
model its own mean values of H0 and ΩM .

k̂2 � 1 [where k̂ = k/(aH), see eq. (3.24)] and the effect of γV (η) is by now suppressed by the
small factor 1/k̂2. Note that also in eq. (3.57), for GWs observed on ground based detectors,
k̂ � 1. Nevertheless, the crucial difference is that eq. (3.57) is a propagation equation,
involving the second time derivative of h, so that the term k2h determines the phase of the
wave, while the friction term independently determines the scaling of the amplitude with
redshift. So, in this case the fact that in tensor perturbations we can have a large effect,
while this does not happen for scalar perturbations, has its roots in the fact that tensor
perturbations are propagating degrees of freedom, while scalar perturbations are not.

For comparing the prediction in the tensor sector of the RT model to those of ΛCDM the
relevant quantity, rather than the ratio of d gw

L to d em
L , both computed within the RT model,

is actually the ratio of d gw
L , computed in the RT model, to the luminosity distance dΛCDM

L

computed in ΛCDM (for which the notion of electromagnetic and GW luminosity distance
coincide), and in which, in each model, the respective mean values of the parameters H0 and
ΩM are used. However, the results for dgw,RT

L /dΛCDM
L turn out to be practically the same as

the results shown in the right panel of figure 15. This can be seen by writing

dgw,RT
L (z)

dΛCDM
L (z)

=

(
dgw,RT
L (z)

dem,RT
L (z)

)
×

(
dem,RT
L (z)

dΛCDM
L (z)

)
, (3.61)

where, for clarity, we have denoted by dgw,RT
L (z) the GW luminosity distance d gw

L in the RT
model. The first factor on the right-hand side is the quantity that we have already shown in
the right panel of figure 15. The second factor is shown in figure 17, and we see that is very
close to one; in particular, for the RT model with large ∆N , it reaches at most a value of order
1.006 for ∆N = 100 near z ' 0.3, and then quickly goes asymptotically to values of order
1.001. This can be understood observing that the ratio dem,RT

L (z)/dΛCDM
L (z) is determined

by two factors. First, by the different mean values of H0 and ΩM between the RT model with
the given ∆N and ΛCDM; second, by the different redshift dependence of the DE density,
or, equivalently, the different DE equation of state wDE(z). However, we have seen in table 2
that Bayesian parameter estimation gives for the RT model values of H0 and ΩM very close
to those of ΛCDM, particularly at large ∆N ; furthermore, as discussed in [165], the change in
the value of these parameters goes precisely in the direction to cancel the effect in the change
of the DE equation of state. This is due to the fact that Bayesian parameter estimation in
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RT, minimal ∆N = 34 ∆N = 50 ∆N = 64 ∆N = 100

Ξ0 0.93 1.27 1.49 1.65 1.80

n 2.59 2.08 2.00 1.95 1.91

δ(0) 0.15 −0.46 −0.76 −0.95 −1.12

δ(0)/(1− Ξ0) 2.29 1.67 1.54 1.46 1.39

Table 5. Values of Ξ0, n, δ(0) ≡ δ(z = 0) and δ(0)/(1−Ξ0) for the RT model with various values of
∆N . The results have been obtained using for each model its own mean values for ΩM and h0 from
table 2.

practice requires the model to fit some fixed distance scales at large redshifts, such as the
scales given by the CMB peaks or by the BAO oscillations; thus, if, compared to ΛCDM, one
changes wDE(z) in the direction of giving, say, a larger (electromagnetic) luminosity distance
at large redshift, H0 and ΩM change in the direction such that they partially compensate for
this change. As a result the electromagnetic luminosity distance, particularly at moderate
to large values z, changes very little. Thus, the difference in the GW luminosity distance
of the RT model, compared to ΛCDM, in practice is entirely given by the effect of modified
GW propagation, while the DE equation of state and the difference in H0 and ΩM among
RT and ΛCDM have a negligible effect.

As discussed in [165], the z dependence of the ratio d gw
L /d em

L is easily understood ob-
serving that, by definition, at z → 0 we must have d gw

L /d em
L → 1 because, if the distance

to the source goes to zero, there can be no effect from modified GW propagation. At large
z, d gw

L /d em
L goes to a constant because, in the RT model, as in most other modified gravity

model, the emergence of dark energy is a relatively recent phenomenon, so the modifications
to GR, and hence the function δ(z) in eq. (3.50), go to zero at large redshifts. As a con-
sequence, at large z the integral in eq. (3.56) saturates to a constant value. As shown in
figure 18, the numerical results for d gw

L (z)/d em
L (z) are extremely well fitted by the simple

parametrization [165]

d gw
L (z)

d em
L (z)

= Ξ0 +
1− Ξ0

(1 + z)n
, (3.62)

in terms of two parameters Ξ0 and n. This parametrization reproduces the fact that, at
z = 0, d gw

L (z)/d em
L (z) = 1, while at large redshift d gw

L (z)/d em
L (z) goes to a constant value

Ξ0. The index n determines the rate at which this asymptotic value is reached. The best-fit
values of Ξ0 and n are given in table 5.

Observe that the simple parametrization (3.62) reproduces the numerical results ex-
tremely well. Indeed, comparing with figure 3, we see that it works much better than
the (w0, wa) parametrization for the equation of state. This is due to the fact that
eq. (3.62) catches correctly both the z → 0 limit and the large z limit.36 The corresponding
parametrization for the function δ(z) is obtained inverting eq. (3.56) to get

δ(z) = −(1 + z)
d

dz
log

(
d gw
L (z)

d em
L (z)

)
. (3.63)

36Indeed, it was found in [191] that this parametrization fits very well the results of all other modified gravity
models studied there, such as various Horndeski-type theories and DHOST theories. The only exception is
given by bigravity, where it was found that, as a function of redshift, d gw

L (z)/d em
L (z) has a series of oscillations

due to the interaction between the two metrics.
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Figure 18. The function d gw
L (z)/d em

L (z) from the numerical integration (blue solid line), compared
with the fit (3.62) (magenta, dashed). Upper left panel: for the minimal RT model; upper right: RT
with ∆N = 34; lower left: RT with ∆N = 50; lower right: RT with ∆N = 64.
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Figure 19. The function d gw
L (z)/d em

L (z) from the numerical integration (blue solid line), compared to
the parametrization (3.62) with the value of n obtained from the best fit to d gw

L (z)/d em
L (z) (magenta,

dashed), and with n = δ(z = 0)/(1− Ξ0) (green, dot-dashed). Upper left panel: for the minimal RT
model; upper right: RT with ∆N = 34; lower left: RT with ∆N = 50; lower right: RT with ∆N = 64.
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Using eq. (3.62) for d gw
L (z)/d em

L (z) gives

δ(z) =
n(1− Ξ0)

1− Ξ0 + Ξ0(1 + z)n
. (3.64)

Figure 19 compares the numerical result for δ(z) (blue solid line) with the fit (3.64), using
the same values of Ξ0 and n as in table 5 (magenta, dashed lines). We see that the (Ξ0, n)
parametrization provides a fit to δ(z) less good than to d gw

