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Abstract. Due to the weak stiffness of robot structure, the positional accuracy of industrial 

robots under load can hardly meet the application requirements of high-precision machining. 

Predicting and compensating errors by accurate stiffness modeling is an effective method to 

improve robot positional accuracy. Existing stiffness modeling methods use theoretical 

kinematic parameters and approximate the joint stiffness to a fixed value, so that the modeling 

accuracy is poor. Thus, this paper proposes a regular sampling point selection method by space 

gridding. Then, combining Levenberg-Marquardt kinematics parameter calibration and static 

joint stiffness identification methods, a comprehensive identification method is proposed to 

achieve simultaneous identifying of robot kinematics and stiffness parameters. Next, a variable 

parameter stiffness model could be established, according to the identification results in 

different workspaces. Finally, a model-based error prediction and compensation method is put 

forward through online sensing of external load. The error compensation is performed on a 

KR500 robot, and experimental results verified that the average value of absolute positional 

errors caused by external load, could be reduced by 44.61%, compared with the traditional 

compensation method. 

1. Introduction 

In recent years, the application of industrial robots as a machining carrier has considerably increased 

in automated manufacturing, because of the advantages of high task flexibility, high intelligence, low 

cost and low space requirement [1-3]. However, due to its structural characteristics, the positional 

accuracy and structural stiffness of industrial robots are much lower than those of traditional NC 

machines, which seriously affect their applications in high-value-added products manufacturing
 
[4, 5]. 

An effective solution is to predict and compensate the positional error on the basis of robot stiffness 

model. Obviously, accurate stiffness identification and modeling of industrial robot is necessary to 

achieve precise positional control of robot under load. 

There have been a lot of theoretical and experimental researches on the robot stiffness 

characteristics and modeling methods. Adele et al. built the mapping relationship between the stiffness 

matrices of the joint space and Cartesian space under the assumption of link rigidity
 
[6]. Dumas et al. 

found that more than more than 70% of the deformation comes from the robot joint, and the Cartesian 

stiffness matrix of the robot can be solved by establishing its kinematic model and identifying its joint 

stiffness matrix
 
[7]. Klimchik et al. coupled the influence of the gravity of the connecting rod on the 

robot stiffness, and further improved the accuracy of stiffness modeling. Furthermore, the 

compensation methods of positional error, which caused by processing load, have been extensively 
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researched based on robot stiffness mode
 
[8]. Zaeh et al. realized compensation of milling path-

deviation by robot joint stiffness identification and model-based fuzzy controller
 
[9]. Slavkovic raised 

an off-line tool path modification method to compensate cutting force-induced errors in robotic 

machining
 
[10].  

Traditional robot stiffness modeling methods are proposed on the basis of the hypothesis that the 

connecting rods are rigid and each joint is an elastic rotating axis. Conveniently, the Cartesian stiffness 

model could be built through the combination of kinematic model and joint stiffness. However, there 

are some drawbacks of these methods. Firstly, theoretical kinematics parameters cannot truly reflect 

the structure attribute of robot because of the error of manufacturing and assembly. Secondly, the 

torsional stiffness of motor and reducer, and the gravity center of the connecting rod change with robot 

configuration. Thirdly, different robot sampling configurations lead to different identification results 

of joint stiffness. For these reasons, theoretical kinematics parameters and fixed joint stiffness cannot 

meet the accuracy of robot stiffness modeling. Moreover, the precise prediction and compensation of 

positional error under external load cannot be achieved. 

This paper proposed a variable stiffness modeling method of industrial robots, and the stiffness 

characteristics of robots in different work spaces can be accurately characterized. In Section 2, the 

modeling methods of robotic kinematic and stiffness error are described. Section 3 proposes a regular 

sampling point planning method based on space grid, and a variable parameter identification method 

of kinematics and stiffness parameters is put forward.  A model-based positional error compensation 

method is proposed in section 4. The results of the experimental verification are shown in Section 5. 

Finally, the paper is concluded in Section 6. 

