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Abstract.  Numerous real-world systems, for instance, communication 
platforms and transportation systems, can be abstracted into complex networks. 
Containing spreading dynamics (e.g. epidemic transmission and misinformation 
propagation) in networked systems is a hot topic on multiple fronts. Most 
of the previous strategies are based on the immunization of nodes. However, 
sometimes, these node-based strategies can be impractical. For instance, in train 
transportation networks, it is excessive to isolate train stations for flu prevention. 
On the contrary, temporarily suspending some connections between stations 
is more acceptable. Thus, we pay attention to the edge-based containment 
strategy. In this study, we develop a theoretical framework to find the optimal 
edge for containing the spread of the susceptible-infected-susceptible model on 
complex networks. To be specific, by performing a perturbation method to the 
discrete-Markovian-chain equations of the SIS model, we derive a formula that 
approximately provides the decremental outbreak size after the deactivation of 
a certain edge in the network. Then, we determine the optimal edge by simply 
choosing the one with the largest decremental outbreak size. Note that our 
proposed theoretical framework incorporates the information of both network 
structure and spreading dynamics. Finally, we test the performance of our 
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method by extensive numerical simulations. Results demonstrate that our 
strategy always outperforms other strategies that are based only on structural 
properties (degree or edge betweenness centrality). The theoretical framework 
in this study can be extended to other spreading models and oers inspiration 
for further investigations on edge-based immunization strategies.

Keywords: network dynamics
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1.  Introduction

The subject of containing spreading dynamics in networked systems has attracted sub-
stantial attention from multiple fronts, for instance, network science, statistical phys-
ics, and computer science. Some common spreading dynamics, including the epidemic 
transmission [1, 2] and misinformation spreading [3, 4], can influence all aspects of an 
individual’s life and cause great impact to the socioeconomic systems. The study of 
containing these spreading dynamics is of both theoretical and practical importance.

Before getting into the problem of spreading containment, it is necessary to build 
suitable models to describe the spreading dynamics. Researchers have proposed vari-
ous models for dierent spreading cases. For instance, the classic susceptible-infected-
susceptible (SIS) model [5] and the susceptible-infected-recovered (SIR) model [6, 7], 
along with many of their extensions [8–10], have been widely applied to describe the 
spreading of a disease or simple information (e.g. rumors). In these simple contagions, 
the susceptible individuals could be infected by a single contact with an infected one. 
When it comes to modeling some complex information spreading, such as the behavior 
adoption [11] and political information [12, 13], the susceptible individuals first assess 
the legality of the information and conduct a risk assessment. Then, they become 
infected with a probability that increases with the cumulative amount of contact with 
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the infected individuals. This mechanism is referred to as the social reinforcement [14, 
15]. The classical threshold model and other models extended from it incorporate this 
mechanism for complex contagions. More spreading models with other complex mech
anisms are discussed in [16].

Based on the dierent spreading models, researchers go further to develop contain-
ing strategies for the spreading dynamics. An eective containing strategy is supposed 
to eectively increase the spreading outbreak threshold [17] or decrease the outbreak 
size [18]. Many target containing strategies have been proposed, for instance, immuniz-
ing a fraction of nodes according to the centrality indexes of them, like their degree, 
betweenness, closeness, PageRank, and eigenvector centrality [19–25]. However, in the 
real-life, the identification of centrality-defined individuals sometimes can be time-con-
suming. Thus, researchers come up with strategies that do not rely on any centrality 
indexes of the nodes, such as the acquaintance immunization strategy [19, 21, 26, 26, 
27], which is more suitable for practical applications. Besides, many containing strate-
gies inspired by the methods of optimization and control [28–34] have been proposed 
by researchers as well. There are also some specific containment strategies for networks 
in dierent categories, for instance, the multiple networks [35], adaptive networks [36], 
and temporal networks [37].

All the strategies mentioned above are based on the immunization of nodes. 
However, these strategies are sometimes dicult to put into practice. For instance, it 
is excessive to isolate a fraction of train stations within the whole country to prevent 
the spreading of flu on the train transportation network, but it is more acceptable to 
suspend some connections in the network. Thus, the study of edge-based containing 
strategies should be emphasized. Some researchers have proposed strategies of deacti-
vating edges selected by the properties of the adjacent nodes or the edges themselves 
[38, 39]. Besides, some strategies incorporate both the structural characteristics of the 
network and parameters of the spreading process [40].

