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Abstract. Paper discusses approach to the resource-saving optimal control algorithms devel-
opment, which includes problem oriented mathematical modeling of the process, determination
of the tolerance limits for controlling action changes and condition of thermochemical treat-
ment process as a subject under control, optimality criteria formalization and determination.
Specified and solved critical problems for resource-saving optimal control of energy-intensive
thermochemical process of work parts treatment on the maximum accuracy and speed of opera-
tion criteria. Alternance optimization method was used for optimal control problems solution,
which allows to determine not only interval of constancy size but also maximum achievable
control accuracy in every subset of intervals. Analytical mathematical model of vacuum carbu-
rizing in an acetylene atmosphere with variable coefficients of mass transfer was developed,
which takes into consideration different mechanisms of carbon mass transfer from the atmos-
phere into the work part surfaces at the saturation and diffusion stages. Dependences of the
carburization accuracy on the optimal control parameters were constructed. Influence of the
technological constraints on the control quality was analyzed. Suggested approach demonstrat-
ed high energy efficiency.
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1. Introduction

Modern industry in order to improve wear resistance of metal parts uses hardening technologies,
which lead to physical and mechanical properties of the part’s surface change [1-3]. Carburizing is the
most common among this kind of technologies, during which part surface saturates with carbon. Pro-
cess can be accelerated significantly as the result of high temperature carburizing implementation
(with high carbon potential at the first stage) under pressure lower than atmospheric (vacuum carburiz-
ing) [4-6].

Vacuum carburizing process control on the optimal algorithms can provide not only high equip-
ment productivity but also improve quality of the part surface under hardening [7-9].

Objective of this paper is development of the optimal control algorithms, that consist of problem
oriented mathematical process modeling, tolerance limits determination for controlling action changes
and condition of carburizing process as a subject under control, optimality criteria formalization and
determination.
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2. Mathematical model of the vacuum carburizing process

Model of the carbon diffusion from the atmosphere through the part surface into the depth at a con-
stant temperature, based on Fick’s second law, can be described in the form of the differential equation
of mass transfer [10-11]:

6C(X,r):g(D(CT).GC(X,1))
or ox ’ ox )

V7e (0,tk ] VX e (0,00),

e

where C(x,7)- carbon concentration in the work part; T - carburizing temperature; D(C,T)- coeffi-

cient of carbon diffusion into steel [10].
Assuming that coefficient of diffusion dependence on concentration is insignificant, the equation of
diffusion within narrow range of carburizing process temperatures can be linearized:

D(C,T)=D =const; )

oC(x,7) _ D'OZC(X,T)

P " ,Vre(O,tk],VXe(O,oo), 3)

As a boundary conditions, which most accurately represent physics of carbon transfer from a gase-
ous phase to the surface, apparently, can be taken boundary conditions of the III kind [10]:

_D.GC(X,r)

= =A@ (p(0)-C(x7), ) )

x=0

Here B(r)- coefficient of mass transfer; ¢(7)- carbon potential of an atmosphere, ¢, - maximum

permissible level of the carbon potential of an atmosphere on process capability of furnace and soot
formation:

Prnax = @(T) >0. (5)

Taking into the consideration insignificant depth x =h; of the diffusion layer in comparison with
work part dimensions and relatively short time of carburizing t =t, , much shorter than full saturation
time, one can consider work part as a semi-infinite solid with adiabatic conditions:

oC(x,7)

ox - ©)

X—»00
Initial distribution of carbon concentration in the layer can be considered constant:
C(x,0)=C, =const. (7)

It is necessary to prevent intense carbide forming, that reduces surface wear resistance, in the pro-
cess of carburizing.

C" nax ZC(T). 3

Here C*,,, - maximum permissible, on carbide content, level of carbon concentration in the work

part, which is defined by the carburized layer embrittlement.

Boundary condition of the third kind (4) determines diffusing element flow through the separation
surface «metal — saturating atmosphere» and considers it proportional to the difference of concentra-
tion on the surface C(0,7) and equilibrium with an environment ¢(7).
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3. Optimal control problem statement
During diffusion saturation there is no necessity and technical capabilities to provide the given profile

C"(x) accurate realization at the process end, because some uncontrolled disturbances always present
in the work environment: initial carbon content variations in steel C,, atmosphere‘s gas composition
instability, atmosphere flow irregularity and so on [10,12,13]. In addition, there is a possibility that
given profile C*(x) is not a part of the boundary value problem solutions (3), (4), (6), (7), which, in

general, suggests that it is inaccessible in principle.
Therefore, in real conditions permissible range of parameters change and model status (3), (4), (6),
(7), required resulting state of the carburizing process transforms from the given concentration distri-

bution C"(x) into some region 2, - «tube» of permissible deviations C"(x)+¢, that is characterized
by Chebyshev measure [14-16]:

pc=xgegz<o)‘c (X)—g‘. 9)
Naturally, in order to obtain a maximal wear resistance deviation value of & must be minimal.
Therefore, for controlled object (3), (4), (6), (7), under constraint conditions (5) — (8), problems are
being formulated:
Speed of an operation problem:

JP' = mint,
o(7)

; (10)

C(xty )ef2,

Maximum accuracy problem:

J®P' —min  max |C(x,t )-C"(x).
¢ o(r)  xe[0hy] ‘ ( K ) ( )‘ (1 1)

Stated problems are problems of optimal control with right variable end point of trajectory in the
infinite dimensional non-smooth region of permissible resulting conditions.

