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Abstract. Quality prediction is of great importance for batch processes. Predicting quality 

variable is a challenging task because of various factors such as strong nonlinearity and non-

Gaussian exist in batch data. A quadratic mutual information based regression method is 

proposed to handle the problem. The proposed method takes into account higher order statistics 

that reveal the non-linear dependencies between the process variables and important quality 

variables. Furthermore, the proposed method is implemented without the hypothesis of Gaussian 

distribution of the dataset as in MPLS. The effectiveness of the QMIR method is illustrated by a 

dataset of industrial Escherichia coli fermentation process, compared with MPLS. 

1. Introduction 

Batch processes have gain great importance in modern manufacturing industries, in which the product 

quality is usually available by offline assay after a single batch run. Biomedical industry, fine chemistry, 

pharmaceutical, and semiconductor industry are all typical batch processes. In batch processes, some 

key variables always exist and can be treated as indicators of production status or the final product 

quality. For example, biomass concentration is usually a key index to reflect the final product quality in 

a fermentation process, which is a typical batch process. However, these key variables, also known as 

quality variables, are hardly measured online at present. An online sampling but “offline measuring in 

lab” is always adopted, which is always accompanied by measurement delay. The measured delay is 

impeding the direct use of quality variables for closed loop control. Online prediction of quality variables 

has become a challenging task for modelling and quality control of batch processes. 

The regression models, using the easy-measured process variables (input data) to estimate the hard-

measured quality variables (output data), provide an effective way to implement the prediction of quality 

variables. Inherent nonlinearity, non-Gaussian, and batch-to-batch variations are unique characteristics 

of batch processes. Multiway partial least squares (MPLS) is one of the most popular prediction methods 

for batch processes. However, MPLS is a second-order method, which extracts features by taking into 

account the second-order statistics such as variance or covariance [1]. Compared with variance or 
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covariance, mutual information (MI) measures nonlinear dependencies between features and paying 

attention to high order statistics existing in the original data, which is derived from information theory 

[2]. Quadratic mutual information (QMI) is first proposed by Principe J.C as a new distance measure, 

which also reflects the nonlinear dependencies between variables or features [3, 4]. The advantage of 

QMI is that it combines Renyi’s entropy with Parzen window, providing a more simple methodology 

for estimating the necessary probability density functions than MI. Vera et al. proposed an unsupervised 

feature extraction method by maximizing the QMI among the original input and the feature space data 

[5]. Torkkola used QMI as a criterion to find a linear projection of features in classification problems 

[6].  

In this paper, a QMI based regression (QMIR) method is proposed to predict quality variables for 

batch processes. A linear projection is performed on the process variable matrix to get the new features. 

The feature extraction method is based on QMI metric which has its roots in Cauchy–Schwarz inequality 

and Renyi’s quadratic entropy. The optimal projection is obtained not only maximizing the QMI 

between the transformed input process variables (features) and the key quality variables, but also 

maximizing the Renyi’s entropy of process variables. QMI aims at finding the most relevant features of 

quality variables as well as preserving the data distribution of process variables. 

2. Theoretical background 

2.1. Renyi’s entropy 

Entropy was defined in information domain to demonstrate the average information conveyed by a 

certain event X. Shannon’s entropy plays an important role in information theoretic domain. Renyi’s 

entropies were introduced as a generalization of Shannon’s entropy [7]. The differential Renyi’s entropy 

with order α of a certain event X is defined as: 

                                                       

1
( ) log ( )

1
RH X f x dx




=
−                                                            (1) 

Here, f(x) is the probability density function (pdf). When α=2, it becomes 

                                                    
2

2 ( ) log ( )RH X f x dx= −                                                                 (2) 

HR2(X) is also called the Renyi’s quadratic entropy since f(x) is in its square form. Shannon’s entropy 

can be considered as a limiting situation of Renyi’s entropy when 1 → . If the aim is to manipulate 

entropy, then Renyi’s entropy and Shannon’s entropy are almost equal [8]. For a computation scope, 

Renyi’s entropy outperforms Shannon’s entropy because it is much easier to estimate by using Parzen 

window method. 

