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Abstract
Permeability estimation plays an important role in reservoir evaluation and hydrocarbon 
development, etc. Traditional physical model-based methods have problems with being time 
consuming and high cost. The applications of machine learning are currently becoming 
more and more extensive, however, there are still several limitations to previous machine 
learning-based permeability estimation methods, such as a limited number of samples, a 
requirement of prior knowledge, and some parameters needing to be calculated indirectly. In 
this paper, a hybrid reservoir permeability prediction approach, which is based on a certain 
scale of permeability dataset, embedded feature selection (EFS) and a light gradient boosting 
machine (LightGBM), is proposed. First, EFS is used to select features from the raw dataset. 
Then a LightGBM is adopted to predict the permeability. The influence of feature selection 
threshold, the base learners’ number and dataset size on prediction results is also investigated. 
In addition, different feature selections and prediction models are compared. The proposed 
hybrid approach is also verified on other datasets. The experimental results show that the 
proposed approach can effectively predict the reservoir permeability based on limited direct 
logging data.

Keywords: permeability prediction, direct logging data, light gradient boosting machine, 
embedded feature selection, machine learning
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Nomenclature

ANN	 Artificial neural network
EFS	 Embedded feature selection
FFS	 Filter feature selection
LightGBM	 Light gradient boosting machine
MIR	 Mutual information regression
RFE	 Recursive feature elimination
RFR	 Random forest regression
SVM	 Support vector machine
WFS	 Wrapper feature selection
XGBoost	 Extreme gradient boosting

1.  Introduction

Permeability is the characteristic of rock to allow fluids to pass 
through. It is a key parameter in assessing reservoir quality in 
petroleum engineering. If reservoir permeability can be accu-
rately estimated, this is conducive to reservoir evaluation and 
production optimization, thereby decreasing production cost. 
However, due to the heterogeneity of reservoirs and their com-
plex stratigraphic structure, it is a challenge to predict res-
ervoir permeability accurately [1, 2]. Currently, conventional 
reservoir permeability prediction methods include core anal-
ysis, well test analysis and the empirical formula.

For example, as a common method, Darcy’s law is often 
used to study fluid flow. It measures permeability by defi-
nition, e.g. the volume of fluid flowing through a unit sec-
tion  (cm2) in unit time (s) under unit pressure (MPa). Feng 
et al studied gas multiple flow mechanisms and apparent per-
meability evaluation in shale reservoirs by Darcy’s law [3]. 
Although Darcy’s law is the most accurate method to directly 
measure the permeability of core samples, it has some disad-
vantages, such as being high cost, and time consuming [4, 5].

Another of the direct measurement methods, well test anal-
ysis, is a valuable method for measuring the dynamic response 
of a reservoir through determination of the hydraulic connec-
tivity and effective permeability of the reservoir. Osorio et al 
used the method for geological interpretation of channelized 
heterolithic beds [6]. Chen et  al used it to measure in situ 
stress, stress-dependent permeability, pore pressure and the 
gas-bearing system in multiple coal seams [7]. However, the 
method must be combined with others (such as stratigraphic 
comparison, log interpretation and core analysis) to com-
prehensively cope with more complex reservoir engineering 
problems.

The empirical formula is a series of nonlinear equa-
tions based on several physical models using core data. It can 
reasonably interpret the influences of formation parameters on 
reservoir permeability based on petrophysical theory. It has 
attracted the interest of researchers in the past few years [8–10].  
The main idea is to investigate the relationship between the 
formation parameter and permeability through the statistical 
regression. Thereby, the physical model between the per-
meability and these parameters will be established. Several 
excellent ideas are to consider the influence of temperature, 
viscosity and liquid phase interaction. However, in addition 

to the parameters obtained by direct logging, the empirical 
formula method also requires stratigraphic parameters, such 
as porosity, shale content, particle size etc, obtained by com-
bining other measurement methods. On the one hand, the 
physical model-based method cannot predict permeability 
effectively only using logging data. On the other hand, as 
the stratum is very complicated and difficult to describe, 
stratigraphic parameters are coupled and correlated. Thus, 
the empirical formula method cannot establish a very accu-
rate model. In addition, a 2D scanning electron microscope 
image, or 3D computed tomography scanning image-based 
core reconstruction methods, called digital cores, also have 
been established for permeability studies [11, 12]. Finally, the 
fluid flow is simulated by the finite element analysis method 
to obtain flow parameters such as permeability. However, due 
to the high cost and low accuracy, it is not widely applied to 
practical production.

