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Introduction

Radiotherapy is the most common cancer therapy modality, with almost half of all cancer patients receiving 
radiation as part of their treatment (Fowler 2006). Radiation is typically delivered to the tumour as a series of 
small doses, or fractions, administered over a period of several days or weeks (Ahmed et al 2014). While there are 
numerous aspects of an in vivo tumour biology which may influence treatment response, tumour location and 
stage remain the primary factors in selecting a treatment protocol (Caudell et al 2017).

Mathematical modelling of radiotherapy may be used to provide a better understanding of the factors which 
are important in determining tumour response dynamics. There are a number of approaches that may be taken 
to model radiotherapy response, including compartmental ordinary differential equation (ODE) models (Sachs 
et al 2001, Chvetsov et al 2009, Wang and Feng 2013, Chvetsov 2013, Chvetsov et al 2014, Prokopiou et al 2015, 
Tariq et al 2016), continuum partial differential equation (PDE) models (Rockne et al 2009, 2010, Rockne et al 
2015, Lewin et al 2018), computational agent-based models (Richard et al 2007, Powathil et al 2013, 2016, Alfonso 
et al 2014) and probabilistic approaches (Zaider and Minerbo 2000, Hanin 2004, O’Rourke et al 2009, Zaider and 
Hanin 2011, Gong et al 2013, Bobadilla et al 2018). The simplest formulations view the tumour volume as a sin-
gle, homogeneous compartment (Wheldon et al 1977, Sachs et al 2001, McAneney and O’Rourke 2007, Proko-
piou et al 2015, Poleszczuk et al 2018) and are often targeted towards clinical application due to the limited data 
typically available for model calibration (Wang et al 2009, Stevens et al 2010, Sharma et al 2016).

The linear-quadratic (LQ) model, along with its extensions, is typically used to describe dose-dependent 
radiation-induced cell death (Joiner 2009). This model was initially proposed as an empirical formula derived 
from in vitro clonogenic survival assays (Joiner 2009). As such, the LQ model is most suited to describing the 
long-term, dose-dependent survival fraction post-irradiation, but may (inadequately) simulate the dynamics 
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Abstract
In vivo tumours are highly heterogeneous, often comprising regions of hypoxia and necrosis. 
Radiotherapy significantly alters the intratumoural composition. Moreover, radiation-induced 
cell death may occur via a number of different mechanisms that act over different timescales. Dead 
material may therefore occupy a significant portion of the tumour volume for some time after 
irradiation and may affect the subsequent tumour dynamics.

We present a three phase tumour growth model that accounts for the effects of radiotherapy and 
use it to investigate how dead material within the tumour may affect the spatio-temporal tumour 
response dynamics. We use numerical simulation of the model equations to characterise qualitatively 
different tumour volume dynamics in response to fractionated radiotherapy. We demonstrate 
examples, and associated parameter values, for which the properties of the dead material significantly 
alter the observed tumour volume dynamics throughout treatment. These simulations suggest that 
for some cases it may not be possible to accurately predict radiotherapy response from pre-treatment, 
gross tumour volume measurements without consideration of the dead material within the tumour.

PAPER
2020

RECEIVED  
10 May 2019

REVISED  

24 September 2019

ACCEPTED FOR PUBLICATION  

8 October 2019

PUBLISHED  
10 January 2020

https://doi.org/10.1088/1361-6560/ab4c27Phys. Med. Biol. 65 (2020) 015007 (16pp)

publisher-id
doi
https://orcid.org/0000-0002-6528-8936
https://orcid.org/0000-0003-1964-2460
mailto:tomlewin@hotmail.co.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ab4c27&domain=pdf&date_stamp=2020-01-10
https://doi.org/10.1088/1361-6560/ab4c27


2

T D Lewin et al

of radiation-induced cell death during fractionated radiotherapy as an instantaneous loss of material from the 
tumour volume (Wheldon et al 1977, Sachs et al 2001, McAneney and O’Rourke 2007, Prokopiou et al 2015, 
Poleszczuk et al 2018).

Upon absorption, radiation causes lesions within the cells’ DNA (Joiner et al 2009). The damage may be fatal, 
with cell death occurring via one of several different mechanisms over potentially different timescales (Endlich 
et al 2000, Eriksson and Stigbrand 2010). As such, cells that are fated to die may occupy volume within the tumour 
for some time after irradiation and may subsequently affect the response dynamics. We may thus anticipate that 
the dead material within the tumour may have a significant influence on tumour volume dynamics in response 
to radiotherapy.

In this paper we incorporate the effects of radiotherapy into a multiphase model for tumour growth (Lewin 
et al 2019) to investigate the role of dead material on treatment response dynamics. Multiphase models which 
represent the microenvironment as a mixture of two or more constituent phases may be used to investigate inter-
actions between the different components of a growing tissue (e.g. cancer cells, extracellular fluid, immune cells, 
vasculature and healthy cells). A range of models of this type have been proposed to study different aspects of 
tumour growth (Ward and King 1999, Landman and Please 2001, Breward et al 2002, Byrne et al 2003, Hubbard 
and Byrne 2013, Boemo and Byrne 2019, Lewin et al 2019). This framework provides a natural setting to investi-
gate the influence of non-viable, dying cells and cellular debris on the spatio-temporal tumour dynamics in the 
context of radiotherapy response. Radiation-induced cell death may be incorporated as a mass transfer between 
the phases in the mixture, thus altering the internal tumour composition without instantaneous volume loss. 
The effect of radiotherapy on the tumour volume may then be realised as a redistribution of material within the 
tumour post-irradiation. Our previous work showed that the properties of the dead material may significantly 
affect the tumour growth dynamics (Lewin et al 2019). We thus anticipate that, given the changes to the internal 
tumour composition induced by radiotherapy, the dead material within the tumour may also have a similar 
impact on the treatment response dynamics.

