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Abstract. Convolutional neural network (CNN) is widely applied to image recognition with 

high recognition accuracy. CNN has a wider implementation in general-purpose processors and 

can be accelerated on FPGA. CNN has a unique way of computing, but general-purpose 

processors are not efficient for CNN and cannot meet energy efficiency requirements. And the 

previous studies on FPGA did not involve an energy-efficient implementation on FPGA. We 

innovatively propose energy efficiency models and implement high energy efficiency CNN on 

FPGA. We implemented the LeNet-5 network model on the GENESYS 2 board and compared 

it to the traditional processor and previous studies. By comparison, the computing throughput 

of CPU, GPU and FPGA are 3.831GFLOPS, 27.143GFLOPS and 19.61GFLOPS respectively, 

and their powers are 32.15W, 52W, 4.152W respectively. The final energy efficiency 

(GFLOPS/W) is 0.119GFLOPS/W, 0.522 GFLOPS/W, 4.723 GFLOPS/W, so the energy 

efficiency of FPGA are far superior to that of CPU and GPU. Since the energy efficiency we 

achieved on FPGA is also higher than that of FPL2009 and FPGA2015, and we have achieved 

good experimental results in energy efficiency. 

1. Introduction 

In recent years, convolutional neural network (CNN) has made great contributions in different fields. 

As a widely used neural network, it has great influence in the fields of image recognition, image 

search and image classification [1]. Since CNN is inspired by the behavior of optic nerves in living 

creatures, it uses the convolution kernel to extract the features and through the mapping relationship 

between the neural layers. Finally, it transforms the features into the results for output, and has a high 

accuracy, high usage and ease of implementation. 

In the implementation of the hardware platform of CNN, most of them are implemented by CPU 

and GPU. However, for some tasks, the front-end platform needs to have small size and low power 

consumption. Traditional processors are less energy efficient than we expected, so we need to find a 

new front-end platform to complete the task. Therefore, implementations on FPGA and ASIC chip are 

achievable platforms [2] [3]. Because FPGA and ASIC chips as accelerators to implement CNN are 

not dependent on the system, directly related to data stream processing, and have better performance 

in resource utilization. However, ASIC chips have high manufacturing cost and long development 

cycle, so FPGA is a suitable hardware implementation platform in a short time. Due to the advantages 

of FPGA development, such as high performance, high energy efficiency and short development cycle, 

FPGA-based CNN accelerators have attracted more and more researchers' attention [1] [2] [4][5] [6]. 
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This article initially implemented the LeNet-5 [7] model on the GENESYS 2 board. While making 

reasonable use of FPGA’s resources, improve energy efficiency as much as possible [6]. Considering 

the different power consumption of different FPGA’s resources, the rational allocation of resources to 

reduce power consumption has greatly improved resource utilization and improved system energy 

efficiency to some extent. 

The main contributions of this work are summarized as follows. 

 We propose a series of schemes for accelerating convolutional layer operations for data 

bandwidth and execution sequence logic, and surpass the performance of CPU and get close to 

the that of GPU in terms of acceleration performance. 

 In the energy-efficient design, considering the acceleration effect and power consumption 

change, an optimization model for network layer and resource allocation is proposed. 

 We implemented an energy-efficient CNN accelerator with an energy efficiency of 4.73 

GFLOPS / W, which is higher than the energy efficiency of FPL2009 [1] and FPGA2015 [8]. 

To the best of our knowledge, this achieves the current high energy efficiency CNN 

accelerator. 

The rest of this article is organized as follows: Section 2 introduces the background of CNN and 

analyzes the factors of system energy efficiency. Section 3 provides optimization model and describes 

the details of an energy-efficient accelerator implementation. Section 4 shows the results of our 

experiments. Section 5 summarizes the paper. 

2. Background 

2.1. CNN Basics 

Over the past decade, there has been a significant increase in software strength and hardware 

performance, such as the development of deep learning theory and the update iteration of 

supercomputers, CNN has developed rapidly and are widely used in computer vision and natural 

language processing and other fields [9]. Since CNN is inspired by the behavior of optic nerves in 

living creatures. The parameter sharing in the hidden layer of CNN and the sparse connection of 

neurons between different neural layers ensure that CNN can simplify the data of the input layer with 

a relatively small amount of computation, which is also convenient for the latter feature extraction. 

