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Abstract. One of the most interesting and pressing challenges in the study on biped humanoid 

robots is to achieve high robustness in locomotion. This paper presents a brief overview of 

work and methods on robust walking and running for bipedal robots. So far, many robust 

walking methods have been proposed to reject terrain disturbances and impulsive force 

disturbances. The applications of the proposed methods to real robots improve the robustness 

and adaptivity of robots by large margin. Up to now, bipedal robots can traverse unknown 

terrains with ground variation exceeding 20% of leg length. The height of obstacles increases 

more than threefold compared to decades ago. With regards to unexpected external force, 

bipedal robots can recover the balance from sudden push not only at stationary state, but also 

during the walk. On the other hand, the biped running is underdeveloped compared to the 

robust walking. Still the highest running speed is less than 3.0 m/s, not to mention the poor 

robustness to large disturbances.  

1. Introduction 

Over the last decades, biped humanoid robots attract more attention than mobile robots with traditional 

means of locomotion, like wheels, etc. [1]. The study of bipedal robots has the potential to provide 

insight into the dynamics of human locomotion. Another significant benefit is that legged mobile 

robots can be introduced to much more complicated application scenes, e.g. disaster rescue, 

firefighting and outer space exploration. 

Despite decades of research and progress, few humanoid robots have been already applied in our 

daily life or other practical scenes. Most of developed robot prototypes are restricted to perfectly-

structured environments, while practical applications always require the robot to operate stably while 

dealing with high levels of uncertainty and large external disturbances [2]. In fact, a slight irregularity 

can undermine the balance of the bipedal robot and destroy its stability. In other words, humanoid 

robots still tend to tip over easily on complex environments and are short of robustness against various 

disturbances [3]. 

In general, the disturbances or uncertainties in bipedal robot locomotion include unknown terrains, 

unexpected external forces, parametric errors, friction in joints and motors, and sensor errors etc. [4]. 

The first two are categorized as external disturbances, while the remaining is internal uncertainties 

typically resulting in differences between control models and actual robots. The first of external 

disturbances, terrain variation, is pervasively occurred in natural and man-made environment. Most of 

the terrain in the natural world is not flat, such as rocky mountains, and lots of disaster and dangerous 

areas are littered with obstacles, like stones and ruins.  
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The unexpected forces, another external disturbance, often arise from interaction tasks, involving 

offering to lift unknown loads, collaborative carrying, and unexpected collision. It is obvious that 

human-robot collaborations are beyond the vision if robots cannot be rejected to unpredicted forces, 

especially impulsive thrusts. In sum, external disturbances, including rough terrain and unexpected 

thrust, should be accommodated to achieve robust walking for bipedal humanoid robots. 

The defect, lack of robust walking under external disturbances, makes the biped robot less practical 

in applications of high-speed locomotion, e.g. running. Running can significantly improve the agility 

and flexibility of bipedal robots by speeding up the movement. Moreover, the running or jumping 

manoeuvre enhances the capability of robots to locomote over discrete terrains. Unfortunately, even if 

robust walking is well-developed, it does not necessarily lead to the high-performance running.   

This paper overviews the studies on robust walking and running of biped humanoid robots. The 

paper is organized as follows. Section 2 surveys the researches allowing bipedal robots to traverse 

various terrains. In Section 3, impulsive external disturbance is concerned and the robust controls to 

reject it are presented. Following robust walking under external disturbances, Section 4 provides a 

brief review of state-of-art of biped running. Note that, in particular, this paper concerns the work and 

researches that are applied to practices and real hardware. 

2. Terrain Disturbance 

Current robotics research starts to extend applications to include locomotion through unstructured 

environments where the terrain varies unexpectedly. This extension presents a challenge because a 

robot that can move perfectly in a controlled environment might fall after its first encounter with a 

terrain disturbance [4]. 

Even though numerous researches have been done to improve robustness to ground variation, 

significant restrictions still remain when bipedal robots walking on rough terrains [5]. Until early 

2010s, bipedal robots can only accommodate unplanned obstacles that are less than 6% of leg length 

[6–11]. This value is unrealistically small when compared to common obstacles in everyday life, such 

as the height of steps in a building or the curb height of a sidewalk on a city street. Also, ground height 

variations exceeding a few centimetres must be known a priori. These robots are constrained to the 

average walking speed of approximately 1.0 m/s. 