Materials and methods

Multiphase tumour growth model
We consider a three phase tumour growth model, focussing on the influence of the dead material within 
the tumour on the overall tumour growth dynamics. The model treats the tumour micro-environment as 
a continuum, multiphase mixture, comprising three constituent phases: (i) tumour cells, (ii) dying cells and 
cellular debris, and (iii) extracellular fluid. The second phase is assumed to comprise all of the non-viable cellular 
material and cellular debris within the tumour, irrespective of cell death mechanism or stage of decay. As such, 
this phase represents an ‘averaged’ description of this component of the tumour environment across all of these 
modes of cell death and is a transitional phase between the viable tumour population and the extracellular fluid. 
We hereafter refer to this phase as ‘dead material’.

The spatial distribution of each phase is characterised by the volume fractions φi(x, t) (i = 1, 2, 3) for the 
tumour cell, dead material and extracellular fluid phases, respectively, at spatial point x  and time t. The phase 
velocities vi(x, t) describe the movement of each phase, and are associated with the phase pressures, pi(x, t), 
and the stress tensors, σi(x, t). We model the mixture constituents as fluids, with the tumour and dead material 
phases treated as viscous while the extracellular fluid is taken to be inviscid. Mass and momentum balances are 
applied to each phase to determine how the dependent variables evolve over time. Tumour growth is assumed to 
be oxygen-dependent and so the system of equations is coupled to a reaction-diffusion equation for the oxygen 
concentration, c(x, t). The full system of equations is stated below, with the detailed derivation of the model 
equations presented in Lewin et al (2019).

Mass conservation :
∂φi

∂t
+∇ · (viφi) = Si� (1)

Momentum conservation : 0 = ∇ · (φiσi) + Fi� (2)

O2 reaction–diffusion : 0 = D∇2c − Γφ1Hε(c − cN)� (3)

where Hε(c) =
1

2

(
1 + tanh

( c

ε

))
� (4)

No voids :
∑

i

φi = 1� (5)
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Mass sources and sinks : S1 = ηφ1φ3Hε(c − cH)− χφ1Hε(cN − c)− κφ1

S2 = χφ1Hε(cN − c) + κφ1 − λφ2, S3 = − (S1 + S2)
� (6)

Momentum sources : Fi = pi∇φi +
∑
j �=i

dijφjφi(vj − vi)� (7)

Stress tensors : σi = −piI + µi(∇vi +∇vi
T) + λi (∇ · vi) I

λi = −2

3
µi, µ1 � µ2 = θµµ1 � µ3 = 0

� (8)

Pressures : p1 = p +Σφ(φ1 + θΣφ2), p2 = p + θpΣφ(φ1 + θΣφ2), p3 = p� (9)

where Σφ(φ) =
ζ(φ− φmin)

2(φ− φ∗)

(1 − φ)
H(φ− φmin).

Here H(·) is the Heaviside function and I denotes the identity tensor. A list of all model parameters is given in 

table 1.
The source and sink terms, Si, given by equation (6) account for mass transfer between the phases and may 

be associated with proliferation and cell death processes. We note that proliferation is assumed to occur at a rate 
proportional to the product of the local volume fraction of the tumour cell phase, φ1, and the extracellular fluid, 
φ3, since the material and nutrients required for proliferation are assumed to be derived from the extracellular 
fluid phase.

Of particular note is the parameter vector θ = (θµ, θp, θΣ) which describes the material properties of the 
necrotic phase relative to the tumour cell phase, and takes values in [0,1]3. Since θ ∈ [0, 1]3, we may consider 
the dead material phase to be intermediate between the tumour cells and extracellular fluid phases. We note that 
θ = (1, 1, 1) describes a two phase sub-case of the full model in which the dead material is essentially a compart-
ment of the cellular phase and has the same mechanical properties as the tumour cells. Conversely, the limit 
θ = (0, 0, 0) gives a sub-case in which the dead material has the same properties as the inviscid extracellular fluid.

The parameter θµ specifies the viscosity of the dead material relative to the cell phase (equation (8)). The 
tumour cell and dead material phase pressures contain an additional pressure, Σφ(φ), (defined in equation (9)) 
which pertains to cell-sensing. The parameters φ∗ and φmin prescribe the thresholds for the cell-sensing effects 
described by the function Σφ. More specifically, when cells are sparsely distributed, adhesion forces bring the 
cells closer together, while in densely-packed regions the cells act to relieve stress by exerting a repulsive force 
on neighbouring cells (Cheng et al 2017). As such, when φ > φ∗, Σφ(φ) > 0 which corresponds to a repulsive 
cell pressure, whilst when φmin < φ < φ∗, Σφ < 0 which corresponds to regions of cellular adhesion or attrac-
tion. A schematic of the function Σφ(φ) is shown in figure 1. The parameters θp and θΣ thus describe the relative 
cell-sensing function of the dead material in comparison to the tumour cell phase, with Σφ evaluated locally at 
(φ1 + θΣφ2).

