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Abstract.  The reliability of physical theories depends on whether they agree 
with well-established physical laws. In this work, we address the compatibility 
of the Hamiltonian formulation of linear-response theory with the second 
law of thermodynamics. In order to do so, we verify three complementary 
aspects often understood as statements of the second law: (1) no dissipation 
for quasistatic process; (2) dissipation for finite-time processes; and (3) positive 
entropy production rate. Our analysis focuses on two classes of nonequilibrium 
isothermal processes: slowly-varying and finite-time but weak ones. For the 
former, we show that these aspects are easily verified. For the later, we present 
conditions for the achievement of the first two aspects. We also show that the 
third one is not always verified, presenting an example based on Brownian 
motion in which we observe negative values in the entropy production rate. In 
particular, we compare linear-response and exact results for this example.
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1.  Introduction

Linear-response theory (LR) is one of the most used frameworks to describe nonequi-
librium statistical physics phenomena. Having notorious success in the calculation of 
kinetic coecients in transport processes, such as electric conductivity [1, 2], dielectric 
relaxation [3–6] and nuclear magnetic susceptibility [7–10], the main idea underneath 
the theory is to provide the response of an observable due to a weak perturbation. The 
response is encoded by the so-called response function or, equivalently, the relaxation 
function [11]. Additionally, a great advantage of LR is its twofold aspect of describing 
a system either by using a microscopical approach or a phenomenological one. In the 
former case, the relaxation function is deduced directly by solving the Hamiltonian 
equations  (or the Heisenberg ones in the quantum case). In the phenomenological 
approach, although the underlying Hamiltonian formalism is the same, the relaxation 
function is obtained from the experimental measurement of the response. In this case, 
it is quite natural to expect that such relaxation function must be very related to 
the thermodynamic aspects of the system. However, it is not very clear yet whether 
the linear-response results derived either from microscopic or phenomenological inputs 
are entirely compatible with thermodynamics and how this compatibility takes place, 
although some attempts have been made in that sense [12]. In the present work, we 
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try to fill this gap, finding mathematical conditions on the relaxation function that 
make the LR compatible with the second law of thermodynamics. Since we are focus-
ing on the Hamiltonian formulation of LR, our task is related to the old problem of 
understanding how the macroscopic phenomena are related to the microscopic laws of 
motion [13–17].

In our analysis, we will consider driven classical systems in the presence of a heat 
bath and three aspects often taken as statements of the second law will be considered: 
the first one says that there is no dissipation for systems driven by quasistatic process; 
the second one says that there is dissipation for systems driven by finite-time process; 
the third one corresponds to the positivity of the entropy production rate. Considering 
the two classes of nonequilibrium processes described by LR, namely, slowly-varying 
and finite-time but weak ones, each one of the aspects just mentioned will be verified, 
either by finding mathematical conditions on the relaxation function or by presenting a 
counterexample. This will be the case when we analyze the third aspect for finite-time 
but weak processes. There we will find that LR predicts negative values of entropy 
production rates for the paradigmatic example of driven Brownian motion.

The proposition of the positivity of the entropy production rate as an equivalent 
statement of the second law of thermodynamics dates back to the mid-twentieth cen-
tury in the works of Prigogine and contemporaries [18, 19]. In their local formulation 
of the second law, it is stated that the dierential of the internal entropy production 
of the system must be positive, which would imply that the entropy production rate 
has to be positive as well. In that manner, Prigogine recovers well-established results 
and since then the positivity of the entropy production rate has been used either as a 
premisse or as a goal to be achieved [20–27]. However, the existence of negative entropy 
production rates has become a topic of intense research mainly because of its sup-
posed relation with non-Markovian aspects of the dynamics of open quantum systems  
[28–30]. Although a considerable amount of examples has been presented in the last 
years trying to establish a connection between negative rates and non-Markovianity 
[31–35], our understanding about it is still improving [36, 37].

This work is organized in the following form: in section 2 we show how to connect 
LR to the three aspects of the second law mentioned previously and address the non-
equilibrium regions where our analysis will be done; after that, in section 3, we review 
the main elements of LR that are necessary for the development of this work; in sec-
tions 4 and 5, we address the above-mentioned compatibility for slowly-varying and 
finite-time but weak processes. In particular, section 5.3 presents an example where we 
observe negative values of the entropy production rate. We make our final remarks in 
section 6.

2. Connecting LR to the second law

According to the second law of thermodynamics, the entropy variation of a total iso-
lated system, after we have changed a control parameter λ from λ0 to λ0 + δλ (we will 
restrict our analysis to a single control parameter) in a time interval τ , is positive or 
zero,

https://doi.org/10.1088/1742-5468/ab54ba
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∆Stot � 0.� (1)
To connect LR with the second law, it is convenient to express (1) in a more suitable 
way. To this end, we restrict ourselves to the situation in which the total system is 
composed of a system of interest (or simply system) coupled to a heat bath at temper
ature T. Considering ∆S and ∆SB respectively as the entropy variation of the system 
and the heat bath, Q as the average heat received by the system, W as the average 
work performed on the system by the external agent and ∆F  as the variation of free 
energy between the final and initial equilibrium state of the system, where F  =  U  −  TS, 
we have

∆Stot = ∆S +∆SB ⇒ ∆Stot = ∆S −Q/T

⇒ T∆Stot = T∆S +W −∆U

⇒ T∆Stot = W −∆F ,

where we used the Clausius theorem and the first law of thermodynamics, ∆U = Q+W , 
in the first and third implication respectively. Defining the irreversible work Wirr as

Wirr = W −∆F ,� (2)
we have

T∆Stot = Wirr.� (3)
Thus, the irreversible work Wirr can be used as a measure of entropy production ∆Stot 
(see for instance [38]).

