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Abstract.  Motivated by the precedent study of Ordenes-Huanca and 
Velazquez (2016 J. Stat. Mech. 093303), we address the study of a simple 
model of a pure non-neutral plasma: a system of identical non-relativistic 
charged particles confined under an external harmonic field with frequency ω. 
We perform the equilibrium thermo-statistical analysis in the framework of 
continuum approximation. This study reveals the existence of two asymptotic 
limits: the known Brillouin steady state at zero temperature, and the gas of 
harmonic oscillators in the limit of high temperatures. The non-extensive 
character of this model is evidenced by the associated thermodynamic limit, 

N → +∞ : U/N7/3 = const, which coincides with the thermodynamic limit 
of a self-gravitating system of non-relativistic point particles in presence of 
Newtonian gravitation. Afterwards, the dynamics of this model is analyzed 
through numerical simulations. It is verified the agreement of thermo-statistical 
estimations and the temporal expectation values of the same macroscopic 
observables. The system chaoticity is addressed via numerical computation 
of Lyapunov exponents in the framework of the known tangent dynamics. The 
temperature dependence of Lyapunov exponent λ approaches to zero in the 
two asymptotic limits of this model, reaching its maximum during the transit 
between them. The chaos of the present model is very strong, since its rate is 

faster than the characteristic timescale of the microscopic dynamics τdyn = 1/ω. 
A qualitative analysis suggests that such a strong chaoticity cannot be explained 

in terms of collision events because of their respective characteristic timescales 
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are quite dierent, τch ∝ τdynN
1/4 and τcoll ∝ τdyn.

Keywords: charged fluids, exact results, finite-size scaling, numerical 
simulations
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1.  Introduction

The study of dynamic and thermodynamic properties of systems with long-range 
interactions have received a great interest in the last decades. Paradigmatic examples 
of these systems are the non-neutral plasmas [1–19] and the astrophysical systems  
[20–34]. These systems exhibit macroscopic properties that dier from the ones observed 
in conventional short-range (extensive) systems of everyday applications of thermo-
dynamics and statistical mechanics. The incidence of long-range interactions implies 
that these systems cannot be decomposed into independent subsystems, which means 
that they do not obey extensivity and additivity properties, neither the conventional 
extensive thermodynamic limit N → +∞ is applicable to them. Additionally, they can 
exhibit thermodynamic anomalies like negative heat capacities and exotic phenomena 
like discontinuous microcanonical phase transitions, among others.

The dynamical evolution of these systems is also aected by the existence of long-
range correlations among their constituents. This feature is analogous to the one 
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exhibited by conventional extensive systems in conditions of criticality (e.g.: near a 
critical point). However, their existence is not associated with the occurrence of phase 
transitions, but the long-range character of their underlying interactions. Such long-
range correlations can provoke dynamical anomalies such as slow relaxation and meta-
stability. Therefore, most of practical realizations that involve systems with long-range 
interactions concern to out-of-equilibrium situations [35, 36]. To make things worse, 
practical situations concerning to astrophysical systems and non-neutral plasmas are 
aected by external conditions that prevent their rigorous relaxation, such as the evap-
oration of constituents [29–34]. In general, all possible internal or external conditions 
determining each practical situation of interest will provoke a considerable aectation 
in the whole macroscopic behavior of any system with long-range interaction, precisely, 
because of the existence of such long-range correlations. This feature diers from ordi-
nary extensive systems, e.g.: the shape of a container does not modify the thermody-
namic properties like specific heat or temperature of phase transitions.

The main interest of this contribution is to study the chaoticity of a pure non-
neutral plasmas (systems with only one class of identical charged particles like the 
electronic plasmas [8–12]) and its relation with the thermo-statistical description of 
these long-range interacting systems. This research was motivated by the recent work 
developed by Ordenes-Huanca and Velazquez [37], which addressed the incidence of 
constituents evaporation on the thermodynamics of these systems. In this precedent 
work, the thermo-statistical description was developed by invoking a quasi-ergodicity of 
microscopic dynamics along a quasi-stationary regime in presence of evaporation. The 
theoretical profiles predicted from this argument were compared with the experimental 
results of Huang and Driscoll [14]. The good agreement observed in that study strongly 
suggested the relevance of these statistical arguments in a quasi-stationary regime 
reported in that experiment. Curiously, such an experimental data concerned to an elec-
tronic plasma where the incidence of collisional relation was negligible. Consequently, 
other relaxations mechanisms should be present in that experimental situation to jus-
tify the relevance of ergodicity.

According to chaotic hypothesis [38], many-body nonlinear systems with strong 
chaotic properties must exhibit good statistical properties like the ones associated 
with ergodicity and mixing. Therefore, a plausible explanation for good fit of profiles 
of Huang–Driscoll experiment in the precedent study is the existence of a strong cha-
oticity in the microscopic dynamics of non-neutral plasmas. Pettini and co-workers 
reported in the past the existence of a very strong chaoticity in numerical simulations 
of a self-gravitating gas of particles driven by Newtonian forces [39]. These authors 
demonstrated that the incidence of a collisional relaxation on the observed chaotic-
ity was negligible, and they identify the mechanism of parametric resonance as the 
main source of the observed instability [40]. The existing mathematical analogy among 
gravitation and Coulombic interactions suggests that a strong chaoticity should be also 
observed in the dynamics of pure non-neutral plasmas.

The paper is organized into sections as follows. The second section is devoted to 
present a simple model of pure non-neutral plasma, as well as the methodology for 
its study. We shall develop its thermo-statistical description in the framework of con-
tinuum approximation, as well as its dynamical description via numerical integration 
of Hamilton equations. Chaoticity itself will be studied via numerical computation of 
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Lyapunov exponents in the framework of the called tangent dynamics. Third and fourth 
sections will be devoted to present results and discussions. Final remarks and open 
problems are discussed in the fifth section.

