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Abstract. Autonomous motion planning (AMP) in dynamic unknown environments emerges 

as an urgent requirement with the prosperity of unmanned aerial vehicle (UAV). In this paper, 

we present a DRL-based planning framework to address the AMP problem, which is applicable 

in both military and civilian fields. To maintain learning efficiency, a novel reward difference 

amplifying (RDA) scheme is proposed to reshape the conventional reward functions and is 

introduced into state-of-the-art DRLs to constructs novel DRL algorithms for the planner’s 

learning. Different from conventional motion planning approaches, our DRL-based methods 

provide an end-to-end control for UAV, which directly maps the raw sensory measurements 

into high-level control signals. The training and testing experiments demonstrate that our RDA 

scheme makes great contributions to the performance improvement and provides the UAV 

good adaptability to dynamic environments. 

1. Introduction 

Over the past few years, there has been an uptrend of UAVs applied in a wide range of practical 

missions, such as intelligence, surveillance, and reconnaissance (ISR) [1], suppression of enemy air 

defences (SEAD) [2], search and rescue [3], and goods delivery [4]. One key requirement among such 

applications is how to build an intelligent system for UAV to carry out tasks autonomously without 

any human interventions [5][6]. To be specific, it is essential that we should develop advanced 

intelligent techniques to autonomously navigate a UAV from arbitrary departures to destinations while 

avoiding threats in dynamic unknown environments. To realize this attractive envision, there are at 

least two challenges stand there: 1) Partial observability of environment. UAV knows nothing about 

the environment at the beginning and only partial information can be sensed during the task. This 

features turns some rule-based path planning methods [7]-[8] unavailable, because it is impossible to 

design complete rules for all possible situations while facing with uncertain environments. 2) 

Unpredictability of environment. The irregular mobility of the scattered objects brings UAV an 

unstable environment that the SLAM-based navigation methods [9] will become intractable, because 

the mobile objects require a continuous mapping and this will lead to unaffordable computation costs. 

Besides, an open-loop mechanism of the sensing-planning-based methods [10]  that makes decisions 

without any prediction and reasoning of the future, blocks their adaptations to dynamic environments. 
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To address these challenges, researchers have resorted to reinforcement learning (RL) techniques and 

committed themselves to design learning-based planners for UAVs [11]-[15]. 

As a kind of machine learning algorithms, RL is often used to solve sequential decision making 

problems and is deeply connected to adaptive dynamic programming (ADP) [16]. The special scheme 

of RL enables it to learn an intelligent planner by trial-and-error interacting with the environment. The 

RL-based planner uses Markov decision processes (MDP) [17] to model problems and produce 

strategies based on predicted long-term rewards, which makes it adapt to stochastic dynamic 

environments without knowing the system model . However, the problems of curse of dimension 

prevent the conventional RL algorithms being further applied. To address curse of dimension and 

maintain a better representation of the high-dimensional continuous state space, deep neural network is 

introduced into the conventional RL and produces deep reinforcement learning (DRL) method. By 

leveraging the representative capabilities of DL and the decision-making capabilities of RL, DRLs 

have achieved outstanding performance in the field of UAV motion planning [18]-[22]. Loquercio 

[18]  provides a powerful deep neural network DroNet that can directly map the images ahead of the 

UAV to a desired yaw angle and an desired forward speed of UAV. This end-to-end solution makes 

the UAV achieve the purpose of autonomous navigation. Kersandt [19] realizes and compares the 

effects of some value-based DRL, such as DQN [20], Double DQN [21] and Dueling DQN [22] in the 

same UAV navigation mission.  

Although some encouraging achievements have been made in aforementioned studies, there are 

few researches on applications of DRL in dynamic unknown environments, which are often 

encountered in practice. In fact, challenges arise when we consider UAV navigation problems in 

dynamic unknown environments. The ubiquitous mobile threats and targets increase the difficulty for 

training an available and stable planner that can adapt dynamic environment. In this paper, we treat the 

UAV autonomous motion planning problem as a higher-level discrete control problem and solve it in a 

DRL framework. Considering such practical applications are sensitive to reward signals, we propose a 

novel reward-shaping scheme by amplifying the differences between the current and last rewards. This 

reward difference amplifying (RDA) approach comes from the phenomenon of psychology [23] and is 

introduced into state-of-the-art DRLs to constructs novel DRL algorithms for the planner’s learning. 