In the last decades, expressions for Wirr have been derived using LR for the purpose 
of finding optimal finite-time processes [39–44]. The connection between LR and the 
second law can be established then through these expressions for Wirr which are asked 
to verify the following statements:

	 1.	� No dissipation for quasistatic process:

lim
τ→∞

Wirr(τ) = 0,� (4)

	 2.	� Dissipation for finite-time processes:

Wirr(τ) � 0,� (5)
	 3.	� Positive entropy production rate:

Ẇirr(t) � 0.� (6)

It is worth clarifying that processes in which the system reaches a stationary state with 
non-vanishing currents for fixed values of the control parameter λ are ruled out of our 
considerations.

Our analysis will focus on two nonequilibrium regimes represented in figure 1 by 
regions 1 and 2. To each of them corresponds a dierent class of nonequilibrium pro-
cesses. Slowly-varying processes belong to region 1, where the duration of the process τ  
is large compared to the system’s relaxation time τR, but the variation δλ is arbitrary. 
In such regime, the expression for Wirr deduced by means of LR is given by [39–42]

https://doi.org/10.1088/1742-5468/ab54ba
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Wirr = β

∫ τ

0

λ̇2(t)τR[λ(t)]χ[λ(t)]dt,� (7)

where β = (kBT )
−1, kB is Boltzmann constant and λ̇ is the time derivative of the proto

col λ(t). We denote by τR[λ(t)] and χ[λ(t)] the parametric variation of the system’s 
relaxation time and of the fluctuations of the generalized force conjugated to λ respec-
tively (in the case of a gas, if the volume is the control parameter then the pressure is 
the generalized force conjugated to it). We give more precise definitions of these quanti-
ties in the following sections (see equations (17) and (18) of section 4).

In region 2, we have finite-time but weak processes. In this regime, the relative 
change δλ/λ0 must be small but the duration τ  of the process can be arbitrary. In this 
case, using LR, the irreversible work expression reads [43]

Wirr(τ) =

∫ τ

0

∫ t

0

Ψ0(t− t′)λ̇(t′)λ̇(t)dt′dt,� (8)

where Ψ0(t) is the so-called relaxation function [11] (see its definition in equation (14) 
of section 3). Last but not least, region 3 represents processes arbitrarily far from equi-
librium, in which both perturbation and duration of the process are arbitrarily chosen 
outside near-equilibrium regions, and where LR does not hold anymore. Our goal is to 
find mathematical and physical conditions under which the functionals (7) and (8) and 
the quantities appearing in them lead to an agreement with the three aspects of the 
second law mentioned above. Succint deductions of such irreversible work expressions 
can be found in appendix B. For more details, see [42, 43].

It is worth emphasizing that Wirr is an average over several microscopic realiza-
tions of the protocol λ(t), each one furnishing a dierent value of work W. Hence, 
Wirr ≡ W −∆F  is a fluctuating quantity that obeys very well-known fluctuation theo-
rems, namely, the Jarzynski equality [45]

Figure 1.  Diagram of nonequilibrium regions. Region 1: slowly-varying processes, 
Region 2: finite-time but weak processes and Region 3: arbitrarily far from 
equilibirum processes.

https://doi.org/10.1088/1742-5468/ab54ba
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〈
e−β(W−∆F )

〉
=

〈
e−βWirr

〉
= 1,� (9)

and Crooks fluctuation theorem [38]
PF (W)

PR(−W)
=

PF (Wirr)

PR(−Wirr)
= eβ(W−∆F ) = eβWirr ,� (10)

where PF and PR denote the usual work distributions obtained after several realizations 
of the forward (described by λ(t)) and time-reversed protocols.

We show in section 5.3 by means of stochastic thermodynamics (ST) and LR that, 
along the process induced by λ(t), the instantaneous rate Ẇirr can assume negative val-
ues for the paradigmatic example of driven Brownian motion. This seems to be in con-
trast to previous definitions of entropy production rates in ST [27]. We will postpone 
to section 6 additional comments about this point. In any case, we would like to stress 
that the inequality 〈Wirr〉 = Wirr � 0, derived from the integral fluctuation theorem (9), 
does not imply Ẇirr � 0.

3. Hamiltonian formulation of LR

In this section, we review the main elements of LR that we find necessary for our pur-
poses. As mentioned in the previous section, we consider a system coupled to a heat 
bath at temperature T that is driven out of equilibrium by the switch of a certain con-
trol parameter λ. We denote this by

λ(t) = λ0 + g(t)δλ,� (11)
with g(0) = 0 and g(τ) = 1, where τ  is the duration of the process. In a Hamiltonian 
approach, this means that the time-dependent Hamiltonian H(λ(t)) of system plus heat 
bath is driven from H(λ0) to H(λ0 + δλ) in a time interval τ  by some external agent, 
according to the protocol λ(t) (or, equivalently, g(t)). We will focus here on the calcul
ation of the work performed on the system since, as explained in section 2, it will be the 
necessary link to connect LR to the second law of thermodynamics. Our starting point 
is the following expression for the work performed on the system,

W =

∫ τ

0

dt λ̇(t) ∂λH(t),� (12)

where λ̇ := dλ/dt, A denotes the nonequilibrium average of the observable A and the 
quantity ∂λH := ∂H/∂λ is the generalized force. We are concerned with the linear 

response of the generalized force due to the variation of the parameter λ. Therefore, we 
assume that the system is weakly perturbed, that is, δλ/λ0 � 1. Using LR (see appen-
dix A for more details), the expression for the generalized force up to first order in δλ 
reads

∂λH(t) = 〈∂λH〉0 − δλΘ0g(t) + δλ

∫ t

0

duΨ0(u)
dg

dt′

∣∣∣
t′=t−u

,
�

(13)

https://doi.org/10.1088/1742-5468/ab54ba


Compatibility of linear-response theory with the second law of thermodynamics and the emergence

7https://doi.org/10.1088/1742-5468/ab54ba

J. S
tat. M

ech. (2020) 013206

where 〈...〉0 is an equilibrium average taken on the initial canonical distribution, 
exp (−βH(λ0))/Z(β,λ0) (Z(β,λ0) being the partition function) and Ψ0(t) is the relax-
ation function, given, in our specific case, by

