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Abstract

We present results of using individual galaxies’ redshift probability information derived from a photometric
redshift (photo-z) algorithm, SPIDERz, to identify potential catastrophic outliers in photometric redshift
determinations. By using two test data sets comprised of COSMOS multi-band photometry spanning a wide
redshift range (0<z<4) matched with reliable spectroscopic or other redshift determinations we explore the
efficacy of a novel method to flag potential catastrophic outliers (those galaxies where ∣ ∣- >z z 1.0phot spec ) in an
analysis which relies on accurate photometric redshifts. SPIDERz is a custom support vector machine classification
algorithm for photo-z analysis that naturally outputs a distribution of redshift probability information for each
galaxy in addition to a discrete most probable photo-z value. By applying an analytic technique with flagging
criteria to identify the presence of probability distribution features characteristic of catastrophic outlier photo-z
estimates, such as multiple redshift probability peaks separated by substantial redshift distances, we can flag
potential catastrophic outliers in photo-z determinations. We find that our proposed method can correctly flag large
fractions (>50%) of the catastrophic outlier galaxies, while only flagging a small fraction (<5%) of the total non-
outlier galaxies, depending on parameter choices. The fraction of non-outlier galaxies flagged varies significantly
with redshift and magnitude, however. We examine the performance of this strategy in photo-z determinations
using a range of flagging parameter values. These results could potentially be useful for utilization of photometric
redshifts in future large-scale surveys where catastrophic outliers are particularly detrimental to the science goals.
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1. Introduction

Accurate photometric redshift estimates (photo-zs) with well
constrained and understood error properties are critical for the
current and coming era of large multi-band extragalactic
surveys (e.g., Huterer et al. 2006; Bernstein & Huterer 2010;
Hearin et al. 2010), such as the Large Synoptic Survey
Telescope (LSST),1 Euclid,2 Wide Field Infrared Survey
Telescope (WFIRST),3 Hyper-Suprime Cam (HSC),4 and
Kilo-Degree Survey (KiDS)5 for which precise redshift
estimates will be needed for millions or billions of galaxies
extending to high redshifts. In particular, photometric redshift
accuracy is the primary source of systematic error in weak-
lensing surveys Bernstein & Huterer (2010).

Limiting the occurrence of catastrophic outlier photo-z
estimates—those galaxies whose estimated redshift differs
substantially from their actual redshift—is a top priority for

controlling photo-z errors. In addressing this challenge we
present a study directed toward a novel method to flag potential
catastrophic outlier photo-z predictions through the utilization
of individual galaxy redshift probability information. We
utilize SPIDERz (SuPport vector classification for IDEntifying
Redshifts) Jones & Singal (2017), a custom implementation of
a support vector machine classification model for photometric
redshift analysis, which naturally outputs an effective redshift
probability distribution for each galaxy.6 SPIDERz’s natural
output of an effective redshift probability distribution for each
galaxy is not necessarily typical for empirical photo-z
estimation methods (which make a predictive model based on
a training set with known redshifts), but some other empirical
methods which can output probability information are ArborZ
Gerdes et al. (2010), TPZ Carrasco Kind & Brunner (2013),
SkyNet Bonnett (2015), ANNz2 Sadeh et al. (2016). The
techniques discussed in this work should theoretically be
relevant to any photo-z estimation method which provides the
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1 http://www.lsst.org
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5 http://kids.strw.leidenuniv.nl

6 Available fromhttp://spiderz.sourceforge.net with usage documentation
provided there.
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requisite redshift probability distribution information for
individual galaxies.

The performance of candidate photo-z methods should
ideally be demonstrated on test data that is representative of
the data anticipated by future large-scale surveys. In particular,
some data sets, such as much of the LSST catalog, will have
photometric data for optical bands only, while others, such as
Euclid, will have or overlap with infrared bands. Additionally,
some important data sets will span a large redshift range with
many high redshift objects. In this work we perform analyses
on real data approximating these conditions. Furthermore, in
order to approximate the photometric redshift evaluation
conditions of future large-scale surveys, we adopt training set
sizes that are much smaller than evaluation set sizes.

Photo-z methods have been traditionally divided into two
categories: template-fitting and empirical methods. Template-
fitting methods rely on fitting galaxy photometry to template
spectra evolved with redshift, typically derived using χ2

minimization, e.g., Le Phare Arnouts et al. (1999), Ilbert et al.
(2006), BPZ Benítez (2000), HyperZ Bolzonella et al. (2000),
zebra Feldmann et al. (2006), EAZY Brammer et al. (2008),
gazelle Kotulla & Fritze (2009), and DELIGHT Leistedt &
Hogg (2017). Template-fitting methods depend critically on the
extent to which galaxy spectral energy distributions (SEDs)
library templates adequately represent properties of observed
SEDs corresponding to target galaxy populations for which one
wants to estimate the redshifts; the selection of ill-fitted SED
templates provides the greatest source of errors in redshift
determinations with these models. Some techniques for
template fitting have incorporated the use of training sets of
objects with known photometry and spectroscopic redshifts to
better calibrate representative SED templates Benítez et al.
(2004), Ilbert et al. (2006, 2009).