When CNN is used for supervised learning, its feedforward network part is mostly used for image 

recognition and classification, and the feedback part is used for training. By using the already trained 

network weight data, we need to implement its feedforward network part on FPGA. 

The main CNN framework consists of two main parts: feature extractor and classifier. The function 

of the feature extractor is to extract the features of the input image and map them to the subsequent 

feature maps through the feature map. The features of these images are not unique, and mainly 

was gotten through the sliding process of the convolution kernel. And the classifier function is the 

process of transforming the feature layer into an output structure. 

Taking LeNet-5 as an example, the feature extractor includes a convolutional layer and a 

downsampling layer, and the fully connected layer is a classifier. The weights and bias parameters of 

the LeNet-5 network model are shown in table 1. 

Table 1. Weights and bias of the LeNet-5 network model.  

Layer Conv1 Conv2 Conv3 Fullconnect1 Fullconnect2 

Weights
a 

<1,5,5,6> <6,5,5,16> <16,5,5,120> <120,84> <84,10> 

Bias
b
 6 16 120 84 10 

a
 Conv: <input layer number, convolution kernel length, convolution kernel width, output layer 

number>, Fullconnect: <input layer number, output layer number>. 
b
 The number of bias is the number of output layers. 
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2.2. Performance limit of FPGA 

The dominant frequency of FPGA is usually several hundred MHz, while the frequency of a generic 

processor can be up to GHz. How can the speed of data processing of FPGA be greatly improved? 

First, increase the number of parallel calculations. It is necessary to properly design the parallel 

development in consideration of the total amount of resources, which is one of the most effective 

methods for speed improvement. Second, increase the number of ports in the memory of variables. 

Even if the calculation process is expanded, for the data in the memory, each clock can only be read 

and written once, which affects the overall speed. Therefore, it is necessary to expand the memory port. 

Then, pipeline operation.  By using the pipeline operation, the latter operation can start at the middle 

time from the previous operation, reducing the waiting time and improving the system work efficiency. 

Finally, change the order in which convolution calculations are performed. By reasonably changing 

the logical order, the time crowding effect between data streams can be changed. 

 
Figure 1. We insert operation A in the space of algorithm 

C, avoiding the waste of idle waiting time in the loop. 

For example, as shown in figure 1, in a loop B, we will implement algorithm C. Algorithm C needs 

to perform repeated reading and writing address operations on the same address, which will cause 

timing congestion. If you can change the steps of the calculation, you can put some operations that can 

change the address of this variable, such as the operation A, into this loop B. Operation A has been 

added between the two algorithm C, so the operation A is completed in the waiting time between the 

two algorithm C. In this way, the acceleration of a data processing is completed without changing the 

resources of the system. 

2.3. Power consumption 

As can be seen from 2.2, the lower dominant frequency of FPGA also reduces the system power 

consumption of FPGA, which is the most important factor for FPGA to achieve low power 

consumption. The power consumption of FPGA can be divided into static power and dynamic power. 

This is mainly because FPGA is made up of transistors, and the transistors also have static power and 

dynamic power. So which power consumption can be reduced or avoided, in addition to the power 

generated by the inherent properties of the device? 

FPGA resources are divided into the following types: LUT, FF, BRAM, DSP, IO, MMCM, etc. 

Power consumption can be reduced by rational use of resources. BRAM has the largest power 

consumption. The smaller the BRAM block is, the smaller the power consumption is, but the logic and 

layout become larger. The MMCM consumes a lot of power, so it is necessary to reduce the amount of 

usage as much as possible. A single LUT, FF, and DSP consume less power, but the larger number of 

LUTs is inevitable and is an essential part of the resource. 

3.  Accelerator design exploration 

This section will first introduce an overview of our accelerator architecture and illustrate several 

design challenges on the FPGA platform. In order to overcome these challenges, we have proposed 

corresponding optimization methods, such as optimization model, HLS optimization, low power 

optimization and design space exploration. 
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3.1. Optimization model 

3.1.1. Partial energy efficiency optimization model. When FPGA implement energy-efficient CNN, 

we need to consider both accelerated performance and power consumption. Since the optimization of 

the CNN is optimized according to the network layer, it is necessary to consider whether partial 

energy efficiency optimization promotes the optimization of system energy efficiency. We propose the 

Partial energy efficiency optimization model algorithm, according to which we can determine 

whether partial optimization can improve the energy efficiency of the system. 

