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Abstract
Anew type of pair quantum states is introduced.Which can be considered as pair Barut-Girardello

coherent states. It is an eigenstate of the operators =- - -K K Kab a b and -K Ka b
3 3 .We construct these

eigenstates and generation scheme is proposed in terms of twomode state described in terms of
su(1, 1) Lie algebra ,We employ the second-order correlation function to discuss some non-classical
properties,and violations of Cauchy-Schwarz inequalities. The phenomenon of squeezing is examined
, squeezing is clear andQ-functions support that. Finally the phase distribution in the framework of an
appropriate Pegg andBarnett formalism is considered and discussed.

1. Introduction

The SU(1, 1) Lie algebra hasmany applications in quantumoptics because it can characterizemany kinds of
quantumoptical systems [1–4]. In order to studymany problems in thisfield, it has recently been used bymany
researchers to investigate the nonclassical properties of light in quantumoptical systems [5–7]. In recent years
there has beenmuch interest in applications and generalizations of the Barut-Girardello coherent states(BG-CS)
[8]. The BG-CSwere introduced [9] as eigenstates of the loweringWeyl operatorK− in the framework of
SU(1, 1) Lie algebra symmetry. The BG-CS representation has been used for the explicit construction of
squeezed states (SS) for the generators of the SU(1, 1) groupwhichminimize the Schrödinger uncertainty
relation for two observables [10]. Also, they are eigenstates of a general element of the complex field algebra [11].
The overcomplete families of eigenstates of elements of the Lie algebrawere called algebraic CS [12] and algebra
eigenstates [13]. In the present article, we suggest a new pair quantum state that depends on (BG-CS) idea. It is
considered as a generalization of (BG-CS) and takes a different form from that considered earlier [14]. The
organization of this paper is as follows. In the next section 2, we are going tofind the state of twomodes. A
generation schema is considered in section 4.We introduce the probability distribution function in section 5.
We devote section 6 to consider theGlauber second-order correlation function and normal squeezing. In
section 7we introduce and discusQ-function.We show the phase behavior by studying the phase space
distribution function in section 8. The last section includes the conclusion

2. The SU(1, 1)pair coherent state

Let us have two independent systemswhere operators are described by the generators of SU(1, 1) group. These
generators are + -K K K, ,i i i

3{ }where i=a, b. Let us define newoperators which are given by the following

= =+ + + - - -K K K K K K,ab a b ab a b

where + -K K K, ,i i i
3{ }obey SU(1, 1) Lie algebra commutation relation [15]

=  = =  - +K K K K K K i a b, , , 2 , , ,i i i i i i
3 3[ ] [ ]
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while,

= - + -- +K K K K K K K K, 2 .ab ab a b b b a a
3 3

2 2
3 3

2 2[ ] [ ( ( ) ) ( ( ) )]

Let us introduce a two-mode basis ñ = ñ Ä ñm k n k m k n k, ; , , ,1 2 1 2∣ ∣ ∣ governed by SU(1, 1) group algebra in
terms of eigenstates of two independentmodes ,denoted by a , b. The effect of generators offirstmode a (second
mode b) on ñm k n k, ; ,1 2∣ is

ñ = - ñ

ñ= + + + ñ

ñ= + - - ñ
ñ= + ñ

+

-

K m k n k k k m k n k

K m k n k m m k m k n k

K m k n k m m k m k n k

K m k n k m k m k n k

, ; , 1 , ; ,

, ; , 1 2 1, ; ,

, ; , 2 1 1, ; ,

, ; , , ; , 2.1

a

a

a

a

2
1 2 1 1 1 2

1 2 1 1 2

1 2 1 1 2

3 1 2 1 1 2

( ) ∣ ( )∣
∣ ( )( ) ∣

∣ ( ) ∣
∣ ( )∣ ( )

where Ka 2( ) is a Casimir operator offirstmode awith similar relation , for the secondmode b.
The correspondingHilbert spaceH=H1⊗H2 is spanned by the complete orthonormal basis

