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1.  Introduction

In recent years, time-resolved motion estimation from MRI data has received an increasing amount of attention 
due to the advent of the MR-Linac (Raaymakers et al 2009). The combination of an MRI scanner and a linear 
accelerator allows for MR-guided radiotherapy (MRgRT): radiation plan adaptation based on tumor motion 
that is estimated from MRI data. Hence, for MRgRT, it is the motion itself that is of particular interest. Two 
types of motion are usually distinguished: inter and intrafraction motion. Interfraction motion is defined as 
the day-to-day motion of the target volume in between treatments, e.g. due to different patient positioning or 
volume differences in the stomach or bladder. Intrafraction motion is defined as the motion of the target volume 
during the treatment, e.g. due to respiration, cardiac contractions, bowel motion or abrupt patient movement. 
Until now, the MR-Linac has mostly been used to estimate and correct for interfraction motion. For this, a pre-
treatment MRI is made to adjust the previously computed radiation plan to the day-to-day anatomy (Raaymakers 
et al 2017). Correcting for the intrafraction motion, however, is a much more challenging problem as it requires 
to estimate the non-rigid internal body motion during the actual radiotherapy treatment, i.e. in an online setting 
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Abstract
Time-resolved motion estimation from MRI data has received an increasing amount of interest due 
to the advent of the MR-Linac. The combination of an MRI scanner and a linear accelerator enables 
radiation plan adaptation based on internal organ motion estimated from MRI data. However, 
time-resolved estimation of this motion from MRI data still remains a challenge. In light of this 
application, we propose MR-MOTUS, a framework to estimate non-rigid 3D motion from minimal 
k-space data. MR-MOTUS consists of two main components: (1) a signal model that explicitly 
relates the k-space signal of a deforming object to non-rigid motion-fields and a reference image, 
and (2) model-based reconstructions of the non-rigid motion-fields directly from k-space data. 
Using an a priori available reference image and the fact that internal body motion exhibits a high level 
of spatial correlation, we represent the motion-fields in a low-dimensional space and reconstruct 
them from minimal k-space data that can be acquired very rapidly. The signal model is validated 
through numerical experiments with a digital 3D phantom and motion-fields are reconstructed 
from retrospectively undersampled in vivo head and abdomen data using various undersampling 
strategies. A comparison is made with state-of-the-art image registration performed on images 
reconstructed from the same undersampled data. Results show that MR-MOTUS reconstructs in vivo 
3D rigid head motion from 474-fold retrospectively downsampled k-space data, and in vivo non-
rigid 3D respiratory motion from 63-fold retrospectively undersampled k-space data. Preliminary 
results on prospectively undersampled data acquired with a 2D golden angle acquisition during free-
breathing demonstrate the practical feasibility of the method.
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with low latency (∼milliseconds). In this setting, only minimal k-space data will be available for the non-rigid 
motion reconstruction. In light of the MRgRT application, we focus in this work on the problem of estimating 
non-rigid motion from minimal k-space data. Several methods to estimate motion in MRI have been proposed 
that could fit in this online MRgRT setting. These can broadly be subdivided in three categories: image-based 
methods, surrogate signal methods and k-space methods.

Image-based methods estimate motion indirectly from k-space data by first reconstructing and subsequently 
co-registering images. A challenge for this type of methods is to obtain images from minimal data on which 
image registration still yields reasonable motion-fields. In Lee (2018) motion was estimated by co-registering 
corrupted images reconstructed using parallel imaging (Pruessmann et al 1999, Griswold et al 2002) and com-
pressed sensing (Lustig et al 2008). Promising results were presented for rigid motion, but the application to non-
rigid motion may be challenging as the undersampling artifacts can result in unrealistic motion-fields. Several 
methods have been proposed to infer 3D motion from 2D cine-MRI for radiotherapy guidance (Cervino et al 
2011, Bjerre et al 2013, Tryggestad et al 2013, Brix et al 2014, Seregni et al 2016, Stemkens et al 2016). Another 
image-based method is PROMO (White et al 2010), which prospectively and in real-time estimates and corrects 
for rigid motion by utilizing three orthogonal two-dimensional spiral navigator acquisitions and an extended 
Kalman filter framework. In Glitzner et al (2015) 3D motion is estimated from low-resolution 3D images for 
the purpose of MRgRT, and it is reported that 5 × 5 × 5 mm3 spatial image resolution is sufficient for motion 
tracking. Other image-based methods estimate motion and reconstruct motion-compensated images from low 
resolution images obtained using volumetric navigators (vNAVs) (Usman et al 2013, Ingle et al 2014).

A different category of motion estimation methods aims at reconstructing motion-fields directly from sur-
rogate signals such as a time series from a respiratory belt (McClelland et al 2013, 2017) or the time evolution of 
noise covariances of an RF coil-array (Andreychenko et al 2017). An application of these surrogate signal motion 
models is the GRICS framework (Odille et al 2008a, 2008b), in which non-rigid motion-fields are estimated from 
respiratory belt signals and used to recover motion-corrected images. Drawbacks of most surrogate signal meth-
ods are that the surrogate signals can be of poor quality and require additional hardware to be acquired, and that 
the methods can only reconstruct low-dimensional motion that is correlated with the input signals (Odille et al 
2008a, 2008b).

Alternatively, k-space methods have been proposed to estimate motion directly from (highly undersampled) 
k-space data. Among these, several methods rely on the acquisition of a navigator signal for the motion estima-
tion, see e.g. Fu et al (1995), Welch et al (2002), Van der Kouwe et al (2006), Pipe (1999), Stam et al (2012). These 
methods are mainly based on the explicit relation between a linear transformation and k-space data due to prop-
erties of the Fourier transform (Wisetphanichkij and Dejhan 2005) and are therefore limited to affine motion. 
In Prieto et al (2007) non-rigid motion-fields are reconstructed directly from k-space data, but the focus is on 
improving the reconstruction of a dynamic 2D image sequence.

Instead, for applications such as MRgRT, 3D motion-fields by themselves are of particular interest, and 
should be reconstructed from minimal k-space data to allow for online motion characterization. For this pur-
pose, the application of image-based methods can be challenging given their difficulties to cope with minimal 
k-space data. The application of surrogate signal models to MRgRT can be complicated due to the requirement of 
additional hardware that may not be compatible with the MR-Linac setup. K-space methods are therefore most 
promising for this application. However, most previously proposed k-space methods are either limited to rigid 
motion or were designed to improve image reconstruction.

In this work, we introduce and demonstrate a new k-space method to reconstruct non-rigid 3D motion 
directly from minimal k-space data. The method will be referred to as MR-MOTUS, which stands for Model-
based Reconstruction of MOTion from Undersampled Signals. In MR-MOTUS, a signal model explicitly relates 
the k-space signal of a deformed object to a reference image and a non-rigid 3D motion-field. Using an a priori 
available reference image, the motion-field can be reconstructed directly from k-space data by solving the inverse 
problem. The availability of a reference image is guaranteed in the MRgRT setting as pre-treatment MR-images 
are always reconstructed to assess the day-to-day variations in anatomy (Raaymakers et al 2017). Additionally, 
we observe that internal body motion exhibits a high level of spatial correlation; the connectivity and rigidity of 
tissue enforces similar motion locally. A key idea behind MR-MOTUS is to exploit this correlation by using a low-
dimensional motion model to reduce the number of unknowns, such that motion-fields can be reconstructed 
from a snapshot of k-space data that can be acquired in the order of milliseconds.