The Parzen window, also named kernel function, is used for the estimation of the pdf directly from 

the samples. For a set of samples 
1

N

i i
x

=
, the pdf is estimated as:  

                                                           
1

1ˆ( ) ( , )
N

i

i

f x k x x
N =

=                                                                    (3) 

Here, ( , )ik x x  represents the Parzen window, or the kernel function, centred at xi .It must satisfy the 

properties of a pdf. Among all kinds of kernel functions, the most widely used is the Gaussian kernel: 

                                       

2

2

1 1
( , ) ( , ) exp( ( ) )

22
i i ik x x G x x x x


= − = − −                                              (4) 

The width of the window, or the kernel size, is decided by parameter σ. In this way, the estimation 

of HR2(X) of a sample set  
1

N

i i
x

=
by using Parzen window is: 

                                         
2

2
ˆ( ) log ( ) log ( )RH X f x dx V X= − = −                                               (5) 
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1 1

1
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N


= =

= −                                                         (6) 

It can be seen from equation (6) that Parzen window is an entropy estimator based on a sum of kernels 

in a pairwise form of the samples. 
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2.2. Quadratic mutual information  

MI was first introduced in the domain of communication by Shannon and it measures the removal of 

uncertainty of event Y when event X has happened. MI is presented as [9]: 

          

( , )
( , ) ( ) ( | ) ( ) log ( ( , ), ( ) ( ))

( ) ( )

XY

S S XY XY X Y

X Y

f x y
I X Y H Y H Y X f xy dxdy KL f x y f x f y

f x f y
= − = =               (7) 

Shannon’s entropy ( ) ( ) log ( )S Y YH Y f y f y dy= −  is revisited for the definition of MI. fX(x) and fY(y) are 

the individual marginal pdfs, and fXY(x, y) is the joint pdf. We can see from equation (7) that mutual 

information is also the Kullback-Leibler divergence (KL divergence) between the joint pdf, i.e., fXY(x, y) 

and the factorized marginal pdfs, i.e., fX(x)fY(y). If the mutual information is zero, it indicates that the 

two events are independent statistically from each other [10]. It should be noted that the Shannon’s 

definition of MI is not easily estimated from samples since the logarithm is just inside the integral. From 

equation (1) and equation (2), we can see that Renyi’s entropies are logarithm of sum of a certain power 

of pdf, so it is much easier to be estimated directly from data samples. Quadratic mutual information 

(QMI) is proposed to estimate the distance between pdfs which is integrated with the quadratic of pdfs. 

The QMI with Euclidean distance (ED) is: 
2 2 2( , ) ( , ) ( ) ( ) 2 ( , ) ( ) ( )ED XY X Y XY X YQMI X Y f x y dxdy f x f y dxdy f x y f x f y dxdy= + −                 (8) 

According to Cauchy-Schwarz inequality, QMIED(X,Y)≥0. The equality will hold only if X and Y are 

statistically independent. Let 

                                                ( , ) 2ED E J M CQMI X Y V V V V= = + −                                                             (9) 

Where 
2 2 2( , ) ( ) ( ) ( , ) ( ) ( )J XY M X Y C XY X YV f x y dxdy V f x f y dxdy V f x y f x f y dxdy= = =  ， ，               (10) 

Here, VJ represents the pairwise interaction of samples in the joint space.VM is the interaction in 

factorized marginal space and VC indicates the cross information between different spaces.  

2.3. Batch data reprocessing 

Unlike continuous processes data only consisting of two-dimensional arrays, i.e., variable direction and 

time direction, original data of batch processes is integrated with an additional attribute, i.e., batch 

direction. Variable-wise unfolding is adopted here to transform the cubic data matrix into an ordinary 

data matrix [11]. As shown in figure 1, a collection of historical batch data is denoted as a three-

dimensional matrix ( )o I M K X .M input process variables are sampled during the K sample times with 

a batch run and I is the batch number. Firstly, ( )o I M K X is unfolded variable-wise into a two-

dimensional matrix ( )v KI MX .Suppose L quality variables are also measured over K sample time. 

