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Abstract
Cone-beam computed tomography (CBCT) images acquired during radiotherapy may allow early 
response assessment. Previous studies have reported inconsistent findings on an association of 
CBCT-measured tumor volume changes with clinical outcomes. The purpose of this pilot study was 
twofold: (1) to characterize changes in CBCT-based radiomics features during treatment; and (2) to 
quantify the potential association of CBCT-based delta-radiomics features with overall survival in 
locally advanced lung cancer.

We retrospectively identified 23 patients and calculated 658 radiomics features from each of 11 
CBCT images per patient. Feature selection was performed based on repeatability, robustness against 
contouring uncertainties, and non-redundancy. We calculated the coefficient of determination (R2) 
for the relationship between the actual feature value at the end of treatment and predicted value 
based on linear models fitted using features between the first and kth fractions. We also quantified the 
predictive ability for survival with two methods by: (1) comparing delta-radiomics features (defined 
as the mean change between the first and kth fractions) between two groups of patients divided by 
a cutoff survival time of 18 months using the t-test or Wilcoxon rank-sum test; and (2) quantifying 
univariate discrimination of two groups divided by the median of delta-radiomics feature.

All selected seven radiomics features during treatment (as early as the 10th fraction) were 
predictive of those at the end of treatment (R2  >  0.64). Three delta-radiomics features demonstrated 
significant differences (q  <  0.05, as early as the 10th fraction) between the two groups of patients 
divided by the cutoff survival time. Two of those three features were also predictive of survival 
according to the log-rank statistics.

We provided the first demonstration of a potential association of CBCT-based delta-radiomics 
features early during treatment with overall survival in locally advanced lung cancer. Our 
preliminary findings should be validated for a larger cohort of patients.
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Introduction

Lung cancer is the second most common cancer and the leading cause of cancer death in both men and women 
in the US (Kupelian et al 2005, Smith et al 2018). For locally advanced inoperable lung cancer, chemotherapy 
combined with fractionated radiotherapy is a common treatment regimen that can improve survival rates 
compared to radiation therapy alone (Molina et al 2008). However, between 2008 and 2014, the 5 year survival 
rate for lung cancer patients was only 18.6% (Kupelian et al 2005). Early response assessment during a course 
of treatment could potentially allow response-adapted therapy (i.e. biologically adaptive radiation therapy), 
which may improve clinical outcomes. For example, the radiation dose could be escalated to nonresponding 
tumors without increasing the dose to normal tissues through adapting the treatment plan to changing anatomy 
(Guckenberger et al 2011).

Cone-beam computed tomography (CBCT) images, which are commonly used for patient positioning and 
target localization before each fraction of radiotherapy, may allow early response assessment. Tumor volume 
changes have been regarded as an important metric to assess treatment response (Dubben et al 1998, Mozley 
et al 2012). Previous studies investigated the potential of tumor volume reduction measured on CBCT images 
in predicting treatment response and clinical outcomes for lung cancer; however, the findings were inconsistent 
and inconclusive (Brink et al 2014, Jabbour et al 2015, Mazzola et al 2016, Wen et al 2017). Jabbour et al noted that 
patients with greater tumor volume reduction survived longer than patients with smaller volume reduction (Jab-
bour et al 2015), while Brink et al found that patients with greater tumor volume reduction was associated with 
poorer survival (Brink et al 2014).

Radiomics is an emerging technology to extract vast quantitative features from medical images and has been 
demonstrated to have significant predictive power for gene expression, response to therapy, and clinical out-
comes (Kumar et al 2012, Lambin et al 2012, Mattonen et al 2014, Huynh et al 2016, Fave et al 2017). Radiomics 
features extracted from CBCT images may allow for more accurate prediction of treatment response and out-
comes compared to tumor volume changes. A recent study found that some radiomics features extracted from 
CBCT images of the first fraction of treatment were interchangeable with those from planning CT images (van 
Timmeren et al 2017b). Moreover, changes in CBCT-based radiomics were detectable as early as the second week 
of treatment (van Timmeren et al 2017a). These results indicate the feasibility of CBCT-based delta-radiomics. 
No studies have investigated the prognostic value of CBCT-based delta-radiomics during a course of treatment.