ñ =m k n k n m, ; , , , 1, 2, 3 .....1 2∣ ( )

d dá ñ =m k n k m k n k, ; , , ; , mm nn1 2 1 2∣   

and the completeness relation is given by

å ñá =
=

¥

m k n k m k n k I, ; , , ; ,
n m, 0

1 2 1 2∣ ∣

Wedefine the new pair coherent state as an eigenstate of the lowering generator -K ab,

x x x

x x

ñ = ñ

- ñ= ñ
-K q k k q k k

K K q k k q q k k

, , , , , , ,

, , , , , , 2.2

ab

a b

1 2 1 2

3 3 1 2 1 2

∣ ∣
( )∣ ∣ ( )

where ξ is an arbitrary complex number and q is a real number. The state can be decomposed over the
orthonormal twomode state basis, The action of the operators -K ab and -K Ka b

3 3( ) on states ñm k n k, ; ,1 2∣ is

ñ = + - + -
- - ñ

- ñ = + - - ñ

-K m k n k mn m k n k

m k n k

K K m k n k m k n k m k n k

, ; , 2 1 2 1

1, ; 1,

, ; , , ; , 2.3

ab

a b

1 2 1 2

1 2

3 3 1 2 1 2 1 2

∣ ( )( )
∣

( )∣ ( )∣ ( )

Weassume that the eigenvalue q of the operator -K Ka b
3 3 is positive where

= + - -q m k n k1 2

that is given through the condition of the state (2.2). The expansion of x ñq k k, , ,1 2∣ in the two-mode basis is
composed of states of the form + + - ñn q k k k n k, ; ,2 1 1 2∣ and is given through the formula

å

å

x x

x

ñ = + + - ñ

=
D

=
D

D = G + G + + - + G + + +

=

¥

=

¥
-
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whereΓ(x) is Eulerʼs Gamma function,N is normalization factor. Equation (2.4) represents SU(1, 1) quantum
pair coherent state which can be considered as a generalization to the Barut-Girardello coherent state

3. Completeness of the states x ñq k k, , ,1 2∣

Resolution of the identity(completeness) in terms of a certain set of states is very important because it allows the
practical use of these states as bases in theHilbert space. The problemhere consists infinding aweight functionσ
(ξ)with x = qrei such that

ò s x x xñá =d q k k q k k, , , , , , 1 3.11 2 1 2( )∣ ∣ ( )

Let s x m x x= -N d2 2( ) (∣ ∣) , with x q=d rdrd2 and x = r∣ ∣ whereN is defined in (2.4), < < ¥r0 and
q p< <0 2 . The integration in (3.1) is
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whereΔn defined in (2.4).Hencewemust have

òp m = D
¥

r r d r 3.3n
n

0

2 2( ) ( ) ( )

Following to [16] the solution of thismoment problem can be found as the general solution of this integral
equation in terms of theMeijerʼs G-function [17]

m = - + - + + -r G r k q k k q k k0, 2 1, , 104
40 2

2 2 1 2 1( ) ( ∣ )

Then theweight functionσ(ξ) is given by

s x x
x
p

= - + - + + --N G k q k k q k k
d

0, 2 1, , 12
04
40 2

2 2 1 2 1

2

( ) (∣ ∣ ∣ )

This completes requirements for the resolution of the identity

4.Generation scheme

It is to bementioned that su (1, 1) Lie algebra can be realized in terms of boson annihilation and creation
operators, wherewe can define K i and K i

3 where i=a, b as follows
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ˆ ˆ ˆ ˆ

† †

† †

Here, we are going to study a generation scheme of the state which is the eigenstate to = =- - -K K K a bab a b 1

4
2 2ˆ ˆ

within the framework of themotion of a trapped ion [18] in a two dimensional harmonic potential. Consider a
single ion ofmassM trapped in a two dimensional harmonic potential with frequenciesω1 (in the x-direction),
ω2 (in the y-direction). In the rotatingwave approximation theHamiltonian of the system iswritten as

w w
w

s

m s

= + +

+ + +w w w w+ - + - - -
+

¢ ¢


H

a a b b

E e E e h c

2

. . 4.1
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i k x k y t i k x k y t

