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Abstract. Industrial robots are widely used in intelligent manufacturing industry because of 

their high efficiency and low cost, but the low absolute positioning accuracy limits their 

application in the field of high-precision manufacturing. To improve the absolute positioning 

accuracy of robot and solve the traditional complex error modeling problems, a robot 

positioning error compensation method based on deep neural network is proposed. The Latin 

hypercube sampling is carried out in Cartesian space, and the influence rule of target attitude 

on error is obtained. A positioning error prediction model based on genetic particle swarm 

optimization and deep neural network (GPSO-DNN) is established to realize the prediction and 

compensation of the positioning errors. The experimental results show that the positioning 

error compensation method based on GPSO-DNN presents good compensation accuracy. The 

positioning error is reduced from 1.529mm before compensation to 0.343mm, and the accuracy 

is increased by 77.57%. This method can effectively compensate the positioning error of the 

robot and greatly improve the positioning accuracy of the robot.  

1. Introduction 

With the advancement of the "Made in China 2025" strategy, the intelligent manufacturing industry 

makes high demands for robot application technology. The application of robots in high-precision 

manufacturing fields such as aircraft assembly, flexible grinding, and laser cutting becomes 

increasingly widespread. The high-precision tasks performed by robots rely on their absolute 

positioning accuracy. Commonly robots have a relatively high repeatability accuracy within ±0.06 mm, 

but a low absolute precision which is only ±1~2 mm [1]. Therefore, the accurate compensation method 

to improve the absolute positioning accuracy of the robots is an important basis for promoting the 

application of robots in the field of intelligent manufacturing.  

The robot positioning error compensation method, also known as the robot precision compensation 

method, refers to the errors generated by a certain means to compensate the original errors of robots. 

According to the robot control method, the existing methods for improving the absolute positioning 

accuracy of robots can be classified into online detection feedback compensation method and offline 

calibration feedforward compensation method. The online detection feedback compensation method 

usually adds external detection device in the robot system to obtain the feedback information from the 

robot end or joint in real time, thereby realizing the closed or semi-closed loop control to improve the 

absolute positioning accuracy to 0.2 mm [2,3]. However, such methods are highly dependent on extra 

monitoring equipment and are difficult to implement in the complex industrial workspace.  

The offline calibration feedforward compensation method is further divided into a kinematic model 
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calibration method and a non-kinetic model calibration method. The basic principle of the kinematic 

model calibration method [4,5] is to obtain the kinematic parameter errors of the robot through certain 

measurement methods and parameter identification methods to correct the kinematics model of the 

robot. The shortcoming of this method is that the modeling and parameter identification process are 

complicated. This model only considers the geometric error source which only accounts for 80%~90% 

of the total errors [6]. Thus the precision compensation effect is limited.  

Non-kinetic model calibration methods such as neural network method [7], spatial interpolation 

method [8], etc., not only consider geometric error factors but also include non-geometric error factors 

such as gear gap, load variation, and thermal effects. Zhou et al. [8] proposed a method of accuracy 

compensation based on spatial interpolation, which is compensated by spatial interpolation to estimate 

the position error at the target point of the robot. However, the compensation effect of this method is 

significantly affected by the size of sampling step. Xu et al. [9] used the feedforward neural network to 

predict the joint angle error and applied it to the control system for error correction. Nguyen et al. [10] 

proposed to use artificial neural networks to compensate for non-geometric errors, and three joint 

angles is employed as neural network inputs to get predicted values of non-geometric errors. Wang et 

al. [11] established the mapping between the actual coordinates of the target points and the theoretical 

coordinates through the ELM algorithm, and the absolute positioning accuracy of the robot was 

improved by 45%. But the spatial sampling range of the method is too small to apply in practical 

engineering tasks. The above methods do not take the influence of the target point attitude on the 

positioning error into account, so the compensation accuracy is limited.  

