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Abstract. The computational method of diffusion approach, used sometimes for simulating the 

radiative heat transfer, differs in simplicity of its algorithm, but can not take ac-count of radia-

tion anisotropy. The reasons of its insufficient accuracy have been re-vealed; it is shown that 

inadequate boundary con-ditions produce unpredictable er-rors. Ways for eliminating short-

comings of the diffusion method have been devel-oped.  The accurate diffusion model has been 

theoretically elaborated for radiative heat transfer in dust-laden gases. To eliminate singularity 

of temperature curves on the surface of confining walls, the en-closed extinction medium was 

hypothetically considered as an unbounded one. The radiation intensity has been expanded in a 

se-ries and integrated over the spherical solid angle, what has allowed to obtain more precise 

differential equation for the resulting radiation flux both in the unbounded and enclosed extinc-

tion medium. As a result, shortcomings peculiar to the previous method of diffusion approach 

have been eliminated, and correct Neumann and Robin boundary conditions have been formu-

lated. As a result, the elaborated diffu-sion model got the increased accuracy in simulating ra-

diative heat transfer, and con-currently it offers an advantage of simplicity and universality of 

the diffusion ap-proach method. 

Key words: radiative heat transfer, selective gases, scattering dust particles, bounda-ry condi-

tions, diffusion mathematic model. 

1.  Introduction 

The efficiency of many high-temperature technological plants can be improved with the help of nu-

merical researching the radiative heat transfer in dust-laden gases. To ensure adequate simulation re-

sults, it is necessary to admit that triatomic gases emit and absorb the radiant energy selectively, gener-

ally in lines of the spectrum [1], while particles of the technological dust or ash usually form the gray 

extinction medium, which can scatter rays. An elongated scattering indicatrix can be approximately 

replaced by an isotropic one [2], considering that exactly forward scattering is equivalent to no scatter-

ing at all [3]. 

This assumption allows to write down the conservation differential equation for the radiation in-

tensity Il in any ray direction: 
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where Io is the total intensity of equilibrium radiation, W/(m
2
·sr); p is the mean Planck absorption 

coefficient, characterizing the common emitting capacity of the medium, m
–1

; k is its local extinction 

coefficient, m
-1

, 

k ;  

 is the local absorption coefficient of the medium, m
–1

;  is the isotropic-scattering coefficient of dust 

particles, m
-1

; l is a distance along the ray, m; Ī is a local radiation intensity, averaged in the spherical 

solid angle, W/(m
2
·sr), 
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;  

 is the Stefan–Boltzmann constant, W/(m
2
·K

4
); Trad is the radiant temperature [4], K, 

 
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d
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4

4
rad  lIT ; (2) 

 is the solid angle, sr, defined by means of the plain polar angle  and azimuthal one , 

 ddsin d .  

Integrating the equation (1) over spherical solid angle gives the conservation differential equation 

for radiation flux: 

 4 4

rad p raddiv 4  ,T T   q  (3) 

where qrad is a vector of the resulting radiation flux, W/m
2
; T is the thermodynamic temperature, K. 

In scientific publications, much attention is given at present time to problems of adequate absorp-

tion coefficients of selective gases [5, 6]. Not less important is an aim to elaborate some easy algo-

rithm for solving differential equations of the radiative transfer [7]. 

A main problem ensues from that there is not any distinct differential equation for interrelating the 

vector of the resulting radiation flux qrad with radiation parameters. Therefore it is usually found nu-

merically by means of angular integrating projections of the radiation intensity: 

 
   





d sincos dd cos
0

 

2

04

 rad ll IIq , (4) 

such an algorithm requires the radiation intensity be computed previously at many points along nu-

merous rays by solving the equation of radiative heat transfer (1). 

Different simulating methods have been applied for this purpose. There are methods of discrete 

transfer [8], discrete ordinates [9], finite volumes [10], finite elements [11], natural elements [12], and 

a zonal one [13]. Despite their variety, all these algorithms display excess complicacy and too high 

time of numerical solving tasks. 