The rest of this paper is organized as follows. First, the signal model that explicitly relates the snapshot k-space 
data to a motion-field is derived and subsequently validated using a numerical motion phantom. Second, the 
convergence and robustness of the reconstruction algorithm is assessed by comparison with the ground-truth 
motion-fields in several in-silico scenarios. Subsequently, MR-MOTUS is used to reconstruct in vivo 3D rigid 
head motion and in vivo 3D non-rigid respiratory motion from retrospectively highly undersampled k-space 
data using different undersampling strategies. To contextualize these results, MR-MOTUS reconstructions are 
compared with a reference method: state-of-the-art image registration applied to images reconstructed from the 
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same undersampled data. Finally, we demonstrate the potential of MR-MOTUS in practice by reconstructing 
motion-fields from prospectively undersampled snapshot data consisting of 15 spokes, acquired in 60 ms with a 
2D golden angle acquisition during free-breathing.

2.  Theory

2.1.  Ansatz
Before we introduce the signal model, we illustrate the high compressibility of motion-fields. This is done 
by approximating the motion-fields with a gradually decreasing number of basis functions from a natural 
representation basis. Two 3D abdomen scans were acquired during breath-holds in different respiratory phases 
using a spoiled gradient echo sequence with TR/TE = 2.30/1.15 ms, a field of view (FOV) of 0.28 × 0.34 × 0.34 
m and a resolution of 3.0 × 2.7 × 2.7 mm. To obtain a motion-field, the two images were registered using state-
of-the-art optical flow software (Zachiu et al 2015a, 2015b). One of the images and the obtained motion-field are 
shown in figure 1.

Next, a cubic B-spline basis (Rueckert et al 1999) was chosen as the natural representation basis and all  
components of the motion-field were represented separately, i.e. left–right (LR), feet-head (FH) and anterior–
posterior (AP). The maximum normalized root mean square error2 (NRMSE) of approximation over all three 
components (LR, FH, AP) was computed at several compression ratios. Here we have defined the compression 
ratio as the ratio between the number of voxels in the motion-field and the number of basis functions. The 
compression curves for all components are shown in figure 2. Note that the LR component gave the highest rep-
resentation error at all compression ratios. A maximum representation error of only 10% is made for all three 
components with 100 times as few approximation coefficients, which shows that the motion-fields are indeed 
very compressible.

2.2.  Signal model derivation
2.2.1.  Outline of the derivation
Let qt(r) ∈ C denote the transverse magnetization of a deforming object at time t and spatial coordinate 
r = (x, y, z). The k-space signal from qt at coordinate k = (kx, ky, kz) can then be modeled as

st(k) =

∫

Ω

qt(r)e−i2πk·r dr.� (1)

Here Ω denotes the spatially excited FOV. Let Ut : R3 �→ R3 denote the motion-field that deforms q0 to qt:

Ut(r) = r + δt(r),� (2)

with displacement function δt : R3 �→ R3. We assume that qt, can be approximated by warping a reference object 
q0

Figure 1.  Visualization of the data used in section 2.1: (a) three slices of one of the images used for the registration, and (b) three 
in-plane projections of the motion-field obtained with optical flow.

2 In this work the NRMSE e between a vector a and a target vector b is defined as e = ‖a−b‖
‖b‖ .
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qt(r)dr = q0 (Ut(r)) | det(∇Ut)(r)|dr,� (3)

where ∇Ut  denotes the Jacobian of the motion-field Ut. In the next two subsection we show under which 
assumptions this approximation is exact. In the rest of this work we will refer to q0 as the reference image and to st 
as the snapshot signal. An explicit relation between the reference image, motion-fields, and the snapshot signal of 
the deforming object can be obtained by substituting (3) into (1), followed by a change of coordinates:

st(k) =

∫

Ω

q0(r0)e
−i2πk·Tt(r0) dr0.� (4)

Here Tt  is defined as the inverse of Ut, such that

Tt(r) = r + ηt(r), Ut ◦ Tt = Tt ◦ Ut = Id,� (5)

where ηt(r) is the displacement of r due to Tt  and Id denotes the identity operator. It is now evident that if the 
reference image is available then motion-fields can be estimated by inverting (4) with respect to motion-field.

To investigate under which assumptions (3) is valid we first separate the transverse magnetization qt into the 
unit-length transverse magnetization mt : R3 �→ C and spin density ρt : R3 �→ R+ as

qt ≡ mt · ρt .� (6)

Next, we will derive temporal relations for m and ρ  separately and combine them to obtain (3). Finally, we derive 
(4) by a substitution and a change of variables.

2.2.2.  Temporal relation for transverse magnetization
We first derive the temporal relation for the transverse magnetization m. Suppose a steady-state sequence is 
employed to acquire signal from a static object deformed by dynamic motion-fields Ut. We assume a sufficiently 
short read-out time, such that spin displacements and transverse and longitudinal decay effects have a noticeable 
effect only over one or several TR intervals. The transverse magnetization at time t of the spins at location rt  can 
then be written as the transverse magnetization at time 0 of the same spin before deformation by Ut:

mt(rt) = m0 (Ut(rt)) .

(Steady-state condition)
� (7)

Note that for (7) to hold it must be assumed that the B0 and B1 fields are spatially slowly varying, which is a 
reasonable assumption at the targeted clinical field strength of 1.5 T. Formally, (7) is exactly fulfilled under 
a few other technical assumption, and for more mathematical details of the derivation we refer the reader to 
supplementary information (stacks.iop.org/PMB/65/015004/mmedia) section 1.
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Figure 2.  Compression ratios for the three components of the motion-field of respiratory motion in a cubic B-spline basis, as 
described in section 2.1. The curves show that the motion-fields are indeed very compressible: a maximum representation error of 
only 10% is made for all three components with 100 times as little approximation coefficients.
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2.2.3.  Temporal relation for spin density
Next, we derive the equation for the spin density. To be able to describe the complete dynamic image sequence 
of a deforming object in terms of a static reference image and dynamic motion-fields, it must be assumed that 
spins are conserved within the FOV. Under this assumption, the total number of spins during every TR remains 
constant. That is,

∫

R3

ρt(rt) drt = C, t = 0, 1, . . . ,

where C ∈ R is a constant. Hence, the deformations Ut  must satisfy
∫

Ut(X)
ρ0(r0) dr0 =

∫

X
ρt(rt) drt ,� (8)

for all sets X ⊆ R3. We assume all Ut  are continuously differentiable everywhere and invertible, with inverse Tt  as 
defined in (5). We can then rewrite the left-hand side of (8) using the change of variables r0 �→ Ut(rt):

∫

Ut(X)
ρ0(r0) dr0 =

∫

X
ρ0 (Ut(rt)) | det(∇Ut)(rt)| drt .� (9)

Combining (8) and (9) then yields
∫

X
ρt(rt) drt =

∫

X
ρ0 (Ut(rt)) | det(∇Ut)(rt)| drt ,� (10)

for all sets X ⊆ R3. We conclude that the following must hold for all t = 0, 1, . . .

ρt(rt)drt = ρ0 (Ut(rt)) | det(∇Ut)(rt)|drt .

