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Abstract. Weakly-supervised semantic segmentation with image tags is a challenging computer 

vision task. Unlike pixel-level masks, image tags give high level semantic information, without 

low level appearance information. In this paper, we propose an iteratively self-training 

framework to bridge this two information, which expand and refine the pseudo-labels with 

training process going. Initial masks are generated from classification network. In the top-down 

step, rendered images and its labels as well as spatially weight loss are added to jointly training 

the model for alleviate the effect of inaccurate object masks. Then in the bottom-up step, an 

adaptive threshold to the confidence model predictions to keep predicted masks reliable. The 

top-down and bottom-up steps are conducted iteratively to extract the fine object mask. 

Experiments on our self-build dataset and GTA5 to CityScapes demonstrate the effectiveness of 

proposed framework. 

1. Introduction 

Semantic segmentation with image tags only aims at performing pixel-wise classification with only 

image tags provided. Semantic segmentation models require both high-level semantic and low-level 

appearance information during training. What makes weakly supervised semantic segmentation 

challenging is that images tags could only provide high level semantic information. With images tags, 

classification network is used to generate localization. With no other annotation tools assisted, 

localization regions from classification network are coarse and inaccurate, which is far away from the 

requirement of segmentation models and even harm the performance.  

With the issues addressed, we take a different view to this task. We propose a self-training framework 

where the model uses previous predictions to update its parameters. The self-training framework has 

been used in semi-supervised learning for a better classifier [1]. However, most of these methods still 

depend on well labelled data. The subtle difference between the previous work and our proposed 

framework is that there is no pixel-wise label to measure the prediction during training.  

Our proposed self-training framework contains bottom-up and top-down two steps, which could 

tolerate inaccurate predictions with the refinement operation. Our motivation comes from the 

classification network could give coarse localizations [2], as well as certain discriminative regions, and 

previous PixelNet [3] has shown that fewer pixels for computing the loss could give the same result as 

full pixels used. Given a set of training images, the latent pixel-wise label could be extracted for the 

target object. In the top-down step, we take the initial mask with the assistance of synthetic images and 

the corresponding labels, and spatially weighted loss is introduced to alleviate effect of inaccurate 

pseudo-labels. Then in the bottom-up step, the predictions get refined according to the confidence of 
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predictions and the information from the image itself. Incorrect mask could be refined with the iteration 

continues. 

Concretely, a classification network is firstly trained to get the Classification Activation Maps (CAM) 

[2] and localize the discriminative regions. To best use the information from the given image itself, the 

image is over-segmented to super-pixel map to remove some of wrongly labelled pixels. In the top-

down step, joint training with synthetical images and pseudo-labels to predict the new mask of object. 

As pseudo labels may not accurate, spatial-weight loss is introduced to alleviate the effect of wrongly 

labelled pixels. In the bottom-up step, all confidences of all model predictions are sorted to remove 

possible wrong labels, and then the super-pixel map and the CRF layer [4] are utilized to refine the 

pseudo-labels as well as the precise boundaries. With the mentioned procedure, the latent label gets 

refined iteratively with distinct boundaries. 

Our contributions in this paper can be summarized as:  

We proposed an iteratively self-training framework towards the weakly supervised semantic 

segmentation task, which could extract labels from coarse to fine. Specially, experiments show the 

pseudo-labels could be extracted from images themselves. 

To address the issue the inaccuracy of pseudo-labels, we proposed the spatial-weighted loss to soft 

the pseudo-labels. 

2. Related Work 

In this section, we make a brief introduction on the recent progress on both fully and weakly-supervised 

semantic segmentation methods which are related to our work. 

2.1. Fully Supervised Semantic Segmentation 

Current predominant fully supervised methods usually train models end-to-end with entire images and 

the corresponding pixel-wise labels incorporated. Fully convolutional network (FCN) [5] uses skip 

connections for pixel-wise predictions. DeepLab [6] uses convolution layer with dilation to expand 

feature map size as well as the receptive field. PSPNet [7] tries capture the contextual information with 

pooling operations at different scales. A large number of works [8]-[9] have been proposed based on 

similar resumption. 

