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1.  Introduction

Rotating machines have become more and more widely used 
in modern life and industry. With the rapid development of 
science and technology, the latest rotating machinery has 
become more high speed and more integrated. The rolling 
bearing, one of the most critical components in the rotating 
machine, will inevitably fail after a long period of operation or 
in a terrible working environment, which will lead to unneces-
sary safety accidents and economic losses. Therefore, accu-
rate and reliable fault diagnosis of rolling bearings is always 
of great practical significance.

In the field of rolling bearing fault diagnosis, as well as the 
traditional signal processing methods, more and more intelli-
gent diagnosis methods are now being applied [1, 2]. Various 
methods based on machine learning [3] are at the forefront, 
especially the most popular deep learning [4, 5], such as con-
volutional neural networks (CNN) [6, 7], recurrent neural 

networks (RNN) [8, 9], and deep belief networks (DBN) [10]. 
The auto-encoder (AE) is also one of these – an unsupervised 
deep learning network [11, 12]. An AE is a special neural net-
work that consists of three layers: an input layer, a hidden layer, 
and an output layer. In the structure of an AE, the input and 
output layers have the same number of neurons [13]. The struc-
ture of an AE can be considered as an encoder which is inte-
grated with a decoder. The encoder includes the input layer and 
the hidden layer, mapping the input vector to the hidden layer. 
The decoder takes the output of the hidden layer to recreate the 
input values [14]. Generally, the dataset used to train a neural 
network needs to be very large and balanced. It will be difficult 
for a neural network to train on seriously unbalanced data, and 
the generalization ability is not strong. Furthermore, it requires 
a lot of time, material resources, and human resources to collect 
the mass fault data of the rolling bearing equipment. However, 
the amount of existing fault data is basically quite small. In this 
situation, a larger amount of fault data is urgently needed.

An unsupervised generation model named the generative 
adversarial network (GAN) was proposed by Goodfellow 
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et al [15] at the 2014 Neural Information Processing Systems 
(NIPS) conference. It can artificially generate samples of fit-
ting real data from random noise samples according to real 
sample distribution [16, 17]. For a deep Boltzmann machine, 
GAN does not need to repeatedly apply a Markov chain to 
generate [18]. Our team is mainly doing research on rolling 
bearing fault diagnosis [19], where the amount of fault data 
required is very large, so we intend to make use of GAN to do 
research on data generation.

However, during the training process of GAN, it has a gra-
dient vanishing problem [19]. In order to solve the problem, in 
2017, an improved model named the Wasserstein generative 
adversarial network (WGAN) was proposed by Martin et al [20], 
which replaces Jensen–Shannon divergence with Wasserstein 
distance. It has already been applied to image [21, 22].

In WGAN, the weight needs to be limited to a range to 
satisfy Lipschitz continuity, but it easily leads to a gradient 
explosion problem. The weight clipping in WGAN will lead 
to optimization difficulties, and the results will have a patho-
logical value surface. In order to solve this problem, this paper 
proposes to use the gradient penalty methods to satisfy the 
continuity condition.

In this paper, a novel deep unsupervised learning method 
called the Wasserstein gradient-penalty generative adversarial 
network (WGGAN) with deep auto-encoder (DAE) is pro-
posed for rolling bearing intelligent fault diagnosis. Firstly, 
the gradient penalty term is added to the WGAN to enhance 
the stability and convergence of the network. Secondly, a deep 
auto-encoder network comprised of multiple auto-encoders is 
regarded as the discriminator. Finally, the sparse auto-encoder 
is placed at the end of the proposed method as the classifier 
to classify synthetic bearing faults. The results show that the 
proposed method can get rid of gradient vanishing and gra-
dient explosion, and the diagnostic accuracy of the proposed 
method is higher than that of other methods.

The rest of this paper is organized as follows. The theory 
of standard WGAN is briefly introduced in section 2. The pro-
posed method is described in detail in section 3. The results 
of the verification experiment are analyzed and discussed in 

section 4. The results of the engineering application experi-
ment are analyzed and discussed in section 5. Finally, a gen-
eral conclusion is given in section 6.

2.  Standard theory of WGAN and auto-encoder

2.1.  Description of recent intelligent fault diagnosis progress

As artificial intelligence methods have rapidly developed, a 
large number of intelligent fault diagnosis papers have been 
published. In 2018, a novel method called deep wavelet auto-
encoder (DWAE) with extreme learning machine (ELM) was 
proposed by Shao et al [4] for intelligent fault diagnosis of 
rolling bearings. Wang et  al [23] adopted a convolutional 
neural network-based hidden Markov model (CNN-HMM) 
to classify multifaults in mechanical systems. Jiao et al [24] 
presented a multivariate encoder information-based convolu-
tional neural network (MEI-CNN) for intelligent diagnosis. In 
2019, Yan et al [25] studied a novel fault diagnosis technique 
based on improved multiscale dispersion entropy (IMDE) 
and max-relevance min-redundancy (mRMR) to efficiently 
extract fault feature information and improve fault diagnosis 
accuracy. Wang et al [26] introduced a new feature learning 
method for fault diagnosis of planetary gearboxes based on 
deep conditional variational neural networks (CVNN). Wang 
et al [27] proposed a recently developed optimization method 
called batch normalization into deep neural networks (DNN) 
to realize online monitoring and fast fault diagnosis.

2.2.  Standard GAN method

The main inspiration of GAN originates from the idea of a 
two-person zero-sum game in game theory, which sets two 
participating players as a generator and a discriminator respec-
tively. The purpose of the generator is to learn and capture the 
potential distribution of real data samples as much as possible. 
The discriminator is a two-classifier, the purpose of which is 
to correctly distinguish whether the input data are real data or 
from the generator. The whole learning optimization process 

Figure 1.  Training structure of GAN.
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is a minimax game problem, the ultimate purpose of which is 
to find a Nash equilibrium between the two, letting the gener-
ator estimate the distribution of the data samples. The training 
structure of GAN is shown in figure 1.

The optimization problem of GAN is a minimax problem. 
The objective function of GAN can be described as follows:

min
G

max
D

V (D, G) = Ex∼pr(x)[logD(x)]

+ Ey∼py(y) [log (1 − D (G (y)))] .
�

(1)

The generator G defines implicitly the probability distribu-
tion pg as the distribution of the sample G(y ) obtained when 
y ∼ py in equation  (1). Therefore, if sufficient capacity and 
training time are given, it is hoped that GAN will converge to 
a good pr estimator.

When the generator G is fixed, the best discriminator D is:

D∗
G (x) =

pr(x)
pr (x) + pg(x)

.� (2)

As shown in figure 2, the solid blue line represents the dis-
tribution of the raw data samples pr , the solid red line rep-
resents the distribution of the generated sample pg, and the 
dotted black line represents the constantly updated distribu-
tion of the discriminator. When the generating network is 
trained, the discriminator D is updated at the same time so 
that D can distinguish samples in pr and samples in pg.