In recent years, intelligent computing methods have 
become more widely used in drug development [13, 14], med-
ical treatments [15, 16] and other engineering fields [17–18]. 
At the same time, intelligent computing has also been suc-
cessfully developed in the field of petroleum engineering. 
For example, Elkatatny et  al used an artificial neural net-
work (ANN) to predict bubble point pressure in oil reservoirs 
[19]. Ahmadi et al [20] and Menad et al [21] used a support 
vector machine (SVM) for enhancing oil recovery. Wang et al 
used data mining methods for pore structure prediction [22]. 
Meanwhile, Merembayev et  al compared the effects of five 
intelligent computing methods on lithology classification [23]. 
Similarly, an ANN [24–26], SVM [27, 28], and other hybrid 
algorithms [29] have been applied to permeability prediction. 
For example, Saemi et al developed a neural network architec-
ture optimized by genetic algorithms to predict permeability 
[24]. Elkatatny et al extracted a mathematical equation from 
the ANN model for permeability prediction [26]. Gu et al used 
a continuous restricted Boltzmann machine (CRBM), particle 
swarm optimization (PSO) and a SVM hybrid technique to 
predict permeability [28]. The CRBM is used to extract char-
acteristics information from the original inputs. PSO is used 
to optimize the parameters of the SVM.

Compared with the statistical and classical regression 
methods, these intelligent computing methods can avoid 
complex physical models and directly establish the nonlinear 
relationship between input and output, but there are still some 
problems. For example, a certain prior knowledge is needed 
to select the relevant input features. Besides this, an ANN 
has a number of parameters that need to be adjusted, which 
takes significant computation time, and an SVM has no gen-
eral solutions for nonlinear problems. Therefore, the current 
machine learning-based approaches have low prediction effi-
ciency. Meanwhile, some of the input features of these intel-
ligent computing methods require indirect measurement or 
additional calculation, such as array induced tool resistance, 
water saturation, neutron porosity, density porosity and reser-
voir type. This undoubtedly increases the prediction cost.

For the above problems, the feature selection methods can 
select input features without prior knowledge and improve pre-
diction accuracy and efficiency. Among the common feature 
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selection methods, the embedded method inserts the feature 
selection step into the training process of the regression model 
and the selection of optimal feature subset can improve the 
performance of the regression model [30]. The amount of data 
available for permeability prediction is increasing, which will 
exert great influence on permeability prediction. Under such 
circumstance, a light gradient boosting machine (LightGBM) 
is applied to the permeability prediction. The LightGBM is an 
improved algorithm based on the gradient boosting decision 
tree (GBDT), which is an open-source, fast and efficient algo-
rithm released by Microsoft Research Asia in 2016 [31]. It has 
been applied in the bioengineering [32] and financial indus-
tries [33]. To the best of the authors’ knowledge, no one has 
investigated the effectiveness of LightGBM-based reservoir 
permeability prediction in reservoir evaluation. In this paper, 
a hybrid reservoir permeability prediction approach based on 
embedded feature selection (EFS) and the LightGBM (EFS–
LightGBM) is proposed. Firstly, EFS is used for feature selec-
tion. Then LightGBM is adopted to predict the permeability 
of the optimal subset. Two statistical quality measurement 
methods, the coefficient of determination (R2) and root mean 
squared error (RMSE), are used to evaluate the prediction per-
formance of the model. The main contributions of this paper 
are as follows.

	(1)	�Reservoir permeability can be predicted only using direct 
logging data, not indirect measurements or calculation 
parameters.

	(2)	�EFS–LightGBM is first applied to select features without 
prior knowledge and improve accuracy and efficiency of 
permeability prediction.

	(3)	�The effectiveness of the proposed hybrid reservoir perme-
ability prediction approach is verified by the cross-hole 
permeability prediction in the same area.

The remaining content of this paper is organized as fol-
lows. Section  2 introduces the research background and 
data sources. Section  3 introduces the methodology. The 
experimental verification process is described in section  4. 
Section 5 discusses the comparison of the different methods 
and the validation of the proposed method on other datasets. 
Finally, conclusions are drawn in the final section.

2.  Background

The main research content of this paper is to predict the perme-
ability by the formation parameters obtained by logging. The 
heterogeneity of a reservoir’s physical properties is caused 
due to the complex geological structures in the stratum, such 
as caves, faults and fractures, etc. The reliability and general-
ization ability of a model largely depends on the amount and 
type of data involved in the model training process. Therefore, 
a large and reliable database is needed.

