Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

© 2020. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

https://doi.org/10.1088 /1538-3873 /ab7ee8

CrossMark

An Algorithm for Coordinate Matching in World Coordinate Solutions

Joseph E. Postma and Denis Leahy
Dept. of Physics & Astronomy University of Calgary, 2500 University Dr NW Calgary, Alberta, T2N 1N4, Canada; jpostma@ucalgary.ca, joepostma@live.ca,
leahy @ucalgary.ca
Received 2020 January 13; accepted 2020 March 11; published 2020 April 8

Abstract

Algorithms for point source extraction and catalog-to-image coordinate matching for world coordinate solutions
are presented. In particular the coordinate matching algorithm is lightweight, simple to understand, easy to code,
and solves orders of magnitude more quickly than existing solutions to this common astrometric problem.

Key words: Astronomical coordinate systems — Astrometry — Astronomy software

Online material: color figure

1. Background

The Flexible Image Transport System or FITS file has been
developed as a digital image storage format within astronomy
since 1981 (Wells et al. 1981). Significant periods of
development of the FITS format have been ongoing (Greisen
& Harten 1981; Grosbgl et al. 1988; Harten et al. 1988; Cotton
et al. 1995). Standardization for the representation of image
pixel coordinates as sky coordinates has also been developed
for the FITS format (Calabretta & Greisen 2002; Greisen &
Calabretta 2002; Greisen et al. 2006).

After the launch of UVIT (Kumar et al. 2012), CCDLAB
(Postma & Leahy 2017) was developed into a data-reduction
pipeline for the mission as described in the CCDLAB paper.
The in-orbit nature of the ASTROSAT (Rao et al. 2009)
satellite carrying UVIT is such that the UVIT telescopes are
randomly rotationally oriented relative to the sky for any given
observation. It then becomes necessary to form world
coordinate solutions (WCSs, but sometimes World Coordinate
System) so that objects in the final science images can be given
accurate sky coordinates, and so that the centroid data can be
de-rotated and axially aligned with sky coordinates. The WCS
solver found at astrometry.net (Lang et al. 2010) was most-
often found to not work for solving WCS for the far-UV UVIT
images, likely because the detection wavelengths of UVIT
FUV image data are sufficiently incommensurate with the
catalogs used by that package. When we contacted relevant
developers for discussion on the methods for performing WCS
solutions, one response was: “Only two or three people in the
world truly understand this process.” Thus, we have sought to
make the process more clear in the current manuscript, and we
provide the algorithm and code for a reasonable and simple
automated solution.

The unique detector system of UVIT required extensive
interactive development during the engineering phases of the
system build (Hutchings et al. 2007; Postma et al. 2011). It was

necessary to test the UVIT detector system’s field-program-
mable-gate-array implementation of point-source-extraction
(PSE) centroiding against a software implementation of the
same algorithm. Thus, it was necessary to implement the PSE
algorithm into CCDLAB so as to operate on integration-mode
images from UVIT. The PSE algorithm will be described at
length given that coordinate extraction from images is the one
of the inputs to a WCS solution; it is simple, fast, reliable, and
parallelizable (although it was not parallelized in the UVIT
FPGA code), and of course functions on any 2D image data
array.

The algorithms are parallelizable and thus scale with
increasing thread count, are fast, and will be discussed at
length. They are currently implemented in CCDLAB and as of
writing are being coded into a stand-alone dynamic-link-library
for Microsoft.Net, which is utilizable by Python. The library
along with all Visual C++ code should eventually appear on
the NASA FITS Support Office (https://fits.gsfc.nasa.gov/)
under the FITS I/O libraries link as “JPFits.” Contact the
author for code samples or questions about implementation,
etc.

2. Point Source Extraction

The algorithm for PSE from full-frame UVIT image data has
been discussed previously (Postma et al. 2011), but we shall go
over it again in more detail and with some improvements which
are possible in software code rather than in an FPGA
implementation, such as parallelization. There are many other
existing implementations of source extraction, for example
sextractor (https://www.astromatic.net/software /sextractor)
or IRAF (http://ast.noao.edu/data/software), however we
have continued with the algorithm as developed for UVIT
given its simplicity and its speed and because it already existed
in CCDLAB to build off of to then use for the WCS algorithm.

mailto:jpostma@ucalgary.ca
mailto:joepostma@live.ca
mailto:leahy@ucalgary.ca
http://astrometry.net
https://fits.gsfc.nasa.gov/
https://www.astromatic.net/software/sextractor
http://ast.noao.edu/data/software
https://doi.org/10.1088/1538-3873/ab7ee8
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab7ee8&domain=pdf&date_stamp=2020-04-08
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab7ee8&domain=pdf&date_stamp=2020-04-08

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

We would like to scan an image for point sources, and return
the centroids and other metadata of said sources in a list. We
begin with two parameters of the source separation radius
(SSR) and the centroiding kernel radius (CKR), where the
minimum of the SSR is the CKR (SSR > CKR). We thus
begin scanning the image at pixel index [x =y = SSR], on a
pixel-by-pixel basis and thus in a nested for loop across each
dimension which can thus be parallelized. Although we call the
CKR a radius, the kernel is in fact a square and so a CKR equal
to 1 gives a 3 x 3 pixel sample, 2 gives a 5 x 5 pixel sample,
etc. A CKR equal to 0 gives a single pixel, and although a
single pixel may be tested for threshold value, it cannot be
centroided to sub-pixel accuracy. The CKR should be chosen
so that it covers most of the point-spread-function (PSF) of the
sources. Undersampled PSF’s which require sampling with
only a 3 x 3 kernel result in a systematic bias of the centroid
toward the center pixel which is called “fixed-pattern-noise” as
discussed in Hutchings et al. (2007), and so keep in mind
whether you are centroiding such sources and also require sub-
pixel centroid accuracy to better than one-third of a pixel, in
which case you will need to calibrate and correct said bias.
Otherwise, PSF’s which can be sampled with a 5 x 5 centroid
kernel (or larger) have negligible centroid bias. By “centroid-
ing” or “centroid” we mean a weighted-average coordinate
position given the weighting of pixel coordinates by the pixel
values.

