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Abstract.  We consider two s  =  1/2 spins with Heisenberg coupling and a 
monochromatic, circularly polarized magnetic field acting only onto one of the 
two spins. This system turns out to be analytically solvable. Also the statistical 
distribution of the work performed by the driving forces during one period can 
be obtained in closed form and the Jarzynski equation can be checked. The mean 
value of this work, viewed as a function of the physical parameters, exhibits 
features that can be related to some kind of Rabi oscillation. Moreover, when 
coupled to a heat bath the two spin system will approach a non-equilibrium 
steady state (NESS) that can be calculated in the golden rule approximation. 
The occupation probabilities of the NESS are shown not to be of Boltzmann 
type, with the exception of a single phase with infinite quasitemperature. The 
parameter space of the two spin Rabi model can be decomposed into eight phase 
domains such that the NESS probabilities possess discontinuous derivatives 
at the phase boundaries. The latter property is shown to hold also for more 
general periodically driven N-level systems.
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1.  Introduction

A quantum system developing according to a time-dependent Hamiltonian H(t) which 
varies periodically with time t, such that

H(t) = H(t+ T ) ,� (1)
possesses a complete set of Floquet states, that is, of solutions to the time-dependent 
Schrödinger equation having the particular form

ψn(t) = un(t) exp(−iεnt) .� (2)
The Floquet functions un(t) are also T-periodic and the quantities εn are known as 
quasienergies [1–3]. They are only uniquely determined up to integer multiples of the 

driving frequency ω = 2π
T

.
The significance of these Floquet states (2) is based on the fact that every solution 

ψ(t) to the time-dependent Schrödinger equation can be expanded with respect to the 
Floquet basis,

ψ(t) =
∑
n

cn un(t) exp(−iεnt) ,� (3)

such that the coecients cn do not depend on time. Hence, the Floquet states propagate 
with constant occupation probabilities |cn|2, despite the presence of a time-periodic 
drive. However, if the periodically driven system is interacting with an environment, 
as it happens in many cases of experimental interest [4–9], that environment may 
continuously induce transitions among the system’s Floquet states. This has the eect 
that after some relaxation time a quasi-stationary distribution {p n} of Floquet-state 
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occupation probabilities is reached which contains no memory of the initial state. The 
question arises how to quantify this distribution.

In a short programmatic note entitled ‘Periodic Thermodynamics’, Kohn [10] has 
drawn attention to such quasi-stationary Floquet-state distributions {p n}. In an ear-
lier pioneering study, Breuer et al had already calculated these distributions for time-
periodically forced oscillators coupled to a thermal oscillator bath [11]. To date, a great 
variety of dierent individual aspects of the ‘periodic thermodynamics’ envisioned by 
Kohn has been discussed in the literature [12–24], but a coherent overall picture is still 
lacking.

In this situation it seems advisable to resort to models which are suciently simple 
to admit analytical solutions. Recent results into this direction are the following:

	•	 �As mentioned above, for the particular case of a linearly forced harmonic oscil-
lator the authors of [11] have shown that the Floquet-state distribution remains 
a Boltzmann distribution with the temperature of the heat bath, see also [25].

	•	 �Similarly, the parametrically driven harmonic oscillator assumes a quasi-stationary 
state with a quasi-temperature that is, however, generally dierent from the bath 
temperature, see [26, 27].

	•	 �A spin s exposed to both a static magnetic field and an oscillating, circularly 
polarized magnetic field applied perpendicular to the static one, as in the classic 
Rabi set-up [28], and coupled to a thermal bath of harmonic oscillators has been 
shown to approach a quasi Boltzmann distribution, see [29]. This work general-
izes the results of [25] for the case s  =  1/2.

In the present work we will consider, similarly as in [25], an s  =  1/2 spin with a circu-
larly polarized driving but only coupled to the heat bath via another s  =  1/2 spin, see 
figure 1. An analogous system has previously been numerically investigated with the 
focus on decoherence [30]. In order to keep the analytical treatment as simple as pos-
sible we will set ω = ω0 = 1, where ω0 denotes the dimensionless Larmor frequency of 
the static magnetic field. Then it is possible to explicitly calculate the quasienergies εn 
and the probabilities pn, n = 1, . . . , 4 of the NESS, although the latter are too complex 
to be given in closed form. It turns out that the p n are not of Boltzmann type thereby 
rigorously confirming the general conjectures about the nature of the NESS for a simple 
system. Another result will be the partition of the parameter space P into certain 
phases Pν such that the p n, while being smooth functions of the parameters within the 
phases Pν, will have discontinuous derivatives at the phase boundaries. These findings 
will also hold for general periodically driven N-level systems. For the special system 
under consideration we additionally observe that all four NESS probabilities coincide 
for a certain phase A which could be formally understood as an infinite quasitemper
ature of this phase. But we will provide arguments that this result is confined to this 
very system and will probably not hold in general.

The paper is organized as follows. In section 2 we define the system to be studied 
and derive its explicit time evolution in the Floquet normal form. The time evolution 
matrix for one period (monodromy matrix) of the present system turns out to be 
symmetric and hence possesses real eigenvectors. The proof of this has been moved 
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to an appendix A. The explicit results on the time evolution are used in section 3 to 
calculate the statistical distribution of the work performed by the periodic driving 
during one period and to check our results by confirming the corresponding Jarzynski 
equation As a by-product we prove the physically plausible fact that the expectation 
value of the work is always non-negative and discuss the mean value of the work. The 
general golden-rule approach to periodic thermodynamics is briefly recapitulated in 
section 4.1 and applied to the two spin system under consideration in section 4.2. The 
partition of the parameter space into phases and the 2nd order phase transitions at the 
phase boundaries seems to hold also for the general case of periodically driven N-level 
systems. The pertinent arguments are presented in the appendix B. We close with a 
summary and outlook in section 5.

2. Definitions and general results

We consider two spins with s  =  1/2 and the composite system described by the four-
dimensional Hilbert space H = 2 ⊗ 2. The static Hamiltonian is assumed to be of 
the form

H0 = s
˜
(1)
3 ⊗ + ⊗ s

˜
(2)
3 + λ s

˜
(1) · s

˜
(2),� (4)

where s˜
(1) and s˜

(2) are the usual s  =  1/2 vector spin operators for the subsystems and 
λ > 0 is some coupling parameter. The eigenvalues En of H0 are

E1,2 =
λ

4
± 1, E3 = −3λ

4
, E4 =

λ

4
.� (5)

The periodic circularly polarized driving with amplitude f  and unit angular fre-
quency acts only on the first spin and thus the total Hamiltonian can be written as

H(t) = H0 + f
(
cos t s

˜
(1)
1 + sin t s

˜
(1)
2

)
.� (6)

Upon choosing the eigenbasis of s˜
(1)
3 ⊗ s˜

(2)
3

 symbolically written as (↑↑, ↑↓, ↓↑, ↓↓) this 
Hamiltonian can be identified with the Hermitean 4× 4-matrix:

Figure 1.  Schematic representation of the two spin Rabi model considered in this 
paper.
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H(t) =




λ+4
4

0 1
2
fe−it 0

0 −λ
4

λ
2

1
2
fe−it

1
2
feit λ

2
−λ

4
0

0 1
2
feit 0 λ−4

4


 .� (7)

First we will solve the corresponding Schrödinger equation (� = 1)

i
∂

∂t
ψ(t) = H(t)ψ(t).� (8)

To this end we dierentiate (8) three times w.r.t. t and eliminate all components of ψ(t) 
except the first one ψ1(t). This yields a linear 4th order dierential equation for ψ1(t) 
of the form:

∂4

∂t4
ψ1(t) = − 1

256
(2f − λ− 4)(2f + λ+ 4)

(
4f 2 + (λ+ 4)(3λ− 4)

)
ψ1(t)

− i

8

((
8f 2 + (λ− 2)(λ+ 4)2

) ∂

∂t
ψ1(t)− i

(
4f 2 + 3λ2 − 48

) ∂2

∂t2
ψ1(t) + 32

∂3

∂t3
ψ1(t)

)
.