Incorporating radiotherapy effects
Radiotherapy effects are modelled as an instantaneous mass transfer between the tumour cell and dead material 
phases at the time of delivery, tj , and included in the mass source terms, Si, as follows:

S1 = ηφ1φ3Hε(c − cH)− χφ1Hε(cN − c)− κφ1 −
∑

j

ν(c)φ1δ(t − tj),� (10)

S2 = χφ1Hε(cN − c) + κφ1 − λφ2 +
∑

j

ν(c)φ1δ(t − tj),� (11)

S3 = −S1 − S2.� (12)

Here, ν(c) encompasses the dependence of radiation-induced cell death on the local oxygen concentration, c, 
and is related to the dose-dependent cell survival fraction, SF(d), by ν = 1 − SF(d). In this paper we assume 
radiation is delivered with a uniform spatial dose distribution.

While still modelled as an instantaneous effect, the way in which radiotherapy is incorporated into this model 
is markedly different from the discontinuities in tumour volume introduced in other models (Wheldon et al 
1977, Sachs et al 2001, McAneney and O’Rourke 2007, Prokopiou et al 2015, Poleszczuk et al 2018). In particular, 
here radiation results in an immediate change in tumour composition without changing the tumour radius. The 
effect of the radiotherapy on the total tumour volume is then driven by the resulting dynamics of the new internal 
distribution of the tumour constituents.

Phys. Med. Biol. 65 (2020) 015007 (16pp)
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The linear-quadratic (LQ) model is typically used to describe the dose-dependent survival fraction, SF(d), of 
tumour cells after irradiation (Joiner and van der Kogel 2009). The standard LQ model is given by

SF(d) = e−αd−βd2

,� (13)

where α (Gy−1) and β (Gy−2) are intrinsic radiosensitivity parameters for the tissue. The response characteristics 
of the tumour are typically characterised by the ratio α/β  (Gy) (Joiner 2009).

Various local oxygen concentrations within a tumour yield spatially heterogeneous radiosensitivities. 
Hypoxic tumour regions respond poorly to irradiation compared with well-oxygenated conditions. The oxygen 
enhancement ratio (OER; OER≈ 3) is established as the conventional extension to the LQ model to account for 
hypoxia (Alper and Howard-Flanders 1956, Carlson et al 2006, Horsman et al 2009). This yields a step function 
for radiaiton sensitivity at the hypoxia threshold, cH, given by

Table 1.  Table of multiphase model parameters appearing in equations (1)–(9).

Symbol Parameter

Γ O2 consumption rate

D O2 diffusion coefficient

c∞ Normoxic O2 concentration at exterior boundary

cH Tumour hypoxia threshold

cN Tumour necrosis threshold

ε Heaviside smoothing parameter

η Proliferation rate

κ Apoptosis rate

χ Necrosis rate

λ Dead material decay rate

dij Drag coefficient of phase j  on phase i

µi Viscosity of phase i

θµ Relative viscosity of dead and tumour phases

θp Relative ‘cell-sensing’ ability of dead phase

θΣ Relative influence of dead phase on cell-sensing

ζ Cell-sensing strength

φ∗ ‘Natural’ cell volume fraction

φmin Minimum cell-sensing volume fraction

Figure 1.  Illustrative sketch showing the dependence of the cell-sensing pressure Σφ(φ) on the cell volume fraction φ (defined 
by equation (9)). We note that there is no interaction between cells if they are too sparsely seeded (Σφ = 0 if φ � φmin). For 
intermediate volume fractions the cells tend to aggregate (Σφ < 0 for φ ∈ (φmin,φ∗)), whereas at high volume fractions the cells 
repel each other (Σφ > 0 for φ ∈ (φ∗, 1)). The blue curve shows the cell sensing pressure of the tumour cell phase, while the red 
curve represents the corresponding pressure in the dead material phase, θpΣφ, for θp ∈ (0, 1).

Phys. Med. Biol. 65 (2020) 015007 (16pp)
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SF(d, c) =

{
exp(−αd − βd2) c � cH

exp
(
− α

OER d − β
OER2 d2

)
c < cH .� (14)

Reduced model equations
When closed with appropriate boundary and initial conditions, equations (1)–(5) and (7)–(14) govern the spatial 
and temporal dynamics of tumour growth and response to radiotherapy in three dimensions. For simplicity, we 
evaluate the model in a symmetrical 1D Cartesian geometry, where x  =  0 and x = R(t) denote the centre of the 
tumour and the (dynamic) position of the tumour boundary, respectively. As previously described, the resulting 
system of equations may be reduced to eliminate the fluid phase volume fraction, φ3, velocity, v3, and global 
pressure, p , and then be closed by specifying initial and boundary conditions (Lewin et al 2019). This yields the 
multiphase model for radiotherapy response:

Mass conservation

∂φ1

∂t
+

∂

∂x
(φ1v1) = ηφ1(1 − φ1 − φ2)Hε(c − cH)− χφ1Hε(cN − c)− κφ1 −

∑
j

ν(c)φ1δ(t − tj)

� (15)

∂φ2

∂t
+

∂

∂x
(φ2v2) = χφ1Hε(cN − c) + κφ1 − λφ2 +

∑
j

ν(c)φ1δ(t − tj).

