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Abstract. Based on ant colony algorithm to solve the defect analysis of VRP problem, an 

adaptive dynamic search ant colony algorithm (ADACO) is proposed. Firstly, the model is 

established and the combination parameters is experimentally configured. Secondly, the 

strategy of combining pseudo-random and adaptive transition probability are used to help the 

group choose a higher quality path. When the group is in a local predicament, the segmented 

setting of the pheromone intensity induces the group to break out of the predicament in time. 

Finally, multiple groups of experimental tests are performed on the "Jia-hui Fresh" cargo 

delivery case. The results show that, compared with the original algorithm, the ADACO 

algorithm has respectively improved 17.65%, 16.13% and 16.10% in terms of delivery cost, 

convergence algebra and CPU running time. 

1. Introduction 

Vehicle routing problem (VRP) refers to a group of vehicles can traverse a series of specific points 

that depart from a specified location [1]. The traditional methods to solve the problem often fail to 

achieve the desired results, such as precise algorithms [2] and heuristics [3]. Therefore, scholars 

combine AI with heuristic algorithms, such as simulated annealing (SA) [4], tabu search (TS) [5], 

genetic algorithm (GA) [6] and ant colony algorithm (ACO) [7]. 

Compared with other algorithms, ACO has a unique advantage in path finding. However, when the 

scale of the problem is large, the algorithm is liable to fall into a local dilemma, the search space 

cannot be further explored and developed, so that additional time overhead is also added [8,9]. As a 

result, scholars have make different levels of improvements. For example, Zhang Qiang et al. [10] 

combined artificial immune with ACO to solve the "last mile" problem of emergency food delivery. 

Zhang Wenbo et al. [11] eliminated the restrictions of the taboo table, and modified the final travel of 

the individual to achieve partial point traversal of the connected graph. Meanwhile, a temporary 

weight matrix was introduced to avoid repeatedly selecting paths with small weights. Thus, the path 

planning problem of multi-scenic spots is solved. Duan Ping et al. [12] modified the update rules of 

pheromone and evaporation coefficient, and adopted the boundary symmetric mutation strategy to 

improve the mutation performance. Although it improved the efficiency and quality of the solution. 

The above improvement method mainly change part of the update rules or mix other algorithms. 

However, the number of pheromone, path heuristic function, product of pheromone number-heuristic 

function and cooperative behavior of search individuals are closely related in ACO, which seriously 

affects the convergence of the algorithm. Based on the above research and analysis, this paper 

proposes an adaptive dynamic search ant colony algorithm (ADACO). Firstly, the key parameters of 
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the combination is experimentally set, and the adaptive pseudo-random selection strategy is used to 

help the group reasonably choose the next transfer direction. In addition, the segmented setting of 

pheromone intensity can inspire the group to jump out of the dilemma in time. Finally, the algorithm 

before and after optimization are used to carry out multiple experiments on the case of cargo delivery. 

Multi-angle analysis of experimental results prove that ADACO is more efficient in solving the VRP 

problem, which greatly reduces the time and delivery cost. 

2. VRP Model  

2.1. Model assumptions 

(1) The delivery vehicles are of the same specification and there is no slight error. 

(2) Do not consider urban traffic jams. 

(3) The delivery vehicles always run at a constant speed and the delivery cost within a unit distance 

is equivalent. Therefore, the driving distance can represent the delivery cost. 

2.2. Symbol description 

The relevant symbol descriptions included in the model are shown in Table 1. 

Table 1. Explanation of related symbols. 

Symbol Description 

n  Number of demand points, use i and j to represent different demand 

points 

 
V  A collection of delivery centers and various demand points 

S  Any set of demand points 

m  The total number of vehicles, where k represents the vehicle number 

 ijc  The delivery cost from demand point i to demand point j 
 L  Maximum range of vehicle 

 W  The vehicle rated load limit 

iq  The quantity demanded at point i 

 

2.3. Objective optimization function setting 

The objective optimization function is defined as 
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Eq. (1) expresses the minimum total delivery cost. Eq. (2) indicates that the single delivery quantity 

of vehicle k does not exceed the rated load limit of vehicle. Eq. (3) indicates that the single driving 

distance of vehicle k is not more than the maximum limit distance. Eq. (4) indicates that the demand 

point i is only distributed by one vehicle. Eq. (5) indicates that a total of m vehicles participate in the 

delivery. Eq. (6) and Eq. (7) represents the relationship between two variables. Eq. (8) and Eq. (9) 

indicates that both variables satisfy the 0-1 constraint. Eq. (10) indicates that there is no loop 

phenomenon in the delivery. 