� (9)
Remarkably, the coecients of this dierential equations are independent of t due to 
the circularly polarized form of the driving. In contrast to the present case, for a lin-
early polarized driving of an s  =  1/2 spin the analogous elimination of the second comp
onent of ψ(t) leads to a 2nd order dierential equation with t-dependent coecients. 
Although this equation can be transformed into a confluent Heun equation, see [31, 32], 
and [33], it is by far more intricate than the 4th order dierential equation obtained 
in this paper.

In our case the dierential equation (9) can be elementarily solved by an exponen-
tial ansatz

ψ1(t) =
4∑

n=1

cn exp (iωn t) ,� (10)

with arbitrary coecients cn ∈ . The ωn can be obtained as the roots of an equa-
tion of 4th order and assume the form:

ω1 =
1

4

(
−2

√
f 2 + λ2 + λ− 4

)
,� (11)

ω2 =
1

4

(
2
√

f 2 + λ2 + λ− 4
)
,� (12)

ω3 =
1

4
(−2f − λ− 4),� (13)

ω4 =
1

4
(2f − λ− 4).� (14)
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If we would have included more parameters in the Hamiltonian (6), e.g. the frequency 
ω of the periodic driving, this result would still be valid, albeit with a more compli-
cated form of the roots that practically rules out a further analytical treatment of the 
problem.

The remaining three components of ψ(t) are obtained by means of the following 
equations previously used for eliminating ψ2(t), ψ3(t), ψ4(t):

ψ2(t) = − ei t

4 f λ

(
16

(
2 i

∂ψ1

∂t
+

∂2ψ1

∂t2

)
+
(
−16 + 4f 2 + λ2

)
ψ1

)
,� (15)

ψ3(t) =
i ei t

2 f

(
4
∂ψ1

∂t
+ i(λ+ 4)ψ1

)
,� (16)

ψ4(t) =
e2 i t

8 f 2 λ

(
−4i

(
∂ψ1

∂t

(
4f 2 + 5λ2 + 8λ− 48

)
− 4i(λ− 12)

∂2ψ1

∂t2
+ 16

∂3ψ1

∂t3

+
(
(λ+ 4)2(3λ− 4)− 4f 2(λ− 4)

)
ψ1

))
.

�

(17)

Inserting ψ1(t) according to (10) and (11)–(14) into (15)–(17) yields a first solution 
ψ(1)(t) that will be rewritten as

ψ(1)(t) = U(t)




c1
c2
c3
c4


 ,� (18)

where U(t) is a unitary 4× 4-matrix satisfying

∂

∂t
U(t) = −iH(t)U(t).� (19)

From this we obtain the fundamental system of solutions Ψ(t) by

Ψ(t) ≡ U(t)U(0)−1,� (20)

satisfying

Ψ(0) = .� (21)
We will only explicitly give Ψ(t) in its Floquet normal form

Ψ(t) = P(t) e−iF t,� (22)

such that P(t) is 2π-periodic and F  is the Floquet matrix. After some calculations we 
obtain

P(t) =




e−i t 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei t


 ,� (23)

and

https://doi.org/10.1088/1742-5468/ab7812


Periodic thermodynamics of a two spin Rabi model

7https://doi.org/10.1088/1742-5468/ab7812

J. S
tat. M

ech. (2020) 043204

e−iF t = A∆(t)A�,� (24)

where

A =
1

2




−
√
1− α 1

√
1 + α 1

−
√
1 + α −1 −

√
1− α 1√

1 + α −1
√
1− α 1√

1− α 1 −
√
1 + α 1


 ,� (25)

setting

α ≡ λ√
f 2 + λ2

,� (26)

and

∆(t) =




e
1
4
i t

(
2
√

f2+λ2+λ
)

0 0 0

0 e
1
4
i t (2f−λ) 0 0

0 0 e
1
4
i t

(
λ−2

√
f2+λ2

)
0

0 0 0 e−
1
4
i t (2f+λ)




.� (27)

The connection to the Floquet functions un(t) mentioned in the Introduction is given by

un(t) = P(t)An,� (28)
where An denotes the nth column of A.

We note the following special features of the form of (22) not yet fully understood. 
First, it is not a priori clear that according to (23) the periodic part P(t) is diagonal in 
the spin basis and hence [P(t1),P(t2)] = 0 for all t1, t2 ∈ . Second, the eigenvectors of 
the Floquet matrix F  that are the columns of A according to (25) are real. This follows 
also from the fact the monodromy matrix Ψ(2π) is unitary and symmetric, the latter 
property being a consequence of the particular structure of the Hamiltonian (7), see 
appendix A. Note also that the second and the fourth eigenvector is independent of f  
and λ. These special properties of the monodromy matrix may explain the occurrence 
of the phase boundaries described in section 4.2 despite the eect of ‘avoided level 
crossing’, see also the corresponding remarks in appendix A.

The quasienergies εn (eigenvalues of F ) can be directly read o the diagonal ele-
ments of (27) that represent the eigenvalues of e−iF t:

ε1 = −1

4

(
2
√
f 2 + λ2 + λ

)
,� (29)

ε2 =
1

4
(λ− 2f).� (30)

ε3 =
1

4

(
2
√

f 2 + λ2 − λ
)

� (31)
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ε4 =
1

4
(λ+ 2f).� (32)

Recall that the quasienergies are uniquely determined only up to integer multiples 
of ω = 1. In (29)–(32) we have chosen representatives of quasienergies that appear in a 
strictly monotonic increasing order for λ, f > 0 which facilitates the calculations in the 
periodic thermodynamics section 4.2. For the sake of consistency we will check the two 
limits λ → 0 and f → 0.