The data used in this study was obtained from the logging 
data of well W1 in an oilfield in northwest China. The data 
contains 9314 data points, which have an interval of 0.125 m 
from 1625 m to 2790 m. The parameters of the data include: 
(1) 22 parameters obtained by direct measurements, such as 

depth (DEPTH), acoustic logging (AC), compensated neutron 
logging (CNL), density logging (DEN), fullbore formation 
microresistivity (FMIT), gamma ray (GR), and spontaneous 
potential (SP). (2) 6 indirectly measured parameters, such 
as array induced tool resistance (AT) and thorium potassium 
ratio (THK). (3) 25 indirectly calculated parameters, such as 
porosity from density (PERN), water filled porosity (PORW), 
and water saturation (SW). (4) Permeability (PERM). In this 
paper, 9297 data points were selected from the raw data to 
constitute the experimental dataset, containing permeability 
and 22 parameters obtained directly by logging.

The original reservoir data was obtained by instruments, 
such as double-emission and double-receiving compensa-
tion acoustic (used to obtain AC), natural gamma ray (used to 
obtain GR), compensation density (used to obtain DEN), for-
mation microresistivity imager (used to obtain FMIT) and dual 
induction-eight lateral (used to obtain CLL8). These instru-
ments are sub-modules of the Express and Image Logging 
System (EILog) developed by China Petroleum Logging Co., 
Ltd. The statistical descriptions of the parameters used are 
shown in table 1.

3.  Methodology

3.1. The proposed approach

The flowchart of the proposed approach is shown in figure 1, 
where the input data is derived from the direct logging data 
obtained in section 2. First, the original data is imported to 
the initial model. Then the optimal feature subset is selected 
by EFS. Finally, the LightGBM model is used to predict 
permeability.

In this study, 75% of the dataset was used as the training 
set and the remaining proportion was the test set. In order to 
improve the generalization ability of the model and elimi-
nate contingency influence in sample segmentation, four-fold 
cross-validation was used in all experiments. As a tree model, 
LightGBM is not sensitive to the range of data. In order to 
consider the influence of parameters on the model, the data 
was not normalized in this paper.

The prediction performance of the LightGBM model was 
evaluated by two statistical quality indicators: R2 and RMSE. 
Due to the large numerical distribution intervals, the relative 
size of the data has a greater impact on the RMSE. Therefore, 
the R2 score was considered. The two indicators are defined 
as follows:

R2 = 1 −
∑m

i=1 (yi − ŷi)
2

∑m
i=1 (yi − ȳ)2 ,� (1)

where yi is the real value of permeability, ŷi is the predicted 
value of permeability, ȳ is the mean value of permeability, 
and m  is the amount of data. Therefore, the predictive effect is 
better when R2 is closer to 1.

RMSE =

Ã
1
m

m∑
i=1

(yi − ŷi)
2,� (2)
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Table 1.  Statistical descriptions of the parameters used.

Identifier Parameter Symbol Unit Min. Max. Avg. STDEV

1 Depth DEPTH m 1627 2789 2208 335.494
2 Acoustic logging AC µs m−1 184.686 415.516 243.513 24.619
3 Azimuth of drill drift AZIM deg 0 359.868 110.401 112.810
4 Caliper CAL cm 20.865 41.134 22.674 1.078
5 X value of caliper CALX cm 20.298 41.292 22.633 1.041
6 Y value of caliper CALY cm 20.964 43.678 22.714 1.303
7 IL (induction log)-deep conductivity CILD S m−1 3.308 8999.998 87.416 224.088
8 Conductivity of laterolog 8 CLL8 S m−1 1.571 1237.462 68.498 54.226
9 Compensated neutron logging CNL % 6.632 88.743 23.949 7.460
10 Density logging DEN g cm−3 1.326 2.707 2.496 0.143
11 Deviation DEVI deg 0.272 2.396 1.122 0.441
12 Fullbore formation microresistivity FMIT Ohm 0.001 18.594 0.288 0.850
13 Gamma ray GR API 8.011 532.692 104.087 28.474
14 Depth of magnetic marks MMD \ −7372.410 15 069.45 −11.513 920.662
15 MMD of CAL MMDCAL \ −9084.070 9999.695 −9.8138 989.508
16 MMD of DEN MMDDEN \ −3723.090 7555.332 9.905 344.495
17 Litho-density logging PE b/e 0.899 4.601 3.167 0.438
18 4 m resistivity R4_0 Ohm 2.533 180.780 36.795 29.569
19 Mud filtrate resistivity RMF Ohm 0.346 0.622 0.483 0.079
20 True formation resistivity RT Ohm 0.111 302.253 28.775 34.379
21 Spontaneous potential SP mV 30.705 93.027 76.865 13.870
22 Corrected spontaneous potential SPC mV −59.728 2.733 −13.630 13.824
23 Permeability PERM mD 0.010 57.490 1.293 3.520

