
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

1

A Systematic Study for Learning-Based Software Defect

Prediction

Han Cao1

1 Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6,

Canada

han_cao@sfu.ca

Abstract. Software defect refers to the code error in the process of software development,

which could cause execution fault under specific conditions, resulting in failure, collapse, and

high cost of the target software. Traditional detection techniques for software defect contain

static and dynamic analysis, both of which require a great deal of workforce and time. With the

development of machine learning and deep learning, software defect prediction has opened a

new avenue to circumvent the drawbacks of traditional analysis approaches. Although various

learning-based techniques in the prediction field have been developed, there is a lack of

systematic summary and classification from the technical point of view. This paper studies the

problem from the three aspects: traditional machine learning, deep learning, and hybrid

learning. Moreover, the predicted performance is discussed in detail, especially in cross-project

and just-in-time, to understand current research status thoroughly. This paper also provides a

useful guide for further research, particularly for the potential usage of deep learning in

semantic defect prediction.

1. Introduction

Software defect refers to code errors (commonly known as bugs) in the process of software

development. In most cases, such defects will cause software faults under certain conditions and lead

to application failure. In the age of information, software defects are able to lead to information

security problems. Such type of software defects, called software vulnerability, is prone to raising

severe resource loss and poor user experience. The earliest known example of system defect was the

Mariner 1 launch failure in 1962 when NASA had to destroy an $80 million spacecraft because there

was a hyphen missed in the FORTRAN program [1]. The "Morris Worm" of cybersecurity forced

people to focus on software vulnerability more than three decades ago and provided an impetus for the

US to create the CERT (National Internet Emergency Response Center) [2].

Software defect analysis is of great importance in checking software defects. The most direct

analysis way is static analysis, which can find defects by using various techniques. A large number of

tools such as Coverity Scan [3] and Fortify SCA (Static Code Analyzer) [4] have been developed to

perform such static analysis. Dynamic analysis is another defect analysis approach which tracks the

execution of programs as well as analyzes the memory information and function calls. In this way, it

can find exceptions and use techniques such as ambiguity test and stain analysis to identify defects.

Many tools are relying on dynamic analysis, such as Valgrind [5] and Ftrace [6]. Although traditional

software defect analyses become sophisticated, it is evident that static analysis is labor-intensive and

performs poorly in semantic analysis. The resources and time expended are usually unacceptable for

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

2

dynamic analysis, since it has to test every line of code. Thus, dynamic analysis is seldom used in

practice.

With the development of machine learning and statistical theory, it is more likely to introduce such

techniques to the timely detection of defects in the software development phase. As a result, software

defect prediction with learning-based methods gradually becomes an emerging research field. In the

early years, some researchers exploited statistical and probabilistic approaches to predict the defect

time distribution of the software’s life cycle [7], which belongs to the research field of reliability

engineering. After the year 2000, many researchers began to use machine learning to predict defects in

programs [8].

In recent years, with the development of artificial neural network (ANN) and natural language

processing (NLP), deep learning has become popular in many researchers [9-12]. Compared with

traditional machine learning, which is based on strict metrics, deep learning tends to convert source

code into vectors to learn directly. Vectors can preserve code information thoroughly; they even

include the annotation information [13]. Deep learning has excellent performance in both syntax

learning and semantic learning.

At present, although lots of researches are on software defect prediction, there lacks a systematic

summary from the technical perspective. Therefore, this paper aims to address this technical gap by

investigating as well as classifying the related work of software defect prediction. Also, this paper

summarizes the advantages and disadvantages of the related techniques which provide support for the

future work of software defect prediction.

2. Techniques

Software defect prediction refers to the use of machine learning in the early stage of software

development. It can save development costs and improve development speed. The core of its

performance is machine learning algorithms. Technically, learning-based software defect prediction

includes three main branches: traditional machine learning, deep learning, and transfer learning.

2.1. Traditional Machine Learning

Traditional machine learning has been explored for a long time, and its algorithms are relatively

straightforward. Here are three typical traditional machine learning techniques that are widely used.

