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Abstract. Computer-aided image classification has achieved start-of-the-art performance since 

Convolutional Neural Network structures were employed. Classical neural networks such as 

AlexNet and VGG-Net inspired several rules of designing network models. Besides benchmark 

datasets such as MNIST, CIFAR and ImageNet, classification performance of medical images 

such as chromosome karyotyping images also improved via Convolutional Neural Network. 

However, there are few studies on generalization among different datasets. In this paper, we 

designed a neural network with nine layers, and achieved classification accuracy of 0.984, 

0.816 and 0.921 on the dataset of MNIST, CIFAR and chromosome karyotype images. We 

also visualized the output of several layers of the model and explained that smooth output 

between neural network layers may induce lower accuracy on classification. 

1. Introduction 

Classification with Convolutional Neural Network (CNN) architecture has achieved states-of-the-art 

performance [1] [2][3] [4] [5] in several benchmark datasets [6] [7]. With regards to medical images 

such as chromosome karyotyping images, there are also several researches based on CNN [8] [9] [10]. 

Chromosome karyotyping is used to diagnose several diseases such as [11] [12] [13]. LeCun et al. 

studied a Neural network (LeNet) with five layers [1] based on gradient descent and achieved the 

accuracy beyond 0.98 on MNIST dataset; Alex et al. proposed an eight layers Neural Network 

(AlexNet) [2] won the champion of ILSVRC 2012, which employed ideas of Rectified Linear Unit 

(ReLU), Local Response Normalization (LRN), dropout and max pooling; VGG-Net from Oxford 

Visual Geometry Group [4] proposed in 2014 and achieved the state-of-the-art performance, use 

smaller kernel with size 3 x 3 instead of 11 x 11 or 5 x 5 which used in AlexNet. VGG-Net also 

verified a deeper layer (16) Neural Network may generalizing better among different datasets. Wen et 

al. studied a CNN structure on chromosome dataset and achieved accuracy of 0.937 [14]; Qin et al. 

proposed two-stage strategy and finally achieved accuracy of highest accuracy per patient case of 

0.992 [15];  

In this paper, we revised a Neural Network named ANet-c6, which expended the depth of 

convolutional layers of AlexNet. After uniformed data of three datasets: MNIST, CIFAR and 

Chromosome karyotype images, ANet-c6 get the better results on both three datasets comparing to 
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AlexNet and VGG-Net. We also visualized and analysed outputs of several layers of neural network 

models. 

2. Methodology 

We trained three CNN networks on three datasets, by visualizing the specific output of layers, we 

show the potential reason for their performance. One of three models is named ANet-c6 borrowed 

from AlexNet, which consistent of six convolutional layers, five pooling layers and three fully 

connected layers, shown as following Figure 1. 

 

Figure 1. Structure of ANet-c6 model. There is a LRN (Local Response Normalization) 

layer after convolutional layer one and two. After pooling layer five, there is a sixth 

convolutional layer and pooling layer succeeded. For Softmax layer, output are 10 labels 

for MNIST and CIFAR, while 24 labels for Karyotype. 

Other two models are AlexNet and VGG-Net, which proposed in 2012 and 2014 espectively. 

2.1 Dataset preparation 

For the sake of comparison, we handled the datasets by following steps: 

2.1.1 Extract jpg images from original dataset. For MNIST dataset, we use ‘mnist’ module lib from 

TensorFlow to extract image data and label from four compressed files, after walk through four files, 

all 60000 images were saved as ‘jpg’ files, with the file name denoting the corresponding label. 

For CIFAR dataset, we first use ‘pickle’ module from Python lib to load all six pickle files, which 

consists of five training data and one testing data. Secondly we extracted each pickle file with four 

elements dictionary information consists of batch number, label, image data and filename. Thirdly we 

walk through all image data, swap the dimension from [0,1,2] to [1,2,0]. This can convert image data 

from ‘png’ file format (which CIFAR data compressed with) to ‘jpg’ file format (which will be 

consistent with MNIST and Karyotype dataset). 

For single chromosome karyotype images in ‘tif’ format, we walk through all images and convert 

them to ‘jpg’ files. 

2.1.2 Wrap images for training, validating and testing. We set parameters of ratio for validating and 

testing as 5% and 5% respectively for all three datasets.  