Feature selection and regression prediction using LightGBM

Initial LightGBM model

Optimal 
LightGBM 

model

Output of LightGBM

Original data acquisition 

Logging site Real time data Logging data

Embedded feature 
selection (EFS)

 

Figure 1.  Flowchart of the proposed approach.
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where RMSE represents the weighted average of the deviation 
between the prediction value and the real value.

3.2.  Embedded feature selection

In order to study the influence of input features on perme-
ability prediction and obtain sufficiently regression effects 
with as few features as possible, it is necessary to reduce the 
dimension of the input features [34]. Feature selection and 
extraction are two common steps in feature dimension reduc-
tion. As extracted features from the latter lose the physical 
meaning of the original feature space and lack interpretability, 
the feature selection was adopted in this paper.

EFS used in this paper is to embed feature selection into 
the whole learning process. It allows the regression algorithm 
to determine features to use. That is to say, feature selection 
and model training are performed simultaneously.

When using the EFS, some machine learning algorithms 
or models are used for training. Then, the weight coefficients 
of each feature are obtained according to the regularization 
term or loss function of the model. Finally, the features are 
selected in order according to the weight coefficient. These 
weight coefficients usually represent a certain contribution or 
importance of a feature to the model and can be ranked. Based 
on the evaluation of this contribution, the most useful features 
for the model establishment can be selected. Moreover, con-
sidering the contribution of features to the model, the features 
related to correlation filtering and the features without dis-
crimination for variance filtering will be deleted, due to lack 
of contribution. The flow of EFS is shown in figure 2.

3.3.  LightGBM

Recently, XGBoost [35] and LightGBM [31] algorithms, 
which have been proposed based on the GBDT algorithm, 

have greatly improved prediction performance. As XGBoost 
adopts a pre-sorted algorithm in sorting, it is necessary to pre-
sort all features according to the values. Meanwhile, the level-
wise split method is used to traverse the same layer of leaves 
in the division of the sub-model, which leads to significant 
unnecessary search and split. The principle of the level-wise 
split method is shown in figure 3. The model therefore con-
sumes a lot of time and space on large-scale data.

To deal with these problems, a modified LightGBM is pro-
posed as shown in figure 4. Using a histogram-based decision 
tree algorithm, the basic idea is to discretize continuous fea-
ture values into k integers, construct a histogram with a width 
of k, and then index the histogram according to the interval 
of the feature. Therefore, it does not need to sort according to 
each feature and compare the values of different features. It 
greatly reduces storage space and computational cost.

The choice is made to split the nodes of the weak learner 
leaf-wise. By controlling the depth of the tree and the min-
imum amount of data per leaf node, the over-fitting phenom
enon is avoided. Therefore, it is not necessary to traverse the 
entire training data at each iteration, which leads to a small 
computational cost. The principle of the leaf-wise method is 
shown in figure 5.

The codes of the proposed EFS–LightGBM were written 
by Python 3.7.1 and run on the Jupyter Notebook (version 
4.6.14) platform on a laptop with Core (TM) i7-8750H CPU 
and 16G RAM.

Initial LightGBM model

Feature subset

Calculate feature 
importances

Optimal feature 
subset with big      and 

fewer features

Embedded Feature selection (EFS)

Set threshold

      and feature number 
of all feature subset

Input to modelInput all features

2R

2R

 

Figure 2.  The flow of EFS.