2. Modeling of robot kinematics and stiffness error  

2.1. Modeling of  kinematics error  

Kinematic model is the foundation of robot stiffness identification and modeling. The link frames and 

theoretical kinematics model of KUKA KR500 industrial robot can be established through Denavit-

Hartenberg (D-H) model method, as shown in figure 1 [11].  
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Figure 1.  KUKA KR500 robot kinematic model. 

According to the robot kinematic model, the transformation relationship between the robot 

positional error and the parameters error of each link can be obtained; conversely, the parameters error 

of each link of the robot can be solved iteratively according to the positional error, and the actual 

kinematic parameters of the robot can be calibrated.  

Define the position error of i-th target point without external load as ∆pi: 

 
T

,i i i i
i i

p p p p
p a d J X X a d

a d
   

 

   
                

   
             (1) 
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where a is the link length, α the link torsion angle, θ the joint angle, and d the offset of adjacent links, 

respectively, and
iJ  is the Jacobian matrix. For a 6-DOF manipulator, each of the parameter error 

vectors (i.e. , , ,a d     ) has 6 elements.  

If m sampling points were measured during kinematics calibration: 

1 1 1 1

1 1

2 2 2 2
2 2

m m
m m m m

p p p p

a dp Ja
p p p p

p J
Xa d

d

p J
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
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          
     
     
         

 
    

M M
M M M M

                                       (2) 

The kinematic parameter error calibration could be seen as a solution of linear equations. The 

Levenberg-Marquardt (L-M) algorithm can be used for iterative computation. The k-step iterative 

procedure is as follows: 

(1) Calculate (X )kJ   according to the D-H parameters of the robot. 

(2) Calculate the error of D-H parameters 
kX  on account of the formula: 

     
1

T T
( )k k k k k kX J X J X I J X p X



     
 

                                   (3) 

where I is a unit matrix; Xk is the parameter error in the k-th iteration; 
k  is the damping coefficient 

which could be obtained by: 

   

   
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 

Χ Χ

Χ Χ
                                         (4) 

(3) Update D-H parameters of the robot by
1k k kX X X    and update iterations by 1k k  . 

Repeat the above steps to get the error of each link parameter of the robot, and modified kinematics 

model could be obtained. The modified kinematic model can be used as the basis for accurate 

identification of stiffness. 

2.2. Modeling of  stiffness error  

For six-revolute joint serial robots, the mapping relationship between the joint and Cartesian stiffness 

matrixes could be represented by using conservative congruence transformation as: 
1TK J K J

                                                                 (5) 

 
 

1 2 3 4 5 6
, , , , ,K diag k k k k k k      

                                               
 (6) 

where J is the Jacobian matrix related to the robot configuration directly; K and Kθ are the joint and 

Cartesian stiffness matrixes respectively; kθi is the stiffness of i-th joint. The above formula is called 

the traditional static stiffness model, indicating that the robot stiffness depends on the joint stiffness 

and the configuration [12]. 

The Cartesian stiffness matrix K could be divided into four 3×3 matrixes according to the different 

dimensions of factors among stiffness matrix, which could be described as 

          

fd f

md m

K Kf d

K Km



 

    
     

    
                                                       (7) 

where f and m are the force and torque applied on end effector; d and δ are the translational and 

rotational displacements of end effector respectively; fdK , fK  , mdK , mK   are the associated stiffness 

coefficients. In robot cutting tasks, such as drilling and milling, the influence of rotational 
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displacement on robot positional accuracy can be neglected. Consequently, the relationship of f and d 

could be shown as below: 

fdf K d
                                                                 

 (8) 

Then the positional errors caused by external load can be written as: 

 1 1 T

fdd K f D JK J f

  
                                                  

 (9) 

where D is a function to pick up the first three columns elements of the first three lines of a given 

matrix, and the formula can be used to predict the robot positional error under external load
 
[13]. 

3. Variable parameter identification based on space gridding 

Different robot sampling configuration leads to different positional error, no matter in no-load or load 

state. On the one hand, different configuration results in different gravity center of robot structure and 

connecting rod deformations, which influence the identification results of kinematics parameters and 

joint stiffness. On the other hand, the joint stiffness and rotation angle of each joint are interrelated to 

each other, due to the complex transmission structure, including motor and reducer mainly
 
[14, 15]. 

