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Abstract

Distributions of data or sensory stimuli often enjoy underlying invariances.How

and to what extent those symmetries are captured by unsupervised learning

methods is a relevant question in machine learning and in computational neu-

roscience. We study here, through a combination of numerical and analytical

tools, the learning dynamics of restricted Boltzmann machines (RBM), a neu-

ral network paradigm for representation learning. As learning proceeds from a

random con�guration of the network weights, we show the existence of, and

characterize a symmetry-breaking phenomenon, in which the latent variables

acquire receptive �elds focusing on limited parts of the invariant manifold sup-

porting the data. The symmetry is restored at large learning times through the

diffusion of the receptive �eld over the invariant manifold; hence, the RBM

effectively spans a continuous attractor in the space of network weights. This

symmetry-breaking phenomenon takes place only if the amount of data avail-

able for training exceeds some critical value, depending on the network size and

the intensity of symmetry-induced correlations in the data; below this ‘retarded-

learning’ threshold, the network weights are essentially noisy and over�t the

data.
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1. Introduction

Many high-dimensional inputs or data enjoy various kinds of low-dimensional invariances,

which are at the basis of the so-called manifold hypothesis [1]. For instance, the pictures of

somebody’s face are related to each other through a set of continuous symmetries correspond-

ing to the degrees of freedom characterizing the relative position of the camera (rotations,

translations, changes of scales) as well as the internal deformations of the face (controlled by

muscles). While well-understood symmetries can be explicitly taken care of through adequate

procedures, e.g. convolutional networks, not all invariances may be known a priori. An inter-

esting question is therefore if and how these residual symmetries affect the representations of

the data achieved by learning models.

This question does not arise solely in the context of machine learning, but is also of inter-

est in computational neuroscience, where it is of crucial importance to understand how the

statistical structure of input stimuli, be they visual, olfactive, auditory, tactile, . . . shapes their

encoding by sensory brain areas and their processing by higher cortical regions. Information

theory provides a mathematical framework to answer this question [2], and was applied, in

the case of linear models of neurons, to a variety of situations, including the prediction of the

receptive �elds of retinal ganglion cells [3], the determination of cone fractions in the human

retina [4] or the ef�cient representation of odor-variable environments [5]. In the case of natural

images, which enjoy approximate translational and rotational invariances, non-linear learn-

ing rules resulting from adequate modi�cation of Oja’s dynamics [6] or sparse-representation

learning procedures [7] produce local edge detectors, such as independent component analysis

[8]. These detectors bear strong similarities with the neural receptive �elds measured in the

visual cortex (V1 area) in mammals.

It is therefore natural to wonder whether the existence of localized receptive �elds is a gen-

eral feature to be expected from representations of invariant distributions of inputs. Gardner’s

theory of optimal learning for single-layer neural networks (perceptron) [9] predicts that spa-

tially correlated patterns, e.g. drawn from a translationally-invariant distribution, lead to a

localized pro�le of weights [10]. Further supporting evidence was recently brought by sev-

eral works, focusing on the production of such receptive �elds in the context of unsupervised

learning. Learning of symmetric data with similarity-preserving representations [11] or with

auto-encoders [12] both led to localized receptive �elds tiling the underlying manifold, in

striking analogy with place cells and spatial maps in the hippocampus. In turn, such high-

dimensional place-cell-like representations have putative functional advantages: they can be

ef�ciently and accurately learned by recurrent neural networks, and thus allow for the storage

and retrieval of multiple cognitive low-dimensional maps [13].

The present work is an additional effort to investigate this issue in a highly simpli�ed

and idealized framework of unsupervised learning, where both the data distribution and the

machine are under full control. Similarly to previous studies [14, 15], we consider synthetic

data with controlled invariances generated by standard models in statistical physics, such as the

Ising and XYmodels. These data are then used to train restricted Boltzmann machines (RBM),

a simple albeit powerful framework for representation learning,where a layer of hidden (latent)

units account for the correlation structure in the data con�gurations.We show how the receptive

�elds of the hidden units undergo a symmetry-breaking transition in the space of couplings:

units individually cover localized regions of the input space, but concur to tile the space as

best as possible, in much the same way as hippocampal place cells do. Translation invariance,

present in the data distribution but broken by each hidden unit, is dynamically restored if we

let the training algorithm run for very long times (well beyond the training time needed to sat-

urate the log-likelihood of the test set): while keeping their localized shape, the center of the
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receptive/place �elds diffuses along the input space, effectively ensuring the invariance of the

learned distribution. We also show that this symmetry-breaking phenomenon requires a mini-

mum number of data, an illustration of the general phenomenon of retarded learning [16], also

encountered in random matrix theory in the context of the so-called spiked covariance model

[17, 18].

Our paper is organized as follows. RBM and their learning algorithms are introduced in

section 2. We consider the case of a data distrbution with a single invariance in section 3, and

with two symmetries in section 4. A detailed theoretical analysis of the learning dynamics

and of the receptive �eld emerging through the symmetry-breaking transition can be found

in section 5. Conclusions and speculative connections with experiments in neuroscience are

proposed in section 6.

2. Restricted Boltzmann Machines

2.1. Definition and log-likelihood

A restricted Boltzmann machine (RBM) is a bipartite, undirected stochastic neural network

with two layers, see �gure 1:

• the visible layer includes N units vi, i = 1, . . . ,N, which carry the con�gurations of data.

For simplicity, we assume here that visible units take binary values, vi = ±1.

• the hidden layer includesM units hµ, µ = 1, . . . ,M, on which are expressed the represen-

tations of the data con�gurations. Hidden, or latent variables hµ can take real or binary

values.

The model is formally de�ned by a Gibbs probability distribution over the sets of visible

(v) and hidden (h) variable con�guration:

p(v, h) =
1

Z e−E(v,h) , where Z =
∑

v

∫

dh e−E(v,h) (1)

is the partition function, such that p is normalized to unity, and the energy function E(v, h) is

given by

E(v, h) = −
N∑

i=1

M∑

µ=1

wiµvi hµ −
N∑

i=1

bivi +

M∑

µ=1

Uµ( hµ). (2)

In the formula above,wiµ are the real-valued weights (coupling) connecting the hidden unit hµ
and the visible unit vi, bi are real-valued bias terms, also called �elds and Uµ are the hidden

unit potentials. We consider two possible choices for Uµ:

• For binary (±1) valued hidden units, a regular �eld term Uµ(hµ) = −cµhµ similar to the

visible units. In that case, equation (2) is a special case of Ising distribution, with only

couplings between units belonging to different layers.

• For real valued hidden units, the symmetric double well potential Uµ(hµ) =
1
2
h2µ

+ θµ |hµ|. For θµ = 0, the potential is quadratic and the correspondingvariable is Gaussian

and for θµ < 0 the potential has two minimas at ±θµ; this choice of potential effectively
interpolates between Gaussian (θµ = 0) and binary (θµ →−∞) hidden units [19]. These

hidden units are popularly referred to as the recti�ed linear units (ReLU) with the dif-

ference that here we have made the potential symmetric for positive and negative values

of the hµ.
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Figure 1. The two-layer structure of RBM, with weigts wiµ connecting N visible units
vi toM hidden units hµ. These binary-valued units are subjected to local �elds, called bi
and cµ for, respectively, the visible and hidden layers.

Due to the absence of connections between the units within a layer, the conditional

probability of hidden units given the visible units factorizes as follows:

p(h|v) =
M∏

µ=1

p
(
hµ|Iµ(v)

)
, (3)

where Iµ(v) =
∑

iwiµvi is the total input received from the visible layer by hidden unit µ in the

absence of �elds on visible units, and p(hµ|I) ∝ eUµ(hµ)+hµ I . Therefore, sampling from the con-

ditional distribution is simply done by �rst computing the hidden layer inputs Iµ, then sampling

independently each hidden unit given its input according to its hidden unit potential. Similarly,

the average activity of a hidden unit given the visible units, 〈hµ|v〉, is a non-linear function

of the input Iµ(v); for binary hidden units, we have 〈hµ|v〉 = tanh
(∑

iwiµvi + cµ
)
. Therefore,

RBM can be viewed as a nonlinear model similar to other feature extraction methods such

as independent component analysis. Symmetric formulas can be written for the conditional

probability of visible units given the hidden units.