This study focuses on the subject of determining the optimal edge for containing 
the spreading of the SIS model on complex networks. The theoretical framework we 
developed can find the optimal or near-optimal edge for the spreading containment of 
the SIS model. By developing a perturbation method to the discrete-Markovian-chain 
equations  of the SIS model, we obtain a formula that approximately provides the 
decremental outbreak size after deactivating a certain edge in the network. Then, we 
determine the optimal edge by simply selecting the one with the largest decremental 
outbreak size. It is worth mentioning that the information of both network structure 
and spreading dynamics is considered in our theoretical framework.

The paper is organized as follows. Section 2 provides the model description. The 
detailed theoretical analysis is presented in section 3. Then, we present the numerical 
simulations in section 4. Finally, we provide a conclusion in section 5.

2. Model description

In this study, we consider the classic SIS model on a complex network G of N nodes 
and M edges. The SIS model is extensively applied to describe the spreading of simple 
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information or disease. Each node in this model can be in two dierent states, that is, 
the susceptible state (S) and the infected state (I). Initially, we select a small fraction 
of nodes to be the infected seeds, keeping the others in the S state. Then, for every 
time step, each infected node tries to infect neighbors in the S state with probability 
λ. Afterward, all the nodes in the I state return to the S state with probability γ. 
Without loss of generality, we set γ = 0.5 in this study. Eventually, the dynamic sys-
tem will reach the steady-state on network G, where the fraction of nodes in the I state 
fluctuates around a certain value ρ, that is, the outbreak size.

Let A be the adjacency matrix of the network G. Thus, A should be a square N ×N 
matrix such that its element Aij  =  1 when there is an edge between node i and j , and 
Aij  =  0 when there is no edge. Previous studies [41, 42] have demonstrated that the 
spreading outbreaks when the eective transmission probability β = λ/γ is larger than 
the reciprocal of the leading eigenvalue ω of A. That is to say, if λc/γ = 1/ω, then 
the spreading will break out only when λ is larger than the critical value λc = γ/ω. 
Otherwise, if λ < λc, then no outbreaks will be observed, and no containment process 
is needed. Therefore, we focus on the case when λ > λc in this study.

After deactivating a specific edge (i0, j0) in the networks G, we get a new network 
G′. And the adjacency matrix A′ of G′ should be

A′ = A− Ȧ,� (1)

where the element Ȧij = 1 only when (i, j) ∈ {(i0, j0), ( j0, i0)}. Denote ρ′ as the out-
break size on the new network G′. We aim to find the optimal edge, which, if deacti-
vated, can maximize the decremental outbreak size ρ̇ = ρ− ρ′.

3. Theoretical analysis

In this section, we first present the discrete-Markovian-chain (DMC) approach [42, 
43] for the SIS model on the network G. Then, using a perturbation method for the 
DMC, we derive a formula that approximately provides the decremental outbreak size 
after deactivating an edge in the network G. Finally, using the formula, we study the 
problem of determining the optimal edge, which, if deactivated, can maximize the dec-
remental outbreak size.

3.1. The discrete-Markovian-chain approach for the SIS model

In this subsection, we adopt the discrete-Markovian-chain (DMC) approach to study 
the SIS model on the network G. The DMC approach can accurately predict the phase 
diagram for contact-based spreading dynamics in complex networks and overcomes the 
computational cost of Monte Carlo simulations [42].

To begin with, we define a set of discrete-time equations for the probability of indi-
vidual nodes to be infected. Denote Ii(t) as the probability that node i is in the I state 
at time t. Then, the node i is in the S state at time t with probability Si(t) = 1− Ii(t). 
If i is in the I state at t  +  1, then either it was in the I state at t and has not recovered, 
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or it was in the S state at t and has been infected by its infected neighbors. Thus, the 
evolution of Ii(t) is

Ii(t+ 1) = (1− γ)Ii(t) + [1−Θi(t)]Si(t),� (2)
where 1−Θi(t) is the probability that node i gets infected at time t, and

Θi(t) =
N∏
j=1

[1− λAijIj(t)].� (3)

When the dynamic system reaches the steady state, we have Ii(t) = Ii(t+ 1) = Ĩi, 
Si(t) = Si(t+ 1) = S̃i, and Θi(t) = Θi(t+ 1) = Θ̃i. Taking all the nodes into consider-

ation, the equations (2) and (3) can be written in terms of vectors in the steady state as

Ĩ = (1− γ)Ĩ + (1− Θ̃) ◦ S̃,� (4)

and

Θ̃i =
N∏
j=1

(1− λAij Ĩj),� (5)

where Ĩ  and Θ̃ are vectors of length N with entries Ĩ = (Ĩ1, · · · , ĨN)T and 
Θ̃ = (Θ̃1, · · · , Θ̃N)

T, respectively, and ° denotes component-wise vector product. 

