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Abstract

We present the two-dimensional inflow—outflow solutions of radiation hydrodynamic equations of supercritical
accretion flows. Compared with prior studies, we include all components of the viscous stress tensor. We assume
steady-state flow and use self-similar solutions in the radial direction to solve the equations in the —f domain of
spherical coordinates. The set of differential equations have been integrated from the rotation axis to the equatorial
plane. We ﬁnd that the self-similarity assumption requires that the radial profile of density is described by
o(r) o< r~%3. Correspondingly, the radial profile of the mass inflow rate decreases with decreasing radius as M, o r.

An inflow—outflow structure has been found in our solution. Inflow exists in the region 6 > 65°, while above that the
flow moves outward and outflow could launch. The driving forces of the outflow are analyzed and it is found that
the radiation force is dominant and pushes the gas particles outward with poloidal velocity ~0.25¢. The properties of
the outflow are also studied. The results show that the mass flux-weighted angular momentum of the inflow is lower
than that of the outflow, thus the angular momentum of the flow can be transported by the outflow. We also analyze
the convective stability of the supercritical disk and find that in the absence of a magnetic field, the flow is
convectively unstable. Our analytical results are fully consistent with the previous numerical simulations of
supercritical accretion flow.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Active galactic nuclei (16); Black hole
physics (159); Black holes (162); Seyfert galaxies (1447)
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1. Introduction

Accretion of gas through a disk onto a black hole is associated
with many active phenomena in our universe such as active
galactic nuclei, X-ray binaries, and extragalactic jets. Black hole
accretion disks can be divided into two distinct classes based on
temperature: hot and cold (see Yuan & Narayan 2014 for a
review). Hot accretion flow consists of an optically thin and
geometrically thick disk with very low mass accretion rate (e.g.,
Narayan & Yi 1994, 1995; Blandford & Begelman 1999, 2004;
Yuan et al. 2012a, 2012b; Mosallanezhad et al. 2014, 2016;
Zeraatgari & Abbassi 2015; Zeraatgari et al. 2018). In cold
accretion flow, the disk is optically thick with a relatively high
mass accretion rate.

In terms of cold accretion flow, the standard thin-disk model is
the first authentic model of a black hole accretion disk (Novikov
& Thorne 1973; Shakura & Sunyaev 1973; Lynden-Bell &
Pringle 1974; Pringle 1981). In this model the heat generated by
the viscosity locally radiates away from the disk. Consequently,
the disk temperature becomes far lower than the virial temper-
ature, i.e., 10°-10” K. The criterion for the mass accretion rate is
the Eddington rate defined as Miggq = Lgaa/ (nc?), where Lgqq is
the Eddington luminosity, 7 is the radiative efficiency, and c is the
speed of light. The thin-disk model can successfully be applied to
many black hole systems when their mass accretion rate is slightly
below this, M < Mgqq (e.g., Pringle 1981; Koratkar & Blaes
1999; Frank et al. 2002; Remillard & McClintock 2006; Kato
et al. 2008; Abramowicz & Fragile 2013; Blaes 2014; McClintock
et al. 2014).

When the accretion rate is above the Eddington limit,
advection becomes important, and the accretion flow can be
described by super-Eddington (or supercritical) flow. In this

case, the radiative diffusion timescale, #45;, can exceed the
timescale for accretion, f,.., as a consequence of the high mass
accretion rate. Thus, the diffused photons cannot escape from
the disk and accrete onto the black hole with gas particles. Note
that in some 3D radiation magnetohydrodynamic (RMHD)
simulations of super-Eddington accretion (e.g., Jiang et al.
2014), it has been found that radiative transfer in the vertical
direction is important, and thus photon trapping is not as strong
as previously thought.

Hydrodynamic and MHD numerical simulations of hot
accretion flow have found that the mass inflow rate decreases
inward (e.g., Stone et al. 1999; Yuan et al. 2012b). In this regard,
various analytical works proposed to explain this result by means
such as an adiabatic inflow—outflow solution (ADIOS, Blandford
& Begelman 1999, 2004; Begelman 2012) and convection-
dominated accretion flow (CDAF, Narayan et al. 2000). In
the ADIOS model, mass loss in the outflow is the reason for the
inward decrease of the mass accretion rate. Therefore, due to
the presence of outflow the mass accretion rate is not constant
with radius and decreases toward the black hole. The CDAF
model, also presented to explain the simulations, is assumed to be
convectively unstable. However, recent numerical simulations
have shown that MHD accretion flows are convectively stable
(Narayan et al. 2012; Yuan et al. 2012a).