......

first split second split

Figure 3.  Principle of the level-wise split method.
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4.  Experiments and analysis

4.1.  Feature selection

In this section, the proposed EFS–LightGBM approach pre-
sented is used for feature selection and model evaluation. 
First, all the data are imported into the LightGBM model for 
training, thus the contribution value of each feature to the 
model (i.e., the importance of the feature) can be obtained 
through the model interface. The global importance of feature 
j  is measured by the average of its importance in a single tree 
(base learner):

Ĵ2
j =

1
N

N∑
n=1

Ĵ2
j (Tn),� (3)

where N is the number of trees (base learners). The impor-
tance of feature j  in a single tree is as follows:

Ĵ2
j (T) =

L−1∑
t=1

î2t 1(vt = j),� (4)

where L is the number of leaf nodes of the tree, L  −  1 is the 
number of non-leaf nodes of the tree, vt is the feature associ-
ated with node t, and î2t  is the squared loss reduction value 
after node t splitting.

Second, EFS is used to select the feature with the contrib
ution value of the feature as the threshold. Therefore, the fea-
tures whose contribution value are lower than the set threshold 
can be eliminated. Finally, the selected feature subset is used 
to import the LightGBM model to obtain the R2 score of the 
model. The contribution of each feature to the model is shown 
in figure 6.

...
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data
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1 n
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......
...

...
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2

Figure 4.  Principle of histogram-based decision tree algorithm.
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Figure 5.  Principle of the leaf-wise method.
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Figure 6.  Contribution of each feature to the model.
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After sorting the contribution of the feature, the influence 
of the contribution threshold on feature selection and perme-
ability prediction should be studied. The relationship between 
the setting threshold and model performance and feature 
number are shown in figure 7. When the threshold is 85, the R2 
score and feature number are 0.9498 and 14, respectively. The 
R2 score is the highest at this time. When the threshold is 124, 
the R2 score and feature number are 0.9457 and 5. Although 
the R2 score is not the highest at this time, the feature number 
is reduced from 14 to 5, obtaining a similar R2 score. Thus, 
the model performance can be improved by subsequent hyper-
parameters adjustment. After comprehensive consideration of 
the R2 score and feature number, the threshold of this paper 
was set to 124, and the five features including DEPTH, AC, 
DEN, FMIT and GR were selected.

It can be seen from figure 7 that the R2 score is lower when 
more features are input, and prior knowledge is not required 
to select useful features. Some of the features can also be 
regarded as noise. This proves that the EFS used in this paper 
has, to some extent, played a role in denoising.

4.2.  Number of base learners

In the above, five selected features are input into the 
LightGBM model. Then, the hyperparameters are adjusted to 
further improve the performance of the model. Among all the 
hyperparameters, the number of base learners (denoted as n_
estimators) is the most important, which directly determines 
the complexity and performance of the model.

The effect of base learner number on the R2 score and time 
consumption are shown in figure  8. The increase of n_esti-
mators leads to the increment of model complexity as well 
as the logarithmically increment of the R2 (e.g. the increment 
is smaller and smaller), while the time consumption of the 
model increases linearly. Considering the real-time perfor-
mance of logging evaluation, it is not necessary to select a 
larger n_estimators value for a higher R2 score. To weigh the 
R2 score and time consumption, n_estimators was set to 500, 
where the R2 score is greater than 0.96 and the increment is 
less than 0.001.
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Figure 8.  The effect of n_estimators on the model R2 score and 
time consumption.
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Figure 9.  Effect of dataset size on R2 score.

Table 2.  The hyperparameters of LightGBM.

Hyperparameter Symbol Value

Number of boosting iterations n_estimators 500
Maximum depth of a tree max_depth 15
Maximum number of leaves in one 
tree

num_leaves 16

Subsample ratio of columns when 
constructing each tree

colsample_
bytree

1

L1 regularization term on weights reg_alpha 2.1
L2 regularization term on weights reg_lambda 0.01
Boosting learning rate learning_rate 0.2

Table 3.  The performance of the optimized model on the selected 
features.

Train Test
Time 
(s)

Number 
of featuresR2 RMSE R2 RMSE

0.9974 0.1787 0.9712 0.5959 1.37 5

0 2 4 6 8 10 12 14 16 18 20 22
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R
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Figure 10.  The relationship between the number of features 
selected by the three methods and the R2 score.
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4.3.  Dataset size

In order to explore the effect of dataset size on permeability 
prediction, part of the original dataset is randomly selected as a 
data subset. Then the model is trained under different data sub-
sets to obtain the R2 score of the corresponding training set and 
test set. The effect of the dataset size on R2 score is shown in 
figure 9. The model performs well on the training set, and as the 
sample size increases, the performance on the test set is better. 
Meanwhile, improved performance can be obtained under the 
current overall sample size. Although increasing the sample 
size can improve the performance of the model to a certain 
extent, there is no need to obtain more data for a small increase.

