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Abstract

We carry out two-dimensional magnetohydrodynamic simulations of an ensemble of Alfvénic fluctuations
propagating in a structured, expanding solar wind including the presence of fast and slow solar wind streams.
Using an appropriate expanding box model, the simulations incorporate the effects of fast–slow stream shear and
compression and rarefaction self-consistently. We investigate the radial and longitudinal evolution of the cross
helicity, the total and residual energies and the power spectra of outward and inward Alfvénic fluctuations. The
stream interaction is found to strongly affect the radial evolution of Alfvénic turbulence. The total energy in the
Alfvén waves is depleted within the velocity shear regions, accompanied by the decrease of the normalized cross
helicity. The presence of stream compression facilitates this process. Residual energy fluctuates around zero due to
the correlation and de-correlation between the inward/outward waves but no net growth or decrease of the residual
energy is observed. The radial power spectra of the inward/outward Alfvén waves show significant longitudinal
variations. Kolmogorov-like spectra are developed only inside the fast and slow streams and when both the
compression and shear are present. On the other hand, the spectra along the longitudinal direction show clear
Kolmogorov-like inertial ranges in all cases.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Alfven waves (23);
Corotating streams (314)

1. Introduction

Turbulence is one of the most important phenomena in
space. Inside the heliosphere, it is believed to be fundamental to
various physical processes such as the heating and acceleration
of the solar corona and wind and the acceleration and
propagation of energetic particles, etc. Thus, understanding
solar wind turbulence has been one of the most crucial tasks in
heliospheric physics and astrophysics as a whole. In addition,
as direct measurements of solar wind accumulate, the wind
itself serves as a laboratory for the study of the fundamental
physics of plasma turbulence.

The study of fluctuations in the solar wind began in the 1960s,
when Coleman (1968), using Mariner 2 data, created the first
frequency spectra of magnetic field energy and showed that they
were power-law compatible with the well-known Kolmogorov
power-law spectrum. Coleman therefore proposed that this
turbulence was created by the differential flow in fast and slow
solar wind streams. Belcher & Davis (1971), by analyzing
Mariner 5 data, showed however that much of the fluctuations
comprising the turbulence, especially those in the fast streams,
have correlations between velocity and the magnetic field
consistent with large amplitude Alfvén waves propagating away
from the Sun, and should therefore be generated somewhere
close to the Sun and propagate outward. A sequence of
theoretical works on the propagation of Alfvén waves were
developed, starting from linear models, both WKB theory (e.g.,
Alazraki & Couturier 1971; Belcher 1971; Hollweg 1974) and
non-WKB theory (e.g., Heinemann & Olbert 1980). However,
whether the Alfvén waves are generated near the Sun or evolve
dynamically in the solar wind was still a problem. In fact one
major progress in the theory of incompressible magnetohydro-
dynamic (MHD) turbulence, namely, dynamical alignment (e.g.,

Dobrowolny et al. 1980), was developed to understand the
dominance of outwardly propagating Alfvénic fluctuations in
the solar wind as a result of an ongoing nonlinear cascade.
In the 1980s, with the Helios data, it was found that the

energy spectra of the turbulence steepen toward the well-
known Kolmogrov’s 5/3 law or Iroshnikov–Kraichnan’s 3/2
law (Iroshnikov 1964; Kraichnan 1965), indicating nonlinear
processes in the evolution of the fluctuations (Bavassano et al.
1982). Meanwhile, MHD turbulence transport models were
developed. For example, Tu et al. (1984) established a WKB-
like Alfvénic turbulence model that reproduces the steepening
of the energy spectrum successfully. However, in this model
the energy of inward propagating Alfvénic fluctuations,
required for a nonlinear cascade, is an input parameter rather
than the self-consistent outcome of the calculation. Thus,
understanding the generation and the propagation of the inward
propagating Alfvén waves is crucial. Roberts et al. (1987a,
1987b) analyzed the Voyager and Helios data and concluded
that the dominance of the outward propagation weakens as the
heliocentric distance increases. They also proposed that the
outward propagating fluctuations are generated near the Sun
but the sheared streams in the solar wind accounts for the
generation of the inward waves. Grappin et al. (1990) and
Marsch & Tu (1990) studied the radial evolution and the
properties of Alfvénic turbulence spectra and their dependence
on various solar wind parameters by analyzing the Helios data
by means of Elsässer variables. Roberts et al. (1992) carried out
2D incompressible MHD simulations with large-scale velocity
shear and isotropic Alfvénic fluctuations. Their results showed
that the velocity shear layer can produce a nonlinear cascade
toward smaller scale fluctuations and the normalized cross
helicity, i.e., the relative abundance of the outward propagating
Alfvén waves, is decreased systematically at all wave numbers
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by the shear, while the kinetic and magnetic energies remain
approximately equipartitioned (see also Goldstein et al. 1989).
In addition to the sheared streams, the inhomogeneity of the
large-scale solar wind structures due to the expansion of the
solar wind leads to reflection of the outward propagating Alfvén
waves and couples the outward and the inward waves linearly,
which may account for the decrease of the “Alfvénicity” (e.g.,
Velli et al. 1991; Velli 1993).

Although analytical modeling of MHD turbulence has been
developed significantly since the 1980s (e.g., Zhou &
Matthaeus 1990; Zank et al. 1996, 2012), limitations still exist
in the models. First, various approximations must be made to
close the moment equations. Whether the closures are
physically correct is important and is often debatable. Second,
all of the existing models deal with incompressible or nearly
incompressible turbulence while compressible effects may be
important in the solar wind, especially in the fast–slow stream
interaction regions. Third, the models are based on the two-
scale separation method and thus the large-scale structure is
not evolved self-consistently. In addition, the source terms
generating the turbulence, e.g., the terms related to the velocity
shear and the compressional effects, are only phenomenologi-
cally derived. Considering the drawbacks of the models, it is
good to adopt the direct numerical simulations as a method to
study the turbulence as the simulation solves the physical
system self-consistently and can be fully compressible.
However, vast computational capacity is required in order to
fully simulate the turbulence evolution inside the heliosphere
due to the huge separation of spatial scales. Compromised
methods were developed, e.g., the expanding box model
(EBM; Grappin & Velli 1996; Tenerani & Velli 2017), which
by tracking a box co-moving with the radial mean flow,
neglecting the high-order curvature terms, allows one to
simulate the nonlinear evolution of the waves and turbulence
and the stream structures with the expansion effect taken into
consideration.