The static limit f → 0 yields

lim
f→0

ε2 = lim
f→0

ε3 = lim
f→0

ε4 =
λ

4
, and lim

f→0
ε1 = −3λ

4
.� (33)

This agrees with the eigenvalues (5) of the static Hamiltonian H0 modulo integers.
The limit λ → 0 means that the two spins are decoupled and hence the quasiener-

gies should approach those of the usual Rabi problem for the first spin plus the energy 

eigenvalues ±1
2
 of the second spin. We obtain

lim
λ→0

ε3 = lim
λ→0

ε4 =
f

2
, and lim

λ→0
ε1 = lim

λ→0
ε2 = −f

2
.� (34)

This has to be compatible with

εRabi =
ω ± Ω

2
,� (35)

where Ω is the Rabi frequency

Ω =
√

f 2 + (ω0 − ω)2.� (36)

In our case we have chosen ω0 = ω = 1 which implies Ω = f  and further εRabi =
1±f
2

. 
The total quasienergy of the decoupled spin system is thus ε = 1±f

2
± 1

2
. Again, this is, 

modulo integers, in accordance with (34).

3. Work performed on a two spin system

As an application of the results obtained in the preceding section 2 we consider the 
work performed on a two level system by a circularly polarized magnetic field during 
one period. In contrast to classical physics this work is not just a number but, follow-
ing [34], has to be understood in terms of two subsequent energy measurements. Before 
the time t  =  0 the two level system is assumed to be in a mixed state according to the 
canonical ensemble

W = exp (−βH0) /Tr (exp (−βH0)) ,� (37)

with dimensionless inverse temperature β = �ω
kB T

 and H0 being the static Hamiltonian 

(4). Then at the time t  =  0 one performs a Lüders measurement of the instanta-
neous energy H0 with the four possible outcomes En, n = 1, . . . , 4 according to (5). 
Hence after the measurement the system is in the pure state Pn with probability 

https://doi.org/10.1088/1742-5468/ab7812
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Tr (PnW ) = 1
Z
e−βEn , n = 1, . . . , 4, where the Pn are the projectors onto the eigenstates 

of H0, i.e.

P1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 , P2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , P3 =

1

2




0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


 , P4 =

1

2




0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0


 ,

� (38)
and Z =

∑4
n=1 e

−β En. After this measurement the system evolves according to the 
Schrödinger equation (8) with Hamiltonian H(t). At the time t = 2π the system hence 
is in the pure state Ψ(2π)Pn Ψ(2π)∗ with probability Tr (PnW ) for n = 1, . . . , 4. Then a 
second measurement of the static energy H0 is performed, again with the four possible 
outcomes En. Both measurements together have 4× 4 = 16 possible outcomes symbol-
ized by pairs (i, j) where i, j = 1, . . . 4 that occur with probabilities

p(i, j) = Tr (W Pi) Tr (Pj Ψ(2π)Pi Ψ(2π)∗) ,� (39)

such that 
∑4

i,j=1 p(i, j) = 1. We will not display the p(i, j) but rather the marginal 

probabilities p(i) ≡
∑4

j=1 p(i, j) and the conditional probabilities π( j|i) ≡ p(i,j)
p(i)

, the lat-

ter being independent of β . It is plausible and can be directly verified that the matrix 
of conditional probabilities will be symmetric and hence doubly stochastic, see [35] for 
the rôle of double stochasticity in connection with the Jarzynski equation. Thus we 
need only to display the values of π( j|i) for j � i. The detailed results are

p(1) =
1

z
e2β, p(2) =

1

z
eβ(1+λ), p(3) =

1

z
eβ, p(4) =

1

z
≡ 1

eβ (eβλ + eβ + 1) + 1
,� (40)

and

π(1|1) = π(4|4) = a+ b,� (41)

π(1|4) = a− b,� (42)

a =
1

8


f 2 cos

(
2π

√
f 2 + λ2

)
+ 2f 2 + 3λ2

f 2 + λ2
+ cos(2πf)


 ,� (43)

b =
1

2
cos(πf)


λ sin(πλ) sin

(
π
√

f 2 + λ2
)

√
f 2 + λ2

+ cos(πλ) cos
(
π
√

f 2 + λ2
) ,

� (44)

π(1|2) = π(2|4) =
f 2 sin2

(
π
√
f 2 + λ2

)

2 ( f 2 + λ2)
,� (45)

π(2|2) =
f 2 cos

(
2π

√
f 2 + λ2

)
+ f 2 + 2λ2

2 ( f 2 + λ2)
,� (46)

https://doi.org/10.1088/1742-5468/ab7812
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π(2|3) = 0.� (47)
Besides the symmetry of the matrix of conditional probabilities there are additional 
coincidences in (41), (45) and vanishing values in (47) that are not yet understood.

The matrix of probabilities p(i, j) contains all information for the probability dis-
tribution of the energy dierences between the first and the second measurement, i.e. 
of the distribution of the work w performed on the two spin system by means of the 
periodic driving. Interestingly, although ‘work’ cannot be considered as an observable 
in the ordinary sense giving rise to a projection-valued measure [34], it is an observable 
in the generalized sense of a positive-operator-valued measure [36, 37].

For example, we may calculate the mean value of the performed work with the 
result

〈w〉 =
4∑

i,j=1

(Ej − Ei) p(i, j) =
1

4( f 2 + λ2)z
(w1 + w2 + w3) ,� (48)

w1 = 4
(
e2β − 1

)
λ2 − f 2

(
e2β(λ− 4)− 2λeβλ+β + λ+ 4

)
,� (49)

w2 = f 2λ
(
−2eβλ+β + e2β + 1

)
cos

(
2π

√
f 2 + λ2

)

− 8eβ sinh(β)
(
f 2 + λ2

)
cos(πf) cos(πλ) cos

(
π
√

f 2 + λ2
)

� (50)

w3 = −4
(
e2β − 1

)
λ
√

f 2 + λ2 cos(πf) sin(πλ) sin
(
π
√
f 2 + λ2

)
,� (51)

where the parameter z in (48) has been defined in (40). This function is shown in 
figure 2 for the inverse temperature β = 1. First, we note that obviously 〈w〉 � 0 which 
appears physically plausible and will be proven below.

Another conspicuous feature of the graph of 〈w〉(λ, f, 1) is its oscillating behaviour 
with increasing amplitude for large values of λ ≈ f . This will be more clearly demon-
strated in the figure 3 where we have set λ = f  and displayed 〈w〉( f, f, β) for values of 
β = 0, 1, . . . , 20. It is obvious from this figure and can be analytically confirmed that

〈w〉( f, f, β) ∼ 1

2
f sin2

(√
2 π f

)
for f → ∞.� (52)

The convergence of 〈w〉( f, f, β) against its asymptotic behaviour holds for all β � 0 
but will be more rapid for large β . We will give a semi-quantitative explanation. For 
large β , i.e. low temperatures the system is practically in its ground state with energy 
E3 at t  =  0, the begin of the periodic driving, see (5). By the driving it will be excited 
to the next lowest state with energy E2. The probability of excitation p3→2(t) can be 
calculated and yields a rather simple expression for the special case λ = f :

p3→2(t) =
1

4
sin2

(
f t√
2

)
.� (53)

This result is analogous to the well-known Rabi oscillation of a two-level system. It is 
further plausible that the mean value of the work during one period will be maximal 
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if some maximum of (53) will be attained after exactly one period of driving, i.e. at 
t = 2π. This happens for

f 2 π√
2

=
nπ

2
, n being odd ⇔ f =

n

2
√
2
,� (54)

and hence at the maxima of the asymptotic form of 〈w〉( f, f, β) ∼ 1
2
f sin2

(√
2 π f

)
. An 

analogous reasoning applies to the minima of 〈w〉( f, f, β) Hence the oscillating struc-
ture of 〈w〉 visible in the figure 2 can be viewed as a footprint of a kind of approximate 
Rabi oscillation occurring for the two spin Rabi model. Moreover, it is also plausible 
that asymptotically 〈w〉( f, f, β) scales with f .

