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Abstract. This paper presents a flexible control method for snake-like robots to adapt to the 

environment autonomously. This method enables the snake-like robot to sense the environment 

and adjust autonomously according to the changes of the environment. For example, snake-like 

robots climb pipes with varying diameters. In order to achieve efficient and flexible motion, we 

adopt closed-loop gait control. This control method uses a parameterized sine wave (gait 

function) and long short-term memory network (LSTM) model. Because of the structure of 

LSTM is suitable for prediction of time series data, we use LSTM to predict the changes of 

joint angles that can best represent the shape change of snake-like robot, and integrate the 

predicted joint angle values with the gait values to realize the control of robot. Because this 

control method will eventually allow the snake-like robot to move autonomously in the 

changing environment, we can achieve the flexible adaptive behavior of the robot. 

1. Introduction 

Snake-like robot is a kind of robot with high redundancy consisting of constrained links chained 

together in series. We can use parameterized sin waves [1] to control the periodic motion of the robot. 

This parameterized sine wave is called gait. By changing some of the parameters of this gait, the 

snake-like robot can be controlled to make different motions in different environments. A survey on 

the model, control and various gait of snake-like robots is presented in [2]. 

The gait method based on parameterized sin wave form can carry out efficient open-loop control. 

Each module in the robot contains a low-level controller that drives its joint angle to the commanded 

angle, and feedback is provided on the module’s actual joint angle [3]. However, for complex terrain 

and environment, this method cannot make snake-like robot adjust its motion posture to adapt to the 

changing environment. Therefore, we need to find an appropriate way to integrate feedback joint angle 

information into gait control to perceive the external environment and timely adjust the robot's posture 

to adapt to this change. In this method, the real joint Angle information of snake-like robot is 

processed and added to the gait control, which actually completes a closed-loop feedback control. We 

use the LSTM model to process the feedback joint angles and combine the predicted values obtained 

from the model with the gait parameters to achieve real-time closed-loop gait control. 

The advantage of using LSTM is that it can memorize and train long-term time-series information, 

and the LSTM model can effectively predict the state change of time-series information at the next 

moment. For this paper, LSTM can well process the real-time feedback of robot joint Angle 

information. By combining the predicted Angle with the gait to achieve the self-adaptive adjustment 

of snake-like robot. 
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In this paper, the effectiveness of this flexible control method is verified by designing a snake-like 

robot to climb along an external pipe whose diameter gradually decreases. Through experiments, we 

proved that this control method can perform better and safer climbing on pipes with different 

diameters than the control method based solely on parameterized sin wave gait. The closed-loop 

control realized in this paper can adjust the joint Angle rapidly with the change of pipe diameter, and 

this autonomous behavior is flexible enough. This method can achieve more complex movements than 

adjusting gait parameters based on manual control. For a pipe with a gradually changing diameter, the 

snake-like robot can adjust its gait autonomously rather than manually to achieve a safe climbing 

movement. 

2. Theories 

2.1. The gait of a snake-like robot 

Orthogonal joints are used to connect adjacent joints of the robot, and the rotation axis of each joint of 

the robot is perpendicular to each other. The rotation axis of the latter joint is obtained by rotating the 

rotation axis of the former joint 90 degrees around the central axis of the snake body and then 

translating the length of the joint backward. Considering the orthogonal structure of snake-like robot, 

in order to realize the simple and efficient movement, we adopted the extended form of parameterized 

sin control function based on Hirose's serpenoid curve [4], and its 3D extensions [5]. for the motion 

control method of snake-like robot. The control equation of each joint angle is: 

                                sin( )i i iA t ki =  + +                                 (1) 

In the above equation, i  is the number of joints, i  represents the rotation angle of joints, iA  

represents the amplitude,   describes the spatial frequency of the macro shape of robot relative to 

the joint number i  , t  represents the time variable, k  represents the motion control parameter, 

and i  represents the Angle offset. 