A specific place is held by the method of spherical harmonics [14], which higher orders of ap-

proximation allow for spatial anisotropy of the radiation intensity with the help of numerical solving a 

sequence of differential equations. Comparison of various numerical models of heat transfer in a high-

temperature flame [7] showed that the approach P-3 of this method yields results of high precision at 

smaller expense of the computer time. The shortest computation resides in the approach P-1 of the 

method of spherical harmonics. However, it does not consider the anisotropy of radiation, what leads 

to some raised error of computational results. 

The approach P-1 essentially coincides with the method of diffusion approach, which has been 

considered in details in [15]. Its advantage is an easy compatibility with simulating algorithms of the 
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convective heat transfer. Therefore, it would be worthwhile to adapt the method of diffusion approach 

to the anisotropic radiative transfer in the extinction medium. The aim of this report is to represent a 

more perfect diffusion method for numeric solving the radiative heat-transfer equations in dust-laden 

gases. 

2.  Methods 

An obvious source of anisotropic radiation intensity is the surface of the walls confining a volume of 

dusty gases. To exclude it temporarily from consideration, a concept of an unbounded medium has to 

be introduced. This hypothetical medium ought to have the same radiation properties and temperature, 

as the dust-laden gases in the confined volume. The hypothetical absence of the confining walls sim-

plifies substantiating equations of radiative heat transfer, since the temperature curve in the unbounded 

medium can be presented by continuous smooth functions without any singularity in points that coin-

cide with the surface of the confining walls. 

An expression for the radiation intensity in the unbounded medium follows from the equation (1): 


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It is significant to mention that such a representing form of the radiation intensity has sense only in 

respect to the energy of spectrum that would be absorbed in the extinction medium. As a consequence, 

it requires some new modes of computing the absorption coefficient for its using in the radiative heat 

transfer equation. 

This mathematical form can be repeatedly differentiated along length of the ray, supposing that 

lumped radiation sources are absent there, and the extinction coefficient would be constant. Higher 

derivatives in right-hand sides of each of obtained equalities have to be replaced with expressions, rep-

resented by their next equalities. As a result, the radiation intensity will be expanded in a series: 
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(5) 

Equality (5) can be written more compactly as follows: 
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Hereinafter, a simplified one-dimensional consideration of spatial transformations will be applied, 

what, however, would not depreciate generality of the achieved mathematic results. Thus, it is as-

sumed that a distance l along any ray and coordinate y in direction of the radiation-flux vector are in-

terrelated by the ratio: 

  cosdd yl .  

The series (5) is convergent under certain conditions and, consequently, it admits mathematical 

transformations. For example, its integrating over the solid angle in accordance with formulae (2) and 

(4) gives series of the radiant temperature and the resulting radiation-flux density in the unbounded 

medium: 
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The series (6) can be written in the following form: 
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If the right-side part of this expression would be introduced under the sign of the first derivative in the 

series (7), then a more accurate expression will be obtained for the resulting radiation-flux density in 

the unbounded extinction medium: 
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It can be produced in the follow generalized form: 
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The sum of items with higher partial derivatives can be replaced here with a simpler expression that 

has been got from the following approximate equality: 
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Indeed, the items with higher derivatives contain in this equality numerical coefficients that differ 

little from those in corresponding items of the right-hand side of the equation (8). As a final result, an 

easy and precise enough formula would substitute for the series (7): 
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It allows for anisotropy of the radiation in the hypothetical unbounded extinction medium. 
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3.  Discussions 

Radiative heat transfer in an unbounded extinction medium  
To simplify equation forms, it would be advantageous to introduce the notion of the determining tem-

perature TΣ, which accounts for the summary influence of the radiant and thermodynamic temperatures 

on transferring the radiant energy in the unbounded extinction medium: 

 4 4 4 4

rad rad

1
α α

3
pT T T T

k
    . (9) 