Aiming at the above problems, this paper proposes a method based on genetic particle swarm 

optimization to optimize the depth of neural network (GPSO-DNN) for robot positioning error 

compensation. Furthermore, the influence of target position and attitude on positioning error is also 

considered. The target positioning error is predicted and compensated. The proposed GPSO-DNN 

model is also compared with the models such as genetic algorithm optimization (GA) and particle 

swarm optimization (PSO) to verify the accuracy and practicality of the error compensation. 

2. Spatial sampling and error analysis  

2.1. Latin hypercube sampling  

Since the sampling point data directly reflects the original state of the robot positioning error, the 

sampling point planning has a significant impact on compensation effect of the robot positioning error. 

Therefore, a rational sampling point planning method is one of the key steps to ensure the accuracy of 

the robot positioning error compensation.  

Latin Hypercube Sampling (LHS) [12,13] is a statistical method used in sampling experiments to 

select a series of test points which are evenly distributed in the sampling space. The basic principle of 

LHS defines that the parameter dimension is 𝑁, and the number of sampling times is 𝑀. Firstly, the 

definition domain of each parameter is divided into 𝑀  non-overlapped interval, within which a 

parameter value is randomly selected as a sample. Then 𝑀 samples {𝑠11, 𝑠12, ⋯ , 𝑠1𝑀} of the parameter 

𝑠1 is randomly combined with 𝑀 samples {𝑠21, 𝑠21, ⋯ , 𝑠2𝑀} of the parameters 𝑠2 to create 𝑀 binary-

element sets {𝑠1𝑗, 𝑠2𝑗}(𝑗 = 1,2, ⋯ , 𝑀). Thirdly, the binary-element sets {𝑠1𝑗, 𝑠2𝑗}(𝑗 = 1,2, ⋯ , 𝑀)  is 

randomly paired with another 𝑀 samples {𝑠31, 𝑠31, ⋯ , 𝑠3𝑀} of the parameters 𝑠3. The above random 

pairing operation is continued until 𝑀 𝑁-element sets {𝑠1𝑗, 𝑠2𝑗, ⋯ , 𝑠𝑁𝑗}(𝑗 = 1,2, ⋯ , 𝑀) are obtained. 

Finally, 𝑀 Latin hypercube samples are achieved and can be expressed as the following formula:  

𝑺 = [

𝑠11 𝑠12 ⋯ 𝑠1𝑀

𝑠21 𝑠22 ⋯ 𝑠2𝑀

⋮ ⋮ ⋱ ⋮
𝑠𝑁1 𝑠𝑁2 ⋯ 𝑠𝑁𝑀

] (1) 

In Eq. (1) each column of the matrix 𝑺 represents a sample vector obtained from a Latin hypercube 

sample, and each row represents an arbitrary permutation and combination of 𝑀 sample values of each 

parameter.  
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Figure 1. Schematic diagram of the sampling range of the robot Cartesian space. 

In order to ensure that the sampling points can reflect the whole working space of robot as much as 

possible, the LHS method is used to sample in the Cartesian space of the robot as illustrated in Figure 

1. A rectangular parallelepiped area with the size of 500 mm × 700 mm × 700 mm is scheduled for as 

sampling space, in which the posture angles of the potential target points (𝑎, 𝑏, 𝑐) are all within ±10°. 

Thus the parameter 𝑁 equals to 6. When the sampling number 𝑀 is set to be 150, the sampling points 

obtained by LHS method are presented in Figure 2. It can be observed that the sampling points 

obtained by the LHS method are evenly distributed in the sampling space.  

 
Figure 2. Schematic diagram of the LCC sampling points in the robot Cartesian space. 

