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Abstract

Enabling automated pipelines, image analysis and big data methodology in cancer clinics requires
thorough understanding of the data. Automated quality assurance steps could improve the
efficiency and robustness of these methods by verifying possible data biases. In particular, in head
and neck (H&N) computed-tomography (CT) images, dental artifacts (DA) obscure visualization
of structures and the accuracy of Hounsfield units; a challenge for image analysis tasks, including
radiomics, where poor image quality can lead to systemic biases. In this work we analyze the
performance of three-dimensional convolutional neural networks (CNN) trained to classify DA
statuses. 1538 patient images were scored by a single observer as DA positive or negative. Stratified
five-fold cross validation was performed to train and test CNN's using various isotropic resampling
grids (64, 128% and 256°), with CNN depths designed to produce 32, 16, and 8 machine generated
features. These parameters were selected to determine if more computationally efficient CNNs
could be utilized to achieve the same performance. The area under the precision recall curve (PR-
AUC) was used to assess CNN performance. The highest PR-AUC (0.92 £ 0.03) was achieved with
a CNN depth = 5,resampling grid = 256. The CNN performance with 256 resampling grid size
is not significantly better than 64° and 128 after 20 epochs, which had PR-AUC = 0.89 + 0.03
(p-value = 0.28) and 0.91 £ 0.02 (p-value = 0.93) at depths of 3 and 4, respectively. Our
experiments demonstrate the potential to automate specific quality assurance tasks required for
unbiased and robust automated pipeline and image analysis research. Additionally, we determined
that there is an opportunity to simplify CNNs with smaller resampling grids to make the process
more amenable to very large datasets that will be available in the future.

Introduction

Good clinical practice and scientific developments in oncology are enabled by high quality data (Bray and Parkin
2009). Imaging data in particular has potential for large variations in quality, which has led to the development
of standardized site specific imaging guidelines (Olliff er al 2014, Lewis-Jones ef al 2016). The National Cancer
Institute (NCI) has also recognized the importance of data quality, with multiple projects defining quality
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assurance protocols for national and clinical screening trials (Moore et al 2005, Cagnon et al 2006). Traditional
data quality requirements and detection methods are sufficient for most research questions and controlled
clinical trials; however, the number of data quality ‘rules’ increases as we move towards Big Data methodology
and data-driven science in Radiology (Raghupathi and Raghupathi 2014, Kansagra et al 2016). Detecting and
fixing the issues also becomes more challenging, and in some cases may not be feasible or appropriate.

Digitization of patient health information and images provides opportunities for integration of big data
and automation into all aspects of patient care. In particular, the area of automated information generation
through quantitative analysis of medical images for detection and prognostic modeling has seen immense inter-
est in recent years. This field is being referred to as radiomics (Gillies et al 2015, Lambin et al 2017) and leverages
past pattern recognition and computer vision research (Hall et al 1971, Harlow and Eisenbeis 1973) to develop
prognostic and predictive models based on image intensity values. However, radiomic features extracted from
images without an understanding of data quality may incorrectly assign causality to features and signatures,
rendering results unusable (Welch and Jaffray 2017). To safeguard against this, it was suggested by our group in
a previous publication that greater understanding of image quality prior to utilization in radiomic pipelines is
needed (Welch et al 2019). In that work we discovered that the performance of a well cited radiomic signature
did not depend on the image intensity values and only required the patient’s tumour contour. Data quality cura-
tion would safeguard these methods, thereby representing a fundamental step towards reliable and reproducible
results.

A common contributor to poor data quality in head and neck (H&N) computed tomography (CT) images
are dental artifacts (DA). Although clinical metal artifact reduction (MAR) techniques (Diehn et al 2017) and
new deep learning methods for metal artifact suppression (Zhang and Yu 2018, Huang et al 2018, Hu et al 2019)
exist, salvaging incorrect HU data in H&N image can be a challenging task. This is due to new artifacts being
introduced into the image (Block et al 2016),and uncertainty as to whether the new resulting voxel information is
representative of the actual patient phenotype that was masked by the artifact initially. Therefore, most radiomics
studies choose to remove patient image volumes impacted by DAs; a method which was recently proven by Wei
et al to improve prediction performance of a radiomic signature (Wei et al 2019). Alternatively, some researchers
choose to remove image slices from the overall imaging volume that contain visible Das (Ger et al 2018, Elhala-
wani et al 2018); granted, justification would be required to explain the implications of slice removal on shape
and texture features. In both of these cases user intervention is required to decide whether the patient is appropri-
ate for inclusion in the study. This is currently a feasible, yet time consuming task in the recent proof-of-concept
radiomic studies. However, as more retrospective data becomes available, and more sites begin to share their data,
a method of automated patient classification would increase efficiency and reduce subjectivity of these impor-
tant radiomic pipeline steps.