We define a network layer a. The other layers are collectively called b. The network delay is 

defined as t. We define the speed as 1/(ta+tb), which indicates the speed of completing the unit task. 

The power consumption is P, so the system energy efficiency 𝐸1 is as follows.  

 𝐸1 =

1

𝑡𝑎+𝑡𝑏

𝑃𝑎+𝑃𝑏

 (1) 

Let 
𝑡𝑏

𝑡𝑎
= 𝜇𝑡, 

𝑃𝑏

𝑃𝑎
= 𝜇𝑃 , 𝑄𝑎 = 𝑡𝑎 ∗ 𝑃𝑎 , 𝑄𝑎represent the energy consumed by the unit task.  

 𝐸1 =
1

𝑄𝑎

1

1+𝜇𝑡

1+𝜇𝑃

 (2) 

We optimize network layer a, which increases α (>1) times in speed, and at the same time increases 

power consumption by β (>1) times. The optimized 𝐸2 is as follows.  

 𝐸2 =

1

𝑡𝑎+
𝑡𝑏
𝛼

𝑃𝑎+β𝑃𝑏

 (3) 

 𝐸2 =
1

𝑄𝑎

1

1+
𝜇𝑡
𝛼

1+β𝜇𝑃

 (4) 

 
𝐸2

𝐸1
=

(1+𝜇𝑡)(1+𝜇𝑃)

(1+
𝜇𝑡
𝛼

)(1+β𝜇𝑃)
 (5) 

Because we need  
𝐸2

𝐸1
> 1, so 

 𝜇𝑡 + 𝜇𝑃 + 𝜇𝑡𝜇𝑃 >
𝜇𝑡

𝛼
+ β𝜇𝑃 +

β

𝛼
𝜇𝑡𝜇𝑃 (6) 

By analyzing the situation of the above formula, it is divided into the following cases. 

 α = β 

Get the following.  

 𝜇𝑡 + 𝜇𝑃 >
𝜇𝑡

𝛼
+ 𝛼𝜇𝑃 (7) 

If 𝜇𝑡 < 𝜇𝑃, we get 
𝜇𝑡

𝜇𝑃
< α < 1, and because α>1, it does not exist. 

If 𝜇𝑡 > 𝜇𝑃, we get 1 < α <
𝜇𝑡

𝜇𝑃
. 

 α>β 

If α>β, then a sufficient and unnecessary condition of the above formula is as follows.  

 𝜇𝑡 + 𝜇𝑃 >
𝜇𝑡

𝛼
+ β𝜇𝑃 (8) 

which is equivalent to 

 
𝜇𝑃

𝜇𝑡
<

𝛼−1

𝛼(𝛽−1)
 (9) 

and α > β > 1, so we get 
𝜇𝑃

𝜇𝑡
< 1. 

Therefore, when α>β and 
𝜇𝑃

𝜇𝑡
< 1, it is possible to make E1 < E2. 

 α<β 

If α<β and 
𝜇𝑃

𝜇𝑡
> 1, there must be E1>E2. 

In summary, when 1 < β ≤ α <
𝜇𝑡

𝜇𝑃
, the system energy efficiency will increase. 
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3.1.2. Global energy efficiency model. Similarly, we can get the Global energy efficiency model by 

the Partial energy efficiency optimization model. Since the energy consumption of the system is 

related to the type of resources, the power consumption of each resource is different. We take DSP as 

an example for analysis. DSP is the resource used by hardware multiplication. In general, if the DSP 

resources are doubled, the system speed 𝑣 can be doubled. Before optimization, the energy efficiency 

is E1, the power consumption of the DSP is P2, and the other power consumption is P1. If the optimized 

DSP resource is N times the previous resource, P2 will also increase by N times. Due to the increase of 

DSP resources, the use of resources such as P1 will be correspondingly improved by M times, which is 

less than N times. 