2.2. Error analysis  

In the robot kinematic space, the theoretical position coordinate of a certain target point is 

𝑷𝑡(𝑥𝑡, 𝑦𝑡 , 𝑧𝑡), and the measured actual position coordinate is 𝑷𝑎(𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎). Thus the positioning error 

vector 𝑬 of the point can be calculated by:  

𝑬 = 𝑷𝑡 − 𝑷𝑎 = (𝑥𝑡 − 𝑥𝑎 , 𝑦𝑡  − 𝑦𝑎 , 𝑧𝑡 − 𝑧𝑎) = (∆𝑥, ∆𝑦, ∆𝑧) (2) 

The absolute positioning error of the certain target point is expressed by the Euclidean distance:  

𝑒 = |𝑬| = √𝛥𝑥2 + 𝛥𝑦2 + 𝛥𝑧2 (3) 

The related research [14] reports that for six-degree-of-freedom rotary joint robots, the first three 

joints mainly affect its positional accuracy, and the latter three joints affect its attitude accuracy. 

(a) Sampling point set in x, y, z direction (b) Sampling point set in a, b, c direction



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1487/1/012045

4

 

 

 

 

 

 

However, in practical applications, it is found that the latter three joints also have effects on the 

positioning accuracy of the robot due to error factors such as installation and load. Therefore, it is 

essential to study the influence of the target point attitude on the positioning accuracy.  

 
Figure 3. 30 sets of absolute positioning errors at point (𝑥1962.3, 𝑦257.1, 𝑧591.4). 

According to the proposed LHS method, 10 sampling points are planned in the working space of 

KUKA KR500-3 industrial robot as illustrated in Figure 1. Each sampling point corresponds to 30 sets 

of attitudes (𝑎 , 𝑏 , c within ±15°). Thus the absolute positioning errors of 300 target points are 

measured by the laser tracker. The absolute positioning error under the 30 sets of attitude at the 

sampling point (𝑥1962.3, 𝑦257.1, 𝑧591.4) is shown in Figure 3. It can be observed that the absolute 

positioning error of the target point is distributed in the range of 0.80 mm to 1.50 mm due to the 

difference of the attitude angle. The error ranges for 30 sets of attitude angles at the above 10 points 

are lasted in Table 1, in which the maximum of error range is [0.84, 1.49] with a difference of 0.65 

mm. It can be found that there is large difference in positioning errors among the distinct positioning 

angles at the same positioning point, which indicates that that the change of the target point posture 

has a great influence on the accuracy of the robot. Therefore, the positioning error compensation of the 

robot must also fully consider the impact of target attitude on positioning accuracy.  

Table 1. The absolute positioning error under the 30 sets of attitude at a certain sampling point. 

Coordinates of positioning points /mm Tolerance scope /mm 

(1908.11,229.28,1302.13) [0.42,0.68] 

(1996.32, -17.10, 1137.11) [0.56,0.75] 

(2170.25, -1200.97, 744.01) [0.71,1.21] 

(2211.21, -522.68, 1430.81) [0.19,0.47] 

(2234.43, -604.83, 1206.02) [0.33,0.66] 

(2336.65, -162.73, 1038.75) [0.49,0.78] 

(2184.11, -1246.43, 816.61) [0.62,1.08] 

(2290.27, -424.06, 1068.87) [0.43,0.70] 

(1962.33, 257.11, 591.39) [0.84,1.49] 

Therefore, in order to ensure the machining precision, the sampling points should be reasonably 

planned so that the sampling points can be evenly distributed in the machining space. Besides, the 

error compensation method should also consider the influence of target position and attitude to ensure 

the precision compensation effects.  



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1487/1/012045

5

 

 

 

 

 

 

3. Positioning error compensation method based on improved DNN algorithm 

3.1. Genetic particle swarm optimization  

The particle swarm optimization (PSO) presents good convergence property in the early stage but has 

a low efficiency in the late evolutionary. Aimed at this shortcoming of PSO, the paper presents a 

genetic particle swarm optimization(GPSO) algorithm, which introduces crossover factor of the choice 

of genetic algorithm to improve the convergence speed and global optimization performance. 