2.1.1. Random Forest. The random forest is initially proposed by Breiman L et al. [14], which works

as a classifier with multiple decision trees that collaborate as a forest for decision. The multiple

decision trees vote their result, and RF employs a bootstrap sample to ensure the independence of

multiple decision trees as well as increases the correlation between decision trees. It is capable of

handling multi-variable inputs and large datasets, with relatively high accuracy, especially in handling

unbalanced datasets. The forest decision mechanism can estimate the generalization error without bias.

2.1.2. Bayesian Network. The Bayesian network, also known as the belief network or directed acyclic

graphical model is a probabilistic graphical model. Every node in the graph represents a random

variable, while every edge represents a conditional dependency. Also, the Bayesian network is

efficient at dealing with uncertain problems. Bayesian network expresses the correlation between

information elements using conditional probability and is able to learn and reason with limited,

incomplete, or uncertain information.

2.1.3. Support Vector Machine. Support Vector machine is first proposed as a generalized linear

classifier for binary classification whose decision boundary is the maximum-margin hyperplane of the

input learning samples. SVM was introduced as early as 1964. However, it did not until the 1990s [15].

Besides performing linear classification, SVMs can also perform a non-linear classification with the

kernel trick which maps their inputs into high-dimensional feature spaces implicitly.

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

3

2.2. Deep Learning

Deep learning originates from the ANN. As early as 1943, psychologist W. S. Mcculloch and

mathematical logician W. Pitts built its neural networks and mathematical models, and by the 1980s,

ANN had become a hot topic in artificial intelligence [16]. The concept of deep learning was not put

forward until 2006 by Hinton G et al. [17]. Deep Learning transforms initial "low-level" feature

representation into "high-level" through multi-layer processing; it can complete complex classification

tasks with simple models. Also, it has the capabilities of feature learning and representational learning.

Therefore, it can achieve better performance while being flexible. All these attributes contribute to the

rapid development of machine learning.

2.2.1. Deep Belief Network. DBN is the earliest deep learning method, proposed by Hinton in 2006

[17]. DBN is a generative graphical model. Compared with traditional neural network model, it can

establish a joint distribution between the observation data and labels which evaluates both

P(observation | label) and P’(label | observation) while the discriminant model only evaluated the

P(label | observation).

DBN consists of multiple restricted Boltzmann machines (RBM) layers which contain a visible

layer and multiple hidden layers. There are connections between the layers, but the cells within a layer

are not interconnected. Elements inside the hidden layer are trained to capture the correlation of

high-order data in the visual layer, which is also known as feature extraction. The training process is

carried out layer by layer according to the RBM.

2.2.2. Convolutional Neural network. CNN is a class of convolutional feedforward neural network

with a depth structure and is capable of shift-invariant classification. It is constructed to mimic the

visual perception of biological processes and can be used for both supervised learning and

unsupervised learning. The convolution kernel parameter sharing in the hidden layer and the sparsity

of the connection between layers make it possible for CNN to handle high-dimensional data properly.

Also, it is unnecessary to select the features manually to make the classification effective. Essentially,

it is a mapping between inputs and outputs. With an adequate amount of known patterns about the

mapping between inputs and outputs, there is no need for any exact mathematical expressions.

2.2.3. RNN/LSTM/GRU. Recurrent Neural Network (RNN) is a kind of artificial neural network where

nodes and their connections form a directed graph along a temporal sequence [11]. RNN was proposed

in the 1980s and developed rapidly in the past ten years. RNN can deal with time series not only

spatially, but also temporally, i.e., memorization. It is Turing complete and has parameter sharing. As

a result, RNN can efficiently acquire the nonlinear features that are in order.

With the increasing application of RNN, it is found that there is a long-term dependencies problem,

that is, there are gradient vanishing and gradient explosion phenomena when learning sequence. This

problem means RNN cannot guarantee the long-term nonlinear relationship. For this reason, a large

number of optimization theories were introduced, and many improved algorithms are derived. To

name a few, long short-term memory networks (LSTM) [11], gated recurrent unit networks (GRU)

[12], echo state networks (ECHO state networks) and independent recurrent neural networks

(Independent RNN) [18].

2.3. Transfer Learning

In traditional classification learning, in order to guarantee accuracy and reliability, two fundamental

assumptions are followed. The first one is that the training samples and the test samples are

independent and identical distribution. Secondly, there should be enough training samples to learn and

get a satisfactory classification model. However, these two conditions cannot be well met in practical.

