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Abstract.  The Hartree–Fock–Popov theory of interacting Bose particles 
in a uniform space is generalized to the interacting boson system in three-
dimensional isotropic harmonic traps. At finite temperature T, we find that the 
Bose condensation of nonideal bosons in three-dimensional isotropic harmonic 
traps is the two-step condensation. In other words, for a fixed particle number 
there are two transition temperatures. The first transition temperature is the 
standard critical temperature Tc. The second transition temperature is the 
critical temperature Tm, which is smaller than Tc and is determined by the 
minimum of the curve of condensate fraction versus temperature. The boson 
system undergoes a first-order phase transition from the normal state to the 
Bose condensed state.
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1.  Introduction

It has currently been recognized that Bose–Einstein condensation (BEC) is a com-
mon quantum property of many-particle systems in which the number of particles 
is conserved. In 1995, the three groups observed the BEC in a vapor of dilute alkali 
atoms at a temperature of about 170 nK [1–3]. The recent progresses of BEC in dilute 
atomic gases have been made in many respects. One respect is the trapping geometry. 
The corresponding trapping geometry can be designed to be harmonic, anharmonic or, 
recently, even box-like, which mimics a quasi-uniform potential [4, 5]. Another respect 
is the supersolid state of quantum gases. The supersolid state combines superfluid flow 
with long-range spatial periodicity of crystals. Pitaevskii and Stringari have calculated 
the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate and thereby 
have found supersolid phenomena in ultracold atomic gases [6]. Han et al have pre-
dicted a supersolid with nontrivial topological spin textures in spin–orbit-coupled Bose 
gases [7]. Ketterle and his colleagues have observed supersolid properties in spin–orbit-
coupled Bose–Einstein condensates [8]. Léonard et al have observed supersolid forma-
tion in a quantum gas breaking a continuous translational symmetry [9].

The starting point for our discussion of interacting quantum mechanical assemblies 
is the Hartree–Fock (HF) approximation. The HF approximation is basically a static 
mean-field theory, which treats the motion of single particles in an average static field 

generated by all the other particles. The HF approximation neglects terms like 〈â†−kâ
†
k〉 

or 〈â−kâk〉 in the Hamiltonian, which reflect the creation and annihilation of two uncon-
densed particle pairs due to the interaction and play a crucial role in the BEC theory. 

The Hartree–Fock–Popov (HFP) approximation includes terms like 〈â†−kâ
†
k〉 or 〈â−kâk〉 

in the Hamiltonian. This approach consequently accounts for the low-energy excitations 
of the system. Originally, the Bogoliubov theory of BEC deals with a weakly interact-
ing boson gas in a uniform space at zero temperature. At small momenta, the elemen-
tary excitations of such a boson gas are phonons. However, the original Bogoliubov 
theory cannot apply to the BEC problem of interacting Bose atoms in an inhomoge-
neous space at finite temperatures. For this reason, the present paper develops a new 
theory to investigate the finite-temperature properties of a weakly interacting boson 
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gas in three-dimensional isotropic harmonic traps. The finite-temperature properties 
include the transition temperature, elementary excitation spectrum, and depletion of 
the BEC phase.

The key point in this paper is that the three-dimensional isotropic harmonic poten-
tial in coordinate space can be reduced into the zero-point energy in momentum space, 
so that the energy of an ideal atom in three-dimensional isotropic harmonic traps 
consists of the kinetic energy and the zero-point energy. In light of the HFP theory of 
BEC, we investigate the BEC properties of a harmonically trapped, three-dimensional, 
and weakly interacting gas in the momentum representation. We give a critical analysis 
of the HFP approximation in the BEC of such an interacting boson. Thereby we derive 
the transition temperature, elementary excitation spectrum, and depletion of the BEC 
phase of a harmonically trapped, three-dimensional, and weakly interacting gas. At 
finite temperature T, we find that the Bose condensation of nonideal bosons in three-
dimensional isotropic harmonic traps is the two-step condensation. In other words, 
for a fixed particle number there are two transition temperatures. The first transition 
temperature is the standard critical temperature Tc. The second transition temperature 
is the critical temperature Tm, which is smaller than Tc and is determined by the mini-
mum of the curve of condensate fraction versus temperature. At small momenta k, the 
elementary excitation is a phonon. At large momenta k, the elementary excitation is a 
bare atom. Originally, a two-step condensation due to interactions was discovered by 
Zagrebnov and Bru [10–12]. The present paper gives another model in favor of a two-
step condensation due to interactions. Our theory can be verified in the present-day 
physics laboratories.