In this work, we carry out 2D MHD simulations based on the
EBM to study the propagation of Alfvén waves and the
evolution of the turbulence in the inner heliosphere. Especially,
we focus on the effects of the evolving fast–slow stream
interaction present in the simulations. The simulation para-
meters are chosen to be close to the real solar wind conditions.
We inspect the radial evolution and the longitudinal variation
of some parameters that are important in the study of MHD
turbulence, i.e., the energy in the Elsässer variables, the
normalized cross helicity, and the normalized residual energy.
We show that all of the parameters are significantly affected by
the velocity shear and the compression between the streams.
We also investigate the power spectra of the Elsässer variables.
The paper is organized as follows. In Section 2, we describe the
numerical method that is used in this study and the setup of the
simulations. In Section 3, we present the simulation results. In
Section 4, we conclude and discuss prospective future works.

2. Numerical Method

In this section we describe the numerical method, i.e., the
corotating EBM, in Sections 2.1 and 2.2 and then present the
initial setup and the choice of parameters in Section 2.3.

2.1. EBM in the Conservation Form

The derivation of the EBM based on the convective form of
the MHD equation has been well described in previous papers
(e.g., Grappin et al. 1993; Grappin & Velli 1996). The idea is to
break the velocity U into two parts: the radial mean flow and
the velocity in the frame of the mean flow:

= +U uU e , 1r0 ˆ ( )

where U0 is the constant radial speed. The simulation domain is
a thin box (small radial extent) co-moving with the mean flow
and the (normalized) expanding coordinate system (x y z, ,˜ ˜ ˜)
transforms from the inertial coordinates by
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Plugging Equation (4) into the MHD equation gives the EBM
equation set
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where κ is the adiabatic index and τ=R(t)/U0 is the
“expansion time.” Equation (5) is very similar to the normal
MHD equation set except for (1) the velocity field is in the
reference frame of the radial mean flow. (2) New terms with the
expansion time τ are introduced by the radial mean flow and
they represent the expansion effect. A more detailed discussion
of the EBM properties can be found in Grappin & Velli (1996).
For the conservation form of the MHD equation, care must

be taken with the expansion terms. The expansion terms for the
density and magnetic field equations remain unchanged as in
Equation (5) but not for the momentum and energy equations.
Take the momentum equation as an example. Because the left-
hand side of the momentum equation can be written as
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the expansion term thus consists of the part that comes from the
velocity equation (Equation 5(b)) and that from the density
equation (Equation 5(a)):
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Similarly, one can show that the expansion term of the energy
equation
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In summary, the EBM equation set in conservation form is
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2.2. Corotating Expanding Box

As explained by Grappin & Velli (1996), in order to simulate
the compression between fast and slow streams, we need to
rotate the expanding box coordinates by a small angle α such
that the new coordinate system ¢x is
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The angle α is constant and is the initial inclination of the
interface between the fast and slow streams with respect to the
radial direction. The initial condition for the stream structure is

r r= ¢ = ¢u u y e y, , 13x0 0 0 0( ) ˆ ( ) ( )˜

i.e., the velocity is along the radial direction but varies with y′
instead of y so that compression is induced. The temperature of
the stream = ¢T T y0 0 ( ) is such that p0=ρ0T0 is uniform.
We should point out that, although the coordinates ¢x are

orthogonal at the beginning, they do not remain orthogonal as
the box expands unless α=0, as illustrated in the left panel of
Figure 1. The black axes show the normal expanding box
coordinates with exˆ aligned with the radial direction and eyˆ
along the azimuthal (j) direction. The solid red axes represent
the initial state of the corotating expanding box coordinates ¢x ,
an orthogonal coordinate system rotated by an angle α with
respect to the radial direction. The red dots represent a few
mesh points in the simulation domain. Due to the expansion
along the j direction, both the ¢exˆ and ¢eyˆ turn away from
the radial axis, as shown by the dashed red axes. That is to say,
the angle between ¢exˆ and ¢eyˆ becomes larger than π/2 after the
simulation starts. A positive aspect of this frame is that if we set
the initial magnetic field to be aligned with ¢exˆ

= ¢ ¢B B y e , 14x0 0( ) ˆ ( )

it will remain aligned with ¢exˆ for all time. Thus, in all the
simulations we set up B0 like in Equation (14) and we call ¢exˆ
the parallel direction hereinafter. Note that, although the axes in
real space are turned away from the radial direction, the wave
vectors are actually turned toward the radial direction (right
panel of Figure 1) due to the increase of the grid spacing in y.
The code operates mainly in the Fourier space ¢ ¢k k,x y( ). A

third-order Runge–Kutta method is used for time integration.
Vectors remain defined in the e e e, ,x y z( ˆ ˆ ˆ )˜ ˜ ˜ directions although
the mesh grid is on ¢ ¢x y,( ). At each time step, fluxes are
calculated in real space first and then Fourier transformed.
Time advance is done in Fourier space and we need the
following projection in order to transform the derivatives on

Figure 1. Illustration of the deformation of the corotating expanding box
coordinates ¢x (left) and the wave vector ¢kx (right). Black axes are the normal
expanding box coordinates (wave vectors) with exˆ (kx

ˆ ) to be radial. The solid
red axes represent the initial state of the corotating coordinates ¢x (wave vectors

¢kx ), which is orthogonal. The red dots represent mesh grid points in the
simulation domain. The dashed red lines are axes ¢exˆ ( ¢k x