As a common model optimization method, grid search is 
adopted to select the optimal hyperparameter by traversing 
within a certain range with a fixed step size. Based on the 
work above, grid search is used to optimize other hyperparam
eters of the model, thus best permeability prediction perfor-
mance with maximize R2 and minimize RMSE is achieved. 
That is, the performance of the model is optimal under this set 
of hyperparameters. Final model hyperparameters are listed 
in table  2. The performance of the optimized model on the 
selected features is shown in table 3.

5.  Discussion

To further highlight the performance of the proposed method, 
the following three aspects are discussed in this section: 

different feature selection methods, different regression 
models, and performance on other datasets.

5.1.  Comparison with other feature selection methods

Commonly used feature selection methods include filter fea-
ture selection (FFS) and wrapper feature selection (WFS) 
[36]. The evaluation function of FFS is independent and has 
no relationship with the regression algorithm. It directly eval-
uates the relationship between the features and then removes 
the data with low correlation and high redundancy according 
to the evaluation results. WFS requires subsequent regression 
calculations, improving the calculation cost.

In this section, the mutual information regression (MIR) 
in FFS and the recursive feature elimination (RFE) in WFS 
are compared with proposed EFS. The threshold of MIR is 
the mutual information quantity. As this paper focuses on the 
selected features and the predictive effects of the model, no 
specific mutual information values are given. The threshold 
of EFS is the contribution of the feature to the model (e.g. the 
importance of the feature as shown in figures 6 and 7). The 
threshold of RFE is the number of selected features (from 22 
to 1). Although these thresholds are different, they can be con-
verted into the relationship between the feature number and 
the R2 score as shown in figure 10. The optimal feature num-
bers selected by MIR and RFE are 11 and 6, respectively. The 
selected features by these methods are shown in table 4. It can 
be seen that all these methods select DEPTH, DEN, FMIT and 

Table 4.  The features selected by the three methods.

1 2 3 4 5 6 7 8 9 10 11

DEPTH AC AZIM CAL CALX CALY CILD CLL8 CNL DEN DEVI

MIR √ \ √ \ \ \ √ \ \ √ \
RFE √ √ \ \ \ \ √ \ \ √ \
EFS √ √ \ \ \ \ \ \ \ √ \

12 13 14 15 16 17 18 19 20 21 22
FMIT GR MMD MMDCAL MMDDEN PE R4_0 RMF RT SP SPC

MIR √ √ \ \ \ √ \ √ √ √ √
RFE √ √ \ \ \ \ \ \ \ \ \
EFS √ √ \ \ \ \ \ \ \ \ \

(a) (b)

Figure 11.  The performance of the four models: (a) the R2 score and RMSE of the four scenarios; (b) the feature number and time of the 
four scenarios.
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GR. This means that these selected features are very impor-
tant for reservoir permeability prediction. Furthermore, fea-
tures such as AC and CILD also contribute to the permeability 
prediction.

Finally, the R2 score, RMSE and the training time of the four 
schemes (LightGBM, MIR–LightGBM, RFE–LightGBM, 
and EFS–LightGBM) on the training and test set are obtained. 
The R2 score and RMSE in the four schemes are shown in 
figure 11(a). It can be observed that the model with EFS has 
the highest score on the test set with an R2 score and RMSE of 
0.9712 and 0.5959, respectively. The feature number and time 

consumption in the four schemes are shown in figure 11(b). 
This shows that EFS has the least number of selected fea-
tures and the training time of the model with RFE is the least, 
at 1.11 s. Detailed information of each indicator is given in 
table  5. The optimal hyperparameters of the corresponding 
model are listed in table 6. Although the hyperparameters of 
different algorithms are different, the optimal results of each 
algorithm are compared.

In fact, for the training time, the models with three fea-
ture selection methods have little difference. In this study, the 
main consideration is obtaining a better prediction effect with 

Table 5.  Detailed information for each indicator.

Train Test

Time (s)
Number 
of featuresR2 RMSE R2 RMSE

LightGBM 0.9978 0.1645 0.9659 0.6481 1.85 22
MIR–LightGBM 0.9970 0.1924 0.9637 0.6684 1.41 11
RFE–LightGBM 0.9976 0.1704 0.9708 0.6000 1.11 6
EFS–LightGBM 0.9974 0.1787 0.9712 0.5959 1.37 5

Table 6.  Optimal hyperparameters of the corresponding model.

