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Abstract.  There are two standard ways of classifying transport behavior of 
systems. The first is via time scaling of spread of correlations in the isolated 
system in thermodynamic limit. The second is via system size scaling of 
conductance in the steady state of the open system. We show here that these 
correspond to taking the thermodynamic limit and the long time limit of the 
integrated equilibrium current–current correlations of the open system in 
dierent order. In general, the limits may not commute leading to a conflict 
between the two standard ways of transport classification. Nevertheless, the 
full information is contained in the equilibrium current–current correlations of 
the open system. We show this analytically by rigorously deriving the open-
system current fluctuation dissipation relations starting from an extremely 
general open quantum set-up and then carefully taking the proper limits. We 
test our theory numerically on the non-trivial example of the critical Aubry–
André–Harper model, where, it has been recently shown that, the two standard 
classifications indeed give dierent results. We find that both the total current 
autocorrelation and the long-range local current correlations of the open system 
in equilibrium show signatures of diusive transport up to a time scale. This 
time scale grows as square of system size. Beyond this time scale a steady state 
value is reached. The steady state value is conductance, which shows sub-
diusive scaling with system size.
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1.  Introduction

Fluctuation-dissipation theorem is one of the fundamental concepts of physics, and is 
of interest across all of physics. In terms of current fluctuations in isolated systems in 
the thermodynamic limit, it manifests as the standard isolated system Green–Kubo 
formula [1–3]. The isolated system Green–Kubo formula describes the linear response 
of an isolated macroscopic system to some internal gradient assumed to be set-up due 
to some external temperature or chemical potential bias. Transport coecients like 
particle conductivity can be calculated from the isolated system Green–Kubo formula. 
Under certain standard assumptions, these can also be related to spread of correla-
tions (density correlations in case of particle conductivity) in the isolated system in the 
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thermodynamic limit. The time scaling of the spread of correlations shows whether the 
corresponding transport coecient is finite or zero or diverging and how these limits 
are approached. This makes it possible to classify transport behavior of the system 
in terms of time scaling of spread of correlations. This is one of the standard ways of 
classifying transport behavior (into diusive, sub-diusive, localized, super-diusive or 
ballistic). We call this the isolated system classification of transport.

Alternatively, one can connect the system to two baths (leads) at two ends and 
calculate (measure) the steady state conductance. The scaling of conductance with 
the length of the system (in between the two baths) shows whether the corresponding 
conductivity is finite or zero or diverging in the thermodynamic limit and also how 
these limits are approached. This gives the second standard way of classifying transport 
behaviors (again into diusive, sub-diusive, localized, super-diusive or ballistic). We 
call this the open system classification of transport.

Usually, the above two standard ways of classifying transport behaviors are consis-
tent, but this may not be always so [4–6]. In fact, recent studies in open and isolated 
quasiperiodic systems have shown that the two standard ways of classification can give 
drastically dierent results [6, 7]. The particular case in point is the Aubry–André–
Harper (AAH) model [8, 9]. This is a model of non-interacting particles in a one dimen-
sional lattice in presence of a quasiperiodic potential. Upon increasing the strength 
of the potential, there occurs a phase transition from all eigenstates being completely 
delocalized to all eigenstates being completely localized. The phase transition is medi-
ated by a critical point where the eigenstates are neither completely delocalized nor 
localized but are ‘critical’ [10] and the spectrum has fractal properties [11]. In [6], it 
has been shown that transport in the critical AAH model is ‘diusive-like’ according 
to the isolated system classification, while it is sub-diusive according to the open 
system classification. (We say ‘diusive-like’ because, that isolated system transport is 
not strictly diusive. It was shown in [6] that there exists some hints of super-diusive 
behavior in the isolated system. For strictly diusive systems, the diusion constant 
calculated from spread of correlations in the isolated system and that from the scaling 
of conductance of the open system are expected to match [12].)

The above results suggest that we need to revisit our understanding of the classification 
of transport behavior. Particularly, we need to find the connection between the two 
standard ways of transport classification. In this paper, we show that both the isolated 
system classification and the open system classification actually probe the equilibrium 
current–current correlations of the open system, but under dierent time and length 
scales. In other words, in cases where they give dierent results, (for example, the case 
described above) both behaviors will be seen in the equilibrium current fluctuations of 
the open system.

The standard isolated system Green–Kubo formula gives the current fluctuation–
dissipation relation for the isolated system. So, to bring the open quantum system 
problem to the same footing, we need to find the open-system current fluctuation–
dissipation relations (OCFDR). While there are expected answers to this based on 
experiments [13–15] and previous investigations in non-interacting quantum systems 
[16–18], we would like a rigorous and more general derivation. In the first part of the 
paper, we give our derivation of the OCFDR under very general conditions starting 
from the set-up of an arbitrary system connected to two arbitrary baths with slightly 
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dierent temperatures and chemical potentials (see figure 1). The only assumptions 
we make are time-translational and time-reversal invariance of the full system  +  bath 
Hamiltonian, open system thermalization and the so-called mixing assumption (to be 
explained below). There has been several attempts to generalize linear response theory 
to open quantum systems [16, 19–36]. But, even after extensive literature survey, no 
reference could be found where exactly this derivation for the open quantum system 
has been given in as much generality. Further, we obtain a number of new fundamen-
tal results. For the corresponding classical problem, however, the current fluctuation–
dissipation relations were obtained in full generality in [37–39].

In deriving the OCFDR, we first find a linear response expression for the non-
equilibrium steady state (NESS) density matrix without any further approximations 
(arbitrary system, bath and system-bath coupling Hamiltonians, arbitrary system-size, 
no weak system-bath coupling, no Markovian assumption). This very non-trivial result 
shows that set-ups which show thermalization will always relax to a unique NESS 
in the linear response regime, irrespective of the initial state of the system. Then we 
derive the OCFDR as expressions for the elements of the Onsager matrix [40, 41] for 
thermoelectric transport coecients. These expressions show, in general, the Onsager 
relation, written in terms of system currents, can be violated. The Onsager relation is 
recovered under the assumption of short-ranged system Hamiltonian. Thus, our result 
also gives the form of the Onsager matrix for system Hamiltonians having long range 
terms, where the Onsager relation may not hold. Further, for short-ranged systems, we 
find the rather surprising result that the time integrated current–current correlation 
between any two local currents of the open system in equilibrium is the same and is 
proportional to the corresponding transport coecient. This is in stark contrast with 
the isolated system Green–Kubo formula which involves only total currents of the 

Figure 1.  Our general set-up. HS is the system Hamiltonian, HB1 (HB2) is the 
left (right) bath Hamiltonian, HSB1 (HSB2) is the Hamiltonian coupling system 
to left (right) bath. NS,NB1 ,NB2 are operators corresponding to total number 
of particles in system, left bath and right bath. The baths have infinite degrees 
of freedom. The initial state of the set-up is ρ(0). Initially, the baths are at 

their respective thermal states with slightly dierent (inverse) temperatures and 

chemical potentials β± = β ± ∆β
2

, µ± = µ± ∆µ
2

. The system is initially at some 
arbitrary state ρS. At t → ∞, the system reaches a non-equilibrium steady state 
(NESS) showing transport (i.e. having non-zero currents). We are interested in 
linear response particle and energy transport coecients when ∆β, ∆µ → 0.
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system. Our results for OCFDR for short-ranged system generalizes previously known 
results for non-interacting systems [16] to interacting systems under much more real-
istic assumptions.

Next we show that, for short-ranged systems, the integrated total current–current 
correlations of the open system shows a crossover between open-system behavior and 
isolated thermodynamic limit behavior as a function of system-size and observation 
time, even with strong system-bath coupling. As a consequence, the isolated system 
and the open system classifications of transport correspond to taking the thermody-
namic limit and the long time limit of the integrated total current–current correlations 
of the open system in dierent order. In general the limits may not commute leading 
to conflicting isolated system and open system classifications. Finally, we work out the 
non-trivial example of the open critical AAH model where actually the limits to not 
commute. We show that the diusive-like behavior persists in current fluctuations up 
to some time scale. This scale grows as square of system size. Beyond this time scale a 
steady state is reached, which is sub-diusive. We also find that the long range correla-
tions between far-o local currents of the open system in equilibrium also shows sig-
natures of both the diusive-like behavior of the isolated system and the sub-diusive 
behavior of the open system NESS. To our knowledge, this is the first work explicitly 
showing that time and system-size dependence of current fluctuations of an open sys-
tem in equilibrium can be used to classify both isolated system and open system trans-
port behaviors of a model.

The paper is organized as follows. In section 2, we give the details of the set-up and 
the basic assumptions required. In section 3, we obtain the general expression for NESS 
density matrix in linear response regime. In section 4, we give the OCFDR, which, 
in general, violate the Onsager relation. In section 5, under the assumption of short-
ranged system Hamiltonian, we give various other equivalent forms of the OCFDR 
where Onsager relation is recovered. In section 6, the crossover of integrated equilib-
rium current–current correlations between open system and isolated system behaviors 
is derived. In section 7, we discuss the consequences of this crossover for the standard 
ways of classification of transport. In section 8, we work out the non-trivial example of 
the critical AAH model. In section 9, we summarize our results point by point and give 
the future research directions. The reader may choose to read section 9 first to get to 
know the gist of the main results, without going through the details. Throughout the 
manuscript, � has been set to 1.