The purpose of this pilot study was twofold: firstly, to characterize changes in CBCT-based radiomics features 
during a course of treatment; and secondly, to quantify the potential association of CBCT-based delta-radiomics 
features with overall survival in locally advanced lung cancer.

Methods

Patients and image datasets
This study retrospectively reviewed 67 patients with stage III (American Joint Committee on Cancer) non-
small cell lung cancer (NSCLC) treated with radiotherapy and concurrent chemotherapy at the University of 
California Davis between 2011 and 2016 under institutional review board (IRB) approval. Inclusion criteria 
included: (1) patients received  ⩾58 Gy in 2 Gy daily fractions, (2) patients underwent daily CBCT imaging 
with consistent acquisition/reconstruction parameters, and (3) patients were followed for at least 18 months 
or deceased. Patients were excluded if they received prior or subsequent radiotherapy to the thorax, or if the 
primary tumor and involved lymph nodes were not in the CBCT field of view. A total of 23 patients met the 
criteria and were included in this study. Supplementary table 1 (stacks.iop.org/PMB/65/015009/mmedia) shows 
the eligible patients’ clinical characteristics. CBCT image datasets were selected at an interval of 3  ±  1 fractions, 
resulting in a total of 11 image datasets per patient. A time window of  ±1 fraction was used to maintain intra-
patient consistency in the following image acquisition/reconstruction parameters: tube voltage (kVp), tube 
current (mA), exposure time, pixel size, slice thickness, and field of view. CBCT scans were acquired during free 
breathing with a kV x-ray imaging system mounted on a Synergy® linear accelerator (Elekta AB, Stockholm, 
Sweden). Although intra-patient consistency was maintained, there were minor variations between patients in 
the following parameters: tube current (40 mA in 20 patients; 25 mA in 3 patients), exposure time (40 ms in 20 
patients; 10 ms in 3 patients) and slice thickness (3 mm in 20 patients; 1 mm in 3 patients). Overall survival was 
defined as the time from the first day of treatment until death from any cause. Patients that were alive at the last 
known follow-up were censored.

GTV propagation
Figure 1 illustrates the schematic of the analysis performed in the study. The first step was to propagate the gross 
tumor volume (GTV) contours from the planning CT image to the CBCT images using deformable image 
registration (DIR). The GTV, defined as the primary tumor and regionally involved lymph nodes identified on 
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the planning CT image, was contoured for clinical treatment planning. DIR was performed between the planning 
CT image (fixed) and CBCT image of the first fraction (moving), and then between the two consecutive CBCT 
images using the hybrid DIR algorithm (without setting controlling structures) of the RayStation treatment 
planning system (RaySearch Laboratories AB, Stockholm, Sweden) (Weistrand and Svensson 2015). The 
accuracy of this algorithm for contour propagation has been validated with thorax CT image datasets in a multi-
institutional study (Loi et al 2018). Dice similarity coefficients were  >0.85 for the spatial overlap between the 
DIR-propagated contours and reference contours. The same level of accuracy was assumed in this study, and only 
visual inspection was performed to check for major errors.

Radiomics feature extraction
The second step was to extract radiomics features from each CBCT image dataset with the propagated GTV 
contour (figure 1). A total of 658 radiomics features (categorized into shape, intensity, texture and Laplacian 
of Gaussian (LoG) filter) were extracted using an open source software tool, IBEX (Aerts et al 2014, Zhang et al 
2015). Shape features include the volume and surface area. Intensity features include intensity histogram features 
and first order statistical features derived directly from the image intensity. Texture features are calculated 
based on gray-level co-occurrence matrix (GLCM) (at different directions, yielding different values treated 
independently), gray-level run length matrix (GLRLM) (at different directions, yielding different values that 
were treated independently) and neighborhood intensity difference matrix (NIDM). LoG filter features are 
determined by applying LoG filters (with three filter parameters: size  =  5, sigma  =  1; size  =  7, sigma  =  1.5; and 
size  =  11, sigma  =  2.5, yielding three different values that were treated independently) to the image dataset, then 
calculating the first order statistical features. For texture features, all image datasets were rescaled into an 8-bit 
depth to reduce the effect of image noise and prevent sparsely populated matrices from being produced. Intensity 
features were calculated both with and without 8-bit depth rescaling, yielding two different values for a given 
feature, which were treated as two independent features. No image resampling was performed.