2. Methodology

2.1. The model: a pure non-neutral plasma trapped under an external harmonic field

Experimentally, a non-neutral plasma can be eectively confined within external 
magnetic and electric fields of a Penning trap, whose Hamiltonian can be written as  
follows [9],

H(r,p) =
∑
i

1

2m
[pi − qA(ri)]

2 + qφT (ri) +
∑
i<j

q2

|ri − rj|
.� (1)

However, this type of confinement does not avoid the evaporation of constituents dur-
ing the system dynamical evolution [37] neither the Hamiltonian (1) obeys the standard 
form

H(q, p) =
∑
i,j

1

2
aij (q) pipj + V (q),� (2)

required for the application of Riemannian approach of Hamiltonian chaos [40]. 
Although this geometric framework will not be considered in this work, we think con-
venient to address a more simple Hamiltonian model:

H(r,p) =
∑
i

1

2m
p2
i +

1

2
mω2r2i +

∑
i<j

q2

|ri − rj|
,� (3)

which avoids all previous diculties, and it still enables us to study the chaoticity of a 
non-neutral plasma due to the long-range character of Coulombian forces. Hamiltonian 
(3) represents a gas with N identical non-relativistic point particles of mass m and 
charge q, interacting through Coulomb’s force under an external harmonic field with 
frequency ω. This particular situation guarantees the fully confinement of the non-
neutral plasma and avoids the incidence of evaporation. Consequently, the thermo-sta-
tistical description can be performed assuming a rigorous thermodynamic equilibrium.

2.2. Thermo-statistical description

The equilibrium one-body distribution function (DF) for the present model system is 
given by Maxwell–Boltzmann profile [41]:

f(r,p) = A exp [−βε(r,p)] .� (4)
Here, ε(r,p) denotes the mechanical energy of individual particles:

ε(r,p) =
1

2m
p2 + qϕ(r) +

1

2
mω2r2,� (5)

https://doi.org/10.1088/1742-5468/ab7811
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β = 1/kT  is the inverse temperature parameter, k the Boltzmann constant, and ϕ(r), 
the electrostatic potential. Particles distribution n(r) can be calculated as follows:

n(r) =

∫
f(r,p)

d3p

(2π�)3

=

(
2mπ

�2β

) 3
2

A exp

{
−β

[
1

2
mω2r2 + qϕ(r)

]}
,

�
(6)

which obeys the normalization condition:

N [ f ] =

∫
f(r,p)

d3rd3p

(2π�)3
=

∫
n(r)d3r = N .� (7)

The total energy U is given by:

U =
3N

2β
+

∫
1

2
mω2r2n(r)d3r+

1

2

∫
qϕ(r)n(r)d3r,� (8)

where the first term represents the kinetic energy:
∫

p2

2m
f(r,p)

d3rd3p

(2π�)3
=

∫
3

2β
n(r)d3r =

3

2

N

β
.� (9)

The electrostatic potential ϕ(r) is related to the particles density n(r) throughout 
Poisson equation, ∆ϕ(r) = −4πqn(r). Introducing the eective field u(r):

u(r) =
1

2
mω2r2 + qϕ(r),� (10)

and the dimensionless potential Φ(r):

Φ(r) = β [u(0)− u(r)] ,� (11)
the particles density can be rewritten as:

n(r) = n0 exp [Φ(r)] ,� (12)
where n0 is the central density:

n0 =

(
2mπ

�2β

) 3
2

A exp [−βu(0)] .� (13)

Additionally, it is convenient to introduce the characteristic radius constant rc:

1

r2c
= q2n0β,� (14)

the dimensionless radius variable ξ = r/rc, and the auxiliary constant λ:

λ =
3mβω2

4π
r2c =

3mω2

4πq2n0

.� (15)
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The above definitions enable us to rephrase Poisson equation with spherical symmetry 
as follows:

1

ξ2
d

dξ

[
ξ2

d

dξ
Φ(ξ)

]
= 4π

[
eΦ(ξ) − λ

]
,� (16)

which should be solved by numerical integration using the following boundary condi-
tions at the origin:

Φ(0) = 0,
d

dξ
Φ(0) = 0.� (17)

Additionally, it is necessary to take into account the asymptotic behavior of the dimen-
sionless potential for large distances. For spherical solutions, the electrostatic potential 
can be expressed as follows:

d

dr
ϕ(r) = −qN(r)

r2
,� (18)

where N(r) is the number of particles enclosed inside a sphere of radius r. Considering 
the first derivative of the dimensionless potential:

dΦ(ξ)

dξ
= βrc

[
mω2r + q

dϕ(r)

dr

]
,� (19)

and introducing the dimensionless parameter η:

η =
q2Nβ

rc
,� (20)

one obtains the following asymptotic expression for η:

η = lim
ξ→+∞

[
4π

3
λξ3 + ξ2

d

dξ
Φ(ξ)

]
.� (21)

At zero temperature, the pure non-neutral plasma in a magnetic trap adopts the 
called Brillouin steady state [7], a profile of uniform density where electrostatic repul-
sion forces are exactly compensated with electric and magnetic fields of the Penning 
trap. An analogous situation also appears in the zero temperature limit for the present 
model. Considering the vanishing of the resulting force when T → 0:

