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Abstract. With the fast development of object recognition and detection in autonomous driving 

and video monitoring, image with haze or raindrop can affect the result a lot. As deep learning 

develops, the hazed and raindrop image can lower the accuracy of object recognition and 

detection significantly. While hazed images cannot be managed using other image refining 

process.  Since the noise in hazed image is signal-dependent. The object degradation in hazed 

image is related to object depth. So, the dehazing process depends on the input image. This paper 

provides a survey on single image and video dehazing methods, from end-to-end system to 

distributed system. General methods based on deep learning of state-of-art papers from 2010 to 

2018 are summarized and compared, accompanied with their datasets of the current progress in 

this field. The application of these methods and relationship between these methos are also 

discussed in this paper. 

1. Introduction 

The development of video surveillance and processing allows researchers to enjoy the great application 

of artificial intelligence. Video dehazing system, as the effective tool to handle the problem of video 

processing in the application of robotics, has attracted the attention of researchers in this field. What 

makes dehazing image different from other image refining process is that the noise in hazed image is 

signal-dependent, which means that the degradation of objects in image depends on their depth in the 

image. Thus, the dehazing process also depends on input image. 

The dehazing system is normally divided into two categories: image dehazing and video dehazing. 

In the dehazing process, an end-to-end system means that the input of the system is hazed image or 

video, and output is a dehazed image or a dehazed video. The dehazing model is generally used to 

acquire and represent the image data with haze and collect information through the explicit way and the 

implicit way. Moreover, the main dehazing model refers to the characteristics of the haze in images and 

frames. Different types of dehazing systems must consider the characteristics of the haze in images and 

frames, such as image-based dehazing system need to focus on at least colors, lights, and textures.  

More and more recent researchers mainly concentrate on the dehazing algorithms to discover the 

atmospheric light’s characteristic in image data and display the similar features of dehazing application. 

An end-to-end dehazing network designed by Li et al. [1] focuses on optimizing a reconstructed 

atmospheric scattering model which combines two parameters and input image into one feature K. This 

network uses a light-weight convolutional network which makes itself easy to implant to other models. 

Li et al. [2] also introduce an end-to-end video dehazing network that makes good use of the steadiness 

of video. Besides, they also trained the network together with object detection, and prove that the result 

is more accurate and robust. A benchmarking of single image dehazing by Li et al. [3] proposes several 

criteria to evaluate dehazing problems.  
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Depending on the above algorithms, many researchers combined the dehazing systems with the new 

deep learning algorithms in real applications. For example, Liu et al. [4] treat dehazing problem as an 

image restoration problem and propose a new loss function. They also introduce a domain-adaptive 

mask-RCNN to solve the object detection problem. Zhang and Patel [5] present a Multi-stream Dense 

Network (DID-MDN) that can classify the density of the raindrop and dehaze image according to 

classified rain-density. Their results are tested on two synthetic dataset and one real-world dataset. They 

also introduce an end-to-end Densely Connected Pyramid Dehazing Net-work (DCPDN) [6] on single 

image. This network learns parameters like transmission matrix and atmospheric light. A joint 

discriminator is proposed to monitor transmission map and dehazed image. And encoder-decoder 

structure is in introduced to learn transmission map. Qian et al. [7] use adversarial network to dehazing 

job. The generative network is trained to focus on raindrop area and the discriminative network are 

trained to evaluate local consistency of dehazed image. Ren et al. [8] use deep convolution neural 

network to do dehazing task on video frames by assuming a prior knowledge of global semantics and 

using this information to predict transmission map. Kim et al. [9] present a new cost function to do 

image and video dehazing job. This kind of cost function includes the effect of contrast and information 

loss. In video dehazing, they also remove flickering effect by making transmission value consistent. 

Zhang et al. [10] propose a new frame work to estimate optical flow and transmission map to dehaze on 

video and single image. Especially, they use Markov Random Field (MRF) to get the spatial context in 

their algorithm. Chen et al. [11]’s work can do dehazing job while minimizing artifacts. For constrain 

the exemplifying of artifact, they use Gradient Residual Minimization (GRM). 

The remaining of the paper is organized as follows. Section 2 introduces several datasets in 

experiments. Section 3 reviews the recent dehazing algorithms based on deep learning. Section 4 

describes the applications of dehazing systems. Section 5 presents the conclusions and some future 

works. 

2. Datasets 

2.1. NYU Depth V2 Dataset[12] 

The NYU Depth V2 contains RGB and depth image taken by Microsoft kinect. Images of this dataset 

are from video sequences with 20 to 30 frames per second. Missing values of images are filled. Each 

component of images are labeled and numbered as chair1, chair2, chair3 and so on.  

