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Abstract. Obtaining analytical solutions to unsteady heat conduction problems is of great sci-

entific and practical interest. Such solutions make it possible to do an in-depth analysis of 

thermal processes, such as isotherm fields analysis, study of the thermally stressed states of 

structures, parametric identification, etc. This article deals with a simple method for obtaining 

approximate analytical solutions of one-dimensional heat conduction problems. In particular, 

an algorithm for solving the problem for a rod (plate) with a given boundary condition of the 

third kind on one of the surfaces is presented. It is shown that solving the equation at isolated 

points of the spatial variable allows obtaining the high-precision solutions to this problem with 

a minimum amount of computational work. The relations for determining the temperature have 

a simple form and do not contain special functions and parameters. It should be noted that the 

exact solution to a similar problem based on the Fourier separation method is an infinite series 

containing eigenvalues (roots of the transcendental equation).The practical application of such 

solutions is very limited. The paper also contains the convergence analysis of the method, the 

residuals of the initial differential equation for various approximations. The method developed 

can be used to solve more complex problems that allow separation of variables in the initial l 

differential equation. 

1.  Introduction 

Various mathematical methods are used in obtaining solutions to classical problems of heat conduc-

tion, in particular, to problems for an infinite rod, cylinder, ball, etc. Methods for obtaining solutions 

in the form of a formula are usually called analytical. Such solutions are more convenient than numer-

ical ones, which are represented by a data array. 

The most commonly used classical methods in the theory of thermal conductivity are the separation 

of variables (the Fourier method), the Laplace transform, and the Green’s functions [1 – 8].The range 

of tasks that can be solved using these methods is very limited. In this context, the development of 

approximate analytical methods, such as the Kantorovich theorem [9], the integral heat balance meth-

od [10, 11], the method of additional boundary characteristics [12 – 16], the Galerkin method [17 – 

20], the Ritz method [21, 22] etc. is important today.  

So, this paper focuses on the development of an effective approximate analytical method for solv-

ing heat conduction problems. Thus, a solution to the non-stationary heat conduction problem for the 

rod has been obtained on the basis of the joint use of the variable separation method and the colloca-

tion method. Simple solutions that can be used in engineering practice are obtained by directly satisfy-

ing the differential equation of the Sturm-Liouville boundary value problem at a certain number of 

points of the spatial variable. 
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2.  Formulation of the problem 

Consider an example of solving the boundary-value heat conduction problem for an infinite plate un-

der symmetric boundary conditions of the first kind as follows 
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where t – temperature; x – coordinate;   − time; 0t  − initial temperature; wt  − wall temperature; 

a –temperature conductivity coefficient;   −  half the thickness of the plate. 

Problem (1) - (4) can be written in a dimensionless form 
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where )()( ст0ст tttt   – dimensionless temperature;  /x  –  dimensionless coordinate; 

2)/(Fo  a – Fourier criterion (dimensionless time). 

3.  Method of solution 

The solution to problem (5) - (8) using the variable separation method can be found in the form 

 )()Fo()Fo,(  . (9) 

Substituting (9) into (5), we can find 
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where   −  some constant (eigenvalue). 

The solution to equation (10) is known and is as follows 

 )Foexp()Fo(  A , (12) 

where A – unknown coefficient. 

Substituting (9) into (7), (8) we obtain 

 0
)0(






d

d
; (13) 

 0(1) . (14) 
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The solution to the Sturm-Liouville boundary value problem (11), (13), (14) can be written as fol-

lows 
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where ),1( riBi   –  unknown coefficients. Note that relation (15) satisfies the boundary condition 

(13). 

Relation (13) allows one more boundary condition 

 1)0(  const . (16) 

Substituting (15) into (16), we find 0B  = 1. 

We require that the relation (15) satisfies the boundary condition (14) and equation (11) at the 

points 0; 0.25; 0.5; 0.75  . Let’s consider five terms of the series ( 5r ). Substituting (15) into rela-

tion (14) and equation (11), for points 0; 0.25; 0.5; 0.75   with respect to unknown coefficients

)5,1( iBi , we obtain a system of five linear algebraic equations. Then from the solution of this 

system we can find the coefficients )5,1( iBi . 