Finally, we may, after some calculations, confirm the famous Jarzynski equation [34] 
that in our case reads

Figure 2.  The mean value 〈w〉 of the work performed on the two spin Rabi system 
during one period as a function of the physical parameters λ and f , where the 
initial inverse temperature of the system has been set to β = 1.

Figure 3.  The mean value 〈w〉 of the work performed on the two spin Rabi system 
during one period as a function of the physical parameters λ = f  and β = 0, 1, . . . , 20, 
where the increasing values of β are indicated by an arrow. Moreover, we show the 

asymptotic form of 〈w〉 ∼ 1
2
f sin2

(√
2 π f

)
 (red, dashed curve).
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〈
e−β w

〉
=

4∑
i,j=1

e−β (Ej−Ei) p(i, j) = 1.� (55)

The latter can be considered as a test of consistency of our results. Further, we may 
apply Jensen’s inequality to the convex function x �→ − log x and conclude

〈β w〉 =
〈
− log

(
e−β w

)〉 Jensen

� − log
〈
e−β w

〉 (55)
= − log 1 = 0,� (56)

which, due to β > 0, means that the expectation value of the performed work is always 
non-negative which would be dicult to be confirmed directly for the expression (48)–
(51) of 〈w〉.

4. Periodic thermodynamics

4.1. Golden-rule approach to open driven systems

Let us consider a quantum system evolving according to a T = 2π
ω

-periodic Hamiltonian 
H(t) on a Hilbert space HS that is additionally coupled to a heat bath, described by a 
Hamiltonian Hbath acting on a Hilbert space HB. The total Hamiltonian on the com-
posite Hilbert space HS ⊗HB takes the form

Htotal(t) = H(t)⊗ + ⊗Hbath + V ⊗W .� (57)
Moreover, following Breuer et al [11], let us consider a bath consisting of thermally 
occupied harmonic oscillators, and an interaction of the prototypical form

W =
∑
ω̃

(
bω̃ + b†ω̃

)
,� (58)

where bω̃ (b
†
ω̃) is the annihilation (creation) operator pertaining to a bath oscillator of 

frequency ω̃.
For weak coupling the eect of the heat bath can be approximately described by a 

variant of the Golden Rule. Since this approach has been elaborately explained in the 
literature, see [25] and [29], we will confined ourselves here with the enumeration of the 
pertinent formulas sticking closely to [29].

In the golden-rule approximation the heat bath induces transitions between the 
system’s Floquet states ui(t) and uf (t) with transition rates Γfi that can be written as 
sums over partial rates

Γfi =
∑
�∈

Γ
(�)
fi� (59)

given by

Γ
(�)
fi = 2π |V (�)

fi |
2 N(ω

(�)
fi ) J(|ω

(�)
fi |) .� (60)
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Here J(|ω(�)
fi |) denotes the spectral density of the frequency of bath phonons and will be 

set to a constant J0  >  0 in what follows. Further, V
(�)
fi  denotes the Fourier components 

of the T-periodic matrix elements

Ṽfi = 〈uf (t)|V |ui(t)〉 =
∑
�∈

V
(�)
fi exp(i�ωt) ,

� (61)

and N(ω
(�)
fi ) is the value of the function N(ω̃) evaluated at

ω
(�)
fi ≡ εf − εi + � ω.� (62)

Physically, N(ω̃) represents the thermal average of the bath phonon occupation density 
and is given by

N(ω̃) =

{
ω̃ > 0 : 1

exp(βω̃)−1
,

ω̃ < 0 : 1
1−exp(βω̃)

,� (63)

where β is the inverse temperature of the bath, not to be confounded with the inverse 
temperature considered in section 3. The case distinction in (63) corresponds to the 
distinction between the creation of a bath phonon (ω̃ > 0) and its absorption (ω̃ < 0). 
Thus, a transition among Floquet states is not simply associated with only one single 
frequency, but rather with a set of frequencies spaced by integer multiples of the driv-
ing frequency ω, reflecting the ladder-like nature of the system’s quasienergies.

The total rates (59) now determine the desired quasi-stationary distribution {p n} as 
a solution to the Pauli master equation [11]∑

m

(
Γnmpm − Γmnpn

)
= 0 ,

� (64)

where the existence of a strictly positive solution will be shown below. According to 
this equation (64), the quasi-stationary distribution {p m} which establishes itself under 
the combined influence of time-periodic driving and the thermal oscillator bath is the 
eigenvector of a matrix Γ̃ corresponding to the eigenvalue 0, where Γ̃ is obtained from 
Γ by subtracting from the diagonal elements the respective column sums, i.e.

Γ̃mn ≡ Γmn − δmn

N∑
k=1

Γkn .� (65)

Moreover, it is evident that we only need the non-diagonal matrix elements of Γ for 
calculating the quasistationary distribution, whereas the diagonal elements would be 
required for computing the dissipation rate [25].

As announced above, we will now prove the existence of a strictly positive solution 
of the Pauli master equation (64). Although this result it well-known it is not easily 
found in the literature and hence an explicit proof will be in order.

We start with a few definitions needed for the statement of the theorem of Frobenius–
Perron that is suited for the problem at hand. A real N ×N-matrix T will be called 
non-negative, in symbols T � 0, i all its matrix entries satisfy Tij � 0. Analogously, 
we will define a positive matrix T  >  0 and also use these terms for vectors x with the 
notation x  >  0 or x � 0. Moreover, T is irreducible i for all 1 � i, j � N  there exists a 
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k ∈  such that T k
ij > 0. Physically, if T is some transition matrix, the notion of irre-

ducibility would be construed as a kind of ‘ergodicity’, because it says that if starting 
from any state i it is possible to reach any other state j  after a finite number of steps. 
Then we may state the theorem of Frobenius–Perron, see, e.g. [38], Theorem 2, p. 53, 
in the following form, adapted to our purposes.

Theorem 1 (Frobenius–Perron).  Let T be a non-negative irreducible square matrix. 
Then

	 •	 �T has a positive eigenvalue λmax that is the spectral radius of T, i.e. all other  
eigenvalues λ of T satisfy |λ| � λmax.

	 •	 �Furthermore λmax has algebraic and geometric multiplicity one, and has an  
eigenvector x with x  >  0.

	 •	 �Any non-negative eigenvector of T is a multiple of x.

By means of (60) it is obvious that Γ � 0, but the present two spin Rabi model is 
an example showing that Γ > 0 does not hold in general, see below. Hence, in order to 
apply the preceding theorem, we will additionally need the following

Assumption 1.  Γ is irreducible.

