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Abstract. Software defect refers to the code error in the process of software development, 

which could cause execution fault under specific conditions, resulting in failure, collapse, and 

high cost of the target software. Traditional detection techniques for software defect contain 

static and dynamic analysis, both of which require a great deal of workforce and time. With the 

development of machine learning and deep learning, software defect prediction has opened a 

new avenue to circumvent the drawbacks of traditional analysis approaches. Although various 

learning-based techniques in the prediction field have been developed, there is a lack of 

systematic summary and classification from the technical point of view. This paper studies the 

problem from the three aspects: traditional machine learning, deep learning, and hybrid 

learning. Moreover, the predicted performance is discussed in detail, especially in cross-project 

and just-in-time, to understand current research status thoroughly. This paper also provides a 

useful guide for further research, particularly for the potential usage of deep learning in 

semantic defect prediction.  

1. Introduction 

Software defect refers to code errors (commonly known as bugs) in the process of software 

development. In most cases, such defects will cause software faults under certain conditions and lead 

to application failure. In the age of information, software defects are able to lead to information 

security problems. Such type of software defects, called software vulnerability, is prone to raising 

severe resource loss and poor user experience. The earliest known example of system defect was the 

Mariner 1 launch failure in 1962 when NASA had to destroy an $80 million spacecraft because there 

was a hyphen missed in the FORTRAN program [1]. The "Morris Worm" of cybersecurity forced 

people to focus on software vulnerability more than three decades ago and provided an impetus for the 

US to create the CERT (National Internet Emergency Response Center) [2].  

Software defect analysis is of great importance in checking software defects. The most direct 

analysis way is static analysis, which can find defects by using various techniques. A large number of 

tools such as Coverity Scan [3] and Fortify SCA (Static Code Analyzer) [4] have been developed to 

perform such static analysis. Dynamic analysis is another defect analysis approach which tracks the 

execution of programs as well as analyzes the memory information and function calls. In this way, it 

can find exceptions and use techniques such as ambiguity test and stain analysis to identify defects. 

Many tools are relying on dynamic analysis, such as Valgrind [5] and Ftrace [6]. Although traditional 

software defect analyses become sophisticated, it is evident that static analysis is labor-intensive and 

performs poorly in semantic analysis. The resources and time expended are usually unacceptable for 



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

2

dynamic analysis, since it has to test every line of code. Thus, dynamic analysis is seldom used in 

practice. 

With the development of machine learning and statistical theory, it is more likely to introduce such 

techniques to the timely detection of defects in the software development phase. As a result, software 

defect prediction with learning-based methods gradually becomes an emerging research field. In the 

early years, some researchers exploited statistical and probabilistic approaches to predict the defect 

time distribution of the software’s life cycle [7], which belongs to the research field of reliability 

engineering. After the year 2000, many researchers began to use machine learning to predict defects in 

programs [8]. 

In recent years, with the development of artificial neural network (ANN) and natural language 

processing (NLP), deep learning has become popular in many researchers [9-12]. Compared with 

traditional machine learning, which is based on strict metrics, deep learning tends to convert source 

code into vectors to learn directly. Vectors can preserve code information thoroughly; they even 

include the annotation information [13]. Deep learning has excellent performance in both syntax 

learning and semantic learning. 

At present, although lots of researches are on software defect prediction, there lacks a systematic 

summary from the technical perspective. Therefore, this paper aims to address this technical gap by 

investigating as well as classifying the related work of software defect prediction. Also, this paper 

summarizes the advantages and disadvantages of the related techniques which provide support for the 

future work of software defect prediction. 

2. Techniques 

Software defect prediction refers to the use of machine learning in the early stage of software 

development. It can save development costs and improve development speed. The core of its 

performance is machine learning algorithms. Technically, learning-based software defect prediction 

includes three main branches: traditional machine learning, deep learning, and transfer learning. 

2.1. Traditional Machine Learning 

Traditional machine learning has been explored for a long time, and its algorithms are relatively 

straightforward. Here are three typical traditional machine learning techniques that are widely used. 