2.2. TUM RGB-D Dataset [13] 

This dataset was built to evaluate SLAM (Simultaneous localization and mapping) system. It includes 

RGB, depth data captured by Microsoft kinect and also ground truth data of the Kinect sensor’s path. 

The data comes from video with 680*680 resolution and 30 frames per second. They also provide an 

evaluation algorithm to assess the predicted camera path. 

2.3. ILSVRC2015 VID dataset [14] 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset is built to do large-scale 

object recognition. There are two labels in the dataset: 1) object detection: binary flag indicating the 

existence of an object 2) object localization: bounding box indicating the size and location of an object. 

For object detection, it has 200 fully labeled categories with 1.2 million training images, 50 thousand 

validation images and 100 thousand test images. For object localization, it has 1000 categories. 

2.4. RESIDE dataset[3] 

The Realistic Single Image Dehazing (RESIDE) dataset uses clean images from NYU Depth V2 dataset 

and Middlebury stereo dataset to synthesis hazed image. When generating hazed image, different 

parameters in atmospheric scattering model are set. Overall it has 13,990 synthesized hazed images in 

training set. This contains 520 testing image that spans indoor to outdoor scenario. 
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2.5. Middlebury stereo dataset[15] 

The Middlebury stereo dataset contains 9 images of a stereo scene of a certain image size and 2 disparity 

maps as ground truth. It has three types of image size: full, half and quarter. This dataset overall has 2 

scenes and 6 image sizes.  

Some examples from above-mentioned datasets are illustrated in Figure 1, and the overview 

description of datasets are shown in Table 1. 

 

Figure 1. Example images from datasets, each row represents data from selected datasets (from left to 

right: NYU, TUM, ILSVRC, RESIDE, Middlebury) 

Table 1. The description of five datasets for dehazing. 

Dataset # of images Issues Format 

NYU Depth V2 

Dataset 
1, 449 

video data with labeled objects and 

paired depth image 
.mat 

TUM RGB-D 

Dataset 
/ 

color and depth images of Kinect 

sensor 
PNG 

ILSVRC2015 

VID dataset 
1, 500, 000 object location and label JPEG 

RESIDE dataset 86, 125 
synthetic hazy images and clean 

image 
JPEG/PNG 

Middlebury 

stereo dataset 
363 

stereo image with ground truth 

disparity 

PNG, 

pgm/ppm 

 

2.6. Evaluation criterions 

Six general quantitative criterions in the evaluation of dehazing performance are detailed as follows, 

such precision and recall (PR) curve, F-measure, and area under curve (AUC). To verify the 

effectiveness of the haze removal algorithm, the hazed images that contained bright reflective areas are 

always used to compare the processing performance. If the result of dehazing is good enough to 
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overcome the strong reflection light source, the visibility of dehazed images will be high and they are 

suitable for further image processing. 

3. The Deep Learning Models 

Recent researchers combined the dehazing systems with the new deep learning algorithms in dehazing 

system. Zhang and Patel[6]designed DCPDN to optimize the transmission map, atmospheric light and 

dehazing altogether. Atmospheric image degradation model is embedded to the optimized network. 

Encoder-decoder and multi-level pooling are introduced to deal with transmission map. This network 

uses a new loss called edge-preserving loss in optimization process. A joint-discriminator from 

Generative Adversarial Network (GAN) is used to estimate the structural correlation of transmission 

map and dehazed images.  

The traditional method to describe hazing process is to build the atmospheric scattering model [16]. 

The hazed image depends on clean image, atmospheric light and transmission matrix. AOD-Net of 

single image dehazing proposed by Li et al. [1]combines atmospheric light and transmission matrix into 

one feature K by utilizing the information of clean image. It contains two part: 1) a K-estimation module 

which regress clean image from the hazed image 2) clean image generation module which generate 

dehazed image. The K-estimation gives the parameters to generate clean image. They use NYU depth 

dataset as ground truth to synthesize hazed image as training and testing dataset. EVDD-Net Model of 

video dehazing in Li et al. [2] get inspires from Li et al. [1]. It has 3 levels of fusion from input, K-

estimation to output. This network is also integrated with a video object detection model. This is a light-

weight network which converges very fast. The result shows that considering 5 consecutive frames can 

get the best result on object detection. They use both natural and synthetic video dataset.  