Radiomics feature selection
The third step was to select radiomics features for the data analysis (figure 1). Selection criteria included: ‘test–
retest’ repeatability, robustness against contouring uncertainties, and non-redundancy. For the repeatability, we 
quantified the intraclass correlation coefficient (ICC) (2,1) (for the absolute agreement among measurements) 
between pairs of feature values extracted from the CBCT image datasets of the first two treatment fractions 
(assuming negligible changes in response to treatment) using 15 patients. From the same cohort of 67 patients 
with stage III NSCLC mentioned above, we selected 15 patients who underwent CBCT imaging on the first 

Figure 1.  Schematic of the radiomics analysis performed in the study. (1) GTV propagation. GTV contours were propagated from 
the planning CT image to the CBCT image by deformable images registration. (2) Feature extraction. Four types of radiomics 
features were extracted: shape, intensity, texture and Laplacian of Gaussian (LoG) filter. (3) Feature selection. Feature selection was 
performed based on three criteria: ‘test-retest’ repeatability, robustness against contouring uncertainties, and non-redundancy.  
(4) Data analysis. The selected features were used to characterize changes in radiomics features and to quantify the predictive ability 
for overall survival.

Phys. Med. Biol. 65 (2020) 015009 (10pp)



4

L Shi et al

two fractions with the same imaging parameters (tube voltage 120 kVp, current 40 mA, exposure time 40 ms, 
and slice thickness 3 mm) as those of the majority of CBCT images used for the analysis (220 of all 253 CBCT 
images for 20 of 23 patients). The rationale is to approximate conditions required for the evaluation of test–
retest repeatability by eliminating differences in imaging parameters between the two CBCT images. For the 
robustness, we quantified the ICC(2,1) between pairs of feature values extracted from the planning CT images 
with two distinct GTV contours delineated previously by two different radiation oncologists for another study 
using a separate dataset of 15 patients with stage III NSCLC. These 15 patients were among 67 patients reviewed 
in this study but independent from those used for the analysis. The mean Dice similarity coefficient for the spatial 
overlap between the two contours was 0.68 (standard deviation: 0.18). Features with an ICC  >  0.9 for both the 
repeatability and robustness were identified, and then evaluated for the redundancy using the CBCT image 
datasets of the first fraction of the same 15 patients used for the repeatability. We calculated the Spearman’s 
correlation coefficient (rs) between different pairs of features. If the rs was  >0.8, the one with higher repeatability 
was selected for the subsequent analysis.

Characterizing changes in radiomics features during treatment
For the first part of data analysis, we characterized changes in CBCT-based radiomics features during treatment. 
All feature values were normalized to the baseline value. We also explored whether CBCT-based features early 
during treatment can predict features at the end of treatment. Linear models were fitted using all the features 
between the first and kth (k  =  4, 7, 10, …) fractions, and then were used to predict the feature at the end of 
treatment. The coefficient of determination (R2) for the relationship between the predicted and actual values at 
the end of treatment was quantified as a measure of the predictive ability. We evaluated how the predictive ability 
varied with k.