2. Formulism

If U(r− r′) represents the interaction potential between a boson located at r and 
another boson located at r′, then the finite-size Gaussian potential [13] is

U(r− r′) = g
1

π3/2|s|3
exp

[
−(r− r′)2

s2

]
,� (1)

where g and s characterize the strength and range of the interaction, respectively. Both 
parameters are considered to be tunable. For instance, g can be varied by means of a 
suitable Feshbach resonance. In the limit of s going to zero, we recover a contact inter-
action with strength g. We adopt the grand canonical ensemble, in which bosons have a 
chemical potential µ. Now one can write the Hamiltonian of the nonideal boson system 

in terms of the boson operators âk and â†k:

Ĥ =
∑
k

(εk − µ∗)â†kâk +
1

2V

∑
k,k′,q

v(q)â†k+qâ
†
k′−qâk′ âk,� (2)

where εk = �2k2/2m is the kinetic energy of a boson with wave vector k and m is the 

mass of bosons. µ∗ = µ− 3
2
�ω is an eective chemical potential and 3

2
�ω is just the 

zero-point energy of a three-dimensional isotropic harmonic oscillator. ω is the angular 
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frequency of the trap. v(q) is the Fourier transform of the interaction potential U(r) of 
bosons and the boson system occupies a volume V .

We need to study the finite-temperature excitations in the system of interacting 
bosons. The best way to do this study is to use the Beliaev–Green’s function formal-
ism [14, 15]. This technique is the most eective way of calculating the equilibrium 
thermodynamic properties, as well as single-particle excitations of the system. Our 
emphasis is on how to include the eects of the non-condensate bosons and is based on 
the first-order HFP self-energy diagrams. At first, we define the normal and anomalous 
Green’s function as

G11(k, τ) = −〈Tτ [âk(τ)â
†
k(0)]〉,� (3)

G12(k, τ) = −〈Tτ [â−k(τ)âk(0)]〉,� (4)
where Tτ is a τ  ordering operator. G11 and G22 represent the propagation of a single 
boson. G12 and G21 represent the disappearance and appearance of two non-condensate 
bosons, respectively. There are two types of proper self-energies for a Bose-condensed 
system. In the Feynman diagrams, one type of proper self-energies have one particle 
line going in and one coming out, which are denoted as Σ11(k, τ) and Σ22(k, τ). The 
other ones have two particle lines either coming out, denoted by Σ12(k, τ), or going in, 
denoted by Σ21(k, τ). For simplicity, we use the letter p  to represent the four-dimen-
sional vector (k, iωn).

Next we discuss the HFP approximation for a gas of N interacting bosons at finite 
temperatures [16]. We prescribe that at finite temperature T, the number of bosons in 
the lowest state (k = 0) is given by Nc(T ). The Nc bosons form a Bose condensate. In 
the rest of this paper, we use the superscript ‘(0)’ as a reminder that the quantity is 
for a noninteracting Bose gas. Now we need to introduce a quantity ñ(0), which denotes 
the (temperature-dependent) density of excited bosons in a noninteracting Bose gas 
and and is gived by

ñ(0) =

∫
dq

(2π)3
1

exp[β(εq − µ(0))]− 1
,� (5)

where β = 1/kBT . Consequently, the self-energy Σ11 and Σ12 can be explicitly written 
as

Σ11(k) = 2ncv(0) + 2ñ(0)v(0),

Σ12(k) = ncv(0),
� (6)

where nc = Nc/V  is called the condensate density.
In the Bose-condensed phase of T < Tc, the chemical potential µ∗ of an interacting 

Bose gas has been shown to satisfy [17–19]

µ∗ = ncv(0) + 2ñ(0)v(0), T < Tc.� (7)

By substituting the self-energies in equation (6) and the chemical potential in equa-
tion (7) into the Dyson–Beliaev expressions, we obtain G11 and G12 as

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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G11( p) =
iωn + εk +∆

(iωn)2 − ε2k − 2∆εk
,� (8)