2. The set-up, definitions and assumptions

We take a system that is connected to two baths at its two ends (figure 1). The full 
system  +  baths Hamiltonian is given by

Ĥ = ĤS + ĤSB1 + ĤB1 + ĤSB2 + ĤB2 ,� (1)

where ĤS is system Hamiltonian, ĤB1 (ĤB2) is the left (right) bath Hamiltonian, ĤSB1 
(ĤSB2) is system-bath coupling Hamiltonian for left (right) bath. We assume system and 

bath Hamiltonians to be number conserving. So [N̂S, ĤS] = [N̂B1 , ĤB1 ] = [N̂B2 , ĤB2 ] = 0, 
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where N̂S, N̂B1 , N̂B2 are the total number operators of system, left bath and right bath 

respectively. We will also assume [N̂S + N̂Bp , ĤSBp ] = 0, [ĤS + ĤBp , ĤSBp ] = 0, p = 1, 2. 
This physically means that the system-bath coupling Hamiltonians do not act as ‘sources’ 
of particle or energy. In this set-up, we define the following current operators:

ÎBp→S = −
dN̂Bp

dt
= i[N̂Bp , ĤSBp ]

= −i[N̂S, ĤSBp ] = −ÎS→Bp ,

ĴBp→S = −
dĤBp

dt
= i[ĤBp , ĤSBp ]

= −i[ĤS, ĤSBp ] = −ĴS→Bp ,

�

(2)

p = 1, 2. The first line gives particle currents between the baths and the system. The 
second line gives energy currents between the baths and the system. We also define the 
operators ÎS and ĴS as the total particle and energy current operators of the system. 
We will look at the OCFDR for ÎS, ĴS . This corresponds to the transport coecients. 
We assume that each of the system, bath and system-bath coupling Hamiltonians has 
time reversal and time translation symmetries.

Let us also define the following notations:

ρĤEIS ≡ e−β(ĤB1
−µN̂B1

)

Z1

⊗ ρS ⊗ e−β(ĤB2
−µN̂B2

)

Z2

ρĤEIS(∞) ≡ lim
t→∞

e−iĤtρĤEISe
iĤt

ρĤeq ≡
e−β(Ĥ−µN̂)

Z
,

〈...〉 = Tr(...ρĤeq)

�

(3)

where N̂ = N̂S + N̂B1 + N̂B2, ρS is some arbitrary initial state of the system and Z1, 
Z2, Z are corresponding normalization constants (partition functions). The superscripts 
denote that time evolution is with the Hamiltonian Ĥ. Armed with the above definitions, 
now, we make the most crucial assumption of open system thermalization. We say that 
the set-up shows open system thermalization if the following holds

Tr(P̂ ρĤEIS(∞)) = Tr(P̂ ρĤeq) = 〈P̂ 〉,

Tr(eiĤtP̂ e−iĤtQ̂ρĤEIS(∞)) = Tr(eiĤtP̂ e−iĤtQ̂ρĤeq)

= 〈P̂ (t)Q̂(0)〉,
�

(4)

where P̂  and Q̂ are either any two system operators or the current opetarors from the 
baths defined in equation (2). In words, the above equations mean that when the sys-
tem is connected to two baths at same temperature and chemical potential, the system 
observables in long time limit behave as if the full system  +  bath set-up has reached 
the thermal state with the same temperature and chemical potential, irrespective of 
the initial state of the system. While this is physically expected to be generically true, 
the conditions for validity of the above assumption are not known in general. But, for 
non-interacting systems (i.e. where the full system  +  bath Hamiltonian Ĥ is quadratic), 
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following [42, 43], it can be shown to hold if: (a) the spectral functions of the baths 
are well approximated by continuous functions, which in turn requires that the baths 
have infinite of degrees of freedom, (b) the bandwidths of the baths are larger than 
that of the system. On physical grounds, without proof, we will assume that our set-
up is such that equation (4) also holds true for interacting systems. Note that, it is the 

choice of the initial state ρĤEIS that clearly demarcates the system, the baths and the 
system bath coupling Hamiltonians. (If the reader is familiar with the isolated system 
eigenstate thermalization hypothesis (ETH) statement [44], we point to appendix A for 
a discussion.)

Finally, we define the following notation

M(Q̂, P̂ ) ≡ 1

β

∫ ∞

0

dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉

=
1

β
lim
τ→∞

∫ τ

0

dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉.
�

(5)

Using time translation and time-reversal symmetries, one can also show 

M(Q̂, P̂ ) = M(P̂ , Q̂) (see appendix B). If [Q̂, N̂ ] = 0, assuming the limit exists, there 
are no singularities of 〈Q̂(0)P̂ (z)〉 in the upper complex plane and time-reversal and 

time-translation invariances, M(Q̂, P̂ ) can be reduced to (see appendix C)

M(Q̂, P̂ ) =
1

2

∫ ∞

−∞
dt〈Q̂(t)P̂ (0)〉.� (6)

3. The linear response NESS

We are interested in linear response, so let β± = β ± ε∆β/2, µ± = µ± ε∆µ/2, ε → 0. 

We start the set-up in the following non-equilibrium initial state ρĤNIS (see figure 1),

ρ(0) = ρĤNIS,

ρĤNIS ≡ e−β+(ĤB1
−µ+N̂B1

)

Z1

⊗ ρS ⊗ e−β−(ĤB2
−µ−N̂B2

)

Z2

=
e−β(Ĥ′

B1
−µN̂B1

)

Z1

⊗ ρS ⊗ e−β(Ĥ′
B2

−µN̂B2
)

Z2

,

�

(7)

with

Ĥ′
B1

= ĤB1 +
ε

2β
(ĤB1∆β − N̂B1∆(µβ)),

Ĥ′
B2

= ĤB2 −
ε

2β
(ĤB2∆β − N̂B2∆(µβ))

�
(8)

and ∆(µβ) = β∆µ+ µ∆β. ρĤNIS is the standard initial condition used to obtain NESS 
results in open quantum systems. In this case also, the choice of the initial state ρĤNIS 
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clearly demarcates the system, the baths and the system bath coupling Hamiltonians. 
In obtaining the second line of equation (7), we have only regrouped the terms in the 
exponentials and neglected the ε2 term. We define

Ĥ′ ≡ ĤS + ĤSB1 + Ĥ′
B1

+ ĤSB2 + Ĥ′
B2

= Ĥ + εĤpert,� (9)

where

Ĥpert =
1

β
[∆β(

ĤB1 − ĤB2

2
) + ∆(−βµ)(

N̂B1 − N̂B2

2
)].� (10)

Comparing the second line of equation (7) with equation (4), we see that ρĤNIS = ρĤ
′

EIS. 
Thus we make the crucial observation that ρĤNIS is the non-equilibrium initial state 

when evolved with the Hamiltonian Ĥ, but, when evolved with Ĥ′, it is an equilibrium 

initial state and reaches ρĤ
′

EIS(∞) in the long time limit,

lim
t→∞

e−iĤ′tρĤNISe
iĤ′t = lim

t→∞
e−iĤ′tρĤ

′

EISe
iĤ′t = ρĤ

′

EIS(∞).� (11)

We are interested in time evolution with Ĥ. This is given by, 
∂ρ
∂t

= i[ρ, Ĥ] = i[ρ, Ĥ′]− iε[ρ, Ĥpert]. Assuming Ĥ′ as the unperturbed Hamiltonian, solv-

ing for ρ(t) upto linear order in ε (linear response) using Dyson series and taking t → ∞ 
and using equation (11) (see appendix D), we have

ρĤNESS = lim
t→∞

ρ(t)

= ρĤ
′

EIS(∞)− iε

∫ ∞

0

dt′[ρĤEIS(∞), e−iĤt′Ĥperte
iĤt′ ].

�
(12)

In the second term, we have used Ĥ′ → Ĥ, because corrections above this will be of 
order ε2. Taking expectation value of any system operator Ô, and using time-translation 
invariance and open system thermalization (equation (4)), we have,

〈Ô〉NESS = 〈Ô〉H′ + iε

∫ ∞

0

dt〈[Ô(t), Ĥpert]〉

= 〈Ô〉H′ − ε
[
∆β M(ĴB, Ô) + ∆(−βµ) M(ÎB, Ô)

]
,

� (13)

where 〈...〉NESS = Tr(...ρĤNESS), 〈...〉H′ = Tr(...ρĤ
′

eq ), ÎB(t) = [ÎB1→S(t) + ÎS→B2(t)]/2, 

ĴB(t) = [ĴB1→S(t) + ĴS→B2(t)]/2, and M(Q̂, P̂ ) is as defined in equation (5). Obtaining 
the second line from the first line requires some algebra, given in appendix E. Equation 
(13) shows that, in general set-ups showing open system thermalization (equation (4)), a 
unique NESS is reached by system observables in linear response regime, irrespective of 
the initial state of the system. This is a very non-trivial and fundamentally important 
result regarding NESS of general open quantum systems. To our knowledge, this has 
not been shown before.

Note that ÎB(t), ĴB(t) are a symmetric combinations of currents from the left bath 
and currents into the right bath. This is an artefact of choosing the initial inverse 
temperatures (chemical potentials) of the baths as β ± ε∆β/2 (µ± ε∆µ/2). Since  
β(µ) is completely arbitrary and only the dierence in the temperatures and chemical 
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potentials between the baths matter, we could have completely equivalently chosen the 
initial inverse temperatures of the baths as β + ε∆β and β (µ+ ε∆µ, and µ). In that 

case, we would have found ĴB(t) = ĴB1→S(t) (ÎB(t) = ÎB1→S(t)). Similarly, by choosing 
the initial inverse temperatures of the baths as β and β − ε∆β (µ and µ− ε∆µ), we 

would have found ĴB(t) = ĴS→B2(t) (ÎB(t) = ÎS→B2(t)). These three cases are physically 
identical.