(Local spin conservation)
� (11)

2.2.4.  Derivation of the signal model
Combining (7) and (11) yields the previously described temporal relation (3) between the reference object, 
deforming object and motion-fields:

qt(r)dr = q0 (Ut(r)) | det(∇Ut)(r)|dr.� (12)

Substituting (12) into the signal model (1) then yields

st(k) =

∫

Ω

q0 (Ut(rt)) e−i2πk·rt | det(∇Ut)(rt)| drt .

By the inverse function theorem the determinant of the inverse is the inverse of the determinant, hence after the 
change of variables rt �→ Tt(r0) we obtain

st(k) =

∫

Ut(Ω)

q0(r0)e
−i2πk·Tt(r0) dr0.� (13)

Note that here we have used the inverse property of Tt , i.e. Ut ◦ Tt = Id. The domain of integration in (13) 
depends on the (unknown) motion-field Ut, which is inconvenient in practice. If it is assumed that no signal-
contributing spins flow across the boundary of the FOV during deformation, then the integration domain can be 
changed to Ω to obtain the final signal model:

st(k) =

∫

Ω

q0(r0)e
−i2πk·Tt(r0) dr0.� (14)

For a more formal derivation of the statements above we refer the reader to the supplementary information 
section 1.

2.3.  Inverse problem formulation
Note that (14) explicitly relates the k-space signal to a reference object through non-rigid/non-linear motion-
fields Tt . If a reference image q0 and snapshot data st  are available, then motion can be estimated by solving the 
inverse problem corresponding to (14). In order to exploit the compressibility of motion-fields, we represent 
them in a lower-dimensional basis using coefficients θt ∈ RNc . We typically have Nc � 3N , where N is the 
number of voxels per motion-field. Equation (14) can then be rewritten in operator form as

st = F(θt |q0),� (15)

Phys. Med. Biol. 65 (2020) 015004 (19pp)
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where F(θt |q0) is the vectorization over k-space coordinates of

F(θt |q0)[k] =

∫

Ω

q0(r0)e
−i2πk·Tt(r0|θt) dr0,

and st  is the vectorized k-space signal of the deforming object at time t. In the rest of this work we drop the 
dependency of F on q0 for ease of notation, and because it is assumed to be known. Note that this forward model 
can be evaluated efficiently as a type-3 non-uniform fast Fourier transform (NUFFT) (Lee and Greengard 2005, 
Barnett et al 2018). To reconstruct motion-fields the following minimization problem is solved:

min
θt

‖F(θt)− st‖2
2 + λR(Tt(·|θt)),� (16)

where R is a regularizer that models a priori knowledge on motion-fields, and λ ∈ R+ is the corresponding 
regularization coefficient that balances the objective function between a data-fit and being consistent with the a 
priori assumptions.

2.4.  MR-MOTUS: model-based reconstruction of motion-fields from undersampled signals
2.4.1.  Regularization functional
A natural choice for R in this setting, which was originally proposed in Fischer and Modersitzki (2003), is to 
assume smooth motion-fields by penalizing the spatial curvature of the motion-fields:

R(Tt(·|θt)) :=
∑

p∈{x,y,z}

∫

Ω

|∆T p
t (r|θ p

t )|2 dr.� (17)

Here ∆ denotes the Laplace operator, and Tx
t , Ty

t , Tz
t : R3 �→ R denote the individual components of the 

motion-field Tt . With this prior we obtain the following minimization problem to reconstruct the motion model 
parameters θt = {θx

t ,θy
t ,θz

t}:

min
θt

‖F(θt)− st‖2
2 + λ

∑
p∈{x,y,z}

∫

Ω

|∆T p
t (r|θ p

t )|2 dr.� (18)

2.4.2.  Motion models
In this work two motion models are considered: 3D affine transformations and free-form deformations (FFD) 
parameterized using cubic B-splines (Rueckert et al 1999). The 3D affine transformation is defined as

Taff(r|A, v) = Ar + v,� (19)

where A ∈ R3×3 is the affine matrix and v ∈ R3×1 is the shift vector. This results in 3 × 3 + 3 = 12 parameters. 
The free-form deformation is defined as

TFFD(r|cx, cy, cz) = r +




bx(r)cx

by(r)cy

bz(r)cz


 ,� (20)

where b p(r) ∈ R1×N p
c  are the row-vectors with N p

c  3D B-spline basis functions, evaluated at the coordinate 
r, and c p ∈ RN p

c ×1 denote expansion coefficients. The 3D basis functions are constructed as a Kronecker 
product of three 1D bases with a spline order (i.e. the number of basis functions) of S each. If we use the same 
basis for all three components of the motion-field, then the total number of coefficients for the spline model 

is Nc =
∑

p N p
c = 3S3. In practice this usually implies Nc ≈ O(104) for a 100 × 100 × 100 motion-field. In 

contrast, reconstruction of a 100 × 100 × 100 image has a total number of unknowns in O(106), which is two 
orders of magnitude higher than the spline model.

2.4.3.  Optimization
Solving the optimization problem in (18) is challenging as it is both non-convex and non-linear. Nevertheless, 
various algorithms exist to tackle problems of this type. Most of these are based on Newton’s method, where 
iterations of the form

θ( j+1) = θ( j) −
[

HF
(
θ( j)

)]−1
∇F

(
θ( j)

)
, j � 0,� (21)

are performed. Here H denotes the Hessian, ∇ denotes the gradient, and the superscript ( j) denotes the 
iteration index. In this work the interior-point method was combined with an L-BFGS (Liu and Nocedal 1989) 
Hessian approximation. The whole reconstruction pipeline was implemented in MATLAB 2015. Details on the 
gradients of the cost-function and other aspects of the optimization can be found in supplementary information 
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section 2. Several stopping criteria were tested, but fixing the number of iterations to 30 provided the most 
robust reconstructions in all experiments. The regularization parameter λ was optimized by grid-search for all 
experiments.

2.4.4.  Inversion of the reconstructed motion-fields
Once the optimization algorithm has converged, the representation coefficients of the motion-fields T(r) are 
available. These are, however, the inverse motion-fields of U(r) (see (5)) which warp the reference image q0 to the 
dynamic object through (12). Following (Chen et al 2008), the inverse property of T can be rewritten as a relation 
between the displacements:

r = T(U(r))

= U(r) + η(U(r))

= r + δ(r) + η(r + δ(r))

⇒ δ(r) = −η(r + δ(r)).

We follow (Chen et al 2008) again and perform fixed-point iterations to compute δ :

δ(0)(r) = 0,� (22)

δ( j)(r) = −η
(

r + δ( j−1)(r)
)

, j ∈ N.� (23)

Here the superscript ( j) denotes the fixed-point iteration index. Note that one iteration results in the naive 
inversion δ(r) = −η(r), which will only be reasonable for very small deformations. The required interpolation 
that is performed is based on cubic splines, as provided by the interp3 function of MATLAB 2015. The fixed-
point iterations (22) and (23) were terminated whenever the relative changes between two consecutive iterations, 
summed over all motion-fields (x, y, z), was lower than 0.1. This resulted in about 5–10 iterations in practice.

3.  Methods

3.1.  Signal model validation
A numerical phantom with known ground-truth forward and inverse motion-fields was used to validate the 
proposed signal model (14). The phantom consists of a main spherical compartment, filled with three smaller 

disjoint elliptical compartments. The forward (Uph
t ) and inverse (Tph

t ) analytical motion-fields were designed 
such that Uph

t ◦ Tph
t = Tph

t ◦ Uph
t = Id. The ground-truth motion-fields were modeled as quadratic functions 

for the x and z directions, and linear for the y  direction. A visualization of the phantom and a complete analytic 
description of the phantom and the motion-fields can be found in supplementary information section 3.

