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Abstract. The article provides the substantiation of the necessity to develop a mechanism for 

determining the electric grid element with the lowest reliability taking into account the equip-

ment operation peculiarities in the Russian Federation. Critical analysis of existing approaches 

to identifying dilapidated electrical equipment, as well as recommendations of the Ministry of 

Energy of the Russian Federation on assessing technical condition of electric networks has 

been carried out.  It is proposed to determine the technical condition of electric grids by the 

value of their failure probability. Failure probabilities mathematical models for large groups of 

emergency modes are given: insulation failure, failure of current-carrying elements and failure 

due to mechanical damage, as well as for all electrical equipment on the whole. Criteria and an 

algorithm for mechanical defects of electric grids elements expert evaluation are presented. 

The calculation of the failure probabilities for two elements of real electric grid is made. The 

conclusions is made on the feasibility of replacing one of the considered elements. 

1.  Introduction 

Today the situation in the Russian electric power industry is that a large part of the electric grid infra-

structure is very outdated. Moreover, more than 70% of power lines and transmission substations have 

worked out their physical and moral resources to the utmost. Such electrical grids are characterized by 

frequent breakdowns resulting in an interruption in power supply which leads to huge material losses, 

both for electricity consumers and electric grid companies. 

In order to reduce dangerous situations occurrence the electricity companies should timely repair 

electrical equipment. However it is impossible to timely repair all the equipment because of the lim-

ited financial resources coming from the electricity tariff [1-2]. Thus, in order to reduce the occurrence 

of emergency conditions and to minimize their consequences the grid companies must clearly identify 

the most unsatisfactory technical condition of the equipment [3-8]. 

At present in Russia the most common method of identifying unreliable electric grids equipment 

involves carrying out electrical parameters control measurements and their subsequent comparison 

with threshold regulatory values given in specialized scientific and technical documentation. However 

this approach to evaluating technical condition of electric grids is difficult to consider completely cor-

rect. For example, according to the rules of electrical installations the insulation resistance of cables 

with voltage up to 1 kV during control measurements should not be less than 0.5 MΩ, otherwise its 

further use is prohibited. But the existing experience in operating cable lines shows that the cable does 

not fail for a long time. after this threshold value is reached. 
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2.  Materials and Methods 

To evaluate the technical condition of electric networks special automated systems [9-14], based on 

the expert evaluation method, have been developed. This technique is based on the opinion of highly 

qualified specialists, the experts in the field of operating electrical networks and the real technical 

condition of the equipment under study. However, according to the studies [9], with the widespread 

introduction of such systems, employees of electric grid companies conducting the corresponding 

evaluation have different qualifications and experience in this field. So the final assessment of the 

technical condition of electric grids will obviously be subjective and inaccurate. Therefore identifying 

unreliable equipment based on such estimates will not be possible.  

The main body regulating the electric power industry in Russia, the Ministry of Energy of the Rus-

sian Federation, has expressed its interest and support for this topic. The Ministry of Energy made rec-

ommendations on the further research development direction, namely, that the technical condition of 

electrical equipment should be determined on the basis of technical diagnostics, statistics of defects 

and failures in order to assess the equipment wear level and the failures probability, what is not im-

plemented in existing methods. Guided by this recommendation, as an indicator describing the electric 

grid technical condition we will take the probability of electric grid infrastructure elements failure. 

As previously mentioned, in order to evaluate technical condition of the electric grid, electricity 

companies make control measurements of some indicators specific to the type of electrical installation 

under consideration [15-20]. In this regard the construction of mathematical models of electrical net-

works failure probabilities should be carried out on the basis of these values. This will allow to rely on 

the accumulated statistical base and will not require additional costs for creating new approaches to 

electrical equipment testing. 

Electrical grids elements failure can occur due to a huge number of reasons which, in turn, leads to 

various options for emergency development [16-19]. However, after analyzing the essence of the 

physical processes leading to emergency, as well as the measured control electrical values of electrical 

equipment, three large groups of emergency conditions were identified: 

 current-conducting elements failure; 

 insulation failure; 

 electric network element failure an due to mechanical damage. 

Let us consider mathematical models of a separate emergency mode for each of the indicated types 

and simulate failure probability of live parts of the electric network elements. 

3.  Results 

As an example, let us consider a contact of arbitrary shape, for which Pbreak is the probability of con-

tact breaking. The contact zone has a rather complex shape (Figure 1). 

 

Figure 1. Contact zone form. 
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Let us divide the entire contact area into small areas. Then the contact break probability for the 

considered zone will be determined by the formula: 

Pbreak = (1 – pwork)
n. (1) 

As a result of dividing the contact zone into small areas, we can imagine that the total resistance 

(Rcont) will be composed of the resistances of its parts (rcont) connected in parallel. In this case: 

Rcont = rcont / n   n = rcont / Rcont . (2) 

Let us consider the failure probability of one such part contact. The probability of the area opera-

tion capability is that lower, the higher the contact resistance is [18]. The nature of such relationship is 

very difficult to evaluate. However, any dependence can be represented in the form of a polynomial, 

and, therefore, the following expression will be true: 

 1 0

0 1

1
~ ,work m m

cont cont m cont

Р
a r a r a r  

 (3) 

where m is polynomial degree of the. 