G12( p) = − ∆

(iωn)2 − ε2k − 2∆εk
.� (9)

Here the quantity ∆ is defined by ∆(T ) = nc(T )v(0). Both G11 and G12 in equations (8) 
and (9) have identical poles at ω = ±Ek, where

Ek =
√

ε2k + 2∆(T )εk.� (10)

This gives the energy spectrum of elementary excitations for T < Tc. Ek is phonon-like 
in the long-wavelength limit and the phonon velocity c is given by

c ≡
√
∆(T )/2m =

√
nc(T )v(0)/2m.� (11)

For a given total density n, we have

n = nc + ñ,� (12)
where ñ denotes the density of uncondensed bosons and is given by

ñ =

∫
dk

(2π)3

(
εk +∆

2Ek

coth
βEk

2
− 1

2

)
.� (13)

For a given n and T, equations (12) and (13) are coupled equations for determining 
nc(T ).

Then we give a study of BEC of ideal bosons in three-dimensional isotropic har-
monic traps. The topic of BEC in a uniform, noninteracting gas of bosons is treated 
in most textbooks on statistical mechanics [20]. In the grand canonical ensemble, the 
system under study consists of N ideal bosons in three-dimensional isotropic harmonic 

traps, which have the energy spectrum εn = �ω(n+ 3
2
) and a chemical potential µ(0). 

Based on the first principles of statistical mechanics, one knows that the number Nn of 
bosons in the nth state of energy εn obeys the Bose–Einstein distribution

Nn =
1

eβ(εn−µ(0)) − 1
.� (14)

The chemical potential µ(0) is determined by the constraint that the total number of 
bosons in the system is N:

∞∑
n=0

fnNn = N ,� (15)

where fn = 1
2
(n+ 1)(n+ 2) is the degree of degeneracy for three-dimensional isotropic 

harmonic traps. The phenomenon of BEC for ideal bosons is fully described by equa-
tions (14) and (15).

To determine µ(0), we need to introduce the fugacity z by the definition z = exp(βµ∗), 

where we have introduced an eective chemical potential µ∗ = µ(0) − 3
2
�ω. One can 

introduce the parameters q = exp(−β�ω) and x = 1− µ∗/�ω. Because the temperature 
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T appears in the definition z = exp(βµ∗), the fugacity z does not parameterize the 
chemical potential µ∗ by much and so z is not a good physical quantity. The quantity 
x parameterizes the chemical potential µ∗ a lot and so x is a good physical quantity. As 
a result, the quantity x is called the reduced chemical potential. In the same way, the 
quantity q parameterizes the temperature T a lot and so q is a good physical quantity. 
In terms of the good physical quantities x and q, equation (15) is cast into an equa-
tion of state:

qx−1

1− qx−1
+ Pq(x) = N ,� (16)

Pq(x) = Fq(x) + 2Gq(x) +Hq(x),� (17)

Fq(x) =
ln(1− q) + ψq(x)

ln q
,� (18)

Gq(x) =
(kc + 1) ln(1− q)

ln q
+

1

ln q

kc∑
k=0

ψq(x+ k),� (19)

Hq(x) =
kc(kc + 1) ln(1− q)

2 ln q
+

1

ln q

kc∑
k=1

kψq(x+ k),� (20)

where the upper limit ∞ of summation is replaced by an upper cuto kc and in practice 
we set kc = 200. The numerical calculation demonstrates that the upper cuto kc = 200 
is sucient for a high precision calculation. ψq(x) is the q-digamma function defined by 
ψq(x) = d[ln Γq(x)]/dx, where Γq(x) is the q-gamma function defined by

Γq(x) = (1− q)1−x

∞∏
n=0

1− qn+1

1− qn+x
,� (21)

when |q| < 1 and x �= 0, −1,−2, ⋯. The q-gamma function was introduced by Jackson 
[21] and the q-digamma function was introduced by Krattenthaler and Srivastava [22]. 
In recent decades the q-gamma function and the q-polygamma function have gained 
extensive applications in science and technology [23].