 21 B ; 

 1
234
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 2
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3 /)270336001294592084728018134105( сB  ; 

   1
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   2
234

5 157286407536640494848976048 сB  , 

where  204805126 23
1c ;  .307207689 23

2 c  

Each of the found coefficients iB  depends on some constant - coefficient . To find , we calcu-

late the integral of the weighted residual of equation (11) 
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Then we calculate integral (17) taking into account the found values of the coefficients 

)5,1( iBi  with respect to the eigenvalues k  and obtain an algebraic equation of the fifth degree 

 
5 7 4 9 3 11 217901 1.0173 10 1.8109 10 1.0253 10             

 
12 121.6365 10 3.4401 10 0      . (18) 

From the solution of equation (18) we get five eigenvalues, two of which are complex self-adjoint. 

As we accept only real eigenvalues, we get 1 2.467312  ; 2 21.896613  ; 3 60.857583  . The re-

sulting solution will be called the third approximation (according to the number of real eigenvalues). 

Exact values    [5]: 1 2.467401  ; 2 22.206609  ; 3 61.685028  . 

Substituting (12), (15) into (9), for each eigenvalue we have particular solutions:  



IV International Scientific and Technical Conference “Energy Systems”

IOP Conf. Series: Materials Science and Engineering 791 (2020) 012008

IOP Publishing

doi:10.1088/1757-899X/791/1/012008

4

 

 

 

 

 

 

 













 




r

i

i
kikkk BA

1

1)(1)exp()Fo,( . (19) 

Each particular solution from (19) satisfies the boundary conditions (7), (8) exactly, and satisfies 

equation (5) approximately (in the third approximation). However, none of them, including their sum 
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do not satisfy the initial condition (6). To fulfill the initial condition, we find its residual and re-

quire the residual orthogonality to each eigenfunction: 
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To find )3,1( kAk , we calculating integral (21) and get a system of three linear algebraic equa-

tions. The solution to the system is as follows 

 1 1.27798A  ;  2 0.4337A   ;  3 0.265008A  . 

The exact values of the first three coefficients kA  [5] are shown in Table 1. 

 

Table 1. Calculated values of the eigenvalues compared to exact values 

№ 
k  

(approximate value) 
k  

(exact value) 
kA  

(approximate val-

ue) 

kA  

(exact value) 

1 2.4674011003 2.4674011003 1.2722175645 1.2732395447 

2 22.2066099025 22.2066099025 –0.4213383287 –0.4244131816 

3 61.6850275068 61.6850275068 0.2495131649 0.2546479089 

4 120.902653913 120.902653913 –0.1746716643 –0.1818913635 

5 199.859489122 199.859489122 0.1321424687 0.1414710605 

6 298.555533133 298.555533133 –0.1042688938 –0.1157490495 

7 416.990785946 416.990785946 0.0842665383 0.0979415034 

8 555.165247561 555.165247561 –0.0689496574 –0.0848826363 

9 713.078917978 713.078917978 0.0566386114 0.0748964438 

10 890.731797198 890.731797198 –0.0463412842 –0.0670126076 

11 1088.12388521 1088.12388522 0.0374479197 0.0606304545 

12 1305.25518217 1305.25518204 –0.0295426615 –0.0553582411 

13 1542.12568846 1542.12568767 0.0223389702 0.0509295818 

14 1798.73507417 1798.73540209 –0.0156241657 –0.0471570202 

15 2075.08408591 2075.08432532 0.0091983751 0.0439048119 

16 2371.41373545 2371.17245736 –0.0712573770 –0.0410722434 

17 2686.81399536 2686.99979819 0.0682304199 0.0385830165 
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Calculation results by formula (20) in the third approximation are shown in Figure 1. Their analysis 

allows us to conclude that in the range of numbers 0.03 Fo   the difference between the solution 

obtained and the exact one [5] does not exceed 1%. The accuracy decreases at shorter times. 

In order to increase accuracy, it is necessary to satisfy equation (11) at a larger number of points. 

The algorithm remains the same. Table 1 shows the eigenvalues and coefficients )17,1( kAk in the 

seventeenth approximation. Number of real values k is considered as an approximation number. 