2.3.  Standard WGAN method

There exist two forms of problem in the original standard 
GAN: (1) the better the discriminator is, the more seriously 
the generator gradient vanishes; (2) minimizing the loss func-
tion of the second generator is equivalent to minimizing an 
unreasonable distance measure, which leads to gradient insta-
bility and collapse mode (insufficient diversity).

The nature of WGAN is to replace Jensen–Shannon diver-
gence with Wasserstein distance. Wasserstein distance is also 
called Earth-mover (EM) distance [28], defined as follows:

W (Pr, Pg) =
1
N
sup‖ f‖L�NEx∼Pr [ f (x)]− Ex∼Pg [ f (x)] .

� (3)
If a set of parameters θ is used to define a series of pos-

sible functions fθ, then equation (3) can be approximated as 
follows:

N · W (Pr, Pg) ≈ max
θ :|fθ|L�N

Ex∼Pr [fθ (x)]− Ex∼Pg [fθ (x)]� (4)

where f    can be represented by a neural network with a 
parameter θ. Owing to the fact that the neural network is 
strong enough to fit, the series of fθ defined in this way is 
enough to approximate highly supfL�N  in equation (3).

At this point, a discriminator network fθ  with parameter 
θ, and in which the last layer is a linear activation layer, 
can be constructed, under the condition where θ does not 
exceed a certain range, make L in equation (5) as large as 
possible:

L = Ex∼Pr [fθ (x)]− Ex∼Pg [fθ (x)] .� (5)

where L will approximate the Wasserstein distance between 
real distribution and generated distribution [29].

There are two loss functions of WGAN: the loss function 
of the generator is equation (6); the loss function of the dis-
criminator is equation (7).

−Ex∼Pg [fθ (x)]� (6)

Ex∼Pg [fθ (x)]− Ex∼Pr [fθ (x)] .� (7)

2.4.  Standard method of an auto-encoder

An auto-encoder is a multilayer neural network in which the 
input layer and the output layer represent the same meaning, 
with the same number of nodes. An identity function with the 
same input and output is learned by the auto-encoder. The 
purpose of an auto-encoder is to learn the middle code layer 
(usually the layer with fewer nodes, or the middlemost layer), 
which is a good representation of the input vector. This pro-
cess has played a role in dimensionality reduction. When the 
auto-encoder has only one hidden layer, its principle is equiv-
alent to principal component analysis (PCA). When the auto-
encoder has multiple hidden layers, a restricted Boltzmann 
machine (RBM) can be used to pre-train between each two 
layers, and a backpropagation algorithm is used to adjust the 
final weight. The weight updating of the network is deduced 
by calculating partial derivative, and the algorithm is a gra-
dient descent method.

An auto-encoder is an unsupervised learning algorithm 
that uses the backpropagation algorithm to make the target 
value approximately equal to the input value. An auto-encoder 
tries to learn a function fa,b(x) ≈ x, which means the auto-
encoder tries to approximate an identity function. The net-
work structure of the auto-encoder is shown in figure 3. The 
auto-encoder can learn some compressed representations of 

Figure 2.  The sample trend of GAN.
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data, so an auto-encoder is a way to learn the correlation of 
input data.

The purpose of the backpropagation algorithm is to find 
the minimum value of function J(a, b) for a   and b. Firstly, 

each parameter W(l)
ij   and b(l)

i  needs to be initialized to a very 

small random value close to 0, and then the weight is updated 
iteratively by a gradient descent method.

J (a, b; x, y) =
1
2
‖fa,b (x)− y‖2.� (8)

Equation (8) is the cost function of a single (x, y) for the 
sample set 

{(
x1, y1

)
,
(
x2, y2

)
, . . . , (xm, ym)

}
.

J (a, b) =

[
1
m

m∑
i=1

J(a, b; x, y)

]
+

λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W(l)
ij )

2
.

� (9)
Equation (9) is the cost function of the whole sample set. The 
first term is the mean square deviation and the second term is 
regularization. In order to prevent over-fitting, λ   is used to 
control the correlation between the two terms.

W(l)
ij = W(l)

ij − α
∂

∂W(l)
ij

J (a, b)� (10)

b(l)
i = b(l)

i − α
∂

∂b(l)
i

J (a, b)� (11)

where α is the learning rate and is an important parameter. 
The biggest problem here is to find partial derivatives.

3. The proposed method

3.1.  WGGAN design

Firstly, let Pr  and Pg  be two distributions in X, which is a compact 

metric space. Then there is a 1-Lipschtiz function f ∗ , which is 

the optimal solution of max
‖ f‖L�1

Ey∼Pr [ f (y)]− Ex∼Pg [ f (x)]. Let 

π be the optimal between Pr  and Pg, defined as the minimizer 

of W (Pr, Pg) = infπ∈
∏

(Pr ,Pg)
E(x,y)∼π [‖x − y‖]. 

∏
(Pr, Pg) 

is the set of joint distributions π(x, y) whose marginals 
are Pr   and Pg respectively. Then, if f ∗ is differentiable, 
π (x = y) = 0 and xt = tx + (1 − t) y with 0 � t � 1, it holds 

that P(x,y)∼π

î
∇f ∗ (xt) =

y−xt
‖y−xt‖

ó
= 1. So, f ∗ has gradient 

norm 1 almost everywhere under Pr  and Pg.
It is observed that the WGAN optimization process is dif-

ficult because of interactions between the weight constraint 
and the cost function, so it leads to vanishing or exploding 
gradients without careful tuning of the clipping threshold.

Now, gradient penalty is proposed to establish a loss func-
tion to satisfy the Lipschitz limit that requires the gradient 
of the discriminator not to exceed K. Firstly, the gradient 
d(D (x)) of the discriminator is found, and then a two-norm 
is established between it and K to achieve a simple loss func-
tion. Focusing on the generated sample concentrated area, 
the real sample concentrated area, and the area sandwiched 
between them. In order to avoid more issues, the soft version 
of the constraint is enforced with a penalty on the gradient 
norm for random samples z ∼ Pz. The new objective will be 
changed.

Firstly, a pair of true and fake samples is randomly sam-
pled, and a random number from zero to one:

x ∼ Pr, y ∼ Pg, β ∼ Uniform [0, 1] .� (12)

Then, random sampling with interpolation on the line 
between x and y:

z = βx + (1 − β) y.� (13)

The distribution satisfied by z sampled according to the 
above process is denoted as Pz, and the final version of the 
discriminator loss function is obtained:

Figure 3.  The network structure of an auto-encoder.

Table 1.  The construction of WGGAN.