2.1.1. Random Forest. The random forest is initially proposed by Breiman L et al. [14], which works 

as a classifier with multiple decision trees that collaborate as a forest for decision. The multiple 

decision trees vote their result, and RF employs a bootstrap sample to ensure the independence of 

multiple decision trees as well as increases the correlation between decision trees. It is capable of 

handling multi-variable inputs and large datasets, with relatively high accuracy, especially in handling 

unbalanced datasets. The forest decision mechanism can estimate the generalization error without bias.  

2.1.2. Bayesian Network. The Bayesian network, also known as the belief network or directed acyclic 

graphical model is a probabilistic graphical model. Every node in the graph represents a random 

variable, while every edge represents a conditional dependency. Also, the Bayesian network is 

efficient at dealing with uncertain problems. Bayesian network expresses the correlation between 

information elements using conditional probability and is able to learn and reason with limited, 

incomplete, or uncertain information. 

2.1.3. Support Vector Machine. Support Vector machine is first proposed as a generalized linear 

classifier for binary classification whose decision boundary is the maximum-margin hyperplane of the 

input learning samples. SVM was introduced as early as 1964. However, it did not until the 1990s [15]. 

Besides performing linear classification, SVMs can also perform a non-linear classification with the 

kernel trick which maps their inputs into high-dimensional feature spaces implicitly.  
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2.2. Deep Learning 

Deep learning originates from the ANN. As early as 1943, psychologist W. S. Mcculloch and 

mathematical logician W. Pitts built its neural networks and mathematical models, and by the 1980s, 

ANN had become a hot topic in artificial intelligence [16]. The concept of deep learning was not put 

forward until 2006 by Hinton G et al. [17]. Deep Learning transforms initial "low-level" feature 

representation into "high-level" through multi-layer processing; it can complete complex classification 

tasks with simple models. Also, it has the capabilities of feature learning and representational learning. 

Therefore, it can achieve better performance while being flexible. All these attributes contribute to the 

rapid development of machine learning.  

2.2.1. Deep Belief Network. DBN is the earliest deep learning method, proposed by Hinton in 2006 

[17]. DBN is a generative graphical model. Compared with traditional neural network model, it can 

establish a joint distribution between the observation data and labels which evaluates both 

P(observation | label) and P’(label | observation) while the discriminant model only evaluated the 

P(label | observation). 

DBN consists of multiple restricted Boltzmann machines (RBM) layers which contain a visible 

layer and multiple hidden layers. There are connections between the layers, but the cells within a layer 

are not interconnected. Elements inside the hidden layer are trained to capture the correlation of 

high-order data in the visual layer, which is also known as feature extraction. The training process is 

carried out layer by layer according to the RBM. 

2.2.2. Convolutional Neural network. CNN is a class of convolutional feedforward neural network 

with a depth structure and is capable of shift-invariant classification. It is constructed to mimic the 

visual perception of biological processes and can be used for both supervised learning and 

unsupervised learning. The convolution kernel parameter sharing in the hidden layer and the sparsity 

of the connection between layers make it possible for CNN to handle high-dimensional data properly. 

Also, it is unnecessary to select the features manually to make the classification effective. Essentially, 

it is a mapping between inputs and outputs. With an adequate amount of known patterns about the 

mapping between inputs and outputs, there is no need for any exact mathematical expressions.  

2.2.3. RNN/LSTM/GRU. Recurrent Neural Network (RNN) is a kind of artificial neural network where 

nodes and their connections form a directed graph along a temporal sequence [11]. RNN was proposed 

in the 1980s and developed rapidly in the past ten years. RNN can deal with time series not only 

spatially, but also temporally, i.e., memorization. It is Turing complete and has parameter sharing. As 

a result, RNN can efficiently acquire the nonlinear features that are in order.  

With the increasing application of RNN, it is found that there is a long-term dependencies problem, 

that is, there are gradient vanishing and gradient explosion phenomena when learning sequence. This 

problem means RNN cannot guarantee the long-term nonlinear relationship. For this reason, a large 

number of optimization theories were introduced, and many improved algorithms are derived. To 

name a few, long short-term memory networks (LSTM) [11], gated recurrent unit networks (GRU) 

[12], echo state networks (ECHO state networks) and independent recurrent neural networks 

(Independent RNN) [18]. 