Hyperparameter Symbol LightGBM
MIR–
LightGBM

RFE–
LightGBM

Number of boosting iterations n_estimators 500 500 500
Maximum depth of a tree max_depth 13 6 6
Maximum number of leaves in one tree num_leaves 15 16 29
Subsample ratio of columns when constructing each tree colsample_bytree 1 0.64 1
L1 regularization term on weights reg_alpha 0.75 1.65 2.46
L2 regularization term on weights reg_lambda 0 0 0
Boosting learning rate learning_rate 0.1 0.19 0.32

Table 7.  Main hyperparameters for RFR.

Hyperparameter Symbol RFR
MIR–
RFR

RFE–
RFR

EFS–
RFR

The number of trees in the forest n_estimators 160 103 100 240
The maximum depth of the tree max_depth 22 28 23 22
The minimum number of samples required to be at a leaf node min_samples_leaf 1 1 1 1
The minimum number of samples required to split an internal node min_samples_split 2 2 2 2
The number of features for the best split max_features 12 12 3 3

Table 8.  Main hyperparameters for XGBoost.

Hyperparameter Symbol XGBoost
MIR–
XGBoost RFE–XGBoost

EFS–XG-
Boost

Number of boosted trees to fit n_estimators 200 200 200 200
Subsample ratio of the training instance subsample 0.536 84 0.736 84 0.386 84 0.378 94
Minimum sum of instance weight (hessian) 
needed in a child

min_child_
weight

1 1 1 1

Maximum depth of a tree max_depth 9 8 8 11
Minimum loss reduction required to make  
a further partition on a leaf node of the tree

gamma 0.03 0 0.07 0

Subsample ratio of columns when  
constructing each tree

colsample_
bytree

0.82 0.82 1 1

L1 regularization term on weights reg_alpha 0.74 0.83 2.1 0
L2 regularization term on weights reg_lambda 0.71 1 0.15 1.93
Boosting learning rate learning_rate 0.1 0.1 0.1 0.1
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a small number of features. Therefore, the performance of the 
EFS used in this paper is superior.

5.2.  Comparison with other regression models

The performance of the regression model is the most crit-
ical factor for prediction accuracy. Therefore, selection of 
the regression model is also very important. Two other tree-
based regression models are discussed in this section. One is 
the random forest regression (RFR) and the other is extreme 
gradient boosting (XGBoost). They also combine the three 
feature selection methods above. The main hyperparameters 

for RFR are listed in table 7. The main hyperparameters for 
XGBoost are listed in table 8.

The relationship between the feature number and the R2 
score of the three feature selection methods are shown in 
figure 12. The R2 score, RMSE, feature number and training 
time of the corresponding hybrid model are given in table 9. 
It can be seen that the combination with RFE is the best when 
using RFR. For this, R2 is 0.9668, RMSE is 0.6384, the fea-
ture number is 6 and the training time is 3.14 s. When using 
XGBoost, the combination with EFS is the best. For this, R2 is 
0.9771, RMSE is 0.5313, feature number is 7 and the training 
time is 10.81 s. Among them, the R2 score curve of the MIR–
RFR method drops at first and then rises. The main reason 
for this is that the initially selected features have already 
contained a large amount of information. With the increasing 
number of features, the weight of the initially selected features 
is reduced, resulting in a decrease in overall performance. 
When feature number is increasing to a certain amount, the 
selected features already have a certain amount of informa-
tion, so the performance of the model improves. Moreover, it 

(a)                                      (b)

0 2 4 6 8 10 12 14 16 18 20 22
0.1
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0.3

0.4

0.5
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Figure 12.  Comparison of different feature selection methods: (a) comparison based on RFR; (b) comparison based on XGBoost.

Table 9.  R2 and RMSE of RFR and XGBoost combined with different feature selection.

Train Test

Time (s) Number of featuresR2 RMSE R2 RMSE

RFR 0.9935 0.2827 0.9564 0.7340 15.99 22
MIR–RFR 0.9938 0.2765 0.9577 0.7236 9.80 14
RFE–RFR 0.9946 0.2575 0.9668 0.6384 3.14 6
EFS–RFR 0.9941 0.2678 0.9615 0.6879 7.37 6
XGBoost 0.9997 0.0588 0.9731 0.5756 18.74 22
MIR–XGBoost 0.9996 0.0642 0.9754 0.5503 10.41 11
RFE–XGBoost 0.9985 0.1342 0.9762 0.5414 8.39 8
EFS–XGBoost 0.9994 0.0850 0.9771 0.5313 10.81 7

Table 10.  Statistical descriptions of the features of wells #2 and 
#3.