Thus, fixed parameters cannot satisfy the accuracy requirement of robot modeling very well. In view 

of the similar robot configurations in close work spaces, a variable parameter identification method is 

extremely essential to reduce the influence of the configuration on robot stiffness modeling. 

3.1. Space gridding principle analysis 

If the robot configuration were determined, the parameter error in each joint can be determined. Define 

1P as the error of kinematics parameters in a given configuration, 
2P as the error of kinematics 

parameters in a close configuration: 

1 2P P , 0E                                                    (10) 

where △θ is the variation of joint angles in two configurations, E is the absolute value of the 

difference. As △θ tends to zero, a positive number ξ which approaches zero can always be found to 

satisfy E<ξ. 

Similarly, define Kθ1 as the joint stiffness of a joint in a given angle, Kθ2 as the joint stiffness of the 

joint in a similar angle: 
' '

1 2 , 0E K K                                                   (11) 

where E
’
 is the absolute value of the difference. As △θ tends to zero, a positive number ξ

’
 which 

approaches zero can always be found to satisfy E
’
<ξ

’
. 

Accordingly, when robot configuration changes a little, namely the position and posture of end 

effector changes a little, the kinematics parameter and the stiffness value of each joint can be 

considered to be highly similar. 

The above analysis indicates that workspace can be divided and parameters in a subspace can be 

approximately seen as constant values. Since regular shape can greatly improve algorithm efficiency, 

the workspace could be divided into small cubic grids as shown in figure 2. Accordingly, eight 

vertices and the center point of each space grid are selected as sampling points. Therefore, a total of 

nine sampling points are used to identify robot kinematics and stiffness parameters in a certain grid 

space, as shown in Tag 1 to Tag 9 in figure 2. 
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Figure 2. Work space gridding and sampling. 
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3.2. Variable parameter identification 

Combing the space gridding sampling and traditional parameter identification methods, a variable 

parameter stiffness identification method can be presented. Sampling points of identification 

experiments could be decided based on space grids. The actual kinematics parameters which satisfy 

different workspaces are defined as: 

 
T

( ) ( ) ( ) ( ) ( )X j a j j d j j                                             (12) 

where j is the sequence number of target grid space, and  X( )j  is the kinematics parameters when 

robot target position is in corresponding grid space. Then, the Jacobian matrix in different work spaces 

could be revised based on corresponding kinematics parameters. Accordingly, the joint stiffness which 

suits different workspaces can be accurately calculated and described as  

 
1 6

( ) ( ) ( )K j diag k j k j   L
                                              

 (13) 

The steps of variable parameter stiffness identification and modeling method could be shown as 

follow: 

(1) Divide the whole workspace into a series of cubic grids according to the given side length. 

(2) Choose the theoretical coordinates of the nine samplings of a grid space as sampling positions. 

Define the initial posture of end effector in each sample point, and the initial robot configuration could 

be obtained. 

(3) Rotate the Tool candidate around a processing axis and obtain new sampling configurations in 

each position. 

(4) Control the robot move to the target configurations without loading, the actual kinematics 

parameters could be identified by dealing with theoretical position and actual positions. Modified 

Jacobian matrix could be built by identification results. 

(5) Control the robot move to the target configurations with loading, the robot stiffness could be 

identified by measuring actual positions before and after loading. 

(6) Repeat the fourth step to fifth step to obtain the joint stiffness in different task spaces. 

(7) Finally, establish the robot stiffness model of whole work space. 

The workflow of identification method can be shown as figure 3. 

Determine the effective 

workspace of a given robot

Divide working space  into a 

series of cubic grids 

Select vertices and center point of 

each single space  as positions of  

robot configuration sample

Obtain sampling robot configurations 

by  rotating the Tool candidate 

around the processing axial

 Measure the robot end 

positioning without loading

 Measure the robot end 

positioning after loading

Identify the robot joint stiffness in 

current grid space 

Current grid is

 the last one  

Establish the robot stiffness model in 

current grid space

Obtain he robot stiffness model in 

full operating space

Space gridding

and sampling

 Joint stiffness 

identification 

in a grid space

Yes

No

Modify 

kinematics 

parameters and 

Jacobian matrix

Positional error 

without loading

Positional error 

after loading

 
Figure 3. Identification flowchart. 