3. ADACO Algorithm 

3.1. ADACO algorithm model 

When solving large-scale VRP problems, the quality and efficiency of the solution are reduced due to 

the shortcomings of ACO. This paper analyzes its internal and external factors and makes some 

improvements based on the original algorithm framework. 

(1) Improvement of transition probability ( )k

ijp t  

This paper adopts the strategy of combining randomness with deterministic selection and adjusts 

the transition probability to be adaptive. In detail, the algorithm first generates a random number 

[0,1]q  and determines the sizes of q  and 0q . If 0q q , choose the best edge according to Eq. 

(11), otherwise use the adaptive transition probability ( )k

ijp t  in Eq. (12) to update 

( ) 0arg max {[ ( )] [ ( )] },
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ku J i iu iu
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t t h t q q
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In Eq. (11), 
1

0 1 ( 1,2,..., )nc iterationsq e nc


   ,iterations is the maximum number of cycles. ( )kJ i  

indicates the city that ant k is allowed to choose next. ( )ij t represents the number of pheromones on 

the path ( , )i j at time t. 1ij ijd  represents a heuristic factor.  and  represent the weight ratio of 

pheromone and heuristic information respectively on the path. 
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In Eq. (12), as the number of iterations increase, the weight ratio between pheromone guidance
4  t

iterations

    and heuristic factor 
2  t

iterations

    keep changing, realizing the self-adaptation of 

transfer probability.  

When all ants have completed the traversal task, the update rule for the number of pheromones on 

each path is defined as 

 ( ) (1 ) ( ) ( )ij ij ijt n t t                                 (13) 
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In Eq. (13), (0 1)    is the pheromone evaporation ratio. k

ij represents the pheromone 

increase of ant k on the path ( , )i j , which is usually defined by the Ant-Cycle model [9], as shown in 

Eq. (15). ( )ij t represents the pheromone increase of o ants on the path ( , )i j . 

(2) Dynamic adjustment of pheromone intensity iQ  
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In Eq. (15), the setting of piecewise function iQ  is shown in Eq. (16). 
kL represents the path 

length traveled by ant k in this iteration. 
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In Eq. (16), the segmentation of iQ  timely adjusted the pheromone intensity guidance on the path, 

which giving the algorithm the ability to jump out of local error. 

3.2. Pseudo code of ADACO algorithm 

According to the construction of the ADACO algorithm model in section 3.1, the pseudo code of the 

algorithm to solve the VRP problem is described as follows 

Algorithm : ADACO algorithm for VRP problem 

Input: Objective optimization function: min Z; Experimental parameters: , , , , ...o iterations   ; The 

location information for warehouses and demand points; Demand at points. 

Output: Global distribution plan and distribution costs. 

nc = 1; 

while nc <= iterations  // Stop condition 

   For k = 1: o  // Cycle to o ants 

     While 0k   

       For j = 1: n  // Traverse n points 

     If k j    // tabu list k does not include point j 

            add point j to ( )kJ i ; 

         End 
       End 

       For j = 1: ( )kJ i   // ( )kJ i : list of demand points to be visited 

         If  vehicle remaining amount >= demand at the site to be visited 

            select point j according to Eq. (11), calculate the loading distance, and update k and ( )kJ i ; 

         Else  

Invoke a new vehicle and increase m by 1, and continue traversing according to Eq. (11); 

         End 
       End 

End 

calculate the path length of the solution, which is the distribution cost; 
End 

    Update the pheromone increment ij and global path pheromone ij on the path according to Eq. (11) 

to Eq. (16); 
nc = nc +1; 

clear k ; 

End 

4. Experimental calculation and analysis 

This paper takes the problem of goods delivery of "Jia-hui Fresh" in Zhengzhou as an experimental 

case. The warehouse supplies goods to various chain stores. In this case, the warehouse number is set 

to 0 and the position coordinates are (100, 400). The location coordinates and demand of the chain 

stores are shown in Table 2. The location coordinates are transformed into the XOY plane, as shown 

in Figure 1. 
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Table 2. Location coordinates and demand of chain stores. 