In this paper, we adopt the spiral climbing gait, in which the snake-like robot presents a twisted 

spiral posture. We wrap the robot around the tube and the robot rolls up and squeezes the outside of the 

tube. The control mode is consistent with the control mode in equation (1) except that some 

parameters are constants. 

sin( )i A t ki =  +                                   (2) 

In the formula, k  determines the winding number of the snake-like robot. In order for the robot to 

climb the diameter tube (4.5-7cm) we set in the experiment, A  was set to 2. k  is set to 1.55. The 

frequency   is set to 0.8. The angle offset constant i  is set to 0. 

2.2. The structure of Long Short - Term Memory (LSTM) Network  

LSTM is a special type of recurrent neural network (RNN), first proposed by Sepp Hochreiter and 

Jurgen Schmidhuber in 1997 [6]. Since then, there have been many minor changes to the original 

version [7,8,9,10]. In fact, training and prediction using RNN is not very effective. The main reason is 

that the problem of gradient disappearance and gradient explosion will occur in the process of Back 

Propagation Trough Time (BPTT) of RNN [11,12]. LSTM solves these problems very well. Therefore, 

this special deep learning network is widely used for text analysis and time-series data prediction 

[7,13]. The core of LSTM is that it constructs three gate structures to reduce and increase the 

information of storage units, which are input gate, forgetting gate and output gate. The input gate 

determines the information that needs to be updated. The forgetting gate determines the information 

that needs to be deleted. The output gate determines the information to be output. With this special 

gate structure, LSTM can not only effectively solve the problem of gradient disappearance, but also 

save important information for a long time. It has the ability of long-term memory and can effectively 
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deal with long sequence problems. In addition, LSTM improves the accuracy of the previous RNN 

network. Figure 1 shows the cell structure of the LSTM. 

 

Figure 1. Memory cell structure of LSTM hidden layer. 

The general principle of LSTM can be expressed as equation (3) - (8): 

                            
1( )t i t i t ii s W x H h b−= + +                           (3) 

                           1( )t f f f t ff s W x H h b−= + +                          (4) 

                           
1( )t o t o t oo s W x H h b−= + +                           (5) 

                          
1

ˆ tanh( )t c t c t cc W x H h b−= + +                         (6) 

                              
1

ˆ
t t t t tc f c i c−=  +                               (7) 

tanh( )t t th o c=                               (8) 

Where 
tf , 

ti  and 
to  respectively represent forgetting gate, input gate and output gate; s  

represents the sigmoid activation function with output value between 0 and 1; tanh  represents the 

hyperbolic tangent activation function; 
t̂c  is the candidate value of memory cell at time t ; 

tc is the 

state of the current memory cell at time t ; ( , , , )i f O cW W W W W and ( , , , )i f O cH H H H H  are weight 

matrices; ( , , , )i f O cb b b b b  is the offset vector [14]; 
th is the output value after output gate filtering. 

3. Methods 

3.1. Training and experimental data 

In this paper, parameterized sin wave function is used to control the motion of the robot, so each joint 

of the robot rotates periodically in the form of sinusoidal wave. However, the sin wave control method 

can’t make the snake-like robot to climb well when the pipe diameter changes. LSTM model needs to 

learn important feature of real-time adjustment of joint angle according to the change of pipe diameter, 

so we construct an improved sine wave as training data: parameterized sine wave function based on 

sigmoid function, as shown in equation (9) - (10). The characteristic of this function is that with the 

increase of time, the amplitude of the function gradually increases from the lower constant value to the 

higher constant value and then decreases to the lower constant value. We sample the function at an 

interval of 0.2 to construct a total of 1,000 sampling points, take the value of function at 40 adjacent 

sampling points as the sequence input value of LSTM model, and take the value of the 41st sampling 

point as the corresponding mark value. By training the model to learn the increasing characteristics of 

flexibility, it can learn the changing rules of snake-like robot climbing on the pipe. In the experiment, 

the real feedback joint angle of the snake-like robot is used as the model input, and then the model 

predicts the change of the joint angle at the next moment. 

