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Abstract. The purpose of this research is to develop a man-machine interface that changes 

machine impedeace based on surface myoelectric potential. The impedance model of the wrist 

joint is constructed from the measured data to derive the moment of inertia, viscosity coefficient 

and rigidity of the human’s wrist joint, investigate the relationship between human joint 

impedance and electromyography (EMG), according to the change of EMG from the relationship, 

We have developed an interface to change the mechanical impedance of the robot arm. We 

investigate the relationship between human joint impedance and EMG, and apply the sparse 

modeling method to the modeling process.  We have created an interface to change the 

mechanical impedance of the robot arm based on the model.As a result, myoelectric potential 

and force data have been acquired. Also, mechanical impedance has been acquired.In this study, 

we improve the estimation accuracy of physical motion by selecting characteristic parameters 

and terms using sparse modeling, which is considered to be feasible by estimating the force that 

occurs at the same time as the position at the time of physical movement. 

1. Introduction 

The purpose of this study is to improve the estimation of physical motion by EMG. The human body 

consists of various muscles, large and small, and the desired behavior is realized by the action of each 

muscle. Then, when the muscle is activated, an action potential called a EMG is generated. EMG have 

a feature called electrodynamic delay that occurs a few seconds earlier than the actual physical 

movement, such as the meaning of motion and information such as the size of the force. Therefore, by 

estimating the physical movement from the EMG, it can be used as an interface that mediates between 

the operator and the machine, such as power assist and teleoperation.  

As a study of Man Machine Interface (MMI) using EMG, Hayashi and his colleagues have identified 

the Nonlinear Regression with EX ogenous inputs (NARX) model, which inputs EMG and outputs the 

neck angle, and has built a system with excellent responsiveness and discretion [1]. However, since 

physical movement is caused by various muscle interactions, it is necessary to estimate the combined 

movement of multiple movements in order to cope with cases where multiple muscle groups such as 

fingers are involved. Hwang and colleagues use the least absolute shrinkage and selection operator 

(LASSO) for multiple degrees of freedom to extract the feature quantity for each channel obtained from 

the EMG [2]. Lasso can reduce the term by selecting characteristic parameters and terms and zeroing 

the other terms.  
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Using Lasso, Ono et al. constructed a model that considers the interaction of multiple muscle stomors 

and joint angles for multiple degrees of freedom of motion as a study of models considering muscle 

interactions, and analyzes the effects on single/complex operations [3]. As a result, Lasso reduces the 

model term and can estimate the degree of wrist angle with high accuracy. However, there is a problem 

that the estimation accuracy is low in that the operation is switched. In this study, we aim to improve 

the estimation degree of physical motion by selecting characteristic parameters and terms using sparse 

modelling. In addition, the estimation of position control only does not take into account the time of 

contact with the object. It is thought that it is possible to estimate a more precise physical movement by 

estimating the force which occurs at the same time as the position at the time of the body movement. In 

this paper, we report the method of angular degree estimation, force estimation, and future prospects at 

the time of palm flexion/back flexion of wrists, flexion/ shaku bending.  

2. System identification based on EMG 

This section describes sparse modelling of 𝑙1  normalization, which simultaneously estimates the 

parameters of a model and sparses the terms. In addition, we describe a NARX model representing a 

nonlinear system between the EMG and the motion used in the previous study, and the sequential least 

squares method to estimate the model parameters. 

2.1. Sparse modeling 

In this study, the sparse modelling is used to select parameters and terms of the constructed model in 

order to improve the estimation accuracy of physical motion. By selecting characteristic parameters and 

terms using sparse modeling, it is thought that overfitting at the time of derivation of the estimated model 

can be eliminated, and the estimation accuracy is improved [4].  

When the vector 𝑥 of 𝐑𝑛 has many elements of 0, the vector is sparse. Sparse vectors have a small 

𝑙0 norm in (1). However, it is in the |supp(𝑥)| ≜ 𝑖 ∈ {1,⋯ , 𝑛: 𝑥𝑖 ≠ 0}. 