F(r) = qE(r)−mω2 r = 0,� (22)

one can apply the divergence to obtain the Brillouin density:

nB =
3mω2

4πq2
� (23)

associated with the presence of the external harmonic field with frequency ω. This 
profile of constant density is not infinitely extended because of the number of particles 
N is bound. The right expression is given by:

n(r) =

{
nB, if r < RB,

0, if r � RB,
� (24)

https://doi.org/10.1088/1742-5468/ab7811


A pure non-neutral plasma under an external harmonic field: equilibrium thermodynamics and chaos

7https://doi.org/10.1088/1742-5468/ab7811

J. S
tat. M

ech. (2020) 043205

where RB is the Brillouin radius:

nB
4π

3
R3

B = N ,� (25)

which defines the linear size of the system at zero temperature.
For the sake of convenience, we shall refer numerical results of this study by using a 

set of characteristic units associated with Brillouin state. The linear distances and par-
ticles densities will be referred into units of Brillouin radius RB and density nB. Using 
these units, the particles density (12) can be rewritten as:

n̄(r̄) =
1

λ
exp [Φ(r̄)] ,� (26)

where n̄(r) = n(r)/nB and r̄ = r/RB = ξrc/RB. It was considered here the relation:

n0

nB

=
1

λ
,� (27)

which is derived from definition (15). According to equation (26), the Brillouin steady 
state appears in the limit λ → 1, where n̄(r̄) = 1 and Φ(r̄) = 0. Additionally, one can 
introduce the characteristic units:

UB =
q2N2

RB

and TB =
q2N

RBk
� (28)

for the energy and the temperature, respectively. The inverse temperature β and the 
characteristic radius rc defined in equation (14) can be rewritten into Brillouin units as:

β̄ =
TB

T
=

(
4π

3
λη2

) 1
3

and r̄c =
rc
RB

=

(
4π

3

λ

η

) 1
3

.� (29)

Let us now obtain the working expressions for the total energy (8) in Brillouin units. 
The kinetic energy contribution is expressed as:

K̄ =
K

UB

=
3

2

1

β̄
.� (30)

The total potential energy associated with the external harmonic field:

W

UB

=
1

2

r̄3c
β̄
Q,� (31)

where Q denotes the auxiliary integral:

Q =

∫ +∞

0

ξ2 exp[Φ(ξ)]4πξ2dξ.� (32)

Finally, let us obtain the expression for the total electrostatic energy. Rephrasing this 
contribution in terms of dimensionless potential Φ(r):

V =
1

2
Nqϕ(0)− 1

2
W −

∫
1

2β
Φ(r)n(r)d3r� (33)

https://doi.org/10.1088/1742-5468/ab7811
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and rewriting it into Brillouin energy units UB, one obtains:

V̄ =
V

UB

=
3

8π

r̄2c
λ
C− 1

4

r̄3c
β̄
Q− 3

8π

r̄3c
λβ̄

P,� (34)

where C and P are the following auxiliary integrals:

C =

∫ +∞

0

exp[Φ(ξ)]4πξdξ,� (35)

P =

∫ +∞

0

Φ(ξ) exp[Φ(ξ)]4πξ2dξ.� (36)

The sum of all these contributions is:

Ū =
U

UB

=
3

2

1

β̄
+

1

4

r̄3c
β̄
Q+

3

8π

r̄2c
λ

(
C− r̄c

β̄
P
)
.� (37)

2.3. Dynamical description

Hamiltonian equations for the model (3) are given by:

ṙi =
1

m
pi, ṗi = −mω2ri +

∑
j �=i

q2

|rij|3
rij,� (38)

where rij = ri − rj is the separation vector oriented from j th to ith particle. Numerical 
integration of this conservative system is better performed using some sympletic algo-
rithm [42, 43]. An ecient and precise sympletic algorithm was proposed by Casetti 
[44]:

r̃i = ri(t), p̃i = pi(t)−
1

2
∆t

∂

∂r̃i
V (r̃),

ri(t+∆t) = r̃i +∆t
1

m
p̃i, pi(t+∆t) = p̃i −

1

2
∆t

∂

∂ri
V [r(t+∆t)] ,

p̂i = pi(t+∆t), r̂i = ri(t+∆t) +
1

2m
∆tp̂i,

pi(t+ 2∆t) = p̂i −∆t
∂

∂r̂i
V [r̂] , ri(t+ 2∆t) = r̂i +

1

2m
∆tpi(t+ 2∆t),

� (39)

which was employed by Pettini and co-workers in the astrophysical situation [40, 45]. 
This same algorithm will be considered in this work.

The instability of trajectories can be studied using the tangent dynamics, that is, 
the linearization of separation dynamics of two trajectories that are infinitely close:

ξ̇i =
1

m
ηi, η̇i = −mω2ξi +

∑
j �=i

q2

|rij|3
{
ξij − 3

(
nij · ξij

)
nij

}
,� (40)

https://doi.org/10.1088/1742-5468/ab7811
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where nij and ξij are given by:

nij =
rij
|rij|

and ξij = ξi − ξj.� (41)

Numerical integration of the above equations is coupled to Hamilton equations (38). 
For the numerical integration of the tangent dynamics, we shall employ a second-order 
Euler scheme:

ξi (t+∆t) = ξi (t) +
1

m
ηi (t)∆t+

1

2m
η̇i (t)∆t2 +

1

6m
η̈i (t)∆t3,

ηi (t+∆t) = ηi (t) + η̇i (t)∆t+
1

2m
η̈i (t)∆t2,

�
(42)

which requires the second time derivative η̈i of speed separation ηi:

η̈i = −ω2ηi +
∑
j �=i

q2

|rij|3
[
−3(nij · κij)

{
ξij − 3

(
nij · ξij

)
nij

}
+ ξ̇ij

−3
(
nij · ξ̇ij

)
nij − 3

(
ṅij · ξij

)
nij − 3

(
nij · ξij

)
ṅij

]
.