So far, uneven terrains are traversed at relatively low walking speeds [12–14] to maintain stability 

and, if applicable, to ensure the accuracy of perception [15,16]. The highest speed of walking 

seldomly exceed 1 m/s without any knowledge of the ground [17].   

HONDA has been developing HRP-series robots from the end of 20
th
 century, among which HRP-

2 becomes a successful platform in the research field of humanoid robotics since launched in 2004 

[18]. Takubo et al. [19] put forward a Zero Moment Point (ZMP) based criteria to solve the rough 

terrain walking. The newly proposed method was validated on HRP-2. In this study, Takubo et al. 

brought up the concept of “step up” and “step down” to describe the variation of regular flat ground  

[18]. The landing time of walking pattern was adjusted in corresponding to “step up” or “step down” 

state. The experiments verified the effectiveness of proposed methods, though the heights of “step” 

were less than 10 cm. 

HRP-2 was replaced by HRP-4C and HRP-4 to improve the practicability of humanoid robots. 

Similar to HRP-2, the processor HRP-4(C) model is also fully actuated where degrees of freedom of 

robots correspond to the actuation system [20]. Kajita et al. [21] successfully applied the posture/force 

control to stabilize HRP-4C by simplifying it as a single linear inverted pendulum with ZMP delay. 

With minor modification of the predetermined trajectory, HRP-4C performed robust walking on 

outdoor uneven pavement. The maximum inclination of pavement was about 3 degree. Without any 

knowledge of outdoor ground profile, HRP-4C could traverse the pavement using a prescribed 

walking pattern for the flat ground, with a quite slowly walking speed of 0.2 m/s. 

In 2019, Caron et al. [22] took a breakthrough in dynamic stair climbing of humanoid robot. The 

stabilization controller for climbing stairs was expanded by two parts: quadratic programming-based 

wrench distribution and a whole-body admittance controller. Previous to this work, the untethered stair 



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012048

IOP Publishing

doi:10.1088/1742-6596/1487/1/012048

3

 

 

 

 

 

 

climbing had been rarely performed to prevent robot falls and ensure the safety. Caron et al.  [22] 

applied the resulting stabilization controller to the dynamic stair climbing of HRP-4. In the two-week 

reproduced experiment, robust stabilization was verified repeatably and HRP-4 completed to climb an 

industrial staircase with 18.5 cm high steps. 

In contrast to fully-actuated robots, underactuated bipeds become more popular since its dynamic 

gait is simple and elegant as human’s locomotion.  

As a planar biped robot, MABEL was actuated by only two motors, one of which controls the angle 

of the so-called virtual leg and another motor control the length or shape of the virtual leg [23]. Park et 

al. [5,23] designed a switching controller [24] that allows it to accommodate an abrupt 20 cm variation 

in ground height. A controller switching is activated when the step-down height is detected and the so-

called ‘step-down’ controller is turned on to reject the terrain disturbance. 

As shown in Figure 1, MABEL could step off the platform reaching 20.37 cm high, without falling 

[23]. In the experiment, MABEL began walking on a flat floor, walked up a ramp to a 17.78 cm 

platform and stepped off. After completing a second lap, the 17 cm obstacles were replaced by the 20 

cm ones. Figure 1 presents the successful step-off with rejection to torso oscillation in snapshots from 

video capture. Remarkably, the leg length of MABEL is around 1 m, which concludes that the 

proposed switching control permit the biped robot to walk over terrain variation exceeding 20% of leg 

length. It is noted that, in the experiment [23], MABEL accommodated unplanned obstacles without 

any priori information or extra sensor measurement. In other words, MABEL could blindly traverse 

and be robust to step-up and step-down disturbances. 

 

Figure 1. MABEL walking over 20 cm step-down disturbance [23] 

Following the MABEL, Griffin et al. [4,25] from University of Michigan developed its successor, 

MARLO, to continue the study of blind walking [26] for humanoid robots. The aim of Griffin et al. is 

to address the control strategy that functions well in the presence of terrain disturbance, without 

reliance on perception and a priori knowledge of ground variation. MARLO extended previous 2-D 

walking (MABEL) to 3-D locomotion, and did not sacrifice the walking speed at the level of 0.9 m/s. 

