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Abstract. The present study focused on evaluating the heat transfer behavior and predicting the 

surface resulting status during air/water droplets two-phase flow. Transient heat transfer based 

on the lumped capacitance model (LCM) was investigated experimentally under a range of wa-

ter droplets concentration, surface temperature, and varying Re number. Compared with a sin-

gle-phase air cooling, the transient surface temperature decreased with the increase in water 

droplets concentration and Re number. At the same cooling time, the surface temperature de-

creases about 13.5%, 47%, and 53.2% for (j = 46.79 – 111.68 kg/m2 hr). It was also noticed 

that the heat transfer coefficient increased with the increase in water droplets concentration and 

reach its maximum value at (j = 111.68 kg/m2 hr). Based on the analysis of the experimental 

results, the heat transfer mechanism due to the impacting of water droplets on the sphere sur-

face was classified into three important physical regimes. Clear convection heat transfer regime 

corresponds to the dry region (region I); Convection and evaporation regimes correspond to the 

dry-out and wet regions (region II and III). 

1.  Introduction 

Air/water droplets cooling technique applied in numerous industrial and technical processes such as 

the heat exchanger modules in nuclear and thermal power plants, cooling of electronic and electrical 

equipment, etc., considered to be an excellent technique and distinguished by the higher heat transfer 

rate compared with those obtainable by conventional single-phase air cooling [1-5]. These high heat 

transfer rate occurred due to the phase change of water droplets by the direct evaporation process on 

the heated surface and absorb a large amount of energy in the form of latent heat, increased the specif-

ic heat of mixture, and increased the turbulence inside the thermal boundary layer of the heated sur-

face [6-8]. The air/water droplets heat transfer process is a very complicated phenomenon depends on 

the several factors such as the water droplet diameter size, the water phase concentration, the flow be-

havior, the water droplet trajectories, the temperature of the heated surface, and the evaporation time 

of water droplet on the heated surface. The surface temperature and water phase concentration are im-

portant factors that have a great influence on the resulting status of the heating surface (dry, dryout, 

and wet states) and heat transfer behavior. In the present study, an experimental investigation was per-

formed with an aim to analyze and understand the transient heat transfer behavior of a spherical ele-

ment cooled using air/water droplets two-phase flow. The estimation of heat transfer behavior during 

the cooling process was employed based on the lumped capacitance model (LCM). 
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2.  The experimental facilities and results treatment 

This investigation related to analyzing the heat transfer behavior during the transient -state condition 

by suspending a fine water droplet on an air main flow. The experimental facilities used in our exper-

iment depicted schematically in figure 1, are the same one was used in references [9, 10]. It consists of 

the air supply system, water droplets generator system, test specimen, induction heating system, and 

data acquisition system. The test specimen is represented by a calorimetric copper sphere located in-

side a cylindrical channel with sphere-to-channel diameter ratio (d/D=0.73). The initial working tem-

perature of the test sphere was 100, 200, and 300 °C. The surface temperature was measured by two 

calibrated (K-type) thermocouples were implanted inside the sphere. The ambient, inlet and outlet flu-

id temperatures, and the cooling down time were recorded constantly. All thermocouples were con-

nected to the OWEN MV110-8A data acquisition system with MSD200 data logger. A high-frequency 

heating induction station was used to heat the sphere as a non-contact heating method with output fluc-

tuating frequency 50 - 100 KHz. The average water droplet diameter was (dp≤10μm) was obtained by 

an ultrasonic water droplets generator with 1.7 MHz. 

 

 

Figure 1. Schematic diagram of the experimental facilities. 

 

The experimental tests were performed under a range of water droplets concentration (j = 46.79 – 

111.68 kg/m2 hr) and Re number varying from (2.5·104 to 5.5·104). Firstly, the induction heating sys-

tem was switched on to heat the test sphere and achieved the required temperature. When the test 

sphere reached the working temperature, the induction heating system was switched off and the test 

sphere was exposed to air/water droplets two-phase flows. For Biot number ≤ 0.1, the temperature pro-

file inside the test sphere can be assumed uniform and the lumped capacitance model (LCM) can be 

employed as a heat transfer evaluate method. Based on the change of internal energy inside the test 

sphere relating to the convection heat transfer rate at the sphere surface, the general heat conduction 

equation can be defined as: [11] 
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where ms and cs are the sphere mass, specific heat, and total surface area respectively. h – is the con-

vection heat transfer coefficient, Tin - is the inlet fluid temperature, Ts  is the temperature inside the 

sphere, t - is the cooling time. Eq. (1) was solved analytically and can be written as: [12] 
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where Δτ – time difference between two readings of the data logger. The Bi number is defined as:[13] 
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where sk - the thermal conductivity of the sphere and L - is the characteristic dimension of the sphere, 

defined as the ratio between the sphere volume Vs and its total surface area As. The water droplet di-

ameter can be computed by the Lang equation (4), [14-15]. 
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3.  Results and discussion 

In order to evaluate the effect of air/water droplets cooling process on the test sphere and predicate the 

resulting status of the heating surface, there were done the experiments under a range of water droplet 

concentration (j = 46.79 – 111.68 kg/m2.hr) and Re number varying from (2.5·104 to 5.5·104). The 

temperature profile results of the test sphere cooled by air as well as air/water droplets two-phase flow 

with the initial temperature equal to 300°C are presented in figure 2. 