L (z)/d em
L (z), particularly near

z = 0. This is due to the fact that, for d gw
L (z)/d em

L (z), the (Ξ0, n) parametrization catches
correctly both the value in z = 0 and the large z limit; thus, as long as d gw

L (z)/d em
L (z) is

smooth in between, it is natural to find a value of n such that the parametrization (3.62)
performs well. In contrast, the value of δ(z = 0) is not automatically reproduced by
the parametrization (3.64), and indeed we see from the figures that in this region the
parametrization is not accurate. For instance, the numerical integration gives the values of
δ(0) ≡ δ(z = 0) shown in table 5, while the parametrization (3.64) would incorrectly predict
δ(0) ' {0.17,−0.57,−0.98,−1.27,−1.53}. Note that, with the parametrization (3.62), (3.64),
we have

δ(0) = n(1− Ξ0) . (3.65)

This suggests that, after having fixed Ξ0 so to reproduce exactly the large-z behavior of
d gw
L (z)/d em

L (z), rather then choosing n from a best fit to d gw
L (z)/d em

L (z), we could choose
n = δ(0)/(1 − Ξ0), so that the parametrization (3.64) reproduces exactly the value of δ(0).
The values obtained in this way are given in the last line of table 5. If one uses these
values of n, the fit to d gw

L (z)/d em
L (z) significantly degrades, but the fit to δ(z) becomes more

accurate, and is shown as the green dot-dashed lines in figure 19. In general, since the directly
observable quantity is d gw

L (z)/d em
L (z), it is more important to have a simple and accurate

analytic representation for it, rather than for δ(z). Of course, for an accurate comparison
with the data, one can also use directly the results of the numerical integration, which are
obtained very quickly.

For comparison, the result for the RR model is also of the form (3.50), except that the
function δ is given by

δ =
3γ dV̄ /d log a

2(1− 3γV̄ )
, (3.66)

and now V = H2
0S, where S is the auxiliary field of the RR model, defined by U = −2−1R

and S = −2−1U . The numerical integration then gives again a result very well fitted by
eq. (3.62), with Ξ0 ' 0.97 and n ' 2.5 [165]. However, contrary to the RT model, here the
deviation from GR is only about 3%.

3.5.4 Energy density of GWs and conservation of graviton number

The fact that the GW amplitude in FRW does not scale as 1/a raises a question. As we will
recall below, in GR the fact that in FRW h ∝ 1/a ensures that the GW energy density ρGW

scales as 1/a4; in turn, this is consistent with an interpretation of a GW as a collection of
massless graviton, whose comoving number density (i.e. number per unit volume in comoving
coordinates) is conserved. Indeed, the fact that the graviton number per comoving volume
is conserved means that the graviton number per physical volume scales as 1/a3, while the
fact that the graviton is massless implies that its energy scales as 1/a, giving overall the 1/a4

behavior of ρGW. One might then wonder whether the scaling h ∝ 1/ã is an indication that
the (comoving) graviton number is not conserved in the RT model. We will see here that, in
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fact, even in the RT model ρGW scales as 1/a4 and therefore the comoving number density of
gravitons is still conserved. To this purpose, one must realize that the expression of ρGW in
a generic modified gravity model is different from the GR expression. Let us first recall how
things work in GR. We consider tensor perturbations over the FRW metric. Using conformal
time, we write

ds2 = a2
[
−dη2 +

(
δij + hTT

ij

)
dxidxj

]
. (3.67)

It is convenient to expand the Fourier transform of hTT
ij in the basis of the polarization

tensors,

h̃TT
ij (η,k) =

∑
A=+,×

eAij(k̂)h̃A(η,k) , (3.68)

where the polarization tensors are normalized as eAij(k̂)eA
′

ij (k̂) = 2δAA
′
. Expanding the

Einstein-Hilbert action to second order in hTT
ij one then finds (see e.g. section 21.3.4 of [17])

S2[h] =
1

32πG

∑
A

∫
d3xdη a2 [∂ηhA∂ηhA − ∂khA∂khA]

= −1

2

∑
A

∫
d4x
√
−ḡ ḡµν∂µϕA∂νϕA , (3.69)

where ḡµν = a2ηµν is the background FRW metric in (η,x) coordinates, and

ϕA(η,x) =
1√

16πG
hA(η,x) . (3.70)

The action governing the two polarization amplitudes hA is therefore the same as the curved-
space action of two canonically-normalized scalar fields ϕA. The variation of the action (3.69)
gives eq. (3.46) (with the left-hand side equal to zero, unless we add also the matter action).
At the same time, from this action we can get the energy-momentum tensor of GWs,

tµν ≡ −
2√
−ḡ

〈
δS2[h]

δḡµν

〉
=
∑
A

〈
∂µϕA∂νϕA − gµν

1

2
gρσ∂ρϕA∂σϕA

〉
=

1

16πG

∑
A

〈
∂µhA∂νhA − gµν

1

2
gρσ∂ρhA∂σhA

〉
, (3.71)

where 〈. . .〉 denotes the spatial average over several wavelengths of the GWs, or the temporal
average over several periods (see e.g. section 1.4 of [166]). We denote by tηη the µ = ν = 0
component of tµν in coordinates (η,x) and by ttt ≡ t00 the µ = ν = 0 component of tµν in
coordinates (t,x). From tηη(dη)2 = ttt(dt)

2 and dt = adη if follows that t00 = tηη/a
2, so

eq. (3.71) gives

t00 =
1

32πG

1

a2

∑
A

〈(∂ηhA)2 + (∂ihA)2〉 . (3.72)

On a plane wave the terms 〈(∂ηhA)2〉 and 〈(∂ihA)2〉 are equal. From eq. (3.54), for wave-
lengths well inside the horizon, i.e. for kη � 1, χ̃A(η,k) ∝ sin(kη + α), with α a phase.
Therefore h̃A(η,k) ∝ sin(kη + α)/a(η) and, again for kη � 1,

∂ηhA(η,k) ∝ k cos(kη + α)

a(η)

[
1 +O

(
1

kη

)]
. (3.73)
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In 〈(∂ηhA)2〉 the term cos2(kη+α), averaged over several periods, simply gives a factor 1/2,
so 〈(∂ηhA)2〉 ∝ 1/a2 and, from eq. (3.72), it then follows that ρgw = t00 is proportional to
1/a4, as indeed we expect for any form of radiation.

Let us now see how the situation changes in the RT model. The propagation equation is
now given by eq. (3.50). Using eq. (3.52) we see that it can be obtained from the GR equation
with the replacement a(η)→ ã(η). It can then be formally obtained from the variation of a
quadratic action obtained replacing a(η)→ ã(η) in eq. (3.69), i.e. from37

SRT
2 [h] =

1

32πG

∑
A

∫
d3xdη ã2 [∂ηhA∂ηhA − ∂khA∂khA] . (3.74)

Introducing an effective Newton’s constant from

1

G̃(η)
≡ 1

G

ã2(η)

a2(η)
(3.75)

we can rewrite eq. (3.74) as

SRT
2 [h] =

∑
A

∫
d3xdη

1

32πG̃(η)
a2 [∂ηhA∂ηhA − ∂khA∂khA] . (3.76)

Thus, as far as tensor perturbations are concerned, at the quadratic level the RT model can
be obtained from GR with the replacement G → G̃(η). Note that G̃(η) plays the role of an
effective Newton’s constant for tensor perturbations only. As we saw in section 3.2.2, scalar
perturbations are governed by a different effective Newton’s constant, that we denoted as
Geff(η, k), and which, contrary to G̃(η), depends also on the wavenumber k.

