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Abstract. Artificial Intelligence has played an increasingly important role in visual defect 

detection in recent years, while there are many challenges using deep learning for this application, 

such as the shortage of data, lack of knowledge of root cause of defects. In this paper, we combine 

deep learning with traditional AI methods, not only to solve unshaded defect detection but also 

find root causes of detected defects. First, we propose a taxonomy method called DataonomySM  

to extend a meta defect dataset with a small number of samples and a deep learning method to 

detect the image defects. For detected defect images, we use a generalized multi-image matting 

algorithm to extract common defects automatically. We apply this technology to identify defects 

that stem from systematic errors in a product line and later extended its use to watermark 

processing. Experimental results have shown great capability and versatility of our proposed 

methods.  

1. Introduction 

Visual inspection is a common task across the industry. In order to improve the quality of products and 

reduce the cost, machine vision has been used for a long time. Visual inspection consists of three major 

tasks: defect detection, presence detection, and measurement. However, defect detection is still a 

challenging problem due to a large variety of shapes and patterns among products from different 

industries, and even different assembly lines of the same product. Recently, Deep Learning (DL) based 

approach has shown great potential in solving complex problems and has proven to be successful in a 

variety of applications. In the field of visual inspection, several works [1][2][3] were proposed using 

DL based approach to classify and detect the defects. One of the biggest challenges for applying DL 

based approach to the industry is the lack of data samples. 

In practice, a common approach [4] to address this problem is to use transfer learning, in which a 

pre-trained model, such as VGG and Inception V3, is chosen and then retrained on the target dataset by 

keeping the model architecture and parameter weights of the lower layers constant and only updating 

the upper layers of the neural network. However, it is difficult to get a large number of training samples 

from a certain field or industry, for instance, images of defects on the surfaces of a specific type of 

ceramic product. Therefore, in this paper we propose a novel approach named DataonomySM, which can 

be used to train the classifier for a specific task across the industry with relatively small data samples. 

Different from the method of adding a number of geometric transformations to the original image data 

to enlarge the number of samples in the training dataset, DataonomySM aims at quantifying the 

relationships between different datasets and extracting a structure out of them. The “structure” means a 

collection of relations specifying which dataset provides useful information to another, and by how 

much.  



CCEAI 2020

IOP Conf. Series: Journal of Physics: Conf. Series 1487 (2020) 012031

IOP Publishing

doi:10.1088/1742-6596/1487/1/012031

2

 

 

 

 

 

 

Another issue in the visual inspection field is that besides the basic defect detection tasks, few 

researches have dealt with root cause analysis for the detected image defects. In [5], the author proposed 

a knowledge-driven diagnosis approach when defect generation mechanism is known. Basically, there 

are two main kinds of root causes: systematic error and random error. Systematic error such as mechanic 

operation error will cause the same defect at the same position for each product. This kind of error does 

huge damage to the whole batch of products. In this paper, we will focus on finding out defects caused 

by systematic error. 

The rest of the paper is structured as follows. In Section 2, we provide a description of our 

DataonomySM. Section 3 gives a description of our deep learning-based framework for image defect 

detection, followed with the methodology for root cause analysis. The setup and results of the 

experiments will be presented in Section 4. Conclusions will be discussed in Section 5. 

2. DataonomySM 

The patent pending DataonomySM algorithm [1] is a fully computational method for quantifying data 

class relationships and extracting a structure out of them. The following steps give the idea of the whole 

pipeline, and the framework of our approach is shown in Figure 1. 

 

Figure 1. DataonomySM Pipeline 

a) Make use of a pre-trained model for object classification, e.g. Inception V3 [6]. 

b) Find affinity matrix across dataset. 

c) Get normalized data augmentation affinities using AHP (Analytic Hierarchy Process) [7]. 

d) Find global mapping taxonomy using BIP (Binary Integer Programming) [8]. 
The DataonomySM algorithm will pull the information from an ever-increasing pool of data to 

develop a highly specialized solution for new customers. Once the data of a company is added to the 

pool, the model can be fine-tuned to exceed 99.97% accuracy. 