2.3. Transfer Learning 

In traditional classification learning, in order to guarantee accuracy and reliability, two fundamental 

assumptions are followed. The first one is that the training samples and the test samples are 

independent and identical distribution. Secondly, there should be enough training samples to learn and 

get a satisfactory classification model. However, these two conditions cannot be well met in practical. 

Besides, building a new model is complicated and time-consuming. Transfer learning solves these 

problems by making use of the existing learning achievements to speed up the learning progress. 
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Transfer learning usually can be divided into feature-based learning and instance-based learning [8]. 

Feature-based transfer learning is mainly used to identify the common features between the source 

domain and the target domain, and then transfer knowledge using these features. Instance-based 

transfer learning is also commonly used to solve the domain adaptation problem by selecting the 

training samples which are beneficial to the classification of the target domain. 

3. Software Defect Prediction 

Software defect prediction is a critical part of software quality assurance. With the rapid increase of 

software size and quantity, it becomes increasingly difficult to check the software defects by manual 

checking or basic tools. Especially when it comes to cross-project or cross-version situations, there is 

very few knowledge to be transferred. Most current editors give proper just-in-time notifications for 

some syntax errors, but not for complex syntax errors, and not to mention semantic errors. 

In order to perform the software defect prediction automatically, machine learning is introduced 

and has an excellent effect. The traditional machine learning mainly applies the probability statistics 

method, using extracted features and software measure metrics to learn classification and predict 

defect. With the development of deep learning and NLP, it brings the evolution of software defect 

prediction. There is a tendency for a source code based software defect prediction research, and the 

method is gradually applied in practice. In recent years, Hybrid Learning has been applied in many 

defect prediction scenarios. It integrates a variety of learning models and algorithms to improve the 

prediction accuracy. 

3.1. Machine Learning 

Luca et al.[19] test different classifiers, i.e., binary logistic regression (BLR), J48, ADTree, multilayer 

perceptron (MLP), naive Bayes (NB), and random forest (RF). They use the RF algorithm, which has 

a higher performance to 10 data sets and conduct the training by selecting more predictive variables. 

The result of short-term defect prediction was proved to be effective.  

Yeongjun C et al.[18] use three machine learning classification methods: RF, logistic regression 

(LR) and NB on five different programming languages and projects from various application areas. 

The datasets not only cover sub-projects but also cross-sub-projects in the machine learning training. 

All three learning methods have achieved satisfying results. 

Osman H et al. [20] apply two commonly used machine learning algorithms: k-nearest neighbors 

(KNN) and SVM, which improve the prediction accuracy by hyperparameter optimization. The 

experiment result of 5 open-source Java programs shows that the defect prediction accuracy has 

increased by 20% and 10%, respectively, for the two learning algorithms. 

Sokratis t et al. [21] use four conventional machine learning methods: C4.5 decision trees, NB, 

Bayesian networks (BN) and LR to predict the performance defects of commercial real-time systems 

(RTS) applications. They also perform necessary preprocessing such as cleansing and re-balancing for 

the datasets before learning. The result of their experiment is promising, especially for the C4.5 

decision trees and BN. 

Puja A H et al. [22] use NB algorithm to compute the Chidamber and Kemerer object-oriented 

metric (CK OO) as the feature parameters. They select the petstore web application and other project 

datasets to run cross-project defect prediction (CPDP) experiments. The results indicate relatively high 

accuracy of 72.30% - 89.30% and slightly low false alarm of 5% - 26.67%, which can predict more 

defect modules than traditional code review. However, it has low precision and recall score, around 

12.5% - 25% and 20%-60%. 

Yanhong Yang et al. [23] use the cluster ensemble method to run CPDP and use unsupervised 

learning to deal with unlabeled datasets directly, thus avoiding different data distribution problems. 