Repeating the above derivation of the energy-momentum tensor of GWs, eq. (3.71)
becomes

tµν =
1

16πG̃(η)

∑
A

〈∂µhA∂νhA − gµν
1

2
gρσ∂ρhA∂σhA〉 , (3.77)

simply because the variation δS2[h]/δḡµν is insensitive to the time dependence of G̃(η). The
energy density ρgw = t00 is then given by

ρgw =
1

16πG̃(η)

1

a2

∑
A

〈(∂ηhA)2〉 . (3.78)

Notice that the 1/a2 factor comes from the transformation from tηη to ttt, i.e. from the relation
dt = adη. This is determined by the FRW background metric, so it still involves a rather than
ã. In contrast, hA ∝ sin(kη + α)/ã and therefore now, for kη � 1, ∂ηhA ∝ k cos(kη + α)/ã,
which replaces eq. (3.73). Again, the term cos2(kη + α) averages to 1/2, so in the end the
time dependence of ρgw is

ρgw ∝
1

16πG̃(η)

1

a2ã2
=

1

16πG

1

a4
. (3.79)

Therefore, once taken into account the fact that the modification of the Einstein equations
implies also a modification of the formula for the GW energy-momentum tensor, we find

37More precisely, this is the action that reproduces the linearized equations of motions of the RT model,
after having substituted the auxiliary fields with their own solutions of the equations of motion. It is therefore
a ‘reduced’ action for the hA variables only.
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that, in FRW, the GW energy density of the RT model still scales as 1/a4, despite modified
GW propagation. Therefore, the energy density still corresponds to that of an ensemble of
massless gravitons, whose number density in comoving coordinate is constant (so that the
number density in physical coordinates scales as 1/a3) and whose energy scales as 1/a. From
the derivation, it is also clear that this result is not specific to the RT model, but holds for
any modified gravity model where the equation of tensor perturbations can be written in
the form (3.50). Notice also that the redshift of the graviton frequency ω ∝ 1/a, or of the
wavelength as λ ∝ a, are kinematical properties that depend only on the background metric,
and are the same in GR and in the RT model. As discussed in [165], in the RR model again
ρGW ∝ 1/a4, and in this case the effective Newton constant G̃ for the tensor perturbations
is the same as the effective Newton’s constant Geff in the scalar sector.

This result also gives useful guidance for attempts at deriving the RT model from a
fundamental local theory. In particular, it rules out the possibility that the RT model could
be derived from a theory with extra dimensions in which gravitons are lost to a higher-
dimensional bulk, see the discussion in section 2.4.2, and rather points toward the dynamical
mass generation mechanisms discussed in section 2.4.3.

3.6 Comparison with the sensitivity of current and future GW detectors

We next compare the predictions for modified GW propagation of the RT model with the
sensitivities of current and future GW detectors, elaborating on the analysis in [115, 165,
203, 204] for ground-based detectors and in [191] for LISA.

3.6.1 The Advanced LIGO/Virgo/Kagra network

We first consider the network of second-generation (2G) GW detectors formed by Advanced
LIGO Hanford and Livingston, Advanced Virgo, KAGRA and LIGO India (HLVKI), as-
sumed to be all at target sensitivity. In [203] mock catalogs of binary neutron stars (BNS)
detections have been produced for this network, using state-of-the art models for the cos-
mic star formation rate, for the extra-galactic population of neutron star binaries and for
the delay between binary formation and merger [205–214], and fixing the overall normal-
ization using the local coalescence rate estimated from the O1 LIGO observation run and
the O2 LIGO/Virgo observation run [215]. Assuming a duty cycle of 80% and a network
SNR threshold level ρthreshold = 12, it was found that the HLVKI network will detect be-
tween O(60) and O(80) BNS/yr, depending on the assumptions on star formation rate and
distribution of neutron star masses. Of these, only about 1–2 events per year are expected
to have a detected gamma ray burst (GRB) counterpart, assuming that Fermi-GBM can
make a coincident detection and that Swift can slew to the combined GW/GRB error box
and identify an X-ray counterpart. More electromagnetic counterparts could in principle be
detected with just optical/IR/UV telescopes, without a GRB trigger, although their number
is more difficult to estimate.

A sample catalog of simulated GW-GRB coincidences is given in table 6 (from table 23
of [203]) which shows 15 joint GW-GRB coincidences detected in 10 years of simulated data.38

The first three columns of the table show the redshift of the source, which has been extracted
randomly from the appropriate distribution, its luminosity distance (which, being measured
from the GW signal, is in principle a GW luminosity distance, d gw

L , if we do not assume

38Such a long time span is somewhat optimistic, but, given the rate of 1–2 joint GW-GRB events per year,
is necessary to build a statistically significant sample.
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z dgw
L (Mpc) ∆dgw

L (Mpc) ∆dgw
L /dgw

L ∆δ(0)

0.029271 134.815 4.000 0.030 1.36

0.035195 157.475 5.636 0.036 1.30

0.060585 283.567 18.706 0.066 1.25

0.066283 316.373 14.509 0.046 0.84

0.071053 327.381 20.085 0.061 1.00

0.071730 342.952 16.957 0.049 0.83

0.076180 341.595 22.360 0.065 0.99

0.081819 418.469 30.238 0.072 1.00

0.088698 396.734 25.757 0.065 0.84

0.091869 402.590 34.170 0.085 1.03

0.094237 406.423 31.472 0.077 0.93

0.095288 432.996 36.423 0.084 0.99

0.099956 491.071 31.721 0.065 0.75

0.102531 461.627 36.858 0.080 0.88

0.114869 626.939 43.010 0.068 0.68

Table 6. The events in a given realization of the mock catalog of joint GW-GRB detections for the
HLVKI network, over 10 yr of simulated data. The ‘measured’ luminosity distance is obtained from
the redshift assuming ΛCDM as fiducial model, and scattering randomly the fiducial values of dgw

L (z)
according to a Gaussian distribution with a width equal to the error ∆d gw

L (z) (from ref. [203]). In
the last column we give the corresponding error on the measurement of δ(0) from each single source,
assuming a 1% error on the electromagnetic luminosity distance.