We require a pixel value threshold (PVT) to test whether or
not a pixel is a possible source. We also add a total kernel value
threshold (KVT) to test whether the PSF sampled by the
centroid kernel is a possible source. These thresholds can be in
either pixel count native to the image, or, signal-to-noise which
allows for more generality and independence from the image
bit range, etc.

We thus also require the background to be subtracted either
from the image as a whole, or locally from each centroid
kernel. If an image is sufficiently background-subtracted then
the background is zero and does not require subtraction from
any pixel values; however if the background must be
determined locally for each centroid kernel, due to gradient
in the background or some existing offset from zero, then the
local background can be determined as, for example, the
second-minimum of the four corners of a square formed by the
SSR. That is, gather the pixel values at [x — SSR, y], [x + SSR,
vl, [x, y — SSR], [x, y + SSR], and determine the value of the
second-minimum as the local background. The idea here is that
the minimum pixel value will be systematically low, the
maximum pixel value will be high due to an adjacent source or
noise, the second-highest pixel value will likewise be high, and
the remaining second-minimum should have the highest
probability of representing the local background. It is of course
helpful here to have the SSR extend beyond the PSF. Of
course, variations upon this method of local background
determination may be utilized by any developer, such as using

Postma & Leahy

the median of an annulus around the source peak at some
distance, or the median or minimum of the SSR kernel itself,
etc. We use the corner method simply because it is trivial and
was found to be accurate to within 1% of a more robust
determination, which is sufficient for accurate weighted-mean
centroiding. With background determined or determinable,
PVT and KVT thresholds set, and SSR and CKR set, then one
simply scans through the image checking for locations which
satisfy the threshold criteria as will be discussed below.

It is helpful to create an integer-base source-index map of
identical dimensions to the image being analyzed, so that
locations in the image for which a source is found can be given
the integer index value for where the source is located in the
source list. That is, as sources are found, their metadata are
added to storage in an array list at some increasing index i
therein. The source index map should be initialized to —1, and
then when a source is found at some pixel location [x, y] in the
source image, which is then added to the source metadata list at
index i, all pixels within the (circular radius) CKR of [x, y] in
the source index map should be set to value i. This way, when
some arbitrary location [a, b] in the source image must be
checked to determine if a source had been located there by the
PSE, then location [a, b] in the index map will have value —1 if
no source was located there, and otherwise will have some
value i > O (for zero-based indexing code) where i can then be
used to index into the source list returned by the PSE in order to
gather the metadata (such as the centroid) for that source.

This algorithm functions well for images which do not suffer
from pixel saturation, such as the binned centroid-count images
from UVIT. However, many CCD imagers on telescopes are
direct-exposure cameras and bright sources in the detection
field can cause saturation of the well-depth of the pixels. For
example, the Baker-Nunn telescope at the University of
Calgary’s Rothney Astrophysical Observatory (Milone &
Clark 1996) has a 4°4 x 4%4 field of view imaged onto a
4096 x 4096 pixel CCD and is used for searching for transient
objects such as asteroids and comets (Cardinal et al. 2008), and
operating with its normal sixty-second integration time leaves
thousands of the brightest stars saturating the pixel wells just
below the maximum 2'¢ bit ADC value. In this case the
saturated brightest objects no longer form peaked profiles, but
form island plateaus (see Figure 1), and thus to properly detect
these plateaus and estimate their centroids requires a different
approach. Thus, with the expectation that the saturation levels
of the image are known, one can utilize a saturation threshold
value (STV) in combination with a recursive island-mapping
algorithm to map the saturated sources.

When we map the saturation islands we wish to record the
maximum and minimum axes coordinate values for each one so
that a kernel may then be formed around the island for
centroiding, and it is helpful to either set the saturation level or
extend those axes limits to include some of the wings of the
island for centroiding. The island-mapping algorithm

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May Postma & Leahy

!
Al il lllllh
l”‘l H”l’!d!lhlill‘ [

15

Figure 1. Saturated sources form islands (left), rather than unsaturated sources which form peaks (right). These require different algorithms to detect and accurately

centroid.
(A color version of this figure is available in the online journal.)

implemented in highly readable Visual C++ code is presented
is as follows:

void MAPSATURATIONISLAND (int X, int Y, int sourceindex, int &xmin,
int &xmax, int &ymin, int &ymax) {

SOURCE_INDEX_MAP[X, Y] = sourceindex;
if (X < xmin)

xmin = X;
if (X > xmax)
xmax = X;
if (Y < ymin)
ymin =Y
if (Y > ymax)
ymax = Y;

for(intx =X —1;x < =X+ 1; x++)
forinty=Y - Ly<=Y+ 15 y++)
if (SAFETOMAPSATURATION(x, y))
MAPSATURATIONISLAND(x, y, sourceindex,
Xmin, Xmax, ymin, ymax); }

bool SAFETOMAPSATURATION (int X, int y) {
return (x > = 0) && (x < IMAGEWIDTH) && (y > = 0) &&
(y < IMAGEHEIGHT) && (IMAGE]X, y] > PIX_SAT) && (SOUR-
CE_INDEX_MAP[x, y]l==—1);}

The MAPSATURATIONISLAND function would be called
for any pixel which exceeds the STV while scanning through
all pixels in an image.

Summary of the PSE Algorithm:

1. Create an integer-base source-index-map of equal
dimension to the source image to be scanned for point
sources. Initialize this map to —1 for all array values,
where —1 indicates no source.