�

(43)

For the sake of briefly, we have considered here the following notations:

κij =
vij

|rij|
, vij = vi − vj and ṅij = {κij − (nij · κij)nij} .� (44)

Finally, the calculation of Lyapunov exponent is performed considering the limit:

λ = lim
t→+∞

1

t
ln

‖∆x(t)‖
‖∆x(0)‖

,� (45)

where the norm of deviation of trajectories ‖∆x(t)‖ is defined as follows:

‖∆x(t)‖2 =
∑
i

1

2m
η2
i (t) +

1

2
mω2ξ2i (t).� (46)

For a computational viewpoint, the calculation the limit (45) can be rephrased as the 
average of a discrete time series with period τ . Denoting the nth time instant tn = nτ 
and the corresponding exponential dispersion λ̂n as:

λ̂n =
1

(tn − tn−1)
ln

‖∆x(tn)‖
‖∆x(tn−1)‖

,� (47)

the momentum of mth order λ
(m)
n  of the exponential dispersion λ̂n can be expressed as 

follows:

λ(m)
n = λ

(m)
n−1 +

1

n

[(
λ̂n

)m

− λ
(m)
n−1

]
.� (48)

Accordingly, the infinite time limit (45) is now replaced by its discrete version as:

λ = lim
n→+∞

λ(1)
n .� (49)

https://doi.org/10.1088/1742-5468/ab7811
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Of course, the Lyapunov exponent λ can be estimated by the nth value λ
(1)
n . Its statis-

tical error δλn can be expressed in terms of the square dispersion σ2
n = λ

(2)
n −

(
λ
(1)
n

)
2 

as follows:

δλn = σn/
√
nτ/τd,� (50)

with τd being the decorrelation time (the necessary time interval that the dynamics pro-
duces a statistical independent microscopic configuration). Taking into consideration 
the physical meaning of Lyapunov exponent λ, one could estimate the decorrelation 
time τd using the chaotization time, τd ∼ τch ∼ 1/λ. This consideration enable us to 
estimate the relative error as:

δλn

λ
(1)
n

=
σn

λ
(1)
n

1√
nλ

(1)
n τ

.
� (51)

For a general physical observable O, e.g.: the total kinetic energy K, the calculation of 
its temporal expectation can be implemented using discrete time series as follows:

On = On−1 +
1

n

(
Ôn −On−1

)
,� (52)

where Ôn = O (tn) is its corresponding value at the time instant tn.

3. Results of the thermodynamic description

3.1. Thermodynamic limit and non-extensive character

The short-range interacting systems obey the extensive thermodynamic limit N → ∞:

N → ∞ ⇒ S

N
= const,

U

N
= const,

V

N
= const,� (53)

which guarantees the intensive character of some relevant observables and thermody-
namic parameters like temperature and particles density. For systems with long-range 
interactions, the additivity and separability of extensive systems are non necessarily 
applicable. This type of arguments should be considered with care for each particular 
situation. For the concrete case of astrophysical system composed of non-relativistic 
point particles that interact among them through Newtonian gravitation, it has been 
claimed the relevance of the following thermodynamic limit [46]:

N → ∞ ⇒ S

N
= const,

U

N
7
3

= const, V N = const,� (54)

which accounts for a non-extensive behavior. One should expect a similar thermody-
namic limit for the case of a pure non-neutral plasma considered in this study. In order 
to check this possibility, let us consider the arguments already employed in the astro-
physical case. Considering the characteristic linear dimension of the present situation 

https://doi.org/10.1088/1742-5468/ab7811
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as the Brillouin radius rc ∼ RB, as well as the characteristic momentum p c derived from 
the Brillouin energy UB = q2N2/RB:

pc =

√
2mUB

N
,� (55)

these quantities can be employed to estimate the volume of phase space Ω as:

Ω ∼ 1

N !

(pcrc
�

)3N

,� (56)

which leads to the following estimation for the entropy S = k ln Ω:

S ∼ Nk

2
ln

(
8m3q6NR3

Be
2

�6

)
.� (57)

According to the expression (57), the entropy per particle S/N remains finite when 
N → ∞ after assuming the non-extensive scaling laws:

U/N7/3 = const and RN1/3 = const.� (58)

This limit evidences the non-extensive character of the pure non-neutral plasma 
described by the Hamiltonian (1), which is essentially the same behavior associated 
with astrophysical case. Considering the scaling behavior of the particles density n, one 
can obtain the scaling behavior of the frequency ω of the external harmonic field

n/N2 = const ⇒ ω/N = const,� (59)

where the expression of Brillouin density (23) was taken into consideration.

3.2. Equilibrium thermodynamics

Since the number of particles of the model system under consideration is finite, the 
particles density (12) must be a bound function. For large distances, the particles den-
sity should be a monotonous decreasing function. Analysing the Poisson problem (16), 
the behaviour of the density profile, or even the one associated with the dimensionless 
potential Φ(ξ), is driven by the sign of the function (exp [Φ(ξ)]− λ). If this function is 
positive definite, the dimensionless potential will be a monotonous increasing function, 
and hence, this possibility cannot describe a density profile with a finite number of par-
ticles. Therefore, this function has to be negative definite in order to describe a monoto-
nous decreasing function for the dimensionless Φ(ξ). The maximum will always take 
place at the origin ξ = 0, so that, the integration parameter λ � 1. The lower bound 
λ = 1 corresponds to the Brillouin steady state, that is, the zero temperature limit. For 
the sake of convenience, let us introduce the auxiliary parameter δ = ln(λ) = ln (nB/n0), 
which is a measure of the central density n0 in units of the Brillouin density nB.

