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Abstract. An analytical solution to an unsteady heat conductivity problem based on the method 

of using a new function for a plate under first-order boundary conditions with time-varying in-

ternal heat sources was obtained. Obtaining an exact analytical solution for such problems has 

encountered serious mathematical difficulties. However, analytical solutions have significant 

advantages compared to numerical ones. For example, solutions obtained in an analytical form 

make it possible to perform the parametric analysis of the system under study, parametric iden-

tification, programming of measuring devices; controlling the production process, etc. There-

fore, approximate analytical methods have been widely used. So, this paper is devoted to the 

development of such a method. The solutions obtained have a simple form of algebraic poly-

nomials without special functions. This allows doing the research in the fields of isotherms and 

determining their velocities. 

1.  Introduction 

In engineering practice there are cases when heat occurs inside the body due to the internal sources, 

for example, the electric current flow, exothermic chemical reactions, nuclear transformations, etc. 

Obtaining accurate analytical solutions to unsteady heat conduction problems with heat sources using 

classical methods (Fourier, Green's functions, integral transforms [1 – 6]) includes mathematical diffi-

culties, as the solutions obtained are expressed by complex functional dependencies. Thereby, approx-

imate analytical methods for mathematical modeling such as various modications of the heat balance 

integral method [7 – 11], Ritz method [12, 13], Kantorovich method [14], Galerkin method [15 – 18] 

etc. have rapid development. 

The use of such solutions in engineering practice is extremely difficult. If the power of internal 

sources is time-varying, the classical methods often cannot be applied. 

Consider an unsteady heat conduction problem for an infinite plate with a time-varying internal 

heat source under symmetric boundary conditions of the first kind: 
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where T – temperature; x – coordinate; τ – time; )/(  ca  – temperature conductivity coefficient; λ 

– heat conduction coefficient; ρ – density; c – specific isochoric heat capacity; )1()(
0

  – 

power of an internal heat source;
0

 – initial power of an internal heat source(at  =0); 
0

T  – initial tem-

perature; wallT  – wall temperature; δ– half thickness of the plate. 

The problem (1) – (4) can be presented in a dimensionless form [1] (Figure 1) 
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where 0( ) / ( )wall wallT T T T    – dimensionless temperature;  /x  – dimensionless coordinate; 

2)/(Fo  a – Fourier criterion (dimensionless time); a /PoPo 2

1 – Pomerantsev criterion; 

2

1 0Po ( )/[ ( )]wallc a T T   – initial value of the Pomerantsev criterion (at Fo = 0) 

 

 Figure 1. Schematic of heat exchange. 

2.  Methodology 

According to the research methodology, we introduce the new time-dependent function 

 



 tg

)Fo,0(
)Fo( , (9) 

where   –angle between the tangent to the graph of the function )Fo,(  at point 0  and the co-

ordinate axis.  

In dimensional form relation (9) can be written as 
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According to the Fourier law, the heat flux density on the surface of the plate is determined by the 

relation 
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where constk   – scale factor of the system. Therefore, the new function is the product of heat flux 

density at the boundary point by a constant. 

A feature of the proposed method (in comparison with [8]) is the use of the law of heat flux density 

change at the point of the third kind boundary condition in the product with a constant as a new func-

tion. 

The solution to problem (5) – (8) is sought in the form of an algebraic polynomial 
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where Nn  – natural number corresponding to the number of terms of the series (13); )Fo(
i

b  –  un-

known coefficients that depend on the dimensionless time. 

To obtain a solution to problem (5) - (8), substitute relation (13) into boundary conditions (7), (8) 

and into the additional condition (9) in the first approximation. As a result of substitution, we obtain a 

system of three algebraic equations 
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Solving the system, we can obtain the unknown coefficients 
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Relation (13) taking into account the coefficients found can be written as 

 1)Fo()()Fo,(
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where 1( )  (1 0.5 )f      – coordinate function. 

We now require the solution (15) to satisfy not the initial differential equation (5), but an averaged 

one - the heat balance integral [7 – 11] 

  

















1

0

12

21

0

PoPoFo
)Fo,(

Fo

)Fo,(
dd . (16) 

Calculating the integral, an ordinary differential equation can be obtained  
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Solving the equation, we can find 
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where 
1

C  – integration constant. 

Substituting (18) into (15), we obtain 
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Relation (19) exactly satisfies the boundary conditions (7), (8), additional condition (9), and also 

the heat balance integral (16). To fulfill the initial condition (5), we find its residual and require the 

orthogonality of the residual to the coordinate function 
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ing into account the value found is a solution to problem (5) - (8) in the first approximation and can be 

written as 
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To increase the accuracy of the solution obtained, it is necessary to increase the degree of the ap-

proximating polynomial (13). When determining unknown coefficients )Fo(
i

b in relation (13), in addi-

tion to conditions (7), (8), (9), we use additional boundary conditions [8, 9]. 