Ψ0(t) = β 〈∂λH(q0, p0)∂λH(qt, pt)〉0 − C,� (14)
after using Kubo formula [11] (see equations (A.9)–(A.11) in appendix A). We denote 
by (qt, pt) a phase-space point of the entire system at the instant t and C is a constant 
defined by [11]

C = β lim
s→0

s

∫ ∞

0

e−st 〈∂λH(q0, p0)∂λH(qt, pt)〉0 dt,� (15)

whose purpose is to guarantee that the system attains the correct new equilibrium state 
(it is assumed then from the very beginning that the auto-correlation function in equa-
tion (14) decays due to the interaction with the heat bath). The purpose of the sub-
script ‘0’ is to emphasize that the initial equilibrium averages were taken with λ = λ0. 
Finally, the constant Θ0 is defined as (see appendix A)

Θ0 := Ψ0(0)−
〈
∂2
λλH

〉
0
.� (16)

To calculate the work performed on the system, it is possible to use equation (13) 
in two dierent regimes characterized previously by regions 1 and 2 of figure 1 [39–44] 
(see appendix B). In both cases, the relaxation function Ψ0(t) is the central object of 
the theory and its exact expression demands the solutions of Hamilton’s equations, 
which is not a very easy task to be accomplished. In order to circumvent this problem, 
the relaxation function can alternatively be modeled using phenomenological informa-
tion [11, 46]. Although this way of obtaining Ψ0(t) is never in full agreement with 
the underlying Hamiltonian dynamics, it can be made approximately consistent with 
it. This is achieved through the so-called sum rules, which are constraints that the 
phenomenological relaxation function must satisfy to match its expected microscopic 
requirements [11, 46] (see appendix C for more details). For instance, Hamiltonian 
dynamics demand equation (14) to be even under the change t → −t. Thus, this con-
straint must be imposed to any phenomenological expression intended to be used as a 
valid relaxation function.

As it will be shown in section 5, this parity property will be very important to 
make the linear-response expression of equation (12) compatible with the second law 
of thermodynamics. Nevertheless, we want to emphasize that Ψ0(−t) = Ψ0(t) holds 
in the particular case of interest here of nonequilibrium work due the variation of a 
single external parameter. Dierent parities are indeed possible for more general cases 
[11, 46].

4. Compatibility for slowly-varying processes

The irreversible work for slowly-varying processes is given by equation  (7) which 
depends on two quantities we have not defined properly yet. The first one is the vari-
ance χ of the generalized force defined as

https://doi.org/10.1088/1742-5468/ab54ba
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χ(λ0) = 〈(∂λH)2〉0 − 〈∂λH〉20 ,� (17)

where the dependence in λ0 emphasizes that the canonical average is taken over the 
initial equilibrium distribution. The second quantity is the relaxation time defined in 
LR by

τR(λ0) =

∫ ∞

0

Ψ0(t)

Ψ0(0)
dt,� (18)

where the dependence in λ0 emphasizes again that averages were taken with the initial 
equilibrium distribution. Observing equation (7), one concludes that Wirr is given in 
terms of equilibrium quantities that vary parametricaly in time through the protocol 
λ(t). This suggests that, in this regime, the system slightly deviates from a sequence of 
equilibrium states as λ changes in time. In other words, the χ[λ(t)] and τR[λ(t)] used 
in equation (7) are still given by equations (17) and (18) evaluated though at the value 
λ(t) instead of λ0. Additionally, it only makes sense to consider relaxation functions 
leading to positive and finite relaxation times.

4.1. No dissipation for quasistatic processes

Defining u = t/τ , we can rewrite equation (7) as

Wirr =
β

τ

∫ 1

0

λ̇2(u)τR[λ(u)]χ[λ(u)]du.� (19)

We note that the dependence on the switching time occurs only in the factor 1/τ [42]. 
This is so because λ(t) = λ0 + δλg(t) satisfies the boundary conditions λ(0) = λ0 and 
λ(τ) = λ0 + δλ, implying that g(t) is indeed a function of t/τ . In this manner, we have 
immediately

lim
τ→∞

Wirr = lim
τ→∞

β

τ

∫ 1

0

λ̇2(u)τR[λ(u)]χ[λ(u)]du = 0.� (20)

4.2. Dissipation for finite-time processes

As the integrand of equation (19) is composed of positive functions, the integral leads 
to a positive result as well. Therefore, for a finite switching time τ , we have

Wirr =
β

τ

∫ 1

0

λ̇2(u)τR[λ(u)]χ[λ(u)]du > 0.� (21)

4.3. Positive entropy production rate

Considering again equation (7), the time derivative of Wirr is composed of positive func-
tions only. Thus,

Ẇirr = βλ̇2(t)τR[λ(t)]χ[λ(t)] > 0.� (22)

https://doi.org/10.1088/1742-5468/ab54ba
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In addition, by analogy with the thermodynamics of linear irreversible processes 
[18, 19], we will define some nomenclature that will be useful for our discussion in what 
follows. Consider the factorization

Ẇirr = λ̇(t)
(
βτR[λ(t)]χ[λ(t)]λ̇(t)

)
= λ̇(t)F [λ(t)].� (23)

We call λ̇ and F  respectively the anity and the associated flux. We observe that, in 
the situation where the process is driven externally, the anity is related to how the 

external agent performs the process, namely, λ̇(t). In particular, for slowly-varying 
processes, the flux responds instantaneously to the anity, which characterizes a mem-
oryless process [47].