We show in figure 1 the temperature dependencies (in units of the Brillouin temper
ature TB) of two relevant observables, the auxiliary parameter δ and the specific heat (in 
units of the Boltzmann constant k). According to these results, the auxiliary parameter 
λ exhibits a wide range of values to describe the physics associated with the present 
situation. By itself, the mathematical behavior of the parameter δ evidences diculties 
of numerical integration of Poisson problem (16) in the low temperature region. On 
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the other hand, temperature dependence of the specific heat (per particles) evidences 
the existence of two asymptotic limits: the zero temperature limit where appears the 
Brillouin steady state, and the high temperature limit, where the system behaves as a 
ideal gas of harmonic oscillators.

In the low temperature limit, we observe that the specific heat approaches to the 
asymptotic value C/Nk  =  3/2, which corresponds to the heat capacity of an ideal gas 
at constant volume VB = 4πR3

B/3. Such a capacity is explained by the contribution of 
kinetic degrees of freedom only. The repulsive electrostatic forces among the charged 
particles is fully compensated with the linear forces of the external harmonic field. The 
contribution of spatial degrees of freedom to the heat capacity is vanishing at zero 
temperature. In the limit of high temperatures, the density of the system decreases 
so much that electrostatic potential energy is almost negligible, so that, the system 
behaves here as an ideal gas of harmonic oscillators. According to the equipartition 
theorem, the specific heat capacity asymptotically approaches the value C/Nk  =  3. 
During the transition from the low to high temperature limits, one observes an eective 
unfrozen of the oscillatory degrees of freedom. It is worthy to comment that the pres-
ent behavior cannot be associated to the occurrence of a phase transition. Actually, it 
is rather analogous to the unfrozen of oscillatory and vibrational degrees of freedom in 
gases and solids due to quantum eects [41].

Let us discuss now some other relevant thermodynamic observables. We have 
highlighted in figure  1 a series of states (the red points labelled with Latin letters 
a  −  k). The same ones were uniformly located between the two asymptotic values of 
the specific heat capacity. For these points, we have obtained the radial distribution 
profiles n (r) shown in figure 2. The step function (24) associated to the Brillouin state 
is established when the temperature T approaches to zero. For nonzero temperatures, 
the radial distribution profiles turn smooth functions (without discontinuities), which 
decreases monotonically with the growth of radial coordinate r. The associated central 
density n0 of these profiles decreases with the growth of temperature (this behavior is 
also evidenced by the temperature dependence of the quantity δ = ln(nB/n0) shown 
in figure 1). At the limit of hight temperatures T � TB, the radial profiles turn the 
Gaussian profile:

nG (r) =

(
mω2

4πkT

)3/2

N exp
[
−mω2r2/2kT

]
� (60)

associated to an ideal gas of harmonic oscillators. Accordingly, the central density n0 
adopts in this asymptotic limit the analytical form n0 = nB (TB/T )

3/2/6
√
π. We show in 

figure 3 the dependencies of three contributions of the total energy U = K + Vext + Velect 
(the total kinetic energy K, the potential energy of the harmonic field Vext and the 
total electrostatic energy Velect) versus the total energy U. For low energies, the kinetic 
energy drops to zero, while both potential energy contributions exhibit finite values 
due to the system adopts the Brillouin profile (24). For low energies, the electrostatic 
potential energy approaches to zero and there is an asymptotic equipartition between 
the kinetic energy and the potential energy of the external harmonic field.
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3.3. Comparison with astrophysical systems

The non-neutral plasma model (3) does not exhibit microcanonical phase transitions 
neither negative heat capacities reported in other long-range interacting systems [35, 
47, 48]. For a better understanding, let us perform a brief comparison of this non-
neutral plasma model with its gravitational counterpart:

Figure 1.  Temperature dependencies of some relevant observables. Upper 
panel: the function δ = ln (nB/n0), where n0 is the central density, and 
nB = 3mω2/4πq2, the Brillouin density. Bottom panel: specific heat capacity per 
particle C/N = (dU/dT ) /N  (in units of Boltzmann constant k). With the growth 
of temperature, the system undergoes a transition from a low temperature limit 
(the Brillouin steady state) towards a high temperature limit (the ideal gas of 
harmonic oscillators).
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H(r,p) =
∑
i

1

2m
p2
i +

1

2
mω2r2i −

∑
i<j

Gm2

|ri − rj|
.� (61)

For the sake of briefly, we shall avoid to enter into mathematical details concerning the 
thermo-statistical analysis of this second system (the mathematical treatment is quite 
similar). The gravitational equivalents of Brillouin density and radius are given by:

nB =
3ω2

4πGm
and RB =

(
GM/ω2

)1/3
.� (62)

The gravitational radius RB represents the radius of the region where gravitation of 
this system dominates its microscopic dynamics. The gravitational radius RB is consid-
ered to defined the associated units for energy and temperature:

UB =
GM2

RB

and TB =
GMm

kRB

.� (63)

We show in figure 4 the temperature versus energy dependence (the called microca-
nonical caloric curve) of both models using their respective characteristic units. As 
naturally expected, these models exhibit the same asymptotic limit for large energies 
(or large temperatures), where they recover the thermodynamic behavior of the ideal 
gas of harmonic oscillators. However, they disagree in their respective behaviors at low 
energies.

