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Abstract

Invivo tumours are highly heterogeneous, often comprising regions of hypoxia and necrosis.
Radiotherapy significantly alters the intratumoural composition. Moreover, radiation-induced
cell death may occur via a number of different mechanisms that act over different timescales. Dead
material may therefore occupy a significant portion of the tumour volume for some time after
irradiation and may affect the subsequent tumour dynamics.

We present a three phase tumour growth model that accounts for the effects of radiotherapy and
use it to investigate how dead material within the tumour may affect the spatio-temporal tumour
response dynamics. We use numerical simulation of the model equations to characterise qualitatively
different tumour volume dynamics in response to fractionated radiotherapy. We demonstrate
examples, and associated parameter values, for which the properties of the dead material significantly
alter the observed tumour volume dynamics throughout treatment. These simulations suggest that
for some cases it may not be possible to accurately predict radiotherapy response from pre-treatment,
gross tumour volume measurements without consideration of the dead material within the tumour.

Introduction

Radiotherapy is the most common cancer therapy modality, with almost half of all cancer patients receiving
radiation as part of their treatment (Fowler 2006). Radiation is typically delivered to the tumour as a series of
small doses, or fractions, administered over a period of several days or weeks (Ahmed et al 2014). While there are
numerous aspects of an in vivo tumour biology which may influence treatment response, tumour location and
stage remain the primary factors in selecting a treatment protocol (Caudell et al 2017).

Mathematical modelling of radiotherapy may be used to provide a better understanding of the factors which
are important in determining tumour response dynamics. There are a number of approaches that may be taken
to model radiotherapy response, including compartmental ordinary differential equation (ODE) models (Sachs
et al 2001, Chvetsov et al 2009, Wang and Feng 2013, Chvetsov 2013, Chvetsov et al 2014, Prokopiou et al 2015,
Tariq et al 2016), continuum partial differential equation (PDE) models (Rockne et al 2009, 2010, Rockne et al
2015,Lewin etal 2018), computational agent-based models (Richard et al 2007, Powathil et al 2013,2016, Alfonso
etal2014) and probabilistic approaches (Zaider and Minerbo 2000, Hanin 2004, O’Rourke et al 2009, Zaider and
Hanin 2011, Gong et al 2013, Bobadilla et al 2018). The simplest formulations view the tumour volume as a sin-
gle, homogeneous compartment (Wheldon et al 1977, Sachs et al 2001, McAneney and O’Rourke 2007, Proko-
piou et al 2015, Poleszczuk et al 2018) and are often targeted towards clinical application due to the limited data
typically available for model calibration (Wang et al 2009, Stevens et al 2010, Sharma et al 2016).

The linear-quadratic (LQ) model, along with its extensions, is typically used to describe dose-dependent
radiation-induced cell death (Joiner 2009). This model was initially proposed as an empirical formula derived
from in vitro clonogenic survival assays (Joiner 2009). As such, the LQ model is most suited to describing the
long-term, dose-dependent survival fraction post-irradiation, but may (inadequately) simulate the dynamics
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of radiation-induced cell death during fractionated radiotherapy as an instantaneous loss of material from the
tumour volume (Wheldon et al 1977, Sachs et al 2001, McAneney and O’Rourke 2007, Prokopiou et al 2015,
Poleszczuk et al 2018).

Upon absorption, radiation causes lesions within the cells’ DNA (Joiner et al 2009). The damage may be fatal,
with cell death occurring via one of several different mechanisms over potentially different timescales (Endlich
etal 2000, Eriksson and Stigbrand 2010). As such, cells that are fated to die may occupy volume within the tumour
for some time after irradiation and may subsequently affect the response dynamics. We may thus anticipate that
the dead material within the tumour may have a significant influence on tumour volume dynamics in response
to radiotherapy.

In this paper we incorporate the effects of radiotherapy into a multiphase model for tumour growth (Lewin
et al 2019) to investigate the role of dead material on treatment response dynamics. Multiphase models which
represent the microenvironment as a mixture of two or more constituent phases may be used to investigate inter-
actions between the different components of a growing tissue (e.g. cancer cells, extracellular fluid, immune cells,
vasculature and healthy cells). A range of models of this type have been proposed to study different aspects of
tumour growth (Ward and King 1999, Landman and Please 2001, Breward et al 2002, Byrne et al 2003, Hubbard
and Byrne 2013, Boemo and Byrne 2019, Lewin ef al 2019). This framework provides a natural setting to investi-
gate the influence of non-viable, dying cells and cellular debris on the spatio-temporal tumour dynamics in the
context of radiotherapy response. Radiation-induced cell death may be incorporated as a mass transfer between
the phases in the mixture, thus altering the internal tumour composition without instantaneous volume loss.
The effect of radiotherapy on the tumour volume may then be realised as a redistribution of material within the
tumour post-irradiation. Our previous work showed that the properties of the dead material may significantly
affect the tumour growth dynamics (Lewin et al 2019). We thus anticipate that, given the changes to the internal
tumour composition induced by radiotherapy, the dead material within the tumour may also have a similar
impact on the treatment response dynamics.