Until now research into DAs has focused on their reduction. However, recent radiomics publications have
shown an interest in their classification, permitting operators to decide whether the patient’s image is appro-
priate for inclusion. In Wei et al (2019) features extracted from regions of interest were capable of classifying
DA+ patients with an AUC of 0.89. Oh et al (2019) developed a method for classification of DA+ slices that
performs with a prediction rate of 97.10% and 74.10% for DA+ and DA— image slices, respectively. Both of
the mentioned classification methodologies required the definition of a region of interest and the extraction of
features, as well as operator interaction. Convolutional neural networks (CNN) (Krizhevsky et al 2012) are an
alternative machine driven method that can provide an automated classification, and have shown promise for
identifying motion artifacts in various magnetic resonance imaging (MRI) types (Kelly et al 2016, Graham et al
2018). Although we are interested in a different data quality issue, these results motivate the usage of similar tech-
niques for the classification of DA artifacts in H&N CT imaging.

An automated process designed to flag images as ‘dental artifact positive’ would increase efficiency and sub-
jectivity of these tedious, but important, tasks. After classification users could then decide if an image should be
removed or included in a specific study based on artifact magnitude or interference of the artifact with a region-
of-interest. This work aims to demonstrate that a CNN can be trained and validated using H&N data to classify
CT images as those with and without DAs, while exploring the impact of CNN depth and image resolution on
prediction performance.

Methods

Dataset and dental artifact classification

Training and testing of the model utilized 1538 H&N planning CTs from the Princess Margaret Cancer Centre.
Image details can be found in table 1. We converted the images from DICOM to nearly raw raster data (nrrd)
to enable processing by the CNN using Python and the SimpleITK library (Yaniv et al 2017). This conversion
removes meta-data related to patient, institution and scanner, but retains meta-data regarding resolution, size,
center and directionality of the image. nrrd format was chosen for this study, but any data format that can be
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Table 1. Dataset details outlining the imaging year range, tube voltage peak, scanner types, and median number of slices, thickness and
resolution for all images.

Scanner Type
Median slice thickness ~ Median slice Median pixel size ~ Imaging Tube voltage GE
and range (mm) num. and range  and range (mm) year range peak (kVp) Toshiba  Philips medical
2 (1-4) 182 (130-330) 0.98 (0.61-2.00) 2010-2019 120 1223 257 58

Figure 1. Three patient images showing examples of DA+ and DA— image slices. (a) Example image slice from CT volume with
prominent artifacts classified as DA+, (b) example image slice from CT volume with less artifact interference classified as DA+,
and (c) example image slice from volume with no artifacts classified as DA—. Window width and level were set to 1346 and —325,
respectively.

loaded asa SimpleI TK object is compatible with this methodology. This process was done automatically for all CT
volumes. A single observer with 8 years of medical imaging experience then scored the DA status of each patient’s
converted CT volume as DA present/positive (DA+, status = 1) or DA absent/negative (DA—, status = 0); the
magnitude of the DA was not considered. For example both (a) and (b) in figure 1 were scored with a status of 1,
despite having different impacts on HU across the entire image.

Data preprocessing

Prior to training or testing of our CNN, image volumes were processed using a multistep procedure: (1) CT
volumes were interpolated to iso-tropic voxel sizes of 1 mm? using the SimpleITK linear resampling image filter
to reduce variability within the images, thereby improving processing by the CNN; (2) 10% of the training CT
volumes were randomly selected for cropping and 60% for flipping. Images selected for cropping were reduced
three quarters of their original size in all directions, while maintaining the image center. This cropping size was
selected to ensure that cropping of the dental artifacts was highly unlikely. Images selected for flipping were
flipped using Python’s NumPy (Oliphant 2006) function ‘flip’ in the ‘left/right” direction to create a mirror
image. This dataaugmentation introduces a form of uncertainty into the training data to improve generalizability
of the model; (3) CT volumes were padded to a uniform size to maintain the aspect ratio of the volume during
resizing that occurs in step 4. Python’s NumPy function ‘pad’ was used. The largest dimension of the 3D image
array (width, height or slice number) was found, and all other dimensions were padded using zeros; (4) CT
image volumes were resized to determine the impact of various resampling grids on CNN performance, and
to generate a uniform volume more conducive with CNN training. Resizing was performed using the open-
source scikit-image library (van der Walt et al 2014), which preserves the image’s HU distribution. For our work,
resampling grids of 256, 128 and 64 voxels were analyzed for performance. Examples of image slices at these
different resampling grids can be found in figure 2.