In the case of supercritical accretion flow, the outflow/wind is
unavoidable. Since the accretion luminosity exceeds the
Eddington limit, the radiation force becomes much greater than
the gravity. Subsequently, at high latitudes, the gas particles can
be accelerated by the radiation pressure and blown out from
the system as multi-dimensional effects such as a jet/wind.
Some good candidates for supercritical accretion flows are
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ultraluminous X-ray sources, ultrasoft X-ray sources, narrow-
line Seyfert 1 galaxies, bright microquasars (see, e.g., Wang &
Zhou 1999; Boller 2000; Makishima et al. 2000; Mineshige et al.
2000; Miller et al. 2004; Done et al. 2007; Vierdayanti et al.
2010; First et al. 2016; Israel et al. 2017a, 2017b; Kaaret
et al. 2017; Kosec et al. 2018).

Several multi-dimensional /time-dependent radiation hydrody-
namic (RHD), RMHD, and general relativistic RMHD simula-
tions have been performed to reveal the physical properties of
supercritical flows (Eggum et al. 1987, 1988; Okuda 2002;
Ohsuga et al. 2005, 2009; Okuda et al. 2005; Ohsuga &
Mineshige 2007, 2011; Kawashima et al. 2009, 2012; Fragile
et al. 2014; Jiang et al. 2014; McKinney et al. 2014; Sadowski
et al. 2014, 2015; Yang et al. 2014; Takahashi et al. 2016;
Kitaki et al. 2017, 2018). The first one-dimensional analytical
studies on super-Eddington accretion flow, i.e., the slim-disk
model, have focused on the radial structure of the flow
(Begelman & Meier 1982; Abramowicz et al. 1988; Wang &
Zhou 1999; Watarai & Fukue 1999; Mineshige et al. 2000;
Watarai et al. 2000, 2001; Fukue 2004; Watarai 2006; Gu &
Lu 2007). They used cylindrical coordinates (R, ¢, z) and adopted
H = ¢, /S for the disk height, where ¢, and Qg are the sound
speed and the Keplerian velocity, respectively. In the mentioned
relation, based on hydrostatic equilibrium in the vertical direction,
the disk height was considered to be constant. Although this
approximation might be true for the standard thin-disk model, it
is obviously inaccurate for a supercritical disk where the disk is
geometrically thick due to the high mass accretion rate. However,
Zeraatgari et al. (2016) solved the 1.5-dimensional inflow—
outflow equations of supercritical accretion flow by assuming a
power-law function for mass accretion rate, M o< r*. They found
that s = 1 due to the inclusion of radiative cooling. Ohsuga et al.
(2005) is one of the pioneering works on numerical simulation
that considered a relatively small angular momentum for the flow
and obtained quasi-steady-state solutions. They found a small
inflow region near the equatorial plane and a very wide-angle
outflow region above the disk.

To reveal the complex two-dimensional structure and under-
stand the physical properties of supercritical accretion flow, Gu
(2012) adopted spherical polar coordinates and considered only
the 7., component of the stress tensor to mimic the transfer of
angular momentum by the magnetorotational instability (Balbus
& Hawley 1998). He assumed that the radiation pressure is much
greater than the gas pressure, ie., Pgas/Praga << 1. He further
assumed vy = 0, which is obviously incorrect for the extremely
high mass accretion rate. By making use of radial self-similar
solutions, he showed that the polytropic relation adopted in
previous analytical works was not suitable. He found that even for
marginally sub-Eddington accretion flow the energy advection
was significant and the accretion disk was convectively stable.

In the present study, we revisit the inflow—outflow structure
of supercritical accretion flow by means of a radial self-similar
solution. The main aim of this study is to relax the assumption
of vyp = 0 made by Gu (2012) and consider a very high mass
accretion rate (see Figure 1 of Gu 2012 for more details). To do
so, we adopt spherical coordinates and consider all components
of the velocity, i.e., (v,, vy, V), and also all components of the
viscous stress tensor. We integrate the set of coupled RHD
equations over all vertical angles, from the rotational axis to the
equatorial plane. Therefore, unlike previous analytical works,
we can clearly show the two-dimensional structure of the
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supercritical disk and address its physical properties when the
disk is in a steady state.

The remainder of the manuscript is organized as follows.
The basic equations and assumptions are described in
Section 2. The self-similar solutions and boundary conditions
are given in Section 3. In Section 4, the numerical results are
presented with detailed explanations. Finally, the summary and
discussion are provided in Section 5.