GR), and the expected observational error on the luminosity distance ∆d gw
L (which depends

on the network sensitivity and on the source orbital inclination and position in the sky with
respect to the network, also extracted randomly). The ‘measured’ value of d gw

L (z) is obtained
from the redshift assuming ΛCDM as fiducial model, and scattering randomly this fiducial
value according to a Gaussian distribution with a width equal to the error ∆d gw

L (z). From
the fourth column we see that, for the sources at the lowest redshifts, d gw

L can be measured
to (3− 4)% accuracy (depending in particular on the source inclination and position in sky
with respect to the network), while, for the largest redshifts in the catalog, around z ' 0.1,
the accuracy on d gw

L is about (7− 8)%.39

For sources at small redshift, as appropriate for the values of z in table 6, eq. (3.56)
becomes

d gw
L (z)

d em
L (z)

= 1− zδ(0) +O(z2) , (3.80)

so in this limit we are actually sensitive to δ(0) ≡ δ(z = 0). The comparison between the
predictions of a model and the data can therefore be performed without making use of any
parametrization for d gw

L (z)/d em
L (z), and simply comparing directly the predictions of the

39For comparison, GW170817 was at z ' 0.01 and its luminosity distance, as measured from the GW
signal, was d gw

L = 40+8
−14 Mpc [216]. The corresponding value of ∆d gw

L /d gw
L , of order 27%, is much larger

than those in table 6, because it reflectes the detectors sensitivities during the O2 run, while in table 6 the
five detectors are taken at target sensitivity. Furthermore, the event was near a blind spot of Virgo, so Virgo
could contribute to the source localization but not to the estimate of the other source parameters, so only the
two LIGO detectors contributed to the estimate of dL.
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model for δ(0) with the expected error on d gw
L (z)/d em

L (z). For the RT model, with different
values of ∆N , the predictions for δ(0) were given in table 5.

Observe that, in eq. (3.80), the deviation of d gw
L (z)/d em

L (z) from 1 is proportional to z.
Limits on δ(0) from GW170817 were obtained in [165]. In this case, given the small redshift
z = 0.01, it is clear that one cannot obtain stringent limits, and the best result found in [165]
was δ(0) = −7.8+9.7

−18.4.40 Let us now estimate the observational error on δ(0) that could
be obtained from individual detections with characteristics such as those in table 6. From
eq. (3.80),

∆δ(0) ' 1

z

[
∆d gw

L

d gw
L

+
∆d em

L

d em
L

]
. (3.81)

The relative error on d gw
L is given in table 6. For the relative error on d em

L we observe that,
given a measurement of the redshift from an electromagnetic counterpart, d em

L is in principle
determined by the fiducial cosmology, and in particular, at these redshifts, by the value
of H0. From table 2, the error ∆H0/H0 is below the 1% level (and one can imagine that
this accuracy will further improve in the next few years).41 Note also that the redshifts in
table 6 are sufficiently large that the peculiar velocity of the host galaxy, typically of order
v ∼ 200 km/s, gives a small error on the determination of the cosmological redshift, that
can be neglected. So, we assume for definiteness a relative error ∆d em

L /d em
L = 1% for all

the events shown in table 6 (since this is in any way subleading with respect to the error
on ∆d gw

L /d gw
L , the precise value assumed is not very important). In this way we obtain the

estimates for ∆δ(0) given in the last column of table 6. We see that the accuracy obtained
from the various individual detections are quite comparable in this range of redshift, with on
average slightly more accurate measurements at higher redshift, since the average increase of
the observational error ∆d gw

L /d gw
L with redshift is more than compensated by the factor 1/z

in eq. (3.81).

The error σ obtained combining the errors σi of the individual measurements is given as
usual by 1/σ2 =

∑
i 1/σ2

i . Comparing with table 5, we see that the prediction δ(0) ' −1.11
of the RT model in the large ∆N limit could be detected at the 3σ level with about 9 BNS
with counterpart, which could be collected in 6 years of data taking. Verifying the predictions
for smaller values of ∆N would require more data, but in any case beyond this point one
would enter in a regime where a detection of δ(0) is in principle possible already at 2G
detectors. Of course, the estimate of the number of detected electromagnetic counterparts is
subject to uncertainties in the modelisation of the emissions mechanism, that will hopefully
be further clarified by the ongoing and future LIGO/Virgo/KAGRA observational runs.
Another interesting possibility is given by the detection of NS-BH binaries. These can be
seen to larger distances, because of the higher BH mass, and would therefore be very useful for
testing modified GW propagation. Theoretically, it is not known whether NS-BH coalescences
have a significant electromagnetic emission. Currently, a few NS-BH candidates have been
reported in the O3 LIGO/Virgo run (see https://gracedb.ligo.org), but apparently no
counterpart has been observed. The other option that should be explored is the possibility of

40The recently announced detection, GW190425 [217], has a redshift z = 0.03+0.01
−0.02 (assuming ΛCDM). The

event is classified as a NS-NS, although the possibility that one or both binary components of the system are
BHs cannot be ruled out from the GW data. No counterpart has been observed to date. The event has very
poor angular localization because it was confidently detected only in a single detector.

41Of course, a crucial issue here is the discrepancy between the value of H0 obtained from CMB+BAO+SNe
in ΛCDM (or in the RT model, which is very close) and the value from local measurements [137, 138]. Here
we perform our estimates assuming the value of H0 and ∆H0 from CMB+BAO+SNe.
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using BNS without counterparts to learn about modified GW propagation, using statistical
methods, such as those based on a probabilistically assignment of the host galaxy [167]
(see [174] for recent Bayesian approach tuned to 2G detectors), or on the fact that the NS
mass function is relatively narrow [176, 177].

A more accurate way of estimating the sensitivity to modified GW propagation, that
fully accounts for the partial degeneracies of δ(0) [or of (Ξ0, n)], with the other cosmological
parameters, and in particular with H0, ΩM and the dark energy equation of state [at least as
described by the w0 or (w0, wa) parameters], is to run a MCMC where the above catalog of
mock GW detections is used in conjunction with CMB, BAO and SNa data. This has been
performed in [203], where it was found that, fitting the simulated data with the parametriza-
tion (3.62) (where we set for definiteness n ' 2.5), with the above 15 mock detections the
HLVKI network would determine Ξ0 to an accuracy ∆Ξ0 ' 0.125. From eq. (3.65), this
implies ∆δ(0) ' 0.31, to be compared with the value ∆δ(0) ' 0.24 found by combining the
error of all 15 mock measurements of δ(0) in table 6 according to 1/σ2 =

∑
i 1/σ2

i . No-
tice that, while the MCMC takes into account more accurately the degeneracies with the
other cosmological parameters, which is what eventually leads to a slightly larger estimates
of ∆δ(0), its chains converge only with a sufficiently large set of mock GW events (which
is the reason why in [203] was used a catalog corresponding to 10 yr of data taking). In
contrast, the simpler estimate of ∆δ(0) presented in table 6 gives an idea of the contribution
of individual detections, as a function of redshift.