Besides, building a new model is complicated and time-consuming. Transfer learning solves these

problems by making use of the existing learning achievements to speed up the learning progress.

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

4

Transfer learning usually can be divided into feature-based learning and instance-based learning [8].

Feature-based transfer learning is mainly used to identify the common features between the source

domain and the target domain, and then transfer knowledge using these features. Instance-based

transfer learning is also commonly used to solve the domain adaptation problem by selecting the

training samples which are beneficial to the classification of the target domain.

3. Software Defect Prediction

Software defect prediction is a critical part of software quality assurance. With the rapid increase of

software size and quantity, it becomes increasingly difficult to check the software defects by manual

checking or basic tools. Especially when it comes to cross-project or cross-version situations, there is

very few knowledge to be transferred. Most current editors give proper just-in-time notifications for

some syntax errors, but not for complex syntax errors, and not to mention semantic errors.

In order to perform the software defect prediction automatically, machine learning is introduced

and has an excellent effect. The traditional machine learning mainly applies the probability statistics

method, using extracted features and software measure metrics to learn classification and predict

defect. With the development of deep learning and NLP, it brings the evolution of software defect

prediction. There is a tendency for a source code based software defect prediction research, and the

method is gradually applied in practice. In recent years, Hybrid Learning has been applied in many

defect prediction scenarios. It integrates a variety of learning models and algorithms to improve the

prediction accuracy.

3.1. Machine Learning

Luca et al.[19] test different classifiers, i.e., binary logistic regression (BLR), J48, ADTree, multilayer

perceptron (MLP), naive Bayes (NB), and random forest (RF). They use the RF algorithm, which has

a higher performance to 10 data sets and conduct the training by selecting more predictive variables.

The result of short-term defect prediction was proved to be effective.

Yeongjun C et al.[18] use three machine learning classification methods: RF, logistic regression

(LR) and NB on five different programming languages and projects from various application areas.

The datasets not only cover sub-projects but also cross-sub-projects in the machine learning training.

All three learning methods have achieved satisfying results.

Osman H et al. [20] apply two commonly used machine learning algorithms: k-nearest neighbors

(KNN) and SVM, which improve the prediction accuracy by hyperparameter optimization. The

experiment result of 5 open-source Java programs shows that the defect prediction accuracy has

increased by 20% and 10%, respectively, for the two learning algorithms.

Sokratis t et al. [21] use four conventional machine learning methods: C4.5 decision trees, NB,

Bayesian networks (BN) and LR to predict the performance defects of commercial real-time systems

(RTS) applications. They also perform necessary preprocessing such as cleansing and re-balancing for

the datasets before learning. The result of their experiment is promising, especially for the C4.5

decision trees and BN.

Puja A H et al. [22] use NB algorithm to compute the Chidamber and Kemerer object-oriented

metric (CK OO) as the feature parameters. They select the petstore web application and other project

datasets to run cross-project defect prediction (CPDP) experiments. The results indicate relatively high

accuracy of 72.30% - 89.30% and slightly low false alarm of 5% - 26.67%, which can predict more

defect modules than traditional code review. However, it has low precision and recall score, around

12.5% - 25% and 20%-60%.

Yanhong Yang et al. [23] use the cluster ensemble method to run CPDP and use unsupervised

learning to deal with unlabeled datasets directly, thus avoiding different data distribution problems.

The experiment is carried out on 15 open source projects. Compared with the three most used

supervised learning methods: LR, decision tree (DT), and RF, it produces better prediction results.

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

5

Kishan K G et al. [24] use the well-received NASA defect datasets in defect prediction research

and preprocess the datasets with repeated attribute removal and noise removal using machine learning

algorithms such as NB, LR, DT, RF, and MLP. The learning performance is improved by cleaning the

data, and the results show that these learning algorithms have agreeable performance.

Lipika G et al. [25] focus on the severe imbalance problem of data sources from different projects,

which have a significant impact on the performance of CPDP. They use the synthetic minority over-c

technique (SMOTE) to preprocess the datasets, and run experiment on the open PROMISE repository

using gradient boosting, compared with another kind of ensemble learning algorithm like RF, and

achieve better prediction performance.