Prediction of overall survival
For the second part of data analysis, we quantified the predictive ability of CBCT-based delta-radiomics features 

for overall survival using two methods. The delta-radiomics feature 
∣∣∆Feature(1:k)

∣∣ at the kth fraction was  

defined by

∣∣∆Feature(1:k)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

3

k − 1

k∑

m = 3n + 1
n ∈ {1, 2, 3, . . .}

Featurem − Feature1

Feature1

∣∣∣∣∣∣∣∣∣∣∣∣
where Featurem    is the feature value at the mth fraction. Firstly, we compared the delta-radiomics features 
between two groups of patients divided by a cutoff survival time of 18 months. The 18-month survival time 
is considered clinically relevant in locally advanced NSCLC and consistent with cutoff times used in previous 
studies (range 12–24 months) (Hoang et al 2005, Oberije et al 2014). The Kolmogorov–Smirnov test was used to 
test data normality. We used the two-sided t-test for the normally distributed data and the two-sided Wilcoxon 
rank-sum test for the non-normally distributed data to investigate whether the difference was statistically 
significant at different time points (k). Secondly, we calculated Kaplan–Meier overall survival curves of two 
groups of patients divided by the median of the delta-radiomics feature, and used the log-rank test to quantify 
the univariate discrimination of the two groups. Multiple testing correction was applied to all the results based on 
the false discovery rate (FDR) procedure, (Benjamini and Hochberg 1995, Storey 2002) where a q-value less than 
0.05 was considered statistically significant.

Results

Feature selection
Of 658 radiomics features calculated in this study, 474 features met the repeatability criteria. Of 474 features, 301 
features met the robustness criteria. Finally, the following seven features met the redundancy criteria: volume; 
‘0.75 quantile’ (without 8-bit rescaling); ‘global max’ (with 8-bit rescaling); ‘local range standard deviation 
(SD)’ (with 8-bit rescaling), ‘energy’; ‘inverse difference normalized (IDN)’, and ‘65 percentile’ (LoG filter 
feature). Supplementary table 2 shows details of these features.

Changes in radiomics features during treatment
Figure 2 shows changes in three representative CBCT-based radiomics feature (‘energy’, ‘local range SD’, 
and volume) during treatment for two representative patients. The survival time was 7.8 months for patient 1, 
and  >43.1 months (censored) for patient 2. Changes in all the three features presented a clear time trend. The 
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rates of changes in ‘energy’ and volume were greater in patient 1 than in patient 2, while that of ‘local range 
SD’ was similar between the two patients. Changes in the other four features for the two patients are shown in 
supplementary figures 1–4.

Features early during treatment were predictive of features at the end of treatment (i.e. R2  >  0.64 for the 
relationship between the predicted and actual feature values) for all the seven features. Figure 3 shows the R2 as a 
function of the fraction number (k) used for prediction. The R2 generally increased with increasing k as expected. 
There were considerable differences between the features in the earliest predictive time point, ranging from the 
10th fraction (‘energy’, ‘IDN’, ‘0.75 quantile’, and volume) to the 22nd fraction (‘global max’) and 28th frac-
tion (‘local range SD’ and ’65 percentile’).

Prediction of overall survival
Figure 4 shows q-values for the differences of the delta-radiomics features between the two groups of patients as 
a function of the fraction number (k) used to calculate the delta-radiomics features. The FDR step-up procedure 
resulted in some identical q-values in consecutive time points, e.g. ‘energy’ after the 16th fraction. Two texture 
features (‘energy’ and ‘IDN’) and ‘0.75 quantile’ were predictive of overall survival as early as the 10th, 13th 
and 19th fractions, respectively. The remaining four features were not predictive at any fractions. For the three 
predictive features, delta-radiomics feature values were greater in patients with shorter survival time than in those 
with longer survival time (figure 5). Patients’ clinical characteristics and imaging parameters were comparable 

between the two groups of patients.
According to the log-rank statistics, only ‘energy’ and ‘IDN’ were predictive of survival. Q-values generally 

decreased with increasing k. Both ‘energy’ and ‘IDN’ were predictive of survival as early as the 10th fraction 
(table 1). Figure 6 shows comparisons of Kaplan–Meier overall survival curves between two groups of patients 

stratified by the median of 
∣∣∣∆′energy′(1:10)

∣∣∣ and the median of 
∣∣∣∆volume(1:10)

∣∣∣. ‘Energy’ significantly discrimi-

nated between patients with higher and lower survival probabilities (q  <  0.01), whereas the volume did not show 

significant discriminatory power (q  =  0.12).