Empirical methods, which rely on training sets with known
redshifts to derive a mapping from photometry to redshift,
depend critically on the extent to which training galaxy
populations adequately represent target galaxy populations in
terms of the parameter overlap of photometric inputs and true
redshift distributions. Early examples of empirical photo-z
methods utilized relatively simple techniques to achieve such a
mapping (e.g., polynomial fitting Connolly et al. 1995). More
recently, models that produce mappings with greater complex-
ity utilizing machine learning have been examined (e.g.,
artificial neural networks Firth et al. 2003; Collister &
Lahav 2004; Vanzella et al. 2004; Singal et al. 2011; Brescia
et al. 2014; Sadeh et al. 2016, support vector machines
Wadadekar 2004; Wang et al. 2007; Jones & Singal 2017,
Gaussian process regression Way & Srivastava 2006, boosted
decision trees Gerdes et al. 2010, random forests Carrasco Kind
& Brunner 2013; Rau et al. 2015, genetic algorithms Hogan
et al. 2015, sparse Gaussian framework Almosallam et al.
2016, nearest neighbor search Ball et al. 2007, 2008, and
spectral connectivity analysis Freeman et al. 2009). A review

and comparison of a number of existing photo-z methods can
be found in Hildebrandt et al. (2010), Abdalla et al. (2011),
Sanchez et al. (2014).
Here we follow convention Hildebrandt et al. (2010) and

define “outliers” as those galaxies where
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where zphot and zspec are the estimated photo-z and actual
(spectroscopically determined) redshift of the object. Although
there is not a standard, universal definition of “catastrophic
outliers” we use a definition that is typical Bernstein & Huterer
(2010):
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where ngals is the number of galaxies in the evaluation testing
set and Σgals represents a sum over those galaxies. We also
calculate the rms error without the inclusion of outlier galaxies,
referring to this quantity as the “reduced” rms or R-rms.
In Section 2 we present a summary overview of the SVM

model implemented in SPIDERz and discuss the probability
information produced for each galaxy. In Section 3 we present
a method for flagging potential catastrophic outlier photo-z
estimates made by SPIDERz through the utilization of redshift
probability information. In Section 4 we discuss the results of
testing SPIDERz on the two test data sets utilizing COSMOS
multi-band photometry. We present a discussion in Section 5.

2. SPIDERz and Effective Probability Distributions

A full discussion of the SPIDERz algorithm, mathematical
theory, and a suite of tests with various data sets and
comparisons with other photo-z determination methods is
available in Jones & Singal (2017). Here, we will provide a
brief outline of the machine learning photo-z process for
context, but we primarily focus on the utilization of the
naturally available probability information for each galaxy
produced during photo-z evaluations with SPIDERz. The
general technique we propose in this work for utilizing the
probability information, however, should theoretically be
relevant to any photo-z estimation method which provides the
requisite probability information for individual galaxies.
Generally speaking, machine learning photo-z codes perform

two main processes: training and evaluation. The output of the
training process is a mapping from band magnitudes (and
potentially additional information) to redshift. The collection of
mappings comprise a predictive model that can be used to
make photo-z predictions on evaluation galaxies.
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SPIDERz utilizes support vector classification to make
photo-z predictions, where bins of redshift are assigned class
labels, and photo-z estimation is performed via the solution to a
multi-class classification problem. SPIDERz solves the multi-
class problem with a “one against one” or “pairwise coupling”
approach that treats the complex multi-class problem as a series
of simpler binary class problems consisting of every possible
pairing of classes (in this case redshift bins). Thus for a system
comprised of m distinct classes (m redshift bins in this case),
SPIDERz formulates and solves ( )-m m 1

2
separate binary

classification problems, choosing the more likely class (redshift
bin) in each binary pairing. Each instance of classification in
favor of a particular redshift bin can be regarded as a “vote” for
that class. The entire collection of ( )-m m 1

2
votes forms a

distribution (see Figure 1 for examples) that we call an
“effective” probability distribution (EPDF) for each galaxy,
with the relative probability of each redshift bin proportional to
the number of times the corresponding class was chosen as the
best binary solution. This EPDF is not continuous, but rather is
resolved to the bin-width level. Discrete zphot estimates, if they
are desired, can be obtained for each galaxy by simply taking
the redshift bin with the highest number of votes.

Examples of actual EPDFs for individual galaxies in the
COSMOSx3D-Hubble Space Telescope (HST) data set
described in Section 4.1 are shown in Figure 1. The top panel
shows the presence a uniform singular probability peak
characteristic of typical cases where zphot≈zspec. The middle
and bottom panels show distributions with multiple peaked
probabilities throughout wide redshift distances, which is a
feature that is typical of many inaccurate zphot estimates.

We use the terminology “effective PDF” because of the way
that all bins are used in comparison, thus artificially inflating
low probability bins due to the inevitable pairwise comparisons
of two low probability bins. However the overall shape of the
EPDFs, in regard to higher probability bins which are the only
ones relevant in this analysis, approaches that of a true
probability distribution.