Another important point to note is that in calculating 〈Ô〉NESS by equation  (13), 
if 〈Ô〉H′ �= 0, all orders of ε are generated. But only upto O(ε) can be trusted. In the 

following, we will have Ô as a current operator for which 〈Ô〉H′ = 0. So we will not 
encounter this issue.

4. The OCFDR

If Ô is an energy or particle current operator, we have 〈Ô〉H′ = 0, because energy and 
particle current operators are odd under time-reversal while Ĥ′ is even under time 
reversal. Writing equation (13) explicitly for ÎS and ĴS , and omitting ε for notational 
convenience, we obtain the transport coecients

(
〈ĴS〉NESS

〈ÎS〉NESS

)
≡

(
L11 L12

L21 L22

)(
∆β

∆(−µβ)

)

= −

(
M(ĴB, ĴS) M(ÎB, ĴS)

M(ĴB, ÎS) M(ÎB, ÎS)

)(
∆β

∆(−µβ)

)�

(14)

where ÎB(t) = [ÎB1→S(t) + ÎS→B2(t)]/2, ĴB(t) = [ĴB1→S(t) + ĴS→B2(t)]/2. The LHS of the 
above equation  involves expectation value of total system currents in NESS under 
infinitesimal bias, while, the RHS involves expectation value of current fluctuations in 
the thermal state of the whole system  +  bath set-up. Thus we have the OCFDR. High 
temperature limit of equation (14) reproduces the results for classical Hamiltonian sys-
tems connected to Langevin baths [37, 39]. The result can be straightforwardly general-
ized to multiple (more than two) baths.

An important point to appreciate regarding open systems is that, transport 
coecients of finite length systems obtained from a set-up of the type we are consider-
ing (figure 1) will always be finite. As a result, the infinite time limits involved in the 
calculation of RHS of equation (14) (see equation (5)) will always exist for finite length 
open systems. This is in unlike similar infinite time limits that occur in calculation of 
the transport coecients by Green–Kubo formula for an isolated system in thermody-
namic limit, which may diverge (for example, a ballistic system).

Equation (14) has a form similar to definition of Onsager transport coecients, but 

the Onsager relation L12 = L21 clearly does not hold in general (M(ÎB, ĴS) �= M(ĴB, ÎS)). 
Note that, since M(Q̂, P̂ ) = M(P̂ , Q̂), this would not be the case if 〈ĴB〉NESS , 〈ÎB〉NESS 
were calculated instead. Using this fact, as shown in the following, the Onsager relation 
can be recovered under the assumption of a short-ranged system.

https://doi.org/10.1088/1742-5468/ab02f4


Classifying transport behavior via current fluctuations in open quantum systems

10https://doi.org/10.1088/1742-5468/ab02f4

J. S
tat. M

ech. (2019) 043101

5. OCFDR for short-ranged systems

A short-ranged system is one described by a Hamiltonian that can be broken up into L 
surfaces transverse to direction of current flow such that

ĤS =
L∑

�=1

Ĥ�, N̂S =
L∑

�=1

n̂�,

ÎS =
L−1∑
�=1

Î�, ĴS =
L−1∑
�=1

Ĵ�

dn̂�

dt
= Î�−1 − Î�,

dĤ�

dt
= Ĵ�−1 − Ĵ�

dn̂1

dt
= ÎB1→S − Î1,

dn̂L

dt
= ÎL−1 − ÎS→B2

dĤ1

dt
= ĴB1→S − Ĵ1,

dĤL

dt
= ĴL−1 − ĴS→B2 .

�
(15)

Here Ĥ� (n̂�) is the local energy (particle number) operator of �th surface, and Ĵ� (Î�) 
is the local current operator giving energy (particle) flow between �th and �+ 1th sur-
faces. An example of a short-ranged system is a system with nearest-neighbour interac-
tions and hopping. On the other hand, long-ranged systems are ones it is not possible 
to write equation (15), for example, a system with power-law interaction or hopping. 
Equation (14) holds for both long-ranged and short-ranged systems. To our knowledge, 
this is a completely new result for open quantum systems. In the following, we will sim-
plify equation (14) assuming short-ranged systems to obtain some known or expected 
forms of the OCFDR. While the following forms of the OCFDR may be expected or 
known, our derivations starting from equation  (14) will provide a more general and 
rigorous, and less ad-hoc understanding of them. This will also provide important con-
sistency checks for equation (14).

By definition, in the NESS, the LHS of the continuity equations in equation (15) 
will be zero on average. This leads us to

〈ÎB〉NESS = 〈 ÎB1→S + ÎS→B2

2
〉NESS

= 〈ÎB1→S〉NESS = 〈Î�〉NESS =
〈ÎS〉NESS

(L− 1)
,

�
(16)

and similarly for energy currents. Using equation (13) for 〈ÎB〉NESS, 〈ĴB〉NESS, we have,
(
〈ĴS〉NESS

〈ÎS〉NESS

)
= (L− 1)

(
〈ĴB〉NESS

〈ÎB〉NESS

)

= −(L− 1)

(
M(ĴB, ĴB) M(ÎB, ĴB)

M(ĴB, ÎB) M(ÎB, ÎB)

)(
∆β

∆(−µβ)

)
.

�

(17)

This is the OCFDR in terms of fluctuations of currents from the baths. This form 
of OCFDR is expected based on experiments [13–15] and previous investigations in 
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non-interacting quantum systems [16–18]. However, our derivation is a rigorous micro-
scopic derivation of them for a very general case including interacting quantum sys-

tems. Note that since M(Q̂, P̂ ) = M(P̂ , Q̂), now, the Onsager relation is recovered.
Using equations (13) and (15), we can also write the OCFDR in terms of local sys-

tem currents:
(
〈ĴS〉NESS

〈ÎS〉NESS

)
= (L− 1)

(
〈Ĵ�〉NESS

〈Î�〉NESS

)

= −(L− 1)

(
M(ĴB, Ĵ�) M(ÎB, Ĵ�)

M(ĴB, Î�) M(ÎB, Î�)

)(
∆β

∆(−µβ)

)
.

�

(18)

Till now, in all the forms of the OCDFR (equations (14), (17) and (18)), the expres-
sions for the Onsager coecients involve currents from the baths. If we want to obtain 
expressions for the Onsager coecients in terms of equilibrium current fluctuations of 
the system, without involving currents from the baths, then we need to make a further 
assumption. We call this the mixing assumption for local currents and densities, which 
states the following,

lim
τ→∞

〈n̂m(±τ)Î�(0)〉 = lim
τ→∞

〈n̂m(±τ)〉〈Î�(0)〉 = 0,

lim
τ→∞

〈n̂m(±τ)Ĵ�(0)〉 = lim
τ→∞

〈n̂m(±τ)〉〈Ĵ�(0)〉 = 0

lim
τ→∞

〈Ĥm(±τ)Î�(0)〉 = lim
τ→∞

〈Ĥm(±τ)〉〈Î�(0)〉 = 0

lim
τ→∞

〈Ĥm(±τ)Ĵ�(0)〉 = lim
τ→∞

〈Ĥm(±τ)〉〈Ĵ�(0)〉 = 0

∀ 1 � m, � � L.

�

(19)

Barring some pathological cases (such as where, somehow, n̂m, Î�, Ĥm or Ĵ� is a con-
served quantity of the whole system  +  bath set-up), this is generically expected. This is 
because dissipation due to the infinitely large baths will destroy long-time correlations 
between system operators. This is consistent with the fact that the set-up shows open 
system thermalization (equation (4)). To show open system thermalization, dissipation 
due to the baths must cause long-time correlations between system operators to decay 
so that the information about the initial state of the system is lost. Note that, the decay 
need not be exponential (which would be required for a Markovian assumption), but 
can be a power-law also (which is the typical non-Markovian behavior).

Now, we can use the same trick as used in [37, 39] for classical systems. In the 
following, we only consider particle currents. Exactly similar analysis is possible for 

energy currents. We define the quantity, D̂n
m ≡

∑m
�=1 n̂� −

∑L
�=m n̂�. Taking time deriv-

ative using equation (15), we have

dD̂n
m

dt
= 2(ÎB(t)− Îm(t))

⇒ D̂n
m(τ)− D̂n

m(−τ) = 2

∫ τ

−τ

dt
(
ÎB(t)− Îm(t)

)
.

�

(20)

Multiplying on the right by Î�(0) and taking expectation value, we have,

https://doi.org/10.1088/1742-5468/ab02f4


Classifying transport behavior via current fluctuations in open quantum systems

12https://doi.org/10.1088/1742-5468/ab02f4

J. S
tat. M

ech. (2019) 043101

〈D̂n
m(τ)Î�(0)〉 − 〈D̂n

m(−τ)Î�(0)〉

= 2

∫ τ

−τ

dt
(
〈ÎB(t)Î�(0)〉 − 〈Îm(t)Î�(0)〉

)
.

�
(21)

By equation (19), from equation (21) and using the form of M(Q̂, P̂ ) in equation (6), 
we have

lim
τ→∞

∫ τ

−τ

dt〈ÎB(t)Î�(0)〉 = lim
τ→∞

∫ τ

−τ

dt〈Îm(t)Î�(0)〉

⇒ M(ÎB, Î�) = M(Îm, Î�).
�

(22)

Note that Îm and Î� are two arbitrary local currents in the system and may be far 
apart also (for example, Î1 and ÎL−1). So, this rather surprising result tells us that, 
in the steady state of the open system, the time integrated correlations between any 
local current in the system and current from the bath is same as that between any two 
local currents in the system. Similar expressions can be derived for energy current and 
energy current-particle current correlations. Using this and equation (18), we have

(
〈ĴS〉NESS

〈ÎS〉NESS

)
= (L− 1)

(
〈Ĵ�〉NESS

〈Î�〉NESS

)

= −(L− 1)

(
M(Ĵm, Ĵ�) M(Îm, Ĵ�)

M(Ĵm, Î�) M(Îm, Î�)

)(
∆β

∆(−µβ)

)
.