5. Compatibility for finite-time but weak processes

In the previous section, we have shown that the compatibility of the linear-response 
expression (7) with the second law is straightforward and the only necessary require-
ment on the relaxation function is the convergence of the integral (18) defining the 
relaxation time for all values of λ between λ0 and λ0 + δλ. Our goal hereafter is to 
provide further constraints that any relaxation function must fulfill in order to achieve 
compatibility with the second law in region 2. As a first step, we will consider that the 
relaxation function Ψ0(t) has the following parity due to time-reversal symmetry,

Ψ0(t) = Ψ0(−t).� (24)
As we will see, such property will be essential to demonstrate the aspects that fol-
low below. This is indeed a property inherited from the Hamiltonian definition of the 
relaxation function, which is an auto-correlation function calculated in the canonical 
equilibrium (see equation (14)), and already discussed in section 3.

5.1. No dissipation for quasistatic process

We demonstrate now that equation (8) satisfies the first aspect of compatibility with 
the second law (see equation (4)) assuming that the system thermalises with the heat 
bath. In other words, we assume as before that the relaxation time, defined by equa-
tion (18), is finite,

∫ ∞

0

Ψ0(t)

Ψ0(0)
dt < ∞.� (25)

We observe first that we can rewrite the relaxation time as

τR =
Ψ̃0(0)

Ψ0(0)
,� (26)

https://doi.org/10.1088/1742-5468/ab54ba
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where Ψ̃0 is the Laplace transform of Ψ0. Thus, equation (25) leads to

Ψ̃0(0) < ∞ ⇒ lim
s→0

Ψ̃0(s) < ∞

⇒ lim
s→0

sΨ̃0(s) = 0

⇒ lim
t→∞

Ψ0(t) = 0,

where in the last line we used the final value theorem. We remark that the reverse 
implication is not true as shown by the counterexample Ψ0(t) = Ψ0(0)/(1 + |t|).

Considering equation (24) and the definitions u = t/τ and v = t′/τ, we rewrite equa-
tion (8) as

Wirr(τ) =
1

2

∫ 1

0

∫ 1

0

Ψ0(τ(u− v))λ̇(u)λ̇(v)dudv,� (27)

(for more details, see [43]). Therefore, we have

lim
τ→∞

Wirr(τ) ∝ lim
τ→∞

∫ 1

0

∫ 1

0

Ψ0(τ(u− v))λ̇(u)λ̇(v)dudv

=

∫ 1

0

∫ 1

0

(
lim
τ→∞

Ψ0(τ(u− v))
)
λ̇(u)λ̇(v)dudv

= 0,

in which we moved the limit inside the integral assuming that the integrand is well-
behaved and used equation (24) again. Figure 2 corroborates our result presenting the 
irreversible work given by equation (8) for dierent protocols and relaxation functions 
(the subscript ‘0’ was dropped for the sake of simplicity of notation)

Ψ1(t) = Ψ1(0)e
−a1|t|,� (28a)

Ψ2(t) = Ψ2(0)e
−a2|t|(cos (a2t) + sin (a2|t|)),� (28b)

Ψ3(t) = Ψ3(0)J0(a3t),� (28c)
which satisfy equations (24) and (25). We remark that J0 is the Bessel function of the 
first kind for index α = 0 and a1, a2 and a3 are positive free parameters. The relaxation 
functions Ψ1 and Ψ2 are commonly used to model respectively overdamped and under-
damped Brownian motions [11, 42, 44] and Ψ3 is motivated by correlation functions of 
spin systems [48].

It is worth emphasizing that there are no free parameters when the relaxation 
function is exactly obtained from the solutions of the equations of motion. Hence the 
expressions above represent possible phenomenological models for the behavior of the 
equilibrium correlation function given in equation  (14). The free parameters of such 
models can be expressed in terms of thermodynamic quantities and parameters of the 

https://doi.org/10.1088/1742-5468/ab54ba
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Hamiltonian through the expressions in equation (C.3a) (for examples of how to do this, 
see [11, 42]).

5.2. Dissipation for finite-time processes

Dissipation for finite-time processes occurs if the following theorem is satisfied.

Theorem 1.  Consider that the relaxation function is even with respect to the change 
t → −t due to time-reversal symmetry. The irreversible work given by equation  (8) is 
nonnegative if, and only if, the Fourier transform of the relaxation function is a non-
negative function

Ψ̂0(ω) =
1√
2π

∫

R
e−iωtΨ0(t)dt � 0.� (29)

We will restrict ourselves to prove the first implication. The other one can be seen 
in detail in [49] under the name Bochner’s theorem.

Proof.  Firstly, Ψ̂0 is a real function since Ψ0(t) = Ψ0(−t). Hence, if Ψ̂0 is a positive 
function, we have

Wirr[ġ] ∝
∫ 1

0

∫ 1

0

Ψ0(τ(u− v))λ̇(u)λ̇(v)dudv

=
1√
2π

∫ 1

0

∫ 1

0

∫

R
eiωτ(u−v)Ψ̂0(ω)λ̇(u)λ̇(v)dωdudv

=
1√
2π

∫

R

∣∣∣∣
∫ 1

0

eiωτuλ̇(u)du

∣∣∣∣
2

Ψ̂0(ω)dω � 0.

� □ 

Figure 2.  Irreversible work given by equation (8) as a function of switching time 
τ  for the relaxation functions defined in equation  (28) and protocols shown in 
the inset. In all cases we observe that dissipation decreases monotonically as 

the quasistatic limit is approached, τ → ∞. We chose the irreversible work unit 

AW = Ψ0(0)(δλ)
2/2.
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We present below the Fourier transform of the relaxation functions defined in equa-
tion (28), which satisfy the hypotheses of theorem 1,

Ψ̂1(ω) = Ψ1(0)

√
2

π

a1
a21 + ω2

,� (30a)

Ψ̂2(ω) = Ψ2(0)

√
2

π

4a32
4a42 + ω4

,� (30b)

Ψ̂3(ω) = Ψ3(0)

√
2

π

θ(ω/a3 + 1)− θ(ω/a4 − 1)√
a23 − ω2

,� (30c)

where θ is the Heaviside step-function. We conclude that these relaxation functions are 
compatible with aspect (5) the second law of thermodynamics. In summary, phenom-
enological models of Ψ0(t) whose Fourier transform does not follow the conditions of 
theorem 1 can violate aspect (5) and therefore cannot be accepted.

