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Abstract

A new type of pair quantum states is introduced. Which can be considered as pair Barut-Girardello
coherent states. It is an eigenstate of the operators K = KK’ and K§ — K?. We construct these
eigenstates and generation scheme is proposed in terms of two mode state described in terms of

su(1, 1) Lie algebra, We employ the second-order correlation function to discuss some non-classical
properties,and violations of Cauchy-Schwarz inequalities. The phenomenon of squeezing is examined
, squeezing is clear and Q-functions support that. Finally the phase distribution in the framework of an
appropriate Pegg and Barnett formalism is considered and discussed.

1. Introduction

The SU(1, 1) Lie algebra has many applications in quantum optics because it can characterize many kinds of
quantum optical systems [ 1—4]. In order to study many problems in this field, it has recently been used by many
researchers to investigate the nonclassical properties of light in quantum optical systems [5—7]. In recent years
there has been much interest in applications and generalizations of the Barut-Girardello coherent states(BG-CS)
[8]. The BG-CS were introduced [9] as eigenstates of the lowering Weyl operator K_ in the framework of

SU(1, 1) Lie algebra symmetry. The BG-CS representation has been used for the explicit construction of
squeezed states (SS) for the generators of the SU(1, 1) group which minimize the Schrodinger uncertainty
relation for two observables [10]. Also, they are eigenstates of a general element of the complex field algebra [11].
The overcomplete families of eigenstates of elements of the Lie algebra were called algebraic CS [12] and algebra
eigenstates [ 13]. In the present article, we suggest a new pair quantum state that depends on (BG-CS) idea. It is
considered as a generalization of (BG-CS) and takes a different form from that considered earlier [14]. The
organization of this paper is as follows. In the next section 2, we are going to find the state of two modes. A
generation schema is considered in section 4. We introduce the probability distribution function in section 5.
We devote section 6 to consider the Glauber second-order correlation function and normal squeezing. In
section 7 we introduce and discus Q-function.We show the phase behavior by studying the phase space
distribution function in section 8. The last section includes the conclusion

2. The SU(1, 1) pair coherent state
Let us have two independent systems where operators are described by the generators of SU(1, 1) group. These
generatorsare {K}, K, K3} wherei = a, b. Let us define new operators which are given by the following
K% = KoK, K% =K°K®
where {Ki, Ki, K3’ } obey SU(1, 1) Lie algebra commutation relation [ 15]
[Ki, Ki] = +K!, [K',Ki]=2Ki, i=a,b,
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while,
(K, K& = 2[K§(KP — (KY)?) + K2(KS? — (KDP)].

Let usintroduce a two-mode basis |m, ki; 1, k) = |m, ki) ® |n, k) governed by SU(1, 1) group algebra in
terms of eigenstates of two independent modes ,denoted by a, b. The effect of generators of first mode a (second
modeb)on |m, k; n, k) is

(K“)2|m, ks n, k2> =ki(k — D)|m, k; n, k2>
K{m, ki n, ko) = y/(m + 1) (m + 2k) |m + 1, ks n, k)
)

K&m, ks n, k) = ym(m + 2k — 1)|m — 1, ks n, k)

Ki|m, k; n, k) = (m + k)|m, k; n, k) (2.1

where (K%)? is a Casimir operator of first mode a with similar relation , for the second mode b.
The corresponding Hilbert space H = H; ® H, is spanned by the complete orthonormal basis
|m, ki n, k), (n, m=1,2,3....)

<ﬂ\’l, k]) 73[) k2|m, kl’ n, k2> = 6n\1m6ﬁn
and the completeness relation is given by

Z |m, ki n, k) (m, ks n, k| = I

n,m=0

We define the new pair coherent state as an eigenstate of the lowering generator K ¢,

Ke, q, ki, k) = €€, g, ki, ko),
(K$ — KD)IE g, ki k) = qlé, g, ki, k) (2.2)

where £ is an arbitrary complex number and g is a real number. The state can be decomposed over the
orthonormal two mode state basis, The action of the operators K 2 and Ky — KSb ) onstates |m, ki 1, k) is