75 125

1 1
- +1

1 1t t
a

e e− + − +
=

+ +
                           (9) 
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                            = sin( )i a wt ki  +                               (10) 

a represents the amplitude change in the form of sigmoid, and the other variables have the same 

meaning as the gait control function variable of the snake-like robot described in 3.1. The 

corresponding shape of this function is shown in figure 2. 

 

Figure 2. Shape of LSTM model training function. 

3.2. LSTM model framework 

In this paper, an LSTM model framework with dropout is designed to predict the joint angle of the 

snake-like robot, and the predicted results will directly participate in the motion control of the robot. 

The model consists of three parts: input layer, hidden layer and output layer. The input layer is 

composed of the joint angle value of snake-like robot with time series. The hidden layer adopts the 

two-layer LSTM structure. Because model overfitting is a widespread problem in deep learning [15]. 

Therefore, Dropout [16] is used here to prevent overfitting. 

The structure of LSTM model is shown in figure 3. The number of input sequences of the entire 

model is 40, and the number of units in each LSTM layer is 32. The unit marked as dotted line 

represents drop units (along with their connections) from the neural network randomly during training 

to prevent units from co-adapting too much [16].   represents the tanh  activation function. Joint 

angle value t  at time t  is predicted by the fully connected layer of only one neuron, whose 

activation function is tanh . The function of tanh activation function is expressed as equation (11), 

whose value range is -1 to 1. 

                             tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
                              (11) 

Compared with the traditional sigmoid activation function, tanh function has the advantage of 

improving training efficiency. The output layer is composed of a neuron, which indicates that the 

predicted value of the joint angle at the next moment can be obtained through the LSTM hidden layer. 

Mean Square Error [17] (MSE) was used as the loss function, and Adam was used as the optimal 

weight method of the model. 
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Figure 3. The structure LSTM model with dropout for joint angle prediction of snake robot. 

3.3. Performance criteria 

For the LSTM model obtained by training, MSE is adopted as the Performance criteria of trained 

model prediction accuracy. MSE is expressed by equation (12). The smaller the value of MSE, the 

higher the accuracy and better performance of the trained model.  

                      

' 2

' 1
( )

( , )

n

i ii
y y

MSE y y
n

=
−

=


                        (12) 

Where 
iy  is the correct value of the i th sample and '

iy  is the predicted value. n  is the number 

of samples. 

3.4. Control strategy 

The adaptive climbing control strategy of snake-like robot combines sin wave gait and joint rotation 

angle predicted by LSTM model to form an adaptive closed-loop control of snake-like robot, which is 

expressed by equation (14). 

                          
1 2sum LSTMc c  =  +                           (13) 

In the equation, 
1c  and 

2c  correspond to scaling factors of climbing gait function angle and 

LSTM prediction angle of snake robot. In this experiment, 0.4 and 0.8 were adopted respectively to 

achieve the best effect.   is the angle value of gait function, 
LSTM  is the prediction angle of LSTM 

model, and 
sum  is the control value of robot joint angle. The closed-loop control strategy in the 

climbing process of snake-like robot is shown in figure 4. 

 

Figure 4. The closed-loop feedback control process in the climbing process of snake robot. 

The snake-like robot shows the form of closed-loop feedback control in the process of tube 

climbing. For example, when the pipe diameter decreases, the LSTM model predicts the joint angle of 

the snake-like robot at the next moment based on the feedback, showing an increasing trend. Then the 

model outputs the joint angle value which slowly increases and adds it to the angle calculated by the 

gait function to obtain the control angle value of the snake robot 
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4. Simulation and experiment 

The experiment was divided into two parts. In the first part, the LSTM model structure is tested and 

proved to be able to predict the change of joint angle in the climbing process of snake-like robot. In 

the second part, the simulation of snake-like robot tube climbing is carried out to verify the 

effectiveness and performance of flexible adaptive control. 