The innovation of work by Griffin et al. was to propose a control strategy that allowed continuous 

velocity-based posture adjustment via nonholonomic virtual constraints. Additionally, the terrain 

disturbances were considered in the optimization of walking gaits.  

Figure 2 shows an indoor experiment performed to validate the stability and robustness of MARLO 

when walking over randomly arranged obstacles. Before this experiment, MARLO was tested on the 

organized stacks of boards. The boards or board stacks in two experiments were varied from 1.2 cm to 

7.9 cm. For experiments outdoors in realistic environments, MARLO traversed sloped sidewalks, 

parking lots and grass fields, all with adaptivity to various sorts of floors and grounds [4]. 

Though concentrating the same issue as MABEL, MARLO did not follow the design of MABEL 

with big differences in linkage-leg and actuating methods. In fact, the configuration of MARLO is the 

Michigan copy of the ATRIAS-series robots by Carnegie Mellon University.  

ATRIAS is an underactuated human-size biped robot with two actuators located at each hip joint 

[27]. The two series motors drive the four-bar linkage in the sagittal plan, while for 3-D walking, 

another motor controls the leg in the frontal plane. In 2015, Batts et al. [27] developed a motor torque 

controller to adapt ATRIAS to modest terrain changing. In sagittal plane, the proposed virtual 

neuromuscular control regulated the motion of the legs by emulating the neuromuscular model. The 
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simulation tests verified that, up to [-2, 2] cm terrains, the success rate of ATRIAS traversing was up 

to 90%. This rate sharply reduced to 50% if the terrains height increased to [-3, 3] cm. The robustness 

to the highest terrains was slightly over ±7 cm. Up to [-7, 7] cm terrains, the robot easily tipped over 

and fell backward.  

 

Figure 2. MARLO walking over randomly thrown boards [25] 

In 2017, also implemented to ATRIAS, Nguyen et al. [2,28] presented another approach to handle 

the random changes of the ground. The proposed approach applied the 2-step periodic gait 

optimization and a gait library-interpolation to achieve desirable step lengths and step heights. The 2-

step periodic gait optimization takes into account consider the desired location of the next footstep, 

enabling to switch between different walking gaits. On the other hand, the gait interpolation allows the 

adaptation to terrain changes. The research team launch a first experimentally dynamic walking for 

humanoid robots, using ATRIAS. As presented in Figure 3, the terrain variation was emulated by 

stepping stones, whose step length and step height changed from 30 to 80 cm and from -30 to 30 cm, 

respectively [28]. In the experiment, ATRIAS achieved fast walking with 0.6 m/s average walking 

speed and accommodated randomly arranged stepping stones with step lengths in the range of [23, 78] 

cm. 

 

Figure 3. ATRIAS walking over stepping stones [28] 

In 2019, Li et al. [29] suggested intelligent methods to improve the robustness and adaptivity of 

ATRIAS biped to ground disturbances. The deep reinforcement learning was introduced to train the 

structured controller in a high-fidelity simulator. The structured controller could be separated into two 

parts: the neural network part was regularly updated, while the rest of the controller stays fixed during 

the training. This strategy was demonstrated to speed up the rate of learning and result in the feasible 

control policies. After training, the neural network policy performed robust to ground height 

disturbance with decent success rate. On the other hand, 80% rate of transfer could be reached 

between simulation and hardware. Note that the above-mentioned researches on ATRIAS are all 

restricted in the planar locomotion. 

3. Impulsive Force Disturbance 

In addition to the terrain variation, the unexpected external force is another universal cause to the fall 

or tipping-over of biped humanoid robots. Amongst all kinds of external forces, the impulsive thrust or 
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push is the trickiest one since it requests the rapid response of controllers to hold the stability of robots 

[30]. If biped robots cannot recover the balance from sudden external impact, there is no way to 

achieve the safe physical interaction between human and humanoid robots. 

