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1.  Introduction

The development of new biosensing devices and their appli-
cation to the detection of different types of biomolecules has 
been a remarkably dynamic field in recent years (Fan et  al 
2008, Sang et al 2015, Zancheta et al 2017). The biosensors 
selectively recognize that a certain molecule causes a mea-
surable response. This response has a mathematical relation-
ship with the concentration of the biomolecule that we call the 

calibration curve or calibration function (see the International 
Vocabulary of Metrology (VIM) JCGM/BIPM 2012, defini-
tion 4.13 and Barwick and Prichard 2011, section 2.2). The 
calibration curve relates the target molecule concentration c to 
some measurable physical property y (see figure 1). Most of 
the works in this field published in scientific journals or con-
ferences have in common the realization of an immunoassay, 
which consists of testing the response of the device to dif-
ferent concentrations of the molecule that has to be detected 
throughout its working range. With these experimental mea-
surements, a calibration curve can be inferred by adjusting 
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that the lack of repeatability is not always the most important contribution to the LoD. The 
final expression of the LoD is equivalent to that of the expanded uncertainty (for a coverage 
probability of 99.9%) assigned to the concentration when c ∼= 0. This result permits seeing the 
LoD as the smallest concentration c measured with the device, whereby uncertainty interval 
[c − U99.9% (c) , c + U99.9%(c)] does not include negative values.
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different mathematical functions to the data set. Once the 
calibration curve is known, it can be used to relate the signal 
to the concentration, but not only that; the experimental data 
used to obtain it determines the uncertainty that we will attri-
bute to the measured concentrations, the limits of detection 
(LoD) and quantification (LoQ). This method of determining 
the LoD is called the Method Detection Limit, as opposed to 
the Instrument Detection Limit that is based on the repetition 
of null or very low concentration measurements (Magnusson 
et al 2014 section 6.2.1).

The LoD is one of the parameters used to define the quality 
of the sensor device and, in this way, to be able to compare dif-
ferent techniques. By analyzing the scientific literature in this 
field, we have observed that the way to calculate the LoD is 
not uniform. We believe that the cause may be that, although 
different international organizations (IUPAC, Eurachem, ISO, 
etc.) perfectly define the procedures to be used in the analysis 
of all types of experiments (ISO 1997, IUPAC 1997, Barwick 
et al 2011, Magnusson et al 2014), this information is spread 
and sometimes not accessible or difficult to understand for 
non-specialists. Our group has recently published a paper 
where the objective was to help standardize the determina-
tion of uncertainty and the limit of detection (LoD) in label-
free biosensors (Lavín et al 2018). This work established and 
clarified a simple procedure, based on the recommendations 
of international organizations, in which, from the data of an 
immunoassay, a linear calibration curve for the device was 
determined, as well as an estimation of the expected uncer-
tainty at every point of the calibration line. The value of the 
LoD derived naturally in this model as the limit at which the 
uncertainty tends when the concentration tends to zero. This 
work adds to valuable previous attempts to clarify the pro-
cedures for obtaining the LoD and point out some common 
mistakes (Look et al 2012, Evard et al 2016).

In the current work, a more general metrological model is 
presented. The model starts from a general calibration curve 
that fits the data. The calibration curve can be polynomial of 
degree one or greater; or can be sigmoidal or logistic. Even 
other types of calibration curves can be considered: rational 
functions, logarithmic, exponential, etc (Sit et  al 1994). 
Starting from the parameters that determine the calibration 

curves and their uncertainty, the concentration uncertainty 
throughout its working range is obtained, as well as the crit-
ical value (CCα) and the LoD (CCβ, LoD).

Figure 1 shows the relationships between the responses or 
signals (yα, yβ) measured in a particular biosensor and the 
concentration values mentioned above: CCα and CCβ. The 
critical value is an essential concept for defining the detec-
tion limit of the method. If we look at the ordinate axis of 
figure 1 we can define the response for the critical concentra-
tion as the response y α, the exceeding of which leads, for a 
given error probability α, to the decision that the concentra-
tion is not zero when measuring a measurand without an ana-
lyte (false positive). The probability density function (PDF) 
corresponding to the sensor response for a measurand without 
an analyte (c = 0) is the red curve. The mean value of this 
red PDF is y0. Similarly, the LoD is the concentration whose 
response produces a PDF (plotted with a blue line), with mean 
value equal to y β, in which the probability of obtaining a value 
below the critical one y α is β (false negative). The values of 
the responses associated with the critical value, y α, and the 
LoD, y β, correspond to the critical concentration, CCα, and 
the LoD, CCβ through the calibration curve (ISO 1997, Currie 
1999, Barwick et al 2011). We are following definition 4.18 
included in the VIM (JCGM/BIPM 2012).