K ®\m, ks n, k) = \/mn(m + 2k — D(n+ 2k, — 1)
lm—1,k;n—1, k)
(K$ — KDY |m, ky n, k) = (m 4+ k — n — k) |m, ks n, k) (2.3)
We assume that the eigenvalue g of the operator K§* — K? is positive where
g=m-+k—n—k

that is given through the condition of the state (2.2). The expansion of |, g, k;, k) in the two-mode basis is
composed of states of the form |n + q + k, — ky, ki3 n, k) and is given through the formula

|£) q, kl) k2> = Z gncn(% kl) k2)|1’l + q + k2 - kl) kb n, k2>
n=0
N

7,
[
v=| S

A,=nl'(n+2k)Tq+n+hk —k+DI'@+n+ k + k) (2.4)

Cu(q> ki, k) =

where ['(x) is Euler’s Gamma function, N is normalization factor. Equation (2.4) represents SU(1, 1) quantum
pair coherent state which can be considered as a generalization to the Barut-Girardello coherent state

3. Completeness of the states |, g, k;, k)

Resolution of the identity(completeness) in terms of a certain set of states is very important because it allows the

practical use of these states as bases in the Hilbert space. The problem here consists in finding a weight function o
(&) with ¢ = re? such that

[ar©16 a ki k) (6 g i ol = 1 (3.1

Let 0 (£) = N~ 2u(|€])d%€, with d*¢ = rdrdf and |£| = r where Nis defined in (2.4), 0 < r < oo and
0 < 0 < 2. Theintegrationin (3.1) is




I0OP Publishing J. Phys. Commun. 4(2020) 015008 A-SFObadaetal

i i |n+q+k2_kl’kl;n>k2><m+q+k2_kl’kl;m)kZI
n=0 m=0 VAnAm
oo 2w
X i(nfm)ede npmgd
fo f; e w(r)re'r™dr
:i In+q+k —k ksn k)(n+q+k — k, ks n, k|

n=0 A”
X 2 > 2nd 3.2
71'](; w(r)yrr="dr (3.2)

where A, defined in (2.4).Hence we must have

7TJ:O w()r*d(r?) = A, (3.3)

Following to [16] the solution of this moment problem can be found as the general solution of this integral
equation in terms of the Meijer’s G-function [17]

M(r) = Géf(r2|0> 2k2 - 17 q + kZ - kl) q + k2 + kl - 1)

Then the weight function o(§) is given by

a%

o() = NG (€210, 2k — L, g+ ko — ki, g + o + kg — D—
iy

This completes requirements for the resolution of the identity

4, Generation scheme

Itis to be mentioned that su (1, 1) Lie algebra can be realized in terms of boson annihilation and creation
operators, where we can define K| and K; wherei = g, b as follows

1., 1 V(o | 1
K¢=-4",  K%=-a, Ki= —(ﬁfa + —)
2 2 2 2
" P L(otr 1
Kb ==p", Kkt=2b, K= —(bTb + —)
2 2 2 2

Here, we are going to study a generation scheme of the state which is the eigenstate to K = K“K? = iflzl; :
within the framework of the motion of a trapped ion [18] in a two dimensional harmonic potential. Consider a
single ion of mass M trapped in a two dimensional harmonic potential with frequencies w, (in the x-direction),
w, (in the y-direction). In the rotating wave approximation the Hamiltonian of the system is written as

H . A
~=uwata + wszb + ﬂcrz
/3 2

4 [L[Elei(klx+kzy7w0t) + E2ei(kllxkaz,yf(wofwlfwz)t)o._'_ 4 hC] (41)

The Hamiltonian (4.1) describes a two-level ion confined within a two dimensional trap that is approximated as
harmonic oscillators of frequencies w; and w, The frequency wy is the energy difference between the two levels of
the atom. The o | (0.) and o, are the raising (lowering) and phase operator , and represent the Pauli operator of
the electronic two-level ion. The parameter 1 is the dipole matrix element and k;, (k;) is the wavevector of ith
driving the laser field of amplitude E; and E,. The position of the center-of-mass of the trapped ion is given by (X
, ¥ ) quantized by the operators d , atand b , b i which the annihilation and creation operators of the vibrational
motion of the center-of-mass of the ion. The quantized centre-of-mass position X and § can be written as

R 7 oA oA " 7 p ot
%= lewl(aJraT) and 9= 2sz(ber)

We may use a vibrational rotating wave approximation and neglect the terms with fast oscillations [19]. Thus the
interactions Hamiltonian (4.1) is simplified to

3



I0OP Publishing J. Phys. Commun. 4(2020) 015008 A-SFObadaetal

n+n;
2

Hpy = exp(— )

H 2my(; 2my A A
HQ S GG i

oy (D2 (m31)?