In addition, the marginal distribution over the visible units p(v) can be written in closed

form:

p(v) =

∫

dh p(v, h) =
1

Z e
∑N

i=1 bivi

N∏

µ=1

∫

dhµ e
−Uµ(hµ)+hµ Iµ(v)

=
1

Z exp










N∑

i=1

bivi +

M∑

µ=1

Γµ

(
Iµ(v)

)

︸ ︷︷ ︸

−Eeff(v)










,

where Γµ(I) = log
∫
dh e−Uµ(h)+h I is the cumulant generative function, or log Laplace trans-

form, associated to the potential Uµ; for binary hidden units, Γµ(I ) = log 2 cosh(I+ cµ).

Note that by construction,Γµ
′(Iµ) is the average value of the hidden unit given its input Iµ; there-

fore the hidden unit potential determines the transfer function of the hidden unit. Importantly,

although the joint distribution is pairwise, the marginal distribution is not in general as Γµ

functions are not quadratic. Therefore,RBMgenerate effective high-order interactions between
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the units vi, and are capable of expressing complex measures over the visible con�gurations

[20, 21].

2.2. Training algorithm

Training the RBM is the process of �tting the parameters Θ = {wiµ, bi, cµ/θµ} to maximize

the average log-likelihood of the S data items vdata assumed to be independently drawn from

p(v). While this may be done with the gradient ascent method, calculating the likelihood is

computationally intensive as it requires evaluating the partition function, and samplingmethods

like Markov chain Monte Carlo (MCMC) in the form of Gibbs sampling are used.

2.2.1. Gradient of log-likelihood. For the model with parameters Θ, the log-likelihood of a

single training example vdata is

log L(vdata|Θ) = log p
(
vdata

)
= −Eeff(v

data)− log Z = −Eeff(v
data)− log

[
∑

v

e−Eeff(v)
]

.

(4)

Taking the partial derivative with respect to Θ gives

∂log L(vdata|Θ)

∂Θ
= −∂Eeff(v

data)

∂Θ
+

1

Z
∂Z
∂Θ

= −∂Eeff(v
data)

∂Θ
+

〈
∂Eeff(v)

∂Θ

〉

RBM

, (5)

where 〈(.)〉RBM = 1
Z
∑

ve
−Eeff(v)(.) denotes the average according to the marginal distribution

over the visible units with parameter valuesΘ.

In particular, for the weights wiµ, we have according to (5), ∂Eeff(v)
∂wiµ

= −vi Γ′
µ

(
Iµ(v)

)

≡ −vi 〈hµ|v〉. The gradient of the total log-likelihood is then

∂
〈
log L(vdata|Θ)

〉

data

∂wiµ
=
〈
vdatai

〈
hµ|vdata

〉〉

data
− 〈vi 〈hµ|v〉〉RBM. (6)

Equation (6) is an example of a moment-matching condition, as it imposes that the corre-

lation between the variables vi and hµ computed from the data coincides with its counterpart

de�ned by the RBMmodel distribution p(v, h). The gradients ofL over bi and cµ lead to similar

moment-matching conditions for, respectively, the average values of vi and of hµ.

2.2.2. Approximating the log-likelihood gradient. In the gradient of the log-likelihood of

equation (6), the model-distribution moment is not computationally tractable, as it requires

to sum over all values of the visible and the hidden variables. In practice, an approximate value

for this term is obtained by Markov chain Monte Carlo (MCMC) methods. The Markov Chain

is de�ned by repeated iterations of Gibbs sampling, which consists in sampling h from v and

v from h using equation (3). In principle, one should run a full MCMC simulation at each gra-

dient step, but this is computationally prohibitive. For our RBM training we use the persistent

contrastive divergence (PCD) algorithm [22]: Markov chains are initialized at the beginning

of the training and updated with only a few Gibbs Monte Carlo steps between each evaluation

of the gradient, see [23] for a more detailed review. This approximation works very well for

the data distribution studied here because they are in a paramagnetic phase (=monomodal),

hence the Markov chains mix very rapidly.
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2.2.3. Stochastic optimization. The RBM is trained using stochastic gradient ascent (SGA),

the golden standard for neural network optimization. SGA is a variant of ordinary gradient

ascent where at each step, only a small subset of the data set (the minibatch), of size Sbatch ∼
10–100 examples, is used to evaluate the average log-likelihood, see equation (7) where ν
is the learning rate which dictates how much to change the parameter in the direction of the

steepest gradient. The dataset is divided into S/Sbatch mini-batches batch(t), and for each epoch

of training t, we perform one SGA update for each mini-batch. An epoch consists of using all

the subsets for the update such that each data sample is used once. After every epoch the subsets

are again drawn randomly. Several dozens of epochs are usually required to reach convergence.

Θ
t+1

= Θ
t
+ ν

[

1

Sbatch

∑

b ∈ batch(t)

∇Θ log L(vdata,b|Θ)

]

(7)

Compared to ordinary gradient ascent, SGA serves several purposes. First and foremost,

its computational cost is signi�cantly reduced as only a small batch is used per update; yet

the update is usually reliable thanks to data redundancy. Second, the stochastic evaluation of

the gradient introduces noise in the learning process. This prevents the dynamics from getting

trapped in local maxima, which is crucial for non-convex optimization landscapes, and it also

directs the dynamics toward minima with wider basins of attraction [24]. It has been argued

that the later effect contributes in improving generalization performance [25–27]. Though the

convergence rate of SGA has a slower asymptotic rate than ordinary gradient descent, it often

does not matter in practice for �nite data sets, as the performance on the test set usually does

not improve anymore once the asymptotic regime is reached [28].

The noise level of the SGD is directly related to the batch size and learning rates parameters,

see for instance [29]. Brie�y speaking, assuming i.i.d. and in�nite number of samples, the

SGAparameter increment hasmean value ν∇Θ

〈
log L(vdata|Θ)

〉

data
, and variance proportional

to ν2/Sbatch; in the large Sbatch limit it is also Gaussian distributed according to the central

limit theorem. In comparison, the increments of a continuous time Langevin equation with

energy landscape E = −
〈
log L(vdata|Θ)

〉

data
and noise covariance matrix ∝ σ2

SGA, integrated

over a time step ν has the samemean value and a covariance proportional to σ2
SGAν. Identifying

both noises gives the following scaling law for the SGA noise, σSGA ∝
√

ν
Sbatch

. Reducing the

learning rate and increasing the batch size therefore decrease the noise level, and vice-versa.

In all our experiments, both learning rates and batch sizes are kept �xed throughout a training

session.

3. Learning data with a single invariance

3.1. Data distribution and translation invariance

3.1.1. Ising model. Our �rst toy distribution for data vdata is the celebrated one-dimensional

Ising model from statistical physics. Here each vi is a spin which can either be up or down,

that is can take only ±1 binary values. The corresponding joint probability distribution of the

visible units reads

pdata(v1, v2, . . . , vN) =
1

ZIsing
e β

∑N
i=1 vi vi+1 (8)

where the partition function normalizes this probability over the 2N visible con�gurations,

and β > 0 is referred to as the inverse temperature. We enforce periodic boundary conditions

through vN+1 ≡ v1.

6
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Figure 2. 10 000 one-dimensional Ising model con�gurations with 100 spins each, sam-
pled from distribution (8) at inverse temperature β = 1 and with periodic boundary
conditions. Black and white dots represent units equal to, respectively, +1 and −1. The
correlation length ξ may be though of as the typical length of black or white contiguous
regions along the horizontal direction. Here, β = 1, which corresponds to ξ ≃ 3.7.