 𝐸1 =
𝑣

𝑃1+𝑃2
 (10) 

 𝐸2 =
𝑣′

𝑃1
′+𝑃2

′ =
𝑁∗𝑣

𝑀𝑃1+𝑁𝑃2
=

𝑣
𝑀𝑃1

𝑁⁄ +𝑃2

> 𝐸1 (11) 

3.2. HLS optimization 

Xilinx Vivado® HLS converts C to Register Transfer Level (RTL) and can be integrated into Xilinx 

Field Programmable Logic Arrays. 

In the feedforward computation perspective, a previous study [10] proved that convolution 

operations will occupy over 90% of the computation time. So in this work, we will focus on 

accelerating convolutional layers [11]. For input images of multi-feature, convolution operations 

usually have six layers of loops: input layer, output layer, image line, image column, convolution 

kernel row, and convolution kernel column. Therefore, when a convolution operation is performed by 

a generic processor, it takes a lot of time to perform a convolution operation.  

 
Code 1. Unoptimized convolution operation 

 
Code 2. Optimized convolution operation 

 image_out[to][row][col]+= (image_in[ti][row + i][col + j] ∗ wconv[ti][to][i][j]) (12) 

The entire calculation process of the convolution process is completed by formula 12, and the 

multiplication and cumulative sum operations of the entire convolution process are completed. 

Taking convolutional layer 2 as an example, when K=5, R=10, C=10, M=16, and N=6, the speed of 

code 2 can be increased to 509 times of code 1. 

3.2.1.  Increase the number of parallel calculations. The system needs to plan more resources for the 

underlying routing planning, and will also need to add more ports for data transfer to match the highly 

parallel data flow. 

3.2.2.  Increase the number of ports in the memory of variables. The system speed can be greatly 

improved by increasing the number of parallel systems, but it is necessary to read and write a variable 

multiple times at the same time. This variable is required for Partition operation, which will require 

more BRAM. 

for (row=0; row<R; row++) {   

    for (col=0; col<C; col++) {   

        for (ti=0; ti<N; ti++) {   

            for (to=0; to<M; to++) {   

                for (i=0; i<K; i++) {   

                    for (j=0; j<K; j++) {   

                        image_out[to][row][col] += 

  (image_in[ti][row+i] [col+j] 

   *wconv[ti][to][i][j]);                        

}}}}}}   

for (i=0; i<K; i++) {   

    for (j=0; j<K; j++) {   

        for (row=0; row<R; row++) {   

            for (col=0; col<C; col++) {   

#pragma HLS PIPELINE   

                for (ti=0; ti<N; ti++) {   

                    for (to=0; to<M; to++) {   

                        image_out[to][row][col] += 

  (image_in[ti][row+i] [col+j] 

  *wconv[ti][to][i][j]);                  

}}}}}}   



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012028

IOP Publishing

doi:10.1088/1742-6596/1487/1/012028

6

 

 

 

 

 

 

3.2.3.  Pipeline operation. Multiple operations can be completed in one operating clock cycle. The 

time between each operation is called Initiation Interval and is particularly important. If you use the 

pipeline, Initiation Interval can be shortened to a minimum of one clock cycle, which has obvious 

effect on the system acceleration effect. 

3.2.4.  Change the order in which convolution calculations are performed. By comparing the 

optimized code with the unoptimized code, due to the Pipeline optimization, we need to put the loop 

of the input layer and the number of output layers (the loop of length M and N) into the innermost 

layer. If the convolution kernel is cycled into the outer layer, the inner loop will not be limited to the 

address, so the next operation does not need to be performed after the previous operation is completed. 

This optimization greatly increases the speed of the system when resources are constant [12]. 

Taking the Conv2 layer of our implementation as an example, it can be seen from the comparison 

test that this optimization measure increases the speed of the Conv2 by 9.5 times. 

3.3. Low power optimization 

The final board power is 4.152W. As shown in figure 2, in the Vivado software simulation, the FPGA 

chip consumes 3.048W, of which the static power consumption is 0.201W and the dynamic power 

consumption is 2.843W. The main part of dynamic power consumption is Signals and BRAM, with 34% 

and 20% power consumption respectively. 