� (16)

Oxygen profile

0 = D
∂2c

∂x2
− Γφ1Hε(c − cH).� (17)

Momentum balances

0 =
4

3
µ1(1 − φ1)

∂

∂x

(
φ1

∂v1

∂x

)
− 4

3
θµµ1φ1

∂

∂x

(
φ2

∂v2

∂x

)
+ d12φ1φ2(v2 − v1)

−d13φ1(φ2v2 + (1 − φ2)v1)− φ1(1 − φ1)
∂Σφ

∂x
+ θpφ1φ2

∂Σφ

∂x

� (18)

0 = −4

3
µ1φ2

∂

∂x

(
φ1

∂v1

∂x

)
+

4

3
θµµ1(1 − φ2)

∂

∂x

(
φ2

∂v2

∂x

)
+ d12φ1φ2(v1 − v2)

−d23φ2(φ1v1 + (1 − φ1)v2)− θpφ2(1 − φ2)
∂Σφ

∂x
+ φ1φ2

∂Σφ

∂x

� (19)

Σφ(φ) =
ζ(φ− φmin)

2(φ− φ∗)

(1 − φ)
H(φ− φmin).� (20)

Initial and boundary conditions

dR

dt
= v1|x=R(t)� (21)

∂c

∂x
= 0, v1 = v2 = 0 at x = 0� (22)

φ+
2 = 0, c = c∞ at x = R(t)� (23)

4

3
µ1

∂v1

∂x
− Σφ(φ1 + θΣφ2) =

4

3
θµµ1

∂v2

∂x
− θpΣφ(φ1 + θΣφ2) = 0 at x = R(t)� (24)

φ1 = φ̃1(x), φ2 = φ̃2(x), R = R0 at t = 0.� (25)

Phys. Med. Biol. 65 (2020) 015007 (16pp)
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Results

The parameter values used for the results presented in this paper are listed in tables 2 and 3. The values of the 
radiotherapy parameters are taken from ranges reported in the literature (Joiner and van der Kogel 2009), while 
the remaining parameter combinations are taken from the exploration of the model parameter space presented 
in Lewin et al (2019). We note that typical values for many of the model parameters are not available in the 
literature. As a result, we treat the parameters as dimensionless and perform a qualitative exploration of the 

model dynamics across the parameter space.

Response to a single radiation fraction
We first analyse tumour response to a single radiation fraction with dose d  =  2 Gy. The step function 
formulation of the OER results in a jump in the tumour cell volume fraction φ1 on either side of the pre-
radiotherapy contour x = RH(t

−
1 ) due to the effects of normoxia and hypoxia on the survival fraction of the 

tumour population (figure 2(a)). The loss of mass from the tumour cell phase results in re-oxygenation within 
the tumour and, correspondingly, the hypoxia threshold (RH(t)) moves towards the centre of the tumour such 
that RH(t

+
1 ) < RH(t

−
1 ). However, the outer tumour radius, R, does not experience an instantaneous jump and 

R(t+1 ) = R(t−1 ). The composition change within the tumour induces a change in the phase velocities, vi . In 
particular, v1(R(t

+
1 ), t+1 ) < 0 and thus the tumour radius decreases gradually and transiently after irradiation 

(figure 2(b)). Regrowth dynamics post-irradiation are affected by the redistribution of material within 
the tumour. The volume fractions smooth out over time as the material gradually redistributes towards pre-
irradiation composition. However, redistribution of material internally affects the growth trajectory with lower 
velocities of the tumour boundary, v1(R(t), t) compared to similar radii before radiation (figure 2(c)).

Tumour dynamics in response to fractionated radiotherapy
Tumour volume response dynamics after fractionated radiation vary between individual patients. Semi-
automated contouring of cone beam computed tomography (CBCT) images routinely obtained for patient 
positioning at each radiation fraction allows for measurement of gross tumour volume (GTV) (Bagher-Ebadian 
et al 2017) and indicates four qualitatively different responses. For demonstration purpose we show that these 
different dynamic responses can be observed in oropharyngeal cancer patients with comparable stage and size at 
beginning of radiotherapy (43.7 cm3, 48.5 cm3, 63.3 cm3 and 48.7 cm3, figure 3). The data shown is from a cohort 
of 51 oropharyngeal cancer patients comprised of 32 who were treated at Moffitt Cancer Center, Florida and 19 
at MD Anderson, Texas (Lewin et al 2016). Each patient received the standard fractionation protocol with 2 Gy 
fractions administered daily Monday–Friday.

Table 2.  Table of fixed model parameter values for all simulations.

Parameter Value

Γ 2

c∞ 1

cH 0.3

D 1

d12 1

OER 3

Table 3.  Table of parameter values used for the simulations presented in the results sections.