Particle Swarm Optimization [15] is a global optimization algorithm derived from the simulated 

predation behaviour of birds. The optimal solution is found in the solution space through sharing 

individual information and group iteration in the population. The search space dimension is set to be 𝐷, 

and population size is set to be 𝑛. The particle position 𝑿𝑖 and velocity vector 𝑽𝑖 of particle 𝑖 can be 

expressed by:  

𝑿𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝐷)𝑇 (𝑖 = 1,2, ⋯ , 𝑛) (4) 

𝑽𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝐷)𝑇 (𝑖 = 1,2, ⋯ , 𝑛) (5) 

During each iterative evolution, the particles update their speed and position through individual 

extremum and population extremum. The formula is updated as follows:  

𝑽𝑖
𝑡+1 = 𝜔𝑽𝑖

𝑡 + 𝑐1𝑟1(𝑷𝑖
𝑡 − 𝑿𝑖

𝑡) + 𝑐2𝑟2(𝑷𝑔
𝑡 − 𝑿𝑖

𝑡) (6) 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 (7) 

where 𝑷𝑖 is the individual extremum, and 𝑷𝑔is the group extremum. 𝑡 is the current iteration number. 

𝜔  is the inertia weight. 𝑐1  and 𝑐2  are the non-negative constant learning factors. 𝑟1 and 𝑟2  are the 

random numbers in the interval [0,1].  

The proposed GPSO algorithm draws on the idea of genetic algorithm's choice of crossover, and 

uses the crossover operation to generate new populations, which expands the search space of particle 

swarms. Each time when the particle swarm position and velocity is updated, the first half of the 

population with better fitness is selected as the next generation. Meanwhile, the same part of the 

better-fitted particles is employed to generate progenies by crossover operation. Then the half of the 

better-fitted particles in progenies and their parent generation is selected to be the next generation to 

realize the renewal of the particle swarm. Since the particles are real-numbered, the crossover-

operation method is a kind of real-number crossover method. The particles in the population are 

randomly paired, and the new particles are obtained with a certain probability 𝑝. The position and 

speed are renewed as follows:  

𝑿𝑐ℎ𝑖𝑙𝑑1
= (1 − 𝑝) ⋅ 𝑿𝑝𝑎𝑟𝑒𝑛𝑡1

+ 𝑝 ⋅ 𝑿𝑝𝑎𝑟𝑒𝑛𝑡2
 (8) 

𝑿𝑐ℎ𝑖𝑙𝑑2
= 𝑝 ⋅ 𝑿𝑝𝑎𝑟𝑒𝑛𝑡1

+ (1 − 𝑝) ⋅ 𝑿𝑝𝑎𝑟𝑒𝑛𝑡2
 (9) 

𝑽𝑐ℎ𝑖𝑙𝑑1
= |𝑽𝑝𝑎𝑟𝑒𝑛𝑡1

| ×
𝑽𝑝𝑎𝑟𝑒𝑛𝑡1

+ 𝑽𝑝𝑎𝑟𝑒𝑛𝑡2

|𝑽𝑝𝑎𝑟𝑒𝑛𝑡1
+ 𝑽𝑝𝑎𝑟𝑒𝑛𝑡2

|
 (10) 

𝑽𝑐ℎ𝑖𝑙𝑑2
= |𝑽𝑝𝑎𝑟𝑒𝑛𝑡2

| ×
𝑽𝑝𝑎𝑟𝑒𝑛𝑡1

+ 𝑽𝑝𝑎𝑟𝑒𝑛𝑡2

|𝑽𝑝𝑎𝑟𝑒𝑛𝑡1
+ 𝑽𝑝𝑎𝑟𝑒𝑛𝑡2

|
 (11) 

In above equations, 𝑿𝑐ℎ𝑖𝑙𝑑𝑘
 and 𝑿𝑝𝑎𝑟𝑒𝑛𝑡𝑘

 are the positions for children and parent particles, separately. 