That is essentially saying that the eigenvectors of the interaction matrix V  are 
oblique w.r.t. the Floquet basis and does not follow from the general assumptions made 
so far.

Recall that Γ̃ is defined by subtraction of the column sums of Γ and hence will pos-
sess negative matrix entries in the diagonal. If λ is defined as the maximal column sum 
of Γ we will obtain a non-negative matrix G by adding λ to each diagonal element,

G ≡ Γ̃ + λ � 0,� (66)

and, moreover, conclude

Lemma 1.  G and hence also G� are irreducible.

Proof.  By definition, G can be written as G = Γ +∆ such that ∆ � 0 is a diagonal 
matrix. It follows from

Gk = (Γ +∆)k = Γk +∆Γk−1 + . . .+ Γk−1∆+ . . .+∆2Γk−2 + . . .+ Γk−2∆2 + . . .+∆k,� (67)

and the assumption 1 that for all 1 � i, j � N  there exists a k ∈  such that Gk
ij > 0. 

Hence G is irreducible.� □ 

By definition, Γ̃ has vanishing column sums, hence 1 ≡ (1, 1, . . . , 1) will be a left 
eigenvector of Γ̃ with eigenvalue 0. It follows that 1 is also a right eigenvector of G� 
with eigenvalue λ. G� satisfies the conditions of the theorem of Frobenius–Perron, 
hence λ = λmax is the spectral radius of G� and 1 is the unique corresponding eigenvec-
tor. Applying again the theorem of Frobenius–Perron to G that has the same eigenval-

ues as G� we conclude that there exists an eigenvector p   >  0 of G with eigenvalue λ, 
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unique up to normalization. It follows that Γ̃ p = 0 and hence p  is the solution of the 
Pauli master equation (64) we are seeking for. We state this result as

Theorem 2.  If the matrix Γ is irreducible then the Pauli master equation (64) has a 
unique solution {p n} satisfying p n  >  0 for all n = 1, . . . N  and 

∑N
n=1 pn = 1.

4.2. Application to the two spin system

We choose the matrix V  that is part of the coupling to the heat bath according to 

(57) as V ≡ ⊗ s
(2)
1 , i.e. only the second spin is involved. We need its matrix elements 

Ṽfi ≡ 〈uf (t)|V |ui(t)〉 w.r.t. Floquet states, see (61). In our case Ṽ  can be written as

Ṽ = A∗ P(t)∗ V P(t)A,� (68)

with P(t) and A according to (23) and (25). It is clear from (23) that Ṽ  contains only 
Fourier components of the order |�| � 1. Actually, we obtain

Ṽ = V (1) eit + V (−1) e−it,� (69)
where

V (1) =
1

8




2fu v + w −2λu v − w

−v − w −2 v − w 0

−2λu w − v −2fu v + w

w − v 0 −v − w 2


 ,� (70)

V (−1) =
1

8




2fu −v − w −2λu w − v

v + w −2 w − v 0

−2λu v − w −2fu −v − w

v − w 0 v + w 2


 ,� (71)

and

u ≡ 1√
f 2 + λ2

, v ≡
√
1 + λu, w ≡

√
1− λu.� (72)

Note that the occurrence of the matrix entry 0 in (70) and (71) implies that Γ24 = Γ42 = 0 
and hence Γ is not positive but only non-negative which has to be taken into account 
in the application of theorem 1.

Further we need the values of N(ω
(�)
fi ) in (60) according to (63). Recall that the case 

distinction to be made w.r.t. the sign of ω
(�)
fi = εf − εi + �ω = εf − εi + � physically cor-

responds to the absorption or generation of bath phonons. In order to obtain analytical 
expressions for, say, the occupation probabilities in the non-equilibrium steady state 
(NESS), we will have to restrict the parameters (λ, f) ∈ + × + to certain domains 

where the sign of ω
(�)
fi  will not change for all f, i, �. These domains can be viewed as 

‘phases’ of a phase diagram of the parameter space + × +. The boundaries of these 

phases are given by equations of the form ω
(�)
fi = 0. The latter corresponds to a partial 
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degeneracy of quasienergies taking into account that they are only defined up to integer 
multiples of the driving frequency ω = 1.

We consider the example f = 3, i = 1, and � = −1. The corresponding boundary 
equation is

0 = ω
(−1)
31 = ε3 − ε1 − 1 =

1

4

(
−λ+ 2

√
f 2 + λ2

)
+

1

4

(
λ+ 2

√
f 2 + λ2

)
− 1 =

√
f 2 + λ2 − 1,

� (73)
describing a quarter circle in the (λ, f)-quadrant, see figure 6.

The other boundaries are given by

0 = ε2 − ε1 − 1 ⇔ f =
2(λ− 1)

2− λ
,� (74)

0 = ε3 − ε2 − 1 ⇔ f =
2(λ+ 1)

2 + λ
,� (75)

0 = ε4 − ε1 − 1 ⇔ f =
2(λ− 1)

λ− 2
,� (76)

0 = ε4 − ε2 − 1 ⇔ f = 1� (77)
see the figures 4–6. Note that there are six positive dierences of quasienergies εf − εi 
but only five boundary equations  since the equation  ε4 − ε3 − 1 = 0 has no positive 
solution.

As a first, somewhat surprising analytical result we note that for the phase A 

defined by f < 2(λ−1)
λ−2

, see figure 6, the Pauli master equation (64) has a unique solu-
tion corresponding to the same occupation probability for all Floquet states. This also 
follows from the symmetry Γmn = Γnm that holds only within phase A. Formally the 
coincidence of all probabilities would correspond to an infinite quasitemperature and 

Figure 4.  The four quasienergies εn according to (29)–(32) as functions of λ where 

f  has been set to 1/2. At the values of λ = 2
3
,
√
3
2

 and 6
5 certain dierences of 

quasienergies assume the value 1 and hence the corresponding frequencies ω(�)
fi  

according to (62) vanish. These cases are indicated by vertical coloured lines. They 

correspond to certain phase boundaries in figure 6.
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could be compared with the vanishing inverse quasitemperature along the line ω = ω0 
and 0 < F < ω0 for the circularly polarized Rabi problem, see [29], figure 1.

In the phase domains B–H the occupation probabilities p n can be analytically calcu-
lated by the means of computer-algebraic software but the results cannot be displayed 
due to their forbidding complexity. Nevertheless, one may plot these results. A first 
graphics shows the p n as continuous functions of λ where the parameter f  has been set 
to f   =  1/2, see figure 7. One clearly distinguishes the four phases A–D acoording to 
figure 6 and observes that the pn(λ) are smooth inside the phase domains but shows 

Figure 5.  Analogous to figure 4 but with f = 6
5. Here the frequencies ω(�)

fi  vanish 

at λ = 1
2
 and λ = 11

8 .