2. If the image may have saturated sources, then first scan
the entire image checking for pixels which are above the
pixel STV.

1. If a saturated pixel is detected, use recursive island-
mapping to find all adjacent saturated pixels in the
vicinity.

2. Set the source-index-map of the currently found
saturated pixels to the current source index during
mapping.

3. Keep track of the minimum and maximum row and
column indices mapped out, and use these after the
mapping is finished to form a square kernel around the
saturated pixel group to then centroid the saturated
source. It is likely good to extend the range of the
minimum and maximum row and column indices
beyond the saturation threshold, such that the wings of
the saturated source are included in the centroid
calculation.

4. The scan of the image can be parallelized with
appropriate use of for example a critical directive (as
in the OpenMP nomenclature) and in order to assign
centroid metadata to lists which exist outside of the
parallelized loop.

1. For example, for the i’th source found, the new
i’th index in the source metadata lists might
contain the x-centroid, the y-centroid, the central
pixel amplitude, the total kernel amplitude, the
local background estimate, etc., and, all pixels in
the source index map which are currently mapped
by the island-finding algorithm in the source
image should be set to i.

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

9,1

5. Now proceed with the point-source extraction
algorithm.

. Choose an integer-valued SSR, an integer-valued CKR, a

PVT, a KVT, and a Boolean to indicate whether local

background determination is required.

1. One may also utilize maximum-value thresholds so
that sources which are above a specified brightness are
excluded from the scan results.

. Begin scanning the source image at [x = y = SSR] in a

nested for loop, which can be parallelized.

. If required, determine the local background at each pixel.
. Check if the [x, y] pixel amplitude (above background)

meets the pixel threshold; if not then continue to the next
iteration in the loop, i.e., the next pixel.

. Check if any other pixels within the SSR circle about [x,

y] are greater in value than the pixel at [x, y]; if any are,
then continue to the next iteration in the loop, i.e., the
next pixel. This way only the peak of the profile, or the
brightest source within the source separation circle, will
be a potential source.

1. At the same, one may also check whether any sources
have already been detected at that location within half
of the SSR, by checking if the source-index-map has
any non —1 values within said circle; if there are, then
continue to the next iteration.

. Check if the total centroiding kernel (either square or

circular can be used, but circular typically matches a PSF)
sum (background subtracted) is above the total KVT; if
not then continue to the next iteration in the loop, i.e., the
next pixel.

. If we have made it here then we have an i’th local

maximum source in the image within the SSR, and so

centroid the kernel centered on [x, y].

1. Here, the centroid calculation must be upon a square
centroiding kernel so that all rows and columns are
equally sampled among each other.

2. Use here for example a critical directive (as in the
OpenMP nomenclature) in order to assign centroid
metadata to lists which exist outside of the paralle-
lized loop.

1. For example, for the i’th source found, the i’th
index in the source metadata lists might contain
the x-centroid, the y-centroid, the pixel ampl-
itude, the total kernel amplitude, the local back-
ground estimate, etc.

3. Assign the integer i to all pixels in the source-index
map within the circular kernel radius of pixel [x, y].

4. Optionally, one might wish to save the centroid kernel
of the current point source as an independent file.

10. Finished.

Postma & Leahy

3. World Coordinate Solutions

The history of the FITS standards for WCSs (or system, but
generally, WCS) can be found in the papers referenced in the
introduction. We will remain consistent with that standard here.
What we shall discuss however is an algorithm for determining
the WCS solution when one has two lists of points which
should correspond but which differ due to a respective field
transformation, item entry position (sorting) in the list, and a
partially incommensurate population of items in the list. That
is, when performing a WCS, one will have a list of coordinates
from the image in pixel coordinates, and one will have a list of
coordinates from some catalog in sky or world coordinates (for
example R.A. and decl.). Typically, brightness or magnitude is
part of each entry’s metadata in such lists. The image pixel
coordinates would likely be extracted from PSE of sources in
the image, while the catalog could be from, say, the Gaia Data
Release 2 (Brown et al. 2018).

The perfect scenario would be where the n image coordinate
list entries match on a one-to-one basis the n entries in the
catalog, when, say, both lists are sorted by brightness. In this
case the list of image coordinates and the catalog list can be
directly fitted for the transformation parameters in a WCS
routine. Of course, this never happens. The hopeless scenario is
where none of the image sources match to anything in the
catalog, and this can happen often.

Practical considerations are that the list of image point
sources and the catalog list will generally not be sorted in a
matching entry-wise basis, even when sorted by brightness. At
the very least, the detection wavelengths for the image, and the
catalog, are likely going to be different, and different
wavelengths see different and dissimilar objects on the sky,
different structures in the same objects, and different bright-
nesses of the same objects, and the extracted entries from the
catalog may not correspond exactly to the area of sky captured
in an image. For example, one might expect extreme or total
non-correspondence between sources in a visual image and a
radio source catalog. And so, the first two items which generate
non-identity between an image source list and a catalog list are
dissimilar sorting of the entries, even when sorted by bright-
ness, and, for n brightest sources in an image, only some value
less than n may actually correspond with the relevant brightest
entries in the catalog. This was particularly a problem for UVIT
and its far-UV channel, which sees things at 120 nm that most
existing catalogs do not. Along with detector characteristics
there is obviously also an astrophysical dependence upon the
degree to which different wavelengths see different bright-
nesses, thus having an effect upon which sources get sorted to
the top of the list when sorted by brightness. It is of course the
brightest objects which are most useful for this particular
problem of determining corresponding sources, and the degree
to which a wavelength differential between a catalog and image
affects the sorting is of course a very general concern.