Combing the equations (4) and (5), we obtain the expected outbreak size of the spread-
ing on networks G as follows:

ρ = N−11TĨ.� (6)

3.2. Determining the optimal edge for containing the spreading

For convenience, we denote the new network we get after deactivating the specific edge 
l in the original network by G′

l. Besides, the decremental outbreak size ρ̇ of the SIS 
model on network G after deactivating the specific edge l is denoted by ρ̇l. The spread-
ing outbreak size ρl on the new network Gl depends on the position of the edge l. In 
this subsection, we introduce a perturbation method to obtain an approximate estimate 
of the decremental outbreak size ρ̇l = ρ− ρl after the deactivation of edge l. Then, we 
use the approximate estimate to determine the optimal edge, which, if deactivated, can 
maximize the decremental outbreak size ρ̇.

Inferring from equation (1), we get the DMC equations of network Gl as follows:

Ii(t+ 1) = (1− γ)Ii(t) + [1−Θi(t)][1− Ii(t)],� (7)
and

Θi(t) =
N∏
j=1

[1− λ(Aij − Ȧij)Ij(t)].� (8)

On the consideration that the fixed point I(∞) = [I1(∞), · · · , IN(∞)]T of Gl will stay 
close to the fixed point Ĩ  of G since only one edge has been deactivated, we iterate equa-

tions (7) and (8) with initial condition I(0) = Ĩ . Then, we employ the decomposition of 
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I(t) = Ĩ + İ(t) and Θ(t) = Θ̃ + Θ̇(t). According to appendix, we can obtain the itera-

tion formula of İ(t) as

İ(t+ 1) = (Θ̃− γ)İ(t) + (1− Ĩ) ◦ λΘ̃ ◦
(
A− Ȧ

)
Ψİ(t)

+ (1− Ĩ) ◦ Θ̃ ◦ Ȧ log(1− λĨ),
� (9)

where Ψ is the N ×N diagonal matrix with entries Ψij = 1/(1− λĨj) for i  =  j  and 
Ψij = 0 for i �= j. This equation can be written in terms of matrix multiplication as 
follows:

İ(t+ 1) = Ξİ(t) + ξ,� (10)

where

Ξ = λdiag(Θ̃− Ĩ ◦ Θ̃)(A− Ȧ)Ψ + diag(Θ̃− γ)� (11)

and

ξ = (1− Ĩ) ◦ Θ̃ ◦ Ȧ log(1− λĨ).� (12)

Here, diag (·) denotes the diagonal matrix with the elements of the input vector as 

diagonal entries. Thus, the stationary solution İ(∞) of the perturbed system satisfies

İ(∞) = Ξİ(∞) + ξ,� (13)

or in the closed form

İ(∞) = (I− Ξ)−1 ξ.� (14)

Thus, an explicit relationship between the deactivated edge l and the decremental out-
break size can be found as

ρ̇l = −N−11Tİ(∞) = −N−11T (I− Ξ)−1 ξ.� (15)

In order to solve equation (15), we decompose Ξ as Ξ = Ξ0 + Ξ̇, where

Ξ0 = λdiag(Θ̃− Ĩ ◦ Θ̃)AΨ+ diag(Θ̃− γ)� (16)

depends only on A, and

Ξ̇ = −λdiag(Θ̃− Ĩ ◦ Θ̃)ȦΨ� (17)

depends only on Ȧ. For any edge l = (i, j), the matrix Ȧ can be written as sum of two 
outer products

Ȧ = uvT + vuT,� (18)
where u, v are vectors of length N with uk = δk,i and vk = δk,j for 1 � k � N . Define 
short notations as

εij : = −λ
(
Θ̃i − ĨiΘ̃i

)(
1− λĨj

)−1

,� (19)

https://doi.org/10.1088/1742-5468/ab780d
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then it is easy to check that

Ξ̇ = εijuv
T + εjivu

T.� (20)