To demonstrate the performance of the proposed DRL-based planner, a general simulation platform is 

constructed and a series experiments is conducted in our work. The details will be found following 

sections. 

The reminder of this manuscript is organized as follows. Section 2 presents the autonomous motion 

planning problem formulation. Section 3 introduces the whole solution of the problem and derives our 

RDA-based learning approaches. Section 4 validates our method through a series of experiments. 

Section IV concludes this paper and envisages our future work. 

2. Problem formulation 

2.1. Problem description 

Considering an autopilot will provide the UAV low-level flight control in a fast-inner loop and ensure 

it fly in a certain attitude, heading, altitude and Mach number [24]. We adopt the kinematics as a 

substitute for UAV’s dynamics and emphasize the high-level control of the UAV only. The 

assumption of a fixed altitude and constant velocity leaves the angular velocity of heading as the only 

control command. It is reasonable in many realistic cases and this simplification allows us to focus 

more on the motion planning algorithm [25]. Then the equations of motion of the UAV read: 

𝝃𝒖̇ =
𝑑

𝑑𝑡
(

𝑥𝑢

𝑦𝑢

𝜓𝑢

) = (

𝑣𝑢 cos 𝜓𝑢 + 𝜂𝑥

𝑣𝑢 sin 𝜓𝑢 + 𝜂𝑦

−(𝑔 𝑣𝑢⁄ ) tan 𝜙𝑢 + 𝜂𝜃

) (1) 

where 𝒑𝑢 ∶= (𝑥𝑢, 𝑦𝑢) ∈ 𝐑2 is the planar position, 𝜓𝑢 ∈ 𝐒1 is the heading angle and 𝜙𝑢 ∈ 𝐒1 is the roll 

angle of the UAV. 𝑔 denotes the acceleration due to gravity and 𝑣𝑢 is the linear velocity of the UAV. 

The control command 𝒖 is defined by the roll angle 𝜙𝑢 and the UAV state is represented by vector 𝝃𝒖
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∶= [𝑥𝑢, 𝑦𝑢, 𝜓𝑢, 𝜙𝑢]𝑇. In addition, the model takes the disturbance terms 𝜂𝑥 , 𝜂𝑦, 𝜂𝜃 into account, which 

are drawn from normal distributions 𝑁(0, 𝜎𝑥
2), 𝑁(0, 𝜎𝑦

2), and 𝑁(0, 𝜎𝜃
2), respectively. According to 

equation (1), a well-designed 𝜙𝑢 will makes the UAV motion stably.  

2.2. Problem modeling 

In this paper, we focus on learning-based approaches. More specifically, a RL technique is used to 

design the planner for the UAV. RL uses a Markov decision process to model the sensing-acting cycle 

of the agent. At each epoch 𝑡, the agent perceives the system state 𝒔𝒕 and selects an action 𝒂𝒕. Then the 

selected action is taken and the system state moves to 𝒔𝒕+𝟏 with a reward signal 𝑟𝑡 return to the agent. 

Differing from traditional methods that make decisions relying only on the one-step reward 𝑟𝑡, RL 

selects optimal action by maximizing an expected long-term reward 𝑄∗, which gives the agent abilities 

of addressing dynamic and uncertain inputs. For a given state-action pair (𝒔𝒕, 𝒂𝒕), the expected long-

term reward 𝑄(𝒔𝒕, 𝒂𝒕) can be defined by the following equation:  

𝑄(𝒔𝒕, 𝒂𝒕) = 𝚬 (∑ 𝛾𝑙

𝐻

𝑙=0

𝑟(𝒔𝒕+𝒍, 𝒂𝒕+𝒍)|𝒔𝒕, 𝒂𝒕) = 𝐄
𝑠′~𝑷(𝒔′

|𝒔, 𝒂) 
(𝑟(𝒔′) + 𝛾 max

𝒂′
𝑄(𝒔′, 𝒂′)) (2) 

where 𝑷(𝒔′|𝒔, 𝒂) represents the state transition probability (i.e., from 𝒔 to 𝒔′ due to action 𝒂), 𝐻 is the 

horizon of the prediction, and 𝛾 is the discount factor belonging to (0,1]. Subsequently, the optimal 

action can be determined by:  