After training, the LSTM model can predict the training data accurately, as shown in figure 5. We 

found that the model after training has excellent stretching performance in time domain and space 

domain. The trained model can accurately predict the sin wave input with amplitude change at any 

different time period, which proves that LSTM model can effectively solve the time uncertainty of the 

pipe diameter change process. The meaning of time uncertainty is that we do not know in which 

period of time the robot will climb at the position of the pipe diameter change. The other conclusion is 

that the training data given to us during training is a sin wave that goes from low amplitude to high 

amplitude to low amplitude. In the prediction, we can accurately predict the sine wave of amplitude 

between the low amplitude and the high amplitude, which is a good extensibility of the model in space. 

Figure 6 shows prediction of data with changes in time and angle values. 

 

Figure 5. Prediction of training data by LSTM model. The blue curve is the training data, and the red 

curve represents the predicted value of LSTM model. 

 

Figure 6. Prediction of data with changes in time and angle values. 

In the simulation process of pipeline climbing of snake-like robot, the joint angle values at 40 

moments are collected and feedback to the LSTM model. The model predicts the joint angle at the 

next moment based on the first 40 historical samples values. And adds the angle values to the gait 

control function to achieve adaptive flexible control. Figure 7 shows the change of the movement 

posture of the snake-like robot during climbing. Figure 8 shows the control angle value and feedback 

joint angle value of the second joint of the snake robot. Note that there is a constant deviation between 

the two angles because the control function needs to add a constant to overcome the gravity of the 

snake-like robot and keep it from skidding as it climbs. The rest of the joint changes are basically the 

same. 
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Figure 7. Simulation experiment of snake-like robot climbing with different pipe diameter.  

The figure on the left shows the climbing movement of the snake robot before the pipe diameter 

changes. In the middle is the moment when the diameter changes. On the right is the climbing 

movement of the snake-like robot after the pipe diameter is narrowed. 

 

Figure 8. Angle control value and feedback value of the second joint of snake robot.  

The blue curve is the control angle value based on the addition of the predicted value of LSTM and 

the gait value, and the red curve is the feedback angle value. 

In the climbing process of the snake-like robot, when the pipe diameter changes, the LSTM model 

will timely predict the angle at the next moment based on the feedback angle value sampled at the first 

40 moments. At the same time, it can accurately predict the angle value when the pipe diameter 

gradually shrinks. The angle adaptive adjustment is carried out in a flexible way to achieve the joint 

angle value suitable for small diameter pipe climbing. 

5. Conclusion 

In this paper, a flexible adaptive control strategy of snake-like robot is proposed, which combines 

LSTM model with gait method. This control method allows the snake-like robot to autonomously 

change its posture to adapt to the complex environment. In the control method, LSTM model is used 

to predict the joint angle of snake-like robot, so as to judge whether the movement of snake-like robot 

will change with the change of external environment. For example, with the decrease of pipe diameter, 

the maximum value of the joint angle with periodic change increases, and the corresponding angle 

amplitude increases. By adding the predicted value and the gait function value in a certain proportion, 

the control strategy can adapt to the pipe diameter change. 

In the simulation experiment, there are two reasons why the snake robot can be flexible. The first is 

that the training data constructed by us are parameterized sin waves based on sigmoid curve, whose 

amplitude changes slowly and flexibly. Therefore, LSTM model learns such flexible changes. In the 

experiment, the large diameter tube and the small diameter tube are connected by a curved surface, 

instead of the diameter suddenly changing from large to small, which is exactly suitable for the 

training data of LSTM model. Dropout added in the LSTM model is of great significance. It can really 

prevent overfitting and correctly predict the angle value of joints in the experiment. 

At present, we are considering applying this control method to the crawling of snake-like robots in 
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pipelines and the adaptive movement of rugged ground. In future work, we hope to apply this control 

strategy to more complex environments, such as urban underground pipeline systems and urban ruins 

after disasters. However, in these complex terrains, we consider that more feature information needs to 

be included to realize LSTM model training and prediction and realize the adaptive movement of 

snake-like robots. We hope that researchers in the field of robotics can see the wide application value 

of LSTM model and apply it to the motion control of robots. 
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