Materials and methods

Multiphase tumour growth model

We consider a three phase tumour growth model, focussing on the influence of the dead material within
the tumour on the overall tumour growth dynamics. The model treats the tumour micro-environment as
a continuum, multiphase mixture, comprising three constituent phases: (i) tumour cells, (ii) dying cells and
cellular debris, and (iii) extracellular fluid. The second phase is assumed to comprise all of the non-viable cellular
material and cellular debris within the tumour, irrespective of cell death mechanism or stage of decay. As such,
this phase represents an ‘averaged’ description of this component of the tumour environment across all of these
modes of cell death and is a transitional phase between the viable tumour population and the extracellular fluid.
We hereafter refer to this phase as ‘dead material’.

The spatial distribution of each phase is characterised by the volume fractions ¢;(x, t) (i = 1,2, 3) for the
tumour cell, dead material and extracellular fluid phases, respectively, at spatial point x and time t. The phase
velocities vi(x, f) describe the movement of each phase, and are associated with the phase pressures, p;(x,t),
and the stress tensors, o;(x, t). We model the mixture constituents as fluids, with the tumour and dead material
phases treated as viscous while the extracellular fluid is taken to be inviscid. Mass and momentum balances are
applied to each phase to determine how the dependent variables evolve over time. Tumour growth is assumed to
be oxygen-dependent and so the system of equations is coupled to a reaction-diffusion equation for the oxygen
concentration, ¢(x, t). The full system of equations is stated below, with the detailed derivation of the model
equations presented in Lewin et al (2019).

Mass conservation : aagi’ + V. (vigy) =S (1)

Momentum conservation: 0=V - (¢;g;) + F (2)

0, reaction-diffusion : 0 = DV?*c — I'¢y H(c — cn) (3)
1 c

where H(c) = 3 (1 + tanh (E)) (4)

No voids : Z ¢ =1 (5)
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Mass sources and sinks : S1 = nd1d3He(c — cy) — xP1He(en — ¢) — Ky

6
Sy = xP1He(en —¢) + £d1 — A, S3=—(S1+ 82) (6)
Momentum sources : Fi = p;Vo; + Z dijpidi(vi — i) (7)
J#i
Stress tensors : ;= —pl+ i (Vvi+Vvil) + X (V-w) 1
2 (8)
Ai = —3Hb >y =0up1 23 =0
Pressures:  p1=p+3y(¢1 +0502), pr=p+0Xg(d1 +05¢2), ps=p )
_ . \2 Ak
where Yy(0) = C(6 = Omin)*(& = ¢ >H(¢ — Din)-
(1-9¢)
Here H(-) is the Heaviside function and I denotes the identity tensor. A list of all model parameters is given in

table 1.

The source and sink terms, S;, given by equation (6) account for mass transfer between the phases and may
be associated with proliferation and cell death processes. We note that proliferation is assumed to occur at a rate
proportional to the product of the local volume fraction of the tumour cell phase, ¢y, and the extracellular fluid,
¢3, since the material and nutrients required for proliferation are assumed to be derived from the extracellular
fluid phase.

Of particular note is the parameter vector 8 = (6, 0,, fz;) which describes the material properties of the
necrotic phase relative to the tumour cell phase, and takes values in [0,1]°. Since 8 € [0, 1]°, we may consider
the dead material phase to be intermediate between the tumour cells and extracellular fluid phases. We note that
6 = (1,1, 1) describes a two phase sub-case of the full model in which the dead material is essentially a compart-
ment of the cellular phase and has the same mechanical properties as the tumour cells. Conversely, the limit
6 = (0,0, 0) gives a sub-case in which the dead material has the same properties as the inviscid extracellular fluid.

The parameter 0,, specifies the viscosity of the dead material relative to the cell phase (equation (8)). The
tumour cell and dead material phase pressures contain an additional pressure, ¥4 (¢), (defined in equation (9))
which pertains to cell-sensing. The parameters ¢* and ¢,,i, prescribe the thresholds for the cell-sensing effects
described by the function ¥4. More specifically, when cells are sparsely distributed, adhesion forces bring the
cells closer together, while in densely-packed regions the cells act to relieve stress by exerting a repulsive force
on neighbouring cells (Cheng et al 2017). As such, when ¢ > ¢*, X4(¢) > 0 which corresponds to a repulsive
cell pressure, whilst when ¢in < ¢ < ¢*, Xy < 0 which corresponds to regions of cellular adhesion or attrac-
tion. A schematic of the function X4 (¢) is shown in figure 1. The parameters 6, and 5, thus describe the relative
cell-sensing function of the dead material in comparison to the tumour cell phase, with ¥4 evaluated locally at

(P1 + Os0,).