𝜋∗(𝒔𝒕) =  arg max
𝒂

𝑄(𝒔𝒕, 𝒂𝒕)   (3) 

In our scenario, the system state 𝒔 consists of UAV state 𝝃𝒖 = [𝑥𝑢, 𝑦𝑢, 𝜓𝑢, 𝜙𝑢]𝑇, target state 𝝃𝑻 =
[𝑥𝑇 , 𝑦𝑇]𝑇  and environment state 𝝃𝒆 , where 𝝃𝒆  is a 𝑁𝑟 -dimension vector 𝝃𝒆 = [𝑑1, 𝑑2, … , 𝑑𝑁𝑟

]𝑇 

representing the detected threats relative distances by a 𝑁𝑟-rays LiDAR sensor (see in figure 1). The 

action is defined as the desired turn direction, where 𝒂 = -1, 0, or 1 means the suggestion is to turn left, 

go straight or turn right, respectively (see in figure 2).  

 

 

Figure 1. UAV sensed data. Figure 2. UAV actions. 

Once an optimal action 𝑎𝑡
∗  is selected, it will be converted to roll angle by 𝜙𝑢,𝑡 = 𝑎𝑡

∗ ∗ Δ𝜙𝑢, where 

the Δ𝜙𝑢 is the roll angle that can be rotated by performing a single action. Then the control command 

for UAV kinematics can be  

 𝑢∗ = min(𝜙𝑢,max, |𝑎𝑡
∗ ∗ Δ𝜙𝑢|)  (4) 

where 𝜙𝑢,max sets a upper bound for the roll angle. 

3. Methodology 

3.1. DRL-based planning architecture 

Since 𝑄(𝒔, 𝒂) in equation (3) is intractable, we use DRL to provide an approximate solution. DRL 

uses a neural network 𝑄(𝒔, 𝒂; 𝜽)  in a critic module to fit  𝑄(𝒔, 𝒂) and an actor module selects the 

optimal action 𝒂∗ through arcmax
𝑎

𝑄(𝒔, 𝒂; 𝜽) or ϵ-greedy. In a standard Deep Q-leaning (DQN) [20], 

temporal difference algorithm is adopted and a gradient descent step is executed for training the 

parameterized critic network. An experience replay strategy and a fixed target network strategy are 
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used to disrupts the correlation between experiences and maintains the learning efficiency. The target 

network 𝑄′(𝒔, 𝒂; 𝜽′) is copied from the critic network periodically and used for targets generating. Let 

𝑦 denotes the target for a given current sample (𝒔, 𝒂, 𝒓, 𝒔′): 

𝑦(𝒔, 𝒂) = 𝑟(𝒔′) + 𝛾 max
𝒂′

𝑄′(𝒔′, 𝒂′; 𝜽′) (5) 

where 𝑄′(𝒔′, 𝒂′; 𝜽′) is the target network and the parameters 𝜽′ are a copy of critic network 𝑄(𝒔, 𝒂; 𝜽) 

from the moment of last target recomputation. Let’s define the MSE loss function as Loss =

(𝑄(𝒔, 𝒂; 𝜽) − 𝑦(𝒔, 𝒂))
2
 and the parameters of critic network can be updated by executing a gradient 

descent step: 

𝜽𝒕+𝟏 = 𝜽𝒕 + 𝛼𝑡(𝑦(𝒔, 𝒂) −  𝑄(𝒔, 𝒂; 𝜽𝒕))∇𝜃𝑄(𝒔, 𝒂; 𝜽) (6) 

3.2. RDA-based learning approach 

Experience replay and fixed target network make it practical for DRL in solving UAV’s motion 

planning problem. To enhance the performance while ensuring convergence, we propose a reward 

difference amplifying ideas in the learning process. 

3.2.1. Reward function design. As we all know, rewards are the only feedback signals that can be used 

for the agent’s learning. A well-shaped reward function usually contains as much human experience 

information as possible that will provide the agent a better learning performance.  