Then we wrap all ‘jpg’ images into ‘tfrecords’ files, which is suggested by official documents. The 

information of wrapped ‘tfrecords’ file including: label, image data, original image size (height, width 

and channel) and filename. 

Note there are three ‘tfrecords’ files for each data set: train, valid and test.  

2.2 Training, validating and testing 

2.2.1 Early break. Besides relaying on the architecture of the models to reduce overfitting, we also 
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employ the early-break strategy. To be precisely, we checking the accuracy on validating dataset after 

each epoch, if the accuracy beyond validating expectation, and the training accuracy also beyond the 

training expectation for five consecutive batch, the training procedure will break and finish. 

2.2.2 Check and adjust. A common used strategy of setting learning rate is scale down the value after 

a certain number of iteration. We proposed  ‘check and adjust’ algorithm to decrease the learning rate, 

as shown in following Algorithm 1. 

Algorithm 1. 

Input: acc1: the accuracy of this mini-batch; acc_best: the best accuracy from all mini-batch 

Output: lr: learning rate for training, which change according to gate value; 

need_save: indicate if need save training parameters; acc_best: best accuracy currently. 

Parameters: level 1/2/3/4: the accuracy level which used to set different gate and lr value; gate 

1/2/3/4: the number which used to decide if need to save current training parameters by 

checking the difference value of acc1 and acc_best. 

1) if acc_best > level 1/2/3/4: 

2)     set gate 1/2/3/4 and lr 

3) if (acc1 - acc_best) > gate  

4)     set need_save and acc_best to True and acc1 

5)  return 

2.3 Layer output visualization 

For the sake of understanding the differences between final performance of models employed in this 

paper, we extracted the output of several layers via ‘tensorboard’, and saved them as images. By 

comparing the differences between different layers and different models, we found some possible 

explanation.  

3. Experiments 

The hardware of server using in this paper is a Sugon workstation, equipped with four NVIDIA GPUs 

of 2080ti, two Intel CPUs of Xeon Silver 4110, and 64GB memory.  

The operating system of the server is Ubuntu 18.04.03 LTS, TensorFlow 1.14.0 and python 3.6.8 

are employed as software develop. 

3.1 Dataset 

MNIST and CIFAR datasets are public datasets can be accessed from internet [16] [17], while the 

chromosome karyotyping dataset is offered by a company in Suzhou city, China. Single chromosome 

images were extracted from pre-processed file, which each file consists 46 single ones. We will NOT 

explain more details on how to extracted and pre-processed procedure in this paper as they are not 

relevant much to the topic. Three datasets are employed as following Table 1: 

Table 1. Sample number and size of each dataset in the experiments of this paper. Note that the size of 

images in Karyotype dataset are not equal among all samples, most of them are between 45 x 57 and 

96 x 198 

 Total samples 
Training 

samples 

Validating 

samples 

Testing 

samples 

Sample 

size 

MNIST 70000 62584 3550 3596 28 x 28 

CIFAR 60000 54022 3025 2953 32 x 32 

Karyotype 89980 80944 4415 4621 
45 x 57 to  

96 x 198 
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Examples from each dataset is as following Figure 2:   

    
 

 

(a) (b) (c) (d) (e) (f) 

Figure 2. examples from dataset: (a) and (b) from MNIST; (c) 

and (d) from CIFAR; (e) and (f) from Karyotype. 

In view of AlexNet performance better with input image size of 227 x 227 than 224 x 224, we 

resize feed data to AlexNet and ANet-c6 as 227 x 227 as well, and VGG-Net fed with 224 x 224. 

All the samples fed to neural networks are wrapped into ‘tfrecords’ file, which shuffle the samples 

and output mini-batch images. 

3.2 Training, validating and testing 

In consideration of the size of datasets and the depth of CNN network architecture in this paper are not 

so consuming, we run three models on three different GPUs separately, each model using a single 

GPU.  

In training procedure, we set the mini-batch size to 64, epoch number to 200.  One step stands for 

once mini-batch training, and accuracy evaluation are implemented every 200 steps via Algorithm 1. 

Note the action of saving training parameter as ‘ckpt’ file only occur (if needed) after this evaluating 

operation, or every 10 epochs regardless of training accuracy evaluation. Since we employed ‘early 

break’ strategy, all the training procedure are break before run over all epochs which supposed to be 

200.  ‘early break’ is reasonable for reduce overfitting, as shown in following Figure 3, from which 

we can find the dark green line (validating) growing smoothly below the light green line (training), 

denoting gets the highest accuracy. 