2.2. Weakly-Supervised Semantic Segmentation 

Annotating images for semantic segmentation task acquires large time and labour. Recent researches 

exploited weakly supervised methods to reduce the annotation cost, including bounding box, line, and 

image tags. For weakly supervised sematic segmentation task with image tags, most methods start from 

classification networks.  

Classification networks is always utilized to get initial localization and train segmentation networks 

supervised with them. Kolesnikov et al. [10] introduced expand loss and constrain loss to expand the 

initial mask seeds with a boundary awareness. Wei Y et al.[11] considered classification network with 

different dilated convolution to get more concrete localization. Wang, Xiang et al. [12] train an extra 

patch classification network to mine common object feature for refining initial masks. Most of previous 

works rely on classification network generating discriminative regions sequentially. In this work, the 

proposed framework could tolerant the inaccurate predictions, and masks can be extracted with clear 

boundary.  

3. Proposed Framework 

Classification networks could only produce a heatmap with coarse localization information, and domain 

gap between the virtual and reality makes synthetically trained model drop heavily. Our proposed 

framework tends to combine both two information to extract fine segmentation masks during iteratively 

training. 

Our proposed framework contains two steps, as shown in Figure 1, bottom-to-up mask refinement 

step and top-to-down joint training step. At the bottom-to-up step, the class activation map (CAM) and 
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the super pixel map by SLIC [13] are utilized to refine the model predictions. And at the top-to-down 

joint-training step, the pseudo-masks get refined at bottom-to-up step are used to learn robust 

representations. As training continues, pseudo-masks get more and more accurate. The overall procedure 

is described as Algorithm 1. For inference, the segmentation model of last iteration is used, with only 

RGB image needed. 
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Figure 1. Pipeline of Proposed Network. At beginning, initial masks are generated from CAM and 

super-pixel maps. Then the joint training with rendered images using initial masks with spatially 

weighted loss to alleviate the effect of inaccurate masks. Predicted masks get refined as described in 

Section 3.4. 

3.1. Initial Object Mask Generation 

For images in Figure 2(a), a classification network is trained to obtain the heat map, using CAM method, 

for each object. As shown in Figure 2(c), localization information could be gotten from the heat map, 

while it is too coarse to be used for training. To get the initial object mask, images are over-segmented 

to super-pixel regions via SLIC algorithm[13], as shown in Figure 2(b). Then masks are firstly generated 

combined with the heat map and an adaptive threshold to get enough information while with less 

inaccurate information introduced in. As super-pixel regions could give boundary of the object, only 

super-pixel regions that are fully labelled with the mask from CAM are labelled as positive regions. 

    

    
(a) images (b) super-pixel regions 

by SLIC 

(c) heat map of CAM (d) refined with super-

pixel map described in 

Section 3.1 

Figure 2. Examples of Initial Generated Labels. 
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Algorithm 1 Procedure of Proposed Framework 

Input: Images { }; Labels { }; Super-pixels { }; 

Output: Refined Object Mask { }; The Jointly trained Semantic Segmentation Model; 

1: Initialize: Generate initial object mask { } at iteration { }. 

2: while extracted mask labels { } is not satisfying do 

3:          Joint training described in Section 2.3 

4:          Predict the object mask  

5:          Refine Predictions object masks  described in Section 2.4 

6:          Update  

 7: end while 
 

3.2. Spatially weighted loss 

For generated pseudo labels, because not all pixels are rightly labelled, directly trained with these 

pseudo-labels may hurt the performance. As shown in Figure 2(d), for each masked pixel, closer to the 

center of pseudo-label mask, more possible be rightly labelled. Based on this observation, high 

probability should get more attention. So, we proposed the spatially weighted loss to make the loss 

function pay more attention to rightly labelled pixels and less sensitive to some labelled pixels which 

might not be classified rightly. The loss function could be formulated as  

  (1) 

where  denotes the image ( ),  denotes  pixel label ( ) ,  

refers to the parameters of the network.  is the predicted probabilities at pixel , and  is 

spatial weight for image  at pixel . Specially indicates a one-hot vector whose  entry is 1, and 

if  is a zero, it is equivalent to the ignore_index. 