Sparse reward is the most commonly used scheme in some benchmark environments that provides 

only fixed signals when some conditions meet. In our mission, if the UAV reaches the target, the agent 

will receive a positive reward 𝑟𝑎; if the UAV collides with some threats, it will receive a negative 

penalty 𝑟𝑏; otherwise zero will set to reward.  

𝑟𝑠𝑝(𝒔, 𝒂) = {

𝑟𝑎

𝑟𝑏

0
       

𝑖𝑓 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡
𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑑𝑒 
𝑒𝑣𝑒𝑟𝑦 𝑠𝑡𝑒𝑝

 (7) 

Since sparse scheme is inefficient in our scenario because the UAV need to fly lots of steps to 

successfully avoid threats and reach the target, which brings the agent numerous invalid rewards. To 

address this problem, an intuitive idea is to add progressive reward signals with full considerations of 

the characteristics of the motion planning problem, which produces our Intermediate reward. 

𝑟𝑖𝑛(𝒔, 𝒂) = {

𝑟𝑎

𝑟𝑏

𝜇1(𝐷𝑢𝑡
𝑝𝑟𝑒

− 𝐷𝑢𝑡
𝑐𝑢𝑟) + 𝜇2 (−

Δ𝜓

4
) + 𝜇3 (

𝐷𝑓

𝐷𝑠
− 1)

       
𝑖𝑓 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡

𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑑𝑒 
𝑒𝑣𝑒𝑟𝑦 𝑠𝑡𝑒𝑝

 (8) 

where 𝐷𝑢𝑡
𝑝𝑟𝑒

, 𝐷𝑢𝑡
𝑐𝑢𝑟 denote the previous and current relative distances between UAV and the target; Δ𝜓 

denotes the angle of the UAV flight direction deviating from the target; 𝐷𝑠 is the detection distance of 

laser; 𝐷𝑓 is the distance of the detected threat in front of the UAV and if there is no threat ahead of it, 

𝐷𝑓 will be set to 𝐷𝑠. Obviously, these three sub items in equation (8) represent the contributions of 

distance, angle and threat to the rewards respectively, and the contribution rates can be tuned by 

𝜇1, 𝜇2, 𝜇3.  

3.2.2. Reward shaping scheme. Moreover, we propose a novel reward shaping method by amplifying 

the differences between the current and last rewards. This idea derives from the status quo 

phenomenon in psychology [23], in which a person is proved more likely to take an action that has 

brought him a better reward in other similar missions. And if he fails unexpectedly near success, he 

will be cautious while facing with the same situation again, even stay at that state without taking any 

risk. To model these experiences, we define reward difference 𝛿𝑟 = (𝑟𝑡 − 𝑟𝑡−1)/𝑚𝑖𝑛 (𝑟𝑡 , 𝑟𝑡−1) and 

utilize it as a signal to tune the reward, that is, to amplify the reward for a positive difference and to 

minify the reward for a negative difference. The transform law is:  
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𝑟𝑑𝑎(𝛿𝑟) = {
𝑟𝑡 + |𝑟𝑡| (tan−1 (

𝛿𝑟 + 𝜆

𝜂
∗

𝜋

2
) − 𝜆)    𝑖𝑓 |𝛿𝑟 + 𝜆| > 𝜂   

𝑟𝑡                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (9) 

where 𝑟𝑡, 𝑟𝑡−1 are the rewards at current and last time step; 𝜆 = 𝑠𝑔𝑛(𝑟𝑡 − 𝑟𝑡−1) is used to balance the 

equation that a negative difference brings 𝜆 = −1 and a positive difference brings 𝜆 = 1. 𝜂 is a tuning 

parameter that makes the scheme adapt to different missions. Reward difference amplifying scheme 

can reinforce the utilization of excellent historical experiences and avoid the bad historical experiences 

by strengthening the extreme reward signals. It is worth mentioning that the reward difference 

amplifying is just a scheme for adjusting existing reward functions and can be introduced into many 

DRL algorithms. In addition, this scheme makes the agent draw on advantages and avoid 

disadvantages in decision-making and makes it easier to find the optimal solution of the problem.  