𝑽𝑐ℎ𝑖𝑙𝑑𝑘
 and 𝑽𝑝𝑎𝑟𝑒𝑛𝑡𝑘

 are the speeds for children and parent particles, respectively. the crossover probability 𝑝 is 

a random number within [0,1]. 

3.2. GPSO optimized DNN algorithm 

Deep neural network (DNN) is the simplest but most widely used model in the field of deep learning. 

It is essentially a multi-layer perceptron with multiple hidden layers. Adjacent joints are fully 
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connected and network parameter adjustment is performed through error backpropagation algorithm. 

A DNN network structure with 3 hidden layers is shown in Figure 4.  

 
Figure 4. Schematic diagram of the DNN network structure with 3 hidden layers. 

The number of nodes in the input and output layers of the DNN is determined by the dimensions of 

the input vector [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] and the output vector [𝑦1, 𝑦2, ⋯ , 𝑦𝑚], respectively. The number of 

hidden layers is decided by the number of nodes to be solved and the characteristic of sample data. It 

is assumed that the DNN contains 𝐿 hidden layers, thus the the 𝑙𝑡ℎ (𝑙 = 1, ⋯ , 𝑁 + 1) output layer is 

expressed by:  

𝐴𝑙 = 𝜎(𝑊𝑙 • 𝐴𝑙−1 + 𝑏𝑙) (12) 

where 𝑊𝑙  is the connection weight matrix between the (𝑙 − 1)𝑡ℎ layer and the 𝑙𝑡ℎ layer node, and 𝑏𝑙 is 

the threshold vector of the first layer node. The function σ(x) is a modified linear unit (ReLU). It can 

be expressed in the following formulation:  

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑖𝑓(𝑥 ≥ 0)

0 𝑖𝑓(𝑥 < 0)
 (13) 

Compared with the conventional sigmoid or tanh activation function, the Eq. (15) can brings about 

better convergence and sparsity to the network.  

Related studies [16] have shown that the number of hidden layer and nodes of DNN has a 

significant influence on network performance and prediction results. As the number of hidden layers 

or nodes increases, the network accuracy is improved. But it takes more training time, and the “over-

fitting” phenomenon is prone to occur. The deep network has higher parameter efficiency than the 

shallow network, and the DNN network has higher redundancy. The hidden layer number reduction 

strategy is beneficial to improve the efficiency of the network parameters and reduce training time. At 

present, there is no exact method to determine the optimal number of hidden layers and the number of 

nodes. Generally, the range of the optimal hidden layer nodes is roughly determined by referring to the 

following rule of thumb [17]: 

𝐿 = √(𝑛 + 𝑚) + 𝑎 (14) 

where, 𝑛  and 𝑚  are the input and output layer nodes, respectively. The constant parameter  𝑎 =
{1,2, ⋯ ,10}. The optimal number of hidden layers and the number of nodes are determined by 

iterative experiments on the elements traversing their value intervals.  

The initialization method of weight and threshold is also crucial to the convergence of neural 

network algorithm. However, the commonly used random initialization method is easy to put the 

parameter search range of network training in the non-optimal interval, which leads to slow 

convergence speed. Therefore, this paper proposes an improved deep neural network algorithm (GPSO 

optimized DNN) to obtain the optimal initial weights and thresholds of DNN, so that the optimized 

DNN model can better achieve data prediction. In present research, the weight and threshold is 

depicted by particle position in the particle swarm, and the mean square error between the actual 

output of the DNN and the expected output as the fitness function of the GPSO algorithm, which is 

shown in the following formulation:  
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𝑓 =
1

𝑚
∑(

𝑚

𝑖=1

𝒚𝑖 − 𝒚𝑖
′)2 (15) 

where  𝑦𝑖 represents the actual value of the training sample and 𝑦𝑖
′  represents the network output value 

of the training sample. It is apparent that the smaller the fitness function value, the smaller the 

prediction error of the DNN model.  