To briefly illustrate how the EPDF compares to a true
probability distribution function, if one desires to mitigate the
effect of low probability bin inflation in the EPDFs for
comparisons between the summed EPDF for all galaxies and
the known N(z) distribution in testing determinations, one
would apply weights to the EPDFs that are proportional to the
fractional population of training galaxies in each redshift bin
relative to the total training galaxy population. Weights are
determined for each redshift bin Δzi by
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i and l is the number of redshift bins.
Weights are applied to the EPDF by
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where ( )DP zw i is the weighted probability for some redshift bin
Δzi, and PEff(Δzi) is the probability given by the unweighted
EPDF. In this way, as shown in Figure 2, we can see that there
is meaningful probability information in the EPDFs and that
they can be made, in aggregate, to approach a true probability
distribution with weighting. For the present work, however, the
degree of fidelity of the EPDFs to true probability distribution
functions is not important, as only the highest probability bins
are relevant, and so no weighting is applied—the analyses in
this work simply use the raw EPDFs as output by SPIDERz.
The reason for this is severalfold: first, we would like to
demonstrate the method of this work with the raw output of a
machine learning classifier, for the simplest, most general
situation. Further, while it is the case that in the analyses here
the training set and the evaluation set have practically the same
redshift distribution, that is not necessarily the case for all
generic photo-z evaluations going forward, so weighting the
individual output galaxy probabilities by the particular redshift
distribution of the training set may not be appropriate.
Additionally, in this work we are focusing on the utility of
individual galaxy probability functions. If one were to weight
those functions individually by the cumulative redshift
distribution of a given single training set, the amount that high
probability peaks are scaled up and down would be highly
dependent on the particulars of that training set, and would be
different for another training set; therefore values investigated
quantitatively here would be entirely training set dependent,
and certain training sets would result in a weighting where no
individual galaxies have high probability peaks at high
redshifts.
We note that to produce Figure 2, due to the relatively

limited population of galaxies at high redshifts in the
COSMOSx3D-HST data set used in this analysis, the presence
of unpopulated redshift bins at high z in a training set is often
unavoidable. So in order to present a useful comparison
between the summed EPDFs and distribution of discrete most
probable estimates N(zphot) produced in SPIDERz determina-
tions with the actual redshift distribution N(zspec) for this
particular data set, we utilized a subset of test data galaxies
restricted to z<2.9, ensuring all redshift bins are populated for
this particular calculation only.
By default, SPIDERz chooses the most probable (commonly

occurring) redshift bin as a single valued photo-z estimate for
the galaxy. In this analysis we use this method for discrete
photo-z predictions, such as those shown in Figure 4. In this
work we seek a method to identify potential catastrophic
outliers in such photo-z predictions.
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SPIDERz also allows users flexibility in redshift bin size.
We generally find determinations have increased accuracy and
precision when smaller bin sizes are used, however the optimal
bin size for any determination will be dependent on the size and
nature of the training set (decreasing the bin size for
determinations lowers existing parameter overlap between
training and evaluation sets), and can be approached via trial-
and-error or approximated with the bin size introduced as an
additional parameter in a grid search (see a detailed discussion
in Jones & Singal 2017).

3. Strategy for Identifying Potential Catastrophic
Outliers with EPDFs

To identify potential catastrophic outlier photo-z estimates
we focus on the existence of individual galaxies’ EPDFs
displaying multiple probability peaks, or somewhat equiva-
lently, a “weak” primary probability peak. There is some
ambiguity in what constitutes multiple substantial probability
peaks in a galaxy’s EPDF. In particular, a secondary peak is
more likely to be significant if it is closer in height (probability)
to the primary (highest probability) peak, and also if it is
located farther away in redshift from the primary peak. Let us
denote the ratio of the probability of a secondary peak i to the

Figure 1. Examples of EPDFs as determined by SPIDERz for particular
individual galaxies in the COSMOSx3D-HST data set described in Section 4.1.
The top panel shows an EPDF with a singular uniform probability peak, which
is typical of galaxies with accurate redshift estimates. The middle panel shows
a classic doubly peaked EPDF where the spectroscopic redshift is near the
slightly lower peak, which is often the case for catastrophic outlier redshift
estimates. The bottom panel shows an EPDF without a clear probability peak,
which also can be the case for catastrophic outlier redshift estimates.

Figure 2. Reconstructed redshift distributions from a determination with
SPIDERz using 1200 training galaxies compared to the actual COSMOSx3D-
HST evaluation sample of 2323 galaxies. Test data for the determination shown
in this figure only were limited to z<2.9 to prevent the occurrence of
unoccupied redshift bins at high redshifts. Distributions are shown for the
actual spectroscopic redshift, the single best-estimate (highest probability bin)
photo-z, the summed EPDF, and the weighted summed EPDF.

(A color version of this figure is available in the online journal.)
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primary peak in a galaxy’s EPDF as

( )=p
p

p
, 7f

i

max

where pmax is the probability of the primary (highest
probability) peak, and let us also denote the redshift distance
between that secondary peak and the primary peak as Δzpeak.
Thus a designated minimum value for pf (pf,min), and a
designated minimum value for Δzpeak (Δzpeak,min), can serve as
filter values above which a multiply peaked EPDF is flagged. If
at least one redshift bin in an EPDF distribution satisfies both
of theD > Dz zpeak peak,min and >p pf f ,min criteria, the galaxy is
flagged as a potential catastrophic outlier. The optimal values
for pf,min and Δzpeak,min will vary depending on factors such as
the redshift range of test data and designated bin size, and the
relative importance of flagging more catastrophic outliers
versus avoiding spurious flaggings.

The simplest way to deal with flagged galaxies would be to
remove them from analyses which rely on photo-zs. This
would, of course, remove some fraction of catastrophic outliers
and other outliers, along with some fraction of non-outliers. In
Section 4.2 we show that the former number can be relatively
high and the latter relatively low. In this analysis going forward
we consider flagging as somewhat equivalent to removal from
consideration, while acknowledging that other strategies, such
as de-weighting while not completely eliminating flagged
galaxies in analyses, are possible and likely desirable in some
circumstances.