3. Framework for Image Defect Detection 

(a)   (b)  

Figure 2. (a) Framework of Our Proposed Approach; (b) Inception V3 

In this section, we present the framework of our proposed method for visual defect inspection. As 

shown in Figure 2 (a), the framework of deep learning based visual defect classification and detection 
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consists of three components. The first component is the base model training, the second component is 

transfer learning for visual defect classification, and the third component is defect segmentation. 

3.1. Training of Base Model 

In order to obtain the specific model for visual defect classification, the selection of base model is 

important and the way to train the base model is also crucial. These two factors would impact the overall 

performance of the base model and thereafter. During the base model training, we utilize the 

aforementioned DataonomySM approach to prepare more useful and representative datasets related to 

our tasks. Then deep convolution neural network is applied with the state-of-the-art model architectures. 

Specifically, we introduced the InceptionV3 [6] network which has been widely used in image 

recognition and has shown promising performance on various datasets, as shown in Figure 2 (b). This 

network is made up of a number of inception modules which contains convolutions, pooling, 

concatenations, and fully connected layers. The original inception module was designed by stacking 

filters with multiple sizes in the same level of network, which enables multiple receptive fields of each 

filter and in turn, can extract features in multiple scales. In order to reduce the computational cost, within 

an inception module, 1x1 convolution layers were added to limit the number of input channels. In 

Inception V3 network, the computational cost was further reduced by factorizing convolutional layers 

within inception module, where an NxN convolutional layer was decomposed into one 1xN 

convolutional layer followed by a Nx1 convolutional layer.  Lastly, batch normalization was added to 

auxiliary layers, to improve the performance. 

Given the InceptionV3 network structure, we modify the fully connected layers to fit the number of 

classes from the dataset generated by our proposed DataonomySM approach. Then augmented data are 

collected into batches and feeding into the network for training. The Stochastic Gradient Descent (SGD) 

with momentum is applied for the training procedure. The whole training is set to stop when the network 

converged after a number of epochs. The trained weighs are stored as our base model and would be used 

in the next steps for transfer learning. 

3.2. Training of Defect Classifier 

The next step of our proposed framework is to train the visual defect model. The transfer learning 

scheme is applied in this step by utilizing our pertained models on dataset that is generated by 

DataonomySM. Particularly, the pre-trained Inception V3 model is used as the starting point for the model 

on the visual defect classification task. This transfer learning approach is considered to be effective since 

our base model is trained on a large corpus of photos with large number of classes. It enables the model 

to efficiently learn to extract features from these images in order to perform well on a specific problem. 

Moreover, the model is pretrained on the dataset selected through DataonomySM, which chooses sample 

images that have certain features that are more closely related to the classification task of defect 

inspection. This can further boost the capability of the base model to differentiate visual defects. During 

the training, we use the full model without freezing any layers, and only the last fully connected layer is 

modified to fit the two-class classification problem in defect inspection tasks. Hyperparameters such as 

initial learning rate are modified, and more details are presented in experiments. 

3.3. Defect Area Detection 

After the above steps, our model is capable of detecting the visual defects given an input image. Here, 

we further propose a segmentation approach so that the defect area can be located in the image. There 

are three components included in this stage, patch extraction, patch classification, heatmap generation, 

and localization. More specifically, we first segment the input image into patches, and then use the 

classifier obtained from Section 3.2 to classify each patch. The heatmap of the input image will be 

generated on the basis of the probabilities obtained from classification and then the defect area can be 

finally highlighted using the schema of binarization. 
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3.4. Defect Cause Analysis 

There are many works dealing with defect detection, however, few of them can conduct the cause-

finding automatically. We provide a way to find the root cause of common defects, which is also known 

as systematic error. Normally, if a systematic error exists, it will cause the same defect at the same 

location. The following workflow of a generalized multi-image matting algorithm shows our approach 

to extracting the common defect. 