Incorporating radiotherapy effects
Radiotherapy effects are modelled as an instantaneous mass transfer between the tumour cell and dead material
phases at the time of delivery, t;, and included in the mass source terms, S;, as follows:

Sl = 77¢1¢3HE(C - CH) B X¢1H€(CN - C) - ﬁ¢1 - Z V(C)¢15(t - t])’ (10)
j
SZ = X¢1He(CN - C) + K:(Zbl - )\(152 + Z V(C)d)ﬂ;(t - t])’ (11)
j
S;=—S —S,. (12)

Here, v(c) encompasses the dependence of radiation-induced cell death on the local oxygen concentration, ¢,
and is related to the dose-dependent cell survival fraction, SF(d), by v = 1 — SF(d). In this paper we assume
radiation is delivered with a uniform spatial dose distribution.

While still modelled as an instantaneous effect, the way in which radiotherapy is incorporated into this model
is markedly different from the discontinuities in tumour volume introduced in other models (Wheldon et al
1977,Sachs etal 2001, McAneney and O’Rourke 2007, Prokopiou et al 2015, Poleszczuk et al 2018). In particular,
here radiation results in an immediate change in tumour composition without changing the tumour radius. The
effect of the radiotherapy on the total tumour volume is then driven by the resulting dynamics of the new internal
distribution of the tumour constituents.
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Table 1. Table of multiphase model parameters appearing in equations (1)—(9).

Symbol Parameter

T O, consumption rate

0, diffusion coefficient

Coo Normoxic O, concentration at exterior boundary
ey Tumour hypoxia threshold
N Tumour necrosis threshold

)

Heaviside smoothing parameter

n Proliferation rate

K Apoptosis rate

X Necrosis rate

A Dead material decay rate

d; Drag coefficient of phase j on phase i

i Viscosity of phase i

0, Relative viscosity of dead and tumour phases
0, Relative ‘cell-sensing’ ability of dead phase
Ox. Relative influence of dead phase on cell-sensing
¢ Cell-sensing strength

o* ‘Natural’ cell volume fraction

Dumin Minimum cell-sensing volume fraction

0.4
035
0.3

0.25

(r 0.15F
0.1+

0.05

@

Figure 1. Illustrative sketch showing the dependence of the cell-sensing pressure X4 (¢) on the cell volume fraction ¢ (defined
by equation (9)). We note that there is no interaction between cells if they are too sparsely seeded (X4 = 0 if ¢ < ¢pin). For
intermediate volume fractions the cells tend to aggregate (34 < 0 for ¢ € (@pin, ¢*)), whereas at high volume fractions the cells
repel each other (34 > 0 for ¢ € (¢*,1)). The blue curve shows the cell sensing pressure of the tumour cell phase, while the red
curve represents the corresponding pressure in the dead material phase, 6,4, for 8, € (0,1).

The linear-quadratic (LQ) model is typically used to describe the dose-dependent survival fraction, SF(d), of
tumour cells after irradiation (Joiner and van der Kogel 2009). The standard LQ model is given by

SF(d) = e~ 457, (13)

where o (Gy™1) and 8 (Gy™2) are intrinsic radiosensitivity parameters for the tissue. The response characteristics
of the tumour are typically characterised by the ratio a./ 8 (Gy) (Joiner 2009).

Various local oxygen concentrations within a tumour yield spatially heterogeneous radiosensitivities.
Hypoxic tumour regions respond poorly to irradiation compared with well-oxygenated conditions. The oxygen
enhancement ratio (OER; OER~: 3) is established as the conventional extension to the LQ model to account for
hypoxia (Alper and Howard-Flanders 1956, Carlson et al 2006, Horsman et al 2009). This yields a step function
for radiaiton sensitivity at the hypoxia threshold, ¢y, given by

4
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exp(—ad — de) c>cy
(dyc) = { (14)

exp ( ol — o dz) c < cy.

Reduced model equations

When closed with appropriate boundary and initial conditions, equations (1)—(5) and (7)—(14) govern the spatial
and temporal dynamics of tumour growth and response to radiotherapy in three dimensions. For simplicity, we
evaluate the model in a symmetrical 1D Cartesian geometry, where x = 0 and x = R(#) denote the centre of the
tumour and the (dynamic) position of the tumour boundary, respectively. As previously described, the resulting
system of equations may be reduced to eliminate the fluid phase volume fraction, ¢s, velocity, v;, and global
pressure, p, and then be closed by specifying initial and boundary conditions (Lewin et al 2019). This yields the
multiphase model for radiotherapy response:

Mass conservation

8(;5; (¢1V1) =n¢1(1 — @1 — ¢p2)He(c — cu) — XP1He(en — ¢) — Ky — ZV(C)¢15(t —t)
J (15)
0¢2 | ((;s ) = x$1He (e — €) + Ky — A +Z 3(t = 1)
6t 2V2 XP1 CN—C RQ1 — 2 i
(16)
Oxygen profile
2
0= D% F(z)lHe(C — CH). (17)

Momentum balances

0= *#1(1 - ¢1) <¢1 6V1> - gau,ul(bl% <¢2 8V2> +dig1ga(va — 1)