Following this, the specified differential expression of the resulting radiation-flux vector in the un-

bounded extinction medium takes a gradient form that is similar to the formula of the diffusion-

approach method: 

4
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Following this, the specified differential expression of the resulting radiation-flux vector in the un-

bounded extinction medium takes a gradient form that is similar to the formula of the diffusion-

approach method: 
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If the gradient expression (10) for the resulting radiation-flux vector would be introduced in the last 

equality, a specified transport equation for the radiation-heat transfer in the hypothetical unbounded 

medium can be obtain. It takes the following form in Cartesian coordinates x, y, z: 
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This equation differs from the differential equation of the diffusion-approach method both in a 

functional variable and in a numerical coefficient of its item. 

The temperature of the hypothetical unbounded medium is not strictly determined outside the con-

fined gaseous space. Hence, it makes sense to accept a physically reliable assumption that the tem-

perature curves have inflection points that coincide with the surface of enclosing walls. According to 

this postulate, all the derivatives of even orders are equal to zero at these points. 

At the flexion points of the temperature curve, the series (6) establishes the following relation be-

tween the radiant and thermodynamic temperatures: 

 4
rad.bn

4
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4
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k

T  ,  

where Tw is the wall thermodynamic temperature; Trad.bn is a radiant temperature at points of the un-

bounded extinction medium that coincide with the wall surface.  

This relation can be reduced to explicit form by means of identical transformations: 

4
wp

4
rad.bn TT  .  

Finally, boundary conditions of the differential equation (12) would be found with the help of the 

formula (9) for determining temperature: 

4
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were T.bn is a determining temperature at points of the unbounded extinction medium that coincide 

with the wall surface.  

Radiative heat transfer in the enclosed medium  

A difference between the effective radiation flux, propagating from confining walls, and the hypothet-

ical radiation flux outside of the unbounded extinction medium forms an anisotropic additional radia-

tion flux. Separate calculating absorption of the additional radiation would not only complicate the 

computing algorithm, but also would introduce new errors into the computer simulation. It is more 

appropriate to find conditions allowing to apply the equations (9) – (12) to the summary radiation 

transferred. With the defining temperature in enclosed space denoted as Ts, they receive following 

forms: 
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Despite formal identity, expression (14) differs in values of its radiant temperature Trad from the 

analogue (9). Also, the differential equations (12) and (17) might produce different results being 

solved with distinct boundary conditions. 

The radiation fluxes that are required for stating the boundary conditions on surface of the walls 

are depicted in Fig. 1. It is accepted here that the effective radiation of walls is diffusive, i.e. it is emit-

ted and reflected with equal radiation intensity in all the directions within the hemispherical solid an-

gle. 

When the confined dust-laden gaseous volume has a fairly large optical thickness, the additional 

radiation propagated from the opposite wall is expected to be absorbed completely by the medium. 

Thus, it may be assumed, that the incident radiation flux on the enclosing walls practically equals in 

this case to such of a flux produced by the hypothetical unbounded medium with the same temperature 

field. This radiation flux can be determined by integrating the series (5) of the radiation intensity, mul-

tiplied by cos , over the hemispherical solid angle. Since the even temperature derivatives at the 

bounds of the domain are supposed to be equal to zero, the surface density of the incident radiation 

flux would be represented as follows: 
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where subscript "bn" denotes derivatives of the radiation intensity found at the points of the unbound-

ed medium that coincide with the wall surface. 
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Figure 1. A scheme of radiation 

fluxes on surface of the walls: 1 – 

incident radiation 2 – effective 

radiation; 3 – wall surface. 

 

This equality would be presented more obviously in a wide form: 
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From here, in view of the series (7), a simple expression will be obtained for the surface density of 

the incident radiation flux on the walls that enclose the extinction medium: 





 rad.w

4
w

p

inc
2

1
qTE  (18) 

The surface density of the effective flux of radiation emitted and reflected by the confining walls 

can be determined with the well-known formula [4]: 
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where εw is the emissivity of the wall surface; qrad.w is the density of the resulting radiation flux from 

the extinction medium to the wall. The ratio of absorption coefficients had been introduced in formula 

(18), in order to match more accurately the radiation fluxes of the walls and those of a volume of the 

extinction medium in accordance with the equality (13). 