4. Results

In this section, we present the results from our study of using
EPDFs to identify probable outlier and catastrophic outlier

galaxy estimates as discussed in Section 3. We begin with a
discussion of the two test data sets used in these photo-z
analyses. Next we provide results from photo-z determinations
performed with SPIDERz on the test data sets—both with and
without application of the EPDF outlier identification method
discussed in Section 3. Metrics of performance for this method
are provided for a range of values for the identification criteria,
assuming here a simple removal of flagged galaxies.

4.1. Test Data Sets

To obtain a data set of real galaxies with publicly available
spectroscopic redshifts containing sources throughout a large
redshift range including higher redshifts we use spectroscopic
redshifts from the 3D-HST survey performed with the HST and
reported in Momcheva et al. (2016) that overlap with
photometry from the COSMOS2015 photometric catalog
Laigle et al. (2016) which reports photometry for over half a
million objects in the COSMOS field Scoville et al. (2007). For
spectroscopic redshifts we use the reported “best available”
redshift measurement and eliminate those flagged as having
their redshift obtained from photometry or as being stars. This
results in a data set of 3704 galaxies, of which 383 (10.3%)
have z>2 and 948 (25.6%) have >z 1.5. The N(z)
distribution for this data set is shown in Figure 3. These data
span an i-band magnitude range from 27.05 to 18.16 with a
median of 23.74.
In order to form an additional test set with a significantly

larger number of real galaxies, we also utilize galaxies from the
COSMOS2015 photometric catalog that contain particularly
reliable, previously estimated photometric redshifts derived
from a large number of photometric bands. As the

Figure 3. N(z) distribution for the 3704 galaxies comprising the COSMOSxHST (left) and 58,622 galaxies comprising the COSMOS2015 (right) test data sets used in
this analysis.
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COSMOS2015 catalog provides photometry for some galaxies
in up to 31 optical, infrared, and UV bands, those galaxies with
(i) magnitude values for at least 30 bands of photometry, and
(ii) for which the stated χ2 for the redshift estimate is <1, and
(iii) for which the stated photo-z value from the minimum χ2

estimate is less than 0.1 redshift away from the stated photo-z
value from the peak of the PDF, can be considered to have
highly reliable previous redshift estimates. Applying these
criteria result in a data set of 58,622 galaxies spanning an i
band magnitude range from 27.17 to 19.00 with a median of
24.08. For shorthand purposes we will refer to this set as the
“COSMOS-reliable-z” test data set. The N(z) distribution for
this data set is also shown in Figure 3.

Although the COSMOS2015 catalog provides photometry in
a potentially large number of optical, infrared, and UV bands,
we choose to restrict our test analyses to the u, B, V, r, i, z+, Y,
H, J, and Ks bands, and a subset of five of these bands, because
with data sets approaching 30 bands of photometry, the
distinction between photo-z estimation and spectroscopic
redshift determination is somewhat muddled, and in any case
this does not represent a realistic photometric situation for
upcoming large surveys such as LSST, even for subsets which
would have infrared survey overlap. In the following sections
we refer to test data consisting of only five optical bands (u, B,
r, i, z+) as the “five-band case,” which could resemble the
default situation for obtaining photometric redshifts from a very
large optical survey, and similarly refer to test data comprised
of all ten aforementioned bands as the “ten-band case,” which
could resemble the situation for obtaining photometric results
from a large optical survey that overlaps a large near-infrared
survey. For these bands we use aperture magnitudes measured
in a 3″ aperture. The depths of the photometry for the bands are
given in Table1 of Laigle et al. (2016). We have not utilized
galaxies with missing photometry values in these bands—for
the COSMOSx3D-HST test set the number of galaxies where
this is the case is negligible, while for the COSMOS-reliable-z
test set applying this filter has almost no effect since this data
set by definition contains 30 reliable bands of photometry.

Unless otherwise noted, all determinations are performed
with randomly selected training and testing set populations of
1200 and 2504 galaxies respectively for the COSMOSx3D-
HST data set, and 5000 and 53,622 galaxies for the COSMOS-
reliable-z data set. Increasing the training population size
beyond 1200 for the COSMOSx3D-HST data set produced
only marginal improvements in photo-z accuracy. For the
COSMOS-reliable-z data set we chose to maintain a training set
to evaluation set size ratio of below 1:10 in order to more
closely approximate the photo-z conditions of future large-scale
survey analyses than would be achieved with doing analyses
with larger ratios.

We note that the galaxies in these data sets span the largest
redshift range of publicly available real galaxy photo-z test data
with photometry down to these magnitudes of which we are

aware. We also note that a significant limitation is posed on the
performance accuracy of SPIDERz due to inadequate para-
meter overlap between training and evaluation galaxies in
sparsely populated redshift regions, which, among other
restrictive influences, imposes a lower limit on the redshift
bin size that can be effectively used.