As already pointed out in [115], the above results also have potentially important impli-
cations for the search of the electromagnetic counterpart to a GW detection, since they imply
that the actual electromagnetic luminosity distance of the source, and hence its redshift, will
be different from that inferred from the GW detection assuming GR. Indeed, if the correct
theory is ΛCDM, given a best-fit value value D of the luminosity distance to the source
measured with GWs, the corresponding best-fit value of the redshift zΛCDM is predicted to
be given by

d em
L (zΛCDM) = D . (3.82)

In contrast, if the correct description of Nature is given by the RT model, the best-fit value
for redshift of the source, zRT, is given by

d gw
L (zRT) = D . (3.83)

Combining these relations we can determine the function zRT(zΛCDM). In the left panel of
figure 20 we show ∆z ≡ zRT− zΛCDM as a function of z ≡ zΛCDM, for the minimal RT model
and for RT with ∆N = 34, 50, 64, 100. The right panel shows the result up to z = 3, which
is relevant for BNS at the Einstein Telescope (see section 3.6.2) and, up to z ' 1, for NS-BH
binaries at the HLVKI network. The left panel provides an enlargement of the region up to
z = 0.2, which is the range relevant for BNS at 2G detectors. At z < 0.2, for individual
detections the difference ∆z in the theoretical prediction of the redshift will be of the order of
the error box induced by the observational error on d gw

L , as it is clear from the fact that the
observational errors on δ(0) in table 6 are of the order of the prediction of the RT model with
large ∆N . For larger values of z, the difference can, however, become very significant. This
plot is another way to present the prediction of the RT model, complementary to figure 15.
It’s relevance is particularly clear for the search of the counterpart with telescopes. For
instance, from the right panel of figure 20 we see that, for a GW event for which ΛCDM
would predict a redshift z = 3, the RT model with very large ∆N predicts that telescopes
should rather search for the counterpart by targeting galaxies at z ' 2.
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Figure 20. The change in the actual redshift of the source ∆z ≡ zRT − zΛCDM, compared to the
ΛCDM prediction zΛCDM, as a function of z ≡ zΛCDM, for the minimal RT model (blue solid line) and
for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed), ∆N = 64 (cyan, dotted)
and ∆N = 100 (black solid line). Left panel: in the range z < 0.2, relevant for BNS at 2G detectors.
Right panel: up to z = 3.
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Figure 21. Gaussian process reconstruction of d gw
L /d em

L , using the RT model with ∆N = 64 as
fiducial cosmology, using GW events at the HLVKI network with GR counterpart for d gw

L , and DES
supernovae for d em

L . The blue and light blue regions correspond to 68% and 95% confidence levels,
respectively. From [204].

Finally, it is also interesting to see how well one can reconstruct the ratio d gw
L (z)/d em

L (z)
from the data, without assuming any parametrization for it, such as eq. (3.62). This can be
done using the technique of gaussian processes, that allows the reconstruction of a function
directly from the data. Several applications of gaussian processes in cosmology have been
discussed in [179, 218–226]. In [204] this technique has been applied to the reconstruction of
d gw
L (z)/d em

L (z). For d gw
L has been used the same catalog of mock joint GW-GRB detections

shown in table 6, where the GW events are detected at the HLVKI network and the GRB
counterparts are observed by Fermi-GBM and Swift. For d em

L (z) were considered simulated
measurements from DES supernovae, with the data generated as in [223], with a redshift
range 0.05 < z < 1.2, and the errors on d em

L estimated as in [227]. Figure 21 shows the result
of the reconstruction; we see that, with these datasets, the prediction of the RT model with
∆N = 64 (used as fiducial in the figure) is very clearly distinguished from the prediction
d gw
L (z)/d em

L (z) = 1 of ΛCDM.

3.6.2 3G detectors: Einstein Telescope and Cosmic Explorer

We next consider third-generation (3G) ground-based interferometers currently under study,
such as the Einstein Telescope (ET) in Europe [228] and Cosmic Explorer (CE) in the US [229,
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230], that could start to be operative in the mid 2030s. These detectors will have the
potential of exploring the Universe with GWs to truly cosmological distances, guaranteeing
an extraordinary output in astrophysics, cosmology and fundamental physics [231, 232].

For instance ET, even as a single detector, with be able to detect the coalescence of
compact binaries with total mass (20 − 100) M�, as typical of BH-BH or BH-NS binaries,
up to redshift z ∼ 20 and higher. By comparison, in the catalog of detections from the O1
and O2 Advanced LIGO/Virgo runs, the farthest BH-BH event is at z ' 0.5 and, at final
target sensitivity, 2G detectors should reach z ' 1. The corresponding rates will be of order
106 events per year. For binary neutron stars, ET will detect them out to z ' 2− 3, which
allows us to reach the peak of the star formation rate and therefore detect the vast majority
of coalescing BNS throughout the Universe; by comparison, at final target sensitivity, 2G
detectors should reach z ' 0.2. The expected rate of BNS at ET was computed in [203]
using state-of-the art models for the formation and evolution of neutron star binaries, and is
found to be between 6.2 × 104 and 6.9 × 104 events per year, having assumed a duty cycle
of 80%. This corresponds to (0.8 − 0.9) × 105 events in one year of actual data.42 In order
to use these BNS as standard sirens one either needs an electromagnetic counterpart, or one
must use statistical methods. Here we focus on BNS with electromagnetic counterparts. We
consider for definiteness mock catalog for ET, but similar estimates hold for CE.43

Refs. [203, 233] have estimated estimated the expected number and the redshift distri-
bution of coincidences between GW events at ET and the electromagnetic signal observed at
a GRB detector with the characteristics of the proposed THESEUS mission [234, 235], that
could be in operation at the same time as 3G detectors. Depending on the assumptions made,
the estimated number of joint GW-GRB detections is between O(15) and O(50) per year. In
table 7 (from [203]) we show some properties of a sample catalog, obtained assuming 10 yr of
data taking. More counterparts could be obtained from future large telescopes that will be
able to monitor large regions of the sky from the radio, optical to the X-ray (see [232, 236]
for discussion), although realistic estimates are difficult to obtain because they also depend
on issues such as the prioritization that will be given to the follow-up of GW signals.

We can now estimate the accuracy that can be obtained on modified GW propagation
from individual events such as those in table 7. In the lowest redshift bin, say z <∼ (0.1−0.2),
we are in a situation similar to that studied above for 2G detectors, and we can use δ(0)
as observable. However, now ∆d gw

L /d gw
L is below 1%, and one can also easily imagine that,

by the time ET will be operative, the accuracy on H0 will have further improved, so we
assume ∆d em

L /d em
L = 0.5%. We then find that each single event with counterpart at, say,

z = 0.2, will allow us to measure δ(0) to an accuracy of about 0.15− 0.20. Comparing with
the predictions in table 5, we see that just one event will be sufficient to detect at 5σ the
predictions of the RT model with large ∆N !

For sources at not too small redshift, we must rather use the full expression (3.62).
According to table 5, we fix n = 2 (the precise value has limited importance for the analysis)

42Previous estimates for BNS [172] were slightly higher, O(105 − 106) BNS/yr. This is partly due to the
fact that in [203] has been used a threshold of 12 for the network SNR, obtained by combining the three arms
of ET, while previous work typically used a threshold of 8.

43Cosmic Explorer can reach a much greater distance for BNS, up to z ' 8. However, since the peak of the
star formation rate is at z ∼ 2− 3, most of the coalescing BNS will be seen already at the distances accessible
to ET. Furthermore, beyond z ∼ 1.5− 2 it will be very difficult to detect an electromagnetic counterpart even
with a GRB. Thus, for BNS with counterpart the estimates for CE will be basically the same as for ET. See
also [203] for the prediction of BNS rates in a network with two CE and one ET detector.