3.3. Joint Training Procedure 

To provide the external shape awareness, the boundaries of labels from rendered images are used as the 

spatial weighted matrix. For implementation details, canny method is used to get the boundary, then the 

dilate operation is taken to expand the detected boundaries. For target images, distance transformation 

is used as the confidence of the pseudo labels, which is used as the spatial weight, then sigmoid function 

is utilized to map the values into . Total loss function is 

                        (2) 

3.4. Label Refine Step 

Simply iteration with raw predictions may make the model go unexpected for the wrong predictions 

exists. It’s necessary to refine the predictions via removing the undesired predictions. The variance of 

the output probabilities is getting larger with the training procedure continuing, and the possible wrong 
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labelled is likely to have lower probabilities. With this assumption, during the label refine step, the 

predicted pixels whose probabilities are lower than the adaptive threshold are labelled as negative. 

Details are described in Algorithm 2: 

Algorithm 2 Label Refine 

Input: Images { }, ratio  

Output: Refined Object Mask { } 

1:  for   to  do 

2:      = model ( ) 

3:       = max( , axis = 0) 

4:       

5:  end for 

6:   = To_vector( ) 

7:    = sort( , descend = True) 

8:   idx = length( ) ∗  

9:   threshold = S[idx] 

10: for   to  do 

11:      = model ( ) 

12:       = argmax( ) 

13:      < threshold = unlabelled 

14: end for 

4. Experiments 

4.1. Dataset 

4.1.1.  Workpiece Dataset. The proposed framework is trained and evaluated on our self-built dataset 

composed of images of 8 different texture-less workpieces with the size 480 × 640. These images are 

collected from different viewpoints, with synthetical images rendered from CAD model, and real images 

captured from unstructured environments, including illumination variation, 4 different backgrounds and 

blurry imaging as shown in Figure 3. For each background, about 8000 images are collected. 

        

        

        

Figure 3. Our workpiece dataset. Workpiece 1-8 are listed left to right. Rows correspond images 

rendered by CAD, labels of rendered images and images captured from the real.Real images are 

captured with 4 different background, second column is background 2,third column is is background 

1, sixth column is background 3. 
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4.1.2.  Scenario Dataset. We also consider the synthetic-to-real scenarios with GTA5 [14]→CityScapes 

[15]. The GTA5 Dataset includes 24,966 annotated images of size 1052×1914 rendered by the GTA5 

game engine. The Cityscapes train dataset is treated as target domain. Specially, we take this task as 

kind of transfer learning task, using models trained on GTA5 dataset as the initial. 

4.2. Implementation Detail 

4.2.1. Workpiece Dataset. For the initial mask generation described in Section 2.1, threshold is set as 1 

with decay 0.99 in the step mask generated from CAM and stopped while masked pixels are more than 

2% of total pixels. PSP-Net [7] is used for segmentation network with backbone network ResNet-18. 

Our implementations are based on Pytorch. Optimizer is Adam with initial learning rate 10−4. 

4.2.2. GTA5 to CityScapes. The initial mask comes from synthetically trained model on GTA5 dataset, 

and other operation remains same as described above. To boost the performance, a more powerful 

backbone network Resnet-101 is used as better feature-excavator. Optimizer is SGD. Same as PSP-Net, 

the learning rate updates with the base one multiplying , initial learning rate 10−5, 

power 0.98, max iteration is set 40k. 

4.3. Result 

4.3.1. Workpiece Dataset. For our workpiece dataset, 18 images from different background and different 

viewpoint are labelled to evaluate the proposed framework. The mIoU results are shown in Table 1, 

images and labels are list in Figure 4. Multi-workpiece also tested as shown in Figure 5. 