Figure 4. The best discrete photo-z estimation (most probable redshift, as
discussed in Section 2) as determined by SPIDERz vs. the actual redshift for
the COSMOSx3D-HST data set discussed in Section 4.1 for a realization of the
five-band (top) and ten-band (bottom) cases. The catastrophic outlier
identification method discussed in Section 3 was employed for these
determinations with the Δzpeak,min=0.6 and pf,min=0.90 criteria and the
flagged galaxies are shown by red crosses. These determinations were
performed with a training set consisting of 1200 galaxies chosen at random
and an evaluation testing set consisting of the other 2504 galaxies. A bin size of
0.1 was used. Outliers in a determination are defined by Equation (1), shown as
those points lying outside of the two diagonal lines. The density of points
within the lines is quite high—only 2.6% of points lie outside of the lines as
outliers for the ten-band case (BOTTOM) before flagging and 6.7% for the
five-band case (TOP).
(A color version of this figure is available in the online journal.)
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4.2. Results for Various Parameter Choices

Figure 4 displays the estimated SPIDERz photo-z versus
actual redshift for an example of typical determinations with
the five-band and ten-band cases for the COSMOSx3D-HST
data set discussed in Section 4.1. The EPDF outlier identifica-
tion method discussed in Section 3 was then employed for
these determinations with particular flagging parameters
Δzpeak,min=0.6 and pf,min=0.95. Red data points indicate

flagged potential catastrophic outlier estimates in these cases.
Estimates with the ten-band case are of course significantly
better than with the five-band case.
To examine the influence of our proposed method for

flagging potential catastrophic outliers in photo-z determina-
tions, we performed an extensive analysis with test determina-
tions on the five-band and ten-band cases for both the
COSMOSx3D-HST and COSMOS-reliable-z data sets using a

Figure 5. Visualization of photo-z performance metrics from determinations performed by SPIDERz on the COSMOSx3D-HST data set discussed in Section 4.1 for
the five photometric band case using a range ofΔzpeak,min values and fixed pf,min=0.90, considering that all flagged galaxies would be removed from an analysis that
relied on accurate photo-zs. We also include the performance for the default case of no flagging on the left-most portion of the x-axis labeled “D.” The determinations
were performed with a bin size of 0.1, and a training set consisting of 1200 galaxies chosen at random and an evaluation testing set consisting of the other 2504
galaxies, with results averaged over six determinations. The performance metrics shown include the percentage of outliers (TOP), followed by the percentage of
outliers removed (2nd from TOP), followed by the percentage of catastrophic outliers remaining (3rd from TOP), followed by the percentage of non-outliers removed
(3rd from BOTTOM), followed by the percentage of catastrophic outliers removed (2nd from BOTTOM), and finally the percentage of removed galaxies that are
outliers (BOTTOM). The variance in performance across the six randomized realizations is indicated.
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range of Δzpeak,min and pf,min values, redshift bin sizes, and
training population sizes.

Perhaps surprisingly, we determine that appropriate values of
pf,min are quite high, with any values below pf,min=0.9
resulting in an unacceptably large number of spurious
flaggings. We find variations in the designated value for
Δzpeak,min greatly influence the performance of the outlier
identification method, as measured by the relative numbers of
correct outlier identifications versus spurious removal of non-
outliers, however variations in pf,min produced marginal
difference in the range 0.90�pf,min�0.98.

We also find that discrete photo-z accuracy is generally
highest on this test data when using redshift bin sizes between
0.1 and 0.05; the use of larger bin sizes significantly reduced
photo-z precision across all z values and particularly at lower
zs, as expected, while the use of bin sizes less than 0.05
produced a significant number of unoccupied bins at higher

redshifts and deteriorated parameter overlap between training
and evaluation sets.
Figures 5 and 7 and Tables 1 and 2 show various

performance metrics from determinations with SPIDERz using
the EPDF outlier identification method on COSMOSx3D-HST
test data. Table 1 highlights the percentage of outliers,
percentage of outliers removed, percentage of removed
galaxies that are outliers, percentage of non-outliers removed,
percentage of catastrophic outliers removed, and finally the
percentage of catastrophic outliers remaining for determina-
tions on five-band and ten-band cases for this data set, with a
range of values for Δzpeak,min and a fixed pf,min of 0.90, while
Figure 5 provides a visual compendium of some of those
quantities for the five-band case. Table 2 shows various metrics
for several combinations of Δzpeak,min and pf,min values.
Figure 7 shows a redshift histogram of the reduction in the
number of catastrophic outliers and outliers present in a typical
determination with the five-band case with one particular

Table 1
Results for Analyses Performed with SPIDERz on the Five and Ten Photometric Band Test Data Sets Derived from the COSMOSx3D-HST Data Discussed in

Section 4.1

Δzpeak,min O % Oremoved % Oc % Oc
removed % Onon

removed % Precision % σrms ‐sR rms

Five photometric bands
(0.1 bin size)

Default 11.6 L 3.17 L L L 0.222 0.052

0.2 4.81 58.5 0.949 81.2 32.2 23.2 0.118 0.035
0.3 6.12 47.2 1.04 74.5 16.9 31.4 0.129 0.042
0.4 7.19 38.0 1.15 69.5 11.5 35.3 0.141 0.045
0.5 7.19 38.0 1.15 69.5 11.5 35.3 0.141 0.045
0.6 8.46 27.1 1.31 63.0 6.95 39.4 0.157 0.048
0.7 8.46 27.1 1.31 63.0 6.95 39.4 0.157 0.048
0.8 9.29 19.9 1.37 59.9 4.75 41.5 0.161 0.049
0.9 9.57 17.5 1.43 57.8 4.18 41.6 0.162 0.049
1.0 9.57 17.5 1.43 57.8 4.18 41.6 0.162 0.049