Algorithm. The training process of a Wasserstein generative 
adversarial network with gradient penalty.
Input:
learning rate α; gradient penalty coefficient λ; batch size N; 
the discriminator’s updating number K
while ϕ has not converged do
    for k  =  1 to K do
      for j   =  1 to N do
      Sample a pair of true samples x ∼ Pr  and noise sam-
ples z ∼ Pz, and a random number β ∼ U [0, 1]
      y = G(z)
      z = βx + (1 − β) y

      Lj = Dθ(y)− Dθ(x) + λ(∇zDθ(z)2 − 1)2

      end for

      θ = Adam
Ä
∇θ

1
N

∑N
j=1 Lj, θ, γ1, γ2

ä
.

  end for
  Sample batch of N noise samples {z1, . . . , zn} from Pz

  ϕ = Adam
Ä
∇ϕ

1
N

∑N
j=1 −Dθ(G(z)),ϕ, γ1, γ2

ä
end while
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L (D) = Ey∼Pg [D (y)]− Ex∼Pr [D (x)]︸ ︷︷ ︸
Original critic loss

+λEz∼Pz

î
(‖∇zD (z)‖2 − 1)2

ó
︸ ︷︷ ︸

The gradient penalty

.

� (14)
Equation (14) is the new objective after the gradient pen-

alty is added to the proposed method. The improved new gen-
eration model is called WGGAN, the algorithm for which is 
shown in table 1.

	(1)	�The weight clipping method is valid for the global sample 
space, but because the gradient norm of the discriminator 
is indirectly limited, it will lead to the gradient vanishing 
or gradient explosion.

	(2)	�The gradient penalty method only takes effect on the true 
and false sample concentrated area and the transition zone 
in the middle, but in this way the gradient controllability 
is very strong and it is easy to adjust to the appropriate 
scale because the gradient of the discriminator is directly 
limited to one.

Owing to the fact that the gradient penalty is applied inde-
pendently to each sample, the batch normalization cannot 
be used in the model structure of the discriminator. It will 
introduce the interdependencies of different samples in the 
same batch. Other normalization methods can be selected. 
The normalization method used in the paper is layer nor-
malization [30].

3.2. The construction of a deep auto-encoder

It is easy to converge to a local minimum using the back-
propagation algorithm, but it is not possible to get a good 
classification result. To solve this problem, a layer-by-
layer greedy algorithm can be used to train the deep net-
work, as shown in figure 4. First, the original input is used 

to train the first layer of the network, to obtain parameters 
a(1,1), b(1,1), a(1,2), b(1,2). Then the first layer of the network 
transforms the original input into a vector A , consisting of 
the activation values of hidden units, then takes A as the input 
of the second layer and continues training to get parameters 
of the second layer a(2,1), b(2,1), a(2,2), b(2,2). Finally, the same 
strategy is adopted for the following layers: the output of the 
former layer is trained as the input for the next layer in turn. 
When training the parameters of each layer, the parameters 
of the other layers will be fixed and kept unchanged. In order 
to get better results, after the above training process is com-
pleted, the parameters of all layers can be adjusted simulta-
neously by the backpropagation algorithm. This process is 
commonly referred to as fine-tuning.

The process of fine-tuning is shown as follows:

	(1)	�Activation A  of each hidden layer is calculated by a for-
ward propagation algorithm.

	(2)	�For the output layer Lnl, equation (15) is calculated.

δnl = − (y − anl) · f ′ (znl)� (15)

	(3)	� For every layer of l = nl − 1, nl − 2, . . . , 2, equation (16) 
is calculated.

δnl =
ÄÄ

a(l)δ(l+1)
ää

· f ′
(
zl) .� (16)

	(4)	� The final partial derivative value is calculated as follows:

∇al J (a, b; x, y) = δ(l+1) ·
Ä

a(l)
äT

� (17)

∇bl J (a, b; x, y) = δ(l+1).� (18)

Figure 4.  The network structure of a deep auto-encoder.
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3.3. The construction of the proposed method

In this paper, a novel method called the Wasserstein gradient-
penalty generative adversarial network with DAE is proposed 
to expand the amount of fault data. In the WGGAN method, 
the generator network and the discriminator network are two 
independent network structures. The result generated by the 
generator is regarded as the input of the discriminator. Then, 
the result of calculating the error function in the discriminator 
is fed back to the generator to fine-tune the network param
eters, generating new results again. This is a constant cycle. 

In the paper, the deep auto-encoder is proposed to act as the 
discriminator network to discriminate the input, as shown in 
figure 5.

The proposed method aims to use a loss derived from the 
Wasserstein distance to match auto-encoder loss distributions. 
A typical GAN objective with the addition of an equilibrium 
term is used to balance the discriminator and the generator. 
This new method has an easier training procedure and simpler 
neural network architecture. Firstly, we introduce the auto-
encoder loss and compute a lower bound to the Wasserstein 

Figure 5.  The construction of WGGAN with deep auto-encoder.
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Figure 6.  The flowchart of the proposed method.
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distance between the auto-encoder loss distributions of the 
real and generated samples.

Secondly, L : RNx �→ R+ is the loss for training an 
auto-encoder:

L (υ) = |υ − D(υ)|η where





D : RNx �→ RNx the autoencoder function
η ∈ {1, 2} the target norm
υ ∈ RNx the sample of dimension Nx

.

� (19)
Let µ1,2 be two distributions of auto-encoder losses, let 
Γ(µ1,µ2) be the set of all couplings of µ1 and µ2, and let 
m1,2 ∈ R be their respective means. The Wasserstein distance 
can be expressed as:

W1 (µ1,µ2) = infγ∈Γ(µ1,µ2)E(x1,x2)∼γ [|x1 − x2|] .� (20)

Using Jensen’s inequality, a lower bound to W1 (µ1,µ2) can 
be found:

inf E [|x1 − x2|] � inf |E [x1 − x2]| = |m1 − m2| .� (21)

This new method aims to optimize a lower bound of the 
Wasserstein distance between auto-encoder loss distributions, 
not between sample distributions.

The discriminator is designed to maximize equation (21) 
between auto-encoder losses. Let µ1 be the distribution of the 
loss L (x), where x are real samples. Let µ2 be the distribution 
of the loss L (G(z)), where G : RNz �→ RNx is the generator 
function and z ∈ [−1, 1]Nz  are uniform random samples of 
dimension Nz.

Since m1, m2 ∈ R+ there are only two possible solutions to 
maximizing |m1 − m2|:

(a)




W1 (µ1,µ2) � m1 − m2
m1 → ∞
m2 → 0

or (b)




W1 (µ1,µ2) � m2 − m1
m1 → 0
m2 → ∞

.

� (22)
The solution (b) is selected because minimizing m1 leads to 
auto-encoding the real data. The discriminator and generator 
parameters θD and θG are given, each updated by minimizing 
the losses LD and LG. This problem is expressed as the objec-
tive of GAN, where zD and zG are samples from z:

ß
LD = L (x, θD)− L (G (zD, θG) , θD) for θD

LG = −LD for θG
.� (23)

Similar to equations (6) and (7) from WGAN, equation (23) 
has one important difference: the new method matches distri-
butions between the losses, not between the samples.

During model training, if the discriminator is not very good 
at identifying the real data and the false data, this will cause 
the generator to be confident and always generate false data 
with poor performance. So, in order to motivate the gener-
ator to improve its own generation ability, and not to let the 
generator fall into a standstill state, the discriminator must be 
trained several times to increase its discriminative accuracy.