 

Figure 3. Accuracy of training and validating on three datasets with ANet-c6 model. As 

the model’s check point depends on every 200 steps, training accuracy on MNIST 

dataset grow faster than other two, hence only one ‘ckpt’ files saved before training 

accuracy beyond 0.9, while on CIFAR and Karyotype dataset, model saved 5 and 6 

‘ckpt’ files respectively. Note the first file is saved after the model just run just one 

mini-batch and we simply set the accuracy to ‘0’ if it is smaller than 0.2. 

In validating procedure, we loaded all the saved training parameters (ckpt files), run them on the 

validating dataset, and picked one with highest validating accuracy. The validating result on three 

datasets with ‘ANet-c6’ models are shown as Figure 3 above. 

In Testing procedure, we fed test dataset to models with best validating parameters (from ‘ckpt’ file) 
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and get the testing accuracy. 

Overall accuracy of three models on three datasets are shown in following Table 2, from which we 

find ANet-c6 performance better than other two models on all three datasets. 

Table 2. Accuracy of three models on three datasets. ‘M’, ‘C’, and ‘K’ are short for datasets of 

‘MNIST’, ‘CIFAR’ and ‘Karyotype’. 

 
Train 

on M 

Validate  

on M 

Test 

on M 

Train 

on C 

Validate  

on C 

Test 

on C 

Train 

on K 

Validate  

on K 

Test 

on K 

AlexNet 1.0 0.982 0.982 0.984 0.804 0.804 1.0 0.911 0.910 

ANet-c6 1.0 0.983 0.984 1.0 0.803 0.816 1.0 0.913 0.921 

VGG-

Net 
0.984 0.983 0.980 1.0 0.646 0.670 1.0 0.879 0.884 

3.3 Output visualization 

From testing results, we found testing accuracy on CIFAR with VGG-Net model was rather lower 

(0.67) than other two models on all three datasets. We extracted the output of two samples from three 

datasets by ANet-c6 model and VGG-Net model respectively, shown as following Figure 4. We found 

that comparing to ANet-c6, VGG-Net extracted more smooth output after convolutional layer one 

(conv1), pooling layer one (pool1) and pooling layer two (pool2). As shown in (a-12, b-12, c-12) vs 

(a-22, b-22, c-22). However, we noticed the output after final pooling layer (pool_) of VGG-NET was 

too distinguishable as they are “too smooth” (d-22), which means might lost too much details. We will 

do further research on modifying the last pooling layer of VGG-Net to improve its performance. 
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Figure 4. layer output visualization. Each row contains two samples from a dataset. Row name x1, x2, 

x3 indicates sample from dataset MNIST (x1), CIFAR (x2) and Karyotype chromosome (x3), where 

x can be 1 (ANet-c6) or 2 (VGG-NET). For example, row 11 stands for results from ANet-c6 on 

MNIST, and row 22 means results from VGG-Net on CIFAR. Each row contains two samples, each 

sample corresponding four columns. Columns (a) to (d) are for first sample, they are outputs from 
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conv1, pool1, pool2 and pool_; columns (e) to (h) are for second sample, they are outputs from same 

layers as first sample. For instance, (a)-12 is conv1 output of ANet-c6 on first sample of CIFAR, and 

(a)-22 is conv1 output of VGG-Net on first sample of CIFAR. Note that samples from same dataset 

are not identical for different models. 

4. Conclusion 

We proposed a neural network named ANet-c6 which consists of six convolutional layers and three 

fully connected layers. We also uniformed three datasets, first two datasets are benchmark datasets, 

and the third one is a dataset of chromosome karyotype images. ANet-c6 achieved better 

generalization accuracy on all three datasets than AlexNet and VGG-NET. 

By comparing the testing results and outputs of several layers of ANet-c6 and VGG-Net, we 

identified the possible reasons which influence the final testing results. We assume that VGG-NET did 

not work as well as expected due to last pooling layer or not fine-tuned hyper-parameters, which can 

be improved. With regards to the visualization, a special designed structure [3] may also be used to 

reveal what a layer does in generalizing procedure. This is also our research direction in the future. 
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