4. Model-based robot positional compensation 

The positional error of target points in different subspaces could be estimated based on the variable 

parameters stiffness model and on-line measurement of robot load. Compensation of robot positional 
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errors caused by external load, can be performed by modifying the numerical control commands of 

robot, which includes the following steps: 

(1) Plan space grids and generate sampling points in off-line programming (OLP) software, 

kinematics parameters and joint stiffness in different grids can be identified by identification method 

proposed in Section 3. 

(2) Extract the positions of target points from robot control commands and plan corresponding 

robot configurations in OLP software. Define the position coordinates of i-th target point: 

( ) ( ) ( ) ( )x y zP i P i P i P i                                                        (14) 

(3) Estimate the located grid space of given target position and obtain the suitable robot joint 

stiffness. 

(4) Measure the load applied to the end effector by force transducer during robot tasks. Define the 

external load of i-th target point: 
T

( ) ( ) ( ) ( )x y zF i F i F i F i                                                     (15) 

(5) Calculate the load-induced positional errors: 

 1 T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

x y zP i P i P i P i D J i K i J i F i

                               (16) 

where ( )xP i , ( )yP i  and ( )zP i  are predicted positional errors of given target position along the 

directions of x, y and z axis, 1( )K i

 is the robot compliance matrix, and ( )J i  is the Jacobian matrix of 

the i-th target  position. 

(6) Compensate the positional error through the following equation: 
'( ) ( ) ( )P i P i P i                                                                 (17) 

where ' ( )P i  is the modified position coordinate, and the revised coordinate could be loaded as control 

commands to achieve high-precision robot positional control. 

5. Experimental results and discussion  

5.1. Experimental setup 

An experimental platform and coordinate systems were built to verify the presented method, as shown 

in figure 4. A KR500 (KUKA Inc.) industrial robot was used as the motion carrier. An IP60 

Omega160 (ATI Inc.) six-dimensional force transducer, which was mounted on the flange, was used 

to measure the external load. The end effector was installed under the force transducer and a 50 kg 

external load was used to generate desired elastic deflections. The robot positional errors were 

measured by a laser tracker (API Inc.) through a spherically mounted retroreflector (SMR), which was 

installed on the end effector.   

 
Figure 4. Experimental system. 
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5.2. Experiment of variable parameter stiffness identification  

A 1200 mm  600 mm  600 mm  workspace was planned as the robot calibration space in the 

experiment. The different side lengths of 600 mm, 300 mm and 150 mm were selected to investigate 

the influence of grid size on identification results, as shown in figure 5.  

 
Figure 5. Space division with different side lengths of grid. 

On this basis, the theoretical coordinates and the initial configuration in each sample point could be 

planned. Rotate the end effector around the y axis of Tool candidate system with -10° and 10°, new 

robot configurations in given position were generated. Besides, deformations without loading and 

deformations caused by external load were measured respectively through laser tracker in the base 

coordinate system. External loads were measured through force transducer in the force coordinate 

system. Accordingly, actual kinematics parameters and stiffness of each robot joint in different grid 

spaces could be identified. Specific situations are presented as follows. 

Selecting eight vertices and the center point of the whole calibration space as sampling points, 

stiffness of each robot joint without modification of kinematics parameters could be identified as 

  10 9 8 89 8diag(1.49 10 ,6.03 10 ,5.56 10 ,3.70 10 ,2.52 10 ,4.53 10 ) Nmm/ radK       　        (18) 

The stiffness of each robot joint with modified kinematics parameters could be identified as 

  10 9 8 89 8diag(1.56 10 ,6.12 10 ,5.83 10 ,4.59 10 ,2.19 10 ,4.79 10 ) Nmm/ radK       　        (19) 

The identification results have changed compared to those before kinematics parameters 

modification. 