– 63 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

redshift number of joint mean mean

bin GW-GRB events redshift ∆d gw
L /d gw

L ∆Ξ0

(0 , 0.1) 4 0.07108 0.00868 0.11

(0.1 , 0.2) 24 0.15001 0.01784 0.09

(0.2 , 0.3) 24 0.24043 0.02558 0.09

(0.3 , 0.4) 27 0.35355 0.03529 0.09

(0.4 , 0.5) 28 0.44966 0.04843 0.10

(0.5 , 0.6) 9 0.53785 0.05646 0.10

(0.6 , 0.7) 14 0.64540 0.05329 0.09

(0.7 , 0.8) 13 0.73793 0.05493 0.09

(0.8 , 0.9) 8 0.85497 0.06413 0.10

(0.9 , 1.0) 4 0.93702 0.06257 0.09

(1.0 , 1.1) 6 1.05334 0.06494 0.09

(1.1 , 1.2) 3 1.15162 0.06749 0.09

(1.2 , 1.3) 1 1.25943 0.07373 0.10

(1.3 , 1.4) — – — —

(1.4 , 1.5) 2 1.45375 0.07851 0.10

(1.5 , 1.6) 1 1.58407 0.07577 0.09

(1.6 , 1.7) 1 1.62843 0.07947 0.10

Table 7. Number of event and mean value of the observational error ∆d gw
L /d gw

L in different redshift
bins, for a specific realization of the catalog of joint GW-GRB detections, assuming 10 yr of data
(from [203]). In the last column we give an estimate of the error on Ξ0 from an individual source in
the given frequency bin.

and keep only Ξ0 as the parameter labeling the predictions. From eq. (3.62),

∆d gw
L

d gw
L

+
∆d em

L

d em
L

= ∆Ξ0

(
1− 1

(1 + z)n

)
. (3.84)

Setting for definiteness ∆d em
L /d em

L = 0.5%, for a single source with a redshift given by
the third column in table 7 and a value of ∆d gw

L /d gw
L as in the fourth column, we get

the accuracy ∆Ξ0 given in the last column. We see that, independently of redshift, each
individual detection would provide a measurement of Ξ0 at the (9 − 10)% level. Thus,
the predictions for Ξ0 given in table 5, that for large ∆N differ by the GR result by as
much as 80%, could be tested at more than 5σ with just a single joint GW-GRB detection.
Combining the errors on Ξ0 from each of the 169 events in table 5 (taking into account the
number of events per bin) we get an overall error ∆Ξ0 ' 0.7%. This agrees with the result
obtained in [203], using the full catalogs corresponding to 10 yr of data, and performing a
MCMC to take into account more precisely the degeneracies with H0, ΩM and w0 (and using,
conservatively, the current datasets on CMB, BAO and SNe), where it was found that Ξ0

can be determined to an accuracy of 1%. Clearly, with respect to the size of the deviation of
Ξ0 from the GR value, which can be as large as 80%, this is a remarkable precision.

Figure 22 shows the result of a gaussian process reconstruction of d gw
L (z)/d em

L (z) using
mock ET and DES catalogs, using as fiducial the RT model with ∆N = 64. We see that,
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Figure 22. As in figure 21, using the mock ET and DES catalogs for the RT fiducial cosmology.
From [204].

for a deviation from GR of this size, d gw
L (z)/d em

L (z) would be reconstructed with exquisite
precision, allowing not only to prove GR wrong on cosmological scales, but also to pinpoint
with accuracy the properties of the alternative model, in this case the parameter ∆N that
characterizes the RT model.

3.6.3 LISA

A study of the accuracy to Ξ0 that could be obtained with the space interferometer LISA
has been presented in [191]. In this case the coalescences of supermassive BH binaries plays
the role of standard sirens, since they are believed to merge in a gas rich environment that is
expected to power electromagnetic emission, resulting in a detectable electromagnetic coun-
terpart. The corresponding mock catalogs were generated by using advanced models for
galaxy formation and merger, and different scenarios for the seeds of the massive black holes
and for the delays between galaxy merger and massive black hole merger, resulting in three
main scenarios (heavy seeds and no delay, heavy seeds with a specific prescription for the
delay, and light seeds due to pop III stars). For each scenario were simulated 22 catalogs
corresponding to the nominal 4 yr of the LISA mission. For each catalog was then performed
a quick Fisher matrix cosmological analysis assuming ΛCDM, and was then selected, for each
scenario, the median catalog among all ranked 22 catalogs as the representative catalog for
the corresponding astrophysical model. The corresponding catalogs had 32, 12 and 9 sources
for heavy seeds and no delay, heavy seeds with delay, and light seeds, respectively. On these
catalogs, were then run full MCMC to constrain Ξ0, including again CMB, BAO and SNe
to reduce the degeneracies with ΩM , H0 and w0. Furthermore, two different assumptions
on the accuracy of the estimate of the source redshift were considered, and denoted as ‘op-
timistic’ and ‘realistic’, respectively. The resulting estimate was ∆Ξ0 = (1 − 2)% with the
optimistic assumption on the estimate of the source redshift, and ∆Ξ0 = (2− 4)% with the
realistic assumption. In all cases, we are again in a situation where the predictions of the RT
model given in table 5, that for large ∆N differ from GR between 30% and 80%, are very
clearly detected.

While the contribution of a single source cannot be obtained from a MCMC (where a
large number of sources is obtained to get the convergence of the chains), it can be estimated
by comparing the results from catalogs with a different number of sources. For the realistic
scenario for the estimate of the source redshift, from table 2 of [191] we see that LISA
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Figure 23. zRT as a function of zΛCDM (left panel) and the difference ∆z = zRT − zΛCDM, as a
function of zΛCDM (right panel) for the minimal RT model (blue solid line) and for RT with ∆N = 34
(magenta, dashed), ∆N = 50 (green, dot-dashed), ∆N = 64 (cyan, dotted) and ∆N = 100 (black
solid line).

could measure Ξ0 with an error ∆Ξ0 ' {0.023, 0.036, 0.044} in the three catalogs containing,
respectively, N = {32, 12, 9} events. These numbers are well reproduced by [115]

∆Ξ0 ' 0.13/
√
N , (3.85)

so each SMBH event gives a measure of Ξ0 with an average accuracy of about 13%. Using
the optimistic scenario for redshift determination we rather get ∆Ξ0 ' 0.06/

√
N . Thus, even

a single SMBH event at LISA could be sufficient to detect the effect predicted by the RT
model with large ∆N .

As already pointed out in the discussion after eq. (3.83), another aspect of the effect
is that, if the RT model provides the correct description of Nature, the actual redshift of
the source, as determined through electromagnetic observation, would turn out to be very
different from that inferred from a measurement of d gw

L and interpreted using ΛCDM. For
LISA this effect is particularly remarkable since, as we see from figure 12 of [191], the mock
catalogs of supermassive BH binary coalescences observed at LISA include events up to z ' 6
and higher. This effect is shown in figure 23, where the left panel shows that redshift of the
source predicted by the RT model as a function of the redshift predicted by ΛCDM, and
the right panel shows the difference ∆z = zRT − zΛCDM, as a function of zΛCDM (i.e. the
same as figure 20, but on a range of redshifts appropriate to supermassive BH binaries at
LISA). For instance, for a given measurement of the luminosity distance through GWs for
which ΛCDM would predict, say, a redshift z = 6, the RT model with very large ∆N rather
predicts that the source will be found, by electromagnetic observations, at z ' 3.7, a rather
striking difference.