       ‖𝑥‖0 ≜ |supp(𝑥)|                           (1) 

2.2. NARX model  

In this section, we describe a method for constructing a NARX model that represents a nonlinear system 

between EMG and motion [5]. For the output signal shown in figure 1, a range is set around the output 

level 𝑦𝑙 (𝑙 = 1, 2, … , 𝑣, 𝑣 + 1,… , 𝑉) relative to Ο. And, an ARX model is identified for each range of 

values. The ARX model near  𝑦𝑙 is (2) when the number of input and output data is N, the input of the 

ARX model is 𝑢𝑙 [𝑘](𝑘 = 1, 2, ..., 𝑁), the output is 𝑦𝑙 [𝑘], the parameter is 𝑎𝑓
𝑙 (𝑓 = 1, 2, ..., 𝐹 ), 

𝑏ℎ
𝑙 (ℎ = 1, 2, ..., 𝐻), and 𝑐𝑙 . However, the output level 𝑦𝑙 is 𝑦(𝑘) ∈  𝑦𝑙 and 𝑦𝑙 = [ 𝑦𝑙−1 , 𝑦𝑙 ]. 

 

Figure 1. Schematic drawings of NARX model 

      𝑦𝑙 = 𝜃𝑙 𝜙𝑙 T                        (2) 

From (2), the parameter vector 𝜃𝑙  of the ARX model is defined as (3), and the data vector 𝜙𝑙  of 

the input and output is defined as (4). 
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     𝜃𝑙 = [ 𝑎1, … , 𝑎𝑛, 𝑏1
𝑙 , … , 𝑏𝑚, 𝑐𝑙 ]𝑙𝑙𝑙              (3) 

   𝜙 = [−𝑙 𝑦𝑙 (𝑘 − 1),… ,− 𝑦𝑙 [𝑘 − 𝑛], 𝑢𝑙 (𝑘 − 1),… ,− 𝑢𝑙 [𝑘 −𝑚], 1]             (4) 

The set of ARX models for all sections is give in (5). 

     𝑦(𝑘) =

{
 
 

 
 

𝜃1 T𝜑(𝑘)T

⋮

𝑦(𝑘) ∈ 𝑦1

𝜃𝑣 T𝜑(𝑘)T

⋮
𝜃
𝑝 T𝜑(𝑘)T

𝑦(𝑘) ∈ 𝑦𝑣

𝑦(𝑘) ∈ 𝑦
𝑝
}
 
 

 
 

         (5) 

When 𝑎𝑓(𝑦), 𝑏ℎ(𝑦), and 𝑐(𝑦) are the interpolation functions, the NARX model is give in (6). 

However, 𝑦̂[𝑘] is the output of the model. 

    𝑦̂[𝑘] = ∑ (−𝑎𝑓(𝑦)𝑦[𝑘 − 𝑓]) + ∑ (𝑏ℎ(𝑦)𝑦[𝑘 − ℎ]) + 𝑐(𝑦)
𝑚
ℎ=1

𝑛
𝑓=1         

    𝑎𝑓(𝑦) = 𝑎𝑓
𝑙 𝑦𝑟 + 𝑎𝑓

𝑙−1 𝑦𝑟−1 +⋯+ 𝑎𝑓𝑦 + 𝑎𝑓
01   

    𝑏ℎ(𝑦) = 𝑏ℎ
𝑙 𝑦𝑠 + 𝑏ℎ

𝑙−1 𝑦𝑠−1 +⋯+ 𝑏ℎ𝑦 + 𝑏ℎ
01                                 (6) 

    𝑐(𝑦) = 𝑐𝑙 𝑦𝑤 + 𝑐𝑙−1 𝑦𝑤−1 +⋯+ 𝑐1 𝑦 + 𝑐0   

2.3. Sequential least squares 
In this section, we describe the sequential least squares method, which is  estimate model parameters. 

The parameter estimate 𝜃𝑙  from the data vector 𝜙𝑙  and the output 𝑦𝑙  is defined as (7). 

    𝜃(𝑁) = (∑ 𝜑(𝑘)𝜑T(𝑘)𝑁
𝑘=1 )

−1
(∑ 𝜑(𝑘)𝑦(𝑘)𝑁

𝑘=1 )  

              ≔ 𝑷(𝑁)𝑸(𝑁)           (7) 

When the inverse matrix of  𝑷(𝑁) is calculated and deformed, (8) is determined. 

    𝑷−1(𝑁) = ∑ 𝜑(𝑘)𝜑T(𝑘)𝑁−1
𝑘=1 + 𝜑(𝑁)𝜑T(𝑁)  

                  = 𝑷−1(𝑁 − 1) + 𝜑(𝑁)𝜑T(𝑁)                           (8) 

As in (8),  𝑸(𝑁) is represented by terms from 1 to 𝑁 − 1 and 𝑁 is an (9). 