To achieve higher precision and better performance, Li et al. [3]use PSNR/SSIM as full-reference 

parameters, spatial-spectral entropy-based quality (SSEQ) [17] blind image integrity notator using DCT 

statistics (BLIINDS-II) [18] as no-reference parameters to evaluate each state-of-art algorithm. They 

also use participants to evaluate algorithms by filling up a survey. This method evaluates algorithms 

from objective and subjective. Qian et al. [7] uses attentive GAN to remove raindrop. The generative 

network produce clean image which does not have raindrop. The discriminative network try to classify 

real or fake image. The generator uses LSTM and ResNet [19] to generate attention map. This 

discriminator uses several convolutional layers to get the result. DID-MDN network proposed by Zhang 

and Patel [5]contains two part: 1) residual-aware rain-density classifier which gives rain-density level 

of a certain image 2) multi-stream densely connected de-raining network which uses the information 

from 1) to generate images without rain streaks. After refinement, this network outputs a clean image. 

Liu et al. [4] proposed several loss functions in order to fulfill dehazing as degradation. And gives two 

solution sets to solve dehazing for detection. They try several combinations of the loss function and 

solution set and test the result.  

To implement the image enhancement of dehazing performance in videos, Ren et al. [8] not only 

dehaze on video frames by assuming global semantic as prior, but also show that a stack of video frames 

can preserve the consistence without any assistance. They create a synthesis dataset based on NYU 

depth V2 dataset. The network they introduced uses a stack of 5 video frames to predict transmission 

maps of 3 video frames in the middle. Encoder-decoder structure is used in this network. Kim et al. [9] 

introduces an algorithm to do image and video dehazing by optimizing contrast. They first use quadtree-

based subdivision to identify atmospheric light. And then predict transmission value to dehaze by adding 

information term in order not to saturated image and video. Zhang et al. [10]use human visualization 

system (HVS) and Markov Random Field (MRF) to obtain temporal and spatial consistency to do 

dehazing job. Their algorithm is also computational efficient by reducing interacting data and constrain 

minimum input data. Chen et al. [11]use local prior of haze image to predict transmission map. And use 

GRM to suppress the exaggeration of artifacts while recovering clean image. They also use Total 

Generalized Variation (TGV) [20] regularization to refine images. In these papers, deep learning 

methods are used to train the weights with a visible layer and a hidden layer that correspond to the input 

hazed image and the output dehazing image respectively. 
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4. Applications 

Considering the recent developments of hot topics in dehazing systems, the network introduces by Ren 

et al. [8] can generate state-of-art result on video dehazing without tuning or image aligning. And the 

transmission map and be better maintained by their method in semantic segmentation. The algorithm 

designed by Kim et al. [9] can do dehazing on single image and video. This algorithm can avoid 

information loss while dehazing. AOD-Net proposed by Li et al. [1] are tested to help object recognition 

and detection on single image with tuning. Their group’s EVD-net [2] on video dehazing can also boost 

object detection task and get higher average precision. Their result can be further used on autonomous 

driving and video monitoring scenario. 

During the evaluation, Qian et al. [7] focus on raindrop dehazing with single image that can deal 

with images in bad condition. DID-MDN network proposed by Zhang and Patel [5] also aims at raindrop 

removal with rain density estimation. But there is no comparison with Qian et al. [7]’s work. DCPDN 

designed by Zhang and Patel [6] solves the problem of single image dehazing with different method in 

[5]. Liu et al. [4] try new loss function and test their network to improve object detection performance 

on single image with adaptive domain. Although these systems make dehazing successfully, the 

accuracy is similar to the deep learning based dehazing system, partly because a limited number of haze 

representation. Li et al. [3] also works on the same dataset of Liu et al. [4]. And they summarize several 

algorithms and state that further work can focus on no-reference metric developing. Zhang et al. [10] 

only improve the prediction of transmission map, and it behaves bad when image objects are similar to 

atmospheric light. Chen et al. [11] introduces a new image refinement algorithm to dehaze image while 

suppressing artifacts. Finally, these proposed approaches in dehazing applications outperforms the other 

state-of-the-art methods on the performance in terms of accuracy. 

5. Conclusion 

As the application of dehazing systems becomes more and more widespread, such as autonomous 

driving, image enhancement, and video monitoring. Video dehazing system has not only been an active 

area but also a challenging task. In recent years, a trend of the research is to address the issue by 

establishing deep neural networks and learning the latent features in order to model the information of 

atmospheric optical lights of raindrop and haze, which can seriously decrease the accuracy of object 

recognition and detection. In this paper, we present several dehazing systems based on deep learning 

techniques, which is devoted to extract the latent and explicit features of raindrops and hazes in images 

and videos. For raindrop removal, rain-density estimation can be applied to improve cleaning result. 

Similarly, for haze removal, some paper estimate transmission map and optical flow, while other uses 

GAN to do dehazing job. If the goal of dehazing is object detection and recognition, training the network 

combined with object detection and recognition is a good idea. As for evaluation, no-reference matrices 

are considered a prosperous direction. As the accuracy is improved, the cost-efficiency in practical 

dehazing application would be more important gradually. 
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