2. Basic Equations and Assumptions

In this section, we describe the two-dimensional RHD
equations of accretion flow around a non-rotating black hole
in spherical coordinates (r, 8, ¢). We neglect the self-gravity of
the accretion disk. To avoid relativistic effects, the Newtonian
potential, ©» = —GM/r, is considered, where G is the gravita-
tional constant and M is the black hole mass. The basic RHD
equations of the accretion flow are written as follows:

dp

—+V. =0, 1
5 T (pv) )

p[%-f—(wV)v]:—sz/J—Vpgas +V.o+XF,
¢

()
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In the above equations, p is the density, v = (v, vy, ;) is the
velocity, pg,s is the gas pressure, 0 is the viscous stress tensor,
X is the total opacity, F is the radiation flux, e is the internal
energy density of the gas, E is the radiation energy density, P is
the radiation pressure tensor, « is the absorption opacity, B is
the blackbody intensity, and ®.;; is the viscous dissipative
function. The viscous stress tensor can be described as

_ an 8Vi _ g )
%—u[[ ot &Cj] (v v)} 5)

where 1 = vp is the dynamical viscosity coefficient, which
determines the magnitude of the stress, and v is called the
kinematic viscosity coefficient. We note that the bulk viscosity
is neglected in this study. The dynamical viscosity coefficient is
calculated with the usual « prescription of the viscosity
(Shakura & Sunyaev 1973),

Peas + AE
ai
Ok

where « is the viscosity parameter, A is the flux limiter, and
Qx = (GM/r?)!/? is the Keplerian angular momentum. To
calculate the radiation flux, F, we apply the flux-limited
diffusion approximation (Levermore & Pomraning 1981) as

F = _Xe VE, )

X
where ) is the flux limiter. To avoid complexity, the absorption
opacity including both free—free absorption, x¢, and bound-
free absorption, kg, is neglected in the present study. The total
opacity is then y = pkes, Where kg is the electron scattering

w= ; (6)
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opacity. The radiation pressure tensor is calculated in terms of
the energy density of the radiation as

P =[fE, (3

where f is the Eddington tensor. In this study we focus on the
optically thick region, where A = 1/3 and f = I/3 (Kato et al.
2008). Thus, the Eddington approximation yields

g =E/3 if i=],
R ©)
0 if =]
By combining Equations (3) and (4), the total energy equation
including gas and radiation can be rewritten as

O(e + E) )
a0 + V - [(e + E)v] (10)

:_(pgas +prad)v v— V.F+ ®Vi57

where p,,q is radiation pressure, and based on our assumption it is
much greater than the gas pressure, i.e., Py /Prag < 1.% Thus, the
gas pressure as well as internal energy density of the gas will be
dropped in our equations. We consider steady-state and axisym-
metric (0/0t = 9/0¢ = 0) flow to solve Equations (1)—~(4). The
detailed forms of the partial differential equations are presented in
Appendix A (see Equations (45)—(51)). We outline our self-similar
solutions and boundary conditions in the following section.

3. Self-similar Solutions and Boundary Conditions

Many numerical simulations of accretion flow show that the
radial profile of the density can be described as a power-law
function of r as p(r) o< ¥~ ". In terms of hot accretion flow, the
global numerical simulations are consistent with the self-
similar assumptions away from the boundaries (e.g., Stone
et al. 1999; Yuan et al. 2012a, 2012b, 2015). For the case of
super-Eddington accretion flow, recent numerical simulations
also show that the radial profile of the density follows a power-
law form with n = 0.55 for a wide range of o from a = 0.005
to 0.1 (Ohsuga et al. 2005; Yang et al. 2014).” Therefore, in
order to solve Equations (45)—(49) by numerical methods, we
adopt self-similar solutions to remove the radial dependence of
the variables.

3.1. Self-similar Solutions

By considering a fiducial radial distance, i.e., ro, the self-
similar solutions can be written as a power-law form of r/r.
Thus, the physical variables of the flow can be written using the
following radial scaling:

172
vr(r,e)vo(ri) v (6), (11)
0
—172
Vo (r, 0)—v()(ri] vy (6), (12)
0
—1/2
v (., a)vo(ri) Q(6)sin 6, (13)
0

4 In future studies we relax this assumption and work in a regime where gas
pressure and radiation pressure are comparable.

3 Note that Kitaki et al. (2018) showed some deviations from the self-similar
assumptions.
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p(r, 0) = po(i) p(0), (14)
ro
—n—1
2 r
Praa (s 0) = pyvg (r_) p(0), (15)
0

where vy = (GM/ry)'/? and p, are considered to be the
Keplerian velocity and density at r,, respectively. By substituting
the above self-similar solutions into Equations (45)—(49), the
radial dependence will be removed only if n = 1/2. This is
mainly due to the inclusion of the radiative cooling in the energy
equation, i.e., V - F. Consequently, the radial profile of the
accretion rate can be well described by M o r, which is fully
consistent with the hyperaccreting ADIOS model of Begelman
(2012). This result is again consistent with the radial dependence
of the density found in this present study.