The whole flowchart of the proposed method is shown in 
figure 6 and the general procedure is summarized as follows:

Step 1: The vibration signal of rolling bearings is measured 
by sensors and data collected in the acquisition system.

Step 2: Nine classes of fault data are selected as experimental 
data in the collected data to be separately placed in the 
WGGAN-DAE.

2.1: The real data samples are placed in the discriminator D, 
and the random noise data are placed in the generator G.

2.2: The generator G generates a series of samples that are 
assumed to be real data and put into the discriminator D, 
and the discriminator begins to judge the real sample and 
the generated sample.

2.3: The Jensen–Shannon divergence is replaced by the 
Wasserstein distance as a mean that measures the distance 
between two sample distributions.

2.4: The loss function of the discriminator is established in the 
gradient penalty method.

2.5: The discriminator D is constantly trained to gain the 
maximum loss close to the Wasserstein distance.

2.6: The output of D is transmitted to the generator G by feed-
back, so that the generator updates the network structure 
and regenerates new samples.

2.7: The generator and discriminator are updated repeatedly 
to get a good generator.

Step 3: The vibration signals of generated samples and raw 
samples are compared on the time spectrum and the fre-
quency spectrum.

Step 4: The accuracy of generated extended data and raw data 
is compared in the deep auto-encoder.

4.  Experimental verification

4.1. The data description of the rolling bearing experiment

In this paper, the experimental vibration data of rolling bear-
ings comes from the Electrical Engineering Lab at Case 
Western Reserve University; the experimental equipment in 
the experiment is shown in figure 7. In this study, the vibration 
data of drive end at the sampling frequency of 12 kHz under 
the same load of 0 hp is collected.

The ten rolling bearing conditions are created, and listed in 
table 2. Sample points are 120 000 in normal data and 12 000 
in each group of fault data. There is a serious imbalance 

Figure 7.  The rolling bearing experimental device.
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between normal and fault data. The raw data samples of ten 
rolling bearing conditions are shown in figure 8.

4.2.  Qualitative analysis of fault data generation samples

In this experiment, each class of data value is normalized to 
[0, 1], which means the range of each class of data point is 0 
to 1, but the law of data distribution does not change, just like 
the original. The program of the proposed method runs with 
tensorflow 1.8, on i7-7700k CPU, gtx1080ti GPU. In order 
to compare the raw data sample and the generated extended 
sample in more detail, 12 000 sample points are selected to 
compare the feature distributions in each of the two samples. 
For the convenience of data distribution comparison, the raw 
data are also normalized to [0, 1]. The time spectrum diagram 
of the samples generated by WGGAN-DAE and raw samples 
are shown in figure 9.

It can be seen that in figure 9, the feature distribution of the 
sample generated by WGGAN-DAE is very close to the raw 
sample, so the training generator model has a great effect. In 
order to more specifically show the fitting degree of the orig-
inal time domain signal and the generated time domain signal, 
the root mean square error (RMSE) is used in this paper.

RMSE =

Ã
1
n

n∑
i=1

(xi − yi)
2.� (24)

The RMSE is calculated in equation (24), where xi is every 
time value of raw data and yi is every time value of generated 
data.

In table  3, the labels 1–9 correspond to fault data (Ball 
0.007, Ball 0.014, Ball 0.028, Inner race 0.007, Inner race 
0.014, Inner race 0.021, Outer race 0.007@3:00, Outer race 
0.007@12:00, Outer race 0.021@12:00) in turn. As we can 
see, every RMSE of WGGAN-DAE is obviously higher than 
WGAN.

Next, nine classes of the raw sample and the sample gen-
erated by WGGAN-DAE will be compared in the frequency 
spectrum diagram, at a sampling frequency of 12 kHz. As 
shown in figure 10, data points of the sample within a cycle 
are selected.

The above is the frequency spectrum diagram comparison 
of the raw sample and the generated sample of nine classes 

of fault data at a sampling frequency of 12 kHz. It can be 
seen that the generated sample (blue) is very close to the raw 
sample (red) on the frequency spectrum diagram.

RMSE =

Ã
1
n

n∑
i=1

(x′i − y′i)
2.� (25)

RMSE is calculated in the equation  (25), where x′i is every 
frequency amplitude of raw data and y′i is every frequency 
amplitude of generated data.

In table  4, the labels 1–9 correspond to fault data (Ball 
0.007, Ball 0.014, Ball 0.028, Inner race 0.007, Inner race 
0.014, Inner race 0.021, Outer race 0.007@3:00, Outer race 
0.007@12:00, Outer race 0.021@12:00) in turn. As we can 
see, every RMSE of WGGAN-DAE is obviously higher than 
WGAN.

4.3. The diagnosis results and analysis of the experiment

The diagnosis experiment is intended to use the machine 
learning methods to do a multiclassification experiment on the 
fault data. In order to ensure that the impact of the classifier 
itself on the accuracy comparison is minimized in the classi-
fication experiment, four different classifiers are chosen to be 
added into the experiment. Based on previous experience, the 
machine learning methods selected are the backpropagation 
neural network (BPNN), random forest (RF), support vector 
machine (SVM), and DAE.

As shown in table 5, dataset A is raw data. In A, the normal 
condition consists of 150 samples, and each sample contains 
800 data points. The random 100 raw samples are used for 
training and the 50 raw samples for testing. Each fault con-
dition consists of 15 samples, and each sample contains 800 
data points. The random ten raw samples are used for training 
and the five raw samples for testing. There is a serious imbal-
ance between normal and fault data in dataset A. Dataset B 
is synthetic data with WGAN, and dataset C is synthetic data 
with WGGAN-DAE. In B and C, each condition consists of 
150 samples, and each sample contains 800 data points. The 
random 100 generated samples of each condition are used for 
training and the 50 raw samples for testing. In order to better 
analyze the results, the ten different conditions are labelled 1 
to 10.

Table 2.  Description of the rolling bearing operation conditions.

Conditions Fault diameter (mm) Outer race fault orientation Motor speed (rpm) Sample points

Normal 0 — 1796 120 000
Ball 0.1778 — 1796 12 000
Ball 0.3556 — 1796 12 000
Ball 0.7112 — 1797 12 000
Inner race 0.1778 — 1797 12 000
Inner race 0.3556 — 1796 12 000
Inner race 0.5334 — 1797 12 000
Outer race 0.1778 @3:00 1797 12 000
Outer race 0.1778 @12:00 1797 12 000
Outer race 0.5334 @12:00 1796 12 000
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BPNN, RF, SVM, and DAE are used respectively in dataset 
A. WGAN is used in dataset B. WGGAN-DAE is used in 
dataset C. The classifiers are trained with training samples at 
first, and are finally tested with testing samples. In order to 
compare the accuracy of a little raw data and a large amount 
of generated data more cleanly, the data was not processed too 
much before the experiment, to minimize other unnecessary 
impacts on the results.