ˆ ) and ¢eyˆ ( ¢k y
ˆ ) after the

simulation starts.
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¢ ¢x y,( ) to the derivatives on x y,( ):
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 =B 0· is automatically preserved by this algorithm.
Because we are interested in the evolution of turbulence,
rather than heating or plasma thermodynamics, we apply a
smooth numerical filter to all fields to ensure proper de-aliasing
rather than explicit viscosity or resistivity. The filter is defined
in Fourier space:
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where f is the field before filtering and f̂ is the field after
filtering. The function T(k) is the same as the fourth-order filter
of the compact finite difference scheme (Equations (C.2.2) and
(C.2.4) of Lele 1992) with constraints β=d=0
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where p p p= D Î -w k2 ,[ ] is the normalized wave number
(Δ is the grid spacing) and a=(5+6λ)/8, b=(1+2λ)/2,
c=−(1− 2λ)/8 with λ to be a free parameter in the range
[−0.5, 0.5] (refer to Figure 19 of Lele 1992 for the shape of
T(k)). λ=0.5 corresponds to no filtering at all. In our
simulations we set λ=0.45 such that the numerical stability is
ensured without too much numerical dissipation.

2.3. Initial Setup and Parameters

The initial condition consists of the large-scale stream
structure and the Alfvén waves. As mentioned in Section 2.2,
the stream structure is of the form
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and a uniform magnetic field

¢ =B y B 200 0( ) ( )

in all the simulations. The width of the shear region is
= ¢a L0.075 y with Ly′ to be the size of the simulation domain

along ¢eyˆ . r ru u, , ,s f s f are the speeds and densities for the slow

and fast streams, respectively. For all the runs, the initial
location of the simulation domain is

= =R R30 0.14 au, 21s0 ( )

where Rs is the solar radius and the size of the domain is

p´ = ´¢ ¢L L R R10 , 22x y s 0 ( )

i.e., the domain is a half circle in the ecliptic plane. The initial
spiral angle α, if not zero, is set to be

a = 0.142 23( )

so that at 1 au the spiral angle is around π/4, in accordance
with the observation. The strength of the magnetic field is
B0=250 nT so that at 1 au » »jB B 5 nTr . The densities
of the slow and fast streams are = -n 360 cms

3 and
nf=140 cm−3. The speeds of the slow and fast streams are
us=340 km s−1 and uf=700 km s−1 and the mean radial
speed is U0=464 km s−1. The thermal pressure is p0=5 nPa
so that the temperatures of the slow and fast streams are
Ts=1.0×106 K and Tf=2.6×106 K. The adiabatic index is
κ=3/2 instead of κ=5/3 to prevent the plasma from cooling
down too fast. Note that the radial decay of the temperature
due to expansion obeys µ k- -T R 2 1( ) so that with κ=3/2
the temperatures of the slow and fast streams at 1 au are
Ts=1.4×105 K and Tf=3.6×105 K. The normalization
units are =B 250¯ nT, = -n 200 cm 3¯ and =L Rs¯ , which lead to
the unit speed m= = -U B m n 385.6 km si0

1¯ ¯ ¯ and unit

pressure = =p nm U 49.7 nPa,i
2¯ ¯ ¯ where mi is the proton mass.

We add circularly polarized Alfvénic wave bands on top of
the stream structure:
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Here δb is the amplitude of the magnetic perturbation of the
outward wave, rio is the ratio between the amplitudes of the
inward and outward waves, fN o, and fN i, are the random phases
of the mode N of the outward and inward waves. The slope of
the power spectrum of the wave band is −1. In order to make
sure  =b 01· , b1 is invariant along ¢y and u1 varies with ¢y
due to the nonuniform density. This leads to the inhomogeneity
of the Alfvén wave energy along the y′ direction: the wave
energy is larger in the fast stream than the slow stream. Five 2D
runs are carried out and they are listed in Table 1. By choosing
the parameter δb, the total energies in the waves are invariant
among the runs. We fix Nmax=16 in all the simulations. The
maximum simulation time is t=200, corresponding to a radial
distance R=270.9Rs=1.26 au. The resolution is ´ =¢ ¢n nx y

´2048 4096. In addition, we also make a 1D run ( p=¢L Ry 0
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and =¢n 1024y ) without adding waves to show the evolution
of the stream structure up to R=400Rs.

3. Results

3.1. 1D Run without Waves

In this section we show a 1D test simulation of the stream
structure without adding any waves. This run serves as a test of
the code. For convenience, we refer to ¢ ¢y Ly as the normalized
“longitude” hereinafter although ¢eyˆ is not exactly along the
azimuthal direction eyˆ . Figure 2 shows the radial evolution of
the longitudinal profiles of the radial velocity ux, the azimuthal
velocity uy, the density ρ, the pressure p, and the magnitude
of the magnetic field B∣ ∣ (from top to bottom rows). The
left, middle, and right columns are snapshots at =R R30.0 ,s

R R218.0 , and 401.1 ,s s respectively. At around 1 au (middle
column), a clear compression region already forms. The flows
are deflected away from the interface between fast and slow
streams. The density, pressure, and magnetic field peak around
the compression region. Further out, a forward-backward shock
pair, which bounds the compression region, forms as shown in
the right column. The results, shown in Figure 2, are consistent
with the results of Grappin & Velli (1996) and may be
benchmarked against their Figure 3.