The balancing recovery to external forces on humanoid robots has been studied for decades. Yet 

most of them assumed that the biped robot was standing, i.e. stationary mode, at the sudden of 

disturbances forced [31]. Fard et al. [31] also claimed that the push recovery of underactuated robots is 

much more difficult than full actuated ones, even harder when the degree of under-actuation is over 

two [32]. Despite of the difficulties, many disturbance rejection methods have been designed and 

experimentally validated [33–35]. Under relatively small disturbances, stability can be held by shifting 

the centre of pressure within the foothold [36]. This method becomes less effective as disturbances 

becoming larger and robots becoming more dynamic [37]. As an alternative to ankle strategy, ground 

contact force based control enables the robot to hold the stance under larger disturbances [38–40], but 

cannot accommodate the disturbance during the walking. More recently, a more natural and human-

like method was proposed by adjusting step placement [41–44].  

In 2008, a 0.5 m height biped robot, MANUS-I, was developed by Prahlad et al. [33] to validate 

sorts of technologies for humanoid robots. One ankle strategy based method was proposed to improve 

the locomotion stability subjected to disturbances. The compensating torque was computed using the 

measurement of force sensors located at each foot and injected into the ankle-joint of the foot. The 

robot was proved to reject different forms of disturbances by experiment. In first case, MANUS-I 

carried an additional weight of 390 g (17% of body weight) while walking up a 10-degree slope and 

walked down a 3-degree one. The second case demonstrated that MANUS-I could revert back its ZMP 

position after several walking cycles adjusting if forced an impulsive push. 

 

Figure 4. Measurement of disturbance force on MANUS-I [33] 

The work of Ott et al. [45] in 2011, is a typical case of using ground contact forces to recover the 

posture under external perturbations. The proposed balancing controller computed force and torque 

(wrench) that was distributed among predefined contact points. The distribution of wrench was 

optimized with the objective of minimizing the Euclidean norm of the contact forces. Two 

experiments are presented with DLR-biped to evaluate the proposed balancing algorithm [45]. The 

first experiment presents an impulsive disturbance using a pendulum, providing an impact of 

approximately 5.8 J on the robot. In the second experiment, the trunk of the robot is pushed by 

creating different perturbations in position and orientation. The proposed strategy distributed a net 

wrench required to recover position/posture onto a predefined set of contact points. 

HRP3L-JSK is a high-power ability humanoid robot with 12 degrees of freedom in legs. Its 

robustness to external forces was realized using online footstep replacement [46]. The step 

replacement was optimized online to track the ZMP trajectory, which targets the trajectory of the 

centre of mass. Figure 5 shows that HRP3L-JSK was badly kicked in the experiment. The kick 

reached 597 N at peak and lasted around 0.1 s. Though with short duration, the kick led to large torque 

perturbation since the height is bit more than 0.8 m where the body is pushed. As given in Figure 5, 

the online optimization converged the centre of mass to its desired trajectory. 
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Figure 5. External disturbance on HRP3L-JSK [46] 

To handle the large thrust disturbance at walking-state, Yu et al. [37] proposed a footstep 

placement strategy that also could reduce the foot landing impact. The new foothold placement was 

estimated by mapping ZMP variations using the body acceleration measurement. The robustness to 

disturbance could be improved by integrating a PD controller, since the controller effectively abated 

the body vibrations. In the experiment, the robot is disturbed a sudden external push, in the double 

phase of the third step [37]. The thrust is about 212 N for a duration of 0.1s, namely 21.2 Ns. Figure 6 

shows from the fifth snapshot when the external push was forced. From the fourth step (the sixth 

snapshot), the robot calculated the next footstep placement and recovered to stable walking. It is easily 

found that the right foot (marked by red square) landed on the right of the original foot placement, by 

comparing the seventh and eighth snapshot with the sixth one. The landing force mitigating strategy 

operated at the same time. The experiments verified that the stable walking was not achievable if the 

foot landing impact control was not applied. 

 

Figure 6. Large thrust forced to robot during robot walking [37] 

4. Running 
Successive single support phases and instantaneous double support phases constitute the gait of 

walking. Therefore, legs kept in one single support phase. But the gait of running is composed of 

stance phases and flight phases. The robust stability margin of biped running is lower than walking 

[47], since robots needs fast changes in joint variables with large impact force happening.  