C(x,tk)—C*(x)|£g}

Q. ={C(x,r) : XQ%]

4. Optimal control problems solving method
Solution to the problems (10), (11) by the alternance optimization method (AOM) [15-17], determine

both the optimal control v° (T)z(p(r)z(p(Agi))c R", i=12,.,n, in the form of piecewise constant

function with i intervals of constancy 4 , and maximal attainable in every i - th subset accuracy
=gl — _c
&€ =&nin (/)TA%))()‘C(XJK ’4) C (X)‘ (12)
of uniform approximation to the profile which is given as satisfying conditions of operational require-

ments C (x).

AOM procedure assumes the determination of unknown optimal parameters A4, gr(T:i)n , 1, on the

basis of solving auxiliary definiens system of transcendental equations:
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where Q(Z,tk)=(C(X,tk)—C*(x))/((pmax—CO); ém =&/(Pnax —Co )3 2=X/N, Prna :m?X(p(r).

Here z,; - points of extremum of the function 0(z.t), z, =1hy - boundary points of the function
. . . S
0(zt ), while i=12..5; S=i,at gr(T:‘_l) > g Zgr(nl)- ; S=i+1, ate, =gr(n')v Sy =gz to=3 4.
min e ™2 i=1
Therefore, in order to solve the definiens system (13) it is necessary to obtain direct solution of the
boundary problem (3), (4), (6), (7), for control () [18]:

(T)z{(Pmax,Te(ti 'ti+1),at 1=0,2,4... "

0,7e(tj ti,,), ati=135...
In order to take into consideration an initial carbon distribution before each following interval, it is
reasonable to use Green function method [10].

In this manner, solution of the linear non-homogeneous boundary problem (3), (4), (6), (7), at any
point of time 7 >t, , can be written as follows:

C(x,r):

o—38

f(5)-G(x,§,r)d§—D~ig(f)-G(x,O,r—f)df, (15)

where f(§)=C(§,r)| - carbon concentration distribution at a switching moment z=t,, where

r=t,
y=0712... - interval number, while t, =0 - starting moment of time; &,7,7 - intermediate values,
G(x,&,7) - Green function for the problem (3), (4), (6), (7) [10, 18]:

{_(xg)} {_()Hf)z} i} {_(H{H])Z_ﬁ(r)}
G(xér)=— i de Pl Pl g e T P gyl (16)

2'\fﬂ'D'Z’ 0

9(1)=-21 (). a7

Then, to obtain the distribution functionC(x,7) from n- th intervals it is necessary to convolute

the solution for n—1th interval with Green function (16), moreover, as can be seen from (15), on the
odd intervals it will be needed an introduction of the complimentary summand in the form of convolu-
tion flow g(r) (17) and Green function G(x,0,r—7) with intermediate variable £=0, which is the

equivalent of zero depth of carbon penetration:

C, (X,r) =

o—8

Cn_l(f,1)~G(X,§,T)|T:tn dg—D-fg(f)-G(x,o,r—f)df. (18)
0

Formula (18) describes carbon distribution in the carburized layer at an arbitrary point of time with
n - th number of controlling actions.
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Due to the fact that integrand in the first summand (18) is a convolution of a complex function
C.1(&,7) with a Green function G(x,&,7), the calculation of such integrals becomes a sophisticated

problem. To solve this problem, it is worthwhile to use integrand approximation C,_;(&,7).
In particular case, for example, for a single interval control (i =1), according to (7):

f(§)=C(¢7)|,, =Co. (19)

In this manner, from the equation (15) with consideration of (19) solution for the single interval
control is obtained:

C, (%.7)= [ Cy-G(x.£,0)dE-D-[g(7)-G(x.0,7—7)d7. 20)
0 0

For the double interval control (i = 2) initial distribution at the switching moment z =t :
f(1)=Cy (w7 _, » @1

and r =t, should be introduced into (16), here x - intermediate variable.
Carbon distribution for the double interval control is described by the general equation (15) with
consideration that for the second interval controlling action is @(z)| _, =0, and then in (17) g(z)=0.

For the double interval control we obtain:
C” (X,T) = j Cl (II,I,T)L_:tl 'G (X,ﬂ'T)L':tz dlLl. (22)
0

In (22) instead of C, ( ,u,r)|T=t approximation can be used and that will simplify further calculations

significantly.
For the triple interval control (i = 3) solution can be written as follows:

Cur (x,7)=[Cy (@,7)-G(x@,7)_, do-D-[g(6)-G(x,0,z-6)d6. (23)
0 s 0
Likewise, analytical problem solution for the quadruple interval control (i=4) is as follows:

Cn (x7)=

o8

Cur (V/’T)'G(X’W’T)|T:t4 dy. (24)

5. Results and Discussion
In order to solve formulated extremum problems (10), (11) by solving the auxiliary system (13) it is
necessary to identify parameters (coefficients of diffusion D and mass transfer g(r)) of the mathemat-
ical model (3), (4), (6), (7) [13].