Number X axis Y axis Demand Number X axis Y axis Demand 

1 610 203 3.67 11 542 502 3.29 

2 620 395 3.58 12 440 430 3.18 

3 524 250 3.15 13 491 510 3.36 

4 640 140 3.46 14 404 485 3.54 

5 563 140 3.77 15 602 0 3.46 

6 467 230 2.89 16 330 410 3.38 

7 470 210 3.08 17 350 90 3.56 

8 572 488 3.24 18 263 151 3.18 

9 519 120 3.43 19 345 20 3.49 

10 480 130 3.62 20 273 470 3.67 

 
  Figure 1. Distribution of warehouses and chain stores on XOY plane. 

4.1. Parameter settings 

In ACO, the combination configuration of  ,  and  is the key to measure the algorithm 

performance and solution efficiency. On the TSP problem in this case, the combined parameters are 

experimentally set according to the rule that one parameter value is modified and the other two remain 

unchanged. The initial parameters are 1  , 1  , 0.7  , 100iterations  .  

This experiment is divided into three groups, and each group is run for 10 times. The running 

results are shown in Figure 2. The worst, average, optimal path length and difference represent the 

maximum, average, minimum and the differences between maximum and minimum in the results of 

10 runs. Therefore, the best combination parameter can be set to 1  , 4  , 0.7  . 

 

Figure 2. The effect of different configurations of  、  and  . 

According to the experiment scale, other parameters can be set as follows: the number of chain 

stores 20n  ; The number of ants 100o  ; The iteration interval ( 1, 2) 30,60it i   ; The pheromone 

intensity. 

4.2. Analysis of experimental results 

In this section, the algorithm before and after optimization are tested and analyzed comprehensively. 
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Aiming at the two aspects of improvement, the adaptive transfer ant colony method (AACO) and the 

dynamic directed ant colony algorithm (DACO) are respectively obtained, and the other two groups 

are ACO and ADACO. Figure 3 and Figure 4 respectively draw the corresponding delivery scheme, 

total delivery cost and convergence algebra of the four algorithms. Table 3 lists the results of each of 

the four algorithms running 10 times. 

  

   
Figure 3. The distribution scheme corresponding to four algorithms. 

   

   
Figure 4. Distribution costs of the four algorithms. 
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Table 3. The results of 10 runs of four algorithms. 

Number 
ACO AACO DACO ADACO 

Cost Algebra CPU Cost Algebra CPU Cost Algebra CPU Cost Algebra CPU 

1 4744 35.35 21.44 4729 29.29 17.10 4710 31.31 20.38 4674 34.34 20.31 

2 4750 31.31 22.11 4725 28.28 19.66 4714 30.30 15.22 4689 28.28 18.23 

3 4753 32.32 23.81 4725 34.34 18.06 4710 33.33 17.83 4680 30.3 21.43 

4 4750 55.56 20.37 4725 30.30 27.46 4710 30.30 24.35 4674 29.29 18.46 

5 4744 31.31 21.57 4729 46.46 20.63 4710 32.32 20.48 4689 28.28 16.51 

6 4747 33.33 18.76 4729 33.33 19.50 4714 34.34 23.44 4689 30.30 17.12 

7 4758 31.31 19.86 4740 30.30 21.14 4714 30.30 18.31 4689 35.35 16.31 

8 4757 34.34 19.70 4729 31.31 24.54 4713 33.33 17.27 4674 26.26 20.25 

9 4747 35.35 25.63 4734 29.29 18.80 4715 32.32 19.61 4674 33.33 16.06 

10 4758 31.31 23.51 4732 28.28 19.08 4713 31.31 21.02 4674 34.34 17.29 

Best 
value 

4744 31.31 18.76 4725 28.28 17.11 4710 30.30 15.22 4674 26.26 16.06 

Average 

value 
4750.8 35.15 21.68 4729.7 32.12 20.20 4712.3 31.92 19.79 4680.6 31.01 18.20 