3.2. Diagnostics of the Alfvénic Turbulence

Before presenting the results of the 2D simulations, we first
introduce the diagnostics adopted for the analysis of the
simulation data.
The analysis is mainly based on the perturbed Elsässer

variables zout and zin. The procedure to calculate them is
described as follows. We first calculate the x′ averaged, i.e., the
background, magnetic, and velocity fields:

ò

ò

¢ = ¢ ¢ ¢

¢ = ¢ ¢ ¢
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¢
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¢

B B

u u

y
L

x y dx
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L
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, 25

x

L

x

L

0 0

0 0

x

x

( ) ( )

( ) ( ) ( )

and then the perturbed magnetic and velocity fields:

¢ ¢ = ¢ ¢ - ¢
¢ ¢ = ¢ ¢ - ¢

b B B
u u u

x y x y y

x y x y y

, , ,
, , . 26

1 0

1 0

( ) ( ) ( )
( ) ( ) ( ) ( )

Table 1
Parameters of the 2D Runs

Run Expansion Corotation rio db

A0 N N 0.2 0.2
A Y N 0.2 0.2
B Y Y 0.2 0.2
C Y Y 1.0 0.144
D Y Y 5.0 0.04

Note. Here rio is the ratio between the amplitude of the inward wave band and
the amplitude of the outward wave band. db is the amplitude of the outward
wave band and the five runs have the same total wave energies. If expansion is
present, the radial mean speed U0=1.2. If corotation is present, the initial
spiral angle a = 0.142.

Figure 2. 1D simulation of the large-scale stream structure. From top to bottom, the rows are longitudinal (y′) profiles of the radial velocity, the azimuthal velocity, the
density, the pressure, and the magnitude of magnetic field, respectively. From left to right the columns are snapshots at R=30.0Rs, 218.0Rs, and 401.1Rs.
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The Elsässer variables are then calculated by

r r
= - = +z u

b
z u

b
B Bsign , sign ,

27

x xout 1 0
1

in 1 0
1( ) ( )

( )

where Bsign x0( ) is the sign of the radial background magnetic
field. Note that the density is not x′ averaged but the local
density. We further project the Elsässer variables defined by
Equation (27) into three directions: the out-of-plane direction
eẑ, the parallel-to-B0 direction ¢exˆ , and the in-plane perpend-
icular-to-B0 direction = ´^ ¢e e ez xˆ ˆ ˆ . In the analysis hereinafter,
we only deal with the z-component and the perpendicular
component and exclude the parallel component. At a certain
time t, various energies as functions of y′ are calculated by
integrating along the x′ direction, e.g., the outward Elsässer
energy:

ò¢ = +
¢

^E y t z z,
1

2
. 28

x
zout out,

2
out,
2( ) ( ) ( )

The total energy, the normalized cross helicity, and the
normalized residual energy are then calculated by

s s= + =
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=
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+
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The kinetic and magnetic energies are those in the perturbations u1

and b1 and we do not include the parallel component in
calculating σr. We have verified that including the parallel
component in Eu and Eb does not make a significant difference.
The normalized density perturbation δρ/ρ is the root mean square

value of ρ along x′ divided by the x′-averaged density ρ0:
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Power spectra of zout and zin are calculated along ¢exˆ and ¢eyˆ by
applying the Fourier transform to the z and perpendicular
components of them, e.g., ¢ =¢ ¢E k y t z, , ,z x x zout, out,

2( ) ∣ ( )∣
where ¢x is the Fourier transform in coordinate x′. When we
present the spectra, we further average the spectra along the
non-Fourier-transformed coordinates to eliminate the strong
oscillations. The details of the averaging procedure of the
spectra will be discussed later.

3.3. Run A0: No Corotation, No Expansion, Outward-dominant
Waves

In Run A0, the background fields are radial, i.e., there is no
compression and rarefaction. Besides, the expansion effect is
turned off. The initial condition consists of the outward-
dominant Alfvén wave band. The result of Run A0 is shown in
Figure 3.
The top-left panel shows the y′–t contour of the total Elsässer

energy E E ,T T
0 where E0

T is ET(t=0). The white dashed lines
mark y′, where u0x equals 650 km s−1 and the black dashed
lines mark y′, where u0x equals 400 km s−1 (the same in the
other three contours). We see that the total Elsässer energy ET

at all longitudes decays with time while in the shear region the
energy decays much faster. The right panel of Figure 3 shows
the time evolution of the Elsässer energies of the outward wave
(solid curves) and inward wave (dashed curves) averaged in
different regions bounded by the white and black dashed lines
in the contours, i.e., the fast stream (blue), the slow stream
(orange), the shear region around y′=0.75Ly′ (green), and the

Figure 3. Results of Run A0. The left two columns are the y′–t contours of the total Elsässer energy E E ,T T
0 where E0

T is ET(t=0) (top left), the normalized density
perturbation dr r (top middle), the normalized cross helicity sc (bottom left), and the normalized residual energy σr (bottom middle). White dashed lines mark the
longitudes where the x′-averaged radial speed u0x equals 650 km s−1 and the black dashed lines mark the longitudes where the x′-averaged radial speed u0x equals
400 km s−1. The right panel shows the time evolution of the Elsässer energies in log–log scale where solid/dashed curves are the outward/inward waves and blue,
orange, green, and brown represent fast stream (“f”), slow stream (“s”), shear region around ¢ = ¢y L0.75 ,y and shear region around ¢ = ¢y L0.25 y . The black dotted line
is µ -E t 1 for reference.
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shear region around ¢ = ¢y L0.25 y (brown). The black dotted
line is µ -E t 1 for reference. The evolution of the wave
energies inside the fast and slow streams is similar: the outward
wave energy decays with time at a rate slower than t−1 and the
inward wave energy increases with time slightly. Inside the
shear regions, the outward wave energy decays slower than t−1

first and the decay rate is similar to that of the outward wave
inside the fast/slow streams. However, after some time (t 
100 in the shear region around ¢ = ¢y L0.75 y and t  70 in the
shear region around ¢ = ¢y L0.25 y ) the wave energy starts to
drop very fast. The inward wave energy grows slowly at the
beginning, followed by a drop at t≈30, and then starts to
grow again in the two shear regions. Note that in the shear
region at ¢ » ¢y L0.75 y , the drop of the inward wave energy
is stronger than that in the shear region at ¢ » ¢y L0.25 y . Here
we must point out that the initial configuration, although
symmetric in y′, does not evolve symmetrically because the y′
gradients of the background fields are of opposite signs, while
the initial perturbations along y′ (e.g., ¢u y1 ) do not change sign
at the two shear regions. This, for example, will lead to an
increase of ρ at one shear region and a decrease of ρ at the
other one.