4 Conclusions

We have discussed in detail a modification of gravity on cosmological scales, summarizing
and extending previous work by our group. The model is based on a clear and well-defined
theoretical framework. Rather than introducing extra degrees of freedom, such as extra
scalar, vector or tensor fields, or extra polarization for the graviton, as in typical modified
gravity models, the basic idea is that long-distance modifications to the dynamics of gravity
are induced by infrared quantum effects in GR itself. This means that the proper tool is no
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longer the action of the theory but the corresponding quantum effective action. In quantum
field theory, at a fundamental level, actions are local functionals of the fields; however,
whenever the theory contains massless particles (such as the graviton in GR), or particles that
are light with respect to the relevant energy scale, the corresponding quantum effective action
also contains non-local terms. We have seen how, with non-local terms, we can construct
a mass term for a gauge field without violating gauge invariance, and mass terms for the
gravitational field that do not violate diffeomorphism invariance. Linearizing the theory over
flat space, we have seen that two independent mass terms can be constructed: one for the
conformal mode, and one for the transverse-traceless mode hTT

ij , see eq. (2.32). Our basic

assumption is that the conformal mode indeed becomes massive, while hTT
ij remains massless.

The idea that the conformal mode becomes massive (while hTT
ij stays massless) currently

has the status of a conjecture, which is difficult to verify from first principles since it involves
non-perturbative physics. Nevertheless, we have seen that numerical results from Euclidean
quantum gravity on the lattice and from causal dynamical triangulations, as well as analytic
computations using functional renormalization group equations, give some support for the
hypothesis of a dynamical mass generation. The fact that the resulting mass scale is indeed
associated to the conformal mode is also suggested again by numerical results from causal
dynamical triangulations, and by several arguments that show that the conformal mode is
the most problematic one in the infrared. Once one assumes the validity of this conjecture,
leading to the linearized action (2.33), the covariantization of this linearized nonlocal theory
leads quite naturally to two different possibilities, that we have called the RT and RR models.
We have seen that eventually the RR model is ruled out phenomenologically, while the RT
model (2.45) has been the main focus of our paper.

We have then explored in details the observational consequences of the RT model.
Constructing a model that fulfills all observational constraints and gives predictions testable
in the near future is in general very difficult, as has been learned from the explicit study
of several modified gravity models. Here, one should also appreciate that, once accepted
the underlying assumptions spelled out above, the theory is basically fixed (apart from the
two options given by the RR and RT model), and has the same number of parameters as
ΛCDM, with a new mass scale m replacing the cosmological constant (plus, as we have seen
for the RT model, a single constant ∆N which reflects all our ignorance on initial conditions).
Thus, the theory either is consistent with observations or it doesn’t. We do not have the
freedom of playing with arbitrary functions, as for instance in scalar-tensor theories of the
Horndeski type.

At the phenomenological level, the RT model turns out to have a number of remarkable
properties:

• Its cosmological solutions, at the background level, show an accelerated expansion at
the present cosmological epoch, without the need for a cosmological constant. In other
words, giving a mass to the conformal mode provides a possible explanation for the
observed accelerated expansion of the Universe and for the origin of dark energy.

• The fact that dark energy starts to dominate just at the present cosmological epoch
is obtained by choosing a value for the mass scale m, or, more precisely, for the scale
ΛRT ∼ (mPlm)1/2, which is the fundamental scale that is generated dynamically. In this
sense, the model does not solve the coincidence problem. However, even if ΛRT cannot
be predicted (just as we cannot predict the value of ΛQCD in strong interactions), the
required numerical value, of the order of the meV, is not particularly surprising from
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the point of view of quantum field theory (contrary, e.g., to theories that introduces
a fundamental mass scale of order H0 ∼ 10−33 eV). Furthermore, such a dynamically
generated mass scale is a renormalization group invariant, so there is no problem of
technical naturalness.

• Scalar perturbations over the FRW background are stable and remain small during the
whole cosmological evolution. This is already a non-trivial property, that has ruled
out many modified gravity models. Furthermore, the scalar perturbations of the RT
model are very close to those of ΛCDM, which in the end allows the model to fit current
cosmological data well, while still being potentially distinguishable with future missions.

• A full MCMC analysis shows that the model (for all values of ∆N) fits CMB, BAO,
SNe, measurements of H(z) and structure formation data at the same level as ΛCDM.

• The model reduces to GR at small scales, without the need of invoking non-linear
screening mechanisms, and therefore passes all the constraints from solar system and
laboratory experiments. It furthermore complies with the limit on the time variation of
the Newton’s constant from Lunar Laser Ranging. As we have seen, this is in general
non-trivial even when the static solution has the correct GR limit (and, indeed, it is
this bound that rules out the RR model).

• The sector of cosmological tensor perturbations (i.e. GWs propagating over a FRW
background) provides a great surprise. In the RT model GW propagation across cos-
mological distances is different from GR, so that the relation between the luminosity
distance extracted from a coalescing binary and the redshift is modified, giving rise to
the notion of ‘GW luminosity distance’ d gw

L (z). This has been found to be common
to all modified gravity models. What is remarkable for the RT model (in particular
for large ∆N) is the size of the effect, that, at the redshifts accessible to future GW
detectors such as third-generation ground based detectors such as Einstein Telescope
and Cosmic Explorer, or the space interferometer LISA, could lead to deviations from
GR as large as 80%. We have seen that, with these detectors, even the detection of a
single standard siren with electromagnetic counterpart would be sufficient to detect the
effect at more than 5σ. The effect is smaller at the redshifts accessible to the second-
generation network made by advanced LIGO/Virgo and KAGRA, but still could be
potentially within reach even at these detectors, over several years of data taking.
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A Difficulties of alternative nonlocal models

A natural question is whether it is possible to construct other nonlocal models that share
the good phenomenological properties of the RT model. We will see that, in fact, this is very
difficult, and this will allow us to better appreciate the results presented above. To organize
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the discussion, it can be useful to follow the path that actually lead to the formulation of the
RT model and of other variants, and see what conditions eliminated the various alternatives
(see also [22]).

A first nonlocal model associated to a mass scale was proposed, on purely phenomeno-
logical grounds, by Arkani-Hamed, Dimopoulos, Dvali, and Gabadadze [237] and consisted
in modifying the Einstein equations into(

1− m2

2

)
Gµν = 8πGTµν , (A.1)

where m is the new mass scale.44 This model was proposed to introduce the degravitation
idea, namely the idea the vacuum energy density, even if present, does not gravitate. In fact,
at least performing naively the inversion of the nonlocal operator, eq. (A.1) can be rewritten
as Gµν = 8πG (2−m2)−12Tµν . Therefore the low-momentum modes of Tµν are filtered out
and in particular a term in Tµν due to a cosmological constant does not contribute.