Ten photometric bands
(0.05 bin size)

Default 4.17 L 1.08 L L L 0.144 0.047

0.2 0.938 77.5 0.146 86.5 53.1 6.89 0.064 0.025
0.3 1.49 64.3 0.129 88.1 20.5 13.4 0.069 0.037
0.4 2.02 51.6 0.180 83.3 9.59 20.8 0.078 0.042
0.5 2.21 47.0 0.198 81.7 7.48 23.4 0.079 0.043
0.6 2.66 36.2 0.218 79.8 3.96 30.8 0.085 0.045
0.7 2.76 33.8 0.237 78.1 3.44 32.3 0.087 0.045
0.8 2.95 29.3 0.257 76.2 2.92 33.0 0.088 0.046
0.9 3.07 26.4 0.277 74.4 2.74 32.3 0.090 0.046
1.0 3.12 25.2 0.290 73.1 2.66 32.1 0.090 0.046

Note. Determinations feature 1200 galaxies used for training and the remaining 2504 galaxies used for evaluation. Six determinations were performed for every case,
each with randomized training and evaluation testing sets, and results averaged. Results are shown for the default cases with no flagging, and also with implementation
of the EPDF outlier flagging method discussed in Section 3 using a range of Δzpeak,min values and fixed pf=0.90, assuming that all flagged galaxies would be
removed from a data set that relied on accurate photo-zs, to illustrate the percentage reduction in outlier and catastrophic outlier galaxies achieved at the cost of
incorrectly removing a percentage of non-outlier galaxies. Here we use the shorthand O and Oc for outliers and catastrophic outliers, respectively, which are defined by
Equations (1) and (2), and Onon for non-outliers. The “Precision” refers to the percentage of flagged galaxies which are outliers. The rms and reduced rms errors are
also included for each case and defined by Equation (3) as discussed in Section 1.
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parameter value choice. Figure 6 shows performance metrics
from determinations with SPIDERz using the EPDF outlier
identification method on the COSMOS-reliable-z test data set
with a fixed pf,min of 0.90. Comparing Figures 5 and 6 it is clear
that results from the two test data sets are quite similar but with
significantly smaller error bars in the COSMOS-reliable-z case,
as would be expected from a significantly larger data set.

We see that certain choices for Δzpeak,min and pf,min result in
successfully flagging a high percentage (>50%) of the
catastrophic outliers while flagging a small percentage (2%–

4%) of the non-outlier galaxies. On the other hand, low values
of Δzpeak,min result in the flagging of a large percentage of the
non-outlier galaxies.

Table 2
Improvements in rms and R-rms (defined by Equation (3)), and the Percentage of Catastrophic Outliers (Oc, Defined in Equation (2)) after Flagging Potential

Catastrophic Outlier EPDFs in SPIDERz Determinations on COSMOSx3D-HST Test Data for the Five Photometric Band Case for a Range of Δzpeak,min and pf,min

values, with a Redshift Bin Size of 0.1, Assuming Removal of Flagged Galaxies, where Δ% Indicates a Comparison to Default Values

pf,min Δzpeak,min Oc % Δ% σrms Δ% ‐sR rms Δ% Onon
removed %

Default L 2.90 L 0.225 L 0.052 L L
0.98 0.2 2.63 −0.094 0.208 −0.077 0.050 −0.034 2.48
0.98 0.3 2.64 −0.090 0.209 −0.071 0.051 −0.021 1.50
0.98 0.4 2.64 −0.090 0.209 −0.071 0.051 −0.021 1.50
0.98 0.5 2.65 −0.086 0.210 −0.066 0.051 −0.014 0.937
0.98 0.6 2.65 −0.086 0.210 −0.066 0.051 −0.008 0.937
0.98 0.7 2.65 −0.084 0.211 −0.064 0.051 −0.008 0.545
0.98 0.8 2.66 −0.083 0.211 −0.062 0.051 −0.006 0.364

Default L 3.04 L 0.224 L 0.051 L L
0.95 0.2 1.98 −0.348 0.176 −0.216 0.045 −0.115 9.21
0.95 0.3 2.02 −0.335 0.180 −0.196 0.048 −0.066 5.18
0.95 0.4 2.05 −0.326 0.183 −0.182 0.049 −0.043 3.20
0.95 0.5 2.05 −0.326 0.183 −0.182 0.049 −0.043 3.20
0.95 0.6 2.07 −0.318 0.185 −0.172 0.050 −0.028 2.00
0.95 0.7 2.07 −0.318 0.185 −0.172 0.050 −0.028 2.00
0.95 0.8 2.09 −0.311 0.186 −0.168 0.050 −0.022 1.60

Default L 3.17 L 0.222 L 0.052 L L
0.9 0.2 0.949 −0.700 0.118 −0.471 0.035 −0.334 32.2
0.9 0.3 1.04 −0.671 0.129 −0.419 0.042 −0.192 16.7
0.9 0.4 1.16 −0.635 0.141 −0.365 0.045 −0.129 11.5
0.9 0.5 1.16 −0.635 0.141 −0.365 0.045 −0.129 11.5
0.9 0.6 1.31 −0.587 0.157 −0.293 0.048 −0.077 6.95
0.9 0.7 1.31 −0.587 0.157 −0.293 0.048 −0.077 6.95
0.9 0.8 1.37 −0.567 0.161 −0.276 0.049 −0.053 4.75