The top-middle panel of Figure 3 shows the y′–t contour of
the relative density fluctuation δρ/ρ. The value of δρ/ρ remains
small (0.2) throughout the simulation. The largest density
fluctuation δρ is found to be inside the slow stream near
the boundaries of the shear regions, as can be seen from the
contour. The bottom-left panel displays the y′–t contour of
the normalized cross helicity σc, which decays with distance in
all the flow regions. The decay rate is largest inside the shear
region at ¢ » ¢y L0.25 ,y where σc almost reaches −1 at the end
of the simulation. This can also be seen from the right column
of Figure 3, which shows that the outward Elsässer energy is
one order of magnitude smaller than the inward energy in the
shear region at ¢ » ¢y L0.25 y at the end of the simulation. A
notable phenomenon is the striped structures in the contour of
σc, showing that σc decays much faster within some narrow
channels in y′ compared to the ambient streams. The evolution
of σc we find is very similar to that in the incompressible
simulation by Roberts et al. (1992) (see their Figure 12). The
bottom-middle panel shows the y′–t contour of the normalized

residual energy σr. Strong oscillations are observed. On
average σr is 0, but the instant amplitude can be as large as
;1. The oscillation of σr is strongest inside the shear regions
due to the large longitudinal gradient of the relative speed
between the counter-propagating waves. A trend of increasing
of sr∣ ∣ in some regions, e.g., the fast stream and the shear
regions, is also seen. This is because of the decrease of sc∣ ∣: if
σc=0 , the inward and outward waves are of the same
amplitude and thus sr∣ ∣ will be equal to 1 if the two populations
of waves are non-correlated. Actually, we can see that at
¢ » ¢y L0.25 y , sr∣ ∣ increases at t  150 and then starts to drop,
which is anticorrelated with sc∣ ∣.

3.4. Run A: No Corotation, Expansion, Outward-dominant
Waves

In this subsection, we present the results of Run A (α=0,
rio=0.2 and δb=0.2), where the compression between the
fast and slow streams is absent but the expansion effect is
turned on.
Figure 4 shows the contours of the out-of-plane component

of the outward Elsässer variable zout,z at three radial distances:
=R R R R30.0 , 107.1 , and 217.9s s s From Figure 4, it can be

clearly seen that the differential radial flow leads to the phase
mixing of the Alfvén waves, the wave vector of which is tilted
from ¢exˆ toward ¢eyˆ . The strongest phase mixing happens in the
regions where the velocity shear is the largest (around
¢ = ¢y L0.75 y and ¢ = ¢y L0.25 y ). The dissipation of waves is
observed at these regions since the phase mixing transfers the
wave energy to small scales where the numerical dissipation is
strong. For other Elsässer variables, i.e., ^zout, , z zin, , and ^zin, , a
similar evolution is also observed.
Figure 5 displays the y′–R contours of the total Elsässer

energy E ET T
0 compensated by R R ,0 where ET

0 is ET at t=0
(top left), the relative density fluctuation dr r (top right), the
normalized cross helicity σc (bottom left), and the normalized
residual energy σr (bottom right), similar to Figure 3 but note
that the y-axis is now radial distance instead of time. The white
dashed lines mark y′(R) where the x′-averaged radial speed u0x
equals 650 km s−1 and the black dashed lines mark y′(R), where
u0x equals 400 km s−1. The decay of ET is in general faster than
1/R, the WKB prediction of the Alfvén waves in the spherical

Figure 4. Contours of the z-component of the outward Elsässer variable z zout, at =R R R R30.0 , 107.1 , and 217.9s s s in Run A.
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geometry (Belcher 1971). Similar to Run A0, it clearly shows a
longitudinal variation: inside the fast and slow streams, the
decay is slower than in the shear regions. The relative density
fluctuation δρ/ρ is smaller than 0.2 most of the time and it is
smaller inside the shear regions compared with the fast and
slow streams. It is also observed that some density structures
are generated near the boundaries between the shear regions
and the slow stream and propagate along the y′ direction. The
most significant one starts at R≈60Rs and ¢ » ¢y L0.8 y , with
amplitude dr r » 0.35. Note that in Run A0 we also observe
that the density fluctuation is largest near the boundary between
the shear region and the slow stream.

It is known from the observations that the normalized cross
helicity decreases with radial distance (e.g., Roberts et al.
1987a, 1987b). The possible mechanisms for the decrease
include the generation of inward Alfvén waves due to the
velocity shears and the faster decay of outward Alfvén waves
with distance compared with the inward waves (Bruno &
Bavassano 1991). In Run A0 we already see that the velocity
shear leads to the drop of σc. From Figure 5, we confirm that σc
drops with radial distance inside the shear regions, especially
near the boundaries of the fast stream. It decreases to values of
around 0.7–0.8 within 100Rs and then decreases slowly to
around 0.5–0.6 until the end of the simulation R=270.9Rs. In
the fast and slow streams, σc remains almost constant around
the initial value 0.92. Compared with Run A0, the contour of σc
is quite smooth and no stripe-like structures are formed,
indicating that the expansion effect slows down the evolution
of the wave energies. Last, we look at the residual energy
shown in the bottom-right panel. Similar to Run A0, the
normalized residual energy fluctuates around 0 and no
systematic growth of σr is observed. However, the oscillation
of σr is much weaker in Run A than in Run A0 because the
expansion reduces the Alfvén speed so that the relative speed
between the outward and inward waves goes down with radial
distance.