In order to show the stability of the proposed method, each 
method is tried six times. The classification testing accuracy 
rates of the six methods are listed in table  6, and the diag-
nosis results in each trial are shown in figure 11. In figure 11, 

the testing accuracy of the proposed method in each trial is 
86.60% (433/500), 85.84% (429/500), 86.17% (430/500), 
85.59% (428/500), 87.4% (437/500), 86.43% (432/500). 
From table 6, it is observed that the average accuracy of the 
proposed method is 86.60% (2598/3000), higher than BPNN, 
SVM, RF, and DAE using the raw data, which are 50.88% 
(290/570), 62.11% (354/570), 64.21 (366/570), and  68.24% 
(389/570) respectively. In the same amount of generated data, 
the diagnosis result of the proposed method is much higher 
than WGAN, which is  75.47% (2264/3000). So the quality of 
data generated by WGAN is not as good as that generated by 
the proposed method.

Figure 8.  Vibration signals of the ten operating conditions: (1) normal (120 000 data points); (2) ball fault (0.007); (3) ball fault (0.014); (4) 
ball fault (0.028); (5) inner race fault (0.007); (6) inner race fault (0.014); (7) inner race fault (0.021); (8) outer race fault (0.007@3:00); (9) 
outer race fault (0.007@12:00); (10) outer race fault (0.021@12:00).
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In table 6, the accuracy rate is our most common evaluation 
index, and it is easy to understand. It is the ratio of correctly 
classified samples to total samples. In general, the higher the 
accuracy rate, the better the classifier.

Accuracy =
TP + TN

TP + TN + FP + FN
.� (26)

The accuracy rate is calculated in the equation  (26), where 
TP is the true positive, TN is the true negative, FP is the false 
positive, and FN is the false negative. Figure 12 gives the clas-
sification confusion matrix of the proposed method for the 
first trial.

Figure 9.  The time spectrum (1 s) comparison of the raw samples (left) and the generated samples with WGGAN-DAE (right) in nine 
rolling bearing faulty conditions.

Table 3.  The RMSE of raw and generated data in time domain.

Label WGAN The proposed method

1 0.1388 0.0742
2 0.1293 0.0541
3 0.1594 0.0952
4 0.2004 0.1480
5 0.1344 0.0681
6 0.1166 0.0776
7 0.1720 0.1218
8 0.1600 0.1081
9 0.1634 0.0619
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Table 7 gives the precision and recall rates of different deep 
learning methods for the first trial. The precision rate repre-
sents the proportion of actual cases in an example divided 
into positive cases, and is calculated in equation  (27). The 
recall rate is a measure of coverage, representing the pro-
portion of pairs in all positive examples, and is calculated in 
equation (28).

Precision =
TP

TP + FP� (27)

Recall =
TP

TP + FN
.

� (28)

F-measure =
2 × Precision × Recall

Precision + Recall
=

2TP
2TP + FP + FN

.
� (29)

The F-measure is the comprehensive evaluation index, 
called the weighted harmonic mean of the precision rate 
and recall rate, and is calculated in equation (29). As shown 
in figure 13, the F-measure values of different methods are 
compared.

In the experiment, different machine learning methods 
(BPNN, SVM, RF, DAE) are selected to avoid too much devia-
tion in the classification results due to the problem of having a 
single classifier. The main parameters of the proposed method 
are available in table 8. The main parameters of the other five 
methods are described as follows:

	 •	�Method 1 (BPNN): the architecture is 800–1000–16. The 
learning rate is 0.01 and the iteration number is 700.

	 •	�Method 2 (SVM): the penalty factor is 50 and the radius 
of the kernel function is 0.2. Each of them is determined 
through a 10-fold cross-validation.

	 •	�Method 3 (RF): the number of trees grown is 100,  
and the number of predictors sampled for splitting at 
each node is 2.

	 •	�Method 4 (DAE): the architecture is 800–400–400–400. 
The sparsity parameter is 0.3 and the iteration number is 
200.

	 •	�Method 5 (WGAN): the architecture is 800–400–400–
400. The dimension of noise vector is 100. The learning 
rate is 0.0001 and the hyper parameter of Adam is 0.5. 
The iteration number is 2000.

In the experiment, the learning rate of the proposed 
method is selected as [0.0001, 0.0002, 0.0003, 0.0004, 
0.0005, 0.0006, 0.0007, 0.0008, 0.0009]. Figure 14 shows the 

Figure 10.  The frequency spectrum diagram comparison of the raw samples (red) and the generated samples with WGGAN-DAE (blue) in 
eight rolling bearing faulty operating conditions.

Table 4.  The RMSE of raw and generated data in frequency 
domain.

Label WGAN (10−4)
The proposed 
method (10−4)

1 7.1813 6.5482
2 8.9548 1.7042
3 9.5543 4.5493
4 14.0 7.0641
5 8.6908 3.2799
6 5.9950 4.1229
7 9.3376 7.4630
8 8.8358 4.3427
9 10.0 2.6281

Meas. Sci. Technol. 31 (2020) 045006



X Xiong et al

13

relationship between the RMSE and the learning rate of the 
proposed method. It can be found that the optimal learning 
rate of the proposed method is 0.0002. Figure 15 shows the 
accuracy rate as we increase the number of hidden layers 
(from 1 to 3) and the number of units per hidden layer (from 
100 to 800). It can be found that the optimal architecture 
of the proposed method is selected as 800–400–400–400. 
Figure 16 shows the accuracy rate as we increase parameter 
values of β (candidate set [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9]) and ρ  (candidate set [1, 2, 3, 4, 5, 6, 7, 8, 9]). It can be 
observed clearly that the accuracy is sensitive to the sparse 
parameter ρ . The optimal parameter β and ρ  of the proposed 
method is selected as [0.3, 3].

Figure 17 gives the loss error curves of the discriminator 
in the proposed method and standard WGAN as we increase 

the iteration number. It can be found that the loss error of the 
discriminator gets closer to 1 more quickly in the proposed 
method. Furthermore, the discriminant probability is only 
close to 0.5 in WGAN at the end. So it can be found that the 
proposed method converges faster.

5.  Engineering application

5.1. The data description of the electrical locomotive bearing 
experiment

Bearings are the most widely used component in rotating 
machinery. In this paper, the proposed method is used to diag-
nose electrical locomotive bearing faults. Figure 18 gives the 
electrical locomotive bearing testing device. Four kinds of 

Table 5.  Sample distribution of the ten conditions.

Conditions

Dataset A (raw data)
Dataset B (synthetic data 

with WGAN)
Dataset C (synthetic data 

with WGGAN-DAE)

Label
Training/testing  

samples
Training/testing  

samples
Training/testing  

samples

Normal 100 50 100 50 100 50 1
0.007/ball 10 5 100 50 100 50 2
0.014/ball 10 5 100 50 100 50 3
0.028/ball 10 5 100 50 100 50 4
0.007/inner race 10 5 100 50 100 50 5
0.014/inner race 10 5 100 50 100 50 6
0.021/inner race 10 5 100 50 100 50 7
0.007_3/outer race 10 5 100 50 100 50 8
0.007_12/outer race 10 5 100 50 100 50 9
0.021_12/outer race 10 5 100 50 100 50 10

Table 6.  The diagnosis results of the methods.