The Sherman–Morrison formula says that

(I− Ξ)−1 =
(
I− Ξ0 − εijuv

T − εjivu
T
)−1

= X +
εijXuvTX

1− εijXji

,� (21)

where

X =
(
I− Ξ0 − εijuv

T
)−1

.� (22)

Applying the Sherman–Morrison formula again gives

X = Y +
εjiY vuTY

1− εjiYij

,� (23)

where

Y =
(
I− Ξ0

)−1
.� (24)

Again we define short notations for convenience as follows,

cij =
(
Θ̃i − ĨiΘ̃i

)
log

(
1− λĨj

)
.� (25)

Then ξ can be checked satisfying

ξ = ciju+ cjiv.� (26)
By substituting equations (21) and (26) into equation (15), we can get

ρ̇l = cij1
TXu+ cji1

TXv +
εijcijXji1

TXu

1− εijXji

+
εijcjiXjj1

TXu

1− εijXji

.
� (27)

According to equation (23), we carefully expand equation (27) and get

ρ̇l = −N−1[
(cij − cijεjiYij + cjiεijYjj) 1

TY u

(1− εijYji) (1− εjiYij)− εijεjiYiiYjj

+
(cji − cjiεijYji + cijεjiYii) 1

TY v

(1− εijYji) (1− εjiYij)− εijεjiYiiYjj

].
� (28)

Equation (28) provides the approximate decremental outbreak size after deactivating 
the edge l = (i, j) in the network G. We can use the formula to determine the optimal 
edge for containing the spreading of the SIS model by simply selecting the edge with 
the highest ρ̇l. As one can see, we obtain equation (28) through complicated deriva-
tions. Looking at the right-hand of equation (28), we can observe that it incorporates 
both the information of networks structure (i.e. the adjacency matrix A) and spread-
ing dynamics (i.e. λ, γ, Ĩ  and Θ̃). Section 4 will show that equation (28) gives a good 
prediction of the decremental outbreak size.

https://doi.org/10.1088/1742-5468/ab780d
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4. Simulation results

For convenience, we refer to the containing strategy of deactivating the optimal edge 
L selected by equation (28) as the perturbation-based-strategy (PBS). In this section, 
extensive numerical simulations are performed to verify the containing performance of 
the PBS. Both synthetic and real-world networks are considered in our simulations. 
Note that the DMC approach can predict the results of the Monte Carlo simulations 
accurately and have a lower computational cost; thus, we conduct our numerical simu-
lations based on the DMC approach instead of the Monte Carlo method [42].

According to section 3, the proposed PBS in this study incorporates the information 
of both network structure and spreading dynamics. To better understand the impor-
tance of dynamic information in the PBS, we employ two contrasting strategies that 
only consider the structure of networks. Denote f b as the edge betweenness centrality. 
Besides, the edge betweenness of the specific edge l = (i, j) is denoted by f b

l . The first 
contrast strategy is to deactivate the edge with the highest f b. We refer to this strategy 
as betweenness-centrality-strategy (BCS) and the specific edge selected by the BCS as 
LB. Similarly, the second contrast strategy is based on the degree k of nodes; thus, it 
can be referred to as degree-based-strategy (DBS). Specifically, for the DBS, we select 
the edge with the highest degree product f d. For the specific edge l = (i, j), the degree 

product should be fd
l = kikj. The edge selected by the DBS is denoted by LD.

First, we perform the containing strategies on two synthetic networks G1 and G2. 
Both of them are scale-free (SF) networks with degree distribution p(k) ∼ k−α, where 
α denotes the degree exponent. We set α1 = 2.3 and α2 = 3.0 as the degree exponent 
of network G1 and G2, respectively. One can find more information about the two net-
works in table 1. Denote ρ̂ as the decremental outbreak size obtained by simulations 
after deactivating the selected edge. Then, we rank the edges according to the values 
of ρ̂. We refer to this kind of edge rank as numerical rank r in the rest of the paper. 
To compare the performance of the strategies, we are particularly concerned about the 
optimal edges L, LB, and LD selected by PBS, BCS, and DBS, respectively. We com-
pute the normalized numerical rank R  =  r/M of edges L, LB and LD. The smaller the 
R, the better the performance. As shown in the figures 1(a) and (b), the DBS performs 
well on both synthetic networks when λ near the critical value λc, but the performance 
fails quickly when λ becomes large. The BCS performs well only for several values of λ. 
However, the PBS performs well on both networks for all the values of λ. Figures 1(c) 
and (d) show the corresponding ρ̂ of edges L, LB and LD on the synthetic networks G1 
and G2, respectively. The larger the ρ̂, the better the performance. By comparing the ρ̂ 
of L, LB and LD, we can draw the same conclusion as that demonstrated in figures 1(a) 
and (b).