Well Feature Min. Max. Avg. STDEV

2# DEPTH 1440 2652.25 2046.125 350.000
AC 187.485 429.447 244.304 25.360
DEN 1.258 2.734 2.471 0.152
FMIT 0.001 12.788 0.366 0.986
GR 10.397 795.188 90.312 26.330
PERM 0 55.736 2.550 6.429

3# DEPTH 1235 2365 1800 326.257
AC 187.352 512.971 248.909 25.164
DEN 1.275 2.716 2.522 0.151
FMIT 0.001 4.342 0.265 0.445
GR 7.38 200.877 80.774 21.463
PERM 0.01 54.391 2.429 5.339

Table 11.  R2 and RMSE for wells #2 and #3.

Well

Train Test
Time 
(s)R2 RMSE R2 RMSE

2# 0.9982 0.2859 0.9775 0.9581 1.34

3# 0.9988 0.1806 0.9829 0.6849 1.35

Meas. Sci. Technol. 31 (2020) 045101



K Zhou et al

11

can be known that DEPTH and RMF are two main features. 
The mutual information (range (0–1)) between them and the 
permeability are 0.903 and 0.730, respectively.

The proposed hybrid EFS–LightGBM method in this paper 
has an R2 of 0.9712, RMSE of 0.5959, feature number of five 
and training time of 1.37 s. Although the R2 and RMSE scores 
are not the best, the difference is very small. They are only 
0.0059 and 0.0646 different respectively from the optimal 

value, but its advantages in feature number are very obvious 
and the training time of the model is also superior under the 
current dataset.

5.3.  Verification with other practical datasets

Considering the generalization ability of the proposed 
model, the EFS–LightGBM was used to predict the reservoir 

(a)                  (b)

(c)                  (d)

(e)                  (f)

Figure 13.  Regression diagram between test data and predictive data of three datasets: (a) regression diagram of well #1; (b) residual 
distribution of well 1#; (c) regression diagram of well #2; (d) residual distribution of well #2; (e) regression diagram of well #3; (f) 
residual distribution of well #3.
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permeability of another two wells, 2# and 3#, in the same 
area. The input of the model is the same as the five selected 
features for well 1#. The statistical descriptions of features 
for wells 2# and 3# are given in table 10.

The prediction results for these two wells are given in 
table 11. It can be seen that the R2 score and RMSE of the 
prediction result for well #2 are 0.9775 and 0.9581 respec-
tively. For well #3, they are 0.9829 and 0.6849. The relation-
ship between the permeability prediction values and the actual 
values of the three well test sets including the statistical dis-
tribution of the residuals are shown in figure 13. It is obvious 
that the predicted values are very close to the true values. 
Meanwhile, the regression residuals are also concentrated in 
a small interval. It can therefore be seen that the established 
model for well #1 in this paper also has a good prediction 
effect on wells #2 and #3. This proves that the proposed 
model can be effectively applied to the permeability predic-
tion of this area or other similar strata.

6.  Conclusions

In this paper, a hybrid reservoir permeability prediction 
method based on EFS–LightGBM using direct logging data 
is proposed. In order to improve the efficiency and accuracy 
of prediction, EFS is used for feature selection and then the 
LightGBM algorithm is applied for permeability prediction. 
Furthermore, the influence of feature-threshold selection, base 
learners’ number and dataset size on the prediction results are 
also studied. The experimental results show that the proposed 
method has a satisfied prediction result with a small number 
of features. Its R2, RMSE and time are 0.9712, 0.5959 and 
1.37 s, respectively. In addition, different feature selections 
and regression models are investigated. Finally, other data-
sets from another two wells are used to verify the proposed 
method. The results show that the proposed method has excel-
lent prediction ability, the minimum feature number, less time 
consumption and good generalization ability. It is proved that 
the reservoir permeability prediction based on direct logging 
data is effective with a certain sample size. It can be applied to 
on-site reservoir inversion and evaluation.

Feature selection has a great influence on the prediction 
results, which can also continue to be improved in future 
work. In practice, the reservoir permeability prediction of 
other wells requires a large amount of data for training. The 
question of how to further improve the generalization ability 
of the model under insufficient data will be investigated in 
future work.
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