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

This being said, what we fundamentally require is some
degree of correspondence between the entries of the image
source list, and the catalog. Thus, similarity between the
wavelengths detected in the image and the catalog is a first
criteria. Second, the central position and area of the sky in the
image should be known to some degree of accuracy, such that
only the relevant entries in the catalog can be extracted and
used for comparison to the image sources. The goal here is that
for the first n brightest sources in the image, there should be
some correspondence to the first n brightest sources in the
catalog being used. The greater the correspondence, the better.

The intent here is an algorithm which can quickly determine
a WCS solution for modern scientific instruments. As such,
although the WCS standard uses a general transformation
matrix which allows for skew, rotation, scale, and reflection
(parity), modern scientific detectors are likely designed so that
the pixels subtend a rectangular area on the sky (no or little
skew and distortion), and the transformation matrix is mostly
only a function of scale, pointing position, pointing rotation,
and parity. Scale is typically well known at design time, and
can be determined precisely from the first few images after first
light. These simplify the parameter space greatly, but the
algorithm which we will discuss will still allow for some
degree of skew on the image field. Perhaps a detector could be
designed with image transformation parameters which amount
to some vast encryption problem, but typically in science our
intent is to design detectors which correspond on a one-to-one
basis to the spatial dimensions which they image, aside from
the practical considerations of field projection and field
transformation to sky coordinates, etc. Nonlinear distortions
due to engineering limitations, and skew, are typically at the
unit pixel scale.

The core step of solving of a WCS is a least-squares fit, via a
transformation matrix, utilizing intermediate catalog coordi-
nates, of a corresponding set of image pixel positions and
catalog positions. The purpose of the intermediate coordinates
are to project spherical sky catalog coordinates onto a plane,
which can then be scaled, shifted, rotated and inverted via the
CD matrix to the planar image pixel coordinates. The task,
then, is to determine which coordinates in the image
correspond with which coordinates in the catalog so that the
least squares routine can then function on those corresponding
values.

The WCS process is that the catalog positions are first
transformed into intermediate coordinates, and then the image
pixels are fit via a 2D transformation matrix (the CD matrix) to
those intermediate coordinates. This means that if there is no or
little skew, then the rectilinear relations among intermediate
coordinates should be correspondent with the same relations
among matching image pixel coordinates, aside from rotation,
scale, and reference point. That is, the only thing which needs
to be solved for is rotation, scale, and reference position, and so
this requires only three points for an initial solution. Let us

Postma & Leahy

refer to the WCS transformation matrix from the FITS WCS
Paper I, in Equation (1) in the current manuscript.

N
xi =) CDy(p; —). (D
j=1
We shall discuss Equation (1) in detail just so that we are clear
on what the WCS transformation process is and how we are
going to use it to build an automatic WCS solver. First the term
X; is an intermediate coordinate in units of degree, which in our
case of wishing to solve the relevant terms of the equation, are
computed directly from the catalog data given a chosen
coordinate projection, such as for example the common
Gnomic or Tangent-Plane projection. The Tangent-Plane
intermediate coordinates for right-ascension («) and decl. ()
are computed as in Equation (2) (where the intermediate
coordinate terms x; and x, from Equation (1) are now written as
X, Y). For completeness, since we will eventually wish to
transform intermediate coordinates computed from image
pixels via a solved WCS CD matrix to sky coordinates, then
the inverse of Equation (2) is presented in Equation (3).

_ cos(d)sin(a —)
B cos(8p)cos(d)cos(a — ayg) + sin(8g)sin(6)
Y — co8(8p)sin(d) — cos(8)sin(dg)cos(ax —)

2
cos(g)cos(d)cos(a — ag) + sin(bp)sin(6) @
a=oq+ tan~! X

0 cos(80) — Y sin(8o)
5= sin~1(sin(8p) + Y cos(8p)) 3)

V1 + X2 472

The reference positions «n and §, are the CRVALI and
CRVAL2 values, respectively, as per the FITS WCS keyword
standard. Typically these would be thought to be the sky
coordinates at center of the image, but since this is not known
before solving the WCS, then they can simply be taken as the
means of the R.A. and decl. coordinates extracted from the
catalog. That is, for n sky coordinates extracted from a catalog
which correspond to n pixel positions from sources extracted
from an image, the coordinate reference positions can be the
means of the coordinates.

In Equation (1), the (pj—r;) term is the difference between the
source image pixel coordinates (p) and the reference pixel
coordinates (r). That is, r; and r, are the coordinate reference
pixel values CRPIX1 and CRPIX2, respectively. CRPIX1 and
CRPIX2 should correspond with the CRVAL1 and CRVAL2,
however, the actual pixel location is not known before the
WCS is solved; that is, the CRVAL are parameters which must
be solved, and so they can be given an initial guess of the
means of the source image pixel [x, y] coordinates and then
bounded by the extremities of such in the least squares fit.

The CRPIX1 and CRPIX2 are two parameters which must
be solved, but the CD matrix (in units of degrees per pixel)

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

contains additional parameters which must also be solved for.
Writing Equation (1) out, we have Equation (4) where again
x; =X and x, = Y, and x and y are used here to denote the
image pixel coordinates of a given source corresponding to the
intermediate coordinates X and Y . The inverse is also provided
in Equation (5) so that intermediate coordinates may be
converted to pixel values.