Choosing 600 mm as the side length of the cubic grid, the robot calibration space was divided into 

2 symmetrical cubic grids. Then, joint stiffness in two grids could be identified after modification of 

kinematics parameters, the identification results could be shown as 
9 910 8 8 8

1 diag(1.48 10 ,5.58 10 ,6.81 10 , 3.68 10 ,1.40 10 ,2.06 10 ) Nmm/ radGK               (20) 
9 910 8 8 8

2 diag(1.49 10 ,6.81 10 ,4.81 10 ,2.28 10 ,3.99 10 ,1.65 10 ) Nmm/ radGK               (21) 

where 
1G

K


 and 
2G

K


 are diagonal matrixes of joint stiffness in Grid 1 and Grid 2 spaces as shown in 

figure 5. The stiffness of each joint changes slightly in these two spaces. 

The robot calibration space was divided into 16 cubic grids when choosing 300 mm as the side length 

of the cubic grid. The joint stiffness in 16 grids could be identified after modification of kinematics 

parameters as shown in table 1. 

Table 1. The stiffness of third joint in 16 grid spaces. 

Nmm/ ad)( riK  1K  2K  3K  4K  5K  6K  

Cubic 1.1 1.06 ×10
10 

5.56×10
9
 6.40×10

9
 3.24×10

8
 1.31×10

8
 2.04×10

8
 

Cubic 1.2 6.85 ×10
9
 5.59×10

9
 6.29×10

9
 1.88×10

8
 9.23×10

7
 1.26×10

8
 

Cubic 1.3 8.24 ×10
9
 5.88×10

9
 6.04×10

9
 1.68×10

8
 7.30×10

7
 1.20×10

8
 

Cubic 1.4 1.01 ×10
10

 7.51×10
9
 4.29×10

9
 1.83×10

8
 2.88×10

8
 1.83×10

8
 

Cubic 2.1 1.82 ×10
9
 5.36×10

9
 6.80×10

9
 6.27×10

7
 1.17×10

8
 6.27×10

7
 

Cubic 2.2 2.05 ×10
9
 5.39×10

9
 8.57×10

9
 5.76×10

7
 7.28×10

7
 5.76×10

7
 

Cubic 2.3 2.51 ×10
9
 5.48×10

9
 9.24×10

9
 5.64×10

7
 5.07×10

7
 5.64×10

7
 

Cubic 2.4 2.64×10
9
 6.85×10

9
 4.88×10

9
 5.20×10

7
 2.05×10

8
 5.20×10

7
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Cubic 3.1 6.95×10
10

 5.04×10
9
 6.36×10

9
 7.06×10

8
 1.42×10

8
 4.74×10

8
 

Cubic 3.2 8.29×10
9
 4.95×10

9
 6.13×10

9
 2.60×10

8
 9.46×10

7
 1.80×10

8
 

Cubic 3.3 1.06 ×10
10

 5.42×10
9
 5.46×10

9
 2.34×10

8
 1.10×10

8
 2.07×10

8
 

Cubic 3.4 4.37×10
9
 7.32×10

9
 4.27×10

9
 1. 17×10

8
 1.16×10

9
 1.13×10

8
 

Cubic 4.1 2.70×10
9
 4.50×10

9
 7.49×10

9
 1.22×10

8
 1.28×10

8
 7.33×10

7
 

Cubic 4.2 2.83×10
9
 4.70×10

9
 8.53×10

9
 1.01×10

8
 8.12×10

7
 4.56×10

7
 

Cubic 4.3 2.64×10
9
 5.13×10

9
 7.38×10

9
 7.62×10

7
 8.11×10

7
 3.60×10

7
 

Cubic 4.4 2.24×10
9
 6.72×10

9
 4.39×10

9
 5.62×10

7
 2.30×10

8
 2.49×10

7
 

And so on, the joint stiffness in 128 grids could be identified. 

Through above description, kinematics parameters modification or not influences the identification 

results of joint stiffness. Furthermore, the joint stiffness obviously changes in grid space of different 

sizes.  

5.3. Experiment of robot positional compensation 

In theory, no kinematic modification and larger grid space can result in lower accuracy of stiffness 

identification results. Thus, model-based compensation experiments were performed to test the actual 

effect of positional error compensation, and the application effect of variable parameters model of 

robot stiffness could be concurrently reflected. 