3.2. Deep Learning

Wang et al. [9] propose to leverage the DBN based representation-learning algorithm to learn the

semantic representation of programs automatically from source code. To this end, they extracted the

abstract syntax trees (ASTs) from a targeted app and generated corresponding token vectors. The

experiments on ten open source projects demonstrate that the proposed approach significantly

improves the performance of both within-project defect prediction (WPDP) and CPDP compared to

traditional features.

Thong et al. [10] introduce two software projects (QT and OPENSTACK), which were first

collected by Shane and Yasutaka and used for relevant research. They propose a CNN based method

and train the model on the two software projects. In this process, the researchers keep optimizing the

CNN parameters in three ways (cross-validation, short-period, and long-period). Compared with the

state-of-the-art approach, the result achieves improvements of 10.36-11.02% for the QT and

9.51-13.69% for the OPENSTACK in terms of the area under the curve (AUC).

Hoa K D et al. [11] use a famous timing-related learning algorithm LSTM, a variant of the RNN, to

make a thorough study on 18 Android applications. These applications involve in fields of the

economy, education, books, and network, which have comprehensive representations. Using the time

series characteristic of the LSTM processing not only has an outstanding effect on the syntax study

training but also has an excellent effect on the semantic study training. As a result, the WPDP was

improved by 3%-58%, and CPDP was improved by 85%.

Zhen L et al. [12] use another important algorithm of RNN: Bidirectional LSTM (BiLSTM), on 19

popular C/C++ open-source programs to predict several critical security vulnerabilities. These

programs include the Linux kernel, Firefox, Thunderbird, Apache Http Server, and the vulnerabilities

include two typical types: Buffer Error (i.e., CWE-119) and Resource Management Error (i.e.,

CWE-399). The BiLSTM has been trained with optimized parameters and achieved impressive results.

Anh V P et al. [26] use multi-layer directed graph-based CNN to predict the defects on four

real-world datasets written by C, C++, Java, and Python. The method improves the defects prediction

accuracy from 4.08% to 15.49% in comparison with the feature-based approaches and increased the

accuracy from 1.2% to 12.39% in comparison with the tree-based approaches.

Xuan H et al. [13] make full use of the annotation information, as well as comments augmented

from the annotation programs, to enhance the learning effects. They also use CNN to process

open-source programs from PROMISE, which improves defect prediction performance.

Anh V P et al. [27] choose four open-source datasets and convert them into assembly code after

necessary preprocessing. Then they use CNN to learn the assembly code. When compared with the

traditional machine learning algorithms such as SVM, there is a significant improvement.

3.3. Hybrid Learning

Yun Z et al. [14] combine six standard machine learning algorithms, LR, radial basis function network

(RBF Network), MLP, BN, decision and trees and decision tables (DTS) to make decisions based on

average voting and maximum voting methods. They conduct experiments on ten open-source

cross-project software systems from the PROMISE repository and achieve outstanding results, in

which the maximum voting is specifically prominent.

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

6

In Jian L et al. [28]’s research, seven open-source Java programs from the PROMISE repository

were processed by the convolution neural network based on ASTs and combined with traditional

prediction learning methods for deep semantic and syntactic learning. The result shows a 12%

improvement over the state-of-the-art method. It is a successful attempt to combine deep learning with

traditional machine learning.

Pushphavathi T P et al. [29] use the genetic algorithm (GA) in combination with the fuzzy c-means

(FCM) classifier and RF classifier to learn datasets from NASA. When only FCM classifier is used,

there is an accuracy of 76.2%, and the combination of GA in the FCM classifier achieves 90.12%

accuracy. A combination of GA, FCM, and the RF can achieve an astounding 98.23% accuracy.

Zhou X et al. [30] apply the hybrid active learning and kernel PCA (HALKP) based cross-version

defect prediction on 31 versions of 10 software projects taken from the open MORPH datasets. This

method leverages hybrid active learning to obtain some unlabeled modules from the current version,

then merges them into the labeled modules of the prior version，thus acquires an enhanced training

set. Then a non-linear mapping method, HALKP, is utilized to extract representative features by

embedding the original data of two versions into a high-dimension space. Compared with the

traditional methods, the learning result of the hybrid method is remarkably improved.