A question that naturally arises is which are the properties on the relaxation func-
tion itself (i.e. not on its Fourier transform) that guarantee the non-negativity of the 
irreversible work. In fact, there is mathematical research currently investigating related 
issues [50–54].

5.3. Negative values in the entropy production rate

Our last task is to verify the non-negativity of the entropy production rate as described 
by LR in region 2. Surprisingly, we will show that equation (8) predicts negative values 
of entropy production rate for a rather simple example. Our results also reveal how 
such negative values disappear as the process becomes ‘memoryless’, a notion that we 
clarify later on.

In what follows, we will compare our linear-response results with exact ones pro-
vided by ST [55]. This comparison will show a nice agreement between both sets of 
results. Additionally, it will become clear how the linear-response expression for the 
entropy production rate clarifies the origin of negative values in contrast to the unap-
pealing numerical solution furnished by ST.

Our example consists on a particle of mass m, immersed in a heat bath of temper
ature T and subjected to a time-dependent harmonic potential with stiness λ(t). We 
model the dynamics of this particle through the following Langevin equation,

mẍ+ γẋ+ λ(t)x = f(t),� (31)
where x(t) is the particle position at time t, γ > 0 is the dissipation constant and f(t) 
is a white noise which has the properties

f(t) = 0,� (32a)

f(t) f(t′) = 2γkBTδ(t− t′),� (32b)

where (...) is the average taken over the noise history. We will consider the under-

damped regime in which γ/ω0 < 2, with ω2
0 = λ0/m.

https://doi.org/10.1088/1742-5468/ab54ba
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Due to equations (2) and (12), the instantaneous power given by ST reads

Ẇ ST
irr (t) =

λ̇(t)

2

(
x2(t)− dF

dλ
(λ(t))

)
,� (33)

where the term dF/dλ is a generalized force that measures the rate of change of 
the equilibrium free energy along the process. In the underdamped regime, the mean 
squared displacement x2 can be found solving the following system of equations [56]

∂tx2 = 2xp/m,� (34a)

∂tp2 = −2λ(t)xp− 2γp2/m+ 2γT ,� (34b)

∂txp = p2/m− λ(t)x2 − γxp/m.� (34c)

According to equation  (8), the linear-response expression for the instantaneous 
power in region 2 reads

Ẇ LR
irr (t) = λ̇(t)

(∫ t

0

Ψ0(t− t′)λ̇(t′)dt′
)
,� (35)

in which, again by analogy with the thermodynamics of linear irreversible processes, 

the first factor, λ̇(t), is the anity and the second one the associated flux. In contrast 
to equation (23), the delayed response of the flux with respect to the anity character-
izes a process with memory.

To obtain Ẇ LR
irr (t), we need a expression for the relaxation function Ψ0(t). According 

to its definition, equation (14), an exact expression demands the knowledge of the solu-
tions of Hamilton’s equations of particle plus heat bath. As explained in section 3, to 
circumvent this problem we can use a phenomenological model that is minimally com-
patible with the Hamiltonian dynamics. In the present case, this can be done as follows: 
we first obtain x(t) by solving equation (31) for λ(t) = λ0; then, since ∂λH = x2/2 (we 
are considering a Brownian particle in a harmonic trap), we plug into Ψ0(t) the follow-
ing expression

Ψ0(t) =
β

4

〈
x2(t)x2(0)

〉
0
− C,� (36)

according to equations (14) and (15). It is clear that the phenomenological correlation 
function in equation (36) is obtained after taking two averages, namely, one over the 
noise history and another, a canonical one, over the initial conditions. The final analyti-
cal expression for Ψ0(t) reads

Ψ0(t) =
e−γ|t|

2βm2ω0
4ω2

[(
2ω2

0 − ω2
)
cos (ωt)

−γω sin (ω|t|)− 2ω0
2
]
,

�
(37)

where ω2 = 4ω2
0 − γ2. The absolute value of t was added by hand as a minimal 

Hamiltonian requirement due to time-reversal symmetry (see the discussion in sec-
tion 3). We observe that equation (37) leads to a finite relaxation time and a positive 
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Fourier transform. Therefore, according to what was discussed in section 4.2, it is an 
acceptable relaxation function to model our system.

The relaxation time obtained from equations (18) and (37) is

τR =
1

2γ
+

γ

2ω2
0

.� (38)

It is convenient to express γ and ω0 in terms of the coupling between the system and 
heat bath, given by η := γ/ω0, and the relaxation time (38)

γ =
1 + η2

2τR
, ω0 =

1 + η2

2ητR
.� (39)

In particular, we have set τR = 1 in all the following results. The entropy production 
rates were computed using the protocol (11), with

g(t) =
t

τ
+ sin

(
2πt

τ

)
.� (40)

Figure 3 shows the comparison between the results obtained using ST and LR, i.e. 
equations  (33) and (35). The system of equation  (34) were solved numerically using 
equation  (40). As the quasistatic limit is approached, τ � τR, the entropy produc-
tion rate becomes non-negative. Although γ/ω0 = 1 for this set of results, we have 
not observed any noteworthy changes in the results for other ratios (see, for example, 
figure 4). The relative change of the control parameter λ was chosen to be δλ/λ0 = 0.1 
and m  =  1.

The appearance of negative values in the entropy production rate is closely related 
to the system’s memory in responding to the perturbation and the arbitrary anity or 
protocol λ(t) that the external agent can choose. We remind that the system’s memory 
manifests itself as a delayed response of the flux in respect to the anity of the system. 