Discussion

To the best of our knowledge, this is the first study correlating CBCT-based delta-radiomics features with clinical 
outcomes. We demonstrated a significant association between CBCT-based delta-radiomics features (‘energy’ 
and ‘IDN’) and overall survival in locally advanced NSCLC. These features were found to be predictive of survival 
as early as the 10th fraction of treatment. Our findings provide preliminary evidence for the prognostic value 
of CBCT-based delta-radiomics for early response assessment in lung cancer. Also, we demonstrated a strong 
relationship between the features at the end of treatment predicted by fitting a linear model to the features early 

Figure 2.  Changes in CBCT-based radiomics features during treatment for three representative features: ‘energy’, ‘local range 
standard deviation (SD)’, and volume. Feature values are normalized to the baseline value. The survival time was 7.8 months for 
patient 1, and longer than 43.1 months (censored) for patient 2.
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6

L Shi et al

during treatment and the actual feature, suggesting that CBCT-based radiomics features can be described by a 
simple linear model. Previous studies have also demonstrated the association of delta-radiomics based on other 
modalities (including CT and 18F-FDG PET) with clinical outcomes in lung cancer (Carvalho et al 2016, Dong 
et al 2016, Fave et al 2017). Van Timmeren et al found that CBCT-based delta-radiomics features were detectable 
as early as the second week of treatment in NSCLC (van Timmeren et al 2017a), which is in line with our findings 
that the 10th fraction of treatment (corresponding to the second week) was the earliest time point predictive of 
features at the end of treatment as well as overall survival.

We did not find a significant association between tumor volume changes and survival. Previous studies have 
reported inconsistent, conflicting data on the association of tumor volume changes with clinical outcomes. Some 
studies have reported no significant association with survival (Willner et al 2002, Carvalho et al 2016), which is 
consistent with this study. Other studies have found a significant association with survival (Bral et al 2011, Brink 
et al 2014, Jabbour et al 2015, Mazzola et al 2016, Wen et al 2017); however, conflicting findings have been reported 
as described in the Introduction (Brink et al 2014, Jabbour et al 2015). Further studies are needed to investigate 

Figure 3.  The coefficient of determination (R2) for the relationship between the predicted and actual values at the end of treatment 
as a function of the fraction number (k) used for prediction for the selected seven features.

Figure 4.  Q-values for the differences of delta-radiomics features (
∣∣∆Feature(1:k)

∣∣) between the two groups of patients divided by a 
cutoff survival time of 18 months as a function of the fraction number (k) used to calculate delta-radiomics features for the selected 
seven features. Q  <  0.05 (the dashed line) was considered statistically significant.
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the prognostic values of tumor volume changes in lung cancer (Mattonen et al 2014, Zayed and Elnemr 2015, 
Mattonen et al 2016).

An interesting observation from this study is that patients with smaller delta-radiomics features (i.e. smaller 
changes) are associated with better survival. This may seem counterintuitive; however, similar findings have been 
previously observed with tumor volume changes measured with CBCT (Brink et al 2014), tumor metabolism 
measured with FDG PET (van Baardwijk et al 2007), and tumor proliferation measured with 3′-18F-fluoro-
3′-deoxy-L-thymidine (18F-FLT) PET (Bradshaw et al 2015). Brink et al showed that lung cancer patients with 
pronounced tumor volume regression during treatment had worse survival (Brink et al 2014). Bradshaw et al 
reported that patients with large reductions in FLT uptake during radiotherapy had a shorter time to progression 
than those with small changes or increases in FLT uptake using a canine model with nasal tumors (Bradshaw 
et al 2015). One explanation for these counterintuitive findings is that tumors with pronounced response early 
during treatment might indicate the aggressiveness of the tumor and could be more likely to regrow rapidly after 
treatment, leading to worse outcomes. Further studies are needed to investigate underlying mechanisms.