 

 

 

 

Figure 2. The power consumption profile of 

each part of the system simulation. In this 

figure, we can find that the loss of each part is 

different, and the power consumption of 

Signals is the largest. (Vivado 2018.2) 

From the content of figure 2, we can see the power consumption of each part. The system clock 

power is only 0.331W, and it is unchangeable power consumption, which is an inherent property of 

the system. Signals are divided into three categories, Data, Clock Enable and Set/Reset, which are 

0.939W, 0.012W and 0.005W, respectively, so Data of Signals is the most pivotal part of power 

consumption. The system logic module only occupies 0.427W and has a low power consumption. The 

second is that the BRAM power consumption is 0.556W. Because the data amount of the variable is a 

fixed size, the amount of data used by the BRAM is constant. After the Partition operation, the BRAM 

is split into small blocks and the power consumption is reduced, but more decoding logic is used. 

Therefore, the power consumption changes before and after BRAM partitioning is small. Once the 

network model is determined, the BRAM power consumption is difficult to optimize.  

The use of DSP will be related to the speed of the system. If the DSP usage is increased by N times, 

the power consumption will be increased by about N times, and the effect of acceleration will be 

increased by about N times. From formula 11, we can figure out whether DSP optimization leads to an 

increase in energy efficiency. And from figure 2, we can know P1=2.59W, P2=0.46W. 

 
𝐸2

𝐸1
=

2.59+0.46
2.59∗M

𝑁
+0.46

=
6.6∗𝑁

5.6M+𝑁
>1 (13) 
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MMCM usage is related to clock usage and is inherent to the system and cannot be changed for 

optimization. I/O is almost unused and consumes less power. 

After considering the energy consumption of all aspects of the resource, the overall energy 

efficiency can be improved by optimizing the number of parallel and pipeline operations, so that the 

speed and power consumption are balanced to achieve optimal energy efficiency. 

3.4. Design space exploration 

The energy efficiency optimization of a CNN accelerators on FPGA is mainly achieved by rational 

application of FPGA’s resources and HLS optimization measures. After the neural network model is 

determined, it is necessary to select an appropriate FPGA chip for the experiment. By using the HLS 

application tool, acceleration can be performed with little or no increase in resources, and the system 

energy efficiency will be greatly improved. 

Taking FPGA2015 Cheng's paper as an example, it uses a Virtex 7 board to implement CNN with a 

throughput of 1.33GFLOP, but Cheng's energy efficiency is lower than ours. The resources we use are 

lower than Cheng's, so the final energy efficiency results do not necessarily depend on the resource 

capacity of the hardware platform. We need to choose the right hardware platform based on the 

throughput of the network model. 

After the optimization measures, the system energy efficiency is improved by using Vivado HLS. 

Through the comprehensive comparison of the optimized speed and resources, the law of energy 

efficiency changes is obtained. 

Table 2. The number of delay clock of each 

layer of the network is as follows. 

Lays Unoptimized Optimized Multiple 

Lay1 1,317,697 2986 441x 

Lay2 8653 199 43x 

Lay3 2,692,143 5291 509x 

Lay4 2861 186 15x 

Lay5 486,902 3912 124x 

Lay6 101,463 1889 54x 

Lay7 8590 788 11x 

Total 4,620,456 18,409 251x 

Table 3. The number of resource utilization of 

the CNN module is as follows. 

Resources Optimized Unoptimized Multiple 

BRAM 829 274 3.0x 

DSP 623 25 24.9x 

FF 110,979 5467 20.3x 

LUT 129,493 8858 14.6x 

 

As can be seen from table 2 and table 3, we compare the acceleration effects and resource usage 

before and after optimization in detail. In the optimization of system acceleration, the final 

improvement was 251 times, and the maximum utilization factor of resources was increased by 24.9 

times (DSP). The power consumption of the system is often positively related to its resource usage, 

and the system energy efficiency is increased by at least 10.1 times. Therefore, the appropriate HLS 

optimization measures will also improve the system energy efficiency while improving the speed. 

4. Evaluation 

First, this section will introduce our experimental environment settings, and then provide a detailed 

comparison of experimental results and related experimental results. 