Following the IUPAC definition, the LoD, expressed as con-
centration CCβ, is derived from the smallest measure y β, which 
can be detected with reasonable certainty for a given analyt-
ical procedure (IUPAC 1997, Magnusson 2014). If we assume 
Gaussian probability distributions of standard deviation σ for 
all our measurements in the vicinity of c = 0, and 5% as a 
reasonable probability of false positive α and false negative 
β, as IUPAC recommend, then yα − y0 = kασ ∼= 1.65σ and 
yβ − yα = kβσ ∼= 1.65σ, which leads us to yβ − y0 ∼= 3.3σ. 
For a linear calibration curve with sensitivity, a, in which the 
uncertainty of its parameters is negligible (Long 1983, Currie 
1995), we could use the following expression for the calcul
ation of CCβ:

CCβ = 3.3
σ

a� (1)

The above formula or similar expressions are widely used 
in determining the LoD and, in most cases, would provide a 
fair value. However, we consider that it is important to reflect 
critically on the situations in which we apply it. The following 
section presents a more general metrological model that takes 
into account some sources of uncertainty that affect the deter-
mination of the LoD.

2.  From calibration curve to uncertainty and limit of 
detection (LoD)

Let us consider, as the starting point, that a calibration curve 
has been previously fitted. The process of determining this 
calibration curve is out of the scope of this work, but it will 
be admitted that the parameters ai defining that the curves are 
known, as well as their uncertainties u(ai) and correlation 
coefficients r(ai, aj). It should be emphasized that these corre-
lation coefficients are very important because the correlation 

Figure 1.  Relationships between measured responses y 0, y α, y β, 
probabilities of false positive (α), false negative (β), critical value 
(CCα) and LoD (CCβ).
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between ai parameters is not negligible; in contrast, this cor-
relation is usually very strong.

The most common calibration curves in the field of biosen-
sors for adjusting immunoassays are shown below: y repre-
sents the output signal provided by the sensor and lower case 
c is the concentration of the analyte that is being measured:

Linear:

y (c) = a · c + b = a1 + a2 · c� (2)

Polynomial:

y(c) = a1 + a2 · c + · · ·+ an · cn−1� (3)

Sigmoidal (4-parameter or 5-parameter logistic function) 
(Findlay and Dillard 2007, Xiang et al 2018). For example, 
the 5PL would be:

y = D +
A − D

[1 + ( c
C )

B
]
G = a4 +

a1 − a4

[1 + ( c
a3
)

a2 ]
a5� (4)

Generalized logistic function (6-parameters) (Richards 
1959):

y = A +
K − A

[C + Qe−Bc]
1
ν

= a4 +
a1 − a4

[a5 + a3e−a2c]
1/a6� (5)

No matter the type of calibration curve chosen, this could 
be expressed as follows:

y = f (c, a1, a2, · · · , an)� (6)

In our metrological model, the estimated value for y , sup-
posing we have an estimation for the concentration c as it 
happens during the calibration process, is obtained adding the 
following corrections to the previous estimation of the cali-
bration curve:

	 •	�δyR due to sensor/instrument resolution.
	 •	�δyr  due to sensor/instrument repeatability sr. If heteroce-

dasticity is significant, a function sr = sr(c) is assumed to 
be known.

	 •	�δyres due to other uncertainty sources (environment, 
reproducibility, drift, bias, stability, etc…) with uncer-
tainty u(δyres) = ures.

It would be supposed that all these corrections have null 
mean but, probably, not null uncertainties u(δyi).