X = CD, (x — CRPIX1) + CD;,(y — CRPIX2)
Y = CD,(x — CRPIX1) + CDy,(y — CRPIX2) (4)
x=CDj-X+ CD;} - Y+ CRPIXI
y =CD;} - X + CD;} - Y + CRPIX2
where
CD; | = det-CD,;
CD; | = —det - CD;;
CD;j = —det- CDj,
CD;} = det- CDy

and

det — ! . s)
CDy,; - CDyp — CDy - CDy

The CD matrix transformation of Equation (1) will allow for
transformation between any 2D planar coordinate systems.
Such coordinate systems transformed through this equation
may be arbitrarily inverted (parity), and they may be arbitrarily
scaled, rotated, shifted and skewed, along one or both
dimensions relative to each other. However, for scientific
instrumentation the parity of the image dimensions with respect
to sky coordinates are typically known and these can be
trivially corrected to correspond to the directionality of sky
coordinates; that is, for example, if an image were derotated,
decl. should likely increase “upwards” in an image and R.A.
increase “leftwards” in the image, at least when imaging in the
Northern Hemisphere. In cases where the parity cannot be pre-
aligned, it would be trivial to code for the algorithm to test all
four parity relation possibilities, but the implementation of this
algorithm in CCDLAB assumes that the parity is known and
corrected (we may update the code to allow for parity
variability in the future). At the same time, image skew is
likely only at the unit pixel scale, if it is in fact not negligible
across the entire field.

Thus, a solution to Equation (4) can be reduced to first
solving a solution for only rotation, scale, and reference
position, which thus requires only three corresponding points
between the catalog coordinates (converted to intermediate
coordinates) and image source pixel coordinates. Thus, we
must fit triangles formed by the intermediate catalog coordi-
nates to triangles formed by the image source coordinates to
each other via only a scale (S), rotation (¢), and reference
position (CRPIX1,2) transformation, as in Equation (6). Using
a least squares fit allows for tolerance due to skew and

Postma & Leahy

distortion, and this tolerance will be carried through the
automatic WCS solution to the final solution where the CD
matrix can then capture it (if it is systematic). We will
eventually need to invert Equation (6) when transforming
intermediate catalog coordinates to pixel locations when testing
if the initial solution is valid, as in Equation (7).

X = S[cos(¢)(x — CRPIX1) — sin(¢)(y — CRPIX2)]
Y = S[sin(#)(x — CRPIX1) + cos(¢)(y — CRPIX2)] (6)

X cos(¢) + Y sin(¢)
S

—X sin(¢) + Y cos(¢)
S)

x = CRPIX1 +

y = CRPIX2 +

(N

Thus, for a list of the brightest n sources in an image, and the
brightest n entries in the catalog, we create a table of all unique
triangles which can be formed from the respective n
coordinates. Practical values of n will be discussed later, as
the number of unique triangles which can be formed from n
points is an n-choose-r problem with r equal to 3. It is thus
helpful to create a triangle class in software which holds the
points and other metadata about the triangles’ properties.

The crucial function here is to organize the points of each
triangle so that independent of scale, rotation, and reference
position, the three points of an intermediate coordinate triangle
will translate directly to the three points of an image coordinate
triangle if the points are in fact correspondent. Thus, the three
side lengths of the triangle should be computed, and the points
should then be sorted based upon a simple analysis of the side
lengths. That is, the first point of the triangle should be made
such that it is the vertex of the shortest two side lengths, the
second point such that it is the other point of the shortest side
length, and the remaining point is determined. This way, when
a match is found between an intermediate coordinate triangle
and an image coordinate triangle, the respective points can then
be used directly for a linear least squares solution with respect
to each other. One should also calculate the triangle vertex
angles via the Cosine Law for the triangle-point vertices as they
have just been sorted as these will be used to test whether or not
two triangles are correspondent.

After the triangles have been created and their point-order
formatted as such, then the task is to search for similar triangles
between the intermediate catalog coordinates and the image
pixel source coordinates. That is, we do not wish to least-
squares fit every possible intermediate coordinate triangle to
every possible PSE triangle, given the computational expense
of performing least-squares. We wish to only fit triangles which
look like they should be a match given a much more
computationally inexpensive preselection. The vertex angles
of the triangles are useful here, and have already been sorted by
the previous scheme of sorting the point vector based on side
lengths, and so one can check for similar vertex angles to
within some tolerance. That is, vertex angle 1 of the

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

intermediate coordinate triangle should match within some
tolerance to vertex angle 1 of the PSE triangle, and so on to
vertex angles 2 and 3. This is a fast check which allows for an
extremely large number of triangles to be compared very
quickly. However, when the number of triangles is very large
then there is a growing likelihood of triangles having similar
vertices but whose points are not actually corresponding
coordinates.

Thus if all of the vertices survive the tolerance test, a
secondary check can be performed where the side lengths of
the image coordinate triangles are compared to the side lengths
of the intermediate coordinate triangles, given an upper and
lower bound of the transformation scale. Due to the way we
sorted the triangle-points based on side-lengths, the side-
lengths also correspond on a one-to-one basis between
intermediate coordinates and PSE coordinates just as the
triangle vertices did. That is, given an upper and lower bound
for the scale, the intermediate coordinate triangle side lengths
should fall within the upper and lower bounds of the image
coordinate triangle side lengths if the triangles comprise truly
correspondent coordinates. To allow some tolerance even when
the lower and upper scale bounds are set equal to the initial
scale estimate, the width of the centroid kernel used to
determine the image source coordinate in the PSE can be
respectively subtracted from and added to the lower and upper
bounds of the image triangle side lengths. This allows for a
degree of distortion and/or skew to be present in the image. Or
instead of using the centroid kernel width from the PSE, one
could specify the tolerance to use here.

At this point the probability of false-positive matches should
be greatly reduced, while the probability for true-positive
matches should be relatively increased. And so if an
intermediate coordinate and image coordinate triangle pairing
has survived these checks, then a least-squares solution can
now be solved for the rotation, scale, and reference point to
transform the given image triangle coordinates to the given
intermediate triangle coordinates. If this is a truly correspon-
dent triplet of coordinates, then this solution should also
successfully transform, by inverse, other catalog intermediate
points to image coordinate locations, while if the triangles were
not actually correspondent coordinates but only similar
triangles then their false-positive transformation solution will
not result in successful matches between points for the
remaining coordinates. Parity inversions do not affect the
vertex angles or the side-lengths, but here is where image
coordinates can be inverted to test for the four possible
variations of parity relations.