Adding the reward difference amplifying scheme (equation (9)) to classic DQN with original 

reward functions (equation (7) (8)), we obtain RDA-DRL based motion planning algorithm:  

Algorithm 1: RDA-DRL based Motion Planning Algorithm (with DQN) 

1: initialize Hyperparameters: experience pool D, batch size B, target 

network update frequency K, 𝑄 network with arbitrary weights 𝜽, target 

network 𝑄′ with weights 𝜽′ = 𝜽, greedy exploration parameter 𝜖 

2: repeat (for each episode) 

3:  initialize 𝒔𝟎 ← (𝝃𝒖,𝟎, 𝝃𝑻,𝟎, 𝝃𝒆,𝟎) randomly； 

4:  while (not target and not collide and t < T) do                          

5:    choose 𝒂𝒕 randomly with 𝜖-greedy or 𝒂𝒕 = arg max
𝒂

𝑄(𝒔𝒕, 𝑎; 𝜽) 

6:    𝒖𝒕 ←Equation(4) 

7:    execute 𝒖𝒕, new system state 𝒔𝒕+𝟏 ← (𝝃𝒖,𝒕+𝟏, 𝝃𝑻,𝒕+𝟏, 𝝃𝒆,𝒕+𝟏)； 

8:    original reward 𝒓𝒕 ←Equation(7) or Equation(8)； 

9:    difference amplified reward 𝒓𝒕
′ ←Equation(9)； 

10:   store (𝒔𝒕, 𝒂𝒕, 𝒓𝒕
′ , 𝒔𝒕+𝟏) in D; 

11:   sample transitions [𝒔𝒋, 𝒂𝒋, 𝒓𝒋
′ , 𝒔𝒋+𝟏]𝑗=1…𝐵 from D;  

12:   𝛿𝑞,𝑡,𝑗 = 𝒓𝒋
′ + 𝛾 max

𝒂′
𝑄′(𝒔𝒋+𝟏, 𝒂′; 𝜽′) −  𝑸(𝒔𝒋, 𝒂𝒋; 𝜽𝒕); 

13:   𝜽𝒕+𝟏 ← 𝜽𝒕 + 𝛼𝑡𝜹𝑞,𝑡∇𝜃𝑄(𝒔𝒕, 𝒂𝒕; 𝜽𝒕); 

14:   𝜽′ ← 𝜽 if t mod K = 0; 

15:  end while        

16: until desired number of episodes  

4. Experiments 

4.1. Experiment settings 

For the model training and testing, we construct a general simulation environment in this paper. The 

environment simulate a world with a total size of 400×300 m2 and a series of moving threats are 

randomly scattered in the world. The sensor equipped on the UAV is capable of detecting an area of 

40 meters ahead and ±45 degrees from left to right. There are 30 beams distances detection. The 

velocity of the UAV is set to 15 m/s and the disturbance parameters are set as 𝜎𝑥 = 𝜎𝑦=0.1, 𝜎𝜃=0.01. 

The roll angle rotating in one action Δ𝜙𝑢 is set to 15°and the maximum roll angle 𝜙𝑢,max is 90°.  

As for the DRL settings, the critic network is set to own one input layer with 36 nodes (4-

dimensions UAV state, 2-dimension target state, 30-dimention sensed information), two hidden layers 

with 100 nodes for each and one output layer with 3 nodes, which means there are hundreds of 

thousands parameters have to be tuned. We set the discount factor γ = 0.9, the batch size B=32, the -

experience pool size D=5000 and the target network update frequency K=200. A variable 𝜖-greedy 

policy 𝜖𝑡 = max (1 − 𝑁𝑙∆𝜀, 𝜖0) is used, where 𝑁𝑙  is the number of learning that has been carried out, 
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∆𝜖 is the reduction rate with a value of 0.00002 and 𝜖0 = 0.0001 sets a lower bound of 𝜖. Besides, the 

reward parameters are set to 𝑟𝑎=3, 𝑟𝑏=-6, 𝜇1=0.3, 𝜇2=0.4, 𝜇3=0.5 and 𝜂=2. 