Default L 3.19 L 0.227 L 0.052 L L
0.8 0.2 1.36 −0.576 0.099 −0.565 0.006 −0.880 97.6
0.8 0.3 0.454 −0.858 0.085 −0.624 0.020 −0.618 76.1
0.8 0.4 0.463 −0.855 0.101 −0.557 0.030 −0.417 52.9
0.8 0.5 0.463 −0.855 0.101 −0.557 0.030 −0.417 52.9
0.8 0.6 0.562 −0.824 0.119 −0.478 0.040 −0.230 30.6
0.8 0.7 0.562 −0.824 0.119 −0.478 0.040 −0.230 30.6
0.8 0.8 0.631 −0.802 0.126 −0.446 0.044 −0.146 19.2

Default L 2.94 L 0.223 L 0.052 L L
0.7 0.2 L L L L L L 100
0.7 0.3 1.69 −0.425 0.058 −0.739 0.004 −0.915 99.9
0.7 0.4 0.171 −0.942 0.061 −0.725 0.010 −0.799 98.7
0.7 0.5 0.171 −0.942 0.061 −0.725 0.010 −0.799 98.7
0.7 0.6 0.231 −0.922 0.088 −0.604 0.024 −0.536 87.4
0.7 0.7 0.231 −0.922 0.088 −0.604 0.024 −0.536 87.4
0.7 0.8 0.256 −0.913 0.100 −0.551 0.035 −0.320 66.2

Note.We section results according toΔzpeak,min values and recomputed default determinations in each section. Six determinations were performed for every case, each
with randomized training and evaluation testing sets consisting of 1200 and 2504, respectively, and results averaged. We also show the percentage of non-outliers
(Onon) flagged.
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It is also of interest to explore whether this method flags an
excessive fraction of galaxies at higher redshifts and/or higher
magnitudes. In Figure 9 we show the percentage of non-outliers
flagged in bins of 0.1 in redshift (left panel) and in sextiles of i-
band magnitude (right panel) for the COSMOS-reliable-z test
data set with flagging parameter values pf,min=0.95 and
Δzpeak,min=0.6. It is seen that less than 15% of non-outliers
are flagged in the highest magnitude (dimmest flux) sextile, but
in a few of the least populated redshift bins in the sample
roughly half of non-outliers are flagged. This suggests that
steps could be taken to mitigate this effect within certain low
population redshift bins, as discussed in Section 5.

5. Discussion

In this work we have considered the utilization of
SPIDERz’s effective redshift probability distributions for
flagging likely catastrophic outlier photo-z predictions—gross
mis-estimations defined by ∣ ∣- >z z 1phot spec —by considering
galaxies with multiple or ill-defined peaks in photo-z
probability separated by redshift. We introduced a formalism
with two threshold criteria: the minimum redshift separation of
multiple peaks (Δzpeak,min) and the minimum probability ratio
of secondary probability peaks to the highest probability peak
(pf,min), as discussed in Section 3, to preemptively flag potential
catastrophic outlier estimates. We implemented this method in

Figure 6. Same as Figure 5 but for the COSMOS-reliable-z data set discussed in Section 4.1, and with fixed pf,min=0.90. The variance in performance across the six
randomized realizations is indicated. Results from this data set are quite similar to those from the COSMOSx3D-HST data set shown in Figure 5 but with smaller error
bars, as would be expected from a much larger data set.
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SPIDERz photo-z determinations performed with real galaxy
test data spanning a wide redshift range 0<z<4 and
utilizing limited photometric bands to estimate photometric
redshift (see Section 4.1), testing a range of threshold values for
Δzpeak,min and pf,min.
We found Δzpeak,min to have the greatest influence on the

fraction of catastrophic outliers which were flagged, while
pf,min was sub-dominant in this regard but most strongly
correlated with flagging precision, with low values of pf,min

leading to a higher number of non-outliers flagged. Optimal
values for Δzpeak,min and pf,min for any given application would
result from striking an acceptable balance between more
thoroughly flagging catastrophic outlier galaxies and reducing
the number of spuriously flagged non-outlier galaxies.
We present results for a variety of choices of Δzpeak,min

where this trade-off can be seen, particularly in Figure 5 and
Tables 1 and 2. There are a range of values forΔzpeak,min where
the percentage of catastrophic outliers flagged is quite high and
the percentage of non-outliers flagged is relatively low. For all
parameter choices, more non-outliers are flagged than outliers,
but this is likely inevitable considering that in the default case
the vast majority of galaxies are non-outliers (>90% of the
galaxies in the five-band case and >95% in the ten-band case).
We have seen that with proper choices for Δzpeak,min and

pf,min, EPDFs can be utilized to flag potential catastrophic

Figure 7. Redshift histogram of the number of outliers (left) and catastrophic outliers (right), both as defined in Equations (1) and (2) respectively, present in one
particular typical determination with the five photometric band case for the COSMOSx3DHST test data set compared to the numbers flagged through the use of the
EPDF flagging method with flagging parameter values pf,min=0.90 and Δzpeak,min=0.6.
(A color version of this figure is available in the online journal.)