Thus, the model function used to estimate uncertainty 
during the calibration according to ISO-GUM (JCGM 2008a) 
is the following:

y = f (c, a1, a2, · · · , an) + δyR + δyr + δyres� (8)

Propagating uncertainties using the mainstream GUM pro-
cedure (JCGM 2008a, Ellison et al 2012) in this model func-
tion gives the following result (expression 9):

u2
y = u2 (y) = u2

f (y) +
R2

12
+

s2
r

N
+ u2

res

�

(9)

where u2
f (y) =

∑n

i=1
f 2
i u2(ai) + 2

∑n−1

i=1

∑n

j=i+1
fifj · r(ai, aj) · u(ai)u(aj)

where we have used the standard deviation of the mean 
u (δyr) = sr/

√
N  for the estimation of the uncertainty associ-

ated with the lack of repeatability where N is the number of 
repeated measures; the expression u (δyR) = uR = R/

√
12  for 

the uncertainty component associated with the resolution R of 
our measuring system assuming a uniform distribution along 
the interval [−R/2,+R/2] (JCGM 2008a, Ellison et al 2012); 
parameters fi are the sensitivity coefficients fi = ∂f/∂ai and 
uf (y) represent the uncertainty component due to the calibra-
tion. Please note that correlation coefficients r(ai, aj) have to 
be taken into account because they are generally not null as 
we will show during the numerical example.

In the linear case (expression 2) we obtain:

u2
y = u2 (y) = u2 (b) + c2 · u2 (a)

+ 2c · r (a, b) · u (a) u (b) +
R2

12
+

s2
r

N
+ u2

res

�

(10)

At c = 0, y0 = f (c = 0) and the uncertainty of the signal 
output is:

u2 (y0) = u2 (b) +
R2

12
+

s2
r

N
+ u2

res� (11)

The critical value CCα can be calculated as follows:

yα = y0 + kα · u(y0) and CCα = f−1(yα)

In a similar way, the LoD concentration (cLoD = CCβ) can 
be estimated using the following formula:

yα = yβ − kβ · u(yβ) and cLoD = CCβ = f−1(yβ)

In the general case, evaluating CCβ = f−1(yβ) could be 
cumbersome. But the distance between y0 and yβ is usually 
small enough to permit the linearization of the calibration 
curve in this interval. So, it would be possible to replace 
the original non-linear calibration curve with the linearized 
version, y(c) = a · c + b being a = ∂f/∂c at c = 0 and 
b = f (c = 0) = y0,  where a is the slope of the calibration 
curve (the sensitivity) in the vicinity of the zero concentra-
tion and b the value of the calibration curve at zero concen-
tration. Using this approximated linear calibration curve we 
obtain:

yα = b + kα · u(y0)

yβ = yα + kβ · u (yβ) = b + kα · u(y0) + kβ · u (yβ)

CCβ = f−1 (yβ) =
yβ − b

a
=

kα · u(y0) + kβ · u (yβ)
a

As yβ is assumed to be close to y0, then it is possible to 
approximate u(yβ) ∼= u(y0) and taking into account that 
kα = kβ ∼= 1.65, we obtain the following expression (12):

cLoD = CCβ = 3.30
u(y0)

a
= 3.30

»
u2 (b) + R2

12 +
s2

r
N + u2

res

a
� (12)
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where u (b) is the only uncertainty component coming from 
calibration. Special care must be taken to avoid forgetting 
other uncertainty sources: resolution, repeatability and others 
included in ures (environment, reproducibility, stability, drift, 
etc…). If we do not consider ures and the resolution uncer-
tainty component and we assume that parameter b of the cali-
bration curve is determined without uncertainty, expression 
12 becomes expression (1), which ended the first section of 
this article. Recently, our group pointed out the importance of 
the term of uncertainty associated with the resolution R2/12 
to guarantee that the uncertainty of the signal is at least of the 
order of magnitude of the resolution and, therefore, the LoD 
is consistent with this fact (Lavín et al 2018).