’ (18)
az¢
—di301(h2va + (1 = g2)v1) — ¢1(1 — ¢1) + ‘9p¢1¢2
0= _gﬂl(bZ% (¢1 8V1> + geuﬂl(l - ) (ff)z 8V2) + diag1d2(vi — 12)
(19)
—dp3a (v + (1 = P1)va) — Opp (1 — ¢2)% + ¢162 %
_ C(¢ - ¢min)2(¢ B (rb*) .
E¢(¢) - (1 . (b) H((b - ¢mm)- (20)
Initial and boundary conditions
ZI: — 1|x =R(t (21)
Oc
— =0, vy=1n=0 at x=0 (22)
0x
¢ =0, c=co at x=R(t) (23)
4 81/1 4 8
g~ Yg(p1 +Os¢n) = M,ul g —0,34(d1 +0s¢2) =0 at x=R(t) (24)
¢1=di(x), ¢r=d(x), R=Ry at t=0. (25)
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Table 2. Table of fixed model parameter values for all simulations.

Parameter Value
T 2

Coo 1

cy 0.3

D 1

dy, 1
OER 3

Table 3. Table of parameter values used for the simulations presented in the results sections.

Radiotherapy
Growth parameters parameters

Case oy n X K A ds=dg ¢ Omin H1 0, 0, Os f a a/B
A 0.1 1 1 0.05 0.1 0.1 3 0.8 0 1 0.5 1 1 20 0.35 10
B 0.3 1 0.5 0.02 0.75 0 1 0.8 0 1 0.1 0.5 0.5 50 0.35 10
C 0.3 1 1 0.1 0.75 0.1 2 0.7 0 5 0.5 1 0.25 50 0.5 15
D 0.2 1.5 0.3 0.1 0.5 0 2 0.7 0 3 0.25 1 1 50 0.1 5
E 0.2 0.5 2 0.02 0.1 0 2 0.6 0 2 0.5 1 0.75 10 0.1 10
F 0.2 1.5 0.3 0.02 0.75 0 1 0.8 0 2 0.5 0.5 0.75 25 0.35 10
G 0.3 0.5 0.1 0.1 0.5 0 3 0.6 0 0.5 1 0.5 1 50 0.35 15
H 0.1 1 0.3 0.1 0.25 0.1 3 0.6 0 5 0.5 0.75 0.25 50 0.35 15
Results

The parameter values used for the results presented in this paper are listed in tables 2 and 3. The values of the
radiotherapy parameters are taken from ranges reported in the literature (Joiner and van der Kogel 2009), while
the remaining parameter combinations are taken from the exploration of the model parameter space presented
in Lewin ef al (2019). We note that typical values for many of the model parameters are not available in the
literature. As a result, we treat the parameters as dimensionless and perform a qualitative exploration of the

model dynamics across the parameter space.

Response to a single radiation fraction

We first analyse tumour response to a single radiation fraction with dose d =2 Gy. The step function
formulation of the OER results in a jump in the tumour cell volume fraction ¢, on either side of the pre-
radiotherapy contour x = Ry (¢; ) due to the effects of normoxia and hypoxia on the survival fraction of the
tumour population (figure 2(a)). The loss of mass from the tumour cell phase results in re-oxygenation within
the tumour and, correspondingly, the hypoxia threshold (Ry(#)) moves towards the centre of the tumour such
that Ry (t;) < Ry (t;). However, the outer tumour radius, R, does not experience an instantaneous jump and
R(t;") = R(#{). The composition change within the tumour induces a change in the phase velocities, v;. In
particular, v; (R(#;"), ;) < 0 and thus the tumour radius decreases gradually and transiently after irradiation
(figure 2(b)). Regrowth dynamics post-irradiation are affected by the redistribution of material within
the tumour. The volume fractions smooth out over time as the material gradually redistributes towards pre-
irradiation composition. However, redistribution of material internally affects the growth trajectory with lower
velocities of the tumour boundary, v; (R(t), t) compared to similar radii before radiation (figure 2(c)).

Tumour dynamics in response to fractionated radiotherapy

Tumour volume response dynamics after fractionated radiation vary between individual patients. Semi-
automated contouring of cone beam computed tomography (CBCT) images routinely obtained for patient
positioning at each radiation fraction allows for measurement of gross tumour volume (GTV) (Bagher-Ebadian
et al 2017) and indicates four qualitatively different responses. For demonstration purpose we show that these
different dynamic responses can be observed in oropharyngeal cancer patients with comparable stage and size at
beginning of radiotherapy (43.7 cm?,48.5 cm?, 63.3 cm® and 48.7 cm?, figure 3). The data shown is from a cohort
of 51 oropharyngeal cancer patients comprised of 32 who were treated at Moffitt Cancer Center, Florida and 19
at MD Anderson, Texas (Lewin et al 2016). Each patient received the standard fractionation protocol with 2 Gy
fractions administered daily Monday—Friday.
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t=20.00