As is well known, under distribution (8), all visible units vi have average values equal

to zero, and the correlation function decays exponentially with the distance separating the

corresponding units on the ring,

〈viv j〉 =
∑

v

pdata(v1, v2, . . . , vN) vi v j = e−|i− j|/ξ, where ξ =
1

ln coth β
(9)

is the correlation length. The above expression for the correlation holds when N ≫ ξ.
Formula (8) de�nes a simple example of invariant distribution under the set of translations

(or, better, rotations) on the N-site ring. More precisely, for any integer k, we have

pdata(v1, v2, . . . , vN) = pdata(vk+1, vk+2, . . . , vk+N), (10)

where i+ k is to be intended modulo N. Figure 2 shows a number of con�gurations, drawn

independently and at random from this probability distribution using the Gibbs sampling

algorithm.

3.1.2. Symmetry breaking and weight profile. The usual meaning of symmetry breaking in

statistical mechanics, condensed matter or �eld theory is that the expectation value of some

observable (typically, the �eld over space, i.e. magnetization) becomes non zero below some

critical temperature. In the context of weight learning by RBM, this would correspond to the

fact that the average value of the weights, e.g. attached to a hidden unit,

Wµ =
∑

i

wiµ, (11)

would become non zero for well chosen control parameter, e.g. above some critical value. Due

to the translation invariance in the data, the simplest, symmetric scenario corresponding to

Wµ 6= 0 would be that all weights are equal to wiµ = W/N.
In the following, we will refer to symmetry breaking for situations in which both Wµ 6= 0

andwiµ 6= W/N. In other words, symmetry breaking hereafter refers to the emergence of RBM

7
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Figure 3. (a) Structure of weights learned by a RBM trained weights after 100 epochs
from 10 000 data con�gurations of the one-dimensional Ising model of size N = 100.
Training parameters: rate ν = 0.001, batch size Sbatch = 10, PCD-20 learning. One
observes the emergence of a peaked structure in the weights, centered around site i ≃ 68.
Note the small �uctuations in the tails (small wi1), due to the �nite (but large) number
of data. (b) Width of the peak in the weight space as a function of the correlation length
of the Ising model, ξ. We trained our RBM with one hidden unit 25 times on data gen-
erated at different temperatures, β, and then calculated the average peak width and the
standard deviation (error bars) over the different samples. The width was calculated by
�tting a cubic spline with one knot to the pro�le: y(i) = {wi −max(wi)/2}, where i is
the site index. The roots of this spline were then determined numerically, and the width
was de�ned as the modulus of the difference between the roots. This procedure reli-
ably �nds the full width at half maximum (FWHM). A linear �t (red line) of the form
y = ax+ b shows that the width of the place (receptive) �eld of the only hidden unit
is proportional to the relevant characteristic length in the data. Notice that the intercept
(b) is non zero, in agreement with the theoretical �ndings of section 5.2 in the β → 0
limit.

model distributions (de�ned through the weights wiµ) that do not enjoy the data symme-

tries, such as translation invariance in the case of the Ising data in (10). The corresponding

weight pro�le will therefore vary over the input (visible) space, and will be called spatially

structured.

3.2. Initial learning and emergence of place cells

3.2.1. Case of a single hidden unit. First we train the RBM with only M = 1 hidden unit,

and N = 100 visible units. Such a limited machine is, of course, not expected to reproduce

accurately the Ising model distribution underlying the data. However, this is an interesting

limit case to study how the RBM can make the most of its single set of weight attached to the

unit. We use a large number of data con�gurations for training, which makes our distribution

approximately invariant under rotations on the ring.

We initialize the weights wi1 with small amplitude Gaussian random values; since the data

are symmetric, we further impose bi = cµ = 0 ∀i,µ. We observe that the log-likelihoods of the

test and training sets saturate after about 10–20 epochs of training. The results of the training

after 100 epochs, i.e. much after saturation is reached are shown in �gure 3(a).We observe that

the weightswi1 are not uniform as could have been naively expected from rotational invariance,

but focus on a limited portion (place) of the N-site ring. The position of the peak depends on

the initial conditions for the weights; it may also be in�uenced by the small irregularities in

the data set coming from the �nite number of training con�gurations.

To understand what determines the width of the weight peak, we train different RBMs with

data at different inverse temperatures β, and calculate their average peak widths over multiple

runs. We plot the peak width as a function of the correlation length ξ in �gure 3(b).We observe

8
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Figure 4. (a) Same as �gure 3(a), but with a RBM having M = 3 hidden units. The
weights attached to the same hidden units are shown with the same color. The recep-
tive �elds (peaks) for the three hidden units are roughly equally separated from each
other. Note that due to the invariance of the probability distributions of the RBM under
hµ →−hµ,wiµ →−wiµ (when cµ = 0), the overall sign of the weights attached to the
same hidden unit does not matter. (b) and (c) Same as �gure 3(a), but with a RBMhaving,
respectivelyM = 25 (b) andM = 100 (c) hidden units. The color codes show the inten-
sity of the weights wiµ as a function of the hidden (µ, y-axis) and visible (i, x-axis) unit
labels. The hidden units have been arranged according to the center of their respective
receptive �eld.

that the peak width scales proportionally to ξ.3 Interestingly, despite its very limited expression

power, our single-unit RBM has correctly learned to coarse grain the visible unit con�gurations

on the relevant scale length in the data, ξ. Having wider receptive, or place �elds would not

be as much as informative. For instance, with a set of uniform weights wi1 = w, the hidden

unit would simply estimate the average magnetization of (mean value of all visible units in)

the data con�gurations, which are all equal to zero up to �uctuations of the order of ±N−1/2,

and would completely miss the correlated structure of the data. Conversely, more narrow place

�elds would have lower signal-to-noise ratios: the strong correlations of visible units over the

length ξ allows one to reliably estimate the local magnetization and the correlation structure

on this scale.

3.2.2. Case of multiple hidden units. We next show results obtained when training RBMwith

M = 3 hidden units on the same data. Figure 4 shows that each one of the three sets of weights

have roughly the same peaked structure (same width) as in the M = 1 case, but the peaks are

centered at different places along the ring. The roughly equal distance between successive

peaks shows the existence of an effective repulsion between the weights of any two hidden

units. This phenomenon is easy to understand on intuitive grounds: having very overlapping

place �elds produces highly redundant hidden units, and would not help capturing the spatial

correlation in the data spreading over the entire ring.

4We have checked that the width is independent of the size N for suf�ciently large values of N.
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Figure 5. (a) Trajectories of the peak of the receptive �eld for a RBM with one hidden
unit vs number of epochs of training. Each trajectory corresponds to a run of the training
procedure starting from a random initial condition for the weights. Training parameters:
rate ν = 0.1, PCD-20 training and batch size Sbatch = 100, 1 million con�gurations of
the one-dimensional Isingmodel at β = 1. Trajectories are corrected for periodic bound-
ary conditions—when the peak crosses the boundary, we add or subtract the size N of
the system. (b) Mean square displacement (MSD) of the peak of the receptive �eld vs
number t of epochs of training. Time t = 0 corresponds to the beginning of training. The
red line is a linear �t = 2Dt obtained after removing the transitory period of the �rst 20
epochs of training. Results obtained from the trajectories shown in (a).

Training of RBMs with a large number of hidden units shows the same pattern of production

of place �elds attached to different hidden units, covering in an approximately uniform way

the visible space (ring), see �gure 4(c) in the case ofM = 100 hidden units. The only notable

difference is that the width of the place �elds shrinks asM gets very large. This happens when

Mξ ≫ N, i.e. when the single-hidden-unit peaks would start to largely overlap.

3.3. Long-time learning and restoration of invariance through place-field diffusion

We now let the training dynamics evolve for a much larger number of epochs. In the case

of a RBM with one hidden unit only, the weight vector shows the overall peak structure of

�gure 3(a) at all times (after a short initial transient of about 10 epochs during which the local-

ized peak emerges). However, the location of the peak may change on very long training time

scales. Figure 5(a) shows ten trajectories of the center of the peak corresponding to ten random

initializations of the weights (equal to small values drawn independently and randomly). We

observe that the centers of the peaks undergo a seemingly random motion. When the number

of data items used for training is very large (to erase any tiny non-homogeneity in the empirical

distribution), this random motion looks like pure diffusion.