Model training

For this study we used the open-source python library, PyTorch (Paszke eral 2017), to train our three-dimensional
CNN. A virtual machine from VMware, Inc. with 10 Intel Xeon CPU E5-2690 processors and a NVIDIA Tesla
K40m GPU was used for training and testing.

Stratified five-fold cross validation was used for training and testing. Batches of 14 images randomly selected
from the training data without replacement were fed into the CNN. Batch normalization and rectified linear
unit functioning (ReLU) were present on all convolutional layers and max pooling was used on all convolutional
layers except the final one (figure 3) (Nielsen 2015, LeCun et al 2015); average pooling was used on the outputs
of the final convolutional layer, followed by a fully connected layer and softmax classification. A convolutional
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Resample Grid: Resample Grid: Resample Grid:
256 x 256 x 256 128 x 128 x 128 64 x 64 x 64

Criginal Image

Figure2. Example of image slices at various resampling grids of interest. (a) shows a DA with a large magnitude, (b) shows a DA
with a small magnitude.

Conv_1: Pool, ReLU Conv_n: RelLU Average FC: Softmax
& BatchNorm & BatchNorm  Pooling: Classification:

Figure 3. Example schematic of the DA status CNN. For simplicity, the training is shown here with a 2D image. Batches of 14 images
were input into the network. The output of the convolutional layers underwent BatchNormalization, rectified linear unit (ReLU)
and pooling. The final layer of the CNN only underwent BatchNormalization, ReLU and average pooling. A single fully connected
layer was followed by a softmax classification which returned probabilities that a given image was DA+ or DA—. The ellipses (...)
indicates the additional convolutional layers that are added as a function of the image resolution.

kernel size of 5 with a padding of 2 was used on the first convolutional layer, all subsequent layers used a kernel
size of 3 with a padding of 1. Weighted optimization was used to account for uneven class distribution. CNNs
were trained for the various resampling grids (256°, 128 and 64°) and depths (1,2, 3,4, and 5) of interest. Three
depths were analyzed for each resampling grid size, whereby the final machine generated features fed into the
fully connected layer were of size 32°, 16> and 8, respectively. The kernel used in the final CNN layers was of
size 3, therefore 8% was chosen as the smallest machine generated feature size to ensure adequate sampling of the
convolutional output layers by the kernel. Details of input and output sizes used for the different depths and resa-
mpling grids are found in table 2. Training was performed for 20 epochs based on knowledge regarding model
convergence gained through unpublished studies completed by the authors. Model training for each resampling
grid and depth was repeated five separate times using different splits of the data.

Model evaluation

Models were evaluated every 5 epochs for performance on both training and hold-out test datasets. During
evaluation of a CNN, each image volume from a dataset was fed through the CNN to obtain the model’s softmax
prediction of DA status. The Area Under the Precision Recall curve (PR-AUC) was calculated for the training
and testing datasets across all five-folds. The PR curve summarizes the precision and recall of a given predictive
model. Precision describes the ratio of the number of true positives divided by the sum of true positives and false
positives, while recall describes the ratio of the number of true positives divided by the sum of true positives and
false negatives of a predictive model. PR curves are more sensitive to class imbalances and therefore provide a
better metric for our study which is heavily imbalanced towards DA+ images. The PR-AUC was calculated using
Python’s Sci-kit learn library (Pedregosa etal 2011).
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Table2. Details of the number of convolutional layers, sizes of convolutional layers input (IN) and outputs (OUT), and size of the fully
connected layer are given in this table relative to the resampling grids used. The number of layers used was a function of the resampling grid
size, and the experimental design that stated the size of the fully connected layer would be 8%, 16° and 32°.