4.2. Experiment results 

For comparing, we construct four Agents (as shown in Table 1), where different reward functions and 

reward shaping scheme are bind to DQN. Agent 1 and Agent 3 come from DQN with a sparse reward 

and an intermediate reward respectively. Agent 2 and Agent 4 are the improved models with our 

reward difference amplifying scheme corresponding to Agent 1 and Agent 3. To simulate a dynamic 

environment, the positions of UAV, target and threats are randomly generated in each episode, and 

90% of the threats are set to move with randomly generated velocities obey uniform distribution 

U(1,5). All the algorithms are implemented with Tensorflow and Agents are trained with a GeForce 

RTX 2080 GPU in 5000 episodes.  

Table 1.  Experiments and algorithms 

Agent 1 DQN with sparse reward (equation (7))  

Agent 2 DQN with sparse reward (equation (7)) and RDA scheme (equation (9))  

Agent 3 DQN with intermediate reward (equation (8))  

Agent 4 DQN with intermediate reward (equation (8)) and RDA scheme (equation (9)) 

To evaluate the performance, we design average hit rate as the quantitative indicator. The average 

hit rate is defined as the probability of the UAV successfully hitting a target in the last 100 episodes. 

All of agents in Table 1 are trained to in a dynamic environment. The experiment results are illustrated 

in figure 3.  

 
Figure 3. Average hit rate curves of the four different agents. 

As we can see in figure 3, agent 4 achieves the fastest convergence, the highest hit rate compared 

with other three agents. This is because it integrates both intermediate reward and our RDA scheme, 

which continuously provide the agent more incentive signals to reinforce the learning. Agent 3 works 

better than agent 1 shows the importance of the intermediate incentive signals when facing with 

practical applications. If we select the hit rate at final convergence as the indicator, we can see that our 

RDA scheme brings conventional DRL algorithms higher hit rates. To be specific, RDA brings an 

effectiveness promotion of 9.22% and 44.44% respectively by comparing agent 4 (0.83) to agent 3 

(0.76) and comparing agent 2 (0.65) to agent 1 (0.45).  

As the trainings are done, we employ the trained planners to solve the autonomous motion planning 

problem and evaluate the effect of the proposed algorithms from the perspective of applications. In the 

testing experiments, we let the four agents start from the same location (-10,180) and travel through 

the same dynamic environment until they reach the same target (-120,-120). We take three screenshots 
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for each agent at T=5s, T=10s and the time collision or arrival. All the screenshots can be seen in 

figure. 4. 

Agent1 

 
T=5s 

 
T=10s T=16.9s 

Agent2 

 
T=5s 

 
T=10s 

 
T=19.8s 

Agent3 

 
T=5s 

 
T=10s 

 
T=19.8s 

Agent4 

 
T=5s 

 
T=10s 

 
T=17.9s 

Figure 4.  UAV flying trajectories based on the four agents. 

From figure 4, we can see that the four trained agents fly out completely different trajectories for 

the same task. Agent 1 chose to avoid intensive threat areas and fly a big circle until arrives to the 

target at time 16.9s. Agent 2 chose to directly fly to the target at first and when it finds some threats in 

the front, it changes its way. But unfortunately, it collides finally at time 19.8s. Agent 3 and Agent 4 

choose better paths comparing to Agent 1 and Agent 2, they successfully bypassing threats and fly 

directly to the targets. However, Agent 4 flies a shorter path and arrives to the target at time 17.9s, 

while the Agent flies 19.8s. The lengths of flied trajectories of the four Agents are 606m, 396m, 352m 

and 338m, respectively. Obviously, our RDA-DRL based planner (Agent 4) owns the best 

performance while solving the autonomous motion planning problem. 

5. Conclusion 

This paper presents a DRL-based planning framework for UAV to autonomously motion in dynamic 

unknown environments. To maintain learning efficiency, a novel reward difference amplifying scheme 
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is proposed to reshape the conventional reward functions. This RDA scheme is introduced into state-

of-the-art DRLs to constructs novel DRL algorithms for the planner’s learning. The training and 

testing experiments demonstrate that our RDA scheme makes great contributions to the performance 

improvement and provides the UAV good adaptability to dynamic environments.  
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