1 2
0

1 2
1 2 0 1 2 0 1 2

ˆ ˆ ˆ ˆ

[ ] ( )

† †

( ) ( ( ) )

TheHamiltonian (4.1) describes a two-level ion confinedwithin a two dimensional trap that is approximated as
harmonic oscillators of frequenciesω1 andω2 The frequencyω0 is the energy difference between the two levels of
the atom. Theσ+ s-( ) andσz are the raising (lowering) and phase operator , and represent the Pauli operator of
the electronic two-level ion. The parameterμ is the dipolematrix element and ki, ( ¢ki ) is thewavevector of ith
driving the laser field of amplitude E1 andE2. The position of the center-of-mass of the trapped ion is given by (x̂
, ŷ ) quantized by the operators â , â† and b̂ , b̂

†
which the annihilation and creation operators of the vibrational

motion of the center-of-mass of the ion. The quantized centre-of-mass position x̂ and ŷ can bewritten as

= + = +
w w
 x a a and y b b

M M2 21 2
ˆ ( ˆ ˆ ) ˆ ( ˆ ˆ )† †

Wemay use a vibrational rotatingwave approximation and neglect the termswith fast oscillations [19]. Thus the
interactionsHamiltonian (4.1) is simplified to

3
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mW = . E0 1∣ ∣and mW = . E1 2∣ ∣are the Rabi frequencies to the laserfields and ηi is the Lamb-Dicke parameter,

where h =
w
ki L M2 i

and » » ¢k k kL i i∣ ∣ ∣ ∣. It should be noted that the operator -K Ka b
3 3 is a constant of

motion for theHamiltonian (4.2). For small Lamb-Dicke parameters h =i1, 1, 2i  , onemay consider
lowest termswithm1=0=m2 in the summation.Hence theHamiltonian (4.2) can be approximated to

s h h= W +
W

++H i i a b h c
4

. 4.3IN 0
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1
2

2
2 2 2{ ( ) ( ) ˆ ˆ } ( )

the termbetween parentheses can bewritten as
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Themaster equation for the densitymatrix under spontaneous emissionwith energy dissipation rate γ is given
by [19]

r
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g
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2 4.5IN
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The stationary solution rs̄ for thismaster equation is obtained by setting =r¶
¶

0
t

¯ . A solution rs̄ can be given as

r z z= ñ ñá ág g 4.6s¯ ∣ ∣ ∣ ∣ ( )

with ñg∣ the electronic ground state s sñ = á =- +g g0 , 0( ∣ ) ( ∣ ) and zñ∣ is the vibration eigenstate that satisfies
zñ =H 0IN∣ . It is straightforward to show that zñ∣ belongs to the class of the SU(1, 1) pair coherent states,

z l z z z z zñ =  - ñ =  ñ = ñG a b a b0
1

4
0

1

4
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⎝
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z z z z z zñ = ñ  ñ = ñ- - -K K Ka b ab∣ ∣ ∣ ∣

given by (2.2) and (2.4)

5. Probability distribution

Aprobability distribution Pn for any quantum state yñ∣ is defined as

y= á ñ = ¼P n n n, 0, 1, 2, .2( ) ∣ ∣ ∣

must satisfy

å =
=

¥P n and P n0 1
n 0

( ) ( )

For the state (2.4)

x= á + + - ñ = ¼P n n q k k n k k q k k n, ; , , , , , 0, 1, 2, .2 1 1 2 1 2
2( ) ∣ ∣ ∣

x=P n C q k k, ,n
n 1 2

2( ) ∣ ( )∣

Where C q k k, ,n 1 2( ) is given in(2.4). To study the effect of both ξ , q, k1 and k2 on probability distribution
functionwe plotP(n) against n , Atfigure 1(a) q=1,5,10 , ξ=20 , k1=1 and k2=2.Wefind that when q
increases themaximumvalue of the probability distribution curvemoves towards lower value of n.We not that
at q=0 the distributional behavior like aGaussin distribution. Infigure 1(b) ξ=5,10,20 and k1=1 , k2=2 ,
q=5we find thatwhen ξ increases themaximumvalue of the probability distribution curvemoves towards
higher values of n. It is observed that at x = 5 the distributional behavior like a thermal distribution.