The repulsive character of Coulomb forces among the charge particles of the 
non-neutral plasma enables the existence of Brillouin steady state at zero temper
ature. On the contrary, the attractive character of gravitation suppress the possi-
bility that the model (61) reaches the zero temperature point. This system cannot 

Figure 2.  Density radial distributions for some characteristic values of the 
temperature (the red point highlighted in figure  1). One observes here how 
the radial distributions approach the Brillouin profile (24) as the temperature 
approaches to zero.
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exhibit temperatures below the critical value Tβ = 0.43TB, precisely, because of the 
corresponding caloric curve exhibits a minimum at the point Uβ = 0.215UB. This mod-
els also exhibit a minimum energy at the value Uα = 0.016UB. It is worth noticing that 
the heat capacity C = dU/dT  diverges at the critical point Uβ. For energies within the 
interval Uα < U < Uβ, the system temperature T grows when the energy U is decreased, 
thus evidencing the existence of a branch with negative heat capacities. At the critical 
point Uα, the (negative) heat capacity approaches to zero, and the system undergoes 
the called gravothermal collapse [49]. According to the common understanding of this 
collective phenomenon (a microcanonical phase transition), the internal pressures of the 
system are unable to balance its own gravitational field, so that, the system undergoes 
a collapse that leads the formation of structures with very dense cores. The description 
of these post-collapse configurations, however, requires additional physical consider-
ations beyond the classical statistical mechanics description of the model (61), e.g.: 
consideration of quantum eects, the eective linear size of constituents, etc.

Despite of the obvious dierences, the non-neutral plasma (3) and its gravitational 
counterpart (61) share many analogies. Both the Coulomb and Newtonian forces do 
not exhibit characteristic lengths, so that, the stability of their thermodynamic descrip-
tion crucially depends on the existence of external factors, e.g.: the dynamic influence 
of the potential harmonic field. In particular, the thermodynamic description of both 
model systems depend on the frequency constant ω of the harmonic field (this constant 
parameter, in particular, determines the Brillouin units RB, nB, UB, TB that enter in 
their low energy thermodynamic behaviors). Without the external influence of the 

Figure 3.  Microcanonical dependencies of three contributions of the total energy 
U = K + Vext + Velect: the total kinetic energy K, the potential energy of the 
harmonic field Vext and the total electrostatic energy Velect. Left panel: their absolute 
values. Right panel: their relative values (their ratios with the total energy U). 
Considering the high temperature limit, all these dependencies account for the 
transition towards the thermodynamic behavior associated with the ideal gas of 
harmonic oscillators, e.g.: the equalization between the total kinetic energy K and 
the total potential energy Velect of the harmonic field, and the vanishing of the total 
electrostatic energy Velect. The indicators that account for the system approaching 
towards Brillouin steady state are more subtle: the potential total energies of the 
harmonic field Vext and the electrostatic forces Velect are non-vanishing at zero 
temperature.
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harmonic field, the constituents will escape from both systems, thus ruling out the 
occurrence of a rigorous thermodynamic equilibrium. Finally, both long-range interact-
ing systems belong to the same class of non-extensive systems, since their observables 
follow in the thermodynamic limit N → +∞ the same scaling laws (58) and (59)2.

4. Results of dynamical simulations

4.1.  Incidence of collisions

In the framework of non-neutral plasmas, the collisions among the constituting par-
ticles is a mechanism that contributes both the chaoticity of microscopic dynamics as 
well as the system relaxation (at macroscopic level) towards equilibrium. If collision 
events constitute the main source behind the chaoticity of the present model (1), the 
associated Lyapunov exponent λ should be comparable to the frequency of collisions 
ν (collisions per unit of time). For the sake of convenience, let us perform a qualita-
tive description for the present situation, which will be considered later to analyze the 

Figure 4.  Comparison between the microcanonical caloric curves corresponding to 
the non-neutral plasma model (1) and the gravitational gas (61). Both cases exhibit 
the same asymptotic behavior at the high energy limit (the one associated with 
the ideal gas of harmonic oscillators). The relevant dierences appears in the low 
energy limit, where the non-neutral plasma approaches the Brillouin steady state, 
while the gravitational gas undergoes the called gravothermal collapse and exhibits 
a branch with negative heat capacities.

2 Readers may object that derivation of the scaling laws (58) and (59) crucially depends on whether one demands 
or not the extensive character of the entropy. Actually, the same scaling behavior appears in the framework of 
the Thomas–Fermy theory for the asymptotic behaviors of atomic energy U(Z) and density ρZ(r) for an atom of 
charge Z suciently large [50–52], U (Z) = CTFZ

7/3 +O (Z) and ρZTF (r) = Z2�
(
Z1/3r

)
. In general, this type of scaling 

behavior corresponds to a three-dimensional system of non-relativistic point particles that interact among them 
throughout 1/r potential without mattering about their quantum or classical behavior.
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results obtained from the dynamical simulations. An elementary estimation is obtained 
in terms of the eective cross section σ and the gas density n as follows, ν ∼ Nσnvrel, 
with vrel being the relative velocity among particles. The cross section σ among charged 

particles can be estimated as the Rutherford scattering cross section, σ ∼ q4/m2 〈v2〉2, 
with 〈v2〉 being the square dispersion of velocity. Denoting the mean square velocity as 

v =
√

〈v2〉, the temperature dependence of both the mean square velocity v the relative 
velocity among particles is vrel ∼

√
2v ∝

√
kT/m. Taking into account the asymptotic 

dependence of the central density n0 for low and large temperatures (n0 ∼ nB and 
n0 ∝ nB (TB/T )

3/2, respectively), one obtains the estimation

ν ∝

{
ω(TB/T )

3/2, if T/TB � 1,

ω(TB/T )
3, if T/TB � 1,� (64)

with ω being the frequency parameter of the external harmonic field. The previous result 
predict that the frequency of collisions ν decreases with the growth of temperature, 
but it exhibits dierent behaviors in the low and high temperature limits. Moreover, 
the characteristic timescale between collision events τcol = 1/ν exhibits the same order 
of characteristic timescale τdyn = 1/ω of microscopic dynamics. Accordingly, the system 
as a whole will be aected by the incidence of collisions in the timescale τc.rlx ∝ Nτcol, 
which represents the characteristic timescale of the collisional relaxation.