�

(23)

This is the OCFDR in terms of correlations of local currents inside the system. This 
very non-trivial result shows that integrated current correlations between any two 
local currents inside the system is same in the steady state, and gives a transport 
coecient. So, even if we look at time integrated correlations between Î1 and ÎL−1, 
which are separated by a distance of the order of system length, and even if the 
system length is large, in the steady state, this correlation is not zero, but is equal 
to conductance. The thermal steady state of short-range open systems thus harbours 
long-range correlations.

Finally, summing over m and � in equation (23) and dividing by (L  −  1)2, we have 
the more ‘expected’ form of the result

(
〈ĴS〉NESS

〈ÎS〉NESS

)

=
−1

L− 1

(
M(ĴS, ĴS) M(ÎS, ĴS)

M(ĴS, ÎS) M(ÎS, ÎS)

)(
∆β

∆(−µβ)

)
.

�

(24)

This is the OCFDR in terms of fluctuations of total currents in the system. This is the 
form of the OCFDR that would be expected as a naive generalization from the isolated 
system Green–Kubo formula. It looks very similar to the isolated system Green–Kubo 
formula. But, there are two important dierences. First, it involves equilibrium current 
fluctuations in presence of the baths. Second, the baths must have infinite degrees of 
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freedom, but the system can be finite. These relations are thus well-defined for small 
and mesoscopic systems also, unlike those obtained from the isolated system Green–
Kubo formula.

Since M(Q̂, P̂ ) = M(P̂ , Q̂), in equations  (17), (23) and (24) the Onsager relation 
L12 = L21 is satisfied. Thus Onsager relation is not satisfied if the ĤS is long ranged. 
So the naive result in equation (24) does not hold for long ranged systems. But, equa-
tion (14) holds for all cases. For short-ranged systems, we find that, fluctuations of any 
current, whether it is the current from the baths, the local currents in the system or 
the total current in the system, give a transport coecient upto some system size scal-
ing factors. This is in stark contrast with the standard isolated system Green–Kubo 
formula, which involves only fluctuations of the total currents in the system.

The equations  (23) and (24) can be understood as generalizations of results in 
the seminal work of Fisher and Lee [16]. The results for particle conductivity (L22) 
in this section can be obtained from similar fluctuation–dissipation relations in [16] 
where they are written in frequency space instead of real time. However, our deri-
vation is for a much more general case than that in Fisher and Lee’s paper. First, 
Fisher and Lee’s derivation is for non-interacting systems only, i.e. where the whole 
system  +  bath Hamiltonian is quadratic. Our derivation shows similar results are 
valid for interacting systems also, as long as open system thermalization (equation 
(4)) and the mixing assumption for local currents and densities (equation (19)) hold. 
To our knowledge, this is the first time those results are being generalized to inter-
acting systems. Second, the starting point in Fisher and Lee’s calculation requires an 
external electric field to exist only in the system, even though there is no chemical 
potential dierence between the baths. Though this is rather unphysical, the result 
of this calculation was shown to match with the NESS calculation using Landauer 
formula. As recognized in the introduction of Fisher and Lee’s paper, this is unsat-
isfactory. It is not clear why two such dierent set-ups give the same result. On 
the other hand, in our derivation, we started from a system in arbitrary state con-
nected to two thermal baths which have slightly dierent temperatures and chemical 
potentials initially. This is the standard set-up to obtain NESS and is much closer 
to the actual experimental set-ups. Our derivation shows that it is possible obtain 
Fisher-Lee results by directly doing linear response theory on such set-ups. Thus, 
in this section, we have extended previously known OCFDRs to much more general 
and realistic cases.

In the next section, we will give the connection between the isolated system Green–
Kubo formula and the OCFDR in equation (24).

6. Crossover between the open-system and the isolated thermodynamic limit

We will be looking at particle conductivity. Similar steps can be followed for OCFDR 
corresponding to other transport coecients also. Let us define the following correla-
tion functions:
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KO(L, t) =
β

2(L− 1)

∫ t

−t

dt′〈ÎS(t′)ÎS(0)〉

KO
p,q(L, t) =

β

2

∫ t

−t

dt′〈Îp(t′)Îq(0)〉

mO
2 (t) =

1

L− 1

[
L−1∑
p,q=2

( p− q)2Re (〈n̂p(t)n̂q(0)〉)

]

KS(L, t) =
β

2(L− 1)

∫ t

−t

dt′〈〈ÎS(t′)ÎS(0)〉〉S

mS
2 (t) =

1

L− 1

[
L−1∑
p,q=1

( p− q)2Re (〈〈n̂p(t)n̂q(0)〉〉S)

]

�

(25)

where 〈〈...〉〉S denotes that the average is taken over the system thermal state 

ρS = e−β(ĤS−µN̂S)/Tr(e−β(ĤS−µN̂S)) and the time translation operator involves only ĤS. 
Note that KS(L, t) is an isolated system quantity calculated with ‘free boundary con-
ditions’ (as opposed to periodic boundary conditions). On the other hand, in the first 

three lines, the averages are over ρĤeq, and the time translation operator involves the full 

system  +  bath Hamiltonian Ĥ. Re (...) refers to the real part. The particle conductivity 
given by the standard Green–Kubo formula is

σGK = lim
t→∞

(
lim
L→∞

KS(L, t)
)
.� (26)

The order of limits is important and cannot be interchanged. Our open system result, 
when ĤS is short-ranged (equation (24) with ∆β = 0), says

G ≡ lim
∆µ→0

〈IS〉NESS

(L− 1)∆µ
=

1

L− 1
lim
t→∞

KO(L, t),

= lim
t→∞

KO
p,q(L, t)

�
(27)

where G is the open system particle conductance. The open system particle conductiv-
ity in the thermodynamic limit is defined as

σO = lim
L→∞

(L− 1) G = lim
L→∞

(
lim
t→∞

KO(L, t)
)
.� (28)

Again, the order of limits is important and cannot be interchanged.
Our goal here is to relate σO and σGK. To this end, we note that, using equa-

tion (15), the following standard result can be shown

lim
L→∞

KS(L, t) = lim
L→∞

β

2

d

dt
mS

2 (t).� (29)

Using exactly same steps, but for the open system at finite system size, we find that
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KO(L, t) =
β

2

d

dt
mO

2 (t)

+
1

L− 1

L−1∑
p=1

(2p− 1)
[
KO

p,1(L, t) +KO
L−p,L−1(L, t)

]

− (L− 1)KO
1,L−1(L, t).

�

(30)

Here, along with the spread of density correlations, we get some boundary terms. 
Equation (30) is the main result for all further discussions.

To check the consistency of our calculations, let us first check the long time limit of 
equation (30) at finite system size. With t → ∞, mO

2 (t) reaches a steady state. So the 
contribution from its derivative is zero. From the second line of equation (27), we see 
that each of the boundary terms is proportional to G. So, from equation (30), we see,

lim
t→∞

KO(L, t) = −(L− 1)G+
2G

L− 1

L−1∑
p=1

(2p− 1)

= −(L− 1)G+
2G

L− 1
(L− 1)2 = (L− 1)G,

�

(31)

which is the same as the first line of equation (27).
Now let us ask what is what happens if the thermodynamic limit of KO(L, t) is 

taken at a fixed t. For this, we will require the recently proved finite temperature 
Lieb–Robinson bound [45]. The main result of the proof, in our context, can be stated 
plainly as follows. For a system which is short-ranged (in the sense of equation (15)), let 
Ôp and Ôq be two local operators with supports at p  and q respectively. Given inverse 
temperature β and a time t, there exists a distance | p− q |= L(β, t) beyond which the 

〈Ôp(t)Ôq(0)〉 decreases exponentially with | p− q |, i.e.

〈Ôp(t)Ôq(0)〉 ∼ e−|p−q|, ∀ | p− q |> L(β, t).� (32)

If L is taken to infinity keeping t finite, mO
2 (t) (see equation  (30)) will not reach its 

steady state value and will give a major contribution. The contribution of the short-

ranged correlations in the boundary terms (for example, KO
1,1(L, t)) is suppressed by the 

factor of 1/(L− 1) in front. This factor is not there for the terms involving long-ranged 

correlations, i.e. terms of the form KO
p,q(L, t)), where | p− q |∼ L. But, as L is increased 

beyond L(β, t), these are going to be exponentially suppressed. This means that, with 
L → ∞ at finite t, the boundary terms will go to zero. So, we find,

lim
L→∞

KO(L, t) = lim
L→∞

β

2

d

dt
mO

2 (t).� (33)

Looking at the definition of mO
2 (t) in equation  (25), we see that, again, by finite-

temperature Lieb–Robinson bound, only terms where p  and q are separated by a finite 
distance δ � L(β, t) will have substantial contribution. Let us look at terms where 
p− q = δ, i.e.