N2 A2 ) \2myt2
T e G e PR AL A S «2)
mymy 1’1’11!(1’1’11 + 2)'1’712'(1712 + 2)'
Qo = | . Ej]and € = |p . Ey| are the Rabi frequencies to the laser fields and 7; is the Lamb-Dicke parameter,
where n; = k. /ﬁw and k; = |k; | ~ |k/|. It should be noted that the operator K — K3b isa constant of

motion for the Hamiltonian (4.2). For small Lamb-Dicke parameters 7, < 1, i = 1, 2, one may consider
lowest terms with m; = 0 = m, in the summation. Hence the Hamiltonian (4.2) can be approximated to

Q. ) A2ft
Hpn = o {Qo + Zl(l )23 n2)2a2b2} + he (4.3)
the term between parentheses can be written as
G = A(laz . g) (4.4)
4
where
A=,
and
—Q
(=32
Q17712773
The master equation for the density matrix under spontaneous emission with energy dissipation rate 7 is given
by [19]
op .
== =i lHi, pl + 2200 0 = 010p = poy o] (4.5)
The stationary solution p, for this master equation is obtained by setting % = 0. Asolution p, can be given as
P, = 1g )1¢) {cl{gl (4.6)

with |g ) the electronic ground state (o_|g } = 0), ({g|o, = 0) and |() is the vibration eigenstate that satisfies
Hin|¢) = 0.1tis straightforward to show that |¢) belongs to the class of the SU(1, 1) pair coherent states,

G0 =0 = A(iaz Ez—c)m:o > Le i =9

K2KYIC) = ¢¢) = K2I¢) = )
givenby (2.2) and (2.4)

5. Probability distribution

A probability distribution P, for any quantum state |¢)) is defined as
P(n) = |{n|y)|?, n=20,1,2,....
must satisfy
P(n) >0 and Z:O:OP(n) =1
For the state (2.4)
Pmy=|n+q+k —k,n k, kl&q k k)>,n=0,1,2,..
P(n) = [£"Cu(g; ki, k) I?

Where C,(q, ki, k) is given in(2.4). To study the effect of both £, g, k; and k, on probability distribution
function we plot P(n) against n, At figure 1(a) g = 1,5,10,& = 20, k;, = 1and k,=2. We find that when g
increases the maximum value of the probability distribution curve moves towards lower value of n.We not that
atq = 0 the distributional behavior like a Gaussin distribution. In figure 1(b) £ = 5,10,20 and k; = 1,k, = 2,
q = 5we find that when £ increases the maximum value of the probability distribution curve moves towards
higher values of 1. It is observed that at £ = 5 the distributional behavior like a thermal distribution.

4
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£=20
k1=1
L k2=2
0.4}
0.3}
0.2

0.1"

(a) probability distribution at ¢ = 0,5,10,§ =
20,k =1,k =2

pln]

0.8
0.6
0.4

0.2

(b) probability distribution at { = 5,10,20,k; =
1L,k =2,4=5

Figure 1. probability distribution.

6. Nonclassical properties

6.1. Second order correlation

To study the quantum statistical properties of any quantum state, we must pay attention to the nonclassical
behavior such as (sub- Poissonian behavior [20]). So that we introduce the second-order correlation function
[21,22], which leads to better understanding of the nonclassical behavior of quantum states [4, 23], A state for
which gi(z) < 1has sub- Poissonian(nonclassical behavior), a state for which gi(Z) > 1is super- Poissonian
(classical behavior) , while the state is Poissonian when the function gi(z) = 1. Therefore, we devote the present
section to discussing this correlation function. This can be introduced for the SU(1, 1) group generated as
follows

((KDHAK D)

S i=a, b 6.1
Kk o

g?© =

In order to discuss the behavior of the correlation function , we calculate the expectation values of the quantities

(KDXKL)?, KLK  ati = aforthefirstmode,i = b for the second mode.
For the first mode i = a,the second order correlation function is

(KK )?)