3.  Uncertainty throughout the working range

The model function for the measured concentration c, when 
using a calibrated device, is now the following:

c = f−1 (y − δyR − δyres, a1, a2, · · · , an)

= g (y − δyR − δyres, a1, a2, · · · , an)
� (13)

where g = f−1 is the inverse calibration curve and y is 
the average of N repeated measurements yi over the meas-
urand which concentration c we want to know. Please note 
that now the input value is the measured signal y  provided by 
the biosensor and our goal is to estimate concentration c and 
its uncertainty. By propagating uncertainties using the main-
stream GUM method (JCGM 2008a), but retaining terms asso-
ciated with usually non-null correlation coefficients r(ai, aj), 
we obtain the following combined standard uncertainty for c:

u2 (c) = g2
y ·

(
s2

r
N + R2

12 + u2
res

)
+
∑n

i=1 g2
i u2 (ai)

+2
∑n−1

i=1
∑n

j=i+1 gigj · r(ai, aj)u(ai)u(aj)
�

(14)

where gi = ∂g/∂ai.and gy = ∂g/∂y.
As we are only interested in the interval between c = 0 

and the LoD, we can use instead, the linearized version of 
the calibration curve. Then, in the linear case, the new model 
function is:

c =
(y − δyR − δyres) − b

a
� (15)

And the estimation u(c) of the uncertainty of the measured 
concentration would be:

u2 (c) =
1
a2 ·
Å

s2
r

N
+

R2

12
+ u2

res

ã
+

u2 (b)
a2

+

Å
b − y

a2

ã2

u2 (a) + 2
Å

b − y
a2

ãÅ
−1

a

ã
r (a, b) u (a) u(b)

� (16)
When working near the origin (c ∼= 0, y ∼= b), previous 

expression can be simplified:

u2 (c) ∼=
1
a2 ·
Å

s2
r

N
+

R2

12
+ u2

res

ã
+

u2 (b)
a2

� (17)

u (c) =

»
s2

r
N + R2

12 + u2
res + u2 (b)

a
� (18)

If we choose a coverage probability of 99.9% the cov-
erage factor (assuming normality) is k99.9% = 3.30. So, the 
expanded uncertainty near the origin (c = 0) would be:

U99.9% (c) = k99.9% · u (c) = 3.30

»
s2

r
N + R2

12 + u2
res + u2 (b)

a

Therefore, U99.9%(c) near the origin is equal to the LoD 
(when choosing α = β = 5%):

Table 1.  Calibration data.

Concentration  
ci

Output  
Signal yi

Repeatability  
si min(yij) max(yij)

(µg ml−1) (nm) (nm) (nm) (nm)

1 0.09 0.05 0.00 0.15
2.5 0.33 0.18 0.03 0.52
5 0.53 0.14 0.35 0.72
7.5 0.75 0.16 0.51 0.90
10 1.22 0.23 0.85 1.43
15 2.01 0.18 1.71 2.22
20 3.16 0.32 2.60 3.40
30 3.73 0.40 3.14 4.18
50 4.39 0.39 3.73 4.82
70 5.05 0.22 4.77 5.38
100 5.61 0.30 5.05 6.14

Figure 2.  Observed repeatability si versus concentration c.

Meas. Sci. Technol. 31 (2020) 044004
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U99.9% (c ≈ 0) = cLoD� (19)

4.  Experimental example

Table 1 shows experimental results from a biochip calibration 
(Hernández et al 2016). This biochip, formed by six BICELLs 
(Biophotonic Sensing Cells), (Holgado et al 2010) is going to 
be used as an antibody-based (anti-IgG) label-free biosensor. 
The calibration has been performed over m = 11 calibration 
points from c1 = 1 µg ml−1 to c11  =  100 µg ml−1 where uncer-
tainties are negligible against other uncertainty sources. The 
output signal yi is the resonant dip shift, expressed in nm, 
observed when the sensor is exposed to antibody concentra-
tions ci. The readout instrument resolution is R = 0.12 nm.  
Values yi =

∑
jyij/6 represent the average output over six 

BICELL readouts, and yij and si represent the observed 
repeatability at this calibration point.