Roughly speaking, the convolution between Ψ0 and λ̇(t) in (35) gives rise to a flux that 
is out-of-phase with λ̇(t). In addition, the anity can be positive or negative as long as 

the protocol λ(t) is non-monotonic. The combination of these aspects entails a product 
of terms with dierent signs in dierent regions possibly yielding negative rates. To 
illustrate this, equation (35) can be written as the product of a delayed propagation of 
the anity,

PropΨ0
[λ̇] =

∫ t

0

Ψ0(t− t′)λ̇(t′)dt′,� (41)

and an instantaneous one,

Propδ[λ̇] =

∫ t

0

δ(t− t′)λ̇(t′)dt′,� (42)

yealding

Ẇ LR
irr (t) = Propδ[λ̇]× PropΨ0

[λ̇].� (43)

Figure 5 shows the functions obtained from the propagations in equations  (41) 
and (42) for a fast and slow realization of protocol (40). The positivity of the entropy 
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production rate for the slow process is quite understandable if we remind ourselves of 
the discussion in section 4. In fact, when τ/τR � 1, the system will almost relax com-
pletely at each small piece of the process. In other words, the process will be entering 
the slowly-varying regime (see in figure 1 the intersection of regions 1 and 2). Therefore, 
the entropy production rate will become a positive function. From a mathematical 
point of view, such attainment of the quasistatic regime can be understood as the limit 
in which the relaxation function becomes a Dirac delta function and the response of the 
associated flux is basically instantaneous (see figure 5(b)).

Figure 6 shows a comparison between the entropy production rates calculated by 
equations  (33) and (35) with δλ/λ0 = 0.5. Although this is a regime in which LR 
already deviates from the exact result, it still predicts correctly the time intervals in 
which negative rates exist. Additionally, the order of magnitude and the outline of the 
entropy production rate also follow reasonably well the exact result. This shows how 
useful LR predictions can be even in the fully nonequilibrium regime.

Figure 3.  Comparison between the entropy production rate calculated by ST and 
LR, using respectively equations (33) and (35) with the protocol (40). As illustrated 
in panels (a)–(d), negative values of the entropy production rate vanish as the 
process approaches the quasistatic regime, i.e. the ratio τ/τR increases. We chose 
τR = 1, γ/ω0 = 1, δλ/λ0 = 0.1 and m  =  1. We chose also the instantaneous power 
unit as P1 = kBT/(100τ).
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We emphasize that the existence of the negative values observed in the entropy 
production rate is not an exclusive consequence of the memory of the system. For 
instance, if we consider a monotonic protocol such as λ(t) = λ0 + δλ(t/τ)2, whose 

anity is λ̇ = 2tδλ/τ 2, although the process can be fast the entropy production rate 

is always positive (see figure 7). As pointed out previously, the form of λ(t) is essen-
tial in obtaining negative rates. On the other hand, if we consider dierent systems 
described by relaxation functions such as Ψ1(t), Ψ3(t) and Ψ4(t) and maintain the 
protocol (40), we still observe negative values in the entropy production rate (see 
figure 8). For instance, if we consider Brownian motion in the overdamped regime, 
expression (36) yields a simple exponential as the phenomenological model for the 
relaxation function. The instantaneous power (33) is obtained from the solution of 
the equation below [57]

∂tx2 = −2λ(t)x2/γ + 2kBT/γ,� (44)

and the instantaneous power provided by LR in equation  (35) can be calculated 
using Ψ1(t) [42, 44]. Figure 8 shows a comparison of both results with great agree-
ment. Surprisingly, we still observe negative values in the entropy production rate for 
τR = 1/γ = 1 and δλ/λ0 = 0.1.

We would like to stress that the results of figures 3, 4, 6 and 8 should not be mis-
understood. The regions with negative values do not lead to violations of the inequality 
(5) since an integration of Ẇirr over an interval of t/τ  with negative values do not give 
the Wirr for a process that drives the system between the corresponding values of λ in 
that interval.

Figure 4.  Comparison between the entropy production rate calculated by ST 
and LR, using respectively equations  (33) and (35) with the protocol (40). The 
weak coupling between the system and heat bath does not aect the emergence 
of negative entropy production rate, although the outlines of the curves are more 
oscillatory than those of figure 3. We chose τR = 1, γ/ω0 = 0.01, δλ/λ0 = 0.1 and 
m  =  1. We chose also the instantaneous power unit as P1 = kBT/(100τ).
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6. Final remarks

Three complementary aspects, often taken as statements of the second law of ther-
modynamics, were considered in this work in the context of isothermal processes: 
no dissipation for quasistatic process, dissipation for finite-time processes and posi-
tive entropy production rate. We have shown that the linear-response formulation of 
slowly-varying processes satisfies almost automatically all of them, while for finite-time 

Figure 5.  Comparisons between the delayed and instantaneous propagations of λ̇ 
via the relaxation function and Dirac delta function (see equations (41) and (42) 
respectively) for the protocol (40). Panels (a) and (b) illustrate such propagations 
for τ = 0.1τR and τ = 200τR. In (a), the negative values in the entropy production 
rate are a consequence of the system’s memory and the non-monotonicity of the 
protocol. In (b), the positivity is acquired as long as the response of the flux in respect 
to the anity becomes instantaneous. We chose τR = 1, γ/ω0 = 1, δλ/λ0 = 0.1 and 

m  =  1. We chose also the anity unit as A1 = δλ/(10τ). We remark that the 

delayed propagations PropΨ0
[λ̇] were rescaled by factors (a) 100 and (b) 1.2 for a 

better presentation.
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but weak processes more detailed properties of the relaxation function are demanded, 
namely, finite relaxation time, time-reversal symmetry and positive Fourier transform. 
Concerning the entropy production rate, we have shown a simple example in which 

Figure 6.  Comparison between the entropy production rate calculated by ST and 
LR, using equations (33) and (35), respectively, with the protocol (40). We observe 
that LR result has the same outline and order of magnitude of ST result. We chose 
τR = 1, γ/ω0 = 1, δλ/λ0 = 0.5 and m  =  1. We chose also the instantaneous power 
unit as P2 = kBT/(4τ).