Growth parameters

Radiotherapy  

parameters

Case cN η χ κ λ d13 = d23ζ φ∗ φmin µ1 θµ θp θΣ t1 α α/β

A 0.1 1 1 0.05 0.1 0.1 3 0.8 0 1 0.5 1 1 20 0.35 10

B 0.3 1 0.5 0.02 0.75 0 1 0.8 0 1 0.1 0.5 0.5 50 0.35 10

C 0.3 1 1 0.1 0.75 0.1 2 0.7 0 5 0.5 1 0.25 50 0.5 15

D 0.2 1.5 0.3 0.1 0.5 0 2 0.7 0 3 0.25 1 1 50 0.1 5

E 0.2 0.5 2 0.02 0.1 0 2 0.6 0 2 0.5 1 0.75 10 0.1 10

F 0.2 1.5 0.3 0.02 0.75 0 1 0.8 0 2 0.5 0.5 0.75 25 0.35 10

G 0.3 0.5 0.1 0.1 0.5 0 3 0.6 0 0.5 1 0.5 1 50 0.35 15

H 0.1 1 0.3 0.1 0.25 0.1 3 0.6 0 5 0.5 0.75 0.25 50 0.35 15

Phys. Med. Biol. 65 (2020) 015007 (16pp)
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A desirable fast response is characterized by a rapid, monotonic reduction in gross tumour volume and a final 
tumour volume that is substantially smaller than that prior to treatment (figure 3(a)). The multiphase model 
simulates such a response using parameters listed in table 3, case B (figure 4(a)). By contrast, a poor response with 
only marginal changes in tumour volume over time is not effective in reducing the gross tumour volume (figure 
3(b)). Such dynamics can be simulated with parameter combination in table 3, case C (figure 4(b)).

A third radiation response pattern is described by a decrease in tumour volume before levelling-off after 
which radiation has minimal effect on the measured volume (figure 3(c)). Multiphase model simulations sug-
gest that tumour regrowth over the weekend is sufficient to counteract radiation-induced cell death in the latter 
stages of treatment (figure 4(c)). The tumour radius, R(t), undergoes oscillations driven by the weekly fraction 
schedule, but once-a-week tumour volume measurements would reveal no net treatment effect. The param
eter values used for this simulation are listed in table 3, case D. The step function form of the OER results in a 
local maximum in the tumour cell phase volume fraction, φ1. At this location within the tumour v1 < 0, and the 
volume fraction profile moves inwards. As the different cell material is redistributed the tumour composition 
smooths out. Tumour composition after a weekend break is almost identical to that of the previous week, indica-
tive of the plateau in response (figure 5).

The last response dynamic is so-called ‘pseudo-progression’, characterised by transient increase in tumour 
volume during the early phase of radiotherapy, before exhibiting a delayed decrease in tumour volume (figure 
3(d)). These dynamics can be simulated using θΣ = 0.75 such that radiation-induced dead cell material still 
contributes significantly to tumour volume (figure 4(d)). At the beginning of radiotherapy, the internal tumour 
composition is still approximately uniform and so we may use the averaged quantities

φ̄i(t) =
1

R(t)

∫ R(t)

0
φi(x, t)dx� (26)

to evaluate tumour dynamics. Figure 6 shows φ̄1 + θΣφ̄2 over time to evaluate cell pressures occurring within 
the tumour throughout the course of the treatment protocol. Quantities greater than φ∗ correspond to positive, 
repulsive pressures, while those less than φ∗ give rise to adhesive forces. Since θΣ is large, the value of φ̄1 + θΣφ̄2 
does not decrease significantly upon individual radiation fractions despite the instantaneous mass transfer 
between the tumour cell and non-viable phases. Thus, φ̄1 + θΣφ̄2 > φ∗ for the first few radiation weeks and 
the tumour volume continues to increase. However, the accumulated effects of radiotherapy by week 3 yield 
φ̄1 + θΣφ̄2 < φ∗ and induce a decrease in tumour volume, which persists for the remainder of the simulated 
treatment. Model simulation suggest that pseudo-progression may, at least in part, be driven by a build-up of non-
viable cells and dead material within the tumour, rather than an increase in the viable tumour cell population.

Figure 2.  Representative simulation of multiphase tumour response to acute radiation with dose d  =  2 Gy at time t  =  20 using 
model parameters in table 2 and radiosensitivity parameters α = 0.35 Gy−1 and α/β = 10 Gy. The remaining parameter values 
for this simulation are given in table 3, case A. Time series of: (a) tumour compositions, and (b) phase velocities for the simulation 
shown in panel (c). Individual plots show tumour composition at each time point, with the first and second time points in each 
series corresponding to the time steps immediately before and after irradiation at t1  =  20. Tumour compositions: tumour cell 
volume fraction, φ1 (dark blue); dead material phase, φ2 (light blue); extracellular fluid volume fraction, φ3 (yellow). The dashed 
red and yellow lines mark the positions of the contours x  =  RH and x  =  RN, respectively. Phase velocities: tumour phase velocity, v1 
(dark blue); dead phase velocity, v2 (light blue). (c) Tumour radius trajectory before and after a single fraction of radiation (2 Gy) 
delivered at t1  =  20 (dashed black line). The solution has been normalised to the tumour radius at the time of irradiation. Red circles 
mark the time points of tumour composition and phase velocities plots in panels (a) and (b).

Phys. Med. Biol. 65 (2020) 015007 (16pp)
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The influence of dead material on radiotherapy response

We have previously demonstrated that, for some parameter regimes, tumour growth may be significantly affected 
by the physical properties of the dead material within the tumour (Lewin et al 2019). Here, we perform a focussed 
parameter sweep on the parameter subspace (θµ, θp, θΣ) = θ ∈ [0, 1]3 in order to investigate the influence of the 
material properties of the dead phase on the tumour dynamics in response to radiotherapy. In each case all other 
model parameters are held fixed, including the radiosensitivity parameters. We highlight two different parameter 
regimes; parameters for which the properties of the dead material do not significantly affect the qualitative 
dynamics (left column of figure 7), and parameters for which the dynamics vary markedly across θ ∈ [0, 1]3 
(right column of figure 7).