The experiment is carried out on 15 open source projects. Compared with the three most used 

supervised learning methods: LR, decision tree (DT), and RF, it produces better prediction results. 
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Kishan K G et al. [24] use the well-received NASA defect datasets in defect prediction research 

and preprocess the datasets with repeated attribute removal and noise removal using machine learning 

algorithms such as NB, LR, DT, RF, and MLP. The learning performance is improved by cleaning the 

data, and the results show that these learning algorithms have agreeable performance. 

Lipika G et al. [25] focus on the severe imbalance problem of data sources from different projects, 

which have a significant impact on the performance of CPDP. They use the synthetic minority over-c 

technique (SMOTE) to preprocess the datasets, and run experiment on the open PROMISE repository 

using gradient boosting, compared with another kind of ensemble learning algorithm like RF, and 

achieve better prediction performance. 

3.2. Deep Learning 

Wang et al. [9] propose to leverage the DBN based representation-learning algorithm to learn the 

semantic representation of programs automatically from source code. To this end, they extracted the 

abstract syntax trees (ASTs) from a targeted app and generated corresponding token vectors. The 

experiments on ten open source projects demonstrate that the proposed approach significantly 

improves the performance of both within-project defect prediction (WPDP) and CPDP compared to 

traditional features.  

Thong et al. [10] introduce two software projects (QT and OPENSTACK), which were first 

collected by Shane and Yasutaka and used for relevant research. They propose a CNN based method 

and train the model on the two software projects. In this process, the researchers keep optimizing the 

CNN parameters in three ways (cross-validation, short-period, and long-period). Compared with the 

state-of-the-art approach, the result achieves improvements of 10.36-11.02% for the QT and 

9.51-13.69% for the OPENSTACK in terms of the area under the curve (AUC). 

Hoa K D et al. [11] use a famous timing-related learning algorithm LSTM, a variant of the RNN, to 

make a thorough study on 18 Android applications. These applications involve in fields of the 

economy, education, books, and network, which have comprehensive representations. Using the time 

series characteristic of the LSTM processing not only has an outstanding effect on the syntax study 

training but also has an excellent effect on the semantic study training. As a result, the WPDP was 

improved by 3%-58%, and CPDP was improved by 85%. 

Zhen L et al. [12] use another important algorithm of RNN: Bidirectional LSTM (BiLSTM), on 19 

popular C/C++ open-source programs to predict several critical security vulnerabilities. These 

programs include the Linux kernel, Firefox, Thunderbird, Apache Http Server, and the vulnerabilities 

include two typical types: Buffer Error (i.e., CWE-119) and Resource Management Error (i.e., 

CWE-399). The BiLSTM has been trained with optimized parameters and achieved impressive results. 

Anh V P et al. [26] use multi-layer directed graph-based CNN to predict the defects on four 

real-world datasets written by C, C++, Java, and Python. The method improves the defects prediction 

accuracy from 4.08% to 15.49% in comparison with the feature-based approaches and increased the 

accuracy from 1.2% to 12.39% in comparison with the tree-based approaches. 

Xuan H et al. [13] make full use of the annotation information, as well as comments augmented 

from the annotation programs, to enhance the learning effects. They also use CNN to process 

open-source programs from PROMISE, which improves defect prediction performance. 

Anh V P et al. [27] choose four open-source datasets and convert them into assembly code after 

necessary preprocessing. Then they use CNN to learn the assembly code. When compared with the 

traditional machine learning algorithms such as SVM, there is a significant improvement. 

3.3. Hybrid Learning 

Yun Z et al. [14] combine six standard machine learning algorithms, LR, radial basis function network 

(RBF Network), MLP, BN, decision and trees and decision tables (DTS) to make decisions based on 

average voting and maximum voting methods. They conduct experiments on ten open-source 

cross-project software systems from the PROMISE repository and achieve outstanding results, in 

which the maximum voting is specifically prominent. 
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In Jian L et al. [28]’s research, seven open-source Java programs from the PROMISE repository 

were processed by the convolution neural network based on ASTs and combined with traditional 

prediction learning methods for deep semantic and syntactic learning. The result shows a 12% 

improvement over the state-of-the-art method. It is a successful attempt to combine deep learning with 

traditional machine learning. 