Figure 7.  Comparison between the delayed and instantaneous propagations of λ̇ 
via the relaxation function, given by equation (37), and Dirac delta function (see 
equations (41) and (42) respectively). We used the quadratic protocol g(t) = (t/τ)2. 
The entropy production rate is positive although the protocol is fast, τ = 0.1τR. 
We chose τR = 1, γ/ω0 = 1, δλ/λ0 = 0.1 and m  =  1. We chose also the anity unit 

as A2 = δλ/τ . We remark that the delayed propagation PropΨ0
[λ̇] was rescaled by 

a factor 50 for a better presentation.
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negative values are present. Surprisingly, these results were corroborated by exact 
calculations. The linear-response formulation has also proven useful in understand-
ing the origin of such phenomenon. The absence of time-scale separation between 
the performed process and the relaxation of the system and the non-monotonicity of 
the protocol chosen by the external agent are essential ingredients for the emergence 
of negative rates according to this formulation. Negative entropy production rates 
have been observed for the same model of a Brownian particle considered here in [37] 
although using a dierent measure of entropy production in terms of a nonequilibirum 
free energy.

The clear contrast between our results and previous analysis of the entropy pro-
duction rates for driven Brownian motion deserves further investigation. In [27], the 
non-negativity of the entropy production rate is obtain after considering the ensemble 
average over microscopic, or trajectory dependent, entropy production rates. Here, we 
have verified that the rate of a macroscopically-motivated definition of entropy produc-
tion namely, the irreversible work, can be negative. A careful analysis of the dierences 
between this two quantities will be done in a future work. Nevertheless, it is interest-
ing to observe that in either case the time integral of the corresponding rates leads to 
non-negative results.

In addition, we remark that it is quite interesting how Hamiltonian constraints are 
important to make the connection with the second law of thermodynamics. If, on one 
hand, the ‘breakdown’ of time-reversal symmetry of microscopic laws in macroscopic 
irreversible phenomena is often stated as a conundrum, our formulation shows that 
time-reversal symmetry is necessary in order to achieve compatibility with the second 
law. Along the same line of thought, we wonder whether the positivity of the Fourier 
transform of the relaxation function, required by thermodynamic constraints, might be 
also related to Hamiltonian dynamics. We also wonder how this is related to the fact 

Figure 8.  Entropy production rates calculated via ST and LR using protocol (40) 
for overdamped Brownian motion. For the ST calculation, we used the solution 
of equation  (44) and for LR the relaxation function Ψ0(t) = Ψ0(0)e

−t/τR, where 
Ψ0(0) = β〈x4

0〉0/4. We chose τR = 1/γ = 1 and δλ/λ0 = 0.1. The instantaneous 
power unit was chosen as P1 = kBT/(100τ).
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that, although there are regions of negative entropy production rates, the integral over 
the curves in figures 3 and 8 must be positive and hence the maximal amount of nega-
tive regions must be already encoded in the relaxation function no matter the protocol 
we choose.

Finally, the introduction of positive entropy production rate as a statement of the 
second law was made under the assumption of local equilibrium [18, 19]. From the 
point of view adopted in this work, this would correspond to the regime of slowly-vary-
ing processes whose duration is longer than the relaxation time. Once the ratio between 
relaxation and switching time increases, we enter the region where local equilibrium 
does not hold anymore and hence we should not expect only positive rates. We consider 
this result as a significant step towards the understanding of optimal processes in finite 
time. As in [57], our results suggest that, if we are constrained to switching times of the 
order of the relaxation time, a non-monotonic protocol does a better job in minimizing 
dissipation and entropy production. We leave for future work the extensions of our 
results to more than one control parameter and to the quantum regime.
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Appendix A. Linear-response expression for the generalized force

In this appendix we provide a quick derivation of equation  (13) for the generalized 
force. The general idea of the method is to expand the quantities involved in the calcul
ation in terms of δλ which is assumed to be small. Consider then the non-equilibrium 
average of ∂λH, given by

∂λH(t) =

∫

Γ

dΓρ(Γ, t) ∂λH(Γ,λ(t)),� (A.1)

where ρ is the nonequilibrium ensemble of the total system and Γ is a point in the 
phase space. Firstly, the expansion of the Hamiltonian H(Γ,λ(t)) in the perturbation 
δλ reads

H(Γ,λ(t)) = H(Γ,λ0) + ∂λH(Γ,λ0)g(t)δλ+O(δλ2),� (A.2)

and, consequently,

∂λH(Γ,λ(t)) = ∂λH(Γ,λ0) + ∂2
λλH(Γ,λ0)g(t)δλ+O(δλ2).� (A.3)

On the other hand, the non-equilibrium ensemble ρ must satisfy the Liouville equation

∂tρ = −{ρ,H} := Lρ,� (A.4)

https://doi.org/10.1088/1742-5468/ab54ba


Compatibility of linear-response theory with the second law of thermodynamics and the emergence

21https://doi.org/10.1088/1742-5468/ab54ba

J. S
tat. M

ech. (2020) 013206

where L is called the Liouville operator. Equation (A.4) can be written in the following 
integral form,

ρ(Γ, t) = ρeq(Γ) +

∫ t

0

e−L(t−t′)Lρ(Γ, t′)dt′,� (A.5)

where e−Lt′ is the dynamical evolution operator of the ensemble ρ(Γ, 0). Using equa-
tions (A.2) and (A.5), the non-equilibrium ensemble ρ expanded until its first order in 
δλ is given by

ρ(Γ, t) = ρeq(Γ) +

∫ t

0

e−L0(t−t′)L1ρeq(Γ)dt
′ +O(δλ2),� (A.6)

where we defined the following Liouville operators

L0(·) := −{·,H0}, L1(·) := −{·, ∂λH(Γ,λ0)}g(t)δλ.� (A.7)
Using equations (A.1), (A.3) and (A.6), the anti-Hermiticity property of the Liouville 
operators and restraining us to the first order in δλ, we obtain