1

L− 1

[
L−1∑
q=2

δ2Re (〈n̂q+δ(t)n̂q(0)〉)

]
.� (34)
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Once again, by finite-temperature Lieb–Robinson bound, terms where q in the above 
summation satisfies L(β, t) � q � L− L(β, t) have exponentially small contrib
ution from the baths. We will call these the bulk terms. Thus, for the bulk terms, 
〈n̂q+δ(t)n̂q(0)〉 � 〈〈n̂q+δ(t)n̂q(0)〉〉S. The remaining ∼ 2L(β, t) terms are aected by 
baths. But, L(β, t) does not scale with system-size and hence, due to the factor in front, 
contribution from these terms is suppressed as 1/L as L → ∞. On the other hand, the 
number of bulk terms scales as L, thereby cancelling the 1/L factor in front. So, the 
major contribution comes from the bulk, giving us

lim
L→∞

mO
2 (t) = lim

L→∞
mS

2 (t).� (35)

Thus, if the thermodynamic limit is taken at a finite time, we get,

lim
L→∞

KO(L, t) = lim
L→∞

β

2

d

dt
mS

2 (t) = lim
L→∞

KS(L, t),� (36)

which implies,

σGK = lim
t→∞

(
lim
L→∞

KS(L, t)
)
= lim

t→∞

(
lim
L→∞

KO(L, t)
)
.� (37)

Thus, from equations (28) and (37), we have analytically shown that the σGK and σO are 
just related by a change in order of the limits taken of the same open system quantity 
KO(L, t). To our knowledge, this is the first time this is being rigorously shown. Moreover, 
equations (31) and (36), we see that KO(L, t) shows a crossover from open system behav-
ior to isolated thermodynamic limit behavior with increase in L for fixed t, and a cross-
over from isolated thermodynamic limit behavior to open system behaviour with increase 
in t for fixed L. Note that there is no assumption of weak system-bath coupling.

7. Consequences of the crossover

The crossover discussed above has important consequences for the standard methods 
of classifying transport behavior in open and in isolated systems. Form equations (26) 
and (29), we see that

σGK = lim
L→∞

β

2

d

dt
mS

2 (t).� (38)

This standard result is used to classify transport behavior of the isolated system in the 

thermodynamic limit via time scaling of mS
2 (t). Let mS

2 (t) ∼ tβ̃. For normal diusive 
transport, σGK is finite and β̃ = 1. For 1 < β̃ < 2, transport is super-diusive. For 

β̃ = 2, the transport is ballistic. In both this cases, σGK diverges. For 0 < β̃ < 1, trans-

port is sub-diusive and for a localized system β̃ = 0. In both this cases, σGK = 0.
On the other hand, scaling of G with L is used to classify open system trans-

port behavior. Let G ∼ L−α̃. For normal diusive transport, σO is finite and α̃ = 1. 
For ballistic transport, α̃ = 0. For 0 < α̃ < 1, transport is super-diusive. For ballistic 
and super-diusive transport, σO diverges. For α̃ > 1, transport is sub-diusive. For a 
localized system, G ∼ e−L. In these two cases, σO = 0.
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Thus, our results (equations (27) and (36)) show that the open system and the iso-
lated system classifications of transport behvior correspond to the behavior of KO(L, t) 
in dierent time and length scales. In general, the thermodynamic limit and the long 
time limit may not commute, leading to dierent open and isolated system behaviors.

A further interesting insight from the above calculations is that KO
p,q(L, t), | p− q |∼ L, 

which is proportional to the integrated long-range current–current correlation, must 
also have clear signatures of both time scaling of mS

2 (t) and system size scaling of con-
ductance G. For a given system size, up to some time, this quantity is exponentially 
small. This time, intuitively, should depend on the time scaling of spread of density 

correlations mS
2 (t). At long time, KO

p,q(L, t) tends to G.
Our treatment can also be taken as an alternate ‘derivation’ of the isolated system 

Green–Kubo formula. This suggests that the isolated system Green–Kubo formula may 
not give a transport coecient if the system Hamiltonian has long range terms. Also, 
the analogous derivation for thermal currents gives a ‘derivation’ of the isolated sys-
tem thermal conductivity formula without any assumption of local equilibrium [46] or 
‘gravitational field’ [47].

This brings us to the end of the analytical part of the paper. At this point, it is 
worth re-iterating the assumptions made in deriving all the results,

	 (a)	� Ths full system  +  bath set-up, i.e. ĤS + ĤSB + ĤB, is time translation and time 
reversal invariant.

	 (b)	� Open system thermalization (equation (4)).

	 (c)	� ĤS is short-ranged.

	 (d)	� Mixing assumption for local currents and densities (equation (19)).

No other assumptions have been made. The forms of ĤS, ĤSB and ĤB are arbitrary. 
The high temperature limit of the results give the classical results. In the following, we 
will apply our theory to a numerically tractable but non-trivial example.

8. A non-trivial example: critical AAH model

Our theory is especially important for cases where open system classification and iso-
lated system classification of transport behaviors give dierent results. Now we explore 
in detail the critical AAH model which, as discussed in the introduction, is one such 
example. The critical AAH model [8, 9] Hamiltonian is given by

ĤS =
L−1∑
�=1

(ĉ†� ĉ�+1 + h.c.) +
L∑

�=1

2 cos(2πb�+ φ)ĉ†� ĉ�� (39)

where b is an irrational number, φ is an arbitrary phase, and ĉ� is the fermionic anni-
hilation operator at site �. The eigenstates of this model are neither totally delocalized 
nor localized, but are ‘critical’ [10]. This holds true for any choice of irrational number 
b and phase φ. This model and its various generalizations have been of recent interest 
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in both theoretical [6, 7, 48–67] and experimental [68–76] fronts. It can also be derived 
from a 2D system under a magnetic field (quantum-Hall like set-up) [72, 77, 78].

The transport properties of this model in both open and isolated set-ups have 
been thoroughly studied very recently in [6, 7]. It has been shown that mS

2 (t) ∼ t 
like a diusive system, but the scaling of NESS conductance with system size is sub-
diusive. (Actually, the isolated system is not strictly diusive, but have some hints 
of super-diusive behavior, see appendix I.) Thus, the open and the isolated system 
classifications of transport are inconsistent in this model. As discussed in [6], the rea-
son for this is that the single-particle eigenfunctions of the critical AAH model has 
very dierent behavior in the bulk and in the edges. We want to investigate what this 
entails for the equilibrium current correlations of the open system. By our discussion 
above, this is an explicit example where the thermodynamic limit and the long-time 
limit do not commute (see equations  (28) and (37)), thereby providing a non-trivial 
test-bed for our theory.

It has also been shown that the sub-diusive scaling exponent of particle conduc-
tance changes depending on the choice of system sizes (though always remaining sub-
diusive) [6, 7]. For our exact numerical calculations below, we will choose b as the 
golden mean (

√
5− 1)/2 and take the system sizes equal to Fibonacci numbers. All our 

results will be averaged over φ so that translational invariance is restored.
To calculate the open system quantities, we will choose the following model of for 

the baths and the system-bath couplings,

Figure 2.  Our non-trivial but numerically tractable example. The system consists 
of the critical AAH model. V� is quasiperiodic potential of the critical AAH model, 
V� = 2 cos(2πb�+ φ), where b is an irrational number. The hopping parameter in 
the system is g which is set to g  =  1. The baths are attached at the first and the 
last system sites. The baths are modelled by semi-infinite ordered non-interacting 
tight-binding chains with hopping parameter tB. The hopping between the system 
and the baths are given by γ. The initial state of the set-up is taken to be of the 
same form as the in figure 1, but with no temperature bias, i.e. β+ = β− = β. In 
the numerics, b is chosen as the golden mean, b = (

√
5− 1)/2, and we only look at 

the particle transport.
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ĤB1 = tB(
0∑

s=−∞

b̂(1)†s b̂
(1)
s+1 + h.c.),

ĤB2 = tB(
∞∑

s=L+1

b̂(2)†s b̂
(2)
s+1 + h.c.),

ĤSB1 = γ(ĉ†1b̂
(1)
0 + h.c.), ĤSB2 = γ(ĉ†Lb̂

(2)
L+1 + h.c.).

�

(40)
Thus, left bath consists of sites from −∞ to 0 (with fermionic annihilation operators 

b̂
(1)
s ), the sites from 1 to L is our system (with fermionic annihilation operators ĉ�, see 

equation (39)), while the sites from L  +  1 to ∞ is our right bath (with fermionic annihi-

lation operators b̂
(2)
s ). The two baths have same hopping parameter tB. Thus the baths 

are modelled by semi-infinite ordered non-interacting tight-binding chains, the spec-
tral functions of which are well approximated by continuous functions. The hopping 
parameter tB is chosen such that the bandwidths of the baths are larger than that of 
the system. Hence, the conditions for showing open system thermalization are satisfied 
[42, 43]. The system-bath coupling to each bath is the hopping from the system to the 
bath, given by the parameter γ. See figure 2 for a schematic of the set-up. For this set-
up, the particle current operators are given by

Îp = i(ĉ†pĉp+1 − ĉ†p+1ĉp), ÎS =
L−1∑
p=1

Îp.� (41)

We can calculate G exactly using the formula,

G =

∫
dω

2π
T (ω)n2(ω)eβ(ω−µ)

� (42)

where n(ω) = [eβ(ω−µ) + 1]−1 is the Fermi distribution and T (ω) is the transmission 

function which can be exactly calculated as given in appendix G. To calculate KS(L, t), 

mS
2 (t), we use exact diagonalization of ĤS. We obtain KO(L, t), KO

p,q(L, t) by exact 
diagonalization of full system  +  bath Hamiltonian Ĥ by considering finite but large 
baths, and looking at times before the finite size eects of the bath become significant.