4.2.  Initial conditions

One can suppose that the model system (1) obeys ergodicity and mixing properties that 
are necessary to perform a statistical description in terms of microcanonical ensemble. 
Besides, one can also admit that the system will arrive at an thermodynamic equilibrium 
by starting from an arbitrary initial condition in a finite relaxation time τrelax < +∞. 
Since Lyapunov exponent (45) requires infinite time limit t → +∞, this indicator will 
characterize the equilibrium state. In our dynamical simulations, we have started the 
dynamical evolution from equilibrium situation associated with Maxwell–Boltzmann 
distribution (4). Proceeding thus, we shall avoid the system initial evolution towards 
equilibrium and speed up all calculations.

During random generation of initial conditions using distribution (4), the statistical 
fluctuations are large for values of N relatively small, overall, for low values of temper
atures. In these cases, the resulting initial configuration can significantly dier from the 
equilibrium configuration of interest. For this reason, we have considered a thermaliza-
tion procedure to force the system to reach a given equilibrium state with temperature 
T. Along this process, the kinetic energy of each particles is periodically re-scaled in a 
way that the expectation value of the dynamical temperature Tdyn = 2K/3N  acquires 
the value T of interest, 〈Tdyn〉 = T . A particular illustration of this procedure for the 
system with size N  =  64 is shown in figure 5, which was developed to force the equilib-
rium state with T = 10−5TB.
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4.3. Verification of ergodic hypothesis

Our first task is to contrast the predictions of the thermo-statistical analysis and 
the results obtained from the dynamical simulations. We show in figure  6 a direct 
comparison among the temporal expectation values

〈O〉dyn = lim
T→+∞

1

T

∫ T

0

O [q(t),p(t)] dt� (65)

of the three contributions of the total energy U (points) and their corresponding statis-
tical expectation values (solid lines):

〈O〉stat =
∫

O (q,p) dP (q,p)� (66)

already shown in figure 3. The agreement of these predictions is excellent taking into 
consideration that our dynamical simulations were restricted to a number of particles 
N  =  2048, while the statistical estimations were performed by invoking thermodynamic 
limit N → +∞. The present results evidence (1) the applicability of the thermody-
namic limit approximation N → +∞ to obtain statistical expectation values for finite 
systems with moderate number of particles N ∼ 103 and (2) the ergodic character of the 
non-neutral plasma model (3) considered in the present study, namely, the equalization 
between the statistical and dynamical expectation values of a given observable O:

〈O〉dyn = 〈O〉stat .� (67)

4.4. Chaoticity of the microscopic dynamics

Let us now analyse the relationship between the chaoticity of the microscopic dynam-
ics and its thermodynamic behavior. Specifically, we have performed extensive simula-
tions to obtain the dependence of Lyapunov exponent λ on the system temperature 
T. Results for a number of particles N  =  2048  are shown in figure  7. In our simu-
lations, the time variable t was referred to into units of τc = 1/ω, and hence, the 
Lyapunov exponent λ (the maximum one) is expressed to in units of constant frequency 
ω of the external harmonic field. For comparative purposes, we have also included in 
this figure the dependence of heat capacity C versus temperature T already shown in 
figure 1. According to these results, the Lyapunov exponent decreases (and probably 
drops to zero) when the system approaches its two asymptotic limits of low and high 
temperatures, while it exhibits a local maximum during the transition around the 
temperature value T � 0.1TB. The observed temperature dependence of the Lyapunov 
exponent diers from the one considered by the rate of collisions (64). Of course, 
one cannot expect a direct identification between these quantities, but the growth of 
Lyapunov exponent in the low temperature limit cannot be explained in terms of the 
particles collisions. The mechanism of collisions turns more eective for low temper
atures, which is in contradiction with the reduction of the system chaoticity observed 
when the temperature decreases.

For a better understanding of the system chaoticity, we have studied the dependence 
of the Lyapunov exponent λ on the system size N. Results of extensive simulations 
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Figure 5.  Evolution of the dynamical temperature Tdyn = 2K/3N  along the 
thermalization process, which is considered here to force the equilibrium state with 
temperature T = 10−5TB. Notice that the initial configuration significantly diers 
from the final equilibrium state, despite the associated temperature T of the later 
one was indeed employed in the random generation of the initial configuration 
using the equilibrium distribution (4). Apparently, statistical fluctuations of initial 
positions {ri} are significant to disturb the velocity distribution along the system 
dynamical evolution.

Figure 6.  Comparison among the microcanonical dependencies of three 
contributions of the total energy obtained from thermo-statistical calculations (the 
same results shown in figure 3) and the temporal expectation values of these same 
observables obtained from dynamical simulations. The good agreement among 
these estimations evidences the licitness of two non-trivial considerations: (i) the 
thermodynamic limit approximation N → +∞ and (ii) the relevance of ergodic 
hypothesis.
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considering the ranges N  =  64–2048 and T/TB = [10−5 − 10] are shown in figure  8. 
According to these results, the Lyapunov exponent exhibits the same qualitative 
dependence on the temperature T, but the overall values of this quantity grow with 
the system size N. A simple analysis evidences that the Lyapunov exponent λ (in units 
of ω) grows with N following the power-law N1/4. This scaling law is evidenced by the 
data-collapse after re-scaling λ/ω by the factor N1/4 (the bottom panel of figure 8).