        

        

        

        

        

Figure 4． Result on workpiece dataset. Columns correspond to workpiece 1-8, rows 

correspond to images, the initial mask, predictions after first update, final predictions, the predictions 

after CRF refinement. 
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Table 1. Experimental results for workpiece dataset 

  wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 mIoU 

no 
initial 48.29 61.27 67.85 68.19 75.53 76.51 77.14 48.74 65.44 

final 86.94 66.64 83.89 100.00 100.00 100.00 100.00 98.66 92.02 

1 
initial 39.83 49.19 48.03 65.72 58.22 63.47 63.66 55.86 55.50 

final 71.81 83.61 67.94 88.00 86.37 78.20 81.19 88.37 80.69 

2 
initial 25.94 67.40 37.28 60.35 50.00 33.93 54.00 57.48 48.30 

final 77.98 84.21 57.04 89.66 90.54 63.90 86.16 89.05 79.82 

3 
initial 28.33 36.07 44.00 43.93 41.54 41.81 51.22 38.20 40.64 

final 59.98 80.62 69.22 84.40 88.79 65.84 79.50 84.15 76.56 

4.3.2. Scenario Dataset. Result of the experiments on the Scenario Dataset (GTA5→CityScapes) is 

shown on Table 2 and the result compared with other methods is shown on Table 3.  Figure 6 gives the 

visualization result.  

Table 2. Experimental results for GTA5→CityScapes 

 Road SW Build Wall Fence Pole TL TS Veg. Terrain 

initial 64.42 22.05 67.56 5.30 5.45 24.15 13.82 14.72 72.73 16.48 

ours 66.01 11.36 57.62 7.62 1.83 17.54 18.72 15.08 76.60 29.66 

 Sky PR Rider Car Truck Bus Train Motor Bike mIoU 

initial 62.54 34.55 1.67 65.22 3.40 3.70 0.38 5.55 0.37 32.69 

ours 62.66 42.07 3.51 72.99 19.91 12.99 1.26 16.84 4.29 40.16 

Table 3. Compared with other methods 

Method mIoU 

FCN wild[16] 27.1 

Curr. DA[17] 28.9 

CyCADA (pixel)[18] 39.5 

I2I Adapt[19] 35.7 

Ours 40.16 

 

    

    

    

Figure 5. Result on multi workpiece dataset. Rows correspond to images, predictions, and predictions 

after CRF refinement 
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Figure 6. Result on GTA5 to CityScapes. Columns correspond to images, initial predictions, final 

predictions and ground truth 

4.4.  Ablation Study 

To evaluate the effectiveness of the different part in the proposed framework, some experiments are 

conducted to explore how each design influences the overall performance. Table 4 details the 

improvement by considering one more factor at each stage in our proposed framework with background 

2. 

Table 4. Ablation Study on Workpiece Dataset 

 wp1 wp2 wp3 wp4 wp5 wp6 wp7 wp8 mIoU 

Initial mask 25.94 67.40 37.28 60.35 50.00 33.93 54.00 57.48 48.30 

Initial Only  38.04 43.08 1.21 47.84 59.53 5.38 13.54 48.66 32.16 

CAD added 39.27 45.28 34.61 66.15 52.17 67.81 38.50 35.85 47.46 

Spatial loss 50.90 82.81 60.83 82.53 83.64 28.79 74.79 63.36 65.96 

Label 

refine 

77.98 84.21 57.04 89.66 90.54 63.90 86.16 89.05 79.82 

5. Conclusion 

In this paper, we proposed a self-training framework for the weakly supervised semantic segmentation 

task. This framework aims at refining pseudo-labels with local relativeness from the image itself. The 

spatially weighted loss is also introduced to alleviate the effect of wrong predictions. Experiment 

demonstrates that our method could use the information from the images to refine the pseudo-labels, 

which also suggests self-training-based approach could be quite effective. 
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