Quality variables matrix ( )oY I L K  can be unfolded in the same way as process variables to get 

( )vY KI L .Let N=KI. After the unfolding step, the historical batch data set is now reorganized into an 

input data set M

vX R with N samples and an output data set L

vY R with N samples, respectively. For 

a more simplistic expression in the follow-up modelling process, Xv and Yv are both rearranged in their 

corresponding transpose, i.e., X=Xv
T=[x1,…, xN] and Y=Yv

T=[y1,…, yN]. 
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Figure 1. Variable-wise unfolding of three-dimensional batch data. 
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3. QMI based regression (QMIR) 

3.1. Object function 

Our goal is to extract optimal features from high-dimensional input space X and built the regression 

model between the features and the output space Y. The features should best satisfy the followings: (1) 

the features can best describe the QMI between original input and output variables, in other words, QMI 

between input data and output data is maximized. (2) The features should also reveal the underlying 

structure of input data in terms of Renyi’s entropy.  

As shown in figure 2, high-dimensional input X (RM) is first projected to a lower dimensional vector 

(Rr) through a parametric mapping T=g(X, W). W is a set of parameters. To lower the computational 

complexity, a linear projection is adopted to get the form T=WTX [7]. In this way, W becomes the M×r 

projection matrix whose columns are consist of projection axes. r (r<M) represents the dimension of 

each new feature. T is the score vector in the new feature space. A new objective function J(W) is 

proposed in our paper not only maximize the QMI between input space and output space but also 

maximize the Renyi’s quadratic entropy of input space X. J(W) is proposed as: 

                                                        

2( ) ( ) ( , )R EDJ W H T QMI T Y= − − 

                                                 

(11) 

α is the weight parameter which is used to balance the importance of HR2(T) and QMIED(T, Y). In this 

way, our goal is to minimize J. 

As mentioned earlier, the quadratic mutual information between input feature space T and Y is 

estimated by Parzen window estimators, yields: 

2 2 2
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1 1 1 1
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V f t f y dtdy G t t G y y
N N

V f t y f t f y dtdy G t
N N

 

 

= =

= = = =

= = + − = = − −

= = −  −

= =



 


2 2

1 1 1

1
,2 ) ( , 2 )

N N N

i j t i j y

i j j
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 
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 
−  − 

 
  

         (12) 

For the entropy of input feature space, Renyi’s quadratic entropy is calculated according to equation 

(5) and equation (6), we get 

                            2 2

2 2
1 1

1ˆ( ) log ( ) log ( ) log ( ,2 )
N N

R T i j t

i j

H T f t dt V T G t t
N


= =

 
= − = − = − − 

 
                         (13) 

3.2. Learning algorithm 

The optimal W* is to be found which minimize J(W), yields 

                                                                       * arg min ( )
W

W J W=                                                          (14) 

Gradient descent method is applied to search for the optimize solutions of W. An iterative process 

is started with a random vector. W is updated in every iteration step as follows until J converges: 

2 ( ) 1 ( )
( 1) ( )           

( )

R E EH T V VJ J V T
W t W t

W W W W V T W W
  

    
+ = − = − − =  −

     
                             (15) 

λ represents the learning rate. For the linear projection T=WTX, we can write: 

( - )
( - )

i j T

i j

t t
x x

W


=


                                                            (16) 

We obtain  
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Here, we use 2 2( , 2 ), ( , 2 )t u

ij i j t ij i j uV G t t V G u u = − = − for more simple expressions. A regression model 

is built between T and Y in which the regression coefficient matrix θ is: 

                                                     ( )
1

     *T T TTT TY T W X
−

= =                                                          (19) 
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Figure 2. Framework of determining optimal 

features by using quadratic mutual 

information. 

 Figure 3. RMSEs of all test batches. 

3.3. Prediction of quality variable 

Offline modelling 

• The training data of batch process is reprocessed as in section 2.3. Process variables are arranged 

as input X and quality variables are arranged as output Y. 

• Normalize X and Y, respectively. Determine the kernel size σx, σt and σy according to Silverman’s 

rule of thumb [12].  