Figure 6 shows the power spectra of the Elsässer variables
along the parallel direction ¢exˆ (in this run it is aligned with

the radial direction) at (a) R=107.1Rs≈0.5 au and (b)
R=217.9Rs≈1 au. Again we divide the domain into four
regions: the fast stream, the slow stream, and the two shear
regions (in Runs B–D they are the compression/rarefaction
regions). The spectra in different regions are displayed in four
subplots at each time. The shear region plotted in the top row is
the one at y′≈0.75Ly′. The spectra are averaged in y′ inside
each region and are multiplied by ¢kx

5 3. The blue and orange
solid curves are the z and ⊥ components of the outward Alfvén
waves and the dashed curves are of the inward waves. Inside
the shear regions, the wave energies are strongly damped and
inertial ranges are not observed in the spectra and as the radial
distance increases, the spectra are eroded rapidly. In the fast
and slow streams, the spectra behave similarly and are more
stable compared with the shear regions. Especially, zout shows
clear three-segment spectra: the large scales with ¢ k R 1x s , the
intermediate scales with ¢ k R1 20 30,x s – and the small
scales that are dominated by the numerical dissipation. At 0.5 au,
the large scales show slopes close to −5/3 in both the fast
and slow streams, while at 1 au the large-scale part of the zout

spectrum in the fast stream is eroded by the intermediate-scale
part and steepening of the spectrum is observed.
Figure 7 shows the power spectra of the Elsässer variables

along the ¢eyˆ direction at four radial distances: R=30.0Rs,
107.1Rs, 217.9Rs, and 270.9Rs. The wave number ky′ is defined
by the normalized y′, i.e., ¢ ¢y Ly , so that Î¢ ¢k n0, 2y y[ ].
The blue and orange lines are the z and ⊥ components of
the outward Alfvén wave and the dashed lines are those of the
inward Alfvén wave. The spectra are averaged in x′ and
multiplied by ¢ky

5 3. At R=30.0Rs, i.e., the initial state, the
curves for z-components are covered by those of ⊥-compo-
nents as the initial wave band is circularly polarized. A
Kolmogorov-like inertial range that spans about one decade
forms at 0.5 au for all the wave components. It is maintained
throughout the simulation for ^Eout, and ^Ein, . But for E zin,

the inertial range shortens with radial distance and for E zout, the
inertial range becomes shallower than ¢

-ky
5 3 at 1 au. This

Figure 5. y′–R contours of the total Elsässer energy E ET T
0 compensated by R R ,0 where E0

T is =E t 0T ( ) (top left), the normalized density perturbation dr r (top
right), the normalized cross helicity sc (bottom left), and the normalized residual energy sr (bottom right) for Run A. White dashed lines mark the longitudes where the
¢x -averaged radial speed u0x equals 650 km s−1 and black dashed lines mark the longitudes where the ¢x -averaged radial speed u0x equals 400 km s−1.
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asymmetry between the ⊥-component and the z-component is
due to the uniformity in the z-direction, which rules out the
nonlinear interaction between the waves along eẑ.

3.5. Run B: Corotation, Expansion, Outward-dominant Waves

In this section we present the results of Run B (α=0.142,
rio=0.2, and δb=0.2). This run has the most realistic setup:
expansion, velocity shear, and compression/rarefaction are all
present and the initial perturbations are outward-dominant
Alfvén waves.

Figure 8 is a plot similar to that in Figure 5 for Run B. From
top left to bottom right are the corrected total Elsässer energy

´E E R RT T
0 0( ), the normalized density fluctuation, the

normalized cross helicity, and the normalized residual energy.
The white and black dashed lines mark = -u 650 km sx0

1 and
u0x=400 km s−1, respectively. Similar to Run A, the total
energy decays faster than the WKB prediction R−1. However,
in the fast and slow streams, the radial decay of ET is
significantly faster in Run B than in Run A. Besides, in Run B,
beyond R≈200Rs, a narrow band inside the compression
region forms at ¢ » ¢y L0.75 y , where the wave energy is much

Figure 6. Power spectra of the Elsässer variables in Run A at (a) =R R107.1 s and (b) =R R217.9 s averaged in different regions: fast stream (top left), slow stream
(bottom left), shear region at ¢ = ¢y L0.75 y (top right), and shear region at ¢ = ¢y L0.25 y (bottom right). The spectra are calculated along the parallel direction ¢exˆ . Blue
and orange solid lines are the z-component and in-plane perpendicular-to-B0 component of the outward Alfvén wave. Blue and orange dashed lines are the two
components of the inward Alfvén wave. The spectra are multiplied by ¢kx

5 3.
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more damped compared with the shear regions in Run A. This
might be due to the fact that the compression between the fast
and slow streams steepens the velocity profile, enlarging the
velocity shear. δρ/ρ and σr do not show significant differences
between Run A and Run B. Similar to Run A, the decrease of
σc is more significant in the compression and rarefaction
regions than inside the fast and slow streams. In the rarefaction
region, mainly in the trailing edge of the fast stream, σc drops
to around 0.6 very soon at R≈80Rs and remains around this

value until the end of the simulation. In the compression
region, however, σc remains relatively large (>0.5) for a long
time followed by a fast drop beyond R≈1 au and reaches
around −0.7 at the end of the simulation R=270.9Rs. The
drop of σc coincides with the drop of ET in the compression
region (see the top-left panel). In the fast and slow streams, σc
decreases with distance more slowly, from the initial value of
0.92 to ∼0.7–0.8 at 1 au. Note that in Run A, σc remains almost
constant around the initial value 0.92 inside the fast and slow

Figure 7. Power spectra of the Elsässer variables calculated along ¢eyˆ and averaged in ¢x in Run A. From top left to bottom right the power spectra are at
=R R R R R30.0 , 107.1 , 217.9 , and 270.9s s s s respectively. The blue and orange solid lines represent the z-component and in-plane perpendicular-to-B0 component of

the outward Alfvén wave. Blue and orange dashed lines are the two components of the inward Alfvén wave. The spectra are multiplied by ¢ky
5 3.

Figure 8. y′–R contours of the total Elsässer energy E ET T
0 compensated by R R ,0 where E0

T is =E t 0T ( ) (top left), the normalized density perturbation dr r (top
right), the normalized cross helicity sc (bottom left), and the normalized residual energy sr (bottom right) for Run B. White dashed lines mark the longitudes where the
¢x -averaged radial speed u0x equals 650 km s−1 and black dashed lines mark the longitudes where the ¢x -averaged radial speed u0x equals 400 km s−1.
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streams, i.e., the velocity shear only reduces the normalized
cross helicity locally in the shear regions. Thus, the compres-
sion between the fast and slow streams might play an important
role in the radial evolution of σc. It not only speeds up the drop
of σc in the compression region but also speeds up the decrease
of σc inside the fast and slow streams by steepening the
velocity profile at all longitudes.