Figure2. Representative simulation of multiphase tumour response to acute radiation with dose d = 2 Gy at time ¢ = 20 using
model parameters in table 2 and radiosensitivity parameters « = 0.35Gy ' and /3 = 10 Gy. The remaining parameter values

for this simulation are given in table 3, case A. Time series of: (a) tumour compositions, and (b) phase velocities for the simulation
shown in panel (¢). Individual plots show tumour composition at each time point, with the first and second time points in each
series corresponding to the time steps immediately before and after irradiation at #; = 20. Tumour compositions: tumour cell
volume fraction, ¢ (dark blue); dead material phase, ¢, (light blue); extracellular fluid volume fraction, ¢; (yellow). The dashed

red and yellow lines mark the positions of the contours x = Ryyand x = Ry, respectively. Phase velocities: tumour phase velocity, v,
(dark blue); dead phase velocity, v, (light blue). (¢) Tumour radius trajectory before and after a single fraction of radiation (2 Gy)
delivered at t; = 20 (dashed black line). The solution has been normalised to the tumour radius at the time of irradiation. Red circles
mark the time points of tumour composition and phase velocities plots in panels (a) and (b).

A desirable fast response is characterized by a rapid, monotonic reduction in gross tumour volume and a final
tumour volume that is substantially smaller than that prior to treatment (figure 3(a)). The multiphase model
simulates such a response using parameters listed in table 3, case B (figure 4(a)). By contrast, a poor response with
only marginal changes in tumour volume over time is not effective in reducing the gross tumour volume (figure
3(b)). Such dynamics can be simulated with parameter combination in table 3, case C (figure 4(b)).

A third radiation response pattern is described by a decrease in tumour volume before levelling-off after
which radiation has minimal effect on the measured volume (figure 3(c)). Multiphase model simulations sug-
gest that tumour regrowth over the weekend is sufficient to counteract radiation-induced cell death in the latter
stages of treatment (figure 4(c)). The tumour radius, R(t), undergoes oscillations driven by the weekly fraction
schedule, but once-a-week tumour volume measurements would reveal no net treatment effect. The param-
eter values used for this simulation are listed in table 3, case D. The step function form of the OER results in a
local maximum in the tumour cell phase volume fraction, ¢;. At this location within the tumour v; < 0,and the
volume fraction profile moves inwards. As the different cell material is redistributed the tumour composition
smooths out. Tumour composition after a weekend break is almost identical to that of the previous week, indica-
tive of the plateau in response (figure 5).

The last response dynamic is so-called ‘pseudo-progression’, characterised by transient increase in tumour
volume during the early phase of radiotherapy, before exhibiting a delayed decrease in tumour volume (figure
3(d)). These dynamics can be simulated using 05 = 0.75 such that radiation-induced dead cell material still
contributes significantly to tumour volume (figure 4(d)). At the beginning of radiotherapy, the internal tumour
composition is still approximately uniform and so we may use the averaged quantities

1 R(t)
#i(t) = m/o bi(x, t)dx (26)

to evaluate tumour dynamics. Figure 6 shows ¢, + s ¢, over time to evaluate cell pressures occurring within
the tumour throughout the course of the treatment protocol. Quantities greater than ¢* correspond to positive,
repulsive pressures, while those less than ¢* give rise to adhesive forces. Since 0. is large, the value of ¢; + 0s ¢,
does not decrease significantly upon individual radiation fractions despite the instantaneous mass transfer
between the tumour cell and non-viable phases. Thus, ¢ + 0s¢, > ¢* for the first few radiation weeks and
the tumour volume continues to increase. However, the accumulated effects of radiotherapy by week 3 yield
¢ + 056, < ¢* and induce a decrease in tumour volume, which persists for the remainder of the simulated
treatment. Model simulation suggest that pseudo-progression may, atleast in part,be driven by abuild-up of non-
viable cells and dead material within the tumour, rather than an increase in the viable tumour cell population.
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Figure 3. Representative examples of four qualitatively different radiotherapy response dynamics. The gross tumour volumes
were obtained from pre-radiation treatment planning scans and weekly CBCT scans during treatment. Dashed black lines indicate
start of treatment and pre-treatment tumour volume. (a) Fast responder. (b) Poor responder. (c) Response plateau. (d) Pseudo-
progression.

The influence of dead material on radiotherapy response

We have previously demonstrated that, for some parameter regimes, tumour growth may be significantly affected
by the physical properties of the dead material within the tumour (Lewin eral 2019). Here, we perform a focussed
parameter sweep on the parameter subspace (6,,, 6, 05) = 6 € [0, 1] in order to investigate the influence of the
material properties of the dead phase on the tumour dynamics in response to radiotherapy. In each case all other
model parameters are held fixed, including the radiosensitivity parameters. We highlight two different parameter
regimes; parameters for which the properties of the dead material do not significantly affect the qualitative
dynamics (left column of figure 7), and parameters for which the dynamics vary markedly across 6 € [0, 1]?
(right column of figure 7).

In figure 7(a) we observe tumour radius trajectories which all follow similar growth dynamics while also
exhibiting a similar response to radiotherapy. Each trajectory may be classified as a ‘fast responder’ to treatment
and we note that the predicted final tumour radii are all clustered together around small values, R < 0.3 (see fig-
ure 7(c)). In particular the properties of the dead material phase do not appear to significantly affect the tumour
dynamics either before, during or after radiotherapy, with all combinations simulated giving rise to the same
qualitative response (see figure 7(e)). As such we would anticipate that a less complex model could adequately
describe the observed response in this case, without necessarily taking into account the spatial distribution of the
tumour composition.