Assuming that a system error exists, our task is to determine if there is a common defect and what 

part belongs to a common defect in images. Basically, we first compute gradients at each pixel in both 

x and y directions for each image. Then we compute the median gradients, which are the medians of 

gradients obtained by a median filter, for x and y direction independently. Thus, we have two median 

gradient maps: one for x and one for y with all information from the dataset 

𝑝[𝑚, 𝑛] = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑔𝑘[𝑚, 𝑛, 𝑘 ∈ 𝑤]}                                                     (1) 

Here, 𝑝[𝑚, 𝑛] is the median gradient value of a single pixel at position [𝑚, 𝑛] in either x or y direction 

for images within the filter window size of 𝑤. 𝑔𝑘[𝑚, 𝑛] is the gradient value of x or y direction in a 

single image at position [𝑚, 𝑛]. After the experiment, we find out that window size around 30 will start 

to give us a good result. To further explain the filter window, imagine in a manufacturing line, every 30 

or more consecutive products will be taken into analysis to get a median gradient map. We get the 

gradient values maps of all w images and for each pixel we find the median value of all w images at the 

same pixel as our median output. The reason why we use median filter is to clear noise and speckles. As 

the number of images increases, the median gradient at the common defect area will be more consistent 

and significant than other points, because the systematic defect occurs at the same position for each 

image. Therefore, after computing the magnitude of the gradient for each point, we can get an output 

image that shows the common pattern, which normally gives the systematic error. Figure 3 is our defect 

analysis workflow. 

 

Figure 3. Defect Analysis Workflow 

4. Experiments 

4.1. Defect Detection 

4.1.1. Datasets. We choose DAGM-2007 dataset [9] to evaluate the performance of our proposed 

framework. The dataset contains ten classes of different defect with different textured background, even 

though the data is generated artificially, but similar to the real-world problems. The entire dataset 

consists of 8050 images for training, in which 1046 images contain defects; and 8050 images for testing, 

in which 1054 images contain defects. Each image in the dataset is saved in grayscale 8-bit PNG format 

of size 512x512.  In our experiment, we split the training dataset into two parts, 80% for training and 

20% for validation during the training stage. The example image for each class contained in this dataset 

is shown in Figure 4. 

 

Figure 4. DAGM-2007 Dataset 
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4.1.2. Experimental Design. In order to evaluate the effectiveness and performance of our proposed 

framework. We retrain the classifier for defect detection on the surface by using transfer learning. 

According to the accuracy on defect detection, we compare the relevant data extracted by DataonomySM 

from ImageNet to retrain the Inception V3 with the method in [1][2] we can prove the effectiveness of 

our method for data augmentation and thus showing the possibility of our method to solve the problem 

of limited dataset in deep learning based tasks. 

Our experiment for retraining the Inception V3 using selected data from ImageNet was ran on 

computer with four GeForce GTX 1080 Ti graphics card. With use of transfer learning, the training of 

classifier for defect detection on the surface was ran on computer with two GeForce GTX 1080 Ti 

graphics card. 

4.1.3. Experimental Results 

(a) Defect Image Detection for Texture Surface. 

500 classes of data are selected from ImageNet to train the base model, and the total time for training 

takes around 252 hours. 

With use of transfer learning, we take the retrained Inception V3 on the selected 500 classes from 

ImageNet as our base network. We evaluate the performance of our approach for surface defect detection 

in terms of the true positive rate (TPR) and true negative rate (TNR). Equation 2 and Equation 3 provide 

the definition of TPR and TNR, respectively. 

𝑇𝑃𝑅 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁)−1                                                                   (2) 

TNR = TN(FP + TN)−1                                                                  (3) 

Table 1 shows the performance of our framework compared to the state-of-art deep learning-based 

approach proposed in [10] with DAGM-2007. From the table, we can see that our method outperforms 

the others, and therefore shows the effectiveness of our proposed framework for deep learning-based 

approach with limited data samples. 