Figure 9 shows the ¢kx
5 3-corrected power spectra of zout and

zin in fast stream, slow stream, the compression region, and
the rarefaction region at =R R107.1 s and =R R217.9 s. By
comparing Figures 9 and 6, several differences are observed.

First, inside the compression and rarefaction regions (shear
regions in Run A), the Elsässer energies are damped in both
runs but in Run B the damping is weaker than Run A.
Especially, in Run B the wave energy decays with kx′ much
slower, indicating that the compression and rarefaction transfer
energy from large scales to small scales effectively. Second, in
Run B, we also observe an asymmetry between the compres-
sion and rarefaction regions: at high-kx′ ranges ( ¢ k R 1x s ), the
inward wave energy dominates in the rarefaction region while
in the compression region the outward wave energy dominates.
Third, inside the fast and slow streams, the evolution of the

Figure 9. Power spectra of the Elsässer variables in Run B at (a) =R R107.1 s and (b) =R R217.9 s averaged in different regions: fast stream (top left), slow stream
(bottom left), compression region (top right), and rarefaction region (bottom right). The spectra are calculated along the parallel direction ¢exˆ . The blue and orange
solid lines represent the z-component and in-plane perpendicular-to-B0 component of the outward Alfvén wave. The blue and orange dashed lines represent the two
components of the inward Alfvén wave. The spectra are multiplied by ¢kx

5 3.
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spectra is different in Run B compared with Run A. At
=R R107.1 s, the inward waves show −5/3 spectra over a

substantial range of kx′ but the outward waves show spectra
steeper than ¢

-kx
5 3. During the evolution toward 1 au, the

spectra of zin steepen while the spectra of zout develop a
Kolmogorov-like inertial range as seen in plot (b) of Figure 9.
The span of the inertial range in the fast stream is larger than
that in the slow stream.

Figure 10 is the x′-averaged y′-spectra of zout and zin corrected
by ¢ky

5 3 in Run B. At R=107.1Rs the Kolmogorov-type inertial

range is well established for both outward and inward waves.
Different from Run A, the shape of the spectra is only slightly
changed throughout the simulation in this run.

3.6. Run C and Run D

Run C and Run D have both corotation and expansion turned
on, similar to Run B, but have =r 1io and =r 5io , respectively.
They are carried out to show how the inward and outward
waves evolve differently when their amplitudes change.

Figure 10. Power spectra of the Elsässer variables calculated along ¢eyˆ and averaged in ¢x in Run B. From top left to bottom right the power spectra are at
=R R R R R30.0 , 107.1 , 217.9 , and 270.9s s s s respectively. The blue and orange solid lines represent the z-component and in-plane perpendicular-to-B0 component of

the outward Alfvén wave. The blue and orange dashed lines represent the two components of the inward Alfvén wave. The spectra are multiplied by ¢ky
5 3.

Figure 11. Parallel power spectra multiplied by ¢kx
5 3 of Elsässer variables inside the fast (top row) and slow streams (bottom row) at R217.9 s for Run B (left column),

C (middle column), and D (right column). The blue and orange solid lines represent the z-component and in-plane perpendicular component of the outward Alfvén
wave. The blue and orange dashed lines represent the two components of the inward Alfvén wave.
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Figure 11 compares the ¢kx
5 3-corrected parallel power spectra

of the Elsässer variables inside the fast and slow streams at
R217.9 s for Runs B–D. For Run C and Run D, the spectra

inside the slow stream show inertial ranges steeper than ¢
-kx

5 3.
Inside the fast stream, Run D shows a short Kolmogorov-like
range at ~¢k R 1 4x s – for Ein, while Run C shows a shorter one
in E zout, and E zin, . Note that in Run B, clear Kolmogorov-like
inertial ranges are observed in Eout spectra inside both fast and
slow streams. In other words, in order to get Kolmogorov-like
parallel spectra, the outward-dominant initial condition is
preferred to the balanced and the inward-dominant ones.
However, as shown in Figure 12, the ky′ spectra at R217.9 s are
similar for Runs B, C, and D as clear ¢

-ky
5 3 inertial ranges are

observed in all three runs.
We then inspect the radial evolution of Eout and Ein inside

different regions for Runs A–D and the results are shown in
Figure 13. The energies are corrected by R/R0 and the plot is
log–log scale. Solid and dashed curves are Eout and Ein,
respectively. Colors represent different regions as shown in the
legend and described in the caption where the subscripts “f,”
“s,” “c,” and “r” represent the fast stream, slow stream,
compression region, and rarefaction region, respectively. For
Run C, we multiply the energies in the four regions by different
factors, as shown in the plot, in order to separate the overlapped
curves and make the plot more readable. The energies are
calculated by averaging z1

2
2∣ ∣ over different regions at each

time. We first compare Run A and Run B. These two runs are
both outward dominant but Run A lacks the compression and
rarefaction between streams. Compared with Run B, in Run A
Eout decays much slower inside the fast and slow streams but
faster inside the shear regions, i.e., the compression effect
speeds up the dissipation of the outward waves in the regions
without large velocity gradients but it slows down the
dissipation inside the regions with large velocity gradients.
The evolution of Ein inside the fast and slow streams does not
show significant differences between Run A and Run B and
approximately follow the R−1 WKB prediction. But in the
shear regions Ein, similar to Eout, decays faster in Run A than
Run B. Then we compare Run C with Run B. In Run C the
initial condition consists of balanced outward/inward waves
instead of outward-dominant waves. By comparing the blue
and orange curves in panel Run C, we see that the evolution of
Eout and Ein is very similar to each other inside the fast and
slow streams and the decay rates are similar to those of Eout in
Run B. Inside the rarefaction region, the inward waves decay