Pq(x) represents the number of noncondensed atoms. The reduced chemical poten-
tial x can be determined numerically from equation (16). x is a function of temperature 
T and particle number N. Once x is known, the number of Bose atoms in the ground 
state can be obtained from the relation N0 = qx−1/(1− qx−1). To satisfy equation (16), 
it is necessary that x � 1. When x  =  1, a three-dimensional atomic gas is in the state 
of BEC. The critical temperature Tc can now be found by setting N0  =  0 and x  =  1 in 
equation (16). This results in the following expression for the critical temperature,

Pqc(1) = N ,� (22)
where qc = exp(−�ω/kBTc). The function Pqc(1) can be rewritten as p(qc) = Pqc(1). By 
virtue of equation  (22), from equation  (16) we find that the condensate fraction of 
bosons in the ground state is given by

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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N0

N
=





1− p(q)
p(qc)

, T � Tc,

0, T > Tc.

� (23)

We shall assume that a weakly interacting and a noninteracting Bose gas have the 
same BEC transition temperature Tc, as given by equation (22).

3. Numerical calculation

In this section we shall make a numerical calculation in the finite-temperature case 
(T � Tc). The temperature dependence of the condensate density nc(T ) may be derived 
from equations (12) and (13). Since their solution requires numerical methods, one can 
introduce the reduced wave-number x = �k/2

√
m∆. We first let y = nc(T )/n and then 

derive the following expression,

y = 1− [2myn
1
3v(0)]

3
2

3π2�3
− 4[myn

1
3v(0)]

3
2

π2�3

×
∫ ∞

0

x(x2 + 1)√
x2 + 2

1

exp
[
ynv(0)
kBT

√
x4 + 2x2

]
− 1

dx.
� (24)

Therefore, nc(T )/n is a universal function of T, N and g, independently of any particular 
property of the atom system. In order to give a numerical impression of nc(T )/n, we 
set ω/2π = 140.0 Hz, which is accessible to an actual experiment [2]. One can introduce 

an oscillator length a =
√

�/mω, which characterizes the spread of the oscillator wave 
function in the radial direction. We take into account the gas of 23Na atoms, which are 
bosons and have a positive scattering length. The mass of 23Na atoms is m  =  23 a.u. 
and thereby the oscillator length is calculated as a  =  1.7717 µm. The trapping volume 
V  of the atom system can be regarded as a cube of side length L  =  15a. Therefore we 
have V = L3. Concomitantly, we take the number density of atoms as n = N/V . In the 
following calculation, we take g = 0.74× 10−23 eV cm3.

According to equation (24), the variation with the temperature T of the condensate 
fraction nc(T )/n is shown in figure 1 for N = 1000 000. From equation (22), we find that 
at N  =  106, the corresponding transition temperature is Tc = 0.629 µK. From figure 1, 
one can see that the Bose condensation of nonideal bosons in three-dimensional isotro-
pic harmonic traps is the two-step condensation [24–26]. In other words, for a fixed N 
there are two transition temperatures. The first transition temperature is the critical 
temperature Tc. The second transition temperature is the critical temperature Tm, which 
is smaller than Tc and is determined by the minimum of the curve. The calculation 
gives Tm = 0.536 µK. The condensate fraction decreases continuously from nc(0)/n to 
the minimum as the temperature increases from zero to the transition temperature Tm. 
In the temperature range Tm < T � Tc, the condensate fraction increases slowly. The 
BEC in such a three-dimensional system demonstrates new features: in the temper
ature range 0 < T � Tm the equilibrium state is a normal condensate, whereas in the 
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temperature range Tm < T � Tc one has a quasi condensate. The quasi condensate is 
a generalized condensate due to interactions. According to equation (23), figure 1 also 

shows that the condensate fraction n
(0)
c (T )/n of the ideal Bose gas varies with the 

temperature T. In the temperature range 0 < T � Tm, n
(0)
c (T ) > nc(T ). This means 

that the repulsive interaction between bosons kicks o a small fraction of bosons out 

of the condensate. In the temperature range Tm < T � Tc, one first has n
(0)
c (T ) > nc(T ) 

and then has n
(0)
c (T ) < nc(T ). This means that the quasi condensation state is meta-

stable. Figure 1 clearly indicates a finite jump in the condensate fraction nc(T )/n at 
the transition temperature Tc. This jump is the characteristic of a first-order phase 
transition.