If we plot observed repeatabilities si versus concentration c 
(see figure 2) we can observe that, for lower concentrations, repeat-
ability increases with concentration. But for c � 30 µg ml−1,  
observed repeatabilities si pass the Hartley’s test (Hartley 
1950) indicating that repeatability remains constant over  
30 µg ml−1. In this range (30–100 µg ml−1) we have estimated 
the repeatability using the root mean square of si:

sr
(
c � 30µg ml−1) =

√ ∑
ci�30 µg ml−1

s2
i = 0.34 nm

For concentrations lower than 30 µg ml−1 we have supposed 
that repeatability increases linearly with concentration:

sr (c) ∼= as · c + bs

In order to estimate parameters as, bs we have used a weighted 
least squares procedure with weights inversely proportional to 
observed repeatabilities si as described in section 5.3.2 of ISO 
11843-2 (ISO 2000). The final result is:

sr(c) ∼= (0.049 + 0.0126 · c [µg ml−1]) nm

Now, the normalized repeatibilities s i = sr(ci)/si  pass the 
Hartley’s test, indicating that the estimated function sr(c) 
explain satisfactorily the variation of the repeatability along 
the range 0–30 µg ml−1.

The point where straight lines sr (c) = 0.34 nm  and 
sr(c) ∼= (0.049 + 0.0126 · c [µg ml−1]) nm intersect is 
c′ = 23 µg ml−1 (see figure  2, dotted red lines). Therefore, 
the final result for the whole range 0–100 µg ml−1 would be:

sr (c) =
ß

c < 23µg ml−1 (0.049 + 0.0126 · c [µg ml−1]) nm
c � 23µg ml−1 0.34 nm

Back to the estimation of the calibration curve, we have used 
an iterative weighted least squares procedure to fit a general 
logistic function (6-parameters) to the points (ci, yi) . Weights 
have been chosen inversely proportional to observed repeat-
abilities si. The uncertainty propagation has been performed 
using Monte-Carlo simulation (JCGM 2008b). The fitting 
results are presented in table 2, where f0 and fc represent the 
parameters b = f (c = 0) and a = ∂f/∂c at c = 0 of the lin-
earized calibration curve y = b + a · c. Figure  3 represents 
the fitted calibration curve (red line) with uncertainty bands 
±k99.9% · uf  (green lines) and calibration data (blue circles 
and error bars). Remember that uf  represents the uncertainty 
contribution coming from calibration, see expression (9).

Introducing results from table  2 in the expression of the 
LoD (expression 12) we obtain:

cLoD = 3.30

»
u2 (b) + R2

12 +
s2

r
N + u2

res

a
= 3.30

√
(0.048 nm)

2
+ (0.12 nm)2

12 + (0.049 nm)2

3 + 0

0.075µg ml−1 × nm−1 = 2.9µg ml−1

where we have supposed that:

	 •	�we repeat the measurement three times (N = 3); 
	 •	�the repeatability sr is close to sr(c = 0) = 0.049nm; 
	 •	�the uncertainty component ures is negligible in comparison 

with the previous ones.

But in c = 2.9µg ml−1 the repeatability is sr (c) ∼= (0.049+
0.0126 · 2.9) = 0.085 nm, which is a value significantly higher 
than sr(c = 0) = 0.049 nm. Therefore we have to reevaluate 
cLoD using, in this case, the value of sr(c) at the center of the 
interval 0–2.9  µg mL−1:

sr

Å
c =

1
2
· 2.9µ

g
ml

ã
∼= (0.049 + 0.0126 · 1.45) = 0.067 nm

Table 2.  Calibration curve: fitting results.

Parameter
Value  
ai

Uncertainty  
u(ai) Matrix of correlation coefficients r(ai, aj)

a1 K 0.0064 0.0046 1 +0.20 +0.11 +0.32 −0.18 −0.27
a2 B 0.079 0.011 +0.20 1 +0.55 +0.73 −0.52 −0.58
a3 Q 0.034 19 0.003 71 +0.11 +0.55 1 +0.52 −0.80 +0.11
a4 A −0.33 0.16 +0.32 +0.73 +0.52 1 −0.76 −0.70
a5 C 0.965 53 0.004 29 −0.18 −0.52 −0.80 −0.76 1 +0.15
a6 ν 0.012 613 0.001 410 −0.27 −0.58 +0.11 −0.70 +0.15 1

b f 0 0.014 0.048 1 −0.32
a f c 0.075 0.016 −0.32 1

Meas. Sci. Technol. 31 (2020) 044004
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The final estimation of cLoD would be:

cLoD = 3.30

√
(0.048 nm)

2
+ (0.12 nm)2

12 + (0.067 nm)2

3 + 0

0.075µg ml−1 × nm−1 = 3.1 µg ml−1

In this particular case, the most important contribution to 
the LoD is the uncertainty u(b) of parameter b = f0 = f (c = 0) 
(intersection of the calibration curve with the y -axis). 
Contributions of repeatability sr and resolution R are very 
similar.