Figure 5(b) shows that the mean square displacement (MSD) of the peak center grows

roughly linearly with the training time (number of epochs), which de�nes the effective dif-

fusion coef�cient of the weight peak. For intermediate numbers of data items, diffusion is

activated: due to the inhomogeneities in the empirical data distribution, some places along the

ring are preferred, and have a tendency to trap the weight peak for some time.

10
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Figure 6. Locations of the peaks of the receptive �elds for a RBM with M = 3 hidden
units as functions of the number of epochs of training. Same training parameters as in
�gure 5. The trajectories are corrected for periodic boundary conditions—when the peak
crosses the boundary, we add or subtract the size N of the system. Multiple trajectories
are repeated runs of the training procedure, starting from different initial random condi-
tions for the weights. The correlated motion of the place �elds is a clear signature of the
presence of repulsive interactions between the corresponding weight vectors.

Repeating the same analysis for a RBM with M = 3 hidden units allows us to observe the

diffusion of the three peak centers, see �gure 6. We see that the motions of these centers are

coupled to maintain a constant distance between each other. This is a clear signature of the

effective repulsion between the hidden-unit weight vectors already discussed in section 3.2.2.

3.4. Case of few data: retarded learning transition

The emergence of a pronounced peak in the weight vector attached to a hidden unit reported

above takes place only if the number of data items are suf�ciently large. For very few data, the

RBMweights do not show any clear receptive �eld and seem to over�t the data. Similarly, for a

�xed number of data samples, a transition is observed between the unstructured and spatially-

structured regimes as the correlation length ξ (or the inverse temperature β), that is, the spatial
signal in the data is increased. To distinguish these two regimes, we introduce the empirical

order parameter, see de�nition (11),

W =

∣
∣
∣
∣
∣

N∑

i=1

wi1

∣
∣
∣
∣
∣
, (12)

which is expected to be large when place �elds emerge, and much smaller (and vanishingly

small in the large-N limit) in the unstructured regime. Note that the de�nition above for W

relies on the positive nature of the correlations between the visible units; in the case of anti-

correlations, staggered versions ofW should be considered instead.

Figure 7(a) shows the value of the order parameterW as a function of the intensity of spatial

correlations for a �xed number of data samples. For small values of β (and ξ) W vanishes:

the very weak spatial structure in the available data is not learned by the RBM. At large β,
a place �eld emerges, focusing on a �nite portion of the ring, and W is non zero. The same

transition is observed when β is �xed and the number of training samples, S, is varied, see

�gure 7(b). For few samples or, equivalently, large noise levels r = N/S, the RBM over�ts the

data in the sense that no spatial structure is learned, andW vanishes. For small values of r, W

becomes non zero, signaling the emergence of a place �eld focusing on a �nite portion of the

ring.
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Figure 7. (a) Sum of weightsW after training a one-hidden-unit RBMon 10 000 con�gu-
rations of the one-dimensional Isingmodel at different β. Here, there areN = 100 visible
units, i.e. noise ratio r = N/S = 0.01, other RBM training parameters are: ν = 0.001,
Sbatch = 10, trained for 250 epochs with PCD-20. The error bars are calculated over 10
runs of the same training. (b) Sum of weightsW after training a one-hidden-unit RBMon
con�gurations of the one-dimensional Ising model at β = 0.5 as a function of the noise
ratio r = N/S. Here, there are N = 20 visible units. All other parameters of training are
same as (a). The error bars are calculated over 10 runs of the same training.

This transition is an example of the very general mechanism of the so-called retarded learn-

ing phenomenon [16], also encountered in the context of random correlation matrices and

the spiked covariance model. The connection with random matrices will be made explicit in

section 5.1.

4. Learning data with multiple invariances

4.1. Data distribution: discretized XY model

The classical XY model is a popular model in statistical physics, used in particular to study

topological phase transitions in two dimensions.We consider here the one-dimensional version

of this model, which shows no such phase transition but is nonetheless very useful for our study

due to the additional symmetry with respect to the Ising model. In the XY model each lattice

site i carries an angle θi ∈ [0, 2π[ with respect to some arbitrary, �xed direction. The energy

function reads, up to a scale factor that can absorbed in the temperature de�nition,

E(θ1, θ2, . . . , θN) = −
N∑

i=1

cos(θi − θi+1) (13)

with periodic boundary condition θN+1 = θ1. We then discretize the set of angle values in

multiples of 2π/P, where P is an integer. The resulting model is a Potts model over the N

integer-valued variables vi = 0, 1, 2, . . . ,P− 1, with probability distribution (with periodic

boundary conditions)

pdata(v1, v2, . . . . , vN) =
1

Z e β
∑n

i=1M(vi ,vi+1) (14)

where the interaction kernelM mimics the XY energy function,

M(v, v′) = cos

(
2π

P
(v− v′)

)

, (15)

and the partition function normalizes the distribution p. This distribution enjoys two symme-

tries, compare to the single symmetry of the Ising model in (10): for any integers K and L we

12
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Figure 8. 100 con�gurations (index along the y-axis) of the discretized XY model with
P = 10 Potts states over N = 100 visible units (x-axis, index i of the units) at inverse
temperature β = 1.5. Each color refers to one of the 10 Potts states v = 0, 1, . . . , 9.

have,

pdata(v1, v2, . . . , vN) = pdata(vk+1 + L, vk+2 + L, . . . , vk+N + L), (16)

where i+ k and v+ L are to be intended, respectively, modulo N and P. Figure 8 shows a set

of 100 con�gurations over N = 100 sites, generated independently and at random from this

model for P = 10.

4.2. Symmetry-breaking in both spaces

4.2.1. Case of a single hidden unit. We consider a RBMwithN = 100 visible Potts-type units

vi, which can take one out of P = 10 values, and with M = 1 hidden unit. The weights wi,µ=1

is now a vector wi,1,v, with i ∈ [1, 2, . . . , 100] and v ∈ [1, 2, . . . , 10]. The component wi,1,v of

this vector is the connection between the hidden unit and the visible unit i when it carries the

Potts state v.

We �rst train a RBMwith a single hidden unit h1, which takes real values and is submitted to

a double-well potential. Figure 9(a) shows the weights obtained after training from a very large

number of con�gurations, starting from small white noise initial conditions for the wi,1,v. We

observe a strong modulation of the weights in the space and angle directions, achieving peak

values around some site i and angle v. Similar results were found for a binary-value hidden

unit, h1 = ±1, with a slightly weaker localization of the weights and at a different location,

see �gure 9(b). In the following, we show results obtained for the RBM with the real-value

hidden unit only.

Since the interaction matrixM in the Potts model takes the cosine function form, our RBM

should learn the same functional dependence from the data samples. We show in �gure 9(c)

the quantity

W
angular
i =

∣
∣
∣
∣
∣

P−1∑

v=0

wi,1,v

∣
∣
∣
∣
∣
, (17)

which measures the angular modulation of the weights on each site i. We see a strong space

localization around i = 39, because the weights only take non-zero values near that location.

This location is arbitrary and similar to the place-�eld formation accompanying the breaking

13
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Figure 9. (a) Contour plot of the weights of the RBM with a single real-valued hidden
unit with double-well potential trained on the XY model discretized by the Potts model.
The x-axis shows space (index i of the visible units), while the y-axis refers to angles
(Potts state v). Parameters: P = 10 Potts states, N = 100 visible units, M = 1 hidden
unit, trained on 100 000 con�gurations, learning rate ν = 0.01 and batch size S = 100
trained over 100 epochs. (b) Same as (a) for a binary hidden unit. (c) Angular modulation

W
angular
i of the weight vector as a function of the space location i, see (17). Same param-

eters as in �gure 9(b) for the RBM with real-valued hidden unit. There is a clear strong
space localization with a peak centered in unit i = 39. (d) Weight vector wi=39,µ=1,v as
a function of the angular-Potts variable v. The line represents the cosine function with
frequency= 2π/10 as expected, with the best �t of the phase. (e) Phases ϕi vs site index
i. Gray dotted line is the phase of the above �tting cosine. (Right) Frequency ωi vs site
index i. Gray dotted line is again the frequency of 2π/10 of the cosine �t above, which
is what one would expect from system with 10 Potts states. See text for the de�nition
of the �tted frequencies and phases. The phase and the frequency is constant across the
size of the receptive �eld, that is all the spins look in the same direction.

of translation symmetry over space observed for the Ising model. In addition, at the location of

the maxima, the weight vector is very well approximated by a cosine function, see �gure 9(d).