The phantom was discretized on a 120 × 120 × 120 grid and the spatial FOV was set to 36 × 36 × 36 cm3. 
This resulted in a spatial resolution of 3.3 × 3.3 × 3.3 mm3.

To validate the signal model, the phantom is defined as the reference image qph
0  and it is deformed to qph

1  by 
applying the ground-truth motion-field Uph

1  using (12). The signal from the deformed phantom was computed 

from (1) and compared with the signal obtained from the forward model (14) using the ground-truth motion-

fields Tph
1  and the phantom before deformation. As the k-space trajectory we have chosen the first 80 read-out 

samples from a single cone interleave taken from a 3D golden mean cone trajectory (Johnson 2017) (see figure 4 
for a visualization). This trajectory will in practice be relatively insensitive to intra-acquisition motion (Block 
et al 2014) and is therefore a good candidate to acquire the snapshot data. For this reason, this trajectory will also 

be used later on to simulate snapshot data.

3.2.  Analysis of spin flow assumption
To derive the final signal model (14) it is assumed that signal-contributing spins do not cross the boundary of 
the FOV during deformation. To analyze the impact of this assumption in a non-conservative spin system, we 
performed two motion reconstruction experiments on the analytical phantom for which ground-truth motion-
fields are available (see section 3.1 and supplementary information section 3). The first experiment considered 
the scenario of approximately 15% spin out-flow, and the second considered 15% spin in-flow. Spin out-flow 
was realized by cropping the FOV such that the reference image is completely contained in the FOV but part 
of the phantom has left the FOV between reference and snapshot acquisition. The directions were reversed to 
realize spin in-flow. Motion-fields were modeled with a cubic B-spline model (20) with a spline order of 3 in all 
directions. The k-space data used for the reconstruction was computed on the Cartesian phantom grid and no 
undersampling was performed.

Phys. Med. Biol. 65 (2020) 015004 (19pp)
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3.3.  Motion estimation on retrospectively undersampled data
We have performed motion estimation experiments that build up in complexity of the reconstructions. We 
start in this section with in-silico motion estimation and then proceed to in vivo rigid and non-rigid motion 
estimation from retrospectively undersampled data. Finally, we perform in the next section in vivo non-rigid 
motion estimation from prospectively undersampled data acquired during free-breathing. The details of the 
experiments on the retrospectively undersampled data are discussed below.

3.3.1.  In-silico motion estimation
In order to validate the proposed MR-MOTUS framework, motion-fields were reconstructed with snapshot data 
generated from the deforming analytical phantom as described in section 3.1 and compared with the analytic 

ground-truth motion-fields Tph
t . The maximum displacement in this case was 15 mm. In a practical setting, 

snapshot data required for motion estimation will be acquired as fast as possible using efficient non-Cartesian 
read-outs such as cones or spirals. To mimic this acquisition, a 3D golden mean cone trajectory (see figure 4 for a 
visualization) was projected on the Cartesian grid with a nearest neighbour interpolation, resulting in a pseudo-
cone trajectory. The snapshot data was simulated on the Cartesian points. The cubic B-spline motion model (20) 
was employed with a spline order of 3 in all directions. Different undersampling factors were realized by varying 
the number of cones and the maximum k-space coordinate. The sensitivity to noise was assessed by comparing 
the reconstructions with noiseless data to reconstructions with noisy data. In the latter case, complex Gaussian 
noise was added to obtain a signal to noise ratio (SNR) of approximately 80.

3.3.2.  In vivo motion estimation
Additionally, motion-fields were reconstructed from in vivo head (rigid) and in vivo abdomen data (non-rigid). 
In contrast with the in-silico setting, no ground-truth motion-fields are available. In order to assess the quality 
of the reconstructed motion-fields in this in vivo setting, reconstructions were performed on retrospectively 
undersampled snapshot data generated from fully-sampled reconstructions and the fully-sampled images 
were compared with the reference image warped using the reconstructed motion-fields. More specifically, we 
employed the following pipeline for these reconstructions:

	1.	�Reconstruct the motion-fields Tt ; 
	2.	�Invert the motion-fields using fixed-point iterations (22) and (23) to obtain Ut; 
	3.	�Warp the fully-sampled reference image q0 using (12) with the inverted motion-fields; 
	4.	�Calculate the NRMSE between the fully-sampled warped reference image and the fully-sampled ground-

truth image qt.

See figure 3 for an overview of this workflow. The 3D affine motion model (19) was employed for the rigid head 
motion estimation, and the cubic B-spline motion model (20) with spline order 16 in all directions was employed 
for the non-rigid abdomen motion estimation. The regularization parameter was optimized in all experiments 
with a grid-search. The fixed-point iterations (22) and (23) were terminated whenever the relative changes 
between two consecutive iterations, summed over all motion-fields (x, y, z), was lower than 0.1. This resulted in 
about 5–10 iterations in practice. The warping of the reference image was performed using an interpolation based 
on a cubic kernel, as provided in MATLAB’s interp3 function. The NRMSE was computed on the complex 
images since both the warped reference image and the fully-sampled reconstruction are complex-valued.

To obtain the fully-sampled reconstructions, a healthy volunteer was scanned with a 3D spoiled gradient echo 
(SPGRE) sequence preceded by 200 dummy pulses to reach the required steady-state transverse magnetization. 
The volunteer was instructed to hold still during the scans to reduce effects of motion on the validation dataset. 
The volunteer gave written informed consent, all experiments were approved by the institutional review board 
of the University Medical Center Utrecht, and carried out in accordance with the relevant guidelines and regula-
tions. Both the head and abdomen data were acquired with a 16-channel anterior coil that was elevated above the 
volunteer using a plastic bridge. The multi-channel data was reconstructed to a single-channel image using the 

coil sensitivities. Sequence parameters and other details of both in vivo experiments can be found in table 1.

3.3.3.  Quality assessment on the in vivo reconstructions

Robustness of reconstruction
To assess the robustness of the reconstruction, multiple motion-field reconstructions were performed using 
the same reference image but different snapshot data acquired at different motion states. A total of seven 
independent reconstructions were performed for the head data, and four independent reconstructions for the 
abdomen data. The volunteer was instructed to hold still during the scans to reduce the effects of motion on the 
validation dataset, and move to the next motion state in between the scans. One fully-sampled reconstruction 
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was used as reference image, and the snapshot k-space were retrospectively downsampled from different fully-
sampled images using the 3D Cartesian approach described above with different undersampling factors. All 
reconstructions for the different motion states were performed independently, i.e. no correlation in time was 
exploited. The corresponding warped reference images were stacked into a dynamic image sequence to assess the 
robustness and quality of the reconstructions.