Using Monte-Carlo simulation techniques again, it is pos-
sible to estimate the uncertainty u(c) of the measured concen-
tration c using model function (13). This is the uncertainty 
estimation needed when we use the biochip after calibration. 
Figure 4 shows the inverse calibration curve c = g(y) (red line) 
with uncertainty bands (U99.9% (c) = k99.9% · u(c), magenta 
lines) assuming that the measurement of the output signal y 
has been repeated N = 3 times. It has been assumed that all 
the random variables involved are normally distributed. This 
inverse calibration curve serves to obtain the estimate of the 
measured concentration c from the output signal y  provided 
by the sensor.

For example, let us suppose that the observed output signal 
is y = 2.00 nm (y is the average of N = 3 measurements). 
Then, the estimated concentration would be c = 14.9µg ml −1

with an expanded uncertainty U99.9% (c) = 4.3µg ml−1 .
Figure 5 shows the inverse calibration curve near the origin 

(c = 0). In this figure we have represented the LoD estimated 
previously. Please note that the lower end of the uncertainty 
interval [c − U99.9% (c) , c + U99.9%(c)] is zero at c = cLoD 
according to expression (18).

Figure 6 shows the histogram (blue vertical bars, estima-
tion of the PDF) of measured concentration c at LoD for 
N = 3. The distribution is slightly asymmetric but differences 
from a normal distribution (red line) are small.

Figure 7 shows the histograms of the estimated signal 
y at c = 0 (red line) and at cLoD = 3.1µg ml−1 (solid blue 

Figure 3.  Calibration curve.

Figure 4.  Inverse calibration curve: full range.

Figure 5.  Inverse calibration curve: near c = 0.

Figure 6.  Distribution of measured concentration c at LoD  
(3.1 µg ml−1).
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line) according to the model described by expression (8). 
This is figure 1 particularized for the data of the numerical 
example. Using the red histogram, we can estimate CCα. 
Choosing α = 5% (probability of a false positive) we obtain 
yα = CCα = 0.117nm.

Using the solid blue histogram we can now estimate 
β = Pr

{
y � yα|c = cLoD = 3.1 µg ml−1

}
= 1.6% (prob-

ability of a false negative). This value is smaller than the 
objective β = 5%. The reasons are that we have estimated 
cLoD assuming:

	 •	�a linear calibration curve near the origin c = 0, but 
figure 4 shows a slight nonlinearity; 

	 •	�all random variables involved are normally distributed, 
but figure 6 shows a slight difference from a normal dis-
tribution, mainly in their tails; 

	 •	�repeatability is constant in the interval 0 < c < cLoD , 
but figure 2 shows that there is a significant variation in 
repeatability along this interval; 

	 •	�u(y0) ∼= u(yβ) but, in the example, u (yβ) = 0.086 nm is 
clearly higher than u (y0) = 0.063 nm.

In order to get a better estimation of cLoD we can follow a trial 
and error procedure. For example, with cLoD = 2.7µg ml−1 
(see figure 7, dotted blue line, final estimation of LoD) we get 
β = Pr

{
y � yα|c = cLoD = 2.7 µg ml−1

}
= 4.9%, which is 

very close to the objective β = 5%. Therefore, a better esti-
mation of the LoD would be cLoD = 2.7 µg ml−1.

5.  Conclusions

We have presented a procedure to estimate the uncertainty of 
the concentration measured with a biosensor that has been 
calibrated fitting a general calibration curve.

We have also shown a procedure to estimate the LoD, 
based on the definition of the VIM that is a somewhat more 
rigorous version than that of the IUPAC, which permits taking 
into account uncertainty components such as resolution and 
calibration that sometimes can be more important than repeat-
ability, as we have shown in an example.

The final expression of the LoD is equivalent to that of the 
expanded uncertainty (for a coverage probability of 99.9%) 
assigned to the concentration when c ∼= 0. This result permits 
us to see the LoD as the smallest concentration c where uncer-
tainty interval [c − U99.9% (c) , c + U99.9%(c)] does not include 
negative values.
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