For completeness, let us first check the dramatic dierence between open system 
and isolated system classifications of transport behavior of the model. The scaling of 
mS

2 (t) is shown in figure 3(a). At extremely small time mS
2 (t) shows ballistic scaling 

mS
2 (t) ∼ t2. At longer times, mS

2 (t) shows an almost perfect diusive scaling

mS
2 (t) = 2Dt, D = 0.127.� (43)

Here D is the diusion constant which is extracted from the fit. The crossover from 
ballistic to diusive scaling occurs at t ∼ 1 (the vertical dashed line in figure 3(a)).

From equation (38), we see that

σGK = βD.� (44)
From the definition of σGK (equation (26)) we expect that KS(L, t) will saturate to this 
value for large enough systems and at long enough times. This is shown in figure 3(b). 
During the time which corresponds to the initial ballistic spread of mS

2 (t), KS(L, t) 
rises. After that, i.e. for t  >  1, KS(L, t) saturates showing fluctuations about a mean 
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value. The fluctuations decrease with time. The mean of data points for t  >  1 is almost 
exactly given by βD. Thus, the diusive-like behavior in terms of the isolated system 
classification is established (see appendix I). For both figures 3(a) and (b), the system 
size is L  =  6765.

In figure 3(c), we show the system-size scaling of open system particle conductance 
G, as calculated using equation (42). G shows an almost perfect sub-diusive scaling

G ∼ L−1.27±0.01,� (45)
as previously shown in [6]. Thus, the stark dierence between the open system and the 
isolated system classifications of transport in this model is very clear. In the following, 
let us see what this entails for the equilibrium current fluctuations of the open system.

In figure 3(d), we show all plots of KO(L, t) for various system sizes. The time range 
taken is from 0.01 to tmax = 2123 (in units of the hopping parameter). Up to this time, in 
the numerics, there was no eect of finite bath size. In this time range, KO(L, t) reaches 
the steady state value for L � 55. The steady state value is quite precisely given by 
(L− 1)G as shown by the dotted lines in figure 3(d). This is also shown in figure 3(c), 
where KO(L, tmax)/(L− 1), for L � 55, has been plotted on top of the exactly calcu-
lated G. The sub-diusive scaling of the steady state values of KO(L, tmax) (i.e. when 
t → ∞ is taken first) is clear. (The fact that KO(L, t) reaches a steady state value given 
by (L− 1)G means that the mixing assumption (equation (19)) is valid. We have also 
explicitly checked this in appendix H.) On the other hand, on increasing system size, 
in the time range considered (i.e. when L → ∞ is taken first), KO(L, t) converges to 
KS(L, t), which shows fluctuations about the mean value βD. This is shown by plotting 
KO(L, t) for L = 377, 610, 1597 in the same time range and comparing with KS(6765, t). 
The data points for KO(1597, t) and KS(6765, t) are almost overlapping. The mean of 
data points for t  >  1 for L  =  1597 is also shown, and it agrees quite well with βD.

This shows that both the diusive scaling spread of correlations and the sub-diusive 
scaling of current are encoded in KO(L, t). Indeed, they correspond to taking the ther-
modynamic limit (L → ∞) and the long time (t → ∞) of KO(L, t) in dierent orders. 
Thus, σO and σGK are indeed related by a change in the order of limits and, as in the 
present case, the limits may not commute.

As is evident, in the present case, whether the diusion-like behavior is seen or the 
sub-diusive behavior is seen depends on the length and the time scales one is looking 
at. Let us now look at the time scales in more detail for L  =  55. Plots of mS

2 (t) and 
mO

2 (t) for L  =  55 is given in figure 4(a). The first thing to note is that the diusive scal-
ing starts at t ∼ 1 which is the same as in figure 3(a). Thus, this time scale is indepen-
dent of system size. The diusive scaling of mS

2 (t) is seen up to some time t*, after which 
finite system size eects occur. For time less than t*, mS

2 (t) and mO
2 (t) match. After time 

t*, both mS
2 (t) and mO

2 (t) show finite system-size eects, mO
2 (t) reaching a steady value. 

The time range for diusive scaling of mS
2 (t) is demarcated in figure 4(a) via the vertical 

dashed lines. It is exactly in this time range that the KO(55, t) also shows the diusive-
like behavior. This is shown in figure 4(b). In the same time range demarcated by the 
vertical dashed lines, KO(55, t) shows fluctuations about a mean value. The mean of the 
data points in this time range agrees well with βD. In fact, KO(55, t) and KS(6765, t) 
match well for t  <  t*. For t  >  t*, KO(55, t) decays to its steady state value which is given 
by (L− 1)G. Since mS

2 (t) ∝ t, t* scales as  ∼L2 with system size.
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Thus, for a given system size, the open critical AAH model shows signatures of 
diusive transport in the integrated equilibrium total current fluctuations in some 
time range. This time range corresponds to the time range over which diusive spread 
of correlations in the isolated system of same size is seen. This time range grows with 
system size as  ∼L2. Beyond this time scale, the eect of the baths start to matter, and 
the integrated total current fluctuations reach a steady state. The system size scaling 
of the steady state values of the integrated total current fluctuations is sub-diusive.

Finally, let us look at the integrated long range current correlations KO
1,L/2(L, t). 

According to our theory, this quantity should also have information about both the 
diusive behavior of the isolated system and the sub-diusive behavior of the open 

system. Figure 5(a) shows plots of KO
1,L/2(L, t) with time for various system sizes. As 
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Figure 3.  (a) Plot of mS
2 (t) for the critical AAH model. At very short time, t  <  1 

(vertical black dashed line), mS
2 (t) scales ballistically, i.e. mS

2 (t) ∝ t2. For t  >  1, mS
2 (t) 

scales diusively, i.e. mS
2 (t) = 2Dt. From the fit, D  =  0.254/2  =  0.127. System-

size, L  =  6765. (b) Plot of KS(L, t) for L  =  6765. KS(L, t) rises initially and then 
saturates showing fluctuations about a mean value. The mean value is βD, akin 
to a diusive system. The vertical line gives the time t  =  1 after which diusive 
scaling of mS

2 (t) starts. The mean is calculated from the data points to the right of 
the vertical line. (c) The sub-diusive scaling of particle conductance G with system 
size calculated using equation (42). Also shown are values of KO(L, tmax)/(L− 1) 
for L � 55. Here tmax is the final time point in (d). (d) Plots of KO(L, t) for various 
system sizes. In the time range considered, for L � 55, the steady state is reached. 
The small-dotted lines show the corresponding values of (L− 1) G from (c). For 
much larger system sizes, in this time range, KO(L, t) converges to KS(6765, t) (the 
black ‘+’ symbols). The vertical dashed line corresponds to t  =  1, the same as in 
(a). The mean of data points for t  >  1 for L  =  1597 is shown with blue squares. It 
agrees quite well with βD (the red dashed horizontal line). Parameters: bath length 
LB  =  3500, β = 0.1, µ = 1, γ = 1.5, tB  =  1.5, tmax = 2123. The unit of time is the 
system hopping parameter which has been set to 1.
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expected from our discussions, KO
1,L/2(L, t) starts to be substantial only after a finite 

time. This time grows with system size. It corresponds to the time required for correla-
tions to spread from site 1 to site L/2 inside the system. Hence, this time is expected 
to scale diusively with system size, consistent with scaling of mS

2 (t). On the other 

hand, in long time limit, KO
1,L/2(L, t) reaches a steady state value precisely given by the 

corresponding conductance G, as expected from our theory. So the steady state value 

should scale sub-diusively with system-size. As a result, KO
1,L/2(L, t) ∼ L−1.27f(t/L2), 

and we expect a data collapse. The approximate data collapse of the scaled plot is 

shown in figure 5(b). The collapse is not so good in the growing part of KO
1,L/2(L, t) due 

to fluctuations. The fluctuations in the growing part of KO
1,L/2(L, t) seems to decrease 

with system size, but larger system sizes are required for conclusive evidence regarding 
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Figure 4.  (a) Plot of mS
2 (t) and mO

2 (t) for system size L  =  55. The vertical dashed 
lines denote the time range during which the diusive scaling holds. Beyond this 
time finite system size eects are seen in mS

2 (t), and mO
2 (t) reaches a steady value. 

(b) Plot of KO(55, t) which is compared with KS(6765, t). The vertical dashed lines 
denote the same time range as in (a). The mean of data points for KO(55, t) in this 
time range (blue squares) agrees well with βD. In fact, in this time range, KO(55, t) 
and KS(6765, t) agree well. Beyond this time, KO(55, t) decays to its steady state 
value given by (L− 1)G. Other parameters are same as in figure 3.
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this. Nevertheless, it is clear that the long range current correlations of the open critical 
AAH model also shows signatures of both diusion and sub-diusion.

Two points are worth mentioning before we close this section. The first is that the 
signatures of diusive transport in the current fluctuations of the isolated system are 
presumably a transient behavior. As shown in [6], the time scaling of higher moments 
show a diusive to super-diusive crossover. The time for this crossover is smaller for 
higher moments. It is presumable that mS

2 (t) will also show super-diusive scaling at 
extremely long times. By equation (29), this should also show up in KS(L, t). But, as 
given in [6], the time required to observe this in numerics is estimated to be  >1010 (in 
steps of the system hopping parameter which is set to 1). The system-size required to 
observe this in numerics without having finite-size eects is estimated to be  ∼107. This 
is beyond our current computational ability. Nevertheless, as we have shown above, for 
finite-size open critical AAH model, the transient ‘diusive-like’ behavior of the iso-
lated system and the sub-diusive behavior of the open system will both be captured in 
the time and the system-size dependence of current fluctuations of the system.