The physical meaning of additional boundary conditions is the solving the initial differential equa-

tion (5) and the relations obtained after its differentiation at points 0  and 1 . Note that solving 

the equation only at the boundary points leads to its solving within the area as well. [15] 

To obtain a solution to problem (5) - (8) in the second approximation, we use six terms of the series 

(13) ( 6n ). In this case, to determine unknown coefficients )Fo(
i

b , in addition to conditions (7), (8), 

(9), three additional conditions are used (two of them are for the point 0  , and one for the point  

1  ). 

The first additional boundary condition is obtained by writing equation (5) at the point
0
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Differentiate the initial differential equation with respect to the spatial variable 
  to obtain the 

second additional condition  
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Using relation (23) at a point 0  taking into account (9), the second additional condition is ob-

tained 
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The third boundary condition can be obtained by a single differentiation of the initial equation (5) 

with respect to the spatial variable as applied to the point 1 .Taking into account the boundary con-

dition (8), it can be written as 
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Substituting (13) into (7), (8), (9) and additional conditions (22), (24), (25), we obtain a system of 

six algebraic equations. Solving the system, we determine the unknown coefficients )Fo(
i

b ( 6n ): 
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After substituting relation (13) into the heat balance integral (16), taking into account the coeffi-

cients found, we obtain a second order homogeneous differential equation 
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The solution has the following form 

 









3

1
-FoPoPo)Foexp()Foexp()Fo(

12211
KCKC , (27) 

where 1

3
( 13 129) 2.4633

2
K     ; 2

3
(13 129) 36.5370

2
K     . 

Substituting (27) into relation (15) we have 
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Then we calculate the residual of the initial condition and require the orthogonality of the residual 

to each coordinate function )(
1
f  and )(

2
f , and obtain a system of two algebraic equations 
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Solving the system, we can find 0.20,1Po-Po005.0
11
C ; 0.20.8Po-Po3.0

12
C . 

Relation (28) taking into account the integration constants found is the solution to problem (5) - (8) 

in the second approximation. Results of temperature calculations using formula (28) are shown in Fig-

ures 2, 3. 

To further increase the accuracy, it is necessary to increase the number of terms of the series (13). 

So, in the third approximation we use nine terms of the series, in the fourth approximation - twelve, 

and so on. To find the unknown coefficients, we use additional boundary conditions. The general for-

mulas are as follows 

 0Po
)Fo,0(

1

1









j
k

k

    ( 3,1;3,0  kjkj ).  

112

12

1

1 )Fo,0(

Fo

)Fo(
k

k

k

k








 





; 

0
)Fo,1(

12

12









k

k

, 

where 3,2,1k . –  approximation number. 

The results of temperature calculations by formula (21) compared to the numerical solution are pre-

sented in Fig. 2, 3. The analysis shows that in the range 0.1 Fo   the discrepancy of the results 

obtained does not exceed 10%. 

 

Figure 2. Distribution of dimensionless 

temperature in the plate (Po1 = 5; Po = 5). 

1 and 4 – approximation numbers. 
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Figure 3. The distribution of dimension-

less temperature in the plate over time 

(Po1 = 5; Po = 10). 1 and 4 – approxima-

tion numbers. 

 

Figure 4 presents graphs of the function )Fo( . Note that the accuracy of determining the unknown 

function )Fo(  is much higher than the accuracy of determining the temperature. The discrepancy 

between the calculation results by formulas (11), (21) in the range of dimensionless time  Fo1,0  

is no more than 5%. 

 

Figure 4. Graphs of measuring the 

function )Fo( (Po1 = 5; Po = 10). 1 

and 4 – approximation numbers. 

 

Figures 2, 3, 4 present the temperature distribution curves )Fo,(  and )Fo(  obtained by formu-

la (13) in the third and fourth approximations. The discrepancy in the interval of dimensionless time

0.1 Fo   does not exceed 3%. 

The analysis (Figure 4 ) also shows that the value of the function )Fo( at time point Fo=0 increas-

es to 10 in the first approximation, to 100 in the fourth approximation which is fully consistent with 

the hypothesis of the infinite rate of heat distribution  underlying the derivation of the classical para-

bolic heat equation (5). 

The convergence of the method in its accuracy can also be checked on the analysis of the residual 

Fo),ξ(ε  of equation (6) 
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The analysis of the curves presented in Fig. 5 shows that with an increase in the number of approx-

imations, the residual of the equation decreases, which indicates the convergence of the method. 
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Figure 5. Residual of equation (6) (Po1 = 

15; Po = 10). 1, 2, 3, 4 – approximation 

numbers. 

3.  Conclusion 

1. The development results of an approximate analytical method for solving the differential heat equa-

tion based on the introduction of a new function and additional boundary characteristics are consid-

ered. It is shown that the accuracy of the proposed method depends on the degree of the approximating 

polynomial. 

2. The introduction of a new function (flux density )Fo(  
)
 
made it possible to reduce the solution 

of the partial differential equation to the integration of an ordinary differential equation. 

3. The solution has a simple form of the product of functions which greatly simplifies the practical 

use of the solution obtained. 
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