The RBM has learned the correct frequency equal to 2π/10, and the phase takes an arbi-

trary value. Indeed, the phase is a free parameter due to the invariance against choices of

L in (16).
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Figure 10. (a) Angular modulationW
angular
µ,i (similar to (17), but the hidden-unit index µ

runs from 1 to 5) vs space location i. All the parameters are same as those of �gure 9 but
with M = 5 real valued hidden unit with double well potential. There is a clear strong
space localization and the receptive �elds for the different units show mutual repulsion
of their weight vectors. (b) Weight vectors at the maximum visible unit index imax(µ)
for the respective hidden units µ. The different curves each lie on a cosine function with
frequency= 2π/10 as expected but with phases showing equal separations when ranked
in increasing order.

To obtain a more precise picture of the receptive �eld, we then consider, for each site i, the

P-dimensional vector of the weights wi,µ=1,v. We then �t this vector with a cosine function of

adjustable frequency and phase, referred to as, respectively, ωi and ϕi. We show, as functions

of the site index i, the periods ωi and the phases ϕi in �gure 9(e). We observe that the period

takes the expected value 2π/P over the receptive �eld (sites ranging approximately between

i = 30 and 50). Similarly, the phase is constant (and takes an arbitrary value) over the same

region of space. Informally speaking, when the hidden unit is on, all the XY spins supported

by the sites in the receptive �eld point to the same direction.

4.2.2. Case of multiple hidden units. We also train a RBMwithM = 5 real valued hidden unit

with double well potential, with results shown in �gure 10. We see that the receptive �elds of

the hidden units are mutually separated in space, and show the same phenomenon of repulsion

between the units observed for the Ising data. In addition, the angular dependence of the �ve

weight vectors exhibit the same frequency (equal to 2π/10), but the phases show also a nice

equi-separation due to repulsion along the angular direction.

Though we expected to see a diffusion of the receptive �elds both along the spatial and

angular dimensions for very large learning times, we did not observe this phenomenon even

with RBM trainedwith 1000 000 samples. This is likely due to the fact that the landscape is still

rough for this amount of data, and diffusion remains activated. We have not tried to increase

the number of samples because of the high computational cost.

4.3. Differentiated retarded learning transitions

In this section, we show that RBM trained with data generated by the discretized XY model

shows retarded learning phase transitions. However, as there are two potential symmetry break-

ing directions in this model, one corresponding to the angular space and the other to the

positional space, the breaking of symmetry along these direction may take place at two dif-

ferent values of the noise ratio r = N/S, i.e. for different number of samples in the data set

used for training. The reason is that the number of Potts states in the angular direction, P, may

largely differ from the number of sites on the lattice, N. Consequently, the effective system

sizes along the two directions are different.
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Figure 11. The phenomenon of differentiated retarded learning phase transitions, for
various noise ratios r = N/S, where S is the number of training samples. (a) Angu-
lar direction: The y-axis is the sum of the components w1,i,v of the weight vector
over all spatial locations i = 1, . . . ,N. The x-axis shows the discretized angular states
v = 0, 1, . . . ,P− 1. (b) Spatial direction: The y-axis is the sum of the components w1,i,v

of the weight vector over all angular variables v = 1, . . . ,P. The x-axis shows the lat-
tice site i = 1, 2, . . . ,N. Parameters for data generation and sampling: N = 100, P = 10,
β = 1.5, M = 1 (Bernoulli hidden unit), ν = 0.1, Sbatch = 100, trained for 20 epochs.

This phenomenon of differentiated retarded learning phase transitions is reported in

�gure 11. We show in panel (a) of the �gure the spatial modulation de�ned through,

Wspatial
v =

N∑

i=1

wi,1,v, (18)

as a function of the Potts angular state variable v. We observe that for a large r, the spa-

tial modulation vanishes all over the angular space: low amount of data are not suf�cient for

the RBM to capture the angular correlations in the con�gurations. For large enough data set

(r < 0.033) the spatial modulation shows a clear dependence on v. We then show in panel (b)

of �gure 11 the angular modulationW
angular
i as a function of the lattice site index i for varied

levels of sampling noise, r. Again, for large r, no modulation is seen. However, for very small

noise levels r < 0.002, we do observe that W
angular
i is peaked around some well de�ned site i.

Interestingly, in the range 0.002 < r < 0.008, the angular modulation does not signi�cantly

vary over space, while the spatial modulation varies over angles, compare panels (a) and (b).

We conclude that, for intermediate ranges of values of r, the RBM has created a place-�eld

along the angular direction, but not along the spatial direction.

To test the generality of the phenomenon of differentiated transitions, we also generated

data samples from variants of the discretized XY model. We modi�ed the XY model in terms

of changing the interaction matrixM in (14) from the cosine function to short range couplings,

and also we changed the Hamiltonian to include not only nearest neighbor couplings but also

long range couplings in the positional space. The resulting models display a variety of phase

transitions in the RBMweights after training,with positional symmetry breaking arising before

(for smaller amount of training data) angular ordering in some cases (not shown).

5. Theoretical analysis

Hereafter, we study analytically the dynamics of learning of the weights of the RBM with

binary hidden units when trained with data. Two limit cases will be considered:
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• The case of few data, which allows us to establish the connection with random matrix

theory and the so-called retarded learning transition;

• The case of a large amount of data, with weak correlations, which we analyze in detail to

understand the formation and shape of the place �eld, as well as the interactions between

different place �elds arising through learning.

While we will focus on the learning dynamics of the weights, we assume that the RBM has

correctly learned the local �elds, so we will set bi = cµ = 0 from the beginning in the case of

unbiased binary data vi = ±1. In addition, we assume that hidden units are of Bernoulli type,

hµ = ±1. The log-likelihood therefore reads

logL =

〈
M∑

µ=1

log cosh

(
N∑

i=1

wiµ vi

)〉

data

− log Z({wiµ}), (19)

where the partition function is

Z({wiµ}) =
∑

{v1,v2 ,...,vN}

M∏

µ=1

cosh

(
N∑

i=1

wiµvi

)

. (20)

Taking the partial derivativewith respect towµi we get the following expression for the gradient

of the log-likelihood:

∂ logL
∂wiµ

=

〈

vi tanh





N∑

j=1

w jµv j





〉

data

− 1

Z({wiµ})
∑

{v1,v2,...,vN}
vi

× sinh





N∑

j=1

w jµv j




∏

λ(6=µ)

cosh





N∑

j=1

wiλv j



 . (21)

The continuous-time dynamical equations for the evolution of the weights during training,

assuming that the batch size is maximal, i.e. that all the data are used for training, are

dwiµ

dt
= ν

∂ logL
∂wiµ

, (22)

where ν is the learning rate.

5.1. Few data: small weight expansion and the retarded learning transition

5.1.1. Linearized equations of the dynamics. In this section, we assume that the weights have

initially very small (random) values. For small enough learning times, we may linearize the

dynamical equation (22). We obtain

dwiµ

dt
= ν





N∑

j=1

Ci jw jµ − wiµ



 , (23)

where

Ci j = 〈viv j〉data (24)
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is the empirical covariance matrix estimated from the data. Let Λ be the largest eigenvalue of

C, and e the associated eigenvector, with components ei. As the diagonal elementsCii are equal

to unity (v2i = 1), we have that Λ > 1, unless C is the identity matrix and the data shows no

correlation at all. Hence, according to (23), all weight vectorswµ = {w1µ,w2µ, . . . ,wNµ} align
along e; this result holds within the linear approximation, and is therefore expected to be valid

at short times only.