Thus, for the n coordinates of image sources and catalog
entries, one can transform the intermediate catalog coordinates
to image pixel coordinates via an inverse transform utilizing the
parameters of the initial solution just found. This is where it is
useful to have the source index map from the PSE, so that the
computed image coordinates from the catalog intermediate

Postma & Leahy

coordinates can be directly checked to see if they fall upon
sources detected in the image, and if they do, to gather the
source indexes in the image point source metadata list.

For the n coordinates from the catalog, at this point there are
already three which will fall on image sources given the initial
solution. If this is a false-positive solution, however, then the
success rate for transforming additional catalog entries, via
their intermediate coordinates, and via the inverse transform of
the initial solution, to the previously determined image source
locations, will be quite poor. For a true-positive solution, then
catalog coordinates will transform through to image source
locations with a high success rate. This establishes stopping
criteria for the algorithm in that if, say, an additional three
points are successfully transformed, or, twenty-five percent of
the n coordinates are successfully transformed, then one likely
has a good true-positive solution. These stopping criteria can be
modified as needed. We do not assume that all » catalog entries
must or will fall onto n image sources, given that structural
non-correspondence between the image source detections and
the catalog may exist due to differences in detection
wavelengths, and extracted field-overlap, etc.

If the stopping criteria are met, then the matching subset
from n of corresponding image coordinates and catalog
intermediate coordinates can be used to determine the general
transformation through the full CD matrix and provide the
initial WCS solution. However, the solution can likely be
improved because the initial number of brightest sources and
entries n was likely small (the magnitude order of ten), while
the number of sources in the image may be in the hundreds and
the number of catalog entries for the field area may be in the
thousands. Thus, if the field allows for it, one may reduce the
thresholds in the PSE so that an order of one-hundred brightest
sources are determined, and then two-or-three hundred bright-
est source from the catalog for that region should be scanned to
check for entries which fall onto those image sources given the
inverse of the WCS solution. This should populate most of the
field with a scattered sampling of matching catalog coordinates
to image source coordinates, and then the WCS can be re-
solved to give a final solution. Even with a solution with ~10?
points scattered across the field, one may wish to explore
further possible refinement with options provided by other
existing packages.

Summary of the Automatic WCS Algorithm:

1. Perform PSE on an image to gather the pixel coordinate
centroids of the brightest n sources.

1. The PSE class should contain an integer image map,
of equal dimension to the source image, denoting the
list position index of the corresponding centroid for
that location. For example, for a centroid at location
[x, y] in the image (where decimal-valued [x, y]
centroids are rounded to integer indices), all pixels of
the integer map within a distance of the kernel radius

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

to that location should be set equal to the integer index
value at which the centroid appears in the PSE source
list. In this way, an arbitrary coordinate [a, b] can be
directly indexed into the integer map to gather the list
index of the source at that location in the PSE source
list. The integer map should be initialized to —1 so as
to avoid conflict with zero-based indexing code, and
this value also forms a redundant Boolean map given
that all locations in the integer map with value —1
indicate that no source is located there.

2. Ensure that you are aware of the parity of the source
image, and remove or account for coordinate inver-
sions as necessary. For example, if the image had no
field rotation, then “left” should be increasing R.A.
and “up” should be increasing decl.; field rotation can
of course change those relations, but, this is only a
problem of field rotation. If beam splitters or other
optical train effects invert the coordinate relations,
then this must be known and accounted for, although
it would be trivial to code for all possibilities in the
case where the user is not aware of such meta-
properties of the image.

3. The PSE routine can be iterated upon a changing
threshold value until n sources are found, with some
iteration limit in cases where n sources are not
available.

2. Gather the brightest n sources from a catalog.

1. The catalog sources should be extracted from a region
correspondent with the source image. Ideally the
sources extracted from the catalog correspond directly
to the area in the image used for PSE. In practice,
however, the pointing of the center of the image is
typically not precisely what is reported in the image
header—hopefully the difference is not too large.

2. Beware of NaN’s in the catalog magnitude values as
these will typically sort to the start of the list when
sorting the catalog list by brightness. Exclude these.

3. The catalog and the image should have sufficiently
correspondent wavelengths used for source detection,
given that different wavelengths see different things in
the sky.

3. Form intermediate coordinates out of the catalog list

gathered in point 2.

1. The reference values required in computing inter-
mediate coordinates, i.e., the CRVALn values, can be
the means of the catalog coordinates. For example,
CRVAL1 is the mean of the R.A. values, and
CRVAL2 is the mean of the decl. values.

4. Form all the unique triangles given the n sources for the

image coordinates and the catalog intermediate
coordinates.
1. A triangle class is helpful which contains:

Postma & Leahy

1. Three points, where the points have x and y
position values

2. The vertex angles of the three points.

3. Distance magnitudes between the three points.

2. The points of each triangle should be sorted such that
two corresponding triangles will have an identical
point-order, so that the triangle coordinates match to
each other when utilized in a least squares
transformation.

1. The common vertex of the shortest two side-
lengths can be the first point; the other point of
the shortest side length can be the second point;
and the third point is then determined.

2. The distance magnitudes are that of the first
vertex to the second, the first to the third, and the
second to the third.

5.In a nested “for loop” (which can be parallelized),

compare PSE triangles to intermediate coordinate

triangles.

1. If the corresponding vertex angles exceed a matching
tolerance, say +0°5, then continue the for loop to the
next triangle pair comparison.

2. If the corresponding side lengths of the intermediate
coordinate triangles are outside of the bounds of the
PSE triangle side lengths, given application of the
scale range (upper and lower bounds), and given the
tolerance of the PSE kernel width, then continue the
for loop to the next triangle pair comparison.