Conv_1 Conv_2 Conv_3 Conv_4 Conv_5 Fully connected

Resampling grid Depth IN OUT IN OUT IN OUT IN OUT IN ouT layerfeaturesize
3 1 4 4 8 8 16 N/A N/A NA NA 32}
256 4 1 4 4 8 8 16 16 32 N/A NA 16
5 1 4 4 8 8 16 16 32 32 64 83
2 1 4 4 8 N/A N/A N/A N/A NA NA 32
128 3 1 4 4 8 8 16 N/A N/A N/A N/A 16°
4 1 4 4 8 8 16 16 32 N/A N/A 83
1 1 4 N/A N/A N/A N/A N/A NA NA NA 32°
64 21 4 4 8 N/A N/A N/A NA NA NA 16
3 1 4 4 8 8 16 N/A N/A N/A NA 83

Furthermore, the performance of the CNNs was compared to a more simplistic baseline method. This
method generated regions of interest (ROI) for each image in the dataset by thresholding above 2000 HU, captur-
ing voxels with a density greater than bone. The values were then sorted based upon volume of the resulting ROI
and used as a predictor for the presence of DA to calculate a PR-AUC.

Results

Manual classification of dental artifact status by a single observer resulted in 1092 DA+ and 446
DA— classifications, 71% and 29%, respectively. The simplistic baseline classification using volume of the high
density ROT had a PR-AUC of 0.73.

A resampling grid of 256° with CNN depth of 5 resulted in the highest overall PR-AUC of 0.92 =+ 0.03 calcu-
lated across all five-folds of the test datasets, as shown in table 3 and figure 4(c)). The average precision and recall
for this CNN across the five-folds of test datasets were 0.96 + 0.03 and 0.90 =+ 0.05, respectively.

The highest average PR-AUC values for resampling grids 64° (PR-AUC = 0.89 4 0.03) and 128 (PR-
AUC = 0.91 £ 0.02) occurred after 20 epochs at depths of 3 and 4, respectively (table 3 and figures 4(a) and
(b)). We cannot conclude from these results that a CNN trained and tested with a resampling grid size of 256
performs significantly better than with a resampling grid of 64 (p-value = 0.28) or 128 (p-value = 0.93), indi-
cating that our CNN performance is reasonably consistent regardless of resampling grid size. PR-AUC values for
individual folds of all resampling grids and CNN depths can be found in the supplementary material (stacks.iop.
org/PMB/65/015005/mmedia).

Approximate training time per epoch with a resampling grid size of 256 and depth of 5 is 70 min, 128> and 4
is 40 min, and 64° and 3 is 30 min. Approximate CNN prediction times with a resampling grid sizes of 256> and
depth of 5is4s,128%and 4is 2.2s,and 64’ and 3is 1.5s.

Discussion

Data quality is integral for the future of automated pipelines and processes. Integration of a diverse set of disease
and host factors, including imaging data, is expanding the volume, variety, velocity and veracity of measurement
data. As the big data paradigm approaches clinical cancer management, utilization of efficient quality assurance
methods become of paramount importance. In this work we trained CNNs to predict DA status of H&N patients
from the Princess Margaret Cancer Institute. A CNN with depth 5 trained and validated on images resampled
withagrid of 256° had the highest PR-AUC 0f 0.92 =+ 0.03. PR-AUC values for resampling grids of 64° with depth
3 (PR-AUC = 0.89 =+ 0.03, p-value = 0.28) and 128° with depth 4 (PR-AUC = 0.91 & 0.02 p-value = 0.93)
were not significantly different than our best performing CNN. These models demonstrate the potential to
increase the efficiency of data quality checks in radiation oncology, thereby improving automated pipelines and
processes important to patient prognosis and treatment.

Our CNNss were capable of classifying DA statuses from single institution images effectively, even when uti-
lizing small resampling grid sizes. The ability to use a simplified CNN with smaller resampling grid sizes speeds
up training and predictions, making it more amenable to very large datasets that will be available in the future.
It is also important to note that although training time may be lengthy it often occurs as an offline task. For these
types of models, which are designed for automation of routine tasks, prediction time is most important. For our
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Table 3. Average training and testing PR-AUC values for all resampling grids and CNN depths. Averages and standard deviations (STDEV)
are calculated across the five-folds of model training and testing.