Let us consider the noise ratio r = N/S, equal to the number of visible units (system size)

over the number of training samples. For bad sampling (large r), the empirical covariance

matrix can be approximated by the covariance matrix of a null model, in which all N visible

units are independent and unbiased: vi is equal to ±1 with equal probabilities (= 1/2), inde-
pendently of the other vj’s. The asymptotic distribution of the eigenvalues of such a random

matrix has a special form, called the Marcenko Pastur (MP) spectrum [30], whose right edge

(top eigenvalue) is given by

Λnoise = ΛMP =
(
1+

√
r
)2

(25)

and the corresponding top eigenvector e has random, Gaussian distributed components.

Conversely, for good sampling (small r), we expect the empirical covariance to be similar to

the covariancematrix computed from themodel distribution p fromwhich data were generated.

Due to the translational invariance of p, its top eigenvector emodel has the same symmetry:

emodel = (1, 1, . . . , 1), up to a normalization factor. Hence, we expect e to be similar to emodel

and be roughly uniform. In the double, large N and large S limit, the two regimes may be

separated by a sharp transition, taking place at a critical value of r. To locate this value, we

compute below the top eigenvalue of the model covariance matrix, and compare it to its MP

counterpart (25). The crossover between the bad and good sampling regimes takes place when

both eigenvalues are equal.

5.1.2. Case of Ising data. Let us consider the case of the one-dimensional Ising model.When

a large number of con�gurations is available, we have Cij = (tanh β)|i−j|, see (9). Due to the

rotational invariance, the top-eigenvector, eIsing has all its components equal. Therefore the top

eigenvalue of the covariance matrix is

ΛIsing(β) =

N∑

j=1

Ci j = 1+ 2
[
tanh β + tanh2 β + tanh3 β + · · ·

]
≈ 1+ tanh β

1− tanh β
= e2β.

(26)

When the inverse temperature β is small, this ‘signal’ eigenvalue is smaller than the ‘noise’

eigenvalue ΛMP (25), locating the right edge of the MP spectrum. In this case, we expect the

top eigenvector e of the empirical covariance matrix C to be noisy, and not to capture the

correlation between the Ising variables vi. In this regime, no receptive �eld with a localized

weight structure can emerge. As β increases above

β(r) = log
(
1+

√
r
)
, (27)

the signal eigenvalue ΛIsing(β) becomes larger than the MP edge, and we expect the top

eigenvector of C to have comparable component and be similar to eIsing.

The above statement is corroborated by the results shown in �gure 12 (a,b), which shows

the top eigenvalueΛ of the correlation matrix C (24) as a function of the noise ratio, r = N/S,
where S is the number of samples. For large r (few samples), Λ is very well approximated
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Figure 12. (a) Top Eigenvalue of the correlation matrix C of data generated from
the one-dimensional Ising model at inverse temperature β = 0.3, as a function
of the noise ratio r. The orange straight line is the top eigenvalue ΛIsing, corre-
sponding to a perfectly sampled (in�nite S) Ising model. The blue curve is the
top eigenvalue Λnoise of the correlation matrix of the null model with independent
variables. (b) Same as panel (a) but for β = 0.5. (c) Top eigenvector of the correlation
matrix C (24) of the con�gurations of the one-dimensional Ising model at �x β but with
different numbers S of samples. Ising model samples to calculate the correlation matrix
were generated at β = 1 for N = 100 spins.

by Λnoise, while, for small r (many samples), Λ gets very close to ΛIsing(β) as expected. The
crossover between these two regimes takes place at values of r such that β ≃ β(r) (27).

Figure 12(c) shows how the top eigenvector of the data correlation matrix changes as more

and more samples are considered. One clearly sees a phase transition from a random vector to

the uniform eigenvector eIsing.

5.1.3. Case of XY data. For the discrete XY model, the correlation matrix in the r→ 0 limit

can be computed as well using the transfer matrix formalism. We �nd

Ci j(v, v
′) =

1

P− 1

P−1∑

p=1

(
λp(β)

λ0(β)

)| j−i|
cos

(
2πp(v− v′)

P

)

, (28)

where

λp(β) =

P−1∑

v=0

exp

[

β cos

(
2πv

P

)]

cos

(
2πvp

P

)

. (29)

C enjoys translational invariance along both axis, hence its eigenvectors are discrete 2DFourier

modes; after computation, we �nd that the top eigenvalue is

ΛXY(β) =
P

P− 1

λ0(β)+ λ1(β)

λ0(β)− λ1(β)
. (30)
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Figure 13. (a)–(c) Empirical top eigenvector of the correlation matrix C of data gener-
ated from the XY model at inverse temperature β = 1.5, for sample size S = 5× 102

(a), S = 104 (b), S = 5× 106 (c). (d) Corresponding top eigenvalue (dots) as a function
of the sample size r = N

S
. The orange straight line is the top eigenvalue ΛXY(β = 1.5),

corresponding to a perfectly sampled (in�nite S) XY model. The blue curve is the top
eigenvalue Λnoise of the correlation matrix of the null model with independent vari-
ables. The eigenvalues cross r ≃ 0.066. (e) Norm of the projection of the empirical
top eigenvector ê in the space spanned by the perfect-sampling top eigenvectors e1, e2,
√

(ê.e1)2 + (ê.e2)2.

with a corresponding eigenspace of dimension 2, spanned by e1i (v) =

√
2
NP

cos
(
2πv
P

)
, e2i (v)

=

√
2
NP

sin
(
2πv
P

)
. The top eigenvector is uniform over space, as for the Ising model, but not

over the angular variables, see �gure 13(c).

The ‘noise’ eigenvalue is similarly given by the MP spectrum, although slightly modi�ed:

the dimension to sample size ratio is now PN
S

= Pr, and in the S→∞ limit, the correlation

matrix has top eigenvalue P
P−1

owing to the anticorrelations between Potts variables on the

same site, Ci,i(a, b) = − 1
P−1

, ∀ a 6= b. We obtain:

Λnoise =
P

P− 1
+

(

1+
√
rP
)2

(31)

Similarly to the case of Ising data, when β is small, the signal ‘eigenvalue’ is small compared

to the ‘noise’ eigenvalue, and the empirical top eigenvector has a small projection in the space

spanned by e1, e2, see �gure 13(b)–(d). The crossover between the two regimes takes place at
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values of r such that ΛMP ≃ ΛXY(β). The �rst retarded learning transition of the RBM occurs

in the same range of r, see �gure 11.

5.2. Many data: small β expansion

After some training time, linear equation (23) for the weights breaks down and non linearities

must be taken into account [31].We derive below an approximation to the RBM dynamic learn-

ing equation (with M = 1 or 2 hidden units) for the one-dimensional Ising models, which is

exact for small (but non vanishing) inverse temperature β. We show that this equation is free of

any external parameters after appropriate rescaling of the weights. We compare the numerical

solutions to this equation with the result of the training with RBM to �nd a parameter inde-

pendent agreement with the shape and the structure of the weights. We also cast the equation

into a continuous form, and formulate the system in terms of a standard reaction–diffusion

instability problem with the weights as an inducer and the sum of weights squared as the

repressor.

5.2.1. One hiddenunit system: formationof receptive field. For one hidden unit, equations (21)

and (22) become, after some elementary manipulation,

∂ logL
∂w j

=

〈

vi tanh





N∑

j=1

w jv j





〉

data

− tanh wi, (32)

where we have dropped the µ = 1 index for the sake of clarity. Expanding the hyperbolic

tangents to the third powers of their arguments, we obtain

∂ logL
∂w j

=
∑

j

〈vi v j〉data w j −
1

3

∑

j,k,l

〈vi v j vk vl〉data w jwk wl − wi +
1

3
w3
i + O(w4). (33)

Let us now assume that a large number of samples is available. At the lowest order in β, we
have

〈vi v j〉 =







1 if i = j,

β if i = j± 1,

0 otherwise.

(34)

and

〈vi v j vk vl〉 =







1 if i = j, k = l or any permutation,

β if i = j± 1, k = l or any permutation,

β if i = j, k = l± 1 or any permutation,

0 otherwise.