The present results evidence that the characteristic chaotization timescale of this 

non-neutral plasma model is τch = 1/λ ∝ 1/ωN1/4 = τdyn/N
1/4, which is considerably 

smaller than the characteristic timescale of its microscopic dynamics τdyn, τch � τdyn. 
The observed chaoticity cannot be explained in terms of particles collisions because of 
their characteristic timescales considerably dier between them. The size dependence 
of the Lyapunov exponent should be explained by some type of collective influence of 
the system as a whole. Taking into consideration precedent studies in the context of 
astrophysical model [39, 45], the observed chaoticity should be explained in terms of 
the phenomenon of parametric resonance. The verification of this hypothesis requires 
the application of Riemannian approach of Hamiltonian chaos [40], which is beyond 
the scope of the present study.

The chaoticity of a Hamiltonian system is understood as a consequence of non-
linearity of its microscopic dynamics. Apparently, the incidence of non-linear eects 
in this concrete situation reaches its maximum during the transition between the 

Figure 7.  Comparison between the heat capacity per particles C/Nk and the 
Lyapunov exponent λ/ω for N  =  2048 (in units of the typical time τc = 1/ω) versus 
the temperature T (in units of Brillouin temperature TB). Accordingly, the system 
chaoticity reaches a maximum along the transition between the two asymptotic 
limits of the non-neutral plasma model (3). The observed temperature dependence 
of the Lyapunov exponent cannot be explained by the rate of particles collisions 
(64). In fact, such a chaoticity is associated with the non-linearity of microscopic 
dynamics due to the presence of Coulombian inter-particles forces, which must 
reach its maximum along the transit between the two asymptotic limits of this 
model.
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two asymptotic limits of the system thermodynamic behavior. According to the heat 
capacity C versus temperature dependence, during the transit between Brillouin limit 
towards the ideal gas of harmonic oscillators limit, it takes place the unfreezing of the 
oscillatory degrees of freedom. Therefore, the non-linear eects of microscopic dynamics 
that explain the chaoticity shown in figures 7 and 8 must be in someway associated to 
this process of unfreezing of the oscillatory degrees of freedom.

5. Final remarks and open questions

We have studied in this work the thermodynamics and the dynamics of a simple model 
of a pure non-neutral plasma confined under an external harmonic field, equation (3). 

Figure 8.  Top panel: size eects in the dependence of Lyapunov exponent versus 
temperature obtained from extensive simulations in the range N  =  64–2048. Bottom 
panel: the same dependencies re-scaled by the factor N1/4, where one observes a 
good confidence in the existence of a data-collapse under the statistical uncertainty 
of these calculations (error bars are also added).
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Despite its simplicity, this model preserves essential features of more realistic models 
of non-neutral plasmas confined in magnetic traps, like the Brillouin steady state, as 
well as the non-extensive character due to the long-range character of Coulombic forces 
among charged particles. According to results obtained during dynamical simulations, 
the observed chaoticity of the present model is very strong, since it take places at a rate 
faster than the characteristic timescale τdyn of the microscopic dynamics. According 
to our preliminary qualitative analysis, such a strong chaoticity cannot be explained 
in terms of collision events because of their respective characteristic timescales are 
significantly dierent. In fact, such a strong chaoticity is the result of some type of 
collective phenomena that attains the system as a whole, presumably the called reso-
nance parametric mechanism proposed by Pettini and co-workers as the main source of 
chaoticity in the context of nonlinear Hamiltonian systems with bound motions in the 
configuration space [40].

In accordance with the chaotic hypothesis [38], the strong chaoticity observed in 
this model suggests the relevance of statistical properties like ergodicity and mixing 
for pure non-neutral plasmas. This idea is in someway corroborated in our numerical 
simulations shown in figure 6, which evidenced the good agreement of thermo-statisti-
cal calculations and its associated temporal expectation values. Certainly, the present 
situation is not subjected to evaporation events as the case of the experiment of Huang 
and Driscoll in the past [14]. Nevertheless, the strong chaoticity in non-neutral plasmas 
should not significantly depend on the particles evaporation, but on the long-range 
character of Coulombian forces. Results obtained in this work reinforces the licitness of 
eective quasi-ergodicity invoked in the precedent study developed by Ordenes-Huanca 
and Velazquez [37], and why their theoretical development provides a good charac-
terization of the experimental profiles reported by Huang and Driscoll (where it was a 
negligible incidence of collision events).

Let us finally refer to the open problems of this work. Firstly, the present model 
should be considered within the Riemannian approach of Hamiltonian chaos [40] in 
order to check if the parametric resonance is origin of the observed strong chaoticity. 
Secondly, a way to check the connection between the Lyapunov exponent and the 
eective unfreezing of the oscillatory degrees of freedom is to attempt the analytical 
computation of Lyapunov exponent using the ideas of Casetti and Pettini [44]. Thirdly, 
it is necessary to check the incidence of strong chaoticity of this model on its relaxation 
time towards thermodynamic equilibrium. The possible relation between these two 
timescales is someway suggested by the known relation of Sinai–Komolgorov entropy 
hKS (a measure of the entropy production) and the sum of all positive Lyapunov expo-
nents [53]:

hKS ∼ dSKS

dt
≡

∑
i

λ+
i ⇒ τrel ∝ τchN ,� (68)

where N is the size of the system, while τch and τrel are the chaotization and relaxation 
timescales, respectively. If this heuristic relationship between these two timescales is 
correct, its existence would explain the relevance of chaoticity on the ergodicity of 
microscopic dynamics (the eective filling of the energy surface in the phase space).
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