Substituting Equations (11)—(15) into Equations (45)—(49),
we can reduce the latter to the ordinary differential equations
(ODEs) given in Appendix B. Equations (52)—(56) describe the
variations of the five physical quantities, v,(0), vg(8), v4(6), p
(6), and p(0) in the vertical direction.

3.2. Boundary Conditions

Following Narayan & Yi (1995), we assume that all flow
variables are even symmetric, continuous, and differentiable at
the equatorial plane, = 7/2, and the rotation axis, § = 0. The
main difference here from previous works is that we include the
latitudinal component of the velocity, vy, in our equations and
consider it to be zero at both the equatorial plane and the
rotation axis. Therefore, we apply the following boundary
conditions at § = /2 and 6 = 0:

_dp _dp _dv _d_

_dp _dp _dv _dQ_ 16
7 R R T, (16)

To solve the set of ODEs (see Equations (52)-(56) in
Appendix B), we need to set the fiducial radial distance, ry, and
the density there, py, which are defined in Equations (11)—(15)
(see the constant term, T_l(c /vo), on the right of Equation (56) as
well). Numerical simulations of accretion flow show that the
radial velocity increases inward very rapidly because of the
strong gravity near the black hole (Ohsuga et al. 2005; Yuan
et al. 2012a, 2012b). To avoid a shock being caused supersonic
inflow near the central region, which is a source of deviation
from the self-similar assumptions, we neglect the region within
10r,, where ry = 2GM/ ¢? is the Schwarzschild radius (see, e.g.,
Kawashima et al. 2012; Jiang et al. 2014). Due to the assumption
of a high mass accretion rate, we expect that strong radiation
produced in the innermost region interacts with gas particles in
the region r 2 10r; and strong outflow is driven there. To show
the two-dimensional inflow—outflow structure of the flow, we
consider all components of the velocity including vy in our
equations. Throughout the present study, we set the inner and
outer radial limits of the domain as ry;, = 10r, and
Fmax = 007, respectively. Thus, the assumption of a Newtonian
potential is safely valid in this range. We set ro = 107, and for
the initial density, py, we calculate the mass inflow rate at the
outer radial boundary. Following numerical simulations of
supercritical accretion flow, the dimensionless mass inflow rate
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Figure 1. Angular profile of the physical variables at r = 10r,. Top left panel: radial velocity in units of the light speed, c. The dashed line shows the location of
v, = 0, which is about 65°. Top middle panel: latitudinal velocity in units of the Keplerian velocity, vo. Top right panel: angular velocity in units of the Keplerian
angular velocity, §)y. Bottom left panel: density in units of the density of the midplane at ro, i.e., po. Bottom middle panel: radiation pressure in units of p, vZ. Bottom
right panel: Mach numbers.

is defined as (see Ohsuga et al. 2005; Yang et al. 2014) Yang et al. (2014). In the following subsections, we explain in
detail the flow properties based upon our solutions.
2 T
=< f 270r2p min (v,, 0)sin @ d. (17)
Lgqq Yo 4.1. Inflow—Outflow Structure of the Solutions
We set iz = 1300 at the outer radial boundary, i.e., ry. = Figure 1 presents angular profiles of physical quantities at
500r,, throughout this paper. Based on self-similar solutions r = 10r,. We can see that the density and the radiation pressure
adopted here, the mass inflow rate in this study is not radially decrease rapidly from the equatorial plane to the rotation axis.
constant and decreases inward as riz o< r. We use an iterative Since we are interested in studying the case where the radiation
method to find the value of py by solving Equation (17) at the pressure is much greater than the gas pressure, i.e., Py /Praa < 1,
outer radial boundary. this pressure represents the total pressure of the flow. As shown in
the top left panel of Figure 1, in the region close to the equatorial
. lane, @ > 65°, the radial velocity is negative and the gas particles
4. Numerical Results EIOVC toward the central black tI)llole. Irgl the region 9g< 25", the
We solve the ODEs (52)-(56) by integrating from the sign of the radial velocity changes and becomes positive.
equatorial plane (6 = w/2) to the rotation axis (68 = 0). We Furthermore, the top middle panel shows the variation of vy in
adopt the values of a = 0.1, M = 10 M, and ks = 0.34 with the vertical direction. From this plot, it is seen that vy has a
reference to the numerical simulations of Ohsuga et al. (2005) negative value at all angles, and is zero at both the equatorial
and Yang et al. (2014). The main difference here from those plane and the rotation axis due to the boundary conditions. The
numerical simulations is that we consider all components of the minimum value of v, is also located around 6 ~ 43°. Moreover,
viscous stress tensor. As stated in the previous section, the radial the bottom right panel of Figure 1 presents the Mach numbers.
range of our calculation is 10r; < r < 500,. We implement a We plot this figure to check the existence of the sonic point in the
relaxation method to solve the set of equations in the vertical high-latitude region. As we can see, no sonic points exist in this
direction. The grid in the € direction is divided into 2000 equally region. The Mach number |v,|/c; decreases from the equatorial
spaced points and an iterative technique is used to find the value plane to about 65°, where the radial velocity is zero. Then, it
of po with m = 1300 at r,,«. For this constant mass accretion increases until # = 30° and again decreases rapidly to the rotation
rate, we obtain p, = 2.89 x 1073 gcm 3. We can reasonably axis. This behavior can be explained by the isothermal sound
treat this value as a boundary condition. The global properties of speed, ¢ = p/p. The profiles of the density and the total pressure
the solutions we obtain in this way agree well with those in Figure 1 show that the density decreases rapidly from the
presented in numerical simulations of Ohsuga et al. (2005) and equator to the pole while the pressure is almost constant in the
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Figure 2. Two-dimensional distribution of the density (left) and the temperature (right) based on the self-similar solutions. Both panels are overlaid with the poloidal
velocity. In the left panel, the poloidal velocity is normalized by 0.1c to denote the strength of the outflow, while in the right panel it is normalized by its absolute value