By contrast, for the case presented in figure 7(b), varying the material properties results in a large degree of
heterogeneity in the tumour response dynamics. The qualitative behaviours exhibited include fast response to
treatment (blue), pseudo-progression (purple) and actual tumour progression throughout treatment (red). In
this case the parameter sweep results in divergent trajectories with a large variation in the size of the tumour at the
end of treatment (see figure 7(d)). We see that the properties of the dead material may have a significant impact
on the response to treatment while holding the radiosensitivity parameters of the tumour fixed. In figure 7(f) we
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Figure4. Simulations of equations (15)—(25) exhibiting different qualitative responses to radiotherapy with respect to the
dynamics of the outer tumour radius throughout treatment. The radiotherapy protocol is represented by the grey shaded regions.
The solutions have been normalised to the tumour radius at the start of treatment at time # = 10. The parameter values for these
simulations are listed in table 3. (a) Example of a ‘fast responder’ to radiotherapy treatment (case B). (b) Example of a ‘poor
responder’ to radiotherapy treatment (case C). (c) Example of a response to radiotherapy exhibiting a plateau in treatment effect
(case D). (d) Example of response to radiotherapy exhibiting ‘pseudo-progression’ of the tumour (case E).

see that, in this parameter regime, larger values of 0y, result in poorer treatment responses. We further illustrate
these results by analyzing the dynamics of the parameters corresponding to the two corners of the unit cube,
0 = (0.01,0.01,0.01) and @ = (1, 1, 1). The model equations are singular for §,, = 0 so we instead choose posi-
tive values of (6,,, 6, 0x;) close to 0. There islittle difference in tumour composition and growth trajectories prior
to treatment. Therefore, it would not be possible to distinguish between these two cases from pre-treatment
radiological data even with resolution of the underlying tumour composition. However, radiation induces large
perturbations to the tumour composition, and the properties of the non-viable phase may subsequently affect
the redistribution of material within the tumour and therefore response dynamics (figure 8).

Tumour regrowth dynamics

Post-radiotherapy decrease in tumour volume

In the previous results section we identified a class of dynamics for which the tumour volume initially responds
well to irradiation before experiencing a diminished treatment effect, or plateau, towards the end of the protocol.
In this case, the regrowth of the tumour over the weekend break in the latter stages of the treatment protocol is
sufficient to compensate for the volume lost due to irradiation. The tumour thus reaches a plateau in response,
with no net treatment effect observed. However, in our simulations we also identify another mode of response
for which the tumour volume plateaus towards the end of treatment (figure 9(a)). This response is qualitatively
different to the case shown in figure 4(c). In figure 9(a) we see that the plateau in the tumour radius trajectory
is such that ’fi—f = 0, in contrast with the oscillations between death and regrowth driven by the on-off nature of
the treatment protocol observed in figure 4(c). These dynamics are also characterised by a dip in tumour volume
some time after the end of the last fraction of radiotherapy, before an increase in the tumour radius R(#) and
regrowth of the tumour. The parameters for the simulation shown in figure 9 are listed in table 3, case G.
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t=86.00

X

Figure 5. Time series of tumour compositions spanning a week of the fractionation protocol for the simulation presented in

figure 4(c). The second time point corresponds immediately after irradiation at time t = 79. The volume fractions ¢y, ¢, and ¢ are
represented by the dark blue, light blue and yellow regions, respectively. The dashed red and yellow lines mark the positions of the
radii for the hypoxia threshold, Ry(t), and necrotic threshold, Ry(t), respectively. The parameter values for this simulation are given

in table 3, case C.
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Figure6. Plot showing ¢, + 0x¢, over time for the simulation shown in figure 4(d). The quantities ¢; represent the volume fraction
of phase i averaged over the whole tumour at time f, as defined by equation (26).
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Figure7. The results obtained by sweeping over the parameter sub-space @ = (0,6, 0;) € [0, 1]> summarising the material
properties of the dead phase for two different parameter regimes; one in which the dynamics remain qualitatively similar varying

0, and one for which the trajectories diverge. The parameter values for each case are given in table 3, with the parameters pertaining
to the results in the left hand column given by case F, and those for the right-hand column by case E. The solutions have been
normalised in each case to the radius at the start of treatment for the corresponding parameter sets given in table 3. (a) and (b)
Tumour radius trajectories for each simulation in the parameter sweep. Trajectories are coloured by the qualitative response

to treatment exhibited: fast responder (blue), pseudo-progression (purple) or progression (red). The radiotherapy protocol

is represented by the grey shaded regions. (c) and (d) Histograms displaying the distribution of tumour radii at the end of the
radiotherapy protocol for each of the parameter sweeps. (e) and (f) Scatter plot marking the qualitative response dynamics resulting
from each combination of .