The procedure of GPSO optimized DNN algorithm is described as follows:  

(1) Normalize sample data and divide them into training samples and testing samples;  

(2) Determine the value range of the hidden layers and nodes, and set the initial value of them;  

(3) Use the GPSO algorithm to optimize the DNN, and obtain the optimal weights and thresholds 

under the current network structure;  

(4) Conduct network training and testing, and save network structure and prediction results;  

(5) Try all the values in the range of the hidden layer and node number. If the result does not satisfy 

the end condition, return to the procedure 3. Otherwise stop training and select the network structure 

and prediction data with the highest prediction accuracy.  

The algorithm flow of GPSO optimization DNN is shown in Figure 5.  

 

Figure 5. GPSO optimization DNN algorithm flow chart. 

3.3. Robot positioning error compensation method based on improved DNN  

Different from the traditional kinematic model calibration which only considers geometric error 

sources, the deep neural network model can simultaneously take both geometric and non-geometric 

error sources into account. Thus the complex mapping relationship between input and output is well 

established and robot positioning error is accurately predicted. 

In fact, the various error sources of the robot are comprehensively reflected in the positioning error. 

As aforementioned, the robot positioning error is not only related to the position of the target point but 

also related to the target point posture. Here the theoretical pose of the target point 

𝑷𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑎𝑡 , 𝑏𝑡, 𝑐𝑡)𝑇 is used as the input of the DNN, and the actual positioning error of the 

target point 𝑬 = (𝛥𝑥, 𝛥𝑦, 𝛥𝑧)𝑇is taken as the output. Therefore, the number of the input layer node is 

6, and the number of the output layer node is 3. The optimal hidden layer node range is determined to 
[4,13] according to Eq. (14). To further ensure network accuracy, the range of hidden layer nodes is 

appropriately expanded to [3,16] ， Since the robot accuracy compensation is not extremely 

complicated, the range of hidden layer layers is set to [1,6].  
The robot positioning error compensation method based on improved DNN is a feedforward 

control compensation method. The principle is shown in Figure 6. Firstly, the sampling points 𝑷𝑠𝑎𝑚𝑝𝑙𝑒 

is planned according to the Latin hypercube sampling method in section 2.1, and the actual positioning 

error of the sampling points 𝑬𝑠𝑎𝑚𝑝𝑙𝑒 is measured by API radian laser tracker. Then the GPSO-DNN 

model is trained by the theoretical pose and actual positioning error data 𝑷𝑠𝑎𝑚𝑝𝑙𝑒  and 𝑬𝑠𝑎𝑚𝑝𝑙𝑒 . 

Thirdly, the predicted positioning error of the target points 𝑬̂𝑡𝑎𝑟𝑔𝑒𝑡  is obtained by putting the 

theoretical coordinate of the target points into the well-trained model. Finally, the predicted value of 
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the positioning error is superposed on the theoretical coordinates of the target points, and the modified 

coordinates of target points are transmitted to the robot for compensation.  

 

Figure 6. Schematic diagram of robot positioning error compensation based on improved DNN. 

4.  Experimental verification and analysis  

4.1. Coordinate system establishment and data acquisition  

The test platform used to test and verify the robot positioning error compensation method based on the 

improved DNN algorithm is built as shown in Figure 7. KUKA kr500-3 robot is used as carrier and 

API radian laser tracker is employed as measuring device. The laser tracker target ball is placed in a 

fixed position of the end effector carried by the robot. The repeated positioning precision of the robot 

is ±0.06mm, and the absolute positioning precision of laser tracker is ±0.06 μm+3.5μm/m.  

 

Figure 7. Test Platform. 