In figure 7(a) we observe tumour radius trajectories which all follow similar growth dynamics while also 
exhibiting a similar response to radiotherapy. Each trajectory may be classified as a ‘fast responder’ to treatment 
and we note that the predicted final tumour radii are all clustered together around small values, R  <  0.3 (see fig-
ure 7(c)). In particular the properties of the dead material phase do not appear to significantly affect the tumour 
dynamics either before, during or after radiotherapy, with all combinations simulated giving rise to the same 
qualitative response (see figure 7(e)). As such we would anticipate that a less complex model could adequately 
describe the observed response in this case, without necessarily taking into account the spatial distribution of the 
tumour composition.

By contrast, for the case presented in figure 7(b), varying the material properties results in a large degree of 
heterogeneity in the tumour response dynamics. The qualitative behaviours exhibited include fast response to 
treatment (blue), pseudo-progression (purple) and actual tumour progression throughout treatment (red). In 
this case the parameter sweep results in divergent trajectories with a large variation in the size of the tumour at the 
end of treatment (see figure 7(d)). We see that the properties of the dead material may have a significant impact 
on the response to treatment while holding the radiosensitivity parameters of the tumour fixed. In figure 7(f) we 

Figure 3.  Representative examples of four qualitatively different radiotherapy response dynamics. The gross tumour volumes 
were obtained from pre-radiation treatment planning scans and weekly CBCT scans during treatment. Dashed black lines indicate 
start of treatment and pre-treatment tumour volume. (a) Fast responder. (b) Poor responder. (c) Response plateau. (d) Pseudo-
progression.
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see that, in this parameter regime, larger values of θΣ result in poorer treatment responses. We further illustrate 
these results by analyzing the dynamics of the parameters corresponding to the two corners of the unit cube, 
θ = (0.01, 0.01, 0.01) and θ = (1, 1, 1). The model equations are singular for θµ = 0 so we instead choose posi-
tive values of (θµ, θp, θΣ) close to 0. There is little difference in tumour composition and growth trajectories prior 
to treatment. Therefore, it would not be possible to distinguish between these two cases from pre-treatment 
radiological data even with resolution of the underlying tumour composition. However, radiation induces large 
perturbations to the tumour composition, and the properties of the non-viable phase may subsequently affect 
the redistribution of material within the tumour and therefore response dynamics (figure 8).

Tumour regrowth dynamics

Post-radiotherapy decrease in tumour volume
In the previous results section we identified a class of dynamics for which the tumour volume initially responds 
well to irradiation before experiencing a diminished treatment effect, or plateau, towards the end of the protocol. 
In this case, the regrowth of the tumour over the weekend break in the latter stages of the treatment protocol is 
sufficient to compensate for the volume lost due to irradiation. The tumour thus reaches a plateau in response, 
with no net treatment effect observed. However, in our simulations we also identify another mode of response 
for which the tumour volume plateaus towards the end of treatment (figure 9(a)). This response is qualitatively 
different to the case shown in figure 4(c). In figure 9(a) we see that the plateau in the tumour radius trajectory 

is such that dR
dt = 0, in contrast with the oscillations between death and regrowth driven by the on-off nature of 

the treatment protocol observed in figure 4(c). These dynamics are also characterised by a dip in tumour volume 
some time after the end of the last fraction of radiotherapy, before an increase in the tumour radius R(t) and 
regrowth of the tumour. The parameters for the simulation shown in figure 9 are listed in table 3, case G.

Figure 4.  Simulations of equations (15)–(25) exhibiting different qualitative responses to radiotherapy with respect to the 
dynamics of the outer tumour radius throughout treatment. The radiotherapy protocol is represented by the grey shaded regions. 
The solutions have been normalised to the tumour radius at the start of treatment at time t  =  10. The parameter values for these 
simulations are listed in table 3. (a) Example of a ‘fast responder’ to radiotherapy treatment (case B). (b) Example of a ‘poor 
responder’ to radiotherapy treatment (case C). (c) Example of a response to radiotherapy exhibiting a plateau in treatment effect 
(case D). (d) Example of response to radiotherapy exhibiting ‘pseudo-progression’ of the tumour (case E).
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Figure 5.  Time series of tumour compositions spanning a week of the fractionation protocol for the simulation presented in 
figure 4(c). The second time point corresponds immediately after irradiation at time t  =  79. The volume fractions φ1, φ2 and φ3 are 
represented by the dark blue, light blue and yellow regions, respectively. The dashed red and yellow lines mark the positions of the 
radii for the hypoxia threshold, RH(t), and necrotic threshold, RN(t), respectively. The parameter values for this simulation are given 
in table 3, case C.

Figure 6.  Plot showing φ̄1 + θΣφ̄2 over time for the simulation shown in figure 4(d). The quantities φ̄i represent the volume fraction 
of phase i averaged over the whole tumour at time t, as defined by equation (26).
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These two modes of response plateau are very different with regards to the underlying tumour composition 
and thus the actual efficacy of the radiotherapy, despite both simulations resulting in a diminished treatment 
effect while the tumour is still of significant radius. In figure 9(c) we visualise the tumour composition at 5 dif-
ferent time points throughout the regrowth period of the tumour after radiotherapy. We notice that at the end of 
treatment the tumour cell population is actually very small, contrary to what might be expected from measuring 
the outer tumour radius (see composition at t  =  100). In this case, the plateau in tumour radius is not due to a 
lack of effect of the radiotherapy on the tumour cell population. The radiation actually kills the tumour popu-
lation faster than the effects of adhesion such that φ1 + θΣφ2 � φmin. The tumour cells therefore become too 