4
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6.Nonclassical properties

6.1. Second order correlation
To study the quantum statistical properties of any quantum state, wemust pay attention to the nonclassical
behavior such as (sub- Poissonian behavior [20]). So that we introduce the second-order correlation function
[21, 22], which leads to better understanding of the nonclassical behavior of quantum states [4, 23], A state for
which <g 1

i
2( ) has sub- Poissonian(nonclassical behavior), a state for which >g 1

i
2( ) is super- Poissonian

(classical behavior) , while the state is Poissonianwhen the function =g 1
i

2( ) . Therefore, we devote the present
section to discussing this correlation function. This can be introduced for the SU(1, 1) group generated as
follows

x =
á ñ

á ñ
=+ -

+ -

g
K K

K K
i a b, 6.1

i

i i

i i
2

2 2

2
( )

( ) ( )
( )( )

In order to discuss the behavior of the correlation function , we calculate the expectation values of the quantities

+ -K Ki i2 2( ) ( ) , + -K Ki i at i=a for thefirstmode , i=b for the secondmode.
For thefirstmode =i a,the second order correlation function is

x =
á ñ
á ñ
+ -

+ -
g

K K

K K
6.2

a

a a

a a
2

2 2

2
( )

( ) ( )
( )( )

Figure 1. probability distribution.
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For secondmod =i b,the second order correlation function is
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To show the behavior of the correlation function for the state under consideration, we plot =g i a b, ,
i

2( ) .
Figure 2(a) forfirst,figure 2(b) for secondmode.Wefind that the state has nonclassical behavior at all values of q
and ξ, as itmay be expected from the formof theCn coefficient and their dependence on n

6.2. Cauchy-Schwarz inequality
Wenow consider violation of theCauchy-Schwarz inequality between the singlemode and cross-correlation
second-order coherence functions. In the classical theory, this inequality can be expressed as

x x xg g g
a b ab

2 2 2 2[ ( )][ ( )] [ ( )]( ) ( ) ( )

In order tomeasure the deviation from the classical inequality , we define the quantity [4, 24]

x x

x
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g g

g
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2 2
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1
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á ñ

á ñ
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g
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K K
1

ab

ab ab

ab ab
2

2 2

2
( )

( ) ( )( )

Aswe can observe infigure 3 this function is always negative, whichmeans that the inter-mode correlation is
larger than the correlation between the samemodeThe strongest violations of theCauchy-Schwarz inequality
occurs at lower q for afixed values of k1=1, k2=2.

Figure 2. Second order correlation for function as a function of ξ.
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6.3. Squeezing effect
Squeezingfluctuations are important inquantummeasurement and communication theories [25]. In the SU(1, 1)
Lie group [7],one can define twohermitian operatorsX andP as follows

=
+

=
-- + - +X

K K
P

K K

i2
,

2

ab ab ab ab

which satisfies the commutation relation

=X P iC,[ ]

The uncertainty relation for these operators takes the form

D D á ñX P C
1

2
∣ ∣

where

= - + -C K K K K K Ka b b b a a
3 3

2 2
3 3

2 2( ( ) ) ( ( ) )

fluctuations in theX (orP) component are squeezed if the following condition is satisfied
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2
2 2( ) ∣ ∣ ( ) ∣ ∣

where
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Tomeasure the degree of squeezing, we define the following squeezing parameters,