much slower than the outward waves. Compared to Run B, Ein

shows a slower decay rate, while Eout has a similar decay rate.
In the compression region, both Ein and Eout show similar
evolution as in Run B: a decay followed by a plateau or even an
increase. Last, we inspect Run D where the initial condition is
an inward-dominant wave band, inverse to Run B. Inside the
fast stream and the slow stream, Ein in Run D evolves similarly
with Eout in Run B. Eout grows at the beginning and then decays
with R, similar to Ein in Run B, but its growth and decay are
stronger. Consistent with Run C, this result shows that when
the wave amplitude is large enough, its radial evolution inside
the fast and slow streams is not affected by the direction of
the propagation. It is likely that there is some mechanism
that generates/depletes small-amplitude waves and it works
differently for outward and inward waves. In the compression
region, Ein in Run D evolves similar with Eout in Run B and
Eout in Run D decreases to a smaller level compared with Ein

in Run B, although both of them reach a plateau beyond
R≈102Rs. In the rarefaction region, Ein in Run D has a decay
rate similar to that in Run C, i.e., slower than that in Run B.
On the other hand, Eout in Runs B, C, and D show a very close
decay rate beyond R≈102Rs, indicating that the decay of Eout

in the rarefaction region is not affected by the wave amplitude
significantly.
To summarize the above paragraph, we list the major

findings from Figure 13 below: (1) the radial decrease of the
wave amplitude is faster than the WKB prediction when the
amplitude is large but gets closer to the WKB prediction when
the amplitude is small, especially inside the fast and slow
streams where the velocity shear is small. (2) The compression
between fast and slow streams speeds up the dissipation of
the waves inside the fast and slow streams but slows down the
dissipation inside the compression and rarefaction regions.
(3) Inside the fast and slow streams, the outward and inward
waves do not show significant differences: the radial evolution
of their energies are controlled mainly by their amplitudes
instead of the propagation directions. (4) In the compression
region, the outward wave decays faster than the inward wave
but both of them decay slower as the radial distance increases.
(5) Inside the rarefaction region, the outward and inward waves
show strong asymmetry. The radial decay of the outward wave
is in general faster than the inward wave and is not affected
by the wave amplitude significantly. The decay of the inward
wave energy, on the contrary, is modulated by the wave
amplitude: the larger the wave amplitude is, the slower Ein

decreases with distance.

Figure 12. Power spectra of Elsässer variables calculated along ¢eyˆ averaged in ¢x at R217.9 s for Run B (left), C (middle), and D (right). Blue and orange solid lines are
the z-component and in-plane perpendicular component of the outward Alfvén wave.The blue and orange dashed lines represent the two components of the inward
Alfvén wave. The spectra are multiplied by ¢ky

5 3.
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4. Conclusion

In this paper, we use the corotating EBM (2D version) to
simulate the propagation of Alfvén waves and turbulence in
solar wind. The large-scale stream interactions, including shear,
compression, and rarefaction, are evolved self-consistently.
The simulation parameters are chosen to be close to the realistic
solar wind. We find that the Elsässer energies are depleted in
the strong-shear regions due to phase mixing, accompanied by
a decrease of the normalized cross helicity. This process is
greatly enhanced by the compression between fast and slow
streams. The generated density fluctuations are overall small
(dr r  0.2 on average) and there are high-density structures
born near the boundaries between the shear regions and the
slow streams. The normalized residual energy fluctuates around
zero due to the correlation and de-correlation between the
outward and inward waves but no net growth or decrease of it
is observed, contrary to the solar wind observations, which
show a prevailing excess of magnetic energy (e.g., Roberts
et al. 1987b; Chen et al. 2013). The parallel spectra of the

Elässer variables show Kolmogorov-like inertial ranges only
inside the fast and slow streams and when the shear and
compression between streams are present. Besides, the out-
ward-dominant wave band is preferred. Otherwise, the parallel
spectra are in general steeper than k−5/3. On the other hand, the
perpendicular, or more precisely the quasi-longitudinal, spectra
show Kolmogorov-like inertial ranges in all the runs carried
out, no matter whether the compression between streams is
present and how the initial wave band is configured. Since the
Alfvénic fluctuations are in the perpendicular-to-B0 direction, it
is reasonable to expect that the spectra are more developed in
this direction (plane). The radial evolution of the Elässer
energies shows significant longitudinal dependence, symme-
try/asymmetry between the outward and inward waves and the
wave-amplitude dependence.
In the present paper we have allowed for a large-scale stream

structure, but we have not included the corresponding sector
structure with heliospheric current sheet. The heliospheric
current sheet is known to be embedded inside the slow wind, at

Figure 13. Radial evolution of the Elsässer energies Eout (solid curves) and Ein (dashed curves) in different regions. The energies are corrected by R R0. From the top-
left to bottom-right panels are Runs A–D, respectively. The plot is in log–log scale. Blue, orange, green, and brown represent fast stream (“f”), slow stream (“s”),
compression region (“c”), and rarefaction region (“r”). For Run A the compression and the rarefaction regions are the two shear regions around ¢ = ¢y L0.75 y and
¢ = ¢y L0.25 ,y respectively. For Run C we multiply the energies in the four regions by different factors as shown in the plot in order to separate the overlapped curves.
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least at solar minimum (Smith 2001), and the corresponding
magnetic shears might modify the conclusions reached above.
Current sheets themselves might evolve dynamically and
interact with a turbulence in a nontrivial way, as in the region
where the magnetic field changes sign, the magnetic field
velocity field correlation for outwardly propagating Alfvénic
fluctuations must also change sign, leaving a region with little
correlation and probably a strong magnetic excess in between.
Furthermore, fully three-dimensional simulations need to be
carried out for a more realistic solar wind configuration. Third,
since the Parker Solar Probe will provide observations at
locations from R∼10Rs to R  200Rs, it is good to use the
data to study the radial evolution of the Alfvénic turbulence in
the inner heliosphere in the future.
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