Comparison of reconstructed motion-fields with a reference method
We contextualize the MR-MOTUS motion reconstructions by comparison with a reference method. For 
this reference method, images were reconstructed from the undersampled snapshot data and registered with 
optical flow image registration software (Zachiu et al 2015a, 2015b). We refer to Zachiu et al 2015a, 2015b for 
more details on the optical flow method. To obtain the images, zero-filling reconstructions were performed 
on the 3D Cartesian downsampled data, and compressed sensing reconstruction were performed for all other 
undersampling patterns (see section 3.3.4) using the BART toolbox (Uecker et al 2019). L1-wavelet regularization 
was applied in the BART toolbox, and the regularization parameter was optimized with respect to the final image 
NRMSE. We will refer to this reference method as image reconstruction  +  optical flow, i.e. IR +OF. Besides the 
snapshot images, the reference image was also downsampled and reconstructed in the same way as the snapshot 

Figure 3.  An overview of the motion estimation pipeline described in section 3.3.2. One of two fully-sampled images, each 
acquired at a different motion state (e.g. different position in the respiratory cycle), is transformed to k-space and retrospectively 
undersampled to simulate the snapshot k-space data. The other is used as reference image. The reference image and the snapshot 
k-space data are input into the MR-MOTUS reconstruction which returns motion-field coefficients that are in turn transformed 
into a motion-field Tt . This motion-field is inverted to Ut , which is then used to warp the reference image. Finally, the complex image 
NRMSE is computed between the warped reference image and the fully-sampled qt to assess the quality of the reconstructed motion-
fields.

Table 1.  Details of the in vivo experiments as described in section 3.3.2.

Retrospective in vivo Prospective in vivo

Parameter Head Abdomen Abdomen

FOV (m) 0.25 × 0.25 × 0.13 0.28 × 0.34 × 0.34 0.48 × 0.48 × 0.010

Acquisition size 144 × 144 × 74 94 × 128 × 128 160 × 160 × 1

Spatial resolution (mm) 1.74 × 1.74 × 1.81 3.00 × 2.70 × 2.70 3.00 × 3.00 × 10.00

Repetition time (ms) 8.00 2.30 4.00

Echo time (ms) 3.00 1.20 1.85

Flip angle (°) 16 20 20

Trajectory Cartesian Cartesian Radial

Dummy pulses 200 200 200

Pulse sequence 3D SPGRE 3D SPGRE 2D golden angle

Scanner Philips Ingenia 1.5 T Philips Ingenia 1.5 T Philips Ingenia 1.5 T

Motion model Affine Cubic B-Splines Cubic B-Splines
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images for the image registration. The same pipeline as described above was employed for both MR-MOTUS 
and IR +OF to compute the final image NRMSE. Although the reference image was downsampled for image 
registration, the fully-sampled reference image was used to compute final image NRMSE. It has to be noted that 
additional errors could arise from the interpolation that is required for the warping, but since we use the same 
pipeline for IR +OF and MR-MOTUS these errors will be similar and not favor one method over the other.

3.3.4.  Retrospective undersampling trajectories
For the head motion reconstruction we have considered 3D Cartesian downsampling as a first test scenario. 
Since respiratory motion estimation is of particular interest for MRgRT, three different types of undersampling 
were considered for the respiratory motion snapshot data: 3D Cartesian, 3D random variable density, 3D golden 
mean cones (Johnson 2017) (see figure 4 for a visualization).

For 3D Cartesian downsampling the k-space was symmetrically truncated in all directions to realize the 
downsampling. The same downsampling factor was applied along each dimension, e.g. for downsampling of 64x 
in 3D, every direction is downsampled by a factor of 4 by symmetric truncation. This effectively reduces the spa-
tial resolution of the data. Different downsampling factors were realized by varying the size of the k-space trunca-
tion window. Note that downsampling was also performed in the read-out direction, please see section 3.3.5 for 
the motivation.

A 3D variable density undersampling scheme was included to facilitate an undersampling that is ideal for 
compressed sensing (Chauffert et al 2013). The power in the density decay was optimized w.r.t. the final NRMSE 
in the IR +OF approach, resulting in a probability density of

P(kx, ky, kz) =
(

1 −
√

k2
x + k2

y + k2
z

)2

.

The density was scaled w.r.t. the kmax values of the original fully sampled k-space. Different undersampling factors 
were realized by reducing the number of samples.

We have also considered a 3D golden mean cone trajectory (Johnson 2017) that can efficiently acquire vari-
able density undersampled data by sampling non-Cartesian cone read-outs. Additionally, this trajectory is most 
interesting in practice, since it is relatively insensitive to intra-acquisition motion (Block et al 2014). The number 
of samples on a cone read-out was fixed to 1000 and the different undersampling factors were realized by vary-
ing the number of cones and the maximum k-space coordinate. Since only Cartesian data was available, we have 
projected the non-Cartesian trajectory onto the fully-sampled Cartesian grid with a nearest neighbour interpo-
lation. Overlapping points after the projection were only used once.

3.3.5.  Computation of the undersampling factor
In order to compare different undersampling strategies and validate the reconstructions on fully-sampled 
images, the undersampled snapshot k-space data used for the reconstructions described in this section was 
retrospectively generated from fully-sampled Cartesian acquisitions. To compare the potential performance 
of the undersampling strategies in practice two aspects should be considered: the quality of the reconstructed 
motion-fields and the acquisition efficiency. The reconstruction quality is reported with the image NRMSE 
between the reference image warped with the reconstructed motion-field and the ground-truth image. In 
practice the snapshot data will be acquired as fast as possible to minimize the latency of the motion estimation. 
We therefore envision this framework with fast and dedicated non-Cartesian acquisitions, where reducing the 
acquired data in any direction could directly reduce the acquisition time. To reflect the differences in acquisition 
efficiency of the different undersampling strategies, the undersampling factor reported in this work is chosen 
as the total undersampling factor of the data, including the read-out direction. The undersampling factor thus 
relates to the amount of data used for the reconstructions and it is calculated as the number of k-space points on 

Figure 4.  Visualization of the undersampling trajectories with undersampling factor 63 for the three strategies discussed in 
section 3.3.4 and reported in table 4.
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the undersampled Cartesian grid divided by the number of samples on the fully-sampled Cartesian grid. This 
definition of the undersampling factor allows for the fairest comparison of the performance of the proposed 
method on the different undersampling strategies considered in this work. Note that acceleration factor is 
different than undersampling factor for Cartesian acquisitions, since the read-out undersampling does not lead 
to accelerated acquisitions. However, for the envisioned non-Cartesian acquisition, the undersampling is more 
closely related to the acceleration.

3.4.  Motion estimation on prospectively undersampled in vivo data
To demonstrate the practical feasibility of MR-MOTUS, respiratory motion-fields were additionally 
reconstructed from prospectively undersampled data acquired during free-breathing. Data was continuously 
acquired from a volunteer using a 2D golden angle radial acquisition with a total scan time of 15.84 s. Sequence 
parameters and other details can be found in table 1. The volunteer gave written informed consent, all experiments 
were approved by the institutional review board of the University Medical Center Utrecht, and carried out in 
accordance with the relevant guidelines and regulations. Only the body coil was used to obtain single-channel 
data with nearly homogeneous sensitivities. The scan consisted of two phases: it started with a breath-hold phase 
of 3.17 s and ended with a free-breathing phase of 12.67 s. In the breath-hold phase 792 spokes were acquired 
and these were used to reconstruct a reference image by NUFFT. From the free-breathing phase, 15 consecutive 
spokes were selected after 8.67 s of free-breathing and these were used as snapshot data. The cubic B-spline model 
(20) with order 40 in every direction was employed, and motion-fields were reconstructed from the reference 
image and snapshot data by solving (18) and subsequently applying (22) and (23). The number of reconstruction 
iterations was fixed to 30 and the total reconstruction time was about 6 s. Similar to the other reconstructions 
presented in this work, we have employed the curvature regularization (17). The effect of this regularization was 
analyzed by comparing reconstructions with different degrees of regularization. The best parameter was selected 
by visual inspection of the reconstructed motion-fields.