    𝑸(𝑁) = ∑ 𝜑(𝑘)𝑦(𝑘)𝑁−1
𝑘=1 + 𝜑(𝑁)𝑦(𝑁)                                        (9) 

 (8) and (9) is assigned to (7), 𝜃(𝑁) can be represented by a 𝜃(𝑁 − 1) as in (10). 

    𝜃(𝑁) = 𝑷(𝑁)(∑ 𝜑(𝑘)𝑦(𝑘)𝑁−1
𝑘=1 + 𝜑(𝑁)𝑦(𝑁))  

              = 𝜃(𝑁 − 1) + 𝑷(𝑁)𝜑(𝑁){𝑦(𝑁) − 𝜑T(𝑁)𝜃(𝑁 − 1)}                    (10) 

By using the idea of inverse matrix lemma here, It is possible to represent 𝑷(𝑁) as shown in (11) by 

the value 𝑷(𝑁 − 1). 

    𝑷(𝑁) = 𝑷(𝑁 − 1) −
𝑷(𝑁−1)𝜑(𝑁)𝜑T(𝑁)𝑷(𝑁−1)

1+𝜑T(𝑁)𝑷(𝑁−1)𝜑(𝑁)
      (11) 

(11) from 𝑷(𝑁)𝜑(𝑁) is represented by 𝑷(𝑁 − 1) as shown in (12). 

     𝑷(𝑁)𝜑(𝑁) =
𝑷(𝑁−1)𝜑(𝑁)

1+𝜑T(𝑁)𝑷(𝑁−1)𝜑(𝑁)
       (12) 

When (12) is assigned to (10), it becomes e (13). However, the prediction error is 𝜀(𝑁). 

    𝜃(𝑁) = 𝜃(𝑁 − 1) +
𝑷(𝑁−1)𝜑(𝑁)

1+𝜑T(𝑁)𝑷(𝑁−1)𝜑(𝑁)
𝜀(𝑁)       (13) 
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    𝜀(𝑁) ≔ 𝑦(𝑁) − 𝜑T(𝑁)𝜃(𝑁 − 1)  

 (11), (13) is a new time-to-time formula used in the sequential least squares method. However, 𝛾is 

a positive constant and the initial value of the parameter estimate 𝜃 and the covariance 𝑷 is (14), (15). 

      𝜃(0) = 𝜃0        (14) 

      𝑷(0) = 𝛾𝑰        (15) 

3. Measurement of the movement of the hand joint  

We construct a model from the EMG, wrist angle, and contact force at the time of palm flexion and back 

bending, and evaluate the estimation accuracy of wrist movement. To measure the EMG that occurs 

during movement and operation of the hand joint when the hand is not in contact with the object and the 

EMG that occurs during the operation and operation of the hand joint during the operation and operation 

of the hand during the operation and operation of the hand.  

3.1. Measurement of hand joint motion when non-contact to object  

Here, we show the wrist movement and the measurement environment of the EMG and the experimental 

task when the hand is not in contact with an object. 

3.1.1 Measurement environment. In this bar, we describe the method of measuring the EMG and wrist 

angle at the time of palm flexion/back flexion and tibia flexion/shaku flexion and signal processing 

method. figure 2 shows the measurement environment. We show the EMG obtained by a dry wireless 

electromyography sensor of in Table 1 ch1 to ch4. 

  

Figure 2. Measurement environment 

Get the wrist angle by attaching a goniometer to the back of your hand. In this work, we obtain EMG 

and wrist angular velocity both at a sun-pling time of 1 ms. Then, the measured signal is the operation 

characteristic is extracted by the processing shown in figure 3, and it is an input signal for the same 

constant. The cut-off frequency of the EMG is 5 Hz. In addition, the cut-off frequency of the low 

frequency component of the wrist angle is 0.05 Hz, and the number of cut-off frequencies of the high-

frequency component at 5 Hz. In the smoothing of figure 3, a low-pass filter of equation (16) is applied 

to the EMG. For wrist angle, the bandpass filter of equation (17) is applied. For wrist angle, the bandpass 

filter of equation (17) is applied. 