Xinli Yang et al. [31] use the two-layer ensemble learning method whose inner layer is an RF that

is made up of decision tree and bagging with adjustable weight. The outer layer is stacking, which is

made up of multiple equal weights random under-sampling and is tested with 137,417 changes from

six open large source projects. When compared with other just-in-time studies, the cost-effectiveness

of the proposed method has achieved a 20% improvement.

4. Discussion

Defect prediction using machine learning includes various machine learning techniques that are based

on probability, geometry, and logic model with distinct characteristics.

4.1. Overview

Table 1. Research work overview.

Research Technique Achievement Prediction type

Luca P et al.[19] RF F-measure and

AUC-ROC

Just-in-time

Yeongjun C et al.[18] RF LR NB Cost effectiveness CPDP and

just-in-time

Osman H et al. [20] IBK SVM Accuracy Hyperparameter

Optimization

Sokratis T et al.[21] C4.5 NB BN LR TPR ACC and PPV Real time system

Puja A H et al. [22] NB Accuracy and low FA CPDP

Yanhong Y et al.[23] Cluster Ensembles Recall and F-measure CPDP

Kishan K G et al. [24] NB LR DT RF MP F-measure

Lipika G et al. [25] Gradient Boosting Accuracy, Recall, and

F1-score

CPDP

Wang S et al.[9] DBN precision, Recall, and F1 WPDP and CPDP

Thong H et al.[10] CNN AUC Just-in-time

Hoa K D et al.[11] RNN Precision, Recall, and F1 WPDP and CPDP

Zhen L et al.[12] RNN Fewer false negatives

and false positives

Anh V P et al.[26] CNN Accuracy

Xuan H et al.[13] CNN F-measure WPDP and CPDP

Anh V P et al. [27] CNN Accuracy and F1

Yun Z et al.[14] LR RBF MLP BN Combined classifier CPDP

https://2019.msrconf.org/profile/thonghoang
https://2019.msrconf.org/profile/thonghoang
https://2019.msrconf.org/profile/thonghoang

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

7

DT DTs average F-measure

Jian L et al.[28] CNN LR F-measure

Pushphavathi T P [29] GA FCM RF Accuracy:

GA+FCM+RF >

GA+FCM > FCM

Zhou X et al.[30] HALKP F-measure, g-mean

balance

Cross-version

Xinli Y et al.[31] RF stacking Cost effectiveness. Just-in-time

4.2. Work Analysis

As can be seen from Table 1, naive Bayes [18][21-23] is the most widely used method. Naïve Bayes is

a classification method based on the Bayes' Theorem and the characteristic independent hypothesis,

which is derived from the classical mathematical theory, has a solid mathematical foundation and is

the most typical probability model. It has good cost-effectiveness, which is suitable for the

development of defect prediction.

Bayesian network [14][21] is an extension of the Bayesian method with the advantage of the

probability model and is quite useful in the defect prediction. It is one of the most effective theoretical

models in the field of uncertain knowledge expression and reasoning. This structure is similar to that

of the software's control flow graph and data flow graph so that it can perform the defect prediction

better. However, the network construction and operation of the Bayesian network are relatively

complex, and it has increased uncertainty, which limits the application of the Bayesian network.

SVM [20] has many unique advantages in the small sample, nonlinear and high dimension

processing, especially the character and ability of high dimension processing, which promotes the

development of metrics in defect prediction field and gets better prediction performance.

RF [18][19][24] is the most commonly used ensemble learning method, the core of which is

decision trees. Decision trees are widely used in defect prediction [21][24]. The edge of the random

forest includes easy to understand and small computation. RF adds a voting mechanism that leverages

the advantage of decision trees so that it can obtain an unbiased estimation of internal errors and

improve the accuracy of the algorithm. RF also has a significant improvement in the learning ability of

a limited sample, with a distinct advantage in just-in-time defect prediction.