• Initialize W randomly and set the learning rate λ. Using gradient descent method to find the 

optimal W that minimize J. If a threshold of minimum difference of J is satisfied or the maximize 

number of iteration is reached, stop the iteration and get the optimal W*. Else, update W by 

equation (15) to equation (18), and repeat the iteration. 

Online prediction 

• A new online data xnew is sampled. Normalize xnew with the means and variances of the training 

data. 

• Calculate ynew through the regression model: T*T

new newy W x= . 

• Add back the means and the variance of ynew to get the final prediction value yp. 

We used root mean square error (RMSE) to evaluate the performance of QMIR quantitatively. Batch 

level RMSE is first defined as follows: 

                                                     

1

22

1

1 K

k kp

k

y y
K
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=

 
− 

 
=                                                            (20) 
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K is the whole sample time, yk is the offline measured value of a certain quality variable at sample 

time k. ykp is the prediction result. To demonstrate the prediction performances for every sample point, 

RMSE(k) is adopted: 

                                                

1

22

1

1
( )

testI
k kp

j j

jtest

RMSE k y y
I =

 
= − 
 

                                                       (21) 

Itest represents the amount of test batches. yj
k stores the offline measurement for sample point k. yj

kp is 

the corresponding prediction result of yj
k by using the prediction method.  

4. Experiments 
The prediction performance of QMIR is explored in comparison with MPLS. Variable-wise unfolding 

is also performed on the cubic historical batch data for MPLS.  

4.1. Datasets 

The prediction methods are tested by production data of industrial E. coli fermentation process. The 

experiment data were collected from a plant located in Beijing. OD (optical density) is the hard-to-

measure quality variable which indicates the E. coli concentration. In actual production, OD is usually 

measured offline. In our work, 8 process variables (PH, DO saturation, pressure, temperature, aeration 

power, added glucose, added nitrogen, and aeration rate) and a quality variable (OD) are selected. A 

collection of 28 normal batch data are aligned with the same sample time. For the training process, 20 

batches are chosen randomly. The other 8 normal batches are ready for testing. The fermentation 

duration is 6.5 h and the sample interval is 10 minutes. 

 

 

 

Figure 4. Prediction results of OD for a test 

batch. 

 Figure 5. RMSE(k)s of all test batches. 

4.2. Prediction results 

The batch level RMSE values are shown in figure 3. As a result, the average RMSE values are 10.25 

and 8.61 for the MPLS and QMIR, respectively. It can be seen that QMIR has smaller RMSE values of 

each test batch. It indicates that QMIR can give higher prediction accuracy than MPLS. It is because 

QMIR can extract features based on higher order statistics QMI, not just the second order statistics as 

in MPLS. In MPLS, the number of latent variable is set to 2 according to cross validation. In QMIR, r 

is set to 1, weight parameter α is set to 80 and learning rate λ is set to 0.5. The prediction results for OD 

of a single batch are shown in figure 4.We can see that both MPLS and QMIR follow the measured 

value of OD well before sample time 19. However, the prediction result of MPLS is accompanied with 

more fluctuations. An obvious deviation is appeared in MPLS Around sample time 22. Both of the two 

methods emerge performance decrease after sample time 33. But QMIR still performs better until the 

end of the whole batch run. We can see that QMIR has higher prediction accuracy than MPLS. RMSE(k) 

values are shown in figure 5. Obviously, QMIR has smaller RMSE(k) values and has better prediction 

accuracy than MPLS during most of the sample times, except at the beginning of the batch. 
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5. Conclusions 

A new regression method based on the quadratic mutual information has been proposed. The results 

show that QMIR performs better than MPLS in terms of quality prediction on industrial E. coli 

fermentation dataset, the typical batch process data. Compared with conventional methods, the proposed 

QMIR method has two main properties. First, the QMI metric takes into account higher order statistics 

which can reveal the non-linear dependencies between the process variables and the quality variables. 

Second, the estimation of QMI is non-parametric, without Gaussian assumption of data distribution as 

MPLS. 
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