These two modes of response plateau are very different with regards to the underlying tumour composition
and thus the actual efficacy of the radiotherapy, despite both simulations resulting in a diminished treatment
effect while the tumour is still of significant radius. In figure 9(c) we visualise the tumour composition at 5 dif-
ferent time points throughout the regrowth period of the tumour after radiotherapy. We notice that at the end of
treatment the tumour cell population is actually very small, contrary to what might be expected from measuring
the outer tumour radius (see composition at t = 100). In this case, the plateau in tumour radius is not due to a
lack of effect of the radiotherapy on the tumour cell population. The radiation actually kills the tumour popu-
lation faster than the effects of adhesion such that ¢; + 0x,¢5 < @pin. The tumour cells therefore become too
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Figure 8. Two simulations of equations (15)—(25) exhibiting a large variation in response to radiotherapy, taken from the parameter
sweep in figure 7(b). (a) Two tumour radius trajectories corresponding to @ = (0.01,0.01,0.01) (red) and @ = (1, 1, 1) (blue).

The red points mark the time points for which we visualise the compositions in (b). (b) and (c) Tumour compositions for each
simulation prior to radiotherapy at ¢ = 10, during the radiotherapy protocol at t = 30, and at the end of treatment at t = 50. The
simulations in (b) correspond to @ = (0.01,0.01,0.01) while (¢) correspondsto 8 = (1,1, 1).

sparsely populated to interact with each other, and so the tumour radius is unable to contract further. Subsequent
fractions of radiation thus kill tumour cells and reduce the volume fraction ¢, locally without inducing a change
in the tumour volume as measured by the outer tumour radius. The value of ¥4 (é; + 05.¢,)at t = 100 is repre-
sented by the green dot in figure 9(b).

In a similar manner, the regrowth of the tumour cell phase after the end of the treatment protocol ini-
tially occurs locally. Once the tumour composition is such that 34 (¢1 + 0x¢2) < 0 the tumour cells are able
to interact and cellular adhesion results in a contraction of the tumour (see time t = 107.5 in figure 9). While
GOmin < 1 + Os¢, < ¢*, the tumour radius continues to decrease and ¢, increases due to both proliferation
of the tumour cells and contraction of the tumour volume. The point at which ¢, + 05é, = ¢* corresponds

to the minimum radius in this post-radiotherapy dip such that % > 0 (see time t = 109.5). Thereafter,
1 + 05, (;52 > ¢* and the tumour assumes a regrowth trajectory similar to that prior to treatment.

Altered regrowth dynamics
As described in the previous sections, as well as affecting the overall tumour volume, radiotherapy induces a large
change in the underlying tumour composition in our multiphase mixture. In some cases, this perturbation is
significant enough to completely alter the qualitative growth dynamics post-treatment when compared with the
control growth trajectory in the absence of radiotherapy. The tumour radius trajectory for one such simulation
is shown in figure 10 (solid blue line) along with the corresponding control growth trajectory (dashed blue line).
The parameter values pertaining to this simulation are given in table 3, case H.

In this case, the original tumour growth would have given a monotonic, sigmoidal trajectory approaching a
steady state solution. However, the regrowth post-radiotherapy clearly results in a travelling wave solution. The
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Figure9. Simulation of equations (15)—(25) exhibiting a dip in tumour radius after the end of the radiotherapy fractionation
schedule, using the parameter values in table 3, case G. The solution has been normalised to the tumour radius at the start of
treatment at time t = 50. (a) Tumour radius trajectory (blue line) for the simulation. The dots plotted along the trajectory mark the
key time points in the dynamics. (b) The cell sensing function 34 (blue line) defined by equation (20). The points plotted mark the
approximate cellular pressures within the tumour, S (¢; + 05:6,), for the time points plotted in panel (a). (c) The corresponding
tumour compositions for the time points marked on the trajectory in panel (a).

parameter regime here clearly gives rise to growth dynamics which exhibit bistability, with both steady state and
travelling wave solutions possible. By significantly altering the underlying tumour composition, it is possible to
change the qualitative growth dynamics of the tumour.

Discussion

Irradiation of in vivo tumours causes widespread cell death throughout the tumour. In particular, the dead
material within the tumour may not be confined to regions of necrosis induced as a result of nutrient starvation.
As such, radiotherapy induces a significant change in the intratumoural composition during the course of
treatment, which differs from the pre-treatment tumour. Herein we discussed a multiphase tumour growth
model to simulate radiation-induced cell death and to investigate how the redistribution of material between
the tumour cell and dead material phases affects tumour volume dynamics in response to radiotherapy. We
incorporated the effects of radiotherapy as an instantaneous mass transfer between the tumour cell phase and the
non-viable phase. This corresponds to a redistribution of material internally within the tumour whilst avoiding
the instantaneous volume loss often observed in radiotherapy response models (Enderling et al 2009, Rockne
etal 2010, Prokopiou et al 2015, Chvetsov et al 2017).