Pushphavathi T P et al. [29] use the genetic algorithm (GA) in combination with the fuzzy c-means 

(FCM) classifier and RF classifier to learn datasets from NASA. When only FCM classifier is used, 

there is an accuracy of 76.2%, and the combination of GA in the FCM classifier achieves 90.12% 

accuracy. A combination of GA, FCM, and the RF can achieve an astounding 98.23% accuracy. 

Zhou X et al. [30] apply the hybrid active learning and kernel PCA (HALKP) based cross-version 

defect prediction on 31 versions of 10 software projects taken from the open MORPH datasets. This 

method leverages hybrid active learning to obtain some unlabeled modules from the current version, 

then merges them into the labeled modules of the prior version，thus acquires an enhanced training 

set. Then a non-linear mapping method, HALKP, is utilized to extract representative features by 

embedding the original data of two versions into a high-dimension space. Compared with the 

traditional methods, the learning result of the hybrid method is remarkably improved. 

Xinli Yang et al. [31] use the two-layer ensemble learning method whose inner layer is an RF that 

is made up of decision tree and bagging with adjustable weight. The outer layer is stacking, which is 

made up of multiple equal weights random under-sampling and is tested with 137,417 changes from 

six open large source projects. When compared with other just-in-time studies, the cost-effectiveness 

of the proposed method has achieved a 20% improvement. 

4. Discussion 

Defect prediction using machine learning includes various machine learning techniques that are based 

on probability, geometry, and logic model with distinct characteristics. 

4.1. Overview 

Table 1. Research work overview. 

Research  Technique Achievement Prediction type 

Luca P et al.[19] RF F-measure and 

AUC-ROC  

Just-in-time 

Yeongjun C et al.[18] RF LR NB Cost effectiveness CPDP and 

just-in-time 

Osman H et al. [20] IBK SVM Accuracy Hyperparameter 

Optimization 

Sokratis T et al.[21] C4.5 NB BN LR TPR ACC and PPV  Real time system 

Puja A H et al. [22] NB Accuracy and low FA CPDP 

Yanhong Y et al.[23] Cluster Ensembles Recall and F-measure CPDP 

Kishan K G et al. [24] NB LR DT RF MP F-measure   

Lipika G et al. [25] Gradient Boosting Accuracy, Recall, and 

F1-score  

CPDP 

Wang S et al.[9] DBN precision, Recall, and F1  WPDP and CPDP 

Thong H et al.[10] CNN AUC Just-in-time 

Hoa K D et al.[11] RNN Precision, Recall, and F1 WPDP and CPDP 

Zhen L et al.[12] RNN Fewer false negatives 

and false positives 

 

Anh V P et al.[26] CNN Accuracy  

Xuan H et al.[13] CNN F-measure WPDP and CPDP 

Anh V P et al. [27] CNN Accuracy and F1  

Yun Z et al.[14] LR RBF MLP BN Combined classifier CPDP 

https://2019.msrconf.org/profile/thonghoang
https://2019.msrconf.org/profile/thonghoang
https://2019.msrconf.org/profile/thonghoang


CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012017

IOP Publishing

doi:10.1088/1742-6596/1487/1/012017

7

DT DTs average F-measure 

Jian L et al.[28] CNN LR F-measure  

Pushphavathi T P [29] GA FCM RF Accuracy: 

GA+FCM+RF > 

GA+FCM > FCM 

 

Zhou X et al.[30] HALKP F-measure, g-mean 

balance 

Cross-version 

Xinli Y et al.[31] RF stacking Cost effectiveness. Just-in-time 

4.2. Work Analysis 

As can be seen from Table 1, naive Bayes [18][21-23] is the most widely used method. Naïve Bayes is 

a classification method based on the Bayes' Theorem and the characteristic independent hypothesis, 

which is derived from the classical mathematical theory, has a solid mathematical foundation and is 

the most typical probability model. It has good cost-effectiveness, which is suitable for the 

development of defect prediction. 