 

 

Figure 3. Method of the signal processing 

      𝐺𝑙(𝑠) =
𝑤𝑙

2

(𝑠+𝑤𝑙)
2        (16) 

                               𝑤𝑙 = 2𝜋𝑓𝑙    𝑓𝑙 = 5 𝐻𝑧  

Table 1. EMG measurement location. 

sensor  Measurement point 

ch1 Short-tibia lateral carpal elongus 

ch2 Long tibia lateral carpal esotusmuscle 

ch3 flexor carpal muscle 

ch4 flexor carpal muscle 
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     𝐺𝑏(𝑠) =
𝑠𝑤𝑏2

𝑠2+(𝑤𝑏1+𝑤𝑏2)𝑠+𝑤𝑏1𝑤𝑏2
           (17) 

             𝑤𝑏1 = 2𝜋𝑓𝑏1 𝑤𝑏2 = 2𝜋𝑓𝑏   2𝑓𝑏1 = 0.05 𝐻𝑧  𝑓𝑏2 = 5 𝐻𝑧 

3.1.2 Experimental tasks. In this experiment, the wrist is repeated alternately by the operation of the 

palm flexion / back bending while the hand does not come into contact with the object as in figure 4, 

and the angular displacement 𝜃 of the hand neck obtained from the EMG and the goniometer at the time 

of operation is measured. In addition, the angular displacement 𝜃 of the wrist obtained from the EMG 

and the goniometer at the time of operation is repeated alternately as at the time of palm flexion / back 

bending as at the time of flexion / shaku bending as figure 5. 

  

Figure 4. Palm bending / back-bending 

operation when non-contact 

Figure 5. Deflection / shakubutting operation 

when non-contact 

3.1.3 Experimental results. It shows the measurement result of the wrist movement and myoelectric 

position signal in the state where the hand is not in contact with the object. The EMG of ch1,ch2 are at 

the time of palm flexion / back bending in figure 6 and figure 7, the ch1,ch2 at the time of succumbing/ 

back bending, the wrist angle at the time of palm flexion / back bending in figure 8, the EMG of ch1,ch2 

at the time of tibia bending / shaku bending in figure 9 and figure 10 to tibia / shaku flexion , showing 

the wrist angle at the time of flexion / succumb in figure 11. Since the EMG is positive and negative, 

the EMG of ch1,ch3 is converted to a negative value to make it easier to see the graph after the signal 

processing. We design an estimation model based on this measurement data. 

   

Figure 6. EMG signal during 

palm flexion / dorsiflexion of 

ch1 and ch2 

Figure 7. EMG signal during 

palm flexion / dorsiflexion of 

ch3 and ch4 

Figure 8. Angle during palm 

flexion / dorsiflexion 

   

Figure 9. EMG signal during 

cramped / crouch of ch1 and 

ch2 

Figure 10. EMG signal during 

cramped / crouch of ch3 and ch4 

Figure 11. Angle during 

cramped / crouch 
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3.2. Measurement of the movement of the hand joint when in contact with an object   

We showhere wrist movement and measurement environment of EMG and experimental task in the state 

where the hand is in contact with an object. 

3.2.1 Measurement environment. We describe the measurement method and signal processing method 

of EMG, wrist angle, contact force at the time of palm flexion/ back flexion and tibia flexion/ shaku 

bending when contacting an object. We constructed a measurement environment of figure 12. The 

mounting position of the muscle potential sensor and the goniometer, the sampling time of the sensor, 

and the signal processing method are the same as when measuring at the time of non-contact. The contact 

force of the hand is measured by contacting the hand to the force measuring instrument when the hand 

is operated. 

 

Figure 12. Measurement environment 

3.2.2. Experimental tasks. In this experiment, as shown in figure 13, with the hand in contact with the 

object, the wrist was alternately repeated with palm flexion / dorsiflexion, and the wrist angular 

displacement 𝜃 obtained from the myoelectric signal during movement and the goniometer 𝜃 Measure 

the contact force F of the hand. Also, as shown in figure 14, during buckling / scale bending, as with 

palm flexion / dorsiflexion, buckling / scale bending is repeated alternately, and the wrist angular 

displacement obtained from the EMG signal and goniometer during operation. Measure 𝜃 and hand 

contact force 𝑭. 

  

Figure 13. Palm bending / back-bending 

behavior at the time of contact 

Figure 14. Deflection / shakubutting operation 

at the time of contact 

4. Conclusion 

The purpose of this study is to improve the accuracy of the estimation of physical motion by EMG. In 

this paper, we describe sparse modeling, NARX model, and actual test task used to identify the system 

of EMG. In the future, we will measure using these and analyze the estimation of physical motion from 

EMG. 
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