We used numerical simulation of the model system to simulate radiotherapy fractionation protocols and
investigate the resulting tumour response dynamics. The model exhibits a range of dynamics that are qualita-
tively similar to those observed in clinical data. For the class of response for which the tumour plateaus in tumour
radius after an initial positive response to treatment, we observe dynamics that are very similar in nature to the
results presented in our previous tumour spheroid model (Lewin et al 2018) whereby the weekend break allows
for sufficient regrowth to overcome the effects of radiotherapy. The multiphase model presented here is also
able to capture a ‘pseudo-progression’ response to radiotherapy. In these cases the tumour appears to continue
tumour growth throughout the initial stages of treatment before a reduction in tumour volume is observed
during the latter stages of the protocol. In our model, this behaviour is attributed to a build-up of dead material
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Figure 10. Tumour radius trajectory (solid blue line) for a simulation of equations (15)—(25) for which the radiotherapy alters
the regrowth trajectory of the tumour. The growth trajectory in the absence of radiotherapy is shown by the dashed blue line.
The solutions have been normalised to the tumour radius at the start of treatment at time t = 50. The parameter values for this
simulation are listed in table 3, case H.

within the tumour, as opposed to an aggressive tumour population which continues to increase despite irradia-
tion. We note that this type of response is not possible to achieve with models which treat the effects of radio-
therapy as an instantaneous volume loss (Prokopiou etal 2015).

We characterised two different types of regrowth behaviour post-radiotherapy that differ from the growth
dynamics presented in Lewin et al (2019). These dynamics were driven by aspects of the underlying tumour
composition, highlighting the potential importance of the spatial distribution of constituents of the tumour
microenvironment on the resulting dynamics. Analysis of the waiting time before the decline in tumour radius
would proceed in a similar manner to that presented in (Breward et al 2002). Rigorous analysis of the tumour
radius trajectory throughout post-treatment dynamics is likely to be tractable but is left as further work. Further
investigation of the bistability is also a possible direction for future work.

The qualitative exploration of parameter space presented in this paper demonstrates the range of dynamic
behaviours exhibited by our multiphase model. However, estimates of typical values for many of the model
parameters are not currently available. A comprehensive exploration of clinically-relevant regions of parameter
space is an important avenue for future work. The field of clinical imaging to measure tumour/normal tissue
physiology (e.g. cell density, hypoxia, proliferation) is rapidly advancing (Sun et al 2018, Salem et al 2019, Rockne
et al 2019). New techniques may soon provide spatiotemporal data with which to parametrise our model and
those of others.

The local structure of the tumour vasculature is known to have a strong influence on in vivo tumour growth
and treatment response (Bertout et al 2008, Hanahan and Weinberg 2000, Carmeliet and Jain 2000). Several
existing models aim to investigate the effects of tumour vasculature on radiotherapy response (Ergun et al 2003,
Ledzewicz and Schittler 2012, Scott et al 2016, Grogan et al 2016). In this paper we neglected explicit mention of
the vasculature and focussed our attention on the influence of the internal tumour composition on the qualita-
tive response to irradiation. While the full model system (equations (1)—(9)) generalises to 3D, we used numer-
ical simulations in a simplified 1D Cartesian geometry to examine the model dynamics. Future work would
include simulating the model dynamics for more complex geometries. In this setting the model could be further
extended to incorporate tumour vasculature (Hubbard and Byrne 2013) to investigate the interplay between
vascular density, cell death and radiotherapy. Similarly, several authors have investigated the dependence of the
oxygen enhancement ratio, OER, on the local oxygen concentration (Carlson et al 2011). Simulations using a
more complex functional relationship did not show significant differences and so here we favour the simplest
form for incorporating the effects of hypoxia on radiotherapy response. Further investigation of these effects in
more complex geometries is an area for further work.

In our model the exterior tumour boundary is defined to be where the tumour cell volume fraction drops
to zero. Thus we make the assumption that is common in models of this type of a sharp interface between the
tumour and its surroundings (Ward and King 1999, Landman and Please 2001, Breward et al 2002, Byrne et al
2003). Some authors have developed models which relax this assumption and allow for a coexistence of tumour
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and healthy cells (Hubbard and Byrne 2013). Such model extensions that explicitly include a normal cell phase
may be useful in further investigations into tumour response dynamics and the impact of radiotherapy on the
surrounding normal tissue.

By performing a parameter sweep on the sub-space describing the material properties of dead cellular mat-
erial we examined the effects of some aspects of inter-patient heterogeneity on radiotherapy response. These
may include differences in the balance of different cell death pathways induced by irradiation of the tumour
cells (Eriksson and Stigbrand 2010), the strength of the immune response due to infiltration of immune cells
and the subsequent clearance of dead material (Kaur and Asea 2012), interpatient heterogeneity in radiation
sensitivity (Eschrich et al 2009), and simply biological variation (Spencer et al 2009). Model simulations suggest
that the influence of the dead material is dependent on the wider region of parameter space. For some parameter
combinations, tumour composition and growth trajectories may be very similar before radiotherapy but treat-
ment response dynamics vary greatly. These results suggest that the material properties of the dead phase are sig-
nificant, and further work would need to identify how early during the treatment we may reasonably determine
tumour composition and tumour properties to reliably predict response in individual patients.
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