Choosing one verification point randomly in each 150 mm × 150mm × 150 mm grid of calibration 

space, and 128 verification points were generated. Fixing an external load on the end effector to 

simulate the machining load, the positional errors of target points were predicted based on the 

measured load and the corresponding stiffness model. After that, the actual positional errors before 

and after compensating could be measured by executing commands before and after modification. The 

absolute positional errors could be calculated using the equation: 

     
22 2

( ) ( ) ( ) ( )x y zE i E i E i E i                                                  (22) 

where ( )E i  is the absolute positional error of the i-th target position, ( )xE i , ( )yE i  and ( )zE i  are the 

positional errors on x, y and z axis respectively.  

In order to researching the effect of kinematics parameters modification, the compensation 

experiments were conducted without space gridding. The positional error compensation results before 

and after modifying kinematic parameters were compared as shown in figure 6. After modifying 

kinematic parameters, the average value of robot absolute positional error was reduced from 0.1104 

mm to 0.1049 mm. The experimental results show that the stiffness modeling accuracy is higher after 

kinematics parameters modification. Consequently, the identification of joint stiffness in each grid 

space was based on the modified kinematic parameters in subsequent experiments. 

The compensation effect in different sizes of divided grid space could be shown as figure 7. The 

average value of absolute positional errors caused by external load was 0.2567 mm, and the maximum 

error was 0.3244 mm. Based on invariable joint stiffness, the average absolute positional error after 

compensation was reduced a certain extent to 0.1049 mm; the maximum error was 0.1434 mm. The 

average value of absolute positional errors was decreased to 0.0989 mm through grids with 600 mm 

side length, and the maximum error was 0.1434 mm. Dividing workspace into 16 grids and the 

positional accuracy could be raised further. The average absolute positional error was reduced to 

0.0761 mm and the biggest error was 0.1129 mm. Finally, dividing the calibration space into 128 grids 

and the average value of absolute positional errors was cut down to 0.0581 mm and the biggest error 

was 0.0981 mm. The positional accuracy reached within 0.1 mm generally. Accordingly, the smaller 

grid size, the more accurate compensation results could be obtained. Compared with the traditional 

compensation method, whose joint stiffness is constant, the compensation effect with 128 grids raised 

by nearly 44.61%. 

In summary, it can be proved that the joint stiffness varies indeed in different spaces. When the 

kinematics parameters and the joint stiffness change with work space, the robot stiffness model and 
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error prediction model could be better characterized. Hence, the error compensation method based on 

variable parameters can effectively improve positional accuracy of robot machining system under 

external load. 

 
Figure 6. Compensation results with or without kinematics modification. 

 
Figure 7. Absolute positional errors before and after compensation. 

6. Conclusions 

(1) This paper raised a regular sampling point selection method by space gridding. 

(2) A robotic variable parameter stiffness modeling method is put forward, based on the 

identification of kinematics parameters and joint stiffness in different space grid. 

(3) Combining force online perception method and variable parameter stiffness model, a positional 

error prediction and compensation method is built. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

A
b

so
lu

te
 P

o
si

ti
o

n
al

 e
rr

o
r 

 (
m

m
) 

Serial number of sampling points 

Compensation without kinematics modification Compensation with kinematics modification

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

A
b

so
lu

te
 P

o
si

ti
o

n
al

 e
rr

o
r 

 (
m

m
) 

Serial number of sampling points 

Without compensation Compensation without grids dividing

Compensation with 2 grids Compensation with 16 grids

Compensation with 128 grids



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012046

IOP Publishing

doi:10.1088/1742-6596/1487/1/012046

10

 

 

 

 

 

 

(4) Experiments of the stiffness identification and positional error compensation methods were 

performed on KUKA KR500 experimental system. Positional errors caused by external load could be 

reduced obviously, and the effectiveness of the modeling method was testified. In addition, a certain 

relationship exists between the compensation effect and the number of grids, which could be used for 

reference in future research. 

(5) The method has good application value in high-precision machining tasks, such as robot drilling 

and milling. 
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