. At this point we have a potential valid pairing of

coordinate triangles between the image PSE coordinates
and the catalog intermediate coordinates, given that the
three corresponding triangle vertices are within tolerance,
and the side lengths are within tolerance given the scale
plus kernel width range. However, it needs to be
confirmed that these are actually correspondent coordi-
nates given that it is possible to have a false-positive
match of two similar triangles.

1. Perform a least squares solution of the PSE triangle
coordinates to intermediate coordinates, via a scale,
rotation, and reference position transformation.

1. For most instruments, the scale should already be
known and can be constrained in the least squares
fit to, say, plus or minus five percent, although
this range can be larger if needed.

2. For most instruments, the field rotation may
already be known and can likely be constrained to
a few degrees, although this can range from
—180° to 4+180° with an initial guess of 0°.

3. For the initial guess of the pixel reference, the
means of the PSE coordinates can be used, and
their range can be constrained by their maximum
and minimum values.

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

4. One must ensure to remain aware of the parity of
image coordinates with respect to catalog coordi-
nates, given that we are only rotating and scaling
and shifting the PSE triangle coordinates in the
least squares fit.

2. The least squares transform will minimize wherever it
needs to, but to check if the solution actually resulted
in the respective triangle points falling onto one
another, one can use the inverse of the solution to
check if the catalog intermediate points inverse-
transform onto the actual PSE coordinates given the
PSE source index map. It may be possible that two
similar triangles are not actually correspondent
coordinates, and yet the transform of the intermediate
coordinates of the intermediate triangle fall onto
another triplet of PSE points. Thus, checking the
indices serves the purpose of both performing a
Boolean check of point-overlay, and checking that the
indices match, thus eliminating such false positive
solutions. If the inverse-transformed three intermedi-
ate coordinate triangle points fall onto the same
indices of the current PSE triangle points, then this is a
potential solution; if not then it was a false positive,
and so continue the for loop to the next comparison
iteration.

3. At this point we know that the solution resulted in a
pair of triangles having points which fall on each other
via transformation within the tolerance of the centroid
kernel. However it is still possible that these are only
similar triangles but not actually correspondent
coordinates, given sufficient shifting of the reference
position and rotation and scaling the two triangles
were able to be fit to each other. If this is still a false-
positive solution, then the probability that this solution
will successfully transform additional intermediate
catalog coordinates to other image source PSE
coordinates is low, whereas if it is a true-positive
solution then it should successfully transform addi-
tional intermediate coordinates to other PSE
coordinates.

1. We already have three pairs of points from the
two triangles which fall on each other through the
transformation solution, and so now check all
other n—3 intermediate catalog coordinates for
additional successful inverse-transforms onto PSE
coordinates via the PSE source index map. Here
is where the confidence-criteria or stopping
criteria can halt the nested for loop and report a
solution.

2. If an additional, say, three points of the catalog
intermediate coordinates inverse-transform to
PSE source locations, then likely this is a good
solution.

Postma & Leahy

3. Or, if at least 25% of the n catalog intermediate
coordinates inverse-transform to PSE source
locations, then likely this is a good solution.

4. If neither the previous two criteria are satisfied,
then continue the loop to the next comparison
iteration.

4. At this point we are confident that we have a solution.
If parallelized, use for example a critical directive (as
in the OpenMP nomenclature) to assign the solution to
variables outside of the parallelized nested for loop.

5. Use all matching points determined in 6.3 to compute
a full WCS solution via the standard CD matrix
scheme.

6. Refine the solution further by finding now, say, n*3
brightest image sources via PSE, and compare these
against, say, the n*6 brightest catalog entries using the
existing WCS solution to find matching coordinates,
and re-solve for a new WCS solution which now has
points sampling more of the field.

7. Finished.

On a quad-core eight-threaded desktop PC running at 3.5 GHz
on a 7th generation Intel processor, the algorithm is capable of
performing approximately 500 million (5 x 10%) triangle
comparisons per second, when the scale and rotation are
constrained to five percent. This rate decreases an order of
magnitude when the rotation is constrained to only +180°,
given that the least-squares solver has more work to do here.
Perhaps writing an optimized solver for only scale, rotation,
and reference would improve things, given that we currently
use a generic least-squares solver from AlgLib (https://www.
alglib.net).

This finally returns us to a discussion of n, the number of
brightest points used to form triangles of catalog intermediate
coordinates and PSE coordinates, which triangles are then
compared to one another. The number of unique triangles
which can be formed from n points is n/(n-3)¥3!, or n(n—1)(n—
2)/6. If one is confident of excellent correspondence between
the source image and the catalog extraction, then perhaps only
n = 10 is sufficient which results in 14,400 triangle compar-
isons which thus requires only a fraction a second to examine
every single comparison, with a solution being found well-
before all such comparisons need to made in this case given
that the 10 respective points have good correspondence.

However, arbitrary images and catalogs may generally have
an unknown correspondence. We certainly must use the correct
catalog for a given image and its attendant wavelength
detection range. And so for an example of n = 100, then there
is a total of 26 x 10° possible triangle comparisons, which on
our example system would require 52 s to process the entire lot;
n = 200 would require an hour. If there is good correspon-
dence though then of course a solution will still be found much
more quickly than that, and core and thread count is increasing

https://www.alglib.net
https://www.alglib.net

Publications of the Astronomical Society of the Pacific, 132:054503 (10pp), 2020 May

rapidly on modern CPU’s which massively benefits to
parallelization.