The second is that, in this section, we have considered a set-up where the system 
is a critical AAH model while the baths are semi-infinite ordered nearest neighbour 
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Figure 5.  (a) Plots of the integrated long range current correlations K1,L/2(L, t) 
with t for dierent system sizes. The horizontal dashed lines show the corresponding 
values of conductance G calculated exactly. (b) The scaled plots of K1,L/2(L, t). To 
collapse the x-axis, the t needs to be scaled diusively (consistent with mS

2 (t) = 2Dt). 
To collapse the y -axis, K1,L/2(L, t) needs to scaled ‘sub-diusively’ (consistent with 
G ∼ L−1.27±0.01). Other parameters are same as in figure 3.
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tight-binding chains. The reader may be curious about what would happen if the baths 
were also taken as the critical AAH model. In that case, the theory cannot be applied as 
the set-up will not show open system thermalization (equation (4)). This is because, criti-
cal AAH model has a fractal spectrum, which cannot be approximated by a continuous 
function even if the system size is infinite. Thus the bath spectral functions would not be 
continuous functions. This violates one of the required conditions for non-interacting sys-
tems to show open system thermalization (see discussion following equation (4) [42, 43]).

9. Summary and outlook

In this paper, we have obtained several important and fundamental results in non-
equilibrium statistical physics. In conclusion, we first give all the rigorous analytical 
results point-by-point, clearly mentioning the assumptions required for each.

	•	 �Assumption 1: Time-translation and time-reversal invariance of the system, bath 
and system-bath coupling Hamiltonians.

		 Assumption 2: Open system thermalization (equation (4)).

		 Result 1: Rigorously showing that, in linear response regime, expectation values 
of system operators reach a unique NESS value given by equation (13), irrespec-
tive of the initial state of the system.

		 Result 2: Obtaining the OCFDR for total system currents (equation (14)), which is 
valid for interacting and non-interacting, short-ranged and long-ranged systems. 
At this level, the Onsager relation is not valid in general.

	•	 �Assumption 3: Short-ranged systems (equation (15)).

		 Result 1: Showing the equivalence between OCFDR for currents from the baths 
and OCFDR for total system currents (equation (17)), and recovery of Onsager 
relations.

	•	 �Assumption 4: Mixing assumption for local currents and densities (equation (19)):

		 Result 1: Showing that the time integrated current–current correlation between 
any two local currents of the open system in equilibrium is the same and is pro-
portional to the corresponding transport coecient (equation (23)). The OCFDRs 
in equations (17), (23) and (24) are may be expected from previous investigations 
for non-interacting systems [16–18]. We have rigorously extended them to inter-
acting systems via a quite robust derivation.

		 Result 2: Rigorously showing that transport coecients obtained from the isolated 
system Green–Kubo formula and from the OCDFR are related by a change in 
the order of taking the thermodynamic and the long time limits of the integrated 
total system current correlations of the open system (equations (28) and (37)). 
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This means that the time and system size dependence of equilibrium current 
correlations of the open system can be used to classify transport behaviors of both 
the open system and the isolated system.

We have then numerically checked the implications of the above result for the crit-
ical AAH model, where it has been recently shown that transport is diusive-like 
according to isolated system classification but sub-diusive according to open system 
classification. We considered the critical AAH model connected to two baths modelled 
by infinite 1D nearest neighbour non-interacting tight-binding chains. The important 
results here are:

	•	 �The integrated total current autocorrelation of the open system KO(L, t) (see 
equation (25)) shows signatures of diusive-like behavior up to a time scale. This 
time scale grows as L2, where L is the system length, which is consistent with 
the diusive-like behavior. In later times, it reaches a steady value. The steady 
state value is exactly L  −  1 times the conductance, which can be independently 
calculated from NEGF. The conductance scales sub-diusively with system size 
(figures 3 and 4).

	•	 �The integrated long-range current correlations of the open system KO
1,L/2(L, t) (see 

equation (25)) also shows both diusive-like and sub-diusive behaviors. It is zero 
up to a time scale which again scales as L2, showing the diusive propagation. 
Then it rises and finally reaches a steady state. The steady state value is given 
by conductance, which shows sub-diusive scaling with system size (figure 5).

To the best of our knowledge, this is the first work where time and system-size depend
ence of open system equilibrium current correlations are being used to classify both 
isolated system and open system transport behaviors of a model. We believe that, 
specifically, the role of long-range current correlations in this respect is crucial to 
understand and requires further investigations. Our derivations are completely gen-
eral and work for interacting systems also. However, the example we have worked out 
numerically is a non-interacting case, though quite non-trivial. This is because similar 
direct numerical investigation is extremely challenging in presence of interactions. In 
future works, we will attempt to rise to that challenge and check our results for inter-
acting systems. Another non-trivial direction is to check the theory for long-range non-
interacting systems, where according to our theory, the Onsager relation may not be 
valid for system currents. Investigations in this direction are under progess.
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Appendix A. Open system thermalization and eigenstate thermalization

Note the stark contrast between the open system thermalization statement given in 
equation  (4) and the ETH statement [44]. ETH does not hold for non-interacting 
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systems, while the open system thermalization statement holds. This is because, though 

the initial state of the system (ρS) is arbitrary, ρĤEIS (equation (3)) is a special form of 
initial state for the whole system  +  bath set-up. For non-interacting systems, equa-
tion (4) does not hold for system operators if the initial state of the whole set-up is not 
of this special form. It is thus consistent with the fact that ETH, which considers more 
generic initial states, does not hold for non-interacting systems. However, initial states 

of the form ρĤEIS, being physically motivated, are widely used as the starting point in 
open system calculations to discuss equilibriation.

Appendix B. M(Q̂, P̂) = M(P̂, Q̂)

This result was stated after equation (5), and it was mentioned that it holds when H 
has time-reversal and time translation invariance. Here we present the proof. Let T  be 
the time reversal operator.

〈Q̂(t)P̂ (t′)〉 = 〈T Q̂(t)P̂ (t′)T −1〉
= 〈P̂ (−t′)Q̂(−t)〉 = 〈P̂ (−t′ + τ)Q̂(−t+ τ)〉
�

(B.1)

where the last line is the statement of time-translation invariance. The choice of 
τ = t+ t′ gives 〈Q̂(t)P̂ (t′)〉 = 〈P̂ (t)Q̂(t′)〉. With this property, it is obvious that 
M(Q̂, P̂ ) = M(P̂ , Q̂).

Appendix C. The simplification of equations (5) and (6)

Here we give the simplification from the equations (5) and (6). For this simplification, 
we need the following two results. The first is:

〈Q̂(t)P̂ (t)〉 = Tr(e−β(Ĥ−µN̂)Q̂(t)P̂ (t))

Z

=
Tr(e−βĤQ̂(t)eβĤe−β(Ĥ−µN̂)P̂ (t))

Z

= 〈P̂ (t)Q̂(t+ iβ)〉,

�

(C.1)

where in the second line we have used the fact that [Q̂, N̂ ] = 0, which is true for particle 
and energy current operators. We also require that the following limit exists

lim
τ→∞

∫ τ

−τ

dt〈Q̂(−iλ)P̂ (t)〉 = lim
τ→∞

∫ τ

−τ

dt〈Q̂(0)P̂ (t+ iλ)〉.� (C.2)

For this, it is necessary that

lim
t→±∞

〈Q̂(0)P̂ (t+ iλ)〉 = 0.� (C.3)

Now, we can simplify the expression for M(Q̂, P̂ ) as the following:
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βM(Q̂, P̂ ) =

∫ ∞

0

dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉

=

∫ ∞

0

dt

∫ β

0

dλ〈P̂ (t)Q̂(i(β − λ))〉 (Using equation C.1)

=

∫ ∞

0

dt

∫ β

0

dλ〈P̂ (t)Q̂(iλ)〉 (λ → β − λ)

=

∫ ∞

0

dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (−t)〉 (Usingtime− reversal)

=

∫ 0

−∞
dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉 (t → −t)

=
1

2

∫ ∞

−∞
dt

∫ β

0

dλ〈Q̂(−iλ)P̂ (t)〉

= lim
t→∞

1

2

∫ β

0

dλ
[ ∫ t+iλ

−t+iλ

dz〈Q̂(0)P̂ (z)〉
]
.

�

(C.4)

The last step requires time-translation by t+ iλ and changing variable to z → t+ iλ. 
We can now do the integration over z using contour integration. For this, we choose 
a contour of the rectangle in complex-plane joining the points (−t, iλ), (t, iλ), (t, 0), 
(−t, 0). Assuming no singularities in the upper half plane, we have

∫ t+iλ

−t+iλ

dz〈Q̂(0)P̂ (z)〉 =
∫ t

−t

dt′〈Q̂(0)P̂ (t′)〉

+ i

∫ λ

0

dy
[
〈Q̂(0)P̂ (t+ iy)〉 − 〈Q̂(0)P̂ (−t+ iy)〉

]
.

�

(C.5)

By equation (C.3), the term in square brackets in equation (C.5) vanishes as t → ∞. 
Hence, substituting in equation (C.4), we get

M(Q̂, P̂ ) =
1

2

∫ ∞

−∞
dt〈Q̂(0)P̂ (t)〉

=
1

2

∫ ∞

−∞
dt〈Q̂(−t)P̂ (0)〉 (time-translation by − t)

=
1

2

∫ ∞

−∞
dt〈Q̂(t)P̂ (0)〉 (change variable t → −t).

�

(C.6)

Thus we recover the expression in equation (6).