The theoretical pose of the target point is essentially the coordinate conversion relationship 

between the tool coordinate system and the robot base coordinate system. The robot base coordinate 

system, the flange coordinate system and the tool coordinate system are established by API laser 

tracker. The establishment procedure of robot base coordinate system is as follows:  

(1) Rotate the A1 axis while keep the other axes stationary. Use the laser tracker to obtain the 

position data of the target ball point during rotation process, and fit them into the circle 𝑂1. Use the 

same method to rotate the A2 axis only and obtain the circle 𝑂2.  

(2) Make a plane 1 parallel to the circle 𝑂2 through the center of the circle 𝑂1. Project the center of 

the circle 𝑂2 on plane 1 to obtain the projection point 𝐶2
′.  

(3) Make a plane 2 parallel to the circle  𝑂1 through the projection point 𝐶2
′. Translate plane 2 

down 1045 mm along its normal direction to create the robot base plane. The normal direction of this 

plane is the 𝑍 axis of the base coordinate system. 

(4) Project the center of circle 𝑂1 and the point 𝐶2
′ onto the robot base plane to obtain the origin of 

the base coordinate system and a point on the 𝑋 axis, respectively.  

(5) The base coordinate system of the robot is established by the origin, the point on the 𝑋 axis and 

the 𝑍 axis.  
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A testing space with a size of 600 mm × 1200 mm × 800 mm and is planed within the range of 

robot motion. 2000 target points and 100 verification points are randomly generated according to the 

Latin hypercube sampling method. The target point attitude angle (𝑎, 𝑏, 𝑐) in this testing space is 

within the range of ±10°. The actual positioning errors of the above 2000 target points are obtained by 

using a laser tracker for model verification.  

4.2. Test verification and model comparison  

The theoretical postures of the target points are taken as the input of the DNN, and the actual 

positioning errors of the target points are used as the output of the DNN to train the proposed model. 

1900 target points are used as training samples and the other 100 target points are used as verification 

samples. The GA-DNN and PSO-DNN models are compared with the proposed GPSO-DNN model. 

The maximum training number of the model is 500. The learning rate is 0.01, and the minimum error 

of the training target is 10−5.  

The network parameters of the above three models were determined by trial and error. In the 

proposed model, the number of hidden nodes in the proposed model is [20, 10, 5]; the population size 

is 20; the evolutionary algebra is 50; the learning factors 𝑐1 and 𝑐2 are 1.4962; both the individual 

velocity and position range are [1,1], the crossover factor is 0.2. In GA-DNN model, the population 

size 50; the evolutionary algebra is 100; the crossover factor 𝑝 is 0.3, the mutation probability is 0.1. 

In PSO-DNN model, the population size is 40; the evolutionary algebra is 100; the learning factors 𝑐1 

and 𝑐2 are 1.4962; both the individual speed and location range are [1,1].  
After the definition of network parameters and model training, the predicted position errors 

obtained by three model are added to the theoretical position coordinates of the verification samples to 

achieve the modified position coordinates. These modified positioning points are converted to the 

robot controller to guide robot’s movements. Meanwhile, the laser tracker is employed to capture the 

real position of the robot. The positioning errors are calculated according to Eq. (3) and presented in 

Figure 8. The error compensation of 100 verification points obtained from the three models are 

compared in Table 2.  

 
Figure 8. Comparison of absolute positioning errors before and after model compensation. 

Table 2. Comparison of data compensation results of three models 

Error（mm） Max Min Average Standard deviation 

Uncompensated 1.529 0.124 0.754 0.340 

GA-DNN 0.965 0.017 0.284 0.114 

PSO-DNN 0.519 0.172 0.333 0.062 

GPSO-DNN 0.364 0.097 0.249 0.064 
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It can be seen that the absolute positioning errors of the verification points are significantly smaller 

than those before compensation, and the compensation accuracy of GPSO-DNN is higher than the 

other two models. After the compensation of the GPSO-DNN model, the maximum absolute 

positioning errors of the 100 verification points are reduced from 1.529 mm to 0.364 mm, and the 

average value is reduced from 0.754 mm to 0.249 mm. The maximum absolute positioning error of the 

robot is reduced by 76.19%, and the standard deviation is only 0.034 mm.  