∂λH(t) = 〈∂λH(Γ,λ0)〉0 + 〈∂2
λλH(Γ,λ0)〉0g(t)δλ

+ δλ

∫ t

0

dt′Φ0(t− t′)g(t′),
� (A.8)

where 〈A〉0 denotes the average of the observable A taken with ρeq,

Φ0(t) = 〈{∂λH(Γ,λ0), ∂λH(Γt,λ0)}〉0� (A.9)
is the so-called response function and Γt is the phase-space point evolved up to time t. 
Defining the relaxation function Ψ0(t) as

Ψ0(t) := −
∫

Φ0(t)dt− C,� (A.10)

and using Kubo formula [11] for the canonical distribution ρeq(Γ) = exp (−βH(Γ))/Z(β),

Φ0(t) = −β
d

dt
〈∂λH(0)∂λH(t)〉0,� (A.11)

one obtains equation (14) in section 3. Besides, after an integration by parts in equa-
tion (A.8), we obtain

∂λH(t) = 〈∂λH〉0 − δλΘ0g(t) + δλ

∫ t

0

dt′Ψ0(t
′)ġ(t− t′) +O(δλ2),

� (A.12)

where

Θ0 := Ψ0(0)−
〈
∂2
λλH(Γ,λ0)

〉
0
.� (A.13)

We refer to [11, 42, 43] for more details.
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Appendix B. Linear-response expressions for the irreversible work

We shall start with the irreversible work for slowly varying processes, given by

Wirr = β

∫ τ

0

λ̇2(t)τR[λ(t)]χ[λ(t)]dt.� (B.1)

We split now the processes of duration τ  in N time steps of length δt := τ/N . Along 
the nth time step, the control parameter λ, whose change is described by the protocol 
λn(t) = λn + δλngn(t), varies only δλn, which is considered to be small enough so that 
we can use LR to describe the generalized force. In particular, the generalized force 
∂λHn(t) for the nth time step is

∂λHn(t) = 〈∂λH〉n − δλnΘngn(t) + δλnġn Ψn(0)τR(λn),
� (B.2)

where the index n indicates that all quantities involved are calculated in the nth time 
step and the equilibrium averages are taken with λ = λn (we are using here the same 
notation introduced in appendix A for the averages A and 〈A〉 of a given observable A). 
Expression (B.2) is obtained from equation (A.12) considering that, in the interval δt, 
the protocol gn can be taken as linear (which implies that ġn is constant but dependent 
on the nth step), and that the system relaxes faster than δt, so that we can use the 
definition of the relaxation time, given by equation (18) of section 4, in equation (A.12). 
We denote by Ψn(0) the amplitude of the relaxation function at the beginning of the 
nth time step. In other words, the argument ‘0’ in Ψn(0) refers to the instant of time 
in which the nth step begins. The constant Θn is given by equation  (A.13) with λn 
replacing λ0.

Finally, the work δWn performed on the system in the interval δt during the nth 
step reads

δWn = 〈∂λH〉n ġnδλnδt−Θnġngn(t)(δλn)
2δt

+ (δλn)
2ġ2nΨn(0)τR(λn)δt.

� (B.3)

It can be shown [42] that the first two terms of the previous expression lead to the 
free-energy change. Therefore, the irreversible contribution comes from the third 
term, which has already the form of the integrand in equation (B.1). Considering that 
Ψn(0) = βχ(λn), where χ is the variance of the ∂λH evaluated at λ = λn, and summing 
up all the irreversible contributions of each nth step, we obtain in the continuum limit,

Wirr = β

∫ τ

0

λ̇2(t)τR[λ(t)]χ[λ(t)]dt,� (B.4)

where we consider the nth dependence of the quantities as a instantaneous dependence 
on the parameter λ(t).

The irreversible work expression for finite-time but weak processes comes up from 
the very definition of work,

W (τ) =

∫ τ

0

dt λ̇(t) ∂λH(t),� (B.5)
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and the linear-response expression we have already derived in appendix A for the gen-
eralized force,

∂λH(t) = 〈∂λH〉0 − δλΘ0g(t) + δλ

∫ t

0

dt′Ψ0(t
′)ġ(t− t′) +O(δλ2).

�
(B.6)

Plugging the third term of the previous expression into (B.5), we obtain the irreversible 
contribution given by equation (8). For more details, see [43].

Appendix C. Hamiltonian constraints on response functions

As mentioned in section 3, Hamiltonian dynamics imposes certain constraints on phe-
nomenological expressions for the response functions. To exemplify what we mean 
by this, consider the response function Φ0(t) (see appendix A for more details and 
definitions),

Φ0(t) = 〈{∂λH(0), ∂λH(t)}〉0 = −dΨ0(t)

dt
,� (C.1)

where {., .} denotes the Poisson bracket and 〈A〉0 denotes an equilibrium average of 
observable A. The short-time expansion of Φ0(t) reads

Φ0(t) = Φ
(0)
0 (0) + Φ

(1)
0 (0)t+ Φ

(2)
0 (0)

t2

2
+ ...,� (C.2)

where the coecients are given by [11, 46]

Φ
(0)
0 (0) = 〈{∂λH(0), ∂λH(0)}〉0 = 0,� (C.3a)

Φ
(1)
0 (0) = 〈{∂λH(0), {∂λH(0),H}}〉0,� (C.3b)

Φ
(2)
0 (0) = 〈{∂λH(0), {{∂λH(0),H},H}}〉0 = 0.� (C.3c)

Indeed, the Hamiltonian dynamics demand Φ0(t) to be odd with respect to the 

change t → −t and therefore all Φ
(k)
0 (0) with k even are zero. Consequently, due to 

equation (C.1), any phenomenological model of the relaxation function Ψ0(t) must be 
even under the change t → −t. Each of the equation (C.3a) are examples of Hamiltonian 
constraints leading to dierent sum-rules. These constraints must be imposed to any 
expression intended to be used as a valid relaxation or response function. Since there 
is a infinite hierarchy of them, a phenomenological expression with a finite number of 
free parameters can only fulfill a finite amount of them (for more details of this method, 
see [46]).
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