(K9K“)? (62

g2 =
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Figure 2. Second order correlation for function as a function of €.

where

(K{K?) Z|§"C (@ ks k)P (n + g+ ks — k)

n=0
x(n+q+k+k—1 6.3)

(KDMKDYY=>n+q+k—knh+q+k+hk-—1

n=0
X(n+qg+k —k—1Dn+q+k+k—2)I"Cig, k, k)? (6.4)
For second mod i = b,the second order correlation function is
K{AK)?)
gy = EET) (6.5)
& ¢ (KUK b)Y
where
(KUKY) = SOIEColgy K k) P(m)(n + 2k — 1) (6.6)
n=0
o0
(KDAKEY?) = DT 1€"Culgs ks k) P(m)(n + 2k, — 1)
n=0
x(n—1Dn+ 2k — 2) (6.7)
To show the behavior of the correlation function for the state under consideration, we plot gi(z), i = a,b.

Figure 2(a) for first, figure 2(b) for second mode. We find that the state has nonclassical behavior at all values of g
and &, as it may be expected from the form of the C,, coefficient and their dependence on n

6.2. Cauchy-Schwarz inequality
We now consider violation of the Cauchy-Schwarz inequality between the single mode and cross-correlation
second-order coherence functions. In the classical theory, this inequality can be expressed as

(8,7 (©1[8” (O] > [g,(©OF
In order to measure the deviation from the classical inequality , we define the quantity [4, 24]

(g7 ©ONg @Dz

b=
where
¢® (KDY
2(6) = K

As we can observe in figure 3 this function is always negative, which means that the inter-mode correlation is
larger than the correlation between the same mode The strongest violations of the Cauchy-Schwarz inequality
occurs at lower g for a fixed values of k; = 1,k, = 2.

6
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I

5 10 15 20

1
-1.0+

Figure 3. I, as a function of ¢ for different values of g, K} = 1, K, = 2.

6.3. Squeezing effect

Squeezing fluctuations are important in quantum measurement and communication theories [25]. In the SU(1, 1)

Lie group [7],one can define two hermitian operators X and P as follows
XZKEMK? P:Kf"—Kjb
2 2i
which satisfies the commutation relation
[X, P] =iC

The uncertainty relation for these operators takes the form
AXAP > §| (©)]

where
C = K{(Ky® — (K")?) + K3 (K{* — (K)?)
fluctuations in the X (or P) component are squeezed if the following condition is satisfied

(A1 < S1(C)] or (AP < I(C)]

where
AX= O — (X7, AP= (P — ()
To measure the degree of squeezing, we define the following squeezing parameters,

_ (AX)? - 05(0)] and Sy — (AP)* — 0.5|(C)|
0.5(C)| 0.5/(C)|

X

The squeezing condition can be expressed as Sy < 0or Sp < 0,

In figure 4 we note that state (2.4) achieves squeezing phenomenon in Sp. It is to be observed that squeezing

increases when g decreases at the fixed values k; = 1, k, = 2 as shown in figure 4

7. Q-function

Itis well known that the quasiprobability distribution functions are important tools to give insight on the
statistical description of quantum dynamics [26]. Therefore, we devote the present section to concentrate on one
of these functions, that is the Husimi Q-function [27]. In fact the Q-function is not only a convenient tool to
calculate expectation values of anti-normally ordered products of the operators, but also interpreted as a true
phase space probability distribution. For the state (2.4) |€, g, ki, k), we present the following definition for the

Q-function of two modes as [28]

Qs B) = (e B K, KI&, g ki ko) P

2
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Figure 4. squeezing as a function of € for different values of q.