Figure 6.  The phase diagram of the (λ, f)-parameter space with eight phases 
A, . . . H , where the phase boundaries are given by the equations (73) (green circle) 
or (74)–(77) (red, yellow, purple, blue curves).
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kinks at the phase boundaries. The fact that at least two probabilities coincide at the 
phase boundaries can be understood by the arguments presented in appendix B that 
also hold for general N-level systems.

The coincidence of two probabilities at phase boundaries also shows that, in general, 
the NESS will not be of Boltzmann type with a quasitemperature θ: for a Boltzmann 
distribution of occupation probabilities p n and non-degenerate representatives of quasie-
nergies two probabilities never coincide except for θ = ∞. In our case the latter only 
occurs in the phase A, see above.

Figure 7.  The four occupation probabilities p n of the Floquet states for the NESS 
as functions of λ where f  has been set to f   =  1/2 and the inverse bath temperature 
is chosen as β = 1. Within the phases A–D, indicated by dierent colours, the 

p n are smooth functions of λ. At the phase boundaries the derivatives d pn
dλ

 are 

discontinuous and at least two probabilities coincide.

Figure 8.  The four occupation probabilities p n of the Floquet states for the NESS 
as functions of λ where f  has been set to f   =  6/5 and β = 1. Within the phases E, 
F, G, indicated by dierent colours, the p n are smooth functions of λ. At the phase 

boundaries the derivatives d pn
dλ

 are discontinuous and exactly two probabilities 

coincide.
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5. Summary and outlook

We have investigated the two spin Rabi model consisting of an s  =  1/2 spin subjected 
to a monochromatic circularly polarized magnetic field and coupled to a second spin 
s  =  1/2 that is in turn in contact with a heat bath. The quasienergies of the spin system 
as well as the occupation probabilities of the emerging NESS can be, in principle, ana-
lytically determined and hence this system may serve as an example for testing conjec-
tures about general periodically driven N-level systems. We found that, in contrast to 
other systems recently studied, the NESS probabilities are not of Boltzmann type and 
hence there does not exist a quasitemperature. Moreover, the parameter space of the 
system is found to be partitioned into certain phases such that the NESS probabilities 
change at the phase boundaries in a way analogous to a 2nd order phase transition. It 
has been made plausible by detailed arguments that these two properties will also be 
satisfied for general N-level systems. On the other hand, the existence of a phase A 
with infinite quasitemperature hinges on special properties of the two spin Rabi model, 
e.g. the structure of the eigenvectors of the Floquet operator or the commuting opera-
tors describing the periodic part of the time evolution, and probably does not generally 
hold. Nevertheless, it would be instructive to closer investigate similar systems in order 
to verify (or falsify) the above conjectures.
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Appendix A. Proof of the symmetry of the monodromy matrix

As noted in section 2 the symmetry of the unitary monodromy matrix U(2π) has the 
consequence that it possesses a real eigenbasis. In fact, the eigenvalue equation

U(2π)φ = c φ,� (A.1)
satisfying |c|2  =  1 implies

φ = U(2π)U(2π)−1 φ = U(2π)U(2π)φ
(A.1)
= c̄ U(2π)φ,� (A.2)

where we have used that, according to the above symmetry assumption, U(2π) = U(2π)−1. 

This means that the vector φ will be an eigenvector of U(2π) corresponding to the same 

eigenvalue 1
c̄
= c. Thus if φ is unique it must be real, or otherwise, in the case of degen-

eracy, it can be chosen as real.
It remains to show that U(2π) is symmetric. To this end we introduce a slightly 

more general notation by writing the unitary time evolution between t  =  t0 and t  =  t1 
as U(t1, t0) such that

U(t1, t0) = U(t0, t1)
−1.� (A.3)
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U(t, 0) satisfies the dierential equation

∂

∂t
U(t, 0) = −iH(t)U(t, 0),� (A.4)

analogous to (19) and the initial condition U(0, 0) = . Moreover,

U(t− 2π,−2π) = U(t, 0),� (A.5)
due to the 2π-periodicity of H(t).

Note that the special form of the Hamiltonian (7) due to circular polarization of the 
driving field implies

H(t) = H(−t).� (A.6)

Define the family of unitaries V (t, 0) ≡ U(−t, 0). It satisfies

∂

∂t
V (t, 0) = − ∂

∂t
U(−t, 0)

(A.4)
= −(−iH(−t)U(−t, 0))

(A.6)
= −iH(t)V (t, 0),� (A.7)

and V (0, 0) = , the same dierential equation and initial condition as U(t, 0). Hence

V (t, 0) = U(t, 0) = U(−t, 0) for all t ∈ .� (A.8)

Especially, for t = 2 π,

U(2π, 0) = U(−2π, 0)
(A.3)
= U(0,−2π)−1

(A.5)
= U(2π, 0)−1 = U(2π, 0)�,� (A.9)

which completes the proof of U(2π, 0) being symmetric. � ◻

Appendix B. Some properties of periodically driven N-level systems

We adopt a more general framework than in the main part of the paper and assume a 
Hamiltonian H(π, t) as an Hermitean N ×N-matrix depending on certain parameters 
π ∈ P ⊂ p including the driving frequency ω. Here the parameter space P is assumed 

to be an open subset of p. Again, the Hamiltonian will depend T ≡ 2π
ω

-periodically on 
t. Moreover, we will assume that there exists a strictly monotone selection of quasiener-
gies εn(π), n = 1, . . . , N that depend smoothly on π ∈ P:

Assumption B.1. 

εn(π) < εm(π) for all 1 � n < m � N and π ∈ P .� (B.1)

Analogously to the definitions in section 4.2 we will define ‘phases’ Pν ⊂ P by 
intersections of open subsets of P of the form

O>
nm� ≡ {π ∈ P |εn(π)− εm(π) + �ω > 0}� (B.2)

or

O<
nm� ≡ {π ∈ P |εn(π)− εm(π) + �ω < 0} .� (B.3)

We are looking for ‘minimal phases’ in the sense that Pν must not contain strictly 
smaller phases. Although the integer � in (B.2) and (B.3) may assume infinitely many 
values it suces to consider finitely many intersections of the above subsets. This can 
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be seen as follows. Let n  >  m such εn(π)− εm(π) > 0. Then there exists an � ∈ 0 
such that εn(π)− εm(π)− � ω > 0 but εn(π)− εm(π)− (�+ 1)ω < 0. It follows that for 
the pair (n,m) we need only consider the intersection of the two subsets O>

n,m,−� and 

O<
n,m,−(�+1) since the other ones of the form (B.2) or (B.3) are always larger and hence 

not minimal. Analogous considerations apply for the case n  <  m. It follows that the Pν 
are open as finite intersections of open subsets of P .

The phase boundaries are again given by equations of the form

εn(π)− εm(π) + �ω = 0,� (B.4)
and will be denoted by Pnm�. It may happen, as in the case of the two spin Rabi model, 
that not all phase boundaries given by equations of the form (B.4) are realized since 
only a finite number of non-vanishing Fourier components of the relevant quantities 
exists.