Let us consider the probability of contact operability for the area allocated in a certain contact zone. 

It will depend on a large number of factors: the material state (surface roughness, films formation, the 

presence of cracks and indentations), the operating conditions of the electric grid (overload, overvolt-

age, high currents, mechanical stress), and environmental conditions (temperature, air humidity, the 

presence of aggressive media), etc [21]. All these factors in one or another way affect the probability 

of contact breaking. And since the research is conducted for some fixed state, we have the opportunity 

to express this set of parameters in terms of some constant (C). 

In this case the expression will be true: 

 
(4) 

Then the probability of contact breaking will be calculated by the formula: 
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We take out the value 
m

contr  outside the polynomial and replace rcont = –x, then we get: 

 

(6) 
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Due to the fact that the probability value should not depend on the method of the contact surface 

partitions, i.e. it should not depend on the method of the part discretization (how small considered 

parts are) and it should not depend on rcont of discrete part, therefore, the value 
1m

contr 
 should be a con-

stant value, and therefore m = 1. Then finally: 

break

1
 .

cont cont
R A

P
e

  (8) 

Note that the derived formula will be valid not only for the contact connections failure, but also for 

all current conducting parts as a whole, since the nature of the physical phenomena occurring in these 

objects is identical. 

In order to unify the symbols in the constructed mathematical models we shall indicate the contact 

breaking probability Pbreak as Pcont  by this value we will generally understand the probability of current 

conducting parts failure including electrical contact connections. 

We will transfer the contact resistance from absolute values to relative onees: 

cont.meas

cont.norm

,cont

R
R

R
  (9) 

where Rcont.meas is the value of contact resistance measured during the test of electrical equipment; 

Rcont.norm – the standard value of the contact resistance regulated by Electric Installation Code. 

Then formula (8) will have the following form: 

 
(10) 

 

In this case, the constant Acont is determined as follows: 

 
(11) 

 

where ω is the failure flow parameter for the considered type of electric grid equipment; 

αcont – the proportion of the investigated electrical equipment of a particular type with which an acci-

dent occurred due to current conducting parts failure. 

The conclusion of the formula for the probability of failure (breakdown) of electric grid element in-

sulation is similar to the conclusion made for current conducting parts. Therefore, we present a math-

ematical model of insulation breakdown without proof: 
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(12) 

 

The constant Ainsul is defined as follows: 

 
(13) 

 

where αinsul is a statistical indicator showing the share of electrical equipment that has failed due to 

insulation breakdown.   

Various regulatory and technical documents do not regulate the measurement of electrical equip-

ment control parameters to determine mechanical damage. Moreover their very presence, nature and 

intensity can indirectly indicate a certain technical condition of the electric grid element [22-23]. Since 

mechanical damage cannot be formalized in the form of electrical quantities (resistance or current) it is 

possible and advisable to use the method of expert evaluation in this case. 

In the conditions of Russian electric grids operation the experts are often operational personnel who 

can evaluate the technical condition of the same element in different ways or incorrectly. To reduce 

subjectivity and increase evaluation accuracy a rigid scale of generalized expert evaluation of electri-

cal equipment was developed. An expert from the operating personnel clearly defines the actual state 

of the electrical equipment by the description given in the developed scale and sets a certain point rat-

ing corresponding to the scale. The rating scale has a gradation of 1 to 10 points, where “1” is the 

worst condition, “10” is the best condition. 

We note that we will set three qualitative states of the electric network elements: 

 “Good” is the state of the least failure probability; 

 “Satisfactory” - the state when failure probability is possible; 

 “Unsatisfactory” - the state with high failure probability. 

On the basis of the foregoing we will compile generalized criteria and a scale for the expert evalua-

tion of mechanical defects in power grid equipment (Table 1). 

A universal algorithm was developed for the expert evaluation of mechanical defects in power grid 

equipment according to which the operating personnel of the power grid company should make a deci-

sion on assessing the technical condition of the considered electrical installation. 

Evaluation must be carried out starting with a description of "10".  Highest rating this description is 

a set of the element qualitative characteristics, which can be estimated at 10 points and determine the 

condition as the best. If the qualitative description of the element state does not match to any of the 

presented items it is necessary to lower the maximum rating: 

 by 1 point if the element state corresponds to a similar paragraph in the description of  “6” ex-

pert evaluation; 

 by 2 points if the element state of corresponds to a similar item in the description of “2” expert  

evaluation. 

After conducting expert evaluation of electrical equipment mechanical defects it is necessary to 

transform the result of expert evaluation into probabilistic form. In the course of research it was de-

termined that the mathematical model of the probability of these types of damage would be: 

 

 
(14) 
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where Pmech.def is the of power grid equipment failure probability due to mechanical defects (damage); 

BEA is an expert assessment of the electric grid company operating personnel; 

Amech is a coefficient taking into account the statistics of defects in electrical equipment in case of me-

chanical damage. 