Second, we investigate the overall correlations between the edge ranks scored by 
equation (28) and the numerical ranks. To begin with, we compare the decremental 
outbreak size ρ̇ numerically computed by equation  (28) with the decremental out-
break size ρ̂ obtained by simulations. Setting λ = 0.1, the results of ρ̂ versus ρ̇ on the 
synthetic networks G1 and G2 are shown in the figures 2(a) and (b), respectively. The 
results demonstrate that the values of ρ̂ and ρ̇ are almost linearly correlated; that is to 
say, equation (28) can predict the decremental outbreak size well. To better understand 
the rank correlations for all the values of λ, we employ the Spearman rank correlation 
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coecient [44, 45] to quantify the mentioned correlations. The Spearman rank correla-
tion coecient is defined as

ms = 1− 6

∑M
l=1(r̂l − ṙl)

2

M(M2 − 1)
,� (29)

where r̂l and ṙl are the ranks of edge l scored by ρ̂ and ρ̇, respectively. Figures 3(a) 
and (b) shows the results of ms versus λ on the synthetic networks G1 and G2, respec-
tively. It can be seen that the value of ms stays close to one for all the values of λ on 
both networks. That is to say, the edge ranks predicted by the equation (28) and the 
numerical ranks are strongly correlated for all the values of λ. Similarly, we also com-
pute the Spearman rank correlation coecient between the edge ranks scored by f b and 
the numerical ranks, along with the Spearman rank correlation coecient between the 
edge ranks scored by f d and the numerical ranks. As shown in figures 3(a) and (b), the 
edge ranks scored by f b or f d are positively correlated with the numerical ranks only 
when λ is near the λc. When λ becomes large, their correlations become negative. The 
results in figures 3(a) and (b) demonstrate that the equation (28) is sucient to predict 
the numerical rank of edges, but the f b or f d is far from sucient.

We now go further to investigate the structural properties of the optimal edge 
L selected by equation  (28). The normalized structural statistics f b

L/f
b
max, f

c
L/f

c
max, 

fd
L/f

d
max and f e

L/f
e
max versus λ are shown in figures 4(a)–(d), respectively, where f c

L (f e
L) 

denotes the product of the closeness centrality (eigenvector centrality) of the nodes at 
the two ends of edge L. Note that fx

max is the maximum value in { fx
l }, where 1 � l � M 

and x ∈ {b, c, d, e}. As demonstrated in figure 4, when the value of λ is small, the opti-
mal edge L has large f b

L/f
b
max, f

c
L/f

c
max, f

d
L/f

d
max, and f e

L/f
e
max. That is to say, when λ is 

slightly above the critical point λc, the optimal edges should be those have high edge 
betweenness centrality and connect nodes with high closeness, degree, and eigenvector 
centrality. This can be explained by the fact that the outbreak size is small near the 
critical point, and the edge between nodes with high centrality can help to keep the 
cluster of nodes in I state. Thus, deactivating the edge with high centrality can contain 
the spread well when λ is small. However, when λ becomes large, the optimal edge 
L will have low fd

L/f
d
max, f

e
L/f

e
max and middle f b

L/f
b
max, f

c
L/f

c
max. This is because nodes 

with high centrality will have a high probability of being infected when λ is large; thus, 
deactivating the edge between nodes with a high centrality becomes unnecessary.

Table 1.  Basic statistics of the two synthetic networks and six real-world networks 
employed in this study: the number of nodes N, the number of edges M, the 
average degree 〈k〉, and the theoretical spreading threshold λc.