to denote the direction of the vectors.

range 0 < 6 < 30°. Therefore, the Mach number declines in this
range. Also, |w|/cs has a maximum value at 6 = 43° and
becomes null at both axes due to the boundary conditions there,
i.e., vy = 0. For both lines, the Mach numbers are less than unity,
which clearly shows that there is no critical point at high latitudes.

In the left panel of Figure 2, we plot the two-dimensional
distribution of the density overlaid with the streamlines of the
flow. The results are shown for nz = 1300 and the poloidal
velocity is normalized by 0.1c. It can be seen that the density
tends to be larger around the midplane than around the polar
axis. Moreover, the streamlines are directed toward the black
hole at low latitudes with small magnitudes. At high latitudes,
they are pointed outward and become outflow. For a high
accretion rate, as in our present study, the outflow can be driven
by the radiation pressure produced at inner radii. This strong
radiation interacts with the gas particles and can push them
away as a high-velocity outflow. This figure clearly shows the
region of a high velocity field at high latitudes at r = 10r,. As
shown in the top left and top middle panels of Figure 1, the
poloidal velocity of the outflow reaches about ~0.25¢. These
results are fully consistent with the results obtained in Yang
et al. (2014, see their Figure 1) and Ohsuga et al. (2005), where
the inflow is presented at low latitudes around the equatorial
plane of the disk while the outflow is presented in the high-
latitude regions.

The two-dimensional profile of the radiation temperature,
T= (E/a)l/ 4 is plotted in the right panel of Figure 2 (where
a = 175646 x 107 ergcm™3 K™ is the radiation constant).
The logarithm of the temperature is overlaid with the poloidal
velocity normalized by its absolute value to denote the direction
of the vectors. With the assumption p,,; /P, < 1, the gas and
the radiation are in equilibrium, so their temperatures are almost
equal. Due to the heating of the gas by viscous dissipation, the
temperature is higher in the inner region than at the outer radii.
Therefore, this produced energy can be effectively converted
into radiation energy. This figure somehow represents the
distribution of the radiation internal energy density. In addition,
at large radii, we can see that the temperature is lower at high

latitudes than at low latitudes. This is a consequence of radiative
cooling by the outflow.

4.2. Physical Properties of the Outflow

In this subsection we calculate the physical properties of the
outflow based on our self-similar solutions. The angular
velocity of the accretion flow is plotted in the top right panel of
Figure 1. It is seen that it increases from the equatorial plane to
the rotation axis and becomes almost Keplerian at high
latitudes, which is consistent with the results of numerical
simulations by Yuan et al. (2012a). This indicates that the
outflow can transport angular momentum outward from the
disk. To check this issue in more detail, we evaluate the mass
flux-weighted value of the inflow and the outflow quantities as

4 [ pQ min(v,, 0)sing do

Oin(r) = (18)

4rr? [ p min(yv,, 0)sin6 df

47rr2f07r/2 pQ max(v,, 0)sin 0 df

Qout(r) = , (19)

drr? ) "2 ) max(v,, 0)sin 6 df

where Q represents the physical quantities. The mass flux-
weighted angular momenta of the inflow and the outflow are
found as

Li, = 0.79 Lg, (20)

and

Loy = 0.89 L, (2D

where Ly is the Keplerian angular momentum. This result
clearly shows that the angular momentum of the flow can be
transferred by the outflow, which is fully consistent with the
results of numerical simulations of supercritical accretion disks
(see Ohsuga et al. 2005; Yang et al. 2014). We also define the
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Figure 3. Angular distributions of the radial forces (left) and angular forces (right) per unit mass at r = 10r,. The forces include gravity (black dotted line), centrifugal
force (blue solid line), radiation force (red solid line), and their sum (black solid line).