However, a drawback of eq. (A.1) is that the energy-momentum tensor is not automati-
cally conserved, since in curved space ∇µ does not commute with 2 and therefore with 2−1.
As a consequence, the Bianchi identity ∇µGµν = 0 no longer ensures ∇µTµν = 0. In [9]
it was then observed that it is possible to cure this problem by making use of the decom-
position (2.41) to extract the transverse part of the tensor 2−1Gµν . One can then modify
eq. (A.1) into

Gµν −m2
(
2−1Gµν

)T
= 8πGTµν , (A.2)

and energy-momentum conservation becomes automatic. However, the cosmological evolu-
tion of this model turned out to be unstable, already at the background level [20, 84], so
this model is not phenomenologically viable. This instability is due to the fact that, once
written the model in local form introducing some auxiliary fields, the latter have unstable
modes already during RD and MD (see in particular appendix A of [84]). Then, any small
deviation from the standard FRW solution will quickly be amplified and lead to a completely
different evolution, inconsistent with the observations. It was then realized in [20] that this
instability is related to the action of the 2−1 operator on a tensor such as Gµν or Rµν , and is
absent if it acts on a scalar such as R. This led to the RT model (2.45). Trying to work out
a similar model at the level of the quantum effective action, rather than of the equations of
motion, led to the RR model (2.46) [21], which, at least at the level of cosmology, shared all
good properties of the RT model. Its cosmological solutions were studied in detail in [21–23]
(see also [238] for a different branch of solutions).

A natural generalization of the RR model is given by the quantum effective action

Γ =
m2

Pl

2

∫
d4x
√
−g

[
R− µ1R

1

22
R− µ2C

µνρσ 1

22
Cµνρσ − µ3R

µν 1

22
Rµν

]
, (A.3)

where µ1, µ2 and µ3 are parameters with dimension of (mass)2, and Cµνρσ is the Weyl tensor.
This extension was studied in [239], where it was found that the term Rµν2−2Rµν is ruled
out since it gives instabilities in the cosmological evolution at the background level, again
due to the behavior of the auxiliary fields. The Weyl-square term instead does not contribute

44Actually, in [237] the model was presented as a modification of GR that is acausal on cosmological scales.
As we have discussed in section 2.3.3, causality is, however, preserved once this is understood as the equation
of motion derived from a quantum effective action for the in-in vacuum expectation value of the metric, which
automatically ensures that the Green’s function in the 2−1 operator is the retarded one.

– 69 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
0

to the background evolution, since the Weyl tensor vanishes in FRW, and it also has well-
behaved scalar perturbations. However, quite interestingly, it was ruled out by the fact that
its tensor perturbations are unstable, showing the the stability of perturbations is in general
a non-trivial requirement both in the scalar and in the tensor sector.

The realization that both models that survived, RT and RR, had the physical meaning
of a mass for the conformal mode [81] then suggested to focus the attention on models with
such a meaning. One interesting variant of the RR model is given by

Γ∆4 =
m2

Pl

2

∫
d4x
√
−g

[
R− m2

6
R

1

∆4
R

]
. (A.4)

where ∆4 is the Paneitz operator,

∆4 ≡ 22 + 2Rµν∇µ∇ν −
2

3
R2 +

1

3
gµν∇µR∇ν , (A.5)

and whose linearization over Minkowsli space is the same as the RT or RR models. This is the
operator that enters in the conformal anomaly in four dimensions and, from the point of view
of conformal invariance, is the natural generalization of the d’Alembertian from two to four
dimensions. This model had a viable cosmological evolution [240], although its prediction for
the equation of state of DE, w0 ' −1.31, already seemed off with respect to the observations,
as was indeed confirmed from a MCMC analysis in [23]. In any case, what definitely ruled out
the model was the realization that, in the tensor sector, it predicts a speed of GWs different
from the speed of light [23]. These examples show that the requirements of having a viable
background evolution, stable scalar perturbations, good fit to the cosmological observations,
stable tensor perturbations, and cgw = c, all provide non-trivial tests, potentially able to rule
out a model.

Finally, as we mentioned in section 3.4.2, limits on the time variation of Newton’s
constant ruled out also the RR model [157, 161]. The detailed analysis in [161] is very
general, and makes it clear that the same situation will happen in any nonlocal model in
which the effective Newton’s constant at short scales depends on the auxiliary fields of the
theory. This therefore applies also to models of the form

Γ =
m2

Pl

2

∫
d4x
√
−g

[
R−

(
m2

2

)n
R

]
, (A.6)

corresponding to a running of Newton’s constant, that have been studied, at the level of
background evolution, in [241] for n = 1 and in [242] for n = 2, where it was found that their
cosmological evolution appears to be in principle viable, at least at the background level (in
particular the model with n = 1 has an evolution very close to that of the RR model, up
to the present epoch). In contrast, we have seen that the RT model passes the LLR limit
because at short scales Geff loses any dependence on the auxiliary fields and reduces to G,
see eq. (3.28).

Last but not least, a different but related line of research is given by non-local models
that are not associated to a mass scale, and whose development predated that of the non-
local models associated to a mass scale on which we have focused. The underlying physical
motivation is again that IR divergences could generate, through non-perturbative effects, the
relevant nonlocal terms in the quantum effective action. The first nonlocal gravity model of
this type was proposed by Wetterich [243], and was based on the quantum effective action,

Γ =
m2

Pl

2

∫
d4x
√
−g

[
R− λR2−1R

]
. (A.7)
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Since 2−1R is dimensionless, the associated constant λ is also dimensionless. The model,
however, did not produce a viable cosmological evolution [243]. Deser and Woodard [25, 27]
(see [244] for review) considered a more general nonlocal model of the form

ΓDW =
m2

Pl

2

∫
d4x
√
−g

[
R−Rf(2−1R)

]
, (A.8)

with f(X) a dimensionless function, which was tuned so to obtain the desired background
evolution. Requiring that the cosmological evolution closely mimics that of ΛCDM leads to
a function well-fitted by [245]

f(X) = 0.245
[
tanh

(
0.0350(X + 16.5) + 0.032(X + 16.5)2 + 0.003(X + 16.5)3

)
− 1
]
,

(A.9)
for X ≡ 2−1R < 0. To comply with solar system constraints, the proponents of the model
set f(X) = 0 for X > 0. The argument suggested in refs. [27, 244] for this choice was that
in a cosmological setting (where the time derivative dominates) X ' (−∂2

t )−1R is negative
because of the minus sign in −∂2

t , while it is positive in the regime dominated by structure
formation, where the spatial derivatives dominate and X ' (∇2)−1R. It was however shown
in [161] that this is not correct, and X is always negative, even in a static situation. Thus, the
Deser-Woodard model lacks a screening mechanism and is ruled out by the comparison with
observations at the solar system scale. In [246] then Deser and Woodard proposed a variant
of their model constructed with a function f(Y ) of the variable Y = 2−1gµν∂µX∂νX, where
again X = 2−1R, which indeed changes sign between static and time-dependent solutions,
and again postulated that f(Y ) = 0 for Y < 0. The consequences of the model have not been
throughly investigated, in particular stability of the solutions, etc.; however, apart from a
certain convolutedness of the model, one can anticipate potential problems with LLR similar
to those that ruled out the RR model.
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