(35)

for, respectively, the 2- and 4-point correlations. We therefore obtain

∂ logL
∂wi

= β(wi+1 + wi−1)− wi
∑

k

w2
k + w3

i + O(w4, β w3). (36)
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Figure 14. (a) Stationary solution of the small β equation (37), describing the evolution
of the weights wi(t) of a RBMwithM = 1 hidden unit trained over many con�gurations
of the one-dimensional Ising model. There are N = 100 visible units. The results shown
were obtained with 500 integration steps, starting from small amplitude white noise ini-
tial conditions for the weights. (b) Same as (a), but for a RBMwithM = 2 hidden units.
The two colors shows the weights corresponding to the two units. While the two peaks
should be in principle diametrically opposed, i.e. at distance 50 from each other, their
mutual repulsion is short ranged; in practice deviations from stationarity smaller than
the numerical accuracy cannot be detected. (c) Pro�les of the stationary weight vector
for a RBMwith a unique hidden unit trained on data extracted from the one-dimensional
Ising model at small inverse temperature β, see text. The two curves corresponds to the
two candidate values for b. The solutions b = b+ and b = b− are, respectively, unstable
and stable against small �uctuations of the weights.

Upon appropriate rescaling of the weights, wi → wi/
√
β, and of the learning rate, ν → ν/β,

we obtain, in the small β regime, the non trivial, parameter-free dynamical equation

1

ν

dwi

dt
= wi+1 + wi−1 − wi

∑

k

w2
k + w3

i . (37)

The stationary solution of this equation is shown in �gure 14(a).

This equation can be cast in a continuous form over space, where we use the Laplacian to

describe spatial diffusion. The corresponding continuous partial differential equation reads

1

ν

∂w

∂t
(x, t) =

∂2w

∂x2
(x, t)+ (2− b(t))w(x, t)+ w(x, t)3, (38)

where

b(t) =

∫ L

0

w(x, t)2 dx. (39)

These coupled dynamical equations lead to a non-trivial spatial formation through the so-called

Turing reaction diffusion instability mechanism [32]. The �eld w(x, t) diffuses over space and

activates itself (self-promoting, through the cubic term), but is inhibited by another species, b.

This repressor is diffusing with an in�nite diffusion coef�cient, i.e. is spatially uniform, and

depends on w through (39). As w grows due to self-activation, so does the repressor b, until

w reaches a stationary pro�le. We show in appendix that the above dynamical equation satisfy

the general criteria for stable pattern formation.

5.2.2. One hidden unit: profile of the receptive field. Consider the stationary continuous

equation satis�ed by the weights after learning, see (38),

0 =
d2w

dx2
(x)+ (2− b) w(x)+ w(x)3. (40)
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Multiplying by dw
dx

on both sides and integrating over x we obtain that

E(x) ≡ 1

2

(
dw

dx

)2

+ w(x)2 +
1

4
w(x)4 − b

2
w(x)2 (41)

has a uniform valueE0, independent of x. When x→±∞, bothw(x) and dw
dx
(x) tend to 0, which

sets E0 = 0. We deduce that

dw

dx
(x) = ±w(x)

√

b− 2− w(x)2

2
. (42)

We now explicitly break the symmetry by �xing the center of the peak of the weights in x = 0,

with w(0) > 0, dw
dx

> 0 for x < 0, and dw
dx

< 0 for x > 0. Imposing that the derivative of the

weight with respect to x vanishes at its maximum, i.e. that w is twice differentiable in x = 0

gives

w(0) =
√

2(b− 2). (43)

Integrating (42) with condition (43), we �nd

w(x) =

√
2(b− 2)

cosh
(
x
√
b− 2

) . (44)

Using de�nition (39) for b we then �nd

b =

∫ ∞

−∞
w(x)2 dx = 4

√
b− 2, (45)

whose solutions are b± = 8± 4
√
2. The corresponding pro�les of the weights are shown in

�gure 14(c). We now study the stability of the solution under the time-dependent perturbation

w(x)→ w(x)+ ǫ(x, t), where w(x) is given by (44). According to equations (38) and (40), we

have

1

ν

∂ǫ

∂t
(x, t) =

∂2ǫ

∂x2
(x, t)+ (2− b) ǫ(x, t)− 2

(∫

dy w(y) ǫ(y, t)

)

ǫ(x, t)+ 3w(x)2ǫ(x, t).

(46)

Multiplying by w(x) and integrating over x, we get the following equation

1

ν

d

dt

∫

dx w(x)ǫ(x, t) = −
√
b− 2

∫

dx w(x)ǫ(x, t)

(

8− b

cosh
(
x
√
b− 2

)2

)

. (47)

We deduce that the weight pro�le is stable if and only if b < 8. Therefore, the b = b+ solution

is unstable against small variations of the peak amplitude near x = 0, and the solution b = b− is

the correct, stable one.Notice that thewidth of the peak of theweight, in theβ → 0 limit is �nite

according to expression (44). This phenomenonwas also observed by the RBM training results

in �gure 3(b), where the peak width obtained by linear �t (coef�cient b) was also positive and

�nite.
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5.2.3. Two hiddenunits: interactionbetween receptive fields. For two hidden units, equations

(21) and (22) become, after some simple manipulation,

∂ logL
∂w j1

=

〈

vi tanh





N∑

j=1

w j1v j





〉

data

− tanh(wi1 + wi2)

1+
∏N

k=1
cosh(wk1−wk2)
cosh(wk2+wk2)

− tanh(wi1 − w2i)

1+
∏N

k=1
cosh(wk1+wk2)

cosh(wk1−wk2)
, (48)

together with a similar equation for the weight vector µ = 2 obtained by swapping the hidden-

unit indices 1 and 2. Notice that this equation simpli�es to (32) when the weight vectorµ = 2 is

set to zero, i.e. whenwi2 = 0 for all visible units i, and the number of hidden units is effectively

M = 1.

Let us now expand (48) in powers of the weights. The �rst term on the right hand side of

the equation (involving the average over the data distribution) has the same expansion as in the

M = 1 case above, see (33). For the second term, using

1+

N∏

k=1

cosh(wk1 − wk2)

cosh(wk1 + wk2)
= 2− 2

N∑

k=1

wk1wk2 + O(w4), (49)

and rescaling the weights, w→ w/
√
β, and the learning rate, ν → ν/β, as before, we obtain

1

ν

dwi1

dt
= wi+1,1 + wi−1,1 − wi1

∑

k

w2
k1 + w3

i1 + wi1w
2
2i − wi2

∑

k

wk1wk2.

(50)

Similarly, we �nd

1

ν

dwi2

dt
= wi+1,2 + wi−1,2 − wi2

∑

k

w2
k2 + w3

i2 + wi2w
2
i1 − wi1

∑

k

wk1wk1.

(51)

The last two terms in the two equations above encode the couplings between the weight vectors

attached to the two units. The stationary solutions of these equations are shown in �gure 14(b).

In practice, we observe that the numerical solutions for the weight pro�les attached to the two

units can have any relative separation between their peaks as long as it is larger than approx-

imately one peak width. The repulsion between the peaks is indeed short range, hence the

convergence to the diametrically opposed con�guration is really slow.

These equations can be turned into two partial differential equations over continuous space

where we resort to the Laplacian to describe spatial diffusion:

1

ν

∂w1

∂t
(x, t) =

∂2w1

∂x2
(x, t)+ (2− b1(t))w1(x, t) − cw2(x, t)+ w1(x, t)

(
w1(x, t)

2 + w2(x, t)
2
)
,

1

ν

∂w2

∂t
(x, t) =

∂2w2

∂x2
(x, t)+ (2− b2(t))w2(x, t) − cw1(x, t)+ w2(x, t)

(
w1(x, t)

2
+ w2(x, t)

2
)
,

(52)
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where

b1(t) =

∫ L

0

w1(x, t)
2 dx, b2(t) =

∫ L

0

w2(x, t)
2 dx, c(t) =

∫ L

0

w1(x, t)w2(x, t) dx,

(53)

This system describes two diffusing species w1 and w2 which are, respectively, self-inhibited

by b1 and b2, while coef�cient c corresponds to cross-inhibition. The diffusion coef�cient for

b1, b2, c tend to in�nity and their concentrations are uniform in space. As in the single species

(single hidden-unit) case, this dynamical system leads to the stable production of a non trivial

pattern over space, corresponding to the emergence of two place �elds, see appendix.