Bernoulli parameter as

2

Be()= L + P GM 22)

2 (y—=Dp r
where v =4/3 is the specific heat ratio. The Bernoulli
parameter is the sum of the kinetic energy, the enthalpy, and
the gravitational energy of the accreting gas. The mass flux-
weighted Bernoulli parameter of the outflow is obtained as

Be = 2.67 v. (23)

The value of the Bernoulli parameter is positive, which
shows that the outflow has enough energy to overcome the
gravity of the central back hole and escape to infinity. The
mass flux-weighted poloidal velocity of the outflow, i.e., vpzol =

v2 + V7, is also calculated as
Vpol = 0.44 vi. (24)

Here, we conclude that the radiation-driven outflow has
enough energy and power to interact with its surroundings,
overcome the gravitational potential, and escape to infinity.

4.3. Analysis of Forces Driving the Outflow

In order to understand which force can drive outflow from our
system, we plot in Figure 3 the angular distributions of the radial
forces (left panel) and the angular forces (right panel) at
r = 10r,. We can see from the left panel that the angular profile
of the total force has similar behavior to the angular profile of the
radial velocity shown in Figure 1. In addition, the left panel of
Figure 3 shows that within 60° < 6 < 90° the radial component
of the centrifugal force is greater than the radial component of
the radiation force and can effectively counteract the gravita-
tional force in this range. However, within 0° < 6 < 60°, the
radial component of the centrifugal force decreases rapidly and
becomes null at the rotation axis. In contrast, the radial
component of the radiation force is the dominant force near
the rotation axis, and we can see that a very strong outflow exists

near this axis. Therefore, it can be concluded that the radial
radiation force is the dominant force and plays the important role
of driving outflow at high latitudes. It is interesting here to
compare this result with the case of hot accretion flows (Yuan
et al. 2015), in which radiation can be neglected. Although the
dominant driving force is different in the two cases, outflow is
always present and even their properties are similar.

It is seen from the left panel of Figure 3 that the angular
component of the total force is very small in the region near the
equatorial plane, i.e., 50° < 6 < 90°, which clearly shows that the
flows are in force equilibrium in the inflow region. This is mainly
because from this panel we can see that the centrifugal force
balances the radiation force in the vertical direction. The angular
distribution of both the radiation force and the centrifugal force
become zero at both axes due to the boundary conditions.

To have a better understanding of the magnitude of the
forces at different 6 angles and to study the driving mechanisms
of the outflow, we calculate the forces in different regions.
Figure 4 shows the result at r = 25r; in the unit of gravitational
force. We can see from this figure that in the inflow region,
6 = 85°, the dominant force is gravity, so the flow moves
toward the central black hole. In the intermediate region,
6 = 45°, the driving forces are the centrifugal and radiation
forces. It is seen that these forces have comparable strength,
which means that both of them can drive outflow in this region,
but not as strongly. Instead, at very high latitudes, § = 15°, the
radiation force can efficiently offset the gravity and play a
noticeable role in driving the outflow, whereas the centrifugal
force is negligible and does not make any effective contribution
to the total force. These results are again fully consistent with
those found in Yang et al. (2014) and Ohsuga et al. (2005).

4.4. Convective Stability

In terms of supercritical accretion flow, due to the large
scattering optical depth, the photons produced from the innermost
part of the disk are trapped and cannot efficiently escape from the
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Figure 4. Force analysis in the inflow/outflow region to show the driving
mechanism of the outflow at r = 25r,. The length of the arrows schematically
denotes the magnitude of the forces while their direction is that of the forces.
The forces include gravity, centrifugal, radiation, and their sum. The dashed—
dotted line shows the location of v, = 0, the dashed line represents the location

of % = 0, and the dotted line shows the radius where the forces are calculated.

disk. Furthermore, the specific entropy is dominated mostly by the
radiation photons since the radiation pressure is much more
important than the gas pressure here. Several analytical and
simulation works have been done to study the convective stability
of supercritical accretion flows. For instance, based on the local
energy balance, Sadowski et al. (2009, 2011) found that the disk is
convectively unstable. However, Gu (2012) used self-similar
solutions and concluded that a radiation pressure-supported disk is
always convectively stable. The discrepancy between these works
might be related to their different definitions of the vertical
structure of the disk. In terms of numerical simulation, Yang et al.
(2014) studied this issue based on their simulation data for large
and small values of viscosity parameter. They found that for large
value of viscosity parameter, « = 0.1, about half of the
computational domain was convectively unstable, while for
o = 0.005 the unstable region was a much smaller fraction.
They concluded that radiation plays an effective role in stabilizing
the convection and can directly transport energy.