Figure 7.  The results obtained by sweeping over the parameter sub-space θ = (θµ, θp, θΣ) ∈ [0, 1]3 summarising the material 
properties of the dead phase for two different parameter regimes; one in which the dynamics remain qualitatively similar varying 
θ, and one for which the trajectories diverge. The parameter values for each case are given in table 3, with the parameters pertaining 
to the results in the left hand column given by case F, and those for the right-hand column by case E. The solutions have been 
normalised in each case to the radius at the start of treatment for the corresponding parameter sets given in table 3. (a) and (b) 
Tumour radius trajectories for each simulation in the parameter sweep. Trajectories are coloured by the qualitative response 
to treatment exhibited: fast responder (blue), pseudo-progression (purple) or progression (red). The radiotherapy protocol 
is represented by the grey shaded regions. (c) and (d) Histograms displaying the distribution of tumour radii at the end of the 
radiotherapy protocol for each of the parameter sweeps. (e) and (f) Scatter plot marking the qualitative response dynamics resulting 
from each combination of θ.
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sparsely populated to interact with each other, and so the tumour radius is unable to contract further. Subsequent 
fractions of radiation thus kill tumour cells and reduce the volume fraction φ1 locally without inducing a change 
in the tumour volume as measured by the outer tumour radius. The value of Σφ(φ̄1 + θΣφ̄2) at t  =  100 is repre-
sented by the green dot in figure 9(b).

In a similar manner, the regrowth of the tumour cell phase after the end of the treatment protocol ini-
tially occurs locally. Once the tumour composition is such that Σφ(φ1 + θΣφ2) < 0 the tumour cells are able 
to interact and cellular adhesion results in a contraction of the tumour (see time t  =  107.5 in figure 9). While 
φmin < φ1 + θΣφ2 < φ∗, the tumour radius continues to decrease and φ̄1 increases due to both proliferation 
of the tumour cells and contraction of the tumour volume. The point at which φ̄1 + θΣφ̄2 = φ∗ corresponds 

to the minimum radius in this post-radiotherapy dip such that d2R
dt2 > 0 (see time t  =  109.5). Thereafter, 

φ̄1 + θΣφ̄2 > φ∗ and the tumour assumes a regrowth trajectory similar to that prior to treatment.

Altered regrowth dynamics
As described in the previous sections, as well as affecting the overall tumour volume, radiotherapy induces a large 
change in the underlying tumour composition in our multiphase mixture. In some cases, this perturbation is 
significant enough to completely alter the qualitative growth dynamics post-treatment when compared with the 
control growth trajectory in the absence of radiotherapy. The tumour radius trajectory for one such simulation 
is shown in figure 10 (solid blue line) along with the corresponding control growth trajectory (dashed blue line). 
The parameter values pertaining to this simulation are given in table 3, case H.

In this case, the original tumour growth would have given a monotonic, sigmoidal trajectory approaching a 
steady state solution. However, the regrowth post-radiotherapy clearly results in a travelling wave solution. The 

Figure 8.  Two simulations of equations (15)–(25) exhibiting a large variation in response to radiotherapy, taken from the parameter 
sweep in figure 7(b). (a) Two tumour radius trajectories corresponding to θ = (0.01, 0.01, 0.01) (red) and θ = (1, 1, 1) (blue). 
The red points mark the time points for which we visualise the compositions in (b). (b) and (c) Tumour compositions for each 
simulation prior to radiotherapy at t  =  10, during the radiotherapy protocol at t  =  30, and at the end of treatment at t  =  50. The 
simulations in (b) correspond to θ = (0.01, 0.01, 0.01) while (c) corresponds to θ = (1, 1, 1).
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parameter regime here clearly gives rise to growth dynamics which exhibit bistability, with both steady state and 
travelling wave solutions possible. By significantly altering the underlying tumour composition, it is possible to 
change the qualitative growth dynamics of the tumour.

Discussion

Irradiation of in vivo tumours causes widespread cell death throughout the tumour. In particular, the dead 
material within the tumour may not be confined to regions of necrosis induced as a result of nutrient starvation. 
As such, radiotherapy induces a significant change in the intratumoural composition during the course of 
treatment, which differs from the pre-treatment tumour. Herein we discussed a multiphase tumour growth 
model to simulate radiation-induced cell death and to investigate how the redistribution of material between 
the tumour cell and dead material phases affects tumour volume dynamics in response to radiotherapy. We 
incorporated the effects of radiotherapy as an instantaneous mass transfer between the tumour cell phase and the 
non-viable phase. This corresponds to a redistribution of material internally within the tumour whilst avoiding 
the instantaneous volume loss often observed in radiotherapy response models (Enderling et al 2009, Rockne 
et al 2010, Prokopiou et al 2015, Chvetsov et al 2017).