Bayesian network [14][21] is an extension of the Bayesian method with the advantage of the 

probability model and is quite useful in the defect prediction. It is one of the most effective theoretical 

models in the field of uncertain knowledge expression and reasoning. This structure is similar to that 

of the software's control flow graph and data flow graph so that it can perform the defect prediction 

better. However, the network construction and operation of the Bayesian network are relatively 

complex, and it has increased uncertainty, which limits the application of the Bayesian network. 

SVM [20] has many unique advantages in the small sample, nonlinear and high dimension 

processing, especially the character and ability of high dimension processing, which promotes the 

development of metrics in defect prediction field and gets better prediction performance. 

RF [18][19][24] is the most commonly used ensemble learning method, the core of which is 

decision trees. Decision trees are widely used in defect prediction [21][24]. The edge of the random 

forest includes easy to understand and small computation. RF adds a voting mechanism that leverages 

the advantage of decision trees so that it can obtain an unbiased estimation of internal errors and 

improve the accuracy of the algorithm. RF also has a significant improvement in the learning ability of 

a limited sample, with a distinct advantage in just-in-time defect prediction. 

DBN [9] is the earliest deep learning method, which is based on neural networks. Traditional 

machine learning’s feature to describe sample is usually manually selected; thus, the performance of 

generalization is greatly affected by the quality of features. Deep learning is the process of generating 

useful features by itself through machine learning techniques. Consequently, it can also be understood 

as “feature learning.” DBN is a probability generation model and consist of multiple RBM layers that 

contain a visible layer and multiple hidden layers. There are connections between the layers without 

connections between the cells within the layers. Therefore, through the training process carried out in 

the invisible layers, DBN can capture the correlation of high-order data. Therefore, it has the 

advantage of the probability model in defect prediction. 

CNN [10][13][26-27] is the most commonly used method of deep learning. The concept behind 

CNN is an imitation of the biological visual perception system, which is closer to the real nervous 

system. By learning to generate input-output mappings, CNN can produce high performance and 

excellent generalization performance with enough training samples. To get more sample sets, Xuan H 

et al. [9] combine the annotation information with the defect prediction and significantly improve the 

prediction performance.  

RNN [11-12] is adept at dealing with the features of time sequences, which is consistent with the 

time characteristics of software. The program code not only has the space character of memory 

allocation but also has the time character of operation processing. This approach is highly capable of 

predicting both syntax defects as well as semantic defects. 

It is not difficult to see that every learning algorithm has an advantage. Much research has made 

meaningful attempts to combine different methods' advantages, and this is the basic idea of hybrid 
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learning [14][30][28][29][31]. An easy way in hybrid learning is to average the votes with multiple 

algorithms or select the maximum. For instance, Yun Z et al. [14] carry out this kind of research and 

obtain satisfying results. Xinli Y et al. [31] use decision trees to construct RF, and then apply random 

under-sampling to improve the processing speed. Finally, they use multiple RFs stacking to adjust the 

weight and increase accuracy. As a result, they reach excellent just-in-time performance. Jian L et al. 

[28] use CNN to generate a new feature, and combining it with traditional features, then use LR 

classifier to predict defects. Compared with the sole DBN method and methods using traditional 

features, the prediction performance has been improved dramatically. 

5. Conclusion 

In this paper, we summarize the research works of defect prediction in recent years, mainly, in the 

perspective of the techniques they utilized, by which the research works are divided into three 

categories: traditional machine learning-based, deep learning-based and hybrid learning-based. The 

contents and characteristics of the works are discussed in detail. Also, the advantages of different 

techniques based works are correspondingly analyzed. To sum up, with 20 years’ development of 

defect prediction, the traditional machine learning method has been prevalently used in defect 

prediction as well as location. In the field of network development and application, the requirement of 

real-time defect prediction is more and more demanding. As a result, the research on just-in-time is 

valued. Deep learning and hybrid learning have produced numbers of state-of-art methods that can 

significantly improve prediction performance, aiming to predict defects of both cross-project and 

within-project.  
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