Figure 8. Galaxies of the COSMOSx3D-HST test data set plotted in a two-
color space, with those galaxies flagged under the optimized Δzpeak,min=0.6
and pf,min=0.90 criteria indicated with red crosses. In this analysis we find
that flagged galaxies do not occupy systematically different regions of color
space than non-flagged galaxies, indicating that flagging does not favor one
particular galaxy type or types in this case.
(A color version of this figure is available in the online journal.)
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outlier photo-z predictions with a high degree of overall
effectiveness in determinations performed on a data set which
spans a wide redshift range and contains realistic photometry in
a limited number of wavebands. As discussed in Section 3, in a
future large-scale survey utilizing photometric redshifts, the
simplest use of such flagging information would be to simply
remove the flagged galaxies from science analyses in which
catastrophic outlier redshift predictions are detrimental, such as
weak-lensing cosmology. Another simple option for utilization
of flagging information could include de-weighting of potential
catastrophic outliers in cosmological probes.

If such flagged galaxies are simply removed from analysis,
there is, necessarily, a trade-off between more complete
removal of actual catastrophic outliers and spurious removal
of non-outliers. In this work we present various options for the
parameters Δzpeak,min and pf,min (discussed in Section 3) which
lead to different points on this trade-off continuum. We show
the various results for catastrophic outliers removed, spurious
removals, and other metrics in Tables 1 and 2 and visualiza-
tions in Figures 7 and 5. It is seen that for a range of flagging
parameter values a favorable ratio of total genuine catastrophic
outlier flagging to spurious non-outlier flagging is obtained, for
example flagging of significantly more than half of catastrophic
outliers while spuriously flagging only 2%–4% of non-outliers.
With the need to obtain precise redshift estimates satisfying
photo-z error constraints for probing cosmological parameters
and the abundance of galaxies that will be observed in future
large photometric surveys, it may be reasonable in many cases
to accept a slightly larger (although still low) percentage of

overall spurious removals in exchange for maximizing the
number of removed catastrophic outlier photo-z estimates.
One could ask whether such removal or de-weighting could

preferentially remove galaxies of a certain type or types. While
this should have only second-order effects on cosmological
probes (assuming a scenario where a purely empirical photo-z
estimation technique is used), it may be of concern for
astrophysical studies. In this analysis we find that flagged
galaxies do not differ systematically in colors from non-flagged
galaxies. Figure 8 shows an example photo-z determination
with the COSMOSx3D-HST data set in a two-color space
which used the same optimized flagging parameters for the
determination shown in Figure 4. The extent to which this
generalizes to any data set is not known at present. However
with any given data set it could be evaluated by testing photo-z
evaluation and flagging on a sub-sample of galaxies of known
redshift, such as a part of the spectroscopic training set itself.
It is important to note, however, that as seen in Figure 9 a

significant fraction of non-outliers are flagged in a few of the
more sparsely populated redshift bins, including some of those
at higher redshifts. This points toward a possible strategy
beyond simple removal of flagged galaxies in these particular
redshift bins in order to not lose for cosmological analyses such
a large fraction of high redshift galaxies in a data set. We will
explore possible weighting strategies for this in a future work.
We do also note two crucial caveats regarding this: (1) that in
this work, as mentioned in Section 1, in order to approximate
the photo-z conditions applying to future large-scale surveys,
we utilize much larger evaluation sets than training sets in this
study. Thus it is likely that by adopting a larger training to

Figure 9. The percentage of non-outliers flagged through the use of the EPDF flagging method in bins of 0.1 in redshift (left) and in equally populated sextiles of i-
band magnitude from highest to lowest magnitude indexed with the median magnitude (right) for the COSMOS-reliable-z test data set with flagging parameter values
pf,min=0.90 and Δzpeak,min=0.6. The results here are for one particular representative determination. The standard deviation from averaging over multiple
determinations would be smaller than the plotting symbols in the i-band case and small in the redshift case. The redshift bins where a large fraction of non-outliers are
flagged are those which are least populated in the sample generally.
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evaluation set size ratio than here, as has been done in many
other photo-z studies in the literature, one could reduce the
percentage of spuriously flagged non-outliers in the sparsely
populated redshift bins given a similarly sized test data set.
Also, (2) it is likely the case that, for a given training to
evaluation set size ratio and N(z) distribution, there will be a
lower percentage of spuriously flagged non-outliers in
relatively sparsely populated redshift bins given a larger
overall test data set. However even with a very large training
set high redshift bins will contain a higher proportion of
potential catastrophic outliers and therefore spurious removals
due to the degeneracy between Balmer and Lyman breaks in
galaxy spectra.

While this analysis focused on utilization of EPDFs provided
by SPIDERz, there is no reason that it should not in principle
be generalizable with analogous parameters to any photo-z
estimation method which provides redshift probability dis-
tribution information for each galaxy. We note though that the
specific optimal flagging parameter values might be quite
different for a non-empirical photo-z estimation method. While
the parameters we used in this work to flag EPDF features,
Δzpeak,min and pf,min, were effective in distinguishing likely
catastrophic outliers, the optimal values of these parameters for
a given purpose are data set dependent to some extent. Also
other photo-z estimation codes and probability determination
methods may or may not necessitate alternate parameter values
and/or definitions to those employed in this work. We also
note that in general results in empirical photo-z estimation
methods often depend on the degree of representativeness of
the training set relative to the evaluation set.
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