According to equation  (24), the variation with the boson number N of the con-
densate fraction nc(T )/n is shown in figure 2 for T  =  0.17 µK. From equation  (22), 
we find that at T  =  0.17 µK, the critical boson number is Nc = 18 949. From figure 2, 
one can see that for a fixed T there are two critical boson numbers. The first critical 
boson number is Nc. The second critical boson number is Nm, which is larger than Nc 
and is determined by the minimum of the curve. The calculation gives Nm = 2× 105. 
In the boson number range Nc � N � Nm, the condensate fraction decreases to the 
minimum very fast. The condensate fraction first increases from the minimum to the 
maximum and then decreases as the boson number increases from Nm. The BEC in 
such a three-dimensional system demonstrates new features: in the boson number range 
N > Nm the equilibrium state is a normal condensate, whereas in the boson number 
range Nc � N � Nm one has a quasi condensate. The quasi condensate is a generalized 
condensate due to interactions. According to equation (16), figure 2 also shows that 

the condensate fraction n
(0)
c (T )/n of the ideal Bose gas varies with the boson number 

N. In the boson number range N > Nm, n
(0)
c (T ) > nc(T ). This means that the repulsive 

interaction between bosons kicks o a small fraction of bosons out of the condensate. 
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Figure 1.  The solid and dashed lines denote the variation of the condensate fraction 
nc(T )/n of nonideal and ideal Bose atoms with the temperature T, respectively. 
The temperature T varies from zero to the transition temperature Tc.
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In the boson number range Nc � N � Nm, one first has n
(0)
c (T ) < nc(T ) and then has 

n
(0)
c (T ) > nc(T ). This means that the quasi condensation state is metastable.

4. Conclusions

Just over 24 years after the discovery of BEC in ultracold dilute atomic gases, it is clear 
that much important progress still remains to be made. A lot of experiments clearly 
show that the interaction between bosons can indeed play an important role in the BEC 
of bosons. The existing BEC theory is highly relevant to all basic features revealed in 
the BEC of dilute atomic gases. An ongoing viewpoint about the BEC mechanism in 
three-dimensional anisotropic harmonic traps is that the Bose condensation is the two-
step condensation. Our study has pointed out that the Bose condensation of interacting 
bosons in three-dimensional isotropic harmonic traps is also the two-step condensation. 
In the temperature range 0 < T � Tm the equilibrium state is a normal condensate, 
whereas in the temperature range Tm < T � Tc one has a quasi condensate. The quasi 
condensate is a generalized condensate due to interactions. In fact, the condensation 
phase of dilute atomic gases shows some features of normal Bose–Einstein condensation 
along with others of generalized Bose–Einstein condensation.

In summary, we have proposed a BEC theory of nonideal bosons in three-dimen-
sional isotropic harmonic traps within the HFP approximation. The BEC of trapped 
nonideal bosons within the HFP approximation possesses some peculiar properties. The 
Bose condensation in three-dimensional isotropic harmonic traps is the two-step con-
densation. The boson system undergoes a first-order phase transition from the normal 
state to the BEC state. These features reveals some secrets of the condensation phase 
of trapped nonideal bosons.
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Figure 2.  The solid and dashed lines denote the variation of the condensate fraction 
nc(T )/n of nonideal and ideal Bose atoms with the boson number N, respectively.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Two-step condensation of interacting bosons in three-dimensional isotropic harmonic traps

10https://doi.org/10.1088/1742-5468/ab4985

J. S
tat. M

ech. (2019) 113101

Acknowledgments

This work was supported by the National Natural Science Foundation of China under 
Grants No. 10174024 and No. 10474025.

References

	 [1]	 Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
	 [2]	 Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. 

Rev. Lett. 75 3969
	 [3]	 Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
	 [4]	 Meyrath T P, Schreck F, Hanssen J L, Chuu C-S and Raizen M G 2005 Phys. Rev. A 71 041604
	 [5]	 Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P and Hadzibabic Z 2013 Phys. Rev. Lett. 110 200406
	 [6]	 Li Y, Martone G I, Pitaevskii L P and Stringari S 2013 Phys. Rev. Lett. 110 235302
	 [7]	 Han W, Juzeliunas G, Zhang W and Liu W M 2015 Phys. Rev. A 91 013607
	 [8]	 Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O and Ketterle W 2017 Nature 

543 91
	 [9]	 Léonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87
	[10]	 Bru J B and Zagrebnov V A 1999 Exactly soluble model with two kinds of Bose–Einstein condensations 