6. Conclusion

In this work, we have studied the unsupervised learning of simple data distributions, enjoying

one or two continuous symmetries, with a RBM. Contrary to standard approaches in machine

learning, e.g. convolutional networks, we have not tried to factor out, and hardwire these sym-

metries in the network. On the contrary, our objective was to see how the symmetries affected

the representations of the data and were effectively learned by the machine. This approach is

motivated by the fact that most invariances in complex data are actually unknown and it is

important to understand how well they can be captured in practice.

In the case of a single hidden (latent) variable, our main observation is that learning is

accompanied by a symmetry breaking in the weight space. The hidden unit concentrates only

on a small portion of the data con�gurations; the size of this receptive �eld is the length over

which the variables in the data con�gurations are correlated. The symmetry is dynamically

restored at long times through the diffusion of the receptive �eld, allowing it to span the whole

data manifold5. This phenomenon is strongly reminiscent of the concept of continuous attrac-

tor (CA) in the context of recurrent neural networks in computational neuroscience [33–35],

with the major differences that (1) CA usually refer to low-dimensional attractors in the (high-

dimensional) space of neural activities, while the CA emerging here de�nes a low-dimensional

manifold in the weight space, and (2) accordingly, the dynamics considered is the learning

dynamics acting on weights and not the usual neural dynamics modifying activities. In the

case of multiple hidden units, the CAs attached to these units are locked in: weight bumps

diffuse coherently along their CA’s (�gure 6), maintaining their relative phases due to mutual

repulsive interactions. The resulting multi-unit CA has therefore the same (low) dimension as

the underlying symmetry in the data. In practice, however, repulsion is short ranged and may

effectively lead to partial decoupling, see �gure 14(b), and to an increase in the CA dimen-

sion. If the number of hidden units is suf�ciently large (of the order of the number of visible

units over the correlation length) the RBM hidden con�gurations are effective, coarsegrained

version of the data con�gurations.

An important condition for this CA in the weight space to emerge is that the number of

available data exceeds some critical value depending on the con�guration size and the intensity

of their intrinsic correlations. This phenomenon is a manifestation of the generalmechanism of

the so-called retarded-learning phase transitions [16], in which a symmetry-breaking direction

4The fact that the bump or the peak of weights can be localized anywhere in the visible space is a direct consequence

of the translation invariance of the underlying data; we have checked that, with non-translationally invariant couplings,

the bump is pinned by the strongest interactions.
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(here, in the weight space) is inferred when the ratio of the number of data and of the system

size is larger than some signal-dependent (here, the level of intrinsic correlation in the data)

threshold. Interestingly, in the presence of multiple invariances, the thresholds associated to

these symmetries need not coincide. In such situations, the receptive �eld will be localized

along one dimension in the input space and extended along the other, as seen for the XYmodel

in this work.

It is tempting to make an analogy with recent experimental results on three-dimensional

encoding by place cells [36]. When a rodent explores a set of horizontal (x direction) and

vertical (z direction) planes, place cells emerge with place �elds localized in either or both

planes [37]. Yet, if the motion along the x and z axis is not independent, localization can be lost

along one of the two directions. For instance, when motion takes place along a helicoidal ramp

(x being the angle in the plane perpendicular to the helix axis z), place cells seem to be localized

in the angular space and much less so along the vertical axis [38]. Due to the geometry of the

helix, it is reasonable to assume that inputs related to path integration as well as to visual �ow

are strongly correlated for similar angles (corresponding to a small displacement on the ramp)

and much less correlated for small translation along the z-axis, which requires a large physical

displacement. It would be interesting to see what happens if the ramp axis is tilted and not

vertical any longer. Based on the analogy with the differential retarded-learning transitions,

one would expect that place �elds are columnar along the ramp axis, and become therefore

localized (albeit with different areas) along both x and z directions.

While the analogy with place cells and symmetry-broken hidden units is tempting, estab-

lishing a solid connection between our results and neuroscience is far from obvious. Though

place cells are known to rely, for their establishment, on various sources of sensory infor-

mation (including visual and path-integration inputs [39]), the mechanisms underlying the

corresponding unsupervised learning processes are far from being elucidated. It is, from this

point of view, remarkable that various unsupervised learning rules [6, 11, 12] agree with the

two main features emerging from the maximum likelihood (ML) procedure for RBM studied

here, namely the existence of (1) localized receptive �eld focusing on a subset of strongly corre-

lated inputs, and of (2) cross-inhibition between hidden units during the learning phase, which

makes their place/receptive �elds repel each other and forces them to cover as much as possible

of the input space (�gure 4). Achieving a more precise understanding of how general this sce-

nario is, and how it extends to deeper architectures i.e with more neural layers would be very

interesting.
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Appendix. Conditions for pattern formation

The continuous partial differential equation (38) along with (39) describes the evolution of the

�eld w(x, t) in space and time. This equation will only lead to a non-trivial stable steady state

pattern if certain conditions that we make explicit below are ful�lled.

We start from (39) and differentiate this equation with respect to time (setting ν = 1 to

lighten notations) to get
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db(t)

dt
= 4b(t)− 2b(t)2 + 2

∫ L

0

w(x, t)
∂2

∂x2
w(x, t) dx+ 2

∫ L

0

w4(x, t) dx. (A1)

The non-trivial, uniform �xed points of this equation is

w∗
=

√

2

L− 1
and b∗ =

2L

L− 1
. (A2)

One can rewrite the above equations in the following simple notation:

∂w

∂t
= γ f (w, b)+∆w

db

dt
= γg(W, b)+ d∆b

(A3)

where d is eventually sent to in�nity, since there is no spatial time lag for reaching the equilib-

rium value of b, and b is always spatially uniform. After linearization around the �xed point

for small |w|:

w =

(
w− w∗

b− b∗

)

,

these two equations can be written in vector form as follows

∂w

∂t
= γAw+ D∆w, where D =

(
1 0

0 d

)

and

A =

(
fw fb
gw gb

)

(w∗,b∗)
=

(
2+ 3(w∗)2 − b∗ −w∗

8(w∗)3L 4(1− b∗)

)

(A4)

are, respectively, the diffusion and stability matrix.

We impose �rst that the uniform �xed point should be stable in the absence of any spatial

variation, as we demand that the instability solely comes from spatial interactions. Keeping the

non-spatial part of the equation:

∂w

∂t
= γAw (A5)

We look for solutions of the form w = eλtw0. Stability requires that Re(λ) < 0, that is,

trA = fw + gb < 0

det A = fwgb − fbgw > 0
(A6)

It is easy to check that these general conditions, once applied to the derivatives of f and g listed

in (A4), are satis�ed as soon as L > 1.

We then ask for the existence of an instability resulting from the spatial part of the

equation. As the Laplacian operator is translation invariant we look for a solution to the reac-

tion–diffusion system (A4) that can be decomposed onto Fourier wave planes of momentum k

multiple of 2π/L due to periodic boundary conditions:

w(x, t) =
∑

k

cke
λt Wk(x), (A7)
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where the constants ck are determined by a Fourier expansion of the initial conditions in terms

ofWk(x) andλ is the eigenvalue that determines the temporal growth of the instability. Inserting

(A7) into (A4), we get for each k,

λWk = γ AWk − k2 DWk. (A8)

Hence, λ is the root of the following characteristic polynomial:

det
(
λ I − γ A+ k2 D

)
= 0. (A9)

For the uniform steady state (w∗, b∗) to be unstable against spatial �uctuations, we require

Re(λ) > 0 for some k 6= 0. The conditions for this can be easily worked out, with the result

d fw + gb > 0, (A10)

and

(d fw + gb)
2 − 4d( fwgb − fbgw) > 0. (A11)

Condition (A11) is always satis�ed since d→+∞. To check (A10) we have to evaluate the

coef�cient of d, which is fw:

fw = 2+ 3(w∗)2 − b∗ =
4

L− 1
> 0. (A12)

Hence, this condition is satis�ed as soon as L > 1.
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