Identification procedure is based on the least squares method, which determined values S(7) and

D . Identification results with the constant coefficient of mass transfer 5(7)= 4, =const and with car-

bon potential ¢, =4.1%C , determined by a foil test method, presented in Figure 1.

Comparison of the estimated and experimental carbon profiles for steel 14HN3MA (14CrH3Mo)
suggests that the difference between experimental and estimated profile with mass transfer coefficient
B(7)= B, =const is around 40%, which is intolerable.

Cause for this discrepancy can be explained by vacuum carburizing specifics as opposed to, for ex-
ample, gaseous, firstly, because of the mass transfer mechanism of carbon from an atmosphere to the
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work part surfaces. Mechanism of the carbon mass transfer process, during gas carburizing, remains
constant at all process stages. Only carbon saturation intensity changes. During vacuum carburizing
processes of the mass transfer at saturation stagei =1,3,5,... and diffusion stage i =0,2,4,... vary signif-
icantly [13].

At the diffusion stage acetylene molecules interact with steel surface:

Fe Fe Fe Fe
catalysis ! ! catalysis T 1 (25)
CyHy(gas) = CoHoags) ——=—>CH +CH —"225C+C+H+H — H,
Carburizing atmosphere at a diffusion stage of a vacuum carburizing is not present, and carbon sub-
limates from the work part surface into vacuum. Physics of a carbon removal from a metal surface into
atmosphere during vacuum and gas carburizing is different. Therefore, in technological mode calcula-

tions of vacuum carburizing should be used different coefficient values ,B(r):/;’1|i:13 ; and

B(r)= ﬂ2|i:2 46 foreven i=0,2,4.. and for odd i=135.. intervals due to different conditions of

mass transfer on the surface, at the saturation and diffusion stages:
pe)-|

Identification of the model (3)-(5) by the least squares method in conditions (25) with different
mass transfer coefficients for steel 14HN3MA (14CrH3Mo) (Figure 1), ensures accuracy at least 5%
according to (9).

Bure(tt,).ati=0.2,4..

Bo.te(tti,y), ati=135.." (26)

1,6 ‘
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H ' -7
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® O Estimated curve at g =
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Depth x, mm Ormax =41%C .

Examined model of vacuum carburizing (18) under controlling action (14) doesn’t take into con-
sideration influence of soot formation, in other words, free carbon precipitation on the surfaces of
work parts and structural parts of a furnace, which obstructs uniform access of carbon atoms to a steel

surface. Therefore, control ¢(7), in combination with (5), should be under constraints (Figure 2):

@min = (D(T) < Prmax» (27)

Prin < (p(T) < Peon (T)' (28)
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Peon (7) =8z +br +C, T e(ti +A° ,tm),i =0,2,4... (29)

@rmin = CONSt (30)

Here ¢, - the maximum value of carbon potential, determined by furnace atmosphere irregulari-
ty; coefficients a,b,c designated in accordance with a furnace type, work parts characteristics and sat-

urated atmosphere; A° - duration of constraint (14).

Figure 2. Controlling action
p(r)for i=6with a soot

k formation constraint.

For the real industrial technology of the vacuum carburizing formulated optimal problems (10),
(11) have been solved for the model (3), (4), (6), (7) in variable coefficients condition A(r) under
controlling actiong(7) (5) without soot formation influence. Below presented dependencies of the
interval durations 4, of optimal vacuum carburizing process on the carburization accuracy ¢ without
soot formation constrains consideration (figure 3) and with technological limitations consideration (5),
(27) — (30) on the controlling action¢(7) of soot formation (figure 4).
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Figure 3. Dependencies of the interval of con- Figure 4. Dependencies of the interval of con-
stancy durations 4 on the carburization accura- stancy durations 4 on the carburization accura-
cy ¢ without soot formation constrains. cy ¢ with soot formation constrains.

Coefficient values, used in calculations, £1=2.22-10 "m's™!, £1=6.94-10*m-s™!, D=6.19-10"""m*s7",
O = 4.1 %C.
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6. Conclusion

Obtained dependencies analysis (Figure 3 and Figure 4) allows to make a conclusion that considera-
tion of the soot formation influence increases process duration slightly and therefore expenses on fuel.
However, long and systematic use of carburizing technology, taking into consideration possible soot
formation, allows decrease significantly labor intensity and cost for soot formation removal from the
furnace surfaces.

Process optimization allows to synthetize flexible resource saving customized TCT technology,
that ensures specific operation requirements with maximum possible accuracy in a minimum time and
minimum resource usage [19]. Efficiency of such algorithms is verified by their introduction into the
industry [11, 12].
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