For our test cases, the Baker-Nunn 4°4 x 4%4 field imaged
upon a 4k x 4k pixel CCD through an R-band filer typically
requires only n = 10 and solves in a few milliseconds when
utilizing the GAIA DR2 “Gmag” catalog. The UVIT
0°5 x 0°5 field imaged on a 4k x 4k array typically requires
n = 25 and also solves in a few milliseconds, when comparing
near-UV sources to the bluer GAIA DR2 “BPmag” catalog. For
UVIT far-UV images we typically require n = 50 with
solutions in under one second utilizing the previous catalog,
but one must be careful to avoid nebular regions and restrict the
extraction to regions with point sources only during the PSE.
The WCS standard errors on the UVIT images are typically
~0”2 with an image PSF of ~1”2 (full-width-half-maximum,
FWHM) at a scale of 0”416 per pixel, while for the Baker-
Nunn images they are ~3”5 with an image PSF of ~12”
(FWHM) at a scale of 3”9 per pixel. In comparison with the
same images and given identical field constraints, astrometry.
net timed out after ten minutes for both of the UVIT images,
and solved the Baker-Nunn image in 245 s of user time and
1.24 s of system time.

4. Conclusion

It is not actually typically the case that we must solve a
completely arbitrary and unknown image against a completely
arbitrary and unknown catalog... and nothing is likely capable
of really doing that in any case, without making some
assumptions about what the image is looking at. We are
usually able to exploit correspondence and constraint. We may
certainly invent situations which are entirely unsolvable, but for
scientific instruments we generally do have the preliminary
knowledge required in order to exploit correspondence between
the brightest sources in our image and the brightest entries in an
appropriate catalog, and to exploit constraint in the field scale
and rotation and parity relations, etc. That being said, by

Postma & Leahy

restricting the analysis to only n brightest points and by
working in intermediate coordinate space and comparing vertex
angles, this algorithm would still function well in cases where
source image metadata such as scale, rotation, pointing, etc.,
are not well known—one would simply need to expand or
otherwise iterate upon the catalog search area and the parameter
space. The algorithms presented here provide a robust, fast, and
reliable method for “automatically” determining WCSs, where
of course the critical first step is to determine which coordinates
from a catalog match which coordinates in an image.

This project was undertaken with the financial support of the
Canadian Space Agency in its support of the Indian Space
Research Organization’s UVIT telescope onboard the ASTRO-
SAT spacecraft. We thank the referee for their review.

References

Brown, A. G. A., Vallenari, A., Prusti, T., et al. 2018, A&A, 616, 22

Calabretta, M. R., & Greisen, E. W. 2002, A&A, 395, 1077

Cardinal, R. D., Ryan, W. H., Hug, G., Ikari, Y., & Young, J. 2008, IAUC,
8993, 1

Cotton, W. D., Tody, D., & Pence, W. D. 1995, A&AS, 113, 159

Greisen, E. W., & Calabretta, M. R. 2002, A&A, 395, 1061

Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A,
446, 747

Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 371

Grosbgl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988, A&AS,
73, 359

Harten, R. H., Grosbgl, P., Greisen, E. W., & Wells, D. C. 1988, A&AS,
73, 365

Hutchings, J. B., Postma, J., Asquin, D., & Leahy, D. 2007, PASP, 119, 1152

Kumar, A., Ghosh, S. K., Hutchings, J., et al. 2012, Proc. SPIE, 8443, 84431N

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ,
139, 1782

Milone, E. F., & Clark, T. A. 1996, BAAS, 28, 1272

Postma, J., Hutchings, J. B., & Leahy, D. 2011, PASP, 123, 833

Postma, J. E., & Leahy, D. 2017, PASP, 129, 189

Rao, V. K., Agrawalb, P. C., Sreekumara, P., & Thyagarajan, K. 2009, AcAau,
65, 6

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363

https://doi.org/10.1051/0004-6361/201731712
https://doi.org/10.1051/0004-6361:20021327
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1077C/abstract
https://ui.adsabs.harvard.edu/abs/2008IAUC.8993....1C/abstract
https://ui.adsabs.harvard.edu/abs/2008IAUC.8993....1C/abstract
https://ui.adsabs.harvard.edu/abs/1995A&AS..113..159C/abstract
https://doi.org/10.1051/0004-6361:20021326
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1061G/abstract
https://doi.org/10.1051/0004-6361:20053818
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G/abstract
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G/abstract
https://ui.adsabs.harvard.edu/abs/1981A&AS...44..371G/abstract
https://ui.adsabs.harvard.edu/abs/1988A&AS...73..359G/abstract
https://ui.adsabs.harvard.edu/abs/1988A&AS...73..359G/abstract
https://ui.adsabs.harvard.edu/abs/1988A&AS...73..365H/abstract
https://ui.adsabs.harvard.edu/abs/1988A&AS...73..365H/abstract
https://doi.org/10.1086/522635
https://ui.adsabs.harvard.edu/abs/2007PASP..119.1152H/abstract
https://doi.org/10.1117/12.924507
https://ui.adsabs.harvard.edu/abs/2012SPIE.8443E..1NK/abstract
https://doi.org/10.1088/0004-6256/139/5/1782
https://ui.adsabs.harvard.edu/abs/2010AJ....139.1782L/abstract
https://ui.adsabs.harvard.edu/abs/2010AJ....139.1782L/abstract
https://ui.adsabs.harvard.edu/abs/1996BAAS...28.1272M/abstract
https://doi.org/10.1086/661187
https://ui.adsabs.harvard.edu/abs/2011PASP..123..833P/abstract
https://doi.org/10.1088/1538-3873/aa8800
https://ui.adsabs.harvard.edu/abs/2017PASP..129k5002P/abstract
https://doi.org/10.1016/j.actaastro.2009.01.073
https://ui.adsabs.harvard.edu/abs/2009AcAau..65....6K/abstract
https://ui.adsabs.harvard.edu/abs/2009AcAau..65....6K/abstract
https://ui.adsabs.harvard.edu/abs/1981A&AS...44..363W/abstract

	1. Background
	2. Point Source Extraction
	3. World Coordinate Solutions
	4. Conclusion
	References