Table 1. Defect detection result (%). 

No. Weimer et al. [10] Inception V3(Ours) 

TPR TNR TPR TNR 

1 100 100 100 100 

2 100 97.3 100 100 

3 95.5 100 98.8 100 

4 100 98.7 100 100 

5 98.8 100 98.8 100 

6 100 99.5 97 100 

7 NA NA 100 100 

8 NA NA 96.7 100 

9 NA NA 100 100 

10 NA NA 99.3 100 

In addition, we also compared the accuracy of our method on defect detection with the work in [2] 

and [11]. The accuracy of our method with pre-trained base model on Wood Dataset is 99.12%, 

compared with the build-in Inception V3 which is 97.7%. And the average accuracy of our method on 

DAGM-2007 dataset is 99.88%. It can be seen that our framework using DataonomySM for data 

augmentation shows high performance on defect detection with limited dataset compared to the state-

of-the-art method. 

(b) Defect Area Detection on Texture Surface. 

The next step of our proposed framework is to highlight the defect area on the surface. Part of the result 

for the texture data in this step is shown in Figure 5, showing a decent performance of our method. 
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(a)   (b)   (c)   

Figure 5. Defect Detection on DAGM-2007 (a) Original Image (b) Mask Image (c) Highlighted 

Defect 

4.2. Defect Cause Analysis 

4.2.1. Dataset for Root Cause Detection. In order to evaluate our method, we created a new dataset for 

our root cause detection, based on DAGM-2007 dataset [9]. We chose all 1046 images which contain a 

common defect with the existing types of scratch defect independently on chosen images. In this case, 

we have 1046 training images for each scratch type and around 10,000 images in total. In order to 

simulate the systematic error, the added scratch is the same size and at the same position for each image. 

Figure 6 (a) and (b) are two examples with different systematic defects with the original defect from 

DAGM-2007. 

(a)   (b)  

Figure 6. Example of 2 Types of Scratches. 

4.2.2. Experimental Results for Root Cause Detection. Using the method in Sec. 3.3, we got common 

defect image for each type of scratch. 

(a)  (b)  (c)  

Figure 7. (a)(b) Results with Common Defect Detected; (c) Result with No Common Defect 

Detected. 

From Figure 7 (a) and (b), we can find out where the common defect is. This defect may come from 

the mechanical error in the product assembly line, which can cause a huge loss in production if not 

detected automatically. 

Figure 7 (c) is the resultant image of the common defect detection for 1046 images with defect in 

DAGM-2007 dataset [9]. Because there are random defects (scratches), the resultant image obtained by 

the generalized multi-image matting algorithm is a blank image. This technique can also be used in other 

areas, such as troubleshooting in printing systems. We created a 500-large text defect dataset by adding 

the same ink defect at the same position of text images. Figure 8 (a) is an example from our dataset. 

Using our root cause detection method, the resulting image Figure 8 (b) does detect those 4 ink defects 

in the original dataset (we reversed colour for better notice). Therefore, in real life, we can know there 

is a problem in the printing system that causes the common defect using this method. 
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(a)  (b)  

Figure 8. (a) One of Original Text Defect Image; (b) Root Cause Detection Result. 

5. Conclusion 

In this paper, we provided a novel algorithm named DataonomySM to improve the performance of the 

deep learning-based approach to detect product defects with limited data samples for training, which 

proved to be successful in our experiments. Detailed steps are provided regarding our approach for the 

tasks of defect image classification and defect area detection. In addition, a generalized multi-image 

matting algorithm was proposed to analyse defect cause and find defects associated to systematic errors 

and generated impressive results on our data. This method was also successfully applied in watermarker 

removal in our experiments. The well-designed and extensive experiments in this study clearly verified 

the effectiveness of the proposed framework for surface defect inspection tasks. 
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