The difference between the incident (18) and effective (19) radiation fluxes gives a formula that 

connects on the wall surface the resulting radiation fluxes in confined and unbounded extinction me-

dia: 

2w
 

rad.wrad.w  qq . (20) 

Boundary conditions 

In the diffusion approach method, the boundary conditions on the wall surface are inherently approxi-

mate. Besides, the incident radiation is assumed, as a rule, to be diffusive. Such a rough stating leads 

to unpredictable mistakes in numerical simulations. 

In the elaborated diffusion model, Neumann more accurate boundary conditions for the differential 

equation (17) directly follow from a ratio (20) in view of the gradient expressions (10) and (15): 

   
w

4w
w

4
s  

2
 уTуT 


  . (21) 
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The right-side part of this equality has to be computed in each of iteration after solving the differ-

ential equation (12) of radiative heat transfer in the unbounded medium. 

Robin boundary conditions can be derived from the balance equation that interrelates the radiant 

temperature and surface fluxes of radiation [16]: 

incinceffeff
4

rad.w4 EmEmT  ,  

where Trad.w is the radiant temperature, calculated on the wall surface; meff and minc are ratios of hemi-

spherical integrals that determine volumetric and surface radiation fluxes on the wall. It can be as-

sumed meff=2 for the diffused radiation of wall. 

If to take into consideration formulae (17) and (18) for densities of incident and effective radiation 

fluxes, the preceding equality would be reduced to an expression that contains only coefficient m in its 

last item: 

   



 rad.w

 
rad.ww

4
w

п4
rad.w

2
 144 q

m
qTT . (22) 

This coefficient is defined here as follows: 

 
 
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

















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
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rad.bn
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wp
2 2

1
2d qTT

k
Im

l
.  

The denominator of this ratio corresponds to the series (7). Its numerator ought to be found by 

means of integrating termwise the series (5) and admitting the even derivatives to be equal zero: 
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Comparing numerical coefficients before the first derivatives in both numerator and denominator 

gives us a rough estimation: m  3/2. Now replacing the determining temperature Ts.w in the equation 

(22) with the radiant one in accordance with formula (14) results in a computational expression for the 

Robin boundary conditions: 

  
 


 rad.ww

4
bn.

4
s.w 75,1

12

3
q

k

k
TT  . (23) 

This expression includes the resulting radiation-flux density in the unbounded medium. Thus, in 

order to set correctly the boundary conditions for the differential equation (17), one has to solve previ-

ously the differential equation (12) with the boundary condition (13).  

Owing to such an algorithm, the precision of the whole numerical method rises [16]. At some dis-

tance from walls, where the dust-particle absorption nullifies the wall additional radiation over the to-

tal spectrum, the formula (15) becomes accurate. If, in addition, the resulting radiation flux had been 

determined by means of the relation (20) with acceptable accuracy, some potential faults of the gradi-

ent formula (15) might be revealed only restrictedly in a narrow field beside the walls [17], and they 

would not be capable to yield any essential inadequacy to computational results. 
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4.  Conclusion 

The accurate diffusion model has been theoretically elaborated for radiative heat transfer in dust-laden 

gases. To eliminate singularity of temperature curves on the surface of confining walls, the enclosed 

extinction medium was hypothetically considered as an unbounded one. The radiation intensity has 

been expanded in a series and integrated over the spherical solid angle, what has allowed to obtain 

more precise differential equation for the resulting radiation flux both in the unbounded and enclosed 

extinction medium. As a result, shortcomings peculiar to the previous method of diffusion approach 

have been eliminated, and correct Neumann and Robin boundary conditions have been formulated.  

The elaborated diffusion model has an easy algorithm, minimum requirements to computer re-

sources and small time of its numerical realization. 
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