In this subsection, we revisit this problem and analyze the
convective stability of supercritical accretion flow, in the
absence of a magnetic field, based on our self-similar solutions.
Thus, we use the well-known Solberg—Hgiland criteria in
cylindrical coordinates (R, ¢, z) as follows:

2
La—l — LVP -VS >0, (25)
R3 OR Cpp
2 2
_8_P(8_18_S _oros 0, (26)
0z \ OR 0z Jz OR

where | = r sin 6y is the specific angular momentum per unit
mass, Cp is the specific heat at constant pressure, P is the total
pressure, and S is the entropy defined by

ds x d 1n(5). @7)
p’7
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As we stated in the previous section, we ignored the gas
pressure in this study; therefore the total pressure is equal to the
radiation pressure, i.e., P = E/3. The first Solberg—Hgiland
criterion can be simplified as

Nup = K> + N[% + sz >0, (28)
with
1 07

2= % 29
" TR oR @9
N; = _L@_Pi]n P , (30)

~p OR OR o
N? = ,La_Piln P ) 31

: vp 0z 0z \p

Here, N is the effective frequency, x is the epicyclic
frequency, and Nz and N2 are defined as the R and z
components of the Brunt—Viisidld frequency, respectively.
Based on our self-similar solutions, OP/Jz is always negative.
Therefore, the second Solberg—Hgiland criterion can be
reduced as

2 2
A = a—lgln L a—liln Ll > 0. (32)
o 0z OR \ p
To find the angular dependence of the two Solberg—Hgiland
criteria in spherical coordinates, we apply the following
transformations:

0 . .0 cosf O
— =sinf— —

(33)
OR or r 00
i = cos HE — smﬁi. (34)
0z or r 00

The results are shown in Figure 5. In this figure we plot the
angular variations of x”, Nz, N, Nesz normalized by QZK, and
also A;s normalized by vé. We can see that N]zg is always
negative, N- is very small and near zero, while x” is large and
positive. Consequently, N mostly follows a x* pattern and is
positive at all 0 angles. It is seen that A is negative based on
our calculation. Since both Solberg—Hgiland criteria are not
satisfied here, we conclude that the disk is convectively
unstable. This result is then valid in the absence of a magnetic
field since numerical MHD simulations of accretion flow reveal
that most of it is convectively stable (Narayan et al. 2012; Yuan
et al. 2012a).

4.5. Energy Advection

To study the energetics of the supercritical accretion flow,
we define the vertically averaged advection parameter, f,4,, as
follows:

foo = 20—y Cua (35)
Qvis Qvis

where Q,q, is the energy advection rate, Q.is is the viscous
dissipative heating rate, and Q4 is the radiative cooling rate.
Based on our numerical results, the radiative cooling rate
becomes larger than the viscous dissipation rate at high
latitudes. Therefore, f,4, becomes negative and plays a heating
role rather than a cooling one. To calculate the advection
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Figure 5. Angular variations of k2 (green dotted line), N% (blue dashed line), Nf
(cyan dashed—dotted line), Nesz (red solid line), and A (black solid line). The
quantities %, Nz, N2, and N2 are normalized by Q%, and A is normalized by v.

parameter, we average this quantity over angles 6 > 80° at
r = 10r¢ (very close to the equator). In this range the advection
parameter is positive in our self-similar solution. The vertical
average of the cooling/heating rates can be written as

90°
Outy = 2 f Qo7 Sin 0 dO), (36)
80°
90°
Ouie = 2 f Dyiyr sin 6 do), (37)
80°
90°
Orad =2 V - Frsind db, (38)
80°

where g.q, and ;s are the terms presented in Equation (56).
We found that f,4, ~ 0.62, which is also consistent with the
numerical results presented in Yang et al. (2014).