Physica A 268 309
	[11]	 Zagrebnov V A and Bru J B 2001 The Bogoliubov model of weakly imperfect Bose gas Phys. Rep. 350 291
	[12]	 Bru J B, Nachtergaele B and Zagrebnov V A 2002 The equilibrium states for a model with two kinds of Bose 

condensation J. Stat. Phys. 109 143
	[13]	 Mujal P, Sarl E, Polls A and Juli B 2017 Phys. Rev. A 96 043614
	[14]	 Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill) 

p 198
	[15]	 Shi H and Grin A 1998 Finite-temperature excitations in a dilute Bose-condensed gas Phys. Rep. 304 1
	[16]	 Beliaev S T 1958 Application of the methods of quantum field theory to a system of bosons Sov. Phys.—

JETP 7 289
	[17]	 Hugenholtz N M and Pines D 1959 Ground-state energy and excitation spectrum of a system of interacting 

bosons Phys. Rev. 116 489
	[18]	 Popov V N 1965 Green functions and thermodynamic functions of a non-ideal Bose gas Sov. Phys.—JETP 

20 1185
	[19]	 Hohenberg P C and Martin P C 1964 Superfluid dynamics in the hydrodynamic (ωτ � 1) and collisionless 

(ωτ � 1) domains Phys. Rev. Lett. 12 69
	[20]	 Huang K S 1987 Statistical Mechanics 2nd edn (New York: Wiley) p 286
	[21]	 Jackson F H 1904 Proc. R. Soc. A 74 64
	[22]	 Krattenthaler C and Srivastava H M 1996 Comput. Math. Appl. 32 73
	[23]	 Salem A 2015 Anal. Appl. 13 125
	[24]	 van Druten N J and Ketterle W 1997 Two-step condensation of the ideal Bose gas in highly anisotropic traps 

Phys. Rev. Lett. 79 549
	[25]	 Deng W 1999 Multi-step Bose–Einstein condensation of trapped ideal Bose gases Phys. Lett. A 260 78
	[26]	 Beau M and Zagrebnov V A 2010 The second critical density and anisotropic generalised condensation  

Condens. Matter Phys. 13 23003

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevA.71.041604
https://doi.org/10.1103/PhysRevA.71.041604
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevA.91.013607
https://doi.org/10.1103/PhysRevA.91.013607
https://doi.org/10.1038/nature21431
https://doi.org/10.1038/nature21431
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1016/S0378-4371(99)00023-0
https://doi.org/10.1016/S0378-4371(99)00023-0
https://doi.org/10.1016/S0370-1573(00)00132-0
https://doi.org/10.1016/S0370-1573(00)00132-0
https://doi.org/10.1023/A:1019935511359
https://doi.org/10.1023/A:1019935511359
https://doi.org/10.1103/PhysRevA.96.043614
https://doi.org/10.1103/PhysRevA.96.043614
https://doi.org/10.1016/S0370-1573(98)00015-5
https://doi.org/10.1016/S0370-1573(98)00015-5
https://doi.org/10.1103/PhysRev.116.489
https://doi.org/10.1103/PhysRev.116.489
https://doi.org/10.1103/PhysRevLett.12.69
https://doi.org/10.1103/PhysRevLett.12.69
https://doi.org/10.1098/rspl.1904.0082
https://doi.org/10.1098/rspl.1904.0082
https://doi.org/10.1016/0898-1221(96)00114-9
https://doi.org/10.1016/0898-1221(96)00114-9
https://doi.org/10.1142/S0219530514500195
https://doi.org/10.1142/S0219530514500195
https://doi.org/10.1103/PhysRevLett.79.549
https://doi.org/10.1103/PhysRevLett.79.549
https://doi.org/10.1016/S0375-9601(99)00490-9
https://doi.org/10.1016/S0375-9601(99)00490-9
https://doi.org/10.5488/CMP.13.23003
https://doi.org/10.5488/CMP.13.23003

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Two-step condensation of interacting bosons in three-dimensional isotropic harmonic traps﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Formulism
	﻿﻿3. ﻿﻿﻿Numerical calculation
	﻿﻿4. ﻿﻿﻿Conclusions
	﻿﻿﻿Acknowledgments
	﻿﻿﻿References﻿﻿﻿﻿