which is a generalization to Q(«) for SU(1, 1) states and |, 5; k, k> = |a, k) ® |5, k) where |a, k>, |5, k> are

the BG-CS
|, k> = M(a, k) > a—/|m, k>
m=0 \m!I'[2k 4+ m]
s VR
M(a, k) = ZL (7.1)
m—o M'T'[2k + m]
then
* * 2 00
Q(a, 5) _ |M(Oé 5 kl)A;I(/B > k2)| % |Z Cn(q) kl’ kz)é”a*("”*kfk‘)ﬁ*"lz (7.2)
n=0

While C,,(g, ki, k) defined in (2.4). To study Q-function, we assume the subspace « = x + iy =  andby
using some numerical computations we plot some figures. Details of the behavior can be seen when we plot the
function against x and y for some different values of £ and g where k; = 1, k, = 2 are fixed. This is shown in
figure 5. We can observe in figure 5(a) for ¢ = 5and g = 5 that the graph of the Q-function shows two almost
merged peaks of a squeezed Gaussian shape centered on the line y = 0, By increasingof £ = 10, q = 5 the shape
is divided into two peaks connected as shown in figure 5(b). More increase of £ to 20 with g = 5 two-peaks figure
is shown clearly in figure 5(c). When we take g = 0, 10,15 and fix{ = 20 ,the effect happens vice versa,atq = 0,
the Q-function shows two separated peaks , when q increases to g = 10 two peak join near the bases while at

q = 15 the two peaks are almost merged as shown in figures 5(d), (e), (f) respectively. Therefore the Q-function
is sensitive to the changes in the values of q and & for fixed values of ki, k,

8. Phase distribution
To study the phase distribution of the state (2.4) we use the definition for the SU(1, 1) phase state [29]

s—1
10,K) = lim % S exp(i0Ks)|m, K)

—
s *© m=0

This definition is generalized for two mode case as follows:-

1 s—1 r—1 e b
01, ki3 05, ko) = lim eK0eiKs0\m, f; 1, k
|13 1> U2» 2> R ﬁﬁ mzz:og | s R by 2>

Consequently a phase distribution function P (¢;, 6,) can be obtained from:

POy, 0) = — {0y, ks 0, kol&, g Ky ko) I
21 27

1V .
P(6y, 6) (E) 15" Calgs ki ke P (8.1)
n=0

where 0 = 6, + 6,and C,(q, ky, k,) is defined in (2.4). To show behavior of P(f) we plot it for —7 < 6 < wand
different values of £ and g for fixed k; = 1, k, = 2.In figure 6(a) we take g = 5and plot P(f) against 6, £&. We
note that phase distribution function appears as a peak centered at § = 0. No information for £ = O butas £

8
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(@) at& =5, =5 (b) at{ =10, =5

10

(e) at{ = 20,9 =10 (f) at§ =20, =15

Figure 5. Q-functionatky = 1, k, = 2,£ = 5, 10, 20,4 = 5and q = 0, 10, 15, £ = 20.

increases P(f) increase and information about phase starts to build up around 6 = 0. At figure 6(b) we take

& = 20and plot P(0) against §, g we note that phase distribution function appears as a peak centered at = 0
when g increases the pack of P(6) decreases in height and information about phase decreases for the fixed values
of &

9. Conclusions

In this article we have introduced and examined some statistical properties of a new pair coherent quantum state of the
SU(1, 1) algebra. A suggested generation scheme is presented based on the vibrational motion of the center of mass

of a trapped ion in two-dimensional harmonic potential. The present scheme could be realized experimentally.We
calculate and plot probability distribution function.Quantum statistical properties of these states have been studied in
some detail. We have found interesting nonclassical features of these states. The sub- Poissonian distribution, Cauchy-
Schwarz inequality valuation and squeezing phenomenon were displayed for these particular states for fixed parameter
values.We studied the Q-function and showed its behavior for different parameters. Finally, we introduced phase

9
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(@) aatgq=5k1 =1,k =2 (b) bat =20,ky =1,k =2

Figure 6. Phase distributionat ky = 1, k, = 2.

distribution function. We note that this state has non-classical properties for squeezing ,phase distribution and these
properties are sensitive to change in the parameters of the state
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