5. Summary and Discussion

We solved two-dimensional RHD equations of supercritical
accretion flows in spherical coordinates and in the full 76 space.
Our calculations start from the rotation axis and work toward
the equatorial plane. We adopted the Newtonian potential for
the central black hole. We considered three components of the
velocity and used the « prescription of the viscosity. We
supposed the radiation pressure to be much greater than the gas
pressure, i.e., Py, /Prag << 1. Consequently, the gas pressure and
also the internal energy density of the gas were neglected in our
calculations. By adopting self-similar solutions, we solved the
ODE:s as a two-point value problem and obtained the variations
of the physical quantities, v,(6), vy(0), v,(0), p(6), and p(f) in
the vertical direction. We found an inflow—outflow solution.
Similar to our previous work (Zeraatgari et al. 2016), we found
that the density profile can be described by p(r) o< r 7.
Correspondingly, the radial profile of the mass inflow rate
decreases with decreasing radii as M, oc r. This result is
fully consistent with recent analytical and numerical predictions
of accretion disks (e.g., Ohsuga et al. 2005; Begelman 2012;
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Yuan et al. 2012a, 2012b, 2015; Mosallanezhad et al. 2016,
2019). Our results showed that the radiation pressure and the
density drop from the equatorial plane to the rotation axis. Inflow
exists in the region § > 65°, and above that flow moves outward
and wind would launch. Our results also show that there is no
sonic point above the disk. In the supercritical case, which we
studied here, the radiation could push the gas particles outward
and launch the wind with a poloidal velocity ~0.25¢. These
results are consistent with previous simulations of Yang et al.
(2014) and Ohsuga et al. (2005). From our results, the
temperature would drop in the wind region, and this clearly
shows that the wind produced by the radiation can effectively
cool the gas. By our calculations, the mass flux-weighted angular
momentum of the inflow is lower than that of the wind, so the
angular momentum of the flow can be transported by the wind.
This result is again consistent with previous numerical
simulations. One of our purposes here is to study which force
can produce wind in supercritical flow. Our results show the
radial component of the radiation force is the prominent force to
drive outflow. We approximated the convective instability in this
study. We found, unlike previous analytical works, that two
Solberg-Hgiland criteria were not satisfied here, so the disk is
convectively unstable in the absence of the magnetic field.

There are some caveats in this work but we postpone them to
our future studies. One is that we assume that the gas pressure
is much lower than the radiation pressure, which is not
physical. In principle, the gas and radiation pressures should be
comparable to each other. Another caveat here is that the total
opacity should include both absorption and scattering opacities.
To avoid complexity, we neglected free—free absorption and
bound—free absorption in the present study. Moreover, in
accretion disk models, the magnetic field would be important in
transferring angular momentum outward. In fact, the inclusion
of a magnetic field will enhance the outflow as well. Therefore,
in terms of a supercritical disk, it would be interesting to
investigate the flow structure by combining both the radiation
and the magnetic field.
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by the National Natural Science Foundation of China (grant No.
11725312, 11421303), the Science Challenge Project of China
(grant No. TZ2016002), and the China Postdoctoral Science
Foundation (grant No. 2019M663665).

Appendix A
Steady-state and Axisymmetric Equations in Spherical
Polar Coordinates

To simplify Equations (1)-(4), we work in spherical
coordinates, (r, 6, ¢). We assume axisymmetric, 9/9¢, and
steady-state, 0/0t, flow and consider all three components of
the velocity as v,, vy, v4. We further assume that the accretion
disk is radiation-supported, i.e., the gas pressure is negligible
compared to the radiation pressure, i.e., pgas/ Praa < 1. There-
fore, the gas pressure and the internal energy density of the gas
are dropped in our equations. Following Mihalas & Mihalas
(1984), the components of the viscous stress tensor in spherical



THE ASTROPHYSICAL JOURNAL, 888:86 (10pp), 2020 January 10
coordinates are given by

ov, 2 1 0 1
O = 2#( - ) — —u[r—za(rzvr) + —

or 7 sin
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sinf 9 v )
- 9 . 44
P = %90 “[ ; ae(sine] @)

By substituting the above equations and considering the
assumptions described in Section 2, the basic equations take
the form

190, , o .
9 2w, < (sinfpvp) = 0, 45
or P g o S0P (45)
ov, vy ( Ov, Vg GM PRes
YofDr ) = 2= 2B F,
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Appendix B

Ordinary Differential Equations

By applying Equations (11)-(15) to partial differential
equations in Appendix A (Equations (45)-(49)), we obtain
the following five coupled ODEs in the 6 direction:

dp
r + vgcotd + — |+ vw— =0 52
/J[V Vo dﬂ] G (52)
[—lvz—i—vdvr — v — Q%sin? 9]—— + 3 i
PL T — PT3 5

+ as| =3v +dvr0 S(de—&—vcotQ)
T 2\ag

[dv,. 3 ] dp
+ — =V |—
do 2 do

(53)
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where 79 = p,rokes is the midplane optical depth at ry. The
above ODEs represent the variation of five scalar quantities,
v(0), vg(0), vy(8), p(d), and p(0) with 6 (for simplicity, we
remove the 6 dependence of our physical variables in the above
equations).
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