Name N M 〈k〉 λc

SF2.3 200 1000 10 0.076
SF3.0 200 1000 10 0.083
Residence hall 217 1839 16.949 0.046
Hamsterster friendships 1788 12 476 13.955 0.022
Jazz musicians 198 2742 27.697 0.025
Facebook (NIPS) 2888 2981 2.0644 0.036
Physicians 117 465 7.95 0.099
Air trac control 1226 2408 3.928 0.109
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Finally, we test the performance of the strategies on six real-world networks: (a) 
Residence hall [46], (b) Jazz musicians [47], (c) Facebook (NIPS) [48], (d) Air trac 
control [50], (e) Hamsterster friendships [50], and (f) Physicians [49]. Table 1 provides 
some basic statistics of these networks. More detailed information on these networks 
can be found in [50], where they are downloaded from. Figures  5(a)–(i) show the 

Figure 1.  Performance of dierent strategies versus λ on synthetic networks. The 
normalized numerical rank R of the optimal edges L (blue solid line), LB (red 
dashed line), and LD (black dotted line) on the SF networks with (a) α1 = 2.3, 
and (b) α2 = 3.0. The decremental outbreak size ρ̂ obtained by simulations after 
deactivating the optimal edge L (blue solid line), LB (red dashed line), and LD 
(black dotted line) on the SF networks with (c) α1 = 2.3, and (d) α1 = 3.0. More 
information about the two synthetic networks can be found in table 1.

Figure 2.  The correlation between decremental outbreak size ρ̇ and ρ̂. The 
correlation between decremental outbreak size ρ̇ numerically computed by 
equation (28) and the decremental outbreak size ρ̂ obtained by simulations on the 
SF networks with (a) α1 = 2.3, and (b) α2 = 3.0. The dynamical parameters are set 
to be λ = 0.1 and γ = 0.5. The yellow solid lines in the plots represent the function 
ρ̂ = ρ̇.
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Figure 3.  The correlations between the approximate edge ranks and the numerical 
edge ranks. The Spearmans rank correlation coecient ms between the edge ranks 
scored by equation (28) (blue solid line) and the numerical ranks versus λ on the 
SF networks with (a) α1 = 2.3, and (b) α2 = 3.0. The Spearmans rank correlation 
coecient between the edge ranks scored by the edge betweenness centrality f b and 
the numerical ranks are denoted by red dashed lines. Black dotted lines denote the 
Spearmans rank correlation coecient between the edge ranks scored by degree 
product f d and the numerical ranks. More information about the two synthetic 
networks can be found in table 1.

Figure 4.  Normalized structural properties of the optimal edge L selected by 
equation  (28). (a) f b

L/f
b
max versus λ, that is, the normalized edge betweenness 

centrality of L. (b) f c
L/f

c
max versus λ, that is, the normalized product of the 

closeness centrality of nodes at the two ends of L. (c) fd
L/f

d
max versus λ, that is, the 

normalized product of the degree of nodes at the two ends of L. (d) f e
L/f

e
max versus 

λ, that is, the normalized product of the eigenvector centrality of nodes at the two 
ends of L. Blue solid lines (red dashed lines) denotes the corresponding results of 
the SF network with α1 = 2.3 (α2 = 3.0). Some structural properties about the two 
synthetic networks can be found in table 1.

https://doi.org/10.1088/1742-5468/ab780d


The optimal edge for containing the spreading of SIS model

12https://doi.org/10.1088/1742-5468/ab780d

J. S
tat. M

ech. (2020) 043501

decremental outbreak size ρ̂ obtained by simulations after deactivating the optimal 
edges L, LB or LD on the six real-world networks for dierent transmission probability 
λ. The results demonstrate that the PBS outperforms the two contrast strategies on all 
the six real-networks and for all the values of λ studied.

5. Conclusions

Containing spreading dynamics (e.g. epidemic transmission and misinformation prop-
agation) in the networked systems (e.g. transportation systems and communication 
platforms) is of both theoretical and practical importance. In this study, we developed 
a theoretical framework to determine the optimal edge for containing the spreading of 
the SIS model in complex networks.

To be specific, we performed a perturbation method to the DMC equations of the 
SIS model and obtained a formula that provides an approximate value of the decremen-
tal outbreak size after deactivating a certain edge in the network. Afterward, we deter-
mined the optimal edge by selecting the one with the largest decremental outbreak 
size. It is worth mentioning that the formula we obtained incorporates the information 
of both network structure and spreading dynamics. Extensive numerical simulations 

Figure 5.  Performance of dierent strategies on real-world networks. The 
decremental outbreak size ρ̂ obtained by simulations after deactivating the optimal 
edge L (blue solid line), LB (red dashed line), and LD (black dotted line) on the 
real-world networks (a) Hall of residence, (b) Jazz musicians, (c) Facebook (NIPS), 
(d) Air trac control, (e) Hamsterster friendships, and (f) Physicians. Detailed 
information about the six real-word networks can be found in table 1.
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on both synthetic networks and real-world networks demonstrated that our strategy 
performs well for all the values of λ and outperforms those strategies based only on 
structure statistics (degree or edge betweenness centrality).