 

Table 1. Generalized criteria and scale of expert evaluation of mechanical defects in power grid 

equipment 

Evaluation Scale 

of  Electric Net-

work Element 

Qualitative Description of Electric Network Element Technical Condition 

Evaluation  

10 

“good” 

1) The fastening of electrical equipment is strong and reliable without changing 

its position from the original; 

2) The surface of the insulators is clean and smooth, has no defects (chips, 

cracks); 

3) In the places of current conducting elements connection there are no traces of 

corrosion, deformation, mobility; 

4) Other elements do not have chips, cracks, deformations, traces of corrosion. 

6 

“satisfactory” 

1) The fastening of electrical equipment is dense, a slight change in position 

from the original one is possible due to mechanical stress; 

2) The surface of the insulators has insignificant chips, cracks, discoloration of 

part of the surface (at least one sign); 

3) At the junction of current conducting elements slight traces of corrosion are 

observed while there are no other defects; 

4) Other elements have insignificant chips, cracks, deformations, traces of cor-

rosion (one sign at least). 

2 

“unsatisfactory” 

1) The fastening of electrical equipment is weak, the housing is movable; 

2) The surface of the insulators has significant chips, cracks, there are traces of 

an electric arc (one sign at least); 

3) Blackening, significant deformations are observed at the junction points of 

current conducting elements, there is mobility in the joints (one sign at least); 

4) Other elements have significant chips, cracks, deformations, traces of corro-

sion (one sign at least). 

 

The failure of electric network element will occur on the whole if at least one of the above types of 

emergency conditions comes fully out. In the theory of power supply reliability this situation is re-

garded as buck connection of electric circuit elements. Then the mathematical model of the failure 

probability of electric network element as a whole will have the following form: 

 

P = 1 – (1 – Pinsul)·(1 – Pcont)·(1 – Pmech.def). (15) 

4.  Discussion 

As an example of using this technique to evaluate technical condition of the electric network elements 

and on this base to select the most unreliable element for its repair let us consider two real electric 

network elements of the same type, for example, two disconnectors. Table 2 shows the results of con-

trol measurements of electrical parameters and expert evaluation of mechanical defects of these dis-

connectors. 
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Table 2. Information on conducting control measurements of electrical parameters and expert assess-

ment of mechanical defects of disconnectors 

Disconnector Name Measured / estimated parameter Parameter value 

Disconnector # 1 

Insulation Resistance, MΩ 4350 

DC Resistance, μOhm 115 

External defects evaluation  «5» 

Disconnector # 2 

Insulation resistance, MΩ 13600 

DC Resistance, μOhm 107 

External defects assessment   8 

 

We will calculate the probability of failure for Disconnector # 1. 

Breakdown probability: 

insul.discon.1

insul.discon.norm insul.discon.

insul.discon.1 4350

1000 0,04846

0.0110
1 1

1 1 8.
R
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еe

    

 

The failure probability of current conducting parts: 

cont .discon.1

cont .discon.norm cont .discon.

cont.discon.1 115

175 2,941399

0.01137
1 1

.
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R А
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еe
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The probability of failure of Disconnector # 1 due to external defects: 

10 1010 10
def .discon.1

mech.discon.1 10 10

10.3 10.3 5
0.015552 0.001084.

10.3 10.3
mech

В
P А

 
   

 

General probability of Disconnector # 1 failure:  

P = 1 – (1 – Pinsul.discon.1)·(1 – Pcont. discon.1)·(1 – Pmech discon.1)= 0.023384. 

Let us make a similar calculation for Disconnector # 2.  

Breakdown probability: 

insul.discon .2

.discon .norm insul.discon

insul.discon.2 13600

1000 0,04846

0.00351 1 6
1

5 .
1

insul
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The failure probability of current conducting parts: 

cont .discon .2

cont .discon .norm cont .discon

cont.discon.2 107

175 2,941399

0.00814
1

2.
1

R

R А

P
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The failure probability of Disconnector # 2 due to mechanical damage: 

10 10 1010
def .discon.2

mech.discon.2 mech.discon 10 10

10.3 10.3 8
0.015552 0.000388.

10.3 10.3

В
P А

 
   

 

General probability of Disconnector # 2 failure: 

P = 1 – (1 – Pinsul.discon.2)·(1 – Pcont. discon.2)·(1 – Pmech discon.2)= 0.012053. 
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Comparing the values of disconnectors failure probabilities it is clear that the value is greater for 

Disconnector # 1. Therefore Disconnector # 1 should be repaired. 

5.  Conclusion 

Thus, taking into account the conditions of limited financial resources of electric grid companies the 

methodology presented in this article allows to determine the priority of replacing dilapidated electri-

cal equipment by failure probability value of the electric network elements, what in its turn will signif-

icantly increase the reliability of power supply to consumers and reduce the level of material losses 

arising from emergency situation. In addition, the developed methodology for determining failure 

probability of electric grids completely eliminates the critical comments of the Ministry of Energy of 

the Russian Federation to existing methods. 
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