DBN [9] is the earliest deep learning method, which is based on neural networks. Traditional

machine learning’s feature to describe sample is usually manually selected; thus, the performance of

generalization is greatly affected by the quality of features. Deep learning is the process of generating

useful features by itself through machine learning techniques. Consequently, it can also be understood

as “feature learning.” DBN is a probability generation model and consist of multiple RBM layers that

contain a visible layer and multiple hidden layers. There are connections between the layers without

connections between the cells within the layers. Therefore, through the training process carried out in

the invisible layers, DBN can capture the correlation of high-order data. Therefore, it has the

advantage of the probability model in defect prediction.

CNN [10][13][26-27] is the most commonly used method of deep learning. The concept behind

CNN is an imitation of the biological visual perception system, which is closer to the real nervous

system. By learning to generate input-output mappings, CNN can produce high performance and

excellent generalization performance with enough training samples. To get more sample sets, Xuan H

et al. [9] combine the annotation information with the defect prediction and significantly improve the

prediction performance.

RNN [11-12] is adept at dealing with the features of time sequences, which is consistent with the

time characteristics of software. The program code not only has the space character of memory

allocation but also has the time character of operation processing. This approach is highly capable of

predicting both syntax defects as well as semantic defects.

It is not difficult to see that every learning algorithm has an advantage. Much research has made

meaningful attempts to combine different methods' advantages, and this is the basic idea of hybrid

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

8

learning [14][30][28][29][31]. An easy way in hybrid learning is to average the votes with multiple

algorithms or select the maximum. For instance, Yun Z et al. [14] carry out this kind of research and

obtain satisfying results. Xinli Y et al. [31] use decision trees to construct RF, and then apply random

under-sampling to improve the processing speed. Finally, they use multiple RFs stacking to adjust the

weight and increase accuracy. As a result, they reach excellent just-in-time performance. Jian L et al.

[28] use CNN to generate a new feature, and combining it with traditional features, then use LR

classifier to predict defects. Compared with the sole DBN method and methods using traditional

features, the prediction performance has been improved dramatically.

5. Conclusion

In this paper, we summarize the research works of defect prediction in recent years, mainly, in the

perspective of the techniques they utilized, by which the research works are divided into three

categories: traditional machine learning-based, deep learning-based and hybrid learning-based. The

contents and characteristics of the works are discussed in detail. Also, the advantages of different

techniques based works are correspondingly analyzed. To sum up, with 20 years’ development of

defect prediction, the traditional machine learning method has been prevalently used in defect

prediction as well as location. In the field of network development and application, the requirement of

real-time defect prediction is more and more demanding. As a result, the research on just-in-time is

valued. Deep learning and hybrid learning have produced numbers of state-of-art methods that can

significantly improve prediction performance, aiming to predict defects of both cross-project and

within-project.

References

[1] Clarke A C 1985 The Promise of space（New York: Berkley Books）

[2] Dressler J 2007 Cases and Materials on Criminal Law（St. Paul MN: Thomson/West）

[3] Coverity Scan https://scan.coverity.com/

[4] Fortify Static Code Analysis Tool: Static Application Security Testing

https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview

[5] Valgrind: Instrumentation framework for building dynamic analysis tools

https://sourceware.org/git/?p=valgrind.git

[6] Ftrace-Function Tracer https://www.kernel.org/doc/Documentation/trace/ftrace.txt

[7] Keller T and Schneidewind N 1997 Successful Application of Software Reliability Engineering

for the NASA Space Shuttle Computer Standards & Interfaces 21(2) pp 71-82

[8] Venkata U B C, Farokh B B, I-Ling Y and Raymond A P 2005 Empirical assessment of machine

learning based software defect prediction techniques 10th IEEE Int. Workshop on

Object-Oriented Real-Time Dependable Systems (WORDS’05)

[9] Wang S, Liu T and Tan L 2016 Automatically learning semantic features for defect prediction

38th Int. Conf. on Software Engineering (ICSE) pp 297-308

[10] Thong H, Hoa K D, Yasutaka K, David L and Naoyasu U 2019 DeepJIT: an end-to-end deep

learning framework for just-in-time defect prediction MSR 2019 Technical Papers

[11] Hoa K D, Truyen T, Trang P, Shien W N, John G and Aditya G 2017 Automatic feature learning

for vulnerability prediction IEEE Transactions on Software Engineering

[12] Zhen L, Deqing Z, Shouhuai X, Xinyu O, Hai J,Sujuan W, Zhijun D and Yuyi Z 2018

VulDeePecker: a deep learning-based system for vulnerability detection 2018 Network and

Distributed Systems Security (NDSS) Symp.