Worst 

value 
4758 55.56 25.63 4740 46.46 24.55 4715 37.37 24.35 4689 35.35 21.43 

Combining the chart and table, it is clearly seen that only the routes of vehicles 1 and 3 are 

different in the four algorithms, but the total delivery cost are slightly different. Figure 3a shows that 

the vehicle 1 in ACO traverses No. 20 , No. 16 and then turns to No. 14, contrary to the axiom "the 

shortest line between two points". In addition, Table 3 shows that the delivery cost of ACO is mainly 

concentrated around 4750, but Figure 4a shows that in the 5th generation, the bottleneck is expected to 

be broken and close to 4710. While the convergence algebra also shows ups and downs and is not 

stable. Therefore, it can be seen that ACO has a certain improvement space. Table 3 also shows that 

the delivery cost of AACO and DACO are relatively stable and tend to be around 4729 and 4710 with 

a certain probability. In terms of convergence algebra, the former is irregular, and the latter is mainly 

stable in the 30-34 generation. Figure 3b and Figure 3c show that only the route of vehicle 3 is slightly 

different between the two algorithms, but the difference of the total delivery costs is 15. This 

difference fully demonstrates that the route of vehicle 3 in DACO is desirable. Figure 4c shows that 

the delivery cost of DACO has a significant jump in the 30th generation, which exactly confirms the 

feasibility of interval setting of pheromone intensity to guide the group to escape from the predicament 

in time. Although AACO and DACO have improved slightly in all aspects compared to ACO, they are 

far from enough. By combining the two algorithms effectively, ADACO is obtained by absorbing the 

advantages of both algorithms. Comparing Figure 3c and Figure 3d, the two algorithms differ only in 

the driving route of vehicle 1, but ADACO is no longer limited to the constraint of 4700 and is 

reduced to 4674 with a 50% probability, and the optimal convergence algebra has reached 26.26. From 

a macro perspective, the CPU runtimes 

of the four algorithms are uneven, without any regularity.  

Through the vertical and horizontal comparison of the running results in Table 3, the improvement 

strength of the three improved algorithms over ACO are obtained, as shown in Table 4.  

Table 4. The improvement strength of the three improved algorithms over ACO. 

Category 1 Category 2 ACO AACO DACO ADACO 

Cost 

Best value  0.4% 0.72% 1.48% 

Average value  0.44% 0.81% 1.48% 

Worst value  0.38% 0.9% 1.45% 

Algebra 

Best value  9.77 % 3.23% 16.13% 

Average value  8.62% 9.19% 11.78% 

Worst value  16.38% 32.74% 36.38% 

CPU 

Best value  8.8% 18.87% 14.39% 

Average value  6.83% 8.72% 16.05% 

Worst value  4.21% 4.99% 16.39% 
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5. Conclusion 

After analyzing the internal and external factors of ACO's shortcomings, this paper not only 

experimentally sets the key combination parameters, but also properly adjusts the transition 

probability and pheromone strength. Therefore, an adaptive dynamic search ant colony algorithm 

(ADACO) is proposed. In addition, the algorithm before and after the optimization are tested multiple 

times on test case. The results strongly show that ADACO has strong global optimization ability in 

solving VRP problem, which saves time and greatly reduces vehicle delivery cost. 

The algorithm in this paper is applicable to the logistics industry represented by "CAINIAO 

STATION". The purpose is to use the least number of cars, travel the shortest distance and reasonably 

complete the delivery service. In order to meet the convenience of human social life and diversified 

needs, the delivery and pick-up service industry will be the next research direction, which is carried 

out simultaneously and increases the time window. 
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