=
D - á ñ

á ñ
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á ñ

S
X C
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S

P C

C

0.5

0.5
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0.5

0.5
X P

2 2( ) ∣ ∣
∣ ∣

( ) ∣ ∣
∣ ∣

The squeezing condition can be expressed as SX<0 or SP<0,
Infigure 4we note that state (2.4) achieves squeezing phenomenon in SP. It is to be observed that squeezing

increases when q decreases at thefixed values k1=1, k2=2 as shown infigure 4

7.Q-function

It is well known that the quasiprobability distribution functions are important tools to give insight on the
statistical description of quantumdynamics [26]. Therefore, we devote the present section to concentrate on one
of these functions, that is theHusimiQ-function [27]. In fact theQ-function is not only a convenient tool to
calculate expectation values of anti-normally ordered products of the operators, but also interpreted as a true
phase space probability distribution. For the state (2.4) x ñq k k, , ,1 2∣ , we present the following definition for the
Q-function of twomodes as [28]

a b
p

a b x= á ñQ k k q k k,
1

, ; , , , ,
2 1 2

2( ) ∣ ́ ́∣́ ∣

Figure 3. I0 as a function of ξ for different values of q, = =K K1, 21 2 .
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which is a generalization toQ(α) for SU(1, 1) states and a b a bñ = ñ Ä ñk k k k, ; , , ,∣ ́ ́ ́ ∣ ́ ∣ ́ ́ where a bñ ñk k, , ,∣ ́ ∣ ́ ́ are
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While C q k k, ,n 1 2( ) defined in (2.4). To studyQ-function, we assume the subspace a b= + =x iy and by
using some numerical computationswe plot some figures. Details of the behavior can be seenwhenwe plot the
function against x and y for some different values of ξ and qwhere k1=1, k2=2 arefixed. This is shown in
figure 5.We can observe infigure 5(a) for ξ=5 and q=5 that the graph of theQ-function shows two almost
merged peaks of a squeezedGaussian shape centered on the line y=0, By increasing of ξ=10 , q=5 the shape
is divided into two peaks connected as shown infigure 5(b).More increase of ξ to 20with q=5 two-peaks figure
is shown clearly infigure 5(c).Whenwe take q=0, 10,15 andfix ξ=20 ,the effect happens vice versa , at q=0,
theQ-function shows two separated peaks , when q increases to q=10 two peak join near the bases while at
q=15 the two peaks are almostmerged as shown infigures 5(d), (e), (f) respectively. Therefore theQ-function
is sensitive to the changes in the values of q and ξ for fixed values of k1, k2

8. Phase distribution

To study the phase distribution of the state (2.4)we use the definition for the SU(1, 1) phase state [29]
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This definition is generalized for twomode case as follows:-
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Consequently a phase distribution function q qP ,1 2( ) can be obtained from:
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where θ=θ1+θ2 andCn(q, k1, k2) is defined in (2.4). To showbehavior ofP(θ)weplot it for−π<θ<π and
different values of ξ and q for fixed k1=1, k2=2. Infigure 6(a)we take q=5 and plotP(θ) against θ, ξ.We
note that phase distribution function appears as a peak centered at θ=0.No information for ξ=0 but as ξ

Figure 4. squeezing as a function of ξ for different values of q.
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increasesP(θ) increase and information about phase starts to build up around θ=0. Atfigure 6(b)we take
ξ=20 and plotP(θ) against θ, qwenote that phase distribution function appears as a peak centered at θ=0
when q increases the pack ofP(θ) decreases in height and information about phase decreases for the fixed values
of ξ.

9. Conclusions

In this articlewehave introducedand examined some statistical properties of anewpair coherent quantumstate of the
SU(1, 1) algebra.A suggestedgeneration scheme is presentedbasedon the vibrationalmotionof the centerofmass
of a trapped ion in two-dimensionalharmonicpotential. Thepresent schemecouldbe realized experimentally.We
calculate andplot probability distribution function.Quantumstatistical properties of these states havebeen studied in
somedetail.Wehave found interestingnonclassical featuresof these states.The sub-Poissoniandistribution,Cauchy-
Schwarz inequality valuation and squeezingphenomenonweredisplayed for theseparticular states forfixedparameter
values.We studied theQ-function and showed its behavior fordifferent parameters. Finally,we introducedphase

Figure 5.Q-function at = =k k1, 21 2 , x = 5, 10, 20 , q=5 and x= =q 0, 10, 15, 20.
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distribution function.Wenote that this statehasnon-classical properties for squeezing ,phasedistribution and these
properties are sensitive to change in theparameters of the state
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