Method Size of each sample Diagnosis accuracy (%)

1 BPNN (with dataset A) 800 51.01 ± 4.475 (290/570)
2 SVM (with dataset A) 800 62.11 ± 2.531 (354/570)
3 RF (with dataset A) 800 64.21 ± 2.704 (366/570)
4 DAE (with dataset A) 800 68.42 ± 2.439 (389/570)
5 WGAN (with dataset B) 800 75.49 ± 1.807 (2264/3000)
6 The proposed method (with dataset C) 800 86.60 ± 1.012 (2598/3000)

Figure 11.  Diagnosis results of different methods for six trials.
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Figure 13.  F-measures of the proposed method, WGAN, standard DAE, RF, and SVM.

Figure 12.  Multiclass confusion matrix of the proposed method.

Table 7.  Precision and recall rate using different deep learning methods for the first trial.

Label

SVM (%) RF (%) DAE (%) WGAN (%)
The proposed  
method (%)

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

1 55.56 100 14.83 94 70.15 94 100 98 100 94
2 28.57 80 100 20 100 20 67.65 46 91.67 88
3 0 0 66.67 80 50 20 70.15 94 77.78 98
4 0 0 0 0 33.34 20 94.73 72 88.68 94
5 0 0 0 0 100 60 80 48 86.84 66
6 14.29 20 75 60 17.86 40 49.32 72 85.71 96
7 0 0 47.62 20 0 0 70.41 84 71.15 74
8 30.77 80 0 0 75 60 94.12 64 100 80
9 0 0 90.9 20 33.34 20 81.72 72 82.98 78
10 0 0 97.56 80 19.87 60 64.86 96 89.09 98
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faulty bearings are shown in figure 19. The vibration accel-
eration signal is collected at a frequency of 12.8 kHz. More 
parameters of the electrical locomotive bearings are listed in 
table 9.

In the paper, six bearing operating conditions are created, 
and the details are listed in table 10. Sample points are 128 000 
in normal data and 12 800 in each group of fault data. There is 
a serious imbalance between normal and fault data. The raw 
vibration signals of the six bearing conditions are shown in 
figure 20.

5.2.  Qualitative analysis of fault data generation samples

In this study, each class of data value is normalized to [0, 1], 
which means the range of each class of data point is 0 to 1, but 
the law of data distribution does not change, just like the orig-
inal. In order to compare the raw data sample and the gener-
ated extended sample in more detail, 12 800 sample points are 
selected to compare the feature distributions in each of the two 
samples. For the convenience of data distribution comparison, 
the raw data are also normalized to [0, 1]. The time spectrum 
diagram of the samples generated by WGGAN-DAE and raw 
samples are shown in figure 21.

It can be seen that in figure 21, the feature distribution of 
the sample generated by WGGAN-DAE is very close to the 
raw sample, so the training generator model has a great effect. 
In order to more specifically show the fitting degree of the 
original time domain signal and the generated time domain 
signal, the RMSE is used in this study.

In table 11, the labels 1–6 correspond to fault data (slight 
outer race defect, serious outer race defect, inner race defect, 
roller defect, compound faults (outer and inner races), com-
pound faults (outer race and roller)) in turn. As we can see, 
every RMSE of WGGAN-DAE is obviously higher than 
WGAN.

Next, six classes of the raw sample and the sample gen-
erated by WGGAN-DAE will be compared in the frequency 
spectrum diagram, at a sampling frequency of 12.8 kHz. As 
shown in figure 22, data points of the sample within a cycle 
are selected.

The above is the frequency spectrum diagram comparison 
of the raw sample and the generated sample of nine classes 
of fault data at a sampling frequency of 12.8 kHz. It can be 
seen that the generated sample (blue) is very close to the raw 
sample (red) on the frequency spectrum diagram. In order to 
more specifically show the fitting degree of the blue distribu-
tion and the red distribution, the RMSE is used in this paper.

In table 12, the labels 1–6 correspond to fault data (slight 
outer race defect, serious outer race defect, inner race defect, 
roller defect, compound faults (outer and inner races), com-
pound faults (outer race and roller)) in turn. As we can see, 
every RMSE of WGGAN-DAE is obviously higher than 
WGAN.

5.3. The diagnosis results and analysis of the experiment

As shown in table 13, dataset A is raw data. In A, the normal 
condition consists of 160 samples, and each sample contains 
800 data points. The random 100 raw samples are used for 
training and the 60 raw samples for testing. Each fault con-
dition consists of 16 samples, and each sample contains 800 
data points. The random ten raw samples are used for training 
and the six raw samples for testing. There is a serious imbal-
ance between normal and fault data in dataset A. Dataset B 
is synthetic data with WGAN, and dataset C is synthetic data 
with WGGAN-DAE. In B and C, each condition consists of 
160 samples, and each sample contains 800 data points. The 
random 100 generated samples of each condition are used for 
training and the 60 raw samples for testing. In order to better 
analyze the results, the ten different conditions are labelled 1 
to 7.

BPNN, SVM, RF, and DAE are used respectively in dataset 
A. WGAN is used in dataset B. WGGAN-DAE is used in 
dataset C. The classifiers are trained with training samples at 
first, and are finally tested with testing samples. In order to 
compare the accuracy of a little raw data and a large amount 
of generated data more cleanly, the data was not processed too 
much before the experiment, to minimize other unnecessary 
impacts on the results.

In order to show the stability of the proposed method, 
each method is tried six times. The testing accuracy rates of 
the six methods are listed in table 14. As shown in figure 23, 
the testing accuracy of the proposed method in each trial is 
90.47% (380/420), 88.57% (372/420), 91.90% (386/420), 
89.52% (376/420), 91.43% (384/420), 89.76% (377/420). 
From table 14, it is observed that the average accuracy of the 
proposed method is 90.48% (2280/2520), higher than BPNN, 
SVM, RF, and DAE using the raw data, which are 90.48% 
(335/576), 66.67% (384/576), 71.88% (414/576), 89.76% 
(430/576) respectively. In the same amount of generated data, 

Table 8.  Parameters of the proposed method for rolling bearing 
fault diagnosis.

Description Symbol Value

Units of the input layer In 800
Number of hidden layers n 3
Units of the first hidden layer h1 400
Units of the second hidden layer h2 400
Units of the third hidden layer h3 400
Sparsity parameter of deep  
auto-encoder

β 0.3

Sparse penalty factor of deep 
auto-encoder

ρ 3

Learning rate of WGGAN-DAE α 0.0002
Update times of generator lg 1
Update times of discriminator ld —
Size of training data per batch m 64
Dimension of noise vector z 100
Coefficient of gradient penalty λ 0.25
Hyper parameter 1 of Adam γ1 0.5
Hyper parameter 2 of Adam γ2 0.1
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Figure 14.  The relationship between the RMSE and the learning rate of the proposed method.