5. Conclusion  

In present research, the Latin hypercube sampling method is employed to conduct sampling plan of the 

robot workspace. A robot positioning error compensation method is proposed based on the improved 

deep neural network (GPSO-DNN). The experimental verification results show that the GPSO-DNN 

based positioning error compensation method has good compensation accuracy. The positioning error 

is reduced from 1.529 mm to 0.364mm, and the positioning accuracy of the robot is greatly improved 

by 76.19%, which verifies the practicality and accuracy of the method.  

Reference  
[1]  Olsson T, Haage M, Kihlman H, Johansson R, Nilsson K, Robertsson A, et al. Cost-efficient drilling 

using industrial robots with high-bandwidth force feedback. Robot Cim-Int Manuf. 2010; 26(1):24-

38.  

[2] Saund B, Devlieg R. High Accuracy Articulated Robots with CNC Control Systems. Sae 

International Journal of Aerospace, 2013, 6(2):780-784.  

[3] Kihlman Henrik, Loser Raimund, Cooke Andrew, et al. Metrology-integrated industrial robots: 

calibration, implementation and testing, Proceedings of the 35th ISR (International Symposium on 

Robotics), 2004.  

[4] Zak G, Benhabib B, Fenton R G, et al. Application of the weighted least squares parameter 

estimation method to the robot calibration. Journal of Mechanical Design, 1994, 116(3):890-893. 

[5] Roth Z S, Mooring B W, Ravani B. An Overview of Robot Calibration. Information Technology 

Journal, 1987, 3(1):377-385. 

[6] Renders J M , Rossignol E , Becquet M , et al. Kinematic calibration and geometrical parameter 

identification for robots. Robotics & Automation IEEE Transactions on, 1991, 7(6):721-732.  

[7] Zhong X, John Lewis, Francis L. N-Nagy. Inverse robot calibration using artificial neural networks. 

Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93.  

[8] Wei Z, Wenhe L, Wei T. Theory and experiment of industrial robot accuracy compensation method 

based on spatial interpolation. Journal of mechanical engineering. 2013,49(03):42-48.  

[9] Xu W L, Wurst K H, Watanabe T, et al. Calibrating a modular robotic joint using neural network 

approach. IEEE World Congress on IEEE International Conference on Neural Networks. 1994.  

[10] H.N. Nguyen, J. Zhou, H.J. Kang, A calibration method for enhancing robot accuracy through 

integration of an extended Kalman filter algorithm and an artificial neural network, Neurocomputing 

151 (2015) 996–1005.  

[11] Zhang LF, Li X, Zhang LY, Ye N. Analysis of the Positioning Error of Industrial Robots and 

Accuracy Compensation Based on ELM Algorithm. Robot. 2018, 40(06):77-85+93.  

[12] Dam E R V , Husslage B , Melissen H H . Maximin Latin Hypercube Designs in Two Dimensions[J]. 

Operations Research, 2007, 55(1):158-169. 

[13] Mckay M D , Conover R J B J . A Comparison of Three Methods for Selecting Values of Input 

Variables in the Analysis of Output from a Computer Code[J]. Technometrics, 1979, 21(2):239-245.  

[14] Baillieul J. Introduction to ROBOTICS mechanics and control. IEEE Transactions on Automatic 

Control, 1987, 32(5):463-464. 

[15] Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural 

Networks, 1995,(4):1942~1948.  

[16] Zhang S , Liu C , Jiang H , et al. Nonrecurrent Neural Structure for Long-Term Dependence. 

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(4):871-884.  

[17] Jeong R, Rilett L R. Bus arrival time prediction using artificial neural network model. International 

IEEE Conference on Intelligent Transportation Systems. 2004.  