Appendix D. Derivation of ρĤ
NESS

Starting with ρĤNIS (equation (7)), ρĤNESS was obtained by observing ρĤNIS = ρĤ
′

EIS, with 
Ĥ′ = Ĥ + εĤpert (equation (10)), and ∂ρ∂t = i[ρ, Ĥ] = i[ρ, Ĥ′]− iε[ρ, Ĥpert]. Dyson series of 

standard time-dependent perturbation theory was used to obtain ρĤNESS. Here we give 

the steps in detail.
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First, we go to the interaction picture with respect to Ĥ′.

ρI(t) = eiĤ
′tρ(t)e−iĤ′t,

ĤI
pert(t) = eiĤ

′tĤperte
−iĤ′t.

�
(D.1)

Then, we have ∂ρ
I

∂t
= −iε[ρI(t), ĤI

pert(t)], which gives

ρI(t) = ρI(0)− iε

∫ t

0

dt′[ρI(t′), ĤI
pert(t

′)] � ρI(0)

− iε

∫ t

0

dt′[ρI(0), ĤI
pert(t

′)].
�

(D.2)

To obtain the second line we have used the first line recursively in the RHS and have 
kept only terms upto linear order in ε. Going back to the Schrödinger picture, and 

recalling ρI(0) = ρĤ
′

EIS, we get

ρ(t) � e−iĤ′tρĤ
′

EISe
iĤ′t

− iε

∫ t

0

dt′[e−iĤ′tρĤ
′

EISe
iĤ′t, e−iĤ′t′Ĥperte

iĤ′t′ ].
�

(D.3)

Now, taking t → ∞, and then taking Ĥ′ → Ĥ in the second term noting that correc-

tions above this will be of higher order in ε, we have our desired equation for ρĤNESS 
(equation (12)).

Appendix E. Kubo trick

Here we give the steps for the simplification in equation (13). This involves a standard 
technique used in deriving Kubo formula, which we call the Kubo trick. We have 

Tr(Ô[Ĥpert(−t), ρ]) = Tr(Ô(t)[Ĥpert, ρ]) = 〈[Ô(t), Ĥpert]〉 by time-translation invariance. 
Let K̂ = (Ĥ − µN̂). Then,

[Ĥpert, ρ] = [Ĥpert,
e−βK̂

Z
] = ρΦ̃(β)

Φ̃(λ) = eλK̂Ĥperte
−λK̂ − Ĥpert.

�
(E.1)

Thus,

dΦ̃(λ)

dλ
= eλK̂ [K̂, Ĥpert]e

−λK̂ = eλĤ[Ĥ, Ĥpert]e
−λĤ

= −ieλĤ
dĤpert

dt
e−λĤ = −i

˙̂Hpert(−iλ)

�

(E.2)

where we have used [Ĥpert,N ] = 0 and 
˙̂Hpert ≡ dĤpert

dt
= −i[Ĥpert, Ĥ]. Then, we have,
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Φ̃(β) = −i

∫ β

0

dλ
˙̂Hpert(−iλ).� (E.3)

Using equations (E.1) and (E.3), we have

〈[Ô(t), Ĥpert]〉 = −i

∫ β

0

dλTr(Ô(t)ρ
˙̂Hpert(−iλ))

= −i

∫ β

0

dλ〈 ˙̂Hpert(−iλ)Ô(t)〉.
�

(E.4)

Using the above equation and equations  (2), (5) and (10), we get the second line in 
equation (13).

Appendix F. Current correlations to density correlations

Here we give the proof of equation (29). We want to look at

lim
L→∞

KS(L, t) = lim
L→∞

β

2(L− 1)

∫ t

−t

dt′〈〈ÎS(t′)ÎS(0)〉〉S

= lim
L→∞

β

L− 1

∫ t

0

dt′Re
(
〈〈ÎS(t′)ÎS(0)〉〉S

)
.

�
(F.1)

In going from the first line to the second line, we have used time translation by t → −t, 

and the fact that ÎS is Hermitian so, 
(
ÎS(t)ÎS(0)

)
† = ÎS(0)ÎS(t). Now we use the conti-

nuity equations for a ‘local’ Hamiltonian,

N̂S =
∞∑

p=−∞

n̂p,
dn̂p

dt
= Îp−1 − Îp, ÎS =

∞∑
p=−∞

Îp.� (F.2)

Here, we have already assumed thermodynamic limit and neglected the boundary 
terms. Then we observe that

d

dt1

d

dt2

[
∞∑

p,q=−∞

( p− q)2〈〈n̂p(t1)n̂q(t2)〉〉S

]

=
∞∑

p,q=−∞

( p− q)2〈〈
(
Îp−1(t1)− Îp(t1)

)(
Îq−1(t2)− Îq(t2)

)
〉〉S

= −2
∞∑

p,q=−∞

〈〈Îp(t1)Îq(t2)〉〉S.

�

(F.3)

To arrive at the last line, we have shifted the dummy indicies p  and q such that 

〈〈Îp(t1)Îq(t2)〉〉S can be factored out. We define τ = t1 − t2, then d
dt1

= d
dτ

, d
dt2

= − d
dτ

. 
Using time translation symmetry, this gives,
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d2

dτ 2

[
∞∑

p,q=−∞

( p− q)2〈〈n̂p(τ)n̂q(0)〉〉S

]

= 2
∞∑

p,q=−∞

〈〈Îp(τ)Îq(0)〉〉S

⇒ d

dτ

[
∞∑

p,q=−∞

( p− q)2〈〈n̂p(τ)n̂q(0)〉〉S

]

= 2

∫ τ

0

dt〈〈ÎS(t)ÎS(0)〉〉S.
�

(F.4)

Using equations (F.1) and (F.4), we find equation (29). Equation (30) for the open sys-
tem is obtained by following exactly the same steps, but without taking the thermody-
namic limit first, and carefully keeping the boundary terms.

Appendix G. Finding transmission function

We can write any non-interacting (quadratic) system Hamiltonian in the form 

ĤS =
∑L

i,j=1 ĉ
†
i [HS]ij ĉj. Let G(ω) = M−1(ω) be the non-equilibrium Green’s function  

(NEGF) of the set-up. M(ω) is given by the L× L matrix M(ω) =  [
ωI−HS −Σ(1)(ω)−Σ(L)(ω)

]
, where Σ(1)(ω), Σ(N)(ω) are bath self energy matrices 

with the only non-zero elements given by

Σ( p)
pp (ω) = −P

∫ 2tB

−2tB

dω′J(ω′)

2π(ω′ − ω)
− i

2
J(ω), p = 1,L� (G.1)

where P  denotes principal value. J(ω) is the bath spectral function. For our model of 
baths in equation (40), the bath spectral function is given by

J(ω) =
2γ2

tB

√
1− (

ω

2tB
)2.� (G.2)

The transmission function is given by

T (ω) = J2(ω) | G1N(ω) |2=
J2(ω)

| det [M] |2
.� (G.3)

Appendix H. Checking mixing assumption for open critical AAH model

We have shown in figure 3(d) that KO(L, t) indeed reaches a steady state value given 
by (L− 1)G. Our derivation shows that for this to be valid the mixing assumption for 
local currents and densities (equation (19)) has to be valid. In figure H1, we explicitly 
check this for our set-up defined in equations (39) and (40) (see figure 2). Indeed, as 

expected from equation (19), 〈n̂m(t)Î�(0)〉 goes to zero with increase in time. We show 

this by explicitly plotting |〈n̂L/2(t)ÎL/2(0)〉| and |〈n̂L/2(t)ÎL/2−5(0)〉|.
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Though not directly required for our theory, just for comparison, we also plot 

|〈〈n̂L/2(t)ÎL/2(0)〉〉S| and |〈〈n̂L/2(t)ÎL/2−5(0)〉〉S| in figure  H2. As defined in equa-
tion  (25), 〈〈...〉〉S denotes that the average is taken over the system thermal state 

ρS = e−β(ĤS−µN̂S)/Tr(e−β(ĤS−µN̂S)) and the time translation operator involves only ĤS. 
Here, ĤS is the critical AAH model Hamiltonian defined in equation (39). Although the 
decay takes much longer time, it is apparent that for isolated critical AAH model in 
thermodynamic limit, the equivalent of equation (19) also holds.

Appendix I. Transport in critical AAH model

Transport in isolated critical AAH model is not actually strictly diusive. As shown 
in [6], the higher moments show a crossover from diusive to super-diusive scaling at 
long time. But, the time scale required to see this crossover in mS

2 (t) is so large that 
it cannot be seen in within our current computational abilities. Nevertheless, the sub-
diusive behavior seen in the open system is not expected to show up. Moreover, the 
point here is, within time scales and the system sizes possible to explore with current 
computational abilities, mS

2 (t) shows almost perfect diusive scaling while G shows 
almost perfect sub-diusive scaling.

10−2 10−1 100 101 102 103

t

0.00

0.05

0.10
|〈n̂L/2(t)ÎL/2(0)〉|

10−2 10−1 100 101 102 103

t

0.000

0.005

0.010
|〈n̂L/2(t)ÎL/2−5(0)〉|

Figure H1.  We explicitly check the validity of the mixing assumption for local 
particle currents and densities (see equation (19)) of the open critical AAH model. 

Both 〈n̂L/2(t)ÎL/2(0)〉 (top) and 〈n̂L/2(t)ÎL/2−5(0)〉 (bottom) goes to zero with 

time, which is consistent with the assumption. Parameters: L  =  21, bath length 
LB  =  3307, β = 0.1, µ = 1, γ = 1.5, tB  =  1.5.
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