Finally, the quality of the reconstruction was assessed by warping the reference image with the reconstructed 
motion-field and comparing the result with the ground-truth image at the snapshot acquisition time. This 
ground-truth image was obtained from a 2D  +  t compressed sensing reconstruction using the data acquired 
in the free-breathing phase. Every 31 consecutive spokes were binned as a dynamic (without overlap), which 
resulted in a temporal resolution of 124 ms/frame. The image reconstruction was performed with the BART 
toolbox (Uecker et al 2019) using spatial L1-wavelet and temporal total variation regularization. The data was 
organized such that the central spoke of the data for one of the dynamics coincides with the central spoke of the 
snapshot data used for motion reconstruction. This dynamic was finally selected for the comparison with the 
warped reference image.

4.  Results

4.1.  Signal model validation
The results of the validation are shown in figure  5. Note that the model’s prediction of the signal after 
deformation is indistinguishable from the true signal after deformation. The minor deviations are likely caused 
by discretization of the continuous analytical phantom and motion-fields.

4.2.  Analysis of spin flow assumption
To analyze the effect of the violation of the spin flow assumption described earlier we have reconstructed 
motion-fields in case this assumption is not satisfied. In figure 6 the motion-fields reconstructed in this case are 
qualitatively compared with the ground-truth motion-fields. It can be observed that the reconstructions in the 
spin out-flow scenario are slightly underestimated by MR-MOTUS, most notably at the boundaries of the FOV. 
In the spin in-flow scenario there seems little effect on the motion-field overall. Quantitative motion-field error 
maps for these experiments are presented in the supplementary information, figures 3–8. It should be noted that 
the scenarios considered in this experiment, where 15% of the total spins flows across the boundary, are extreme 
and will likely not occur in practice. Nevertheless, the quality of the reconstructed motion-fields is minimally 
affected. The spin flow assumption is therefore not too restrictive and can be relaxed in realistic scenarios where 
spins may flow across the boundary.

4.3.  Motion estimation on retrospectively undersampled data
4.3.1.  In-silico motion estimation
The results on in-silico motion reconstruction are presented in table 2. The RMSE is computed for motion-
fields in each direction and the NRMSE is computed between the warped reference image and the ground-
truth deformed phantom. The reconstructions show that the RMSE for the highest undersampling factors is 
only slightly larger than the voxel size of 3 mm3. It can also be observed that the reconstruction are very robust 
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Figure 5.  Results of the signal model validation in sections 3.1 and 4.3. Plots of the magnitude (left) and phase (right) of the signal 
before deformation (blue), true signal after deformation (yellow), the signal calculated with the proposed signal model (14) (red), 
and the difference between the model’s signal and true signal (purple). Note that the difference between the model’s signal and the 
ground-truth signal is about two orders of magnitude lower than the signal. The small deviations between the model and ground-
truth are likely caused by discretization errors.

Figure 6.  Motion-field reconstructions in case the spin flow assumption is violated, as described in sections 3.2 and 4.2. Two cases 
are considered: 15% spin out-flow (top) and 15% spin in-flow (bottom).
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against noise; there is hardly any increase in RMSE and image NRMSE, and for the highest undersampling 
factor there is even a decrease in image NRMSE. The latter observation shows the ill-posedness of the motion 
estimation problem: the image error or objective function residual may decrease while deviating more from 
the ground-truth motion-fields. For the reconstructions we have applied curvature regularization as described 
in section 2.4.1 which penalizes second order spatial derivatives. The ground-truth motion-fields in x and z 
directions are of quadratic nature, so we expect that results may be improved by penalizing higher order spatial 
derivatives instead. This is also justified by the lower errors in the y  directions, for which the ground-truth 

motion-field is of linear nature.

4.3.2.  In vivo motion estimation

In vivo head motion estimation
As a first in vivo test we applied MR-MOTUS to estimate rigid head motion. A total of seven independent motion-
field reconstructions were performed using the same reference image but different snapshot data retrospectively 
downsampled from fully-sampled reconstructions at the different head positions. The reconstruction time for 
each reconstruction was about 5 min. In table 3 the image NRMSE between the warped reference images and 
the ground-truth fully-sampled reconstructions are reported for one of the reconstructions. The results are 

compared with IR +OF to place them into context.
Additionally, robustness and quality of reconstruction was qualitatively assessed by stacking the warped ref-

erence images into a dynamic sequence and comparing this with the ground-truth fully-sampled reconstruc-
tions. Note that this dynamic sequence constitutes images obtained with independent reconstructions from 
independent snapshot data, and are not simultaneously reconstructed. The results of this qualitative comparison 
are shown in AnimatedFigures 1–33.

The quantitative results in table 3 show that MR-MOTUS with 3D Cartesian downsampling with factors 
of up to 474 performs similarly to optical flow image registration applied to fully-sampled images. It can also 
be observed that the NRMSE increase due to downsampling is worse for IR +OF than for MR-MOTUS. These 
results reflect the compressibility of affine motion, which requires only 12 parameters in 3D, that is exploited by 
MR-MOTUS to reconstruct the motion from minimal k-space points. Interestingly, IR +OF outperforms MR-
MOTUS for 8-fold downsampling.

The quantitative results in AnimatedFigures 1–3 show that the reconstruction using the same reference 
image is robust to reconstruct motion between the reference head position and all other head positions. For high 
downsampling factors of 2551 (AnimatedFigure 3) the reconstructed motion-fields show a shearing, which is 
unrealistic for this rigid head motion. We expect that results may be improved for higher undersampling factors 
by adding additional rigidity regularization.

Table 2.  Convergence analysis with analytic motion-fields as discussed in sections 3.3.1 and 4.3.1. The reported numbers are the RMSE 
between the reconstructed motion-fields and ground-truth motion-fields. The phantom resolution is 3 mm3 and the maximum ground-
truth displacement is 15 mm.

No noise Gaussian noise, SNR ≈ 80

Undersampling factor 1 10 82 558 1 10 82 558

RMSE in x (mm) 1.32 2.65 3.24 3.53 1.34 2.66 3.25 3.54

RMSE in y (mm) 0.75 1.38 1.72 1.84 0.74 1.45 1.74 2.00

RMSE in z (mm) 1.80 2.80 3.21 3.36 1.78 2.77 3.22 3.57

NRMSE images (%) 10.47 12.43 15.02 17.55 10.52 12.66 15.05 17.47

Table 3.  Results of the 3D rigid head motion estimation as discussed in sections 3.3.2 and 4.3.2. The reported numbers are the normalized 
root mean square complex image errors (in percentage) between ground-truth images and reference images warped with motion-fields 
reconstructed from the retrospectively downsampled data. The downsampling factors 1, 8, 66, 474 and 2551 correspond to 1534 464, 
186 624, 3240 and 600 k-space points respectively.