Figure 15.  The relationship between accuracy and the proposed deep architecture.

Figure 16.  The relationship between accuracy and the parameter set (β, ρ).
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the diagnosis result of the proposed method is much higher 
than, WGAN which is  84.09% (2119/2520). So the quality of 
data generated by WGAN is not as good as that generated by 
the proposed method.

In table 14, the accuracy is our most common evaluation 
index, and it is easy to understand. Generally, the higher the 
accuracy, the better the classifier. Figure 24 gives the classifi-
cation confusion matrix of the proposed method for the first 
trial. The precision and recall rates of different deep learning 
methods for the first trial are listed in table 15.

The F-measure is the weighted harmonic mean of preci-
sion and recall. As shown in figure 25, the F-measure values 
of different methods are calculated.

In this study, different machine learning methods (BPNN, 
SVM, RF, DAE) are selected to avoid too much deviation 
in the classification results due to the problem of having a 

Figure 17.  The loss function error curves of the proposed method and WGAN.

Figure 18.  Electrical locomotive bearing testing device.

Figure 19.  Faults in the electrical locomotive bearings are: slight 
inner race defect, roller defect, slight outer race defect, and serious 
outer race defect, in turn.

Table 9.  Parameters of the electrical locomotive bearings.

Parameter Value

Bearing specs 552732QT
Outer race diameter 290 mm
Roller diameter 34 mm
Roller number 17
Inner race diameter 160 mm

Table 10.  Description of the electrical locomotive bearing 
operation conditions.

Conditions
Motor 
speed (rpm)

Sample 
points

Normal 490 128 000
Slight outer race defect 490 12 800
Serious outer race defect 481 12 800
Inner race defect 498 12 800
Roller defect 531 12 800
Compound faults (outer and inner races) 525 12 800
Compound faults (outer race and roller) 521 12 800
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single classifier. The main parameters of the proposed method 
are listed in table 16. The main parameters of the other five 
methods are described as follows:

	 •	�Method 1 (BPNN): the architecture is 800–1000–16. The 
learning rate is 0.01 and the iteration number is 700.

	 •	�Method 2 (SVM): the penalty factor is 50 and the radius 
of the kernel function is 0.2. Each of them is determined 
through a 10-fold cross-validation.

	 •	�Method 3 (RF): the number of trees grown is 500, and the 
number of predictors sampled for splitting at each node is 
2.

	 •	�Method 4 (DAE): the architecture is 800–400–400–400. 
The sparsity parameter is 0.1 and the iteration number is 
400.

	 •	�Method 5 (WGAN): the architecture is 800–400–400–
400. The dimension of noise vector is 100. The learning 
rate is 0.0003 and the hyper parameter of Adam is 0.5. 
The iteration number is 2500.

In the experiment, the learning rate of the proposed method 
is selected as [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 
0.0006, 0.0007, 0.0008, 0.0009]. Figure  26 shows the rela-
tionship between the RMSE and the learning rate of the pro-
posed method. It can be found that the optimal learning rate of 
the proposed method is 0.0005. Figure 27 shows the accuracy 
rate as we increase the number of hidden layers (from 1 to 3) 
and the number of units per hidden layer (from 100 to 800). 
It can be found that the optimal architecture of the proposed 
method is selected as 800–400–400–400. Figure 28 shows the 
accuracy rate as we increase parameter values of β (candidate 
set [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) and ρ  (candidate 
set [1, 2, 3, 4, 5, 6, 7, 8, 9]). It can be observed clearly that the 
accuracy is sensitive to the sparse parameter ρ . The optimal 
parameter β and ρ  of the proposed method is selected as [0.1, 
1].

In this paper, two datasets are used to verify the experiment. 
The vibration data of rolling bearings come from the Electrical 
Engineering Lab at Case Western Reserve University, and the 

Figure 20.  Vibration signals of the seven electrical locomotive bearing conditions: (1) normal condition; (2) slight outer race defect; (3) 
serious outer race defect; (4) inner race defect; (5) roller defect; (6) compound faults (outer and inner races); (7) compound faults (outer 
race and roller).
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Figure 21.  The time spectrum (1 s) comparison of the raw samples (left) and the generated samples with WGGAN-DAE (right) in six 
electrical locomotive bearing faulty conditions.

Table 11.  The RMSE of raw and generated data in time domain.

Label WGAN The proposed method

1 0.1543 0.1117
2 0.2413 0.1201
3 0.0933 0.0867
4 0.0633 0.0576
5 0.1050 0.0947
6 0.0756 0.0582

Figure 22.  The frequency spectrum diagram comparison of the raw samples (red) and the generated samples with WGGAN-DAE (blue) in 
six electrical locomotive bearing faulty conditions.
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Table 14.  The diagnosis results of the methods.

Method Size of each sample Diagnosis accuracy (%)

1 BPNN (with dataset A) 800 58.29 ± 4.77 (335/576)
2 SVM (with dataset A) 800 66.67 ± 3.94 (384/576)
3 RF (with dataset A) 800 72.00 ± 3.75 (414/576)
4 DAE (with dataset A) 800 74.66 ± 3.31 (430/576)
5 WGAN (with dataset B) 800 84.12 ± 2.47 (2119/2520)
6 The proposed method (with dataset C) 800 90.47 ± 1.63 (2280/2520)

Figure 23.  Diagnosis results of the different methods for six trials.

Table 12.  The RMSE of raw and generated data in frequency domain.

Label WGAN (10−4) The proposed method (10−4)

1 6.1796 3.5617
2 7.0027 3.5673
3 5.3502 2.5838
4 3.2793 1.7051
5 7.1260 2.8309
6 4.0119 1.8014

Table 13.  Sample distribution of the seven conditions.

Conditions

Dataset A (raw data)
Dataset B (synthetic data 

with WGAN)

Dataset C (synthetic 
data with WGGAN-

DAE)

Label
Training/testing  

samples
Training/testing  

samples
Training/testing  

samples

Normal condition 100 60 100 60 100 60 1
Slight outer race defect 10 6 100 60 100 60 2
Serious outer race defect 10 6 100 60 100 60 3
Inner race defect 10 6 100 60 100 60 4
Roller defect 10 6 100 60 100 60 5
Compound faults (outer and inner races) 10 6 100 60 100 60 6
Compound faults (outer race and roller) 10 6 100 60 100 60 7
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Figure 24.  Multiclass confusion matrix of the proposed method.

Table 15.  Precision and recall rate using different deep learning methods for the first trial.