 

Figure 1. Temperature changes in the plate 
 

Let’s also consider the algorithm for using this method to solve the heat conduction problem for a 

rod with a boundary condition of the third kind on one of its surfaces [23]. In this case the problem 

includes differential equation (1), boundary conditions (2), (3), as well as the condition 

 )),((
),(

срtt
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t
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where mt  – environment temperature 

In a dimensionless form, this problem includes equation (5), boundary conditions (6), (7), as well 

as the condition 

 0Fo)(1,Bi
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, (23) 

where )()( ср0ср tttt   – dimensionless temperature;  )/(Bi  – dimensionless criterion (Bi-

ot number). 

Substituting (9) into (23), we obtain 

 0(1)Bi
)1(


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
. (24) 

Now we require that relation (15) should satisfy conditions (14), (16), (24) and equation (11) at 

points 1;3/2;3/1;0 . Substituting (15) (limited to the five terms of the series) in relation (14) and 

equation (11) for points 1;3/2;3/1;0  with respect to unknown coefficients )5,1( iBi , we ob-

tain a system of five linear algebraic equations. Then from the solution of this system we find the coef-

ficients )5,1( iBi . 

The first two coefficients (at 1Bi  ) are as follows 

 21 B ; 
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B . 

Calculating the integral of the weighted residual (17) taking into account the found values of the 

coefficients )5,1( iBi  with respect to the eigenvalues, we obtain the algebraic equation of the fifth 

degree 

 024494400360288004044240105360747 2345  . (25) 

From the solution of equation (25) we get five eigenvalues: 1 576.117009  ; 2 115.852710  ; 

3 42.670602  ; 4 11.619503  ; 5 0.740173  . 

To fulfill the initial condition, we find its residual and require the residual orthogonality to each ei-

genfunction, i.e. 
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(26) 

Calculating the integrals in (26) to find )5,1( kAk  , we obtain a system of five algebraic linear 

equations. The solution is as follows 

 1 0.010142A  ;  2 0.042089A   ;  3 0.054192A  ; 

 4 0.137528A   ;  5 1.120143A  . 

Calculation results by formula (20) in the fifth approximation are shown in Figures 2 and 3. Their 

analysis allows us to conclude that in the range of numbers 0.01 Fo   the difference between the 

obtained solution and the exact one [5] does not exceed 1%. 

 

Figure 2. Temperature distribu-

tion in the plate 

 

Figure 3. Temperature changes 

over time in the plate. 
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To increase the accuracy of the solution, it is necessary to increase the number of terms of the se-

ries (15). To obtain additional equations in order to determine unknown coefficients iB , we should 

increase the number of points along the coordinate  , where the equation (11) should be performed. 

And, in particular, if we take eight points (with a step ,7/1 starting from the point 0 ), with 

respect to the unknown coefficients iB , we obtain 9 equations (one more equation is added as a result 

of the fulfillment of the boundary condition (14)). After determining the unknowns iB )9,1( i  from 

the solution of this system of equations, the algorithm of the solution is repeated. 

Determination of the heat flow density on the surface of the body is of particular importance in 

solving practical problems.  

 Fo)(1;Bi
)Fo;(

1









Q , (27) 

where q
TT

Q
)( ср0 


 ; q  – heat flow density on the plate surface, 

2/ mW . 

Using a known value Q , one can determine the power of the heating device, the heat loss through 

building envelopes, etc. Figure 4 demonstrates the distribution of the dimensionless heat flow over 

time depending on the Biot criterion value. The analysis shows that the heat flow has a maximum val-

ue at the initial moment, then, it intensively decreases, tending to zero. It should also be noted that a 

period of intense decrease in heat flow is followed by a period of linear decrease in value Q .These 

results are completely consistent with the known ones [5]. 

Figure 5 presents the residual of the differential equation (5), from which we can conclude that the 

solution is being clarified. 

 

 

Figure 4. Changes in heat flow 

density over time 

 

Figure 5. The residual of the 

differential equation. 
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4.  Conclusion 

The development results of an approximate analytical method for solving the one-dimensional heat 

conduction problems are presented. By solving the boundary value problem for the rod under the 

boundary conditions of the first and third kind, it is shown that the method developed has high accura-

cy. So, if the ordinary differential equation is satisfied at only a few points of the spatial variable, the 

error of the method is no more than 5%. 
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