PR-AUC and STDEYV at 20 epochs

Resampling grid Depth Testing Training
3 0.80 + 0.09 0.99 +0.01
256° 4 0.90 + 0.03 0.99 £ 0.01
5 0.92 + 0.03 1.00 £ 0.01
2 0.81 + 0.06 0.99 + 0.02
128° 3 0.88 £ 0.05 0.99 £ 0.01
4 0.91 £ 0.02 0.99 +0.01
1 0.74 + 0.06 0.98 +0.01
643 2 0.84 + 0.04 0.97 £ 0.01
3 0.89 + 0.03 0.97 £ 0.01

CNNs, prediction times with a resampling grid size of 256° and depth of 5is 4, 128 and 4 is 2.2s,and 64° and 3
is 1.5 s; when extrapolated to large datasets, for example 5000 images, this results in predictions times of approxi-
mately 5.6h, 3.1h, and 2.1h, respectively. A user may therefore decide that the increase in speed gained by using
a smaller resampling grid outweighs the non-significant increase in PR-AUC seen at higher resampling grids.
However, it should be noted that these results are for classification of DA status. In more complex tasks, such as
disease prognostication with images, higher resampling grids may be required to retain important disease infor-
mation embedded in the image that could be lost through resampling.

Furthermore, our most simplistic CNN (resampling grid 64> and depth of 1) achieved a PR-AUC
(0.74 £ 0.06) comparable to our baseline high density ROI volume metric (0.73). A check was performed on a
number of images falsely classified by the baseline high density ROI volume metric. It was found that many of the
patient images that were incorrectly flagged as DA+ (false positives) contained other apparatuses in the field of
view (i.e. pacemakers and trachea tubes). There was also a trend for the false negative classifications to occur in
patient images with a smaller magnitude DA.

It was also observed in our results that as the depth of the CNN increased, so did the average PR-AUC. This
was consistent across all epochs and resampling grids. This result indicates that in this classification problem
the depth of the CNN may be more important to performance than resampling size. Additionally, going from
machine generated feature sizes of 32° to 167 generated the greatest gains in PC-AUC, versus going from 16° to
8% this demonstrates that feature values quantifying finer details of the image are needed for this classification
problem.

Despite the promising performance of our CNN, it is not without limitations. One such limitation is the utili-
zation of data from a single institution and classification of a single type of artifact. Although our CNN accurately
predicts DA status on Princess Margaret Cancer Centre patients, and will be useful for future big data projects
within the institution, it may also be biased towards imaging practices from our institution (e.g. couch, imag-
ing apparatuses, slice thicknesses, reconstruction methods, etc). Additionally, we have not evaluated our CNN
for its classification performance on different types of metal artifacts (e.g. pacemakers and joint replacements)
that degrade images in a similar way to DAs. If it is found that our CNN is not generalizable to external dataset or
different metal artifacts there are opportunities to implement transfer learning (LeCun et al 2015, Kensert et al
2019) orincrease data augmentation (e.g. rotation, warping) (Mikolajczyk and Grochowski 2018) as a way to fine
tune the models and/or increase their generalizability and reduce overfitting. We plan to leverage these prelimi-
nary results to motivate increased sharing of data by other groups to make these future studies possible.

Future work may also choose to focus on different neural network topologies, as there are many other ones
that could be selected for this type of image quality classification. These range from completely state of the art
methods such as dense nets (Huang et al 2017) or residual nets (He et al 2016), to different data augmentation
methods (Mikolajczyk and Grochowski 2018) or activation functions (Klambauer et al 2017). However, for this
study we were focused on feasibility and determining whether resampling grid sizes and/or CNN depths would
affect performance. Different topologies may provide improvements in performance, but gains are minimal (He
etal 2016, Huang et al 2017). A thorough investigation of all state of the art methods is beyond the scope of this
manuscript, but would be an interesting avenue to pursue in future work.