Another problem is the requirement that the phase boundaries should have codi-
mension one in P whereas the ‘avoided level crossing’ of quasienergies, see, e.g. [39], 
is an indication of a larger codimension. To explain this problem in more detail we 
reconsider the N ×N monodromy matrix U(T, 0) describing the unitary time evo
lution of the system after one period T and recall that the eigenvalues of U(T, 0) are 
in 1 : 1 relation with equivalence classes of quasienergies modulo ω. A general unitary 
N ×N-matrix depends on N2 real parameters, but the submanifold of unitary matrices 
with one pair of degenerate eigenvalues has only the dimension N2  −  3, i.e. the codi-
mension three. This supports the expectation that in the p -dimensional surface P the 
phase boundaries given by (B.4) should also have codimension three, and not one as 
required in our approach. Note, however, that for special cases like the class of symmet-
ric unitary matrices, see appendix A, the codimension reduces to two. Moreover, two 
eigenvalues of U(T, 0) belonging to dierent eigenvalues of a symmetry will not show 
the avoided level crossing, see, e.g. [39]. Another way to circumvent the above problem 
results when one of the parameters is the frequency of excitation ω. This frequency is 
constant for the monodromy matrix and the sketched argument for codimension three 
does not apply. As an illustration we remark that for the one spin s  =  1/2 Rabi problem 

with quasienergy ε± = 1
2
(ω ± ΩRabi), see (35), the crossing of quasienergies ε+ = ε− + ω 

occurs for ω =
f2+ω2

0

2ω0
. The latter indicates a codimension one of the phase boundary in 

spite of the noncrossing rule.
The general definitions of section 4.1 also apply for the N level case. We note the 

following

Lemma B.1. 

V (�)
nm = V

(−�)
mn for all n,m = 1, . . . , N and � ∈ .� (B.5)

Proof.  Recall that, due to V  being Hermitean,

Ṽnm
(61)
= 〈un(t)|V |um(t)〉 =

∑
�∈

V (�)
nm ei � ω t = 〈um(t)|V |un(t)〉 = Ṽmn =

∑
�∈

V
(�)
mn e

−i � ω t =
∑
�∈

V
(−�)
mn ei � ω t.

� (B.6)
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The comparison of the coecients of the first and the last Fourier series in (B.6) yields 
the result.� □ 

Next we will formulate some arguments in favour of the following Assertion, albeit 
not in a mathematically rigorous manner.

Assertion 1.  At least two NESS probabilities coincide at the phase boundaries.

Consider a fixed boundary P n̄m̄�̄ that is defined by the vanishing of some frequency 

ω
(�̄)
m̄n̄. It follows from

ω
(�̄)
m̄n̄ = εm̄ − εn̄ + �̄ω = −

(
εn̄ − εm̄ − �̄ω

)
= −ω

(−�̄)
n̄m̄ ,� (B.7)

see (62), that the complementary frequency ω
(−�̄)
n̄m̄  vanishes too. For these values the 

thermal averages N(ω
(�̄)
m̄n̄) and N(ω

(−�̄)
n̄m̄ ) diverge due to (63). Hence close to the bound-

ary these averages and the corresponding transition rates Γm̄n̄ and Γn̄m̄ will assume 
arbitrary large values. If the Pauli master equation (64) is written in the form∑

m

Γnmpm =
∑
m

Γmnpn,� (B.8)

it is obvious that for n = n̄ both sides of (B.8) are dominated by a single term where 
m = m̄ and hence

Γn̄m̄pm̄ ≈ Γm̄n̄pn̄.� (B.9)
This approximation is to be understood in the sense that although both sides of (B.9) 
become arbitrarily large its dierence remains bounded. This means that close to the 
phase boundary we obtain a kind of ‘local detailed balance’ for the pair (m̄, n̄). On the 
other hand the matrix entries Γn̄m̄ will be almost symmetric, i.e. satisfy Γn̄m̄ ≈ Γm̄n̄ 
close to the phase boundary. This can be shown as follows. Using

∣∣∣V (�̄)
m̄n̄

∣∣∣
2

=
∣∣∣V (−�̄)

n̄m̄

∣∣∣
2

,� (B.10)

see lemma B.1 in this appendix, the limit relation

lim
ω̃↓0

N(ω̃)

N(−ω̃)
= lim

ω̃↓0

1− e−βω̃

eβω̃ − 1
= lim

ω̃↓0
e−β ω̃ = 1,� (B.11)

and (B.7), we conclude

Γm̄n̄ ≈ Γ
(�̄)
m̄n̄

(60)
= 2π

∣∣∣V (�̄)
m̄n̄

∣∣∣
2

N(ω
(�̄)
m̄n̄) J0 ≈ 2 π

∣∣∣V (−�̄)
n̄m̄

∣∣∣
2

N(ω
(−�̄)
n̄m̄ ) J0 = Γ

(−�̄)
n̄m̄ ≈ Γn̄m̄.

� (B.12)
Consequently, when approaching the phase boundary, symbolically denoted by 

limω̃↓0, we have

lim
ω̃↓0

pm̄
pn̄

(B.9)
= lim

ω̃↓0

Γm̄n̄

Γn̄m̄

(B.12)
= 1,� (B.13)

which completes the arguments in favour of assertion 1.� ◻
In the case of a single spin s all quasienergy levels are equidistant, see equations (53) 

and (54) in [29], and thus the coincidence of two probabilities at the phase boundary 
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implies that all probabilities p n are the same and hence the inverse quasitemperature 
vanishes, see [29].

In the general case arguments analogous to those at the end of section 4.2 show 
that the NESS will not be of Boltzmann type at least at the phase boundaries and, 
by continuity, in a small neighbourhood of the phase boundaries. This supports the 
conjecture that the existence of a quasitemperature of the NESS is restricted to very 
special systems.

Next we will address the question how the NESS probabilities p n are connected at 
the phase boundaries and formulate the following

Assertion 2.  The NESS probabilities are continuous at the phase boundaries but their 
gradients are discontinuous there.

We will provide some arguments in favour of this assertion that could probably be 
strengthen to a more rigorous proof. To this end we consider a fixed phase boundary 
P n̄m̄�̄ given by the equation

0 = ω
(�̄)
n̄m̄ = εn̄ − εm̄ + �̄ ω,� (B.14)

and will calculate the p n in a small neighbourhood of some point π ∈ P n̄m̄�̄ . We con-
sider a curve through π perpendicular to P n̄m̄�̄ parametrized by the parameter

x ≡ β ω
(�̄)
n̄m̄,� (B.15)

such that −δ < x < δ for some δ > 0 and x  =  0 corresponds to the point π ∈ P n̄m̄�̄ .