3D Cartesian downsampling

Downsampling factor 1 8 66 474 2551

MR-MOTUS 27.33 28.14 28.42 29.28 31.15

IR +OF 28.39 27.38 29.92 37.41 45.20

3 The AnimatedFigures can be found online. See section 4.3.3 for a description of all the animated figures.

Phys. Med. Biol. 65 (2020) 015004 (19pp)



14

N R F Huttinga et al

In vivo respiratory motion estimation
As a second in vivo test we applied MR-MOTUS to estimate respiratory motion. A total of four k-spaces were 
acquired at different states in the respiratory cycle. The subject was instructed to move to a different respiratory state 
in between the acquisitions, and to hold the breath during actual acquisition. Four independent reconstructions 
were performed on the retrospectively undersampled data, and the fully-sampled reconstructions were used for 
validation. The reconstruction time for each reconstruction was about 5 min. The reference image was kept fixed 
but different snapshot data from the different motion states was used for every reconstruction.

Robustness and quality of the reconstructions was assessed by stacking the warped reference images into 
a dynamic sequence. Note that this dynamic sequence constitutes images obtained with independent recon-
structions. The dynamic sequence is compared with the fully-sampled ground-truth reconstructions in the Ani-
matedFigures 4 and 54. Moreover, the reconstructions for several undersampling factors and undersampling 
strategies are quantitatively compared with IR +OF in table 4. Additionally, a visual comparison between MR-
MOTUS and IR +OF reconstructions is provided in figure 7 for 3D variable density undersampling with an 
undersampling factor of 63.

Results in table 4 show that in this experiment MR-MOTUS and IR +OF perform similar for undersam-
pling factors 1 and 8, and MR-MOTUS outperforms IR +OF for undersampling factors larger than 8. For higher 
undersampling factors MR-MOTUS benefits from the compressibility of the motion-fields and the a priori 
information that is available in the form of the reference image. What can also be observed is that MR-MOTUS 
and IR +OF perform very similar for the 3D Cartesian downsampling, which effectively lowers the resolution 
of the images. In this case the image reconstruction still yields reasonable images such that motion estimation 
is feasible. MR-MOTUS performs best with the 3D variable density undersampling with undersampling factors 
63 and 501, and best with the 3D Cartesian downsampling with undersampling factor 8. The 3D golden mean 
cone trajectory can be used to efficiently sample the 3D variable density points in practice, and shows analogous 
results.

Figure 7 shows a comparison between warped reference images obtained with MR-MOTUS and IR +OF 
versus the ground-truth. The quality of the IR +OF result for this experiment is low, while the MR-MOTUS 
result shows better overlap with the ground-truth. The reconstructions with the high undersampling factors may 
be improved by using different regularization or by using a different undersampling pattern that contains more 
information about the motion for high undersampling factors.

4.3.3.  Description of the animated figures
The animated figures are part of the main body of this work and can be found online.

AnimatedFigure1.gif
Affine motion reconstruction from retrospectively downsampled in vivo head data using MR-MOTUS, 
compared with the ground-truth image reconstructions. The 3D Cartesian technique was employed for the 
downsampling. A downsampling factor of 2.0 was applied in AP and LR direction and 2.1 in FH. This resulted in 
a total number of 186 624 k-space points per snapshot and total downsampling factor of about 8.2.

AnimatedFigure2.gif
Affine motion reconstruction from retrospectively downsampled in vivo head data using MR-MOTUS, 
compared with the ground-truth image reconstructions. The 3D Cartesian technique was employed for the 
downsampling. A downsampling factor of 8.0 was applied in AP and LR directions and 7.4 in FH. This resulted in 
a total number of 3240 k-space points per snapshot and total downsampling factor of about 474.

AnimatedFigure3.gif
Affine motion reconstruction from retrospectively downsampled in vivo head data using MR-MOTUS, 
compared with the ground-truth image reconstructions. The 3D Cartesian technique was employed for the 

Table 4.  Results of the 3D respiratory motion estimation as discussed in sections 3.3.2 and 4.3.2. The reported numbers are the normalized 
root mean square complex image errors (in percentage) between ground-truth images and reference images warped with motion-fields 
reconstructed from the retrospectively undersampled data.

3D Cartesian 3D variable density 3D golden mean cones

Undersampling factor 1 8 63 501 8 63 501 8 63 501

MR-MOTUS 28.79 30.24 33.22 39.48 30.70 32.86 36.82 30.47 33.77 37.71

IR +OF 29.70 30.51 34.26 40.17 30.33 35.02 42.71 30.97 37.65 42.97

4 See footnote 3.
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downsampling. A downsampling factor of 14.4 was applied in AP and LR directions and 12.3 in FH. This resulted 
in a total number of 600 k-space points per snapshot and total downsampling factor of 2551.

AnimatedFigure4.gif
Non-rigid motion reconstruction from in vivo abdomen data using MR-MOTUS with a cubic B-spline motion 
model, compared with ground-truth image reconstructions acquired during breath-hold. No downsampling 
was applied on these snapshots.

AnimatedFigure5.gif
Non-rigid motion reconstruction from retrospectively downsampled in vivo abdomen data using MR-MOTUS 
with a cubic B-spline motion model, compared with ground-truth image reconstructions acquired during 
breath-hold. The 3D Cartesian technique was employed for the downsampling. A downsampling factor of about 
4 was applied in all direction, resulting in a total downsampling factor of 63.

4.4.  Motion estimation on prospectively undersampled in vivo data
Figure 8 shows the result of motion-field reconstructions on prospectively undersampled data acquired during 
free-breathing with three different degrees of regularization: λ = 7 · 10−3, 7 · 10−2, 7 · 10−1. Little regularization 
(λ = 7 · 10−2) results in an unrealistic irregular motion-field, whereas high regularization (λ = 7 · 10−1) results 
in a very smooth motion-field. The oversmoothed motion-field does not resolve the natural discontinuous in 
motion that are present between moving and stationary areas, e.g. between the kidneys and spine.

The quality of the motion-field reconstructed with λ = 7 · 10−2 is assessed in figure 9, which shows a com-
parison between the reference image warped with the reconstructed motion-field and the ground-truth image 
selected from a dynamic CS reconstruction. A high level of overlap can be observed between the warped reference 
and ground-truth image. This is especially visible at the contours of the liver dome, kidney and lower frontal 
region of the abdomen, which all move with respiratory motion.

5.  Discussion

In this work we introduced MR-MOTUS: a framework for Model-based Reconstructions of MOTion-fields from 
Undersampled Signals. A signal model is derived that explicitly relates k-space data to non-rigid and/or non-
linear motion-fields and a reference image. Non-rigid 3D motion-fields are reconstructed from minimal k-space 
data and an a priori available reference image by leveraging on the compressibility of internal body motion and 
by solving the corresponding non-linear inverse problem with respect to the coefficients of a low-dimensional 
motion model.

The signal model that explicitly relates k-space data to non-rigid and/or non-linear motion-fields and a refer-
ence image is derived by assuming that the reference image warped by the unknown motion-fields can be used as 
an approximation to the deforming object, similarly to Odille et al (2008a), Prieto et al (2007). We formally show 

Figure 7.  Comparison between MR-MOTUS (top) and IR +OF (bottom) reconstruction quality for a specific case reported in 
table 4. In this case 3D variable density with an undersampling factor of 63 was applied. The IR +OF clearly shows more quality 
degrading in comparison with MR-MOTUS.
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that this approximation is exact when two conditions are met: (1) no signal-contributing spins flow across the 
boundary of the FOV, and (2) the transverse magnetization is in a steady-state.