The utility of our CNNs can be seen in the promising field of radiomics, which relies on the quantification
of intensity based imaging features in a region of interest (ROI) for prognostic and predictive model develop-
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Figure4. Average PR-AUC values across epoch 5, 10, 15 and 20 with error bars representing STDEV of PR-AUCs across the five-
folds of model training and testing. (a) Resampling grid size of 64 with CNN depths of 1,2 and 3; (b) resampling grid size of 128 with
CNN depths of 2, 3,and 4; and (c) resampling grid size of 256 with CNN depths of 3,4,and 5.

ment. Therefore, incorrect HU and segmentations could lead to misinterpretation of results and suboptimal
model accuracies. Additionally, robust radiomic-based models require large datasets, and an automated method
of quality assurance would reduce subjectivity of quality scoring, while changing a time consuming manual task
to a passive one. Although it is not possible to study the impact DA’s have on patient features due to the inability
to obtain images with and without DAs, groups like Block et al (2016), Leijenaar et al (2016) and Elhalawani et al
(2018) have all stated the importance of considering these artifacts. It is also worth noting that the CNNs we pre-
sentin this paper do not specify whether the DA is present inside or outside a ROIL; however, radiomic features are
designed to probe imaging biomarkers not visible to an observer, and therefore DA streaking may impede feature
quantification even if it does not visibly enter the ROL For this reason, addition of this model to a radiomics pipe-
line would require the user to decide whether the image is appropriate for model training and testing based on the
research question, clinical application and any other pertinent information. Alternatively, it may be possible to
use DA status as a feature in radiomics modeling.

Additionally, automated radiation treatment (RT) planning software is being developed and implemented
clinically that could benefit from methods similar to ours. These automated planning pipelines are designed to
improve efficiency, standardization and quality of treatments for radiation therapy, and have seen commercial
and clinical success in sites such as H&N (Mcintosh et al, Bodensteiner 2018). However, some plans and sites
may be inherently more difficult to plan due to the presence of metal artifacts; this can be seen in the planning
of prostate plans containing hip replacements that require special consideration and plan characteristics such
as increased numbers of treatment beams (Dirkx et al 2013). Therefore, a quality assurance step designed to flag
patients requiring further clinician involvement due to the presence of metal artifacts (e.g. dental artifacts, hip
replacements, stents) would reduce the chance of erroneous treatment planning, while still increasing efficiency
for patients without.
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Commercialized metal artifact reduction software has also been developed by multiple groups (Li et al 2015,
Huang et al 2015). These methods commonly reduce the impact of DAs by interpolating voxel HUs within the
image sinogram (Abdoli et al 2010), but research is also being done to salvage image signal using deep learning
methods (Zhang and Yu 2018, Huang et al 2018, Hu et al 2019). Although these methods are designed to reduce
the qualitative impact of the artifact, it is possible for new artifacts to be generated in the image that mitigate its
benefits in fields such as radiomics (Block et al 2016). In the future, a classification model, such as the one pre-
sented in this paper, could determine whether these methods are effectively removing the DA prior to utilizing
the data for other purposes. This type of test would also be beneficial for companies to perform on their methods
to demonstrate the effectiveness of their techniques.

Furthermore, the utilization of a single observer for scoring of DA status permitted consistency amongst the
classification of DAs since each manual observer has a specific sensitivity and specificity for what is considered
a DA. However, it is possible that misclassifications occurred due to fatigue or inappropriate window leveling,
thereby reducing the reproducibility of the DA status classification. These potential misclassifications would not
only affect validation, but also the training of the model. Multi-observer classification is often preferred to single
observer classification in order to obtain more reliable ground truth labels. Future work may be able to reduce
potential spurious misclassifications and increase classification reproducibility by using multi-observer scoring
with standardized window-leveling and well defined classification rules.

This work demonstrates the potential for efficient image quality assurance methods. Our findings demon-
strate the usage of accepted methods, and data from a single institution for the generation of a DA sorting model
that could be used in automated pipelines and image analysis protocols. These automated methods are capable of
completing routine tasks and freeing up clinician time for more important duties, but only if done correctly. The
current state of machine learning in cancer care still requires standardized, high quality data because there is not
enough openly available data to generate models robust to all potential variants. Therefore, development of qual-
ity assurance protocols and models are essential to the progress of automated methods in clinical cancer care.

Conclusion

Our work demonstrates the potential to automate specific quality assurance steps through model development,
making an important and time consuming task passive. Our best performing CNN classified H&N CT images
from a single institution based on the presence of DAs with an AUC of 0.92 £ 0.03, and the studied CNN
resampling grid sizes were found to impact the AUC non-significantly; indicating that smaller resampling grid
sizes could be used effectively if increased speed is required. Future work will explore the generalizability of our
model to external datasets.
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