In the early days, researchers focused on the control of the landing position for robots to realize 

running [48,49]. In many subsequent studies, the model that describes motion of centre of mass 

learning from human motion, was used to model and control biped running. Trajectories of the centre 

of mass in biped running were studied and designed [50–52], also the Linear Inverted Pendulum 

model [53] and Spring Loaded Inverted Pendulum model were used in running robots [54]. To 

generate a trajectory, gait pattern using ZMP are employed with methods including gait synthesis, gait 

algorithm, and gait parameters optimization [55–57]. Poincare map was commonly used for designing 

running reference trajectories for biped robots [58,59]. 

A biped robot HRP-2LR was developed, which could jump and run [49]. To follow the desired 

profiles of the total linear and angular momentum, ZMP patterns of HRP-2LR for running are pre-

calculated. In the experiments, a hopping with forward velocity of 0.15 m/s was also realized. In their 

later study, a running controller is proposed to stabilize the system against disturbances [60]. The 

running controller consists of posture stabilization, inverted pendulum stabilization, contact torque 
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control, impact absorbing control, foot vertical force control and torque distribution control. Then, the 

advanced HRP-2LR [53] makes use of the resolved momentum control method to generate the running 

pattern. A running pattern was designed with a support duration of 0.3 s, flight duration of 0.06 s, and 

speed of 0.25 m/s. 

Running at 10 km/h (2.8 m/s) was achieved on a real robot whose dimension are same as ASIMO 

[61]. To achieve this goal, methods to decompose and synthesize a running gait pattern into vertical, 

horizontal and rotational components were propose so that time-dependent ground friction limits are 

satisfied. Also, they extended the boundary condition, the divergent component of motion, involving 

vertical acceleration of the centre of gravity. Especially these methods were suitable to apply to 

intermediate motions between walking and running, involving no flight phase or walking on ground 

with small friction coefficients. 

To make the biped robot running stably, a balance control was proposed to enable a robot to 

maintain balance by changing the positions of the contact foot dynamically when the robot is disturbed 

[51]. They applied compliance control without force sensors, in which the joints are made compliant 

by feed-forward torques and adjustment of position control. Simultaneously they put feedback control 

into use, deciding the foot positions by measuring orientation of the robot’s torso. The paper 

implements the fast running motions to a humanoid robot that can run at an average speed of 7.0 km/h, 

as shown in Figure 7. 

 

Figure 7. Sequential picture of running at 7 km/h (1.9 m/s) [51] 

The biped robot, ATRIAS, had remarkable performance in running with speed of 2.5 m/s [62]. The 

work in ATRIAS aimed to demonstrate that 3-D bipedal walking and running are not only possible 

with a passive-dynamics-based approach, but that the result is sufficiently robust to serve as a viable 

framework for practical locomotion in unstructured environments. Remarkably, ATRIAS can 

accelerate from rest, transition smoothly to a running gait.  

5. Conclusion 

Locomotion stabilization is the most basic problem for bipedal humanoid robots with only two legs 

and point contacts. The pressing challenge in stabilizing biped robots is to achieve high robustness that 

enabling robots to recover from severe perturbations especially from external disturbances. In addition 

to the complexity of biped robot itself, the environment robot applied is often complicated and 

unknown. Despite of the complications, many studies on robust locomotion have been done and 

experimentally well-validated. 

The robustness to terrain disturbances, especially unknown terrains, has been improved by a large 

margin. Just before 2010, the variation of accommodated terrains was no more than 6% of robot leg 

length. This number increased to over 20% in the study of Park et al. [23] in 2012. For the experiment 

of ATRIAS [28], the height of obstacles—stepping stones reached 30 cm, exceeding 50% of leg 

length. 

The disturbance rejection to external disturbances has been studies from different points of view. 

The most popular approaches at least include ankle strategy, contact force control and footstep 
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replacement. Amongst, footstep replacement is most prospective to achieve high robustness under 

dynamics walking. The step replacement strategy successfully recovered the biped robot from sudden 

push (about 21 Ns) during walking [37]. 

Biped running is underdeveloped compared to the robust walking. Some bipedal robots, such as 

ASIMO [61] and ATRIAS [62], has been relatively well-developed and achieved stable running. Yet 

the best running speed does not break through the level of 3.0 m/s, not mentioning the poor robustness 

to large disturbances. In short, lots of works need to be done in biped running, especially in high speed 

running. 
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