Label

SVM (%) RF (%) DAE (%) WGAN (%)
The proposed  
method (%)

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

1 16.67 100 20 100 27.78 100 78.13 100 100 100
2 0 0 0 0 0 0 62.98 53 69.66 62
3 0 0 0 0 37.50 60 77.52 100 100 100
4 0 0 0 0 0 0 100 42 72.45 71
5 0 0 83.33 100 75 60 100 96 100 100
6 100 100 0 0 100 100 100 100 100 100
7 0 0 100 80 0 0 66.67 98 88.50 100

Figure 25.  F-measures of the proposed method, WGAN, standard DAE, RF, and SVM.
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vibration data of electrical locomotive bearing. If only one set 
of datasets is added to the experiment, this cannot confirm 
the effectiveness of the proposed method sufficiently. Two sets 
of different datasets can cross-validate the proposed method 
sufficiently.

5.4. The evaluation of methods through different  
signal-to-noise ratios

Firstly, the dataset of the electrical locomotive bearing faults 
is selected to evaluate the method in different signal-to-noise 
ratios (SNR). In the datasets, three electrical locomotive 

Figure 26.  The relationship between the RMSE and the learning rate of the proposed method.

Figure 27.  The relationship between accuracy and the proposed deep architecture.

Table 16.  Parameters of the proposed method for rolling bearing fault diagnosis.

Description Symbol Value

Units of the input layer In 800
Number of hidden layers n 3
Units of the first hidden layer h1 400
Units of the second hidden layer h2 400
Units of the third hidden layer h3 400
Sparsity parameter of deep auto-encoder β 0.1
Sparse penalty factor of deep auto-encoder ρ 1
Learning rate of WGGAN-DAE α 0.0005
Update times of generator lg 1
Update times of discriminator ld —
Size of training data per batch m 64
Dimension of noise vector z 100
Coefficient of gradient penalty λ 0.25
Hyper parameter 1 of Adam γ1 0.5
Hyper parameter 2 of Adam γ2 0.1
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Figure 28.  The relationship between accuracy and parameter set (β, ρ).

Figure 29.  Time domain figures for electrical locomotive bearing signals: (1) normal condition; (2) slight outer race defect; (3) inner race 
defect.

Figure 30.  Diagnosis results of the six methods with four different SNRs.
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bearing conditions (normal condition, slight outer race defect, 
inner race defect) are selected, as in figure 29.

SNR is defined as the ratio of signal energy to noise energy: 

SNR =
Psignal

Pnoise
� (30

where P  is an average energy. The energy of signal and noise 
must be measured in the same system.

The measurement unit of SNR is dB, and its calculation 
method is:

SNRdb = 10log10 (SNR)

= 10log10

Ä
Psignal

Pnoise

ä� (31)

y = awgn (x, SNRdb) .� (32)

In equation (31), y is the signal with Gaussian white noise, x 
is the original signal and SNRdb is the customized SNR.

In this evaluation experiment, the SNR is selected as 50 dB, 
30 dB, 20 dB, and 10 dB respectively. As shown in (tables 17–
20), dataset A is raw data. In A, the normal condition consists 
of 300 samples, and each sample contains 400 data points. 
The random 200 raw samples are used for training and the 100 
raw samples for testing. The slight outer race defect condition 
consists of 75 samples, and each sample contains 400 data 
points. The random 50 raw samples are used for training and 
the 25 raw samples for testing. It is the same in the inner race 
defect condition. Dataset B is synthetic data with WGAN, 
and dataset C is synthetic data with WGGAN-DAE. In B and 
C, each condition consists of 300 samples, and each sample 

contains 400 data points. The random 200 generated samples 
are used for training and the 100 raw samples for testing. In 
order to better analyze the results, the three different condi-
tions are labelled 1 to 3.

In order to show the stability of the proposed method, each 
method is tried six times with a different SNR. The average 
testing accuracy rates of the six methods are listed in table 21. 
In 50 dB SNR, the accuracy based on the proposed method is 
94.00%, and the accuracy based on BPNN, SVM, RF, DAE, 
and WGAN is 68.00%, 70.67%, 78.00%, 82.67%, 89.00%, 
respectively. In 30 dB SNR, the testing accuracy of the pro-
posed method is 88.00%, higher than the other methods, which 
are 56.67%, 62.67%, 70.00%, 74.67%, and 81.00%, respec-
tively. In 20 dB SNR, the testing accuracy of the proposed 
method is 83.00%, higher than the other methods, which are 
50.67%, 56.67%, 62.00%, 70.67%, and 77.00% respectively. 
In 10 dB SNR, the testing accuracy of the proposed method 
is 79.00%, higher than the other methods, which are 44.67%, 
48.67%, 54.67%, 66.67%, 72.00%, respectively.

As shown in figure 30, the testing accuracy based on the 
proposed method is much higher than that of traditional 
methods, especially with 20 dB and 10 dB. Furthermore, with 
the same amount of generated data, the diagnosis result of 
the proposed method is higher than WGAN. So the data with 
different proportions of noise generated by WGAN is not as 
good as that generated by the proposed method.

In addition, the computational time of every method is 
shown in figure 31. In this study, the average computation 
time using the proposed method is 300 s. It is much higher 

Figure 31.  The computation times of the six methods with four different SNRs.

Table 17.  Sample distribution of three conditions in 50 dB SNR.

Conditions

Dataset A (raw data)
Dataset B (synthetic data 

with WGAN)
Dataset C (synthetic data 

with WGGAN-DAE)

LabelTraining/testing samples Training/testing samples Training/testing samples

Normal condition 200 100 200 100 200 100 1
Slight outer race defect 50 25 200 100 200 100 2
Inner race defect 50 25 200 100 200 100 3
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than those using BPNN, SVM, RF, and DAE, which are 
26 s, 15 s, 18 s, and 58 s respectively. Similarly, the com-
putation time of WGAN is also high, at 263 s, because the 
proposed method and WGAN need time to generate unbal-
anced data first. Owing to more complex network structure 
of the proposed method compared to WGAN, the computa-
tion time using the proposed method is higher than that of 
WGAN.

6.  Conclusions

In this paper, a novel method called the Wasserstein gradient-
penalty generative adversarial network with deep auto-encoder 
is developed for rolling bearing intelligent fault diagnosis. 
This proposed method is divided into three main steps: 
firstly, the gradient penalty term is added to the Wasserstein 
generative adversarial network to enhance the stability and 
convergence of the network. Secondly, a deep auto-encoder 
network comprised of multiple auto-encoders is regarded as 

the discriminator. Finally, the sparse auto-encoder is placed 
at the end of the proposed method as the classifier to classify 
synthetic bearing faults.

This proposed method is applied to generate the effective 
rolling bearing fault data, to improve the problem of unbal-
anced fault data, and to analyze the rolling bearing vibration 
signals more accurately. The results confirm that the gener-
ated data are very close to the raw data on the time-frequency 
diagram, and the diagnosis results of the proposed method are 
better than other traditional methods and the Wasserstein gen-
erative adversarial network. Moreover, the proposed method 
is more stable and converges faster than the Wasserstein gen-
erative adversarial network. The author will continue to work 
on this subject area in future research.
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