[13] Xuan H, Yang Y, Ming L and De-Chuan Z 2018 Learning semantic features for software defect

prediction by code comments embedding 2018 IEEE Int. Conf. on Data Mining

[14] Yun Z, David L, Xin X and Jianling S 2018 Combined classifer for cross-project defect

prediction: an extended empirical study Frontiers of Computer Science -Springer-. 12(2) pp

280-96

[15] 1992 Proc. of the fifth annual workshop on Computational learning theory (New York: ACM)

https://scan.coverity.com/
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://sourceware.org/git/?p=valgrind.git
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://2019.msrconf.org/profile/thonghoang
https://2019.msrconf.org/profile/hoakhanhdam
https://2019.msrconf.org/profile/yasutakakamei
https://2019.msrconf.org/profile/davidlo
https://2019.msrconf.org/profile/naoyasuubayashi
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

9

[16] Dreyfus and Stuart E 1990 Artificial neural networks, back propagation, and the Kelley-Bryson

gradient procedure Journal of Guidance, Control, and Dynamics. 13 (5)

[17] Hinton G E, Osindero S and Teh Y 2006 A fast learning algorithm for deep belief nets Neural

Computation 18(7)

[18] Yeongjun C, Jung-Hyun K and In-Young K 2018 Cross-sub-project just-in-time defect prediction

on multi-repo projects 6th Int. Workshop on Quantitative Approaches to software Quality pp 2-9

[19] Luca P, Fabio P and Alberto B 2019 Fine-grained just-in-time defect prediction The Journal of

Systems and Software pp 22-36

[20] Osman H, Ghafari M and Nierstrasz O 2017 Hyperparameter optimization to improve bug

prediction accuracy MaLTeSQuE

[21] Sokratis T, Andriy M and Elie M 2016 On automatic detection of performance bugs 27th Int.

Symp. on Software Reliability Engineering Workshops

[22] Puja A H, Victor A and Rizal B B 2018 Cross-project defect prediction for web application using

naive Bayes IWBIS

[23] Yanhong Y, Jun Y and Hongbing Q 2018 Defect prediction by using cluster ensembles 10th Int.

Conf. on Advanced Computational Intelligence (ICACI) pp 29–31

[24] Kishan K G and B M Mainul H 2018 Evaluating the effectiveness of conventional machine

learning techniques for defect prediction: a comparative study Joint 7th Int. Conf. on Informatics,

Electronics & Vision and 2nd Int. Conf. on Imaging, Vision & Pattern Recognition

[25] Lipika G, Mayank S and Sunil K K 2018 Implementation of data sampling in class imbalance

learning for cross project defect prediction: an empirical study 5th Int. Symp. on Innovation in

Information and Comm. Technology (ISIICT)

[26] Anh V P, Minh L N and Lam T B 2017 Convolutional neural networks over control flow graphs

for software defect prediction Int. Conf. on Tools with Artificial Intelligence

[27] Anh V P and Minh L N 2017 Convolutional neural networks on assembly code for predicting

software defects 21st Asia Pacific Symp. on Intelligent and Evolutionary Systems (IES)

[28] Jian L, Pinjia H, Jieming Z and Michael R L 2017 Software defect prediction via convolutional

neural network Int. Conf. on Software Quality, Reliability and Security.

[29] Pushphavathi T P 2017 An approach for software defect prediction by combined soft computing

Int. Conf. on Energy, Comm., Data Analytics and Soft Computing (ICECDS)

[30] Zhou X, Jin L, Xiapu L and Tao Z 2018 Cross-version defect prediction via hybrid active

learning with kernel principal component analysis 25th Int. Conf. on Software Analysis, Evolution

and Reengineering (SANER) IEEE Computer Society

[31] Xinli Y, David L, Xin X and Jianling S 2017 A two-layer ensemble learning approach for

just-in-time defect prediction Information and Software Technology 87 pp 206-20