First we only consider the ‘positive neighbourhood’ P>
n̄m̄�̄ of P n̄m̄�̄ given by ω

(�̄)
n̄m̄ > 0 

(such that also x  >  0) and restricted in such a way that no other phase boundaries 
intersect P>

n̄m̄�̄. We assume that a Taylor series representation of p n holds in P>
n̄m̄�̄ with 

the first terms being of the form

pn = pn0 + x pn1 +O(x2).� (B.16)

We denote by Γ> and Γ̃> the transition rate matrix functions (59) and (65) restricted to 
the positive neighbourhood P>

n̄m̄�̄. According to what has been said the matrix entries 
Γ>
nm will be smooth functions of x for −δ < x < δ except for Γ>

n̄m̄ and Γ>
m̄n̄ where the 

transition rates diverge for x → 0. Hence it is sensible to adopt Laurent series repre-

sentations for the Γ>
nm that are Taylor series for most cases but start with an 1

x
-term in 

the latter two cases.
In particular, isolating the diverging terms, we may write

Γ̃>
n̄m̄ = Γ>

n̄m̄ = 2πJ0





∣∣∣V (�̄)
n̄m̄

∣∣∣
2 1

ex − 1
+
∑
�∈
��=�̄

∣∣∣V (�)
n̄m̄

∣∣∣
2

N
(
ω�
n̄m̄

)




,� (B.17)

and
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Γ̃>
m̄n̄ = Γ>

m̄n̄ = 2πJ0




∣∣∣V (−�̄)

m̄n̄

∣∣∣
2 1

1− e−x
+

∑
�∈

��=−bar�

∣∣∣V (�)
m̄n̄

∣∣∣
2

N
(
ω�
m̄n̄

)



.� (B.18)

For the modified matrix Γ̃> additionally two diagonal elements will diverge for x → 0. 
According to

Γ̃>
m̄m̄ = Γ>

m̄m̄ −
∑
n

Γ>
nm̄,� (B.19)

see (65), the diverging term of Γ̃>
m̄m̄ is

−2π J0

∣∣∣V (�̄)
n̄m̄

∣∣∣
2 1

ex − 1
.� (B.20)

Analogously, the diverging term of Γ̃>
n̄n̄ is

−2π J0

∣∣∣V (−�̄)
m̄n̄

∣∣∣
2 1

1− e−x
.� (B.21)

All terms in (B.16)–(B.21) can be written as Taylor series in x with the exception of the 
highlighted exponential terms that possess the Laurent series

1

ex − 1
=

1

x
− 1

2
+

x

12
+O(x2),

� (B.22)
and

1

1− e−x
=

1

x
+

1

2
+

x

12
+O(x2).

� (B.23)
Recall that the vector p> of NESS probabilities in the positive neighbourhood is the 

(normalized) solution of Γ̃>p> = 0 that is unique due to theorem 2. After expanding Γ̃> 
and p> into Laurent series w.r.t. x we will set the first three coecients of the resulting 

Laurent series of Γ̃>p> to zero and thus obtain the first two terms of (B.16). These will 
determine the limit of the NESS probabilities and its gradient at the phase boundary.

In order to keep the representation as simple as possible we will, without loss of 
generality, assume that n̄ = 1 and m̄ = 2. It will suce to give the structure of the 
Laurent series of Γ̃> without going into the details of how the various numbers can be 
expressed by the physical quantities:

Γ̃> =



−a

x
+ d+ . . . a

x
+ b+ . . . a�

0 + x a�
1

a
x
+ c+ . . . −a

x
+ e+ . . . c�0 + x c�1

b0 + xb1 d0 + xd1 γ0 + xγ1


+O(x2).� (B.24)

Here we have omitted the x-linear terms in the upper left 2× 2-submatrix that are not 
needed in the sequel. The real numbers a, b, c, d, e are independent of x, likewise the 
(N − 2)-dimensional vectors a0, . . . ,d1 and the (N − 2)× (N − 2)-matrices γ0 and γ1. 
We stress that the repeated occurrence of the quantity

a = 2π J0 lim
x↓0

∣∣∣V (�̄)
12

∣∣∣
2

� (B.25)
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in (B.24) is crucial for the following considerations. The vector of NESS probabilities 
p> will be written as

p> =



p10 + x p11
p20 + x p21
p0 + xp1


+O(x2).� (B.26)

Setting the coecients of the resulting Laurent series of the various components of 

Γ̃>p> to zero yields the following results:

x−1 :
a

x
( p20 − p10) = 0 ⇒ p20 = p10 ≡ p,� (B.27)

x0 : p (b0 + d0) + γ0 p0 = 0 ⇒ p0 = −pγ−1
0 (b0 + d0) ,� (B.28)

x0 : a

(
1 1

1 −1

)(
p11
p21

)
=

(
−p(d+ b)− a0 · p0

−p(c+ e)− c0 · p0

)
� (B.29)

⇒ p11 = − 1

2a
( p(d+ b+ c+ e) + a0 · p0 + c0 · p0) and� (B.30)

p21 = − 1

2a
( p(d+ b− c− e) + a0 · p0 − c0 · p0) ,� (B.31)

x1 : x ( p11 b0 + pb1 + p21 d0 + pd1 + γ1 p0 + γ0 p1) = 0� (B.32)

⇒ p1 = −γ−1
0 (−γ1 p0 + p (b1 + d1) + p11 b0 + p21 d0) .� (B.33)

A few remarks are in order. First, we note that the result p20 = p10 ≡ p in (B.27) again 
confirms the previous statement in assertion 1 that at least two NESS probabilities 
coincide at the phase boundaries. Of course, the free parameter p   >  0 has to be chosen 
in such a way that the probabilities sum up to unity.

Second, we have used in (B.28) and (B.33) that γ0 is invertible. This can be shown 
as follows. Let, for −δ < x < δ, Γ∧(x) denote the matrix obtained from Γ>(x) by sub-

tracting its principle part, i.e. the terms of the form ±a
x
, analogously for Γ̃∧(x). Then 

it can be easily shown that Γ∧(x) also satisfies the conditions of theorem 2. Hence 

Γ̃∧(x) has an one-dimensional null space spanned by some p∧ > 0. This vector cannot 
lie in the subspace of vectors of the form (0, 0,p)� and the matrix γ(x), defined as the 

restriction of Γ̃∧(x) to this subspace, must be invertible for all −δ < x < δ. Especially, 
γ0 = γ(0) is invertible.

The calculations with Γ̃< and p < defined in the ‘negative neighbourhood’ P<
n̄m̄�̄ of 

P n̄m̄�̄ given by ω
(�̄)
n̄m̄ < 0 are completely analogous and need not be given in detail. The 

only dierence is that for x  <  0 we have

N(ω
(�)
12 ) =

1

1− ex
= −1

x
+

1

2
− x

12
+O(x2),� (B.34)

and
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N(ω
(−�)
21 ) =

1

e−x − 1
= −1

x
− 1

2
− x

12
+O(x2).� (B.35)

This means that the Laurent series for Γ̃< is identical with (B.24), with the only excep-
tion that a has to be replaced by  −a. This modification does not change the solution 
for p10 = p20 = p according to (B.27) and for p0 according to (B.28). Hence the NESS 
probabilities are continuous at the phase boundaries. In contrast, the solutions for p 11 
and p 21 according to (B.29) and (B.31) will change their sign and hence also p1 accord-
ing to (B.33) will be dierent for the negative neighbourhood. This means that the 
x-derivative and hence the gradient of the NESS probabilities will be discontinuous at 
the phase boundaries, thereby completing the arguments in favour of assertion 2.� ◻
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