4.1.  Experimental Setup 

The accelerator design was implemented by Vivado HLS (v2018.2), which allows compiling in C and 

exporting RTL to an IP core. First, the simulation before the rapid synthesis is completed using the C 

simulation and C/RTL co-simulation of the Vivado HLS. Then the exported RTL is synthesized and 

implemented using Vivado v2018.2. In the end, our implementation is based on the GENESYS 2 
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board, and the core chip is the Xilinx FPGA xc7k325tffg900. The set operating frequency is 100MHz, 

and the Vivado software runs on a PC of Intel(R) Core(TM) i5-4590 CPU@3.30GHz. 

4.2.  Experimental result 

In this section we will report on the resource usage and then compare the energy efficiency of the 

software implementation (on the CPU and GPU) and our accelerator implementation (on FPGA). 

Finally, we give a comparison between our implementation of CNN and others to implement CNN on 

FPGA. 

The internal layout of FPGA is provided by the Vivado toolset and it can report resource usage. As 

shown in the table 4, it can be seen that our CNN accelerator has almost fully utilized the hardware 

resources of FPGA. 

Table 4. FPGA Resource Utilizaiton. 

 DSP BRAM LUT FF 

Used 623 373.5 85032 69565 

Available 840 445 203,800 47,600 

Utilization（%） 74.17 83.93 41.72 17.07 

The specific use effect on system resources is as shown in the table 4, and energy efficiency is 

optimized by rational allocation of resources.  

 

Figure 3. Power measurement of on-board 

execution 

The power consumption we have achieved is shown in figure 3. 

Table 5. Comparison to CPU/GPU. 

 CPU (i5-4590) GPU(GTX 1080ti) FPGA（G2） 

Performance(GFLOPS) 3.831 27.143 19.61 

Power(W) 32.15 52 4.152 

Energy Efficiency(GFLOPS/W) 0.119 0.522 4.723 

We have implemented the LeNet-5 model on CPU and GPU. The network models are the same on 

all three platforms. We develop CNN on the CPU and GPU with some common tools to use resources 

as efficiently as possible. Since their development environment is done on Windows systems, dynamic 

power consumption is considered as system power consumption, which reduces the impact of static 

power consumption. However, the power consumption of FPGA is the total power consumption of the 

system, which is more practical in the comparison of energy efficiency. As can be seen from the table 

5, the energy efficiency on FPGA is much higher than that on the CPU and GPU, and its throughput 

rate is 19.61 GFLOPS, which is closer to the throughput of the GPU. The performance of acceleration 

and energy efficiency on FPGA achieve the expected results, and have a good realization significance. 
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Table 6. Comparison to previous implementations. 

 FPL2009 FPGA2015 Our Impl. 

Frequency(MHz) 125 100 100 

FPGA chip Virtex4 SX35 Virtex7 VX485T GENESYS 2 

FPGA capacity 
126 DSP 

23,872 slices 

2800 DSP 

75,900 slices 

840 DSP 

50,950 slices 

Performance(GOPS) 5.25 61.62 19.61 

Power(W) 15 18.6 4.15 

Energy Efficiency(GOPS/W) 0.35 3.31 4.73 

Compared with Cheng's experimental results (FPGA2015), the implementation of this paper has 

higher energy efficiency and is implemented on a system platform with relatively low resources. 

Therefore, there is no absolute relationship between system energy efficiency and system resources, 

but it has a great relationship with network model size and optimization scheme. We achieved 4.15W 

of power consumption on the GENESYS2 board and achieved new breakthroughs in energy efficiency 

with lower throughput. In terms of system energy efficiency, we can not only care about the 

acceleration effect of the system, but also optimize the system energy consumption through 

appropriate methods. As an energy-efficient solution, acceleration and power usage are places where 

we need to do more in-depth research in the future. 

5. Conclusion 

In this paper, we present an energy-efficient solution for FPGA-based CNN and achieve relatively 

outstanding energy performance. By reasonably analyzing the relationship between the acceleration 

performance and the energy consumption of FPGA, we propose two optimization models and finally 

achieve better energy efficiency. By comparing the performance with CPU and GPU, we can find that 

our solution has an absolute advantage in the optimization of energy efficiency of FPGA. The energy 

efficiency of FPGA has far exceeded the energy efficiency of the CPU and GPU. Finally, we realize 

an energy efficiency on GENESYS 2 board which outperforms previous work. 
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