 

Figure 2. Transient cooling curves for different water mist rate at Re=55000. 
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Two heat transfer regimes can be distinguished herein. Free convection heat transfer regime occurs 

when the surface temperature reduced by around 5°C during the water droplet system adjustment to 

obtain the water droplets concentration required before starting the cooling process. Next, the 

convective heat transfer was occurred by forced convection. At the starting of quenching, it can be 

seen that the effect of water droplets on the sphere temperature was insignificant. 

 

Figure 3. Effect of the Re number on the transient surface temperature 

for range of water droplet concentration (j=88.31 kg/m2.hr). 

 

 

Figure 4. Effect of the Re number on the transient surface temperature 

for range of water droplet concentration (j=111.68 kg/m2.hr) 
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It could be associated with the high surface temperature and force of evaporation that leads to 

evaporate the water droplets before reaching to the sphere surface. After the temperature of sphere 

reaches to 100°C the influence of water droplets were appear and it can be noticed that the sphere 

temperature extremely decreases and the cooling time was reduced from 709s for single-phase air 

cooling to 248s under (j = 111.68 kg/m2 hr). The surface temperature decreases about 13.5%, 47%, 

and 53.2% compared with single-phase air cooling under constant Re number. The cooling time for (j 

= 46.79 – 111.68 kg/m2 hr) were found to be 50%, 62%, and 65% less than those obtained by (j=0 

kg/m2 hr). 

Figures 3 and 4 represents the effect of the air flow velocity in the terms of Reynolds number (Re) 

on the cooling process by suspending (j=88.31 kg/m2 hr) water droplets concentration. In our 

experiments, high Re number which means high flow acceleration that forcing more and more water 

droplets reaching to the sphere surface and enhance the cooling process by increasing the surface 

wettability. At the constant cooling time (t=250 s.) the surface temperature decreases about 67% for 

Re=55000 compared to the surface tempertature obtained by Re=25000. With increasing in water 

droplets concentration, the number of water droplets impacting on the surface of the sphere also 

increases that enhances the extraction of heat by absorbing a large amount of energy in form of latent 

heat during the evaporation process as shown in figures 4. Based on the temperature gradient and 

direct observation during the glass channel, the cooling curve can be classified according to the 

resulting states of sphere surface into three different regions as I- dry region, II- dry-out region, and 

III- wet region as shown in figures (3-6). The effect of the Re number on the transient heat transfer 

coefficient for a range of water droplet concentration was depicted in figures 5 and 6. For all cases, it 

can be noticed that the average heat transfer coefficient was drastically increased with increasing of Re 

number and water droplets concentration. The heat transfer behavior due to the impacting of water 

droplets on the sphere surface can be classified into three physical regimes. Clear convection heat 

transfer regime corresponds to the dry region (I - region), convection and evaporation regimes corre-

spond to the dry-out and wet regions (II and III - regions) 

 

Figure 5. Effect of the Re number on the transient heat transfer 

coefficient for (j=88.31 kg/m2 hr) 
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Figure 6. Effect of the Re number on the transient heat transfer 

coefficient for (j=111.68 kg/m2 hr) 

 

 

Figure 7. The variations of heat transfer coefficient  with water droplets 

concentration 

 



IV International Scientific and Technical Conference “Energy Systems”

IOP Conf. Series: Materials Science and Engineering 791 (2020) 012001

IOP Publishing

doi:10.1088/1757-899X/791/1/012001

7

 

 

 

 

 

 

 

Figure 8. Comparison of steady-state heat transfer coefficient with those 

obtained by the LCM under corresponding surface temperature conditions. 

 

The variations of heat transfer coefficient  with water droplets concentration at constant cooling 

time (200 sec) is displayed in figure 7. The heat transfer coefficient shows the uptrend with increasing 

water droplets concentration for all ranges of Re number. In scrutiny of figure 7, the heat transfer 

coefficient obtained from Re=55000 it's visible to be higher than that obtained by Re=25000 and 

Re=40000, due to the flow acceleration that forcing more and more water droplets reaching to the 

sphere surface and enhance the cooling process by increasing the surface wettability as mentioned 

above. The unsteady-state heat transfer for a varied range of water droplets concentration and different 

values of Bi numbers were compared with the results obtained by steady-state experiments that were 

performed in the previous work [9] in terms of corresponding surface temperature of the sphere.  The 

comparison between the steady and unsteady state heat transfer characteristics is shown graphically in 

figure 8. In this figure, results reasonably agree well within ±7.3%. 

4.  Conclusions 

In this study, an attempt to analyze and understand the heat transfer behavior during air/water droplets 

cooling process based on the lumped capacitance model (LCM). The major findings can be reported as 

follows: suspending water droplets on the air main flow providing a significant reduction on the sur-

face temperature. The surface temperature decreases about 13.5%, 47%, and 53.2% for a range of wa-

ter droplets concentration (j = 46.79 – 111.68 kg/m2 hr) compared with single-phase air cooling under 

constant Re number. The heat transfer mechanism due to the impacting of water droplets on the sphere 

surface was classified into three important physical regimes. Clear convection heat transfer regime 

corresponds to the dry region (region I). Convection and evaporation regimes correspond to the dry-

out and wet regions (region II and III). Also, the heat transfer coefficient obtained by unsteady and 

steady heat transfer conditions are compared in terms of the corresponding surface temperature of the 

sphere with an average deviation of 7.3%. 
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