Previous strategies of containing spreading dynamics on complex networks are 
mostly based on node immunization, which in practice can sometimes be socially and 
politically dicult. The theoretical framework developed in this study oers inspiration 
for investigations on edge-based immunization strategies, which could be more practi-
cal for some specific real situations. Our theoretical framework could also be extended 
to other spreading models.
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Appendix

A.1. The iteration formula of İ(t)

This appendix shows the detailed steps of obtaining the iteration formula of İ(t). Based 
on the decomposition of I(t) = Ĩ + İ(t) and Θ(t) = Θ̃ + Θ̇(t), we get

Ĩ + İ(t+ 1) = (1− γ)(Ĩ + İ(t)) + (1− Ĩ − İ(t)) ◦ (1− Θ̃− Θ̇(t)),� (A.1)

where İ(t) and Θ̇(t) are assumed small. Ignoring the second-order term İ(t) ◦ Θ̇(t), we 
can get

İ(t+ 1) = (Θ̃− γ)İ(t)− (1− Ĩ) ◦ Θ̇(t)� (A.2)

by expanding equation  (A.1) and substituting Ĩ = (1− γ)Ĩ + (1− Θ̃) ◦ S̃ . Similarly, 
Θ(t) becomes

Θ̃i + Θ̇i(t) =
N∏
j=1

{1− λ(Aij − Ȧij)[Ĩj + İj(t)]}.� (A.3)

We notice the following equation holds

[1− λ(Aij − Ȧij)][Ĩj + İj(t)] =
1− λAij[Ĩj + İj(t)]

1− λȦij[Ĩj + İj(t)]
,� (A.4)

which can be checked by substituting all possible combinations of A0
ij and Ȧij. Divide 

by Θ̃i for both sides of equation (A.3) and substitute Θ̃i =
∏N

j=1(1− λAij Ĩj) gives
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1 +
Θ̇i(t)

Θ̃i

=
N∏
j=1

(
1− λAij İj(t)

1− λAij Ĩj

)
×

N∏
j=1

(
1− λȦij İj(t)

1− λȦij Ĩj

)−1

×
N∏
j=1

(
1− λȦij Ĩj

)−1

.

�

(A.5)

Note that the following relation holds

λAij İj(t)

1− λAij Ĩj
= Aij

λİj(t)

1− λĨj
,� (A.6)

since Aij ∈ {0, 1}. Similarly, when replacing Aij in equation (A.6) by Ȧij ∈ {0, 1}, we get

λȦij İj(t)

1− λȦij Ĩj
= Ȧij

λİj(t)

1− λĨj
.� (A.7)

Taking the logarithm on both sides of equation (A.5), expanding to the first orders of 
δpi(t), δqi(t), and applying the above relation can give

Θ̇i(t)

Θ̃i

= −
N∑
j=1

Aij
λİj(t)

1− λĨj
+

N∑
j=1

Ȧij
λİj(t)

1− λĨj
−

N∑
j=1

log
(
1− λȦij Ĩj

)
.� (A.8)

The terms in the last summation can be checked to satisfy

log
(
1− λȦij Ĩj

)
= Ȧij log

(
1− λĨj

)
.� (A.9)

With the above calculations, equation (A.8) can be written in the matrix form as

Θ̇(t) = −λΘ̃ ◦
(
A− Ȧ

)
ΨȦ(t)− Θ̃ ◦ Ȧ log(1− λĨ),� (A.10)

where log(1− λĨ) is the vector obtained by taking the logarithm in each entry of 

1− λĨ . And Ψ is the N ×N diagonal matrix with entries

Ψij = δij
1

1− λĨj
,� (A.11)

where

δij =

{
1 i = j

0 i �= j
.� (A.12)

Substituting equation  (A.10) back into equation  (A.2) yields the following iteration 

formula for İ(t):

İ(t+ 1) = (Θ̃− γ)Ȧ(t) + (1− Ĩ) ◦ λΘ̃ ◦
(
A− Ȧ

)
ΨȦ(t)

+ (1− Ĩ) ◦ Θ̃ ◦ Ȧ log(1− λĨ).
�

(A.13)
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