We used numerical simulation of the model system to simulate radiotherapy fractionation protocols and 
investigate the resulting tumour response dynamics. The model exhibits a range of dynamics that are qualita-
tively similar to those observed in clinical data. For the class of response for which the tumour plateaus in tumour 
radius after an initial positive response to treatment, we observe dynamics that are very similar in nature to the 
results presented in our previous tumour spheroid model (Lewin et al 2018) whereby the weekend break allows 
for sufficient regrowth to overcome the effects of radiotherapy. The multiphase model presented here is also 
able to capture a ‘pseudo-progression’ response to radiotherapy. In these cases the tumour appears to continue 
tumour growth throughout the initial stages of treatment before a reduction in tumour volume is observed 
during the latter stages of the protocol. In our model, this behaviour is attributed to a build-up of dead material 

Figure 9.  Simulation of equations (15)–(25) exhibiting a dip in tumour radius after the end of the radiotherapy fractionation 
schedule, using the parameter values in table 3, case G. The solution has been normalised to the tumour radius at the start of 
treatment at time t  =  50. (a) Tumour radius trajectory (blue line) for the simulation. The dots plotted along the trajectory mark the 
key time points in the dynamics. (b) The cell sensing function Σφ (blue line) defined by equation (20). The points plotted mark the 
approximate cellular pressures within the tumour, Σφ(φ̄1 + θΣφ̄2), for the time points plotted in panel (a). (c) The corresponding 
tumour compositions for the time points marked on the trajectory in panel (a).
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within the tumour, as opposed to an aggressive tumour population which continues to increase despite irradia-
tion. We note that this type of response is not possible to achieve with models which treat the effects of radio-
therapy as an instantaneous volume loss (Prokopiou et al 2015).

We characterised two different types of regrowth behaviour post-radiotherapy that differ from the growth 
dynamics presented in Lewin et al (2019). These dynamics were driven by aspects of the underlying tumour 
composition, highlighting the potential importance of the spatial distribution of constituents of the tumour 
microenvironment on the resulting dynamics. Analysis of the waiting time before the decline in tumour radius 
would proceed in a similar manner to that presented in (Breward et al 2002). Rigorous analysis of the tumour 
radius trajectory throughout post-treatment dynamics is likely to be tractable but is left as further work. Further 
investigation of the bistability is also a possible direction for future work.

The qualitative exploration of parameter space presented in this paper demonstrates the range of dynamic 
behaviours exhibited by our multiphase model. However, estimates of typical values for many of the model 
parameters are not currently available. A comprehensive exploration of clinically-relevant regions of parameter 
space is an important avenue for future work. The field of clinical imaging to measure tumour/normal tissue 
physiology (e.g. cell density, hypoxia, proliferation) is rapidly advancing (Sun et al 2018, Salem et al 2019, Rockne 
et al 2019). New techniques may soon provide spatiotemporal data with which to parametrise our model and 
those of others.

The local structure of the tumour vasculature is known to have a strong influence on in vivo tumour growth 
and treatment response (Bertout et al 2008, Hanahan and Weinberg 2000, Carmeliet and Jain 2000). Several 
existing models aim to investigate the effects of tumour vasculature on radiotherapy response (Ergun et al 2003, 
Ledzewicz and Schättler 2012, Scott et al 2016, Grogan et al 2016). In this paper we neglected explicit mention of 
the vasculature and focussed our attention on the influence of the internal tumour composition on the qualita-
tive response to irradiation. While the full model system (equations (1)–(9)) generalises to 3D, we used numer
ical simulations in a simplified 1D Cartesian geometry to examine the model dynamics. Future work would 
include simulating the model dynamics for more complex geometries. In this setting the model could be further 
extended to incorporate tumour vasculature (Hubbard and Byrne 2013) to investigate the interplay between 
vascular density, cell death and radiotherapy. Similarly, several authors have investigated the dependence of the 
oxygen enhancement ratio, OER, on the local oxygen concentration (Carlson et al 2011). Simulations using a 
more complex functional relationship did not show significant differences and so here we favour the simplest 
form for incorporating the effects of hypoxia on radiotherapy response. Further investigation of these effects in 
more complex geometries is an area for further work.

In our model the exterior tumour boundary is defined to be where the tumour cell volume fraction drops 
to zero. Thus we make the assumption that is common in models of this type of a sharp interface between the 
tumour and its surroundings (Ward and King 1999, Landman and Please 2001, Breward et al 2002, Byrne et al 
2003). Some authors have developed models which relax this assumption and allow for a coexistence of tumour 

Figure 10.  Tumour radius trajectory (solid blue line) for a simulation of equations (15)–(25) for which the radiotherapy alters 
the regrowth trajectory of the tumour. The growth trajectory in the absence of radiotherapy is shown by the dashed blue line. 
The solutions have been normalised to the tumour radius at the start of treatment at time t  =  50. The parameter values for this 
simulation are listed in table 3, case H.
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and healthy cells (Hubbard and Byrne 2013). Such model extensions that explicitly include a normal cell phase 
may be useful in further investigations into tumour response dynamics and the impact of radiotherapy on the 
surrounding normal tissue.

By performing a parameter sweep on the sub-space describing the material properties of dead cellular mat
erial we examined the effects of some aspects of inter-patient heterogeneity on radiotherapy response. These 
may include differences in the balance of different cell death pathways induced by irradiation of the tumour 
cells (Eriksson and Stigbrand 2010), the strength of the immune response due to infiltration of immune cells 
and the subsequent clearance of dead material (Kaur and Asea 2012), interpatient heterogeneity in radiation 
sensitivity (Eschrich et al 2009), and simply biological variation (Spencer et al 2009). Model simulations suggest 
that the influence of the dead material is dependent on the wider region of parameter space. For some parameter 
combinations, tumour composition and growth trajectories may be very similar before radiotherapy but treat-
ment response dynamics vary greatly. These results suggest that the material properties of the dead phase are sig-
nificant, and further work would need to identify how early during the treatment we may reasonably determine 
tumour composition and tumour properties to reliably predict response in individual patients.
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