First, the assumption that no signal-contributing spins flow across the boundary of the FOV is made to 
change the integration domain in (13) to the excited FOV Ω. This assumption also appears in other works for 
similar reasons (Odille et al 2008a). In the in vivo 3D cases considered in this work, i.e. head motion and res-
piratory motion, we have empirically observed that a violation of the spin flow assumption hardly degrades the 
quality of the motion-fields (see e.g. figure 7). This observation is also supported by the presented in-silico phan-
tom experiments in the extreme scenario of 15% spin flow. Although these are extreme cases, which will likely 
not occur in practice, the quality of the reconstructed motion-fields hardly degraded. This indicates that this 
assumption can in principle be relaxed.

Second, the assumption of a steady-state transverse magnetization may be partly invalid due to B0 and B1 
inhomogeneity or temporal B0 drift. The inhomogeneities and temporal drift may change the equilibrium mag-
netization—and thereby the steady-state—of moving spins. However, in this proof-of-concept work these effects 
are assumed to be negligible for the combination of small spin displacements and the targeted field strengths of 
up to 1.5 T.

For MRgRT, both the acquisition of data and reconstruction of organ motion need to be performed online 
in the order of milliseconds. Regarding the acquisition, we have investigated Cartesian, variable density and 
golden mean cones undersampling schemes by means of retrospective undersampling, and we have employed 
a 2D golden angle radial acquisition for preliminary results with prospective undersampling. The prospectively 
undersampled snapshot data consisting of 15 spokes were acquired in 60 ms, which shows the potential of the 

Figure 8.  Motion-fields reconstructed from prospectively undersampled data acquired during free breathing, as described in 
section 3.4. Three different degrees of regularization are considered: λ = 7 · 10−3, 7 · 10−2, 7 · 10−1. See also figure 9 for a qualitative 
analysis of the error in the reconstruction.

Figure 9.  A visual comparison between the reference image warped the MR-MOTUS motion-field reconstructed with λ = 7 · 10−2, 
and the ground-truth image selected from a dynamic CS reconstruction, as described in section 3.4.
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framework in practice. In future work we plan to extend the prospective acquisitions to 3D by using the golden 
mean cone acquisition that was considered in this work; it performed similarly to the other schemes, while being 
time-efficient in acquisition and insensitive to intra-acquisition motion (Block et al 2014). Based on the retro-
spective results shown in this work, we can give an estimate of the required acquisition time for a prospective 
acquisition with the 3D golden mean cone trajectory and undersampling factor 63. The undersampling fac-
tor of 63 corresponds to approximately (128 × 128 × 94)/63 ≈ 24 446 k-space points with a variable density 
distribution. The golden mean cone trajectory is designed such that it results in a variable density sampling dis-
tribution after any number of read-outs (Johnson 2017). Hence, with a TR of 4ms and 1000 points per read-
out, the acquisition time of the snapshot data can be approximated as 24 446/1000 · 4 = 98 ms. Future research 
will address motion reconstructions from prospectively undersampled data using the non-Cartesian 3D golden 
mean cone trajectory.

Besides acquisition of data, application to MRgRT also requires the actual reconstruction of motion-fields to 
be in the order of milliseconds. The reconstruction time for the 3D motion estimations considered in this paper 
is currently about 5 min, but there is still room for improvements. For example, to compute the required type-3 
NUFFTs we have used the efficient implementation from (Barnett et al 2018). However, these computations still 
constitute about 80% of the total reconstruction time. Ongoing investigations suggest that downsampling the 
reference image by a factor of two may result in a significant decrease in computation time and memory require-
ment without degrading the reconstruction quality. Moreover, although the implementation from Barnett et al 
(2018) supports parallel computing on the CPU, a GPU implementation is not yet available but could signifi-
cantly reduce the reconstruction time. Additionally, the reconstruction can be accelerated by further reducing 
the number of unknowns in the motion-fields by exploiting correlations not only in space, but also in time. For 
example, a patient-specific motion model could be trained in an offline MR-MOTUS reconstruction, and subse-
quently only time-varying coefficients could be reconstructed in a very fast online MR-MOTUS reconstruction 
(McClelland et al 2017, Sbrizzi et al 2019).

The quality of the reconstructed motion-fields may be improved in several ways. The small amount of snap-
shot data used for the reconstructions with MR-MOTUS implies that additional information must be provided 
in terms of a priori knowledge on the motion-fields. In this work this in done through the motion model (cubic 
B-splines and affine) and the curvature regularization. Both penalize irregular motion-fields and promote 
smoothness. Smoothness in the motion-fields is a good approximation in most of the cases, but may be subopti-
mal along sliding organ surfaces that naturally introduce discontinuities in the motion-fields (see figure 8). Dif-
ferent regularization and motion models that promote e.g. piece-wise smoothness may improve upon the results 
in this work.

In order to assess the quality of the reconstructed motion-fields, fully-sampled Cartesian data were acquired 
in discrete motion states and snapshot data was retrospectively undersampled from the corresponding fully-
sampled k-spaces. The fully-sampled data allowed for image reconstructions that were used to contextualize the 
MR-MOTUS results by making a comparison with IR +OF. MR-MOTUS outperforms IR +OF in most experi-
ments in this work, but since only two subjects were included in the comparison no general conclusions can be 
drawn regarding the performance of MR-MOTUS versus IR +OF. Additionally, snapshot data will in practice be 
acquired as fast as possible with prospective undersampling, non-Cartesian acquisitions and during continuous 
motion. Preliminary results on prospectively undersampled data acquired with a 2D golden angle radial trajec-
tory during free-breathing demonstrate the feasibility of MR-MOTUS in practice. A thorough validation of MR-
MOTUS in a practical setting, including more subjects and 3D prospective undersampling, is required and will 
be the subject of a future work.

The requirement of an a priori available reference image can be perceived as a limitation of this work. How-
ever, a reference image is always available in an MRgRT setting through the pre-treatment MRI that is acquired to 
adjust the radiation plan to the day-to-day variations in anatomy (Raaymakers et al 2017). Besides MRgRT, MR-
MOTUS can also be applied to other settings where a reference image is available. Examples include MR-guided 
interventions, but also dynamic contrast-enhanced (DCE) imaging. The latter application does require the 
extension of the signal model to incorporate the DCE dynamics, which could be done by following the approach 
suggested in Lam et al (2011). Applying MR-MOTUS in these settings will be considered for future research.

6.  Conclusion

We have demonstrated the MR-MOTUS concept: reconstruct non-rigid, non-linear, 3D motion-fields directly 
from minimal k-space by exploiting the availability of a reference image and the compressibility of motion-fields. 
The signal model behind MR-MOTUS is validated on a numerical motion phantom. The reconstructions are 
validated both in-silico and in vivo. Results show that MR-MOTUS reconstructs in vivo 3D rigid head motion 
from 474-fold retrospectively downsampled k-space data, and in vivo non-rigid 3D respiratory motion from 
63-fold retrospectively undersampled k-space data. This data could potentially be acquired in few milliseconds 
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using a time-efficient and dedicated non-Cartesian trajectory, and could therefore result in high frame rate non-
rigid motion-fields that can be valuable for MR-guided radiotherapy and MR-guided interventions. Preliminary 
results on prospectively undersampled 2D data confirm the feasibility of the method in a practical setting. Future 
research will focus on reducing the reconstruction time and prospective 3D acquisition of the snapshot k-space 
data.
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