Figure 5.  Box plots for the delta-radiomics feature of ‘energy’ (
∣∣∣∆′energy′(1:k)

∣∣∣) for the two groups of patients divided by a cutoff 

survival time of 18 months as a function of the fraction number (k) used to calculate features. Each box represents the interquartile 
range (IQR). The horizontal line inside the box represents the median. The upper and lower whiskers extend to the highest and 
lowest values within 1.5 * IQR of 0.75 quartile and 0.25 quartile, respectively. Outliers are plotted as individual points. Q-values for 

the differences of 
∣∣∣∆′energy′(1:k)

∣∣∣ between the two groups are also shown.

Table 1.  Log-rank q-values for the univariate discrimination of overall survival by the median of seven selected delta-radiomics features.

Fraction number 

(k)

Texture features Intensity features LoG feature

Shape 

feature

‘Energy’ ‘IDN’ ‘Global max’
‘Local 

range SD’ ‘0.75 quantile’ ‘65 percentile’ Volume

4 0.09 0.07 0.09 0.09 0.12 0.06 0.09

7 0.05 0.12 0.11 0.07 0.10 0.02 0.14

10   <  0.01 0.02 0.10 0.06 0.10 0.05 0.12

13   <  0.01 0.05 0.13 0.03 0.09 0.05 0.12

16   <  0.01 0.02 0.11 0.05 0.09 0.08 0.12

19 0.01 0.05 0.09 0.09 0.09 0.12 0.05

22 0.04   <  0.01 0.09 0.11 0.07 0.12 0.09

25   <  0.01   <  0.01 0.09 0.11 0.10 0.12 0.05

28   <  0.01   <  0.01 0.09 0.11 0.10 0.11 0.05

30   <  0.01   <  0.01 0.09 0.13 0.12 0.11 0.05

Abbreviation: IDN: inverse difference normalized; SD: standard deviation; LoG: Laplacian of Gaussian.

Italic q  <  0.05.
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The low image quality due to substantial scatter is one of the main disadvantages of CBCT. Nevertheless, Fave 
et al demonstrated that some CBCT-based radiomics features were robust to the image noise and poor image 
quality (Fave et al 2015). Van Timmeren et al showed that some radiomics features extracted from CT and CBCT 
were interchangeable (van Timmeren et al 2017b). These results as well as our findings suggest the potential for 
CBCT-based delta-radiomics to serve as an early imaging biomarker to predict clinical outcomes.

In this study, we calculated delta-radiomics features based on the mean change between the first and kth  
fractions rather than the change at each time point used in a previous delta-radiomics study (Fave et al 2017). 
Delta-radiomics features based on the change at each time point yielded larger fluctuations in the q-values over 
time and generally larger q-values compared to those of delta-radiomics features based on the mean change 
(supplementary figure 5). One likely explanation is that the delta-radiomics based on the change at each time 
point uses smaller datasets and hence more susceptible to image noise, leading to larger uncertainties.

There are several limitations to this study. First, the sample size is small, and hence the findings of this study 
should be considered preliminary. Further studies are necessary to validate the models through a large-scale 
study with appropriate approaches such as strategies described in the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement (Collins et al 2015). Second, only 
visual inspection was performed to check the accuracy of DIR, assuming the same level of accuracy as previous 
studies. However, we consider the effect of residual DIR errors on the results to be small because radiomics fea-
tures were selected using the robustness against contouring uncertainties as one of the criteria, which implicitly 
accounts for uncertainties in DIR as well. Third, respiratory motion, which was previously found to have a con-
siderable effect on the repeatability of CBCT-based radiomics features, was not directly accounted for in patient 
selection. However, we selected features using the ‘test–retest’ repeatability quantified with 15 patients of the 
23 eligible patients, including tumors in the lower lobe, thus the effect of motion on the results may be minimal. 
Fourth, we only fitted a linear model using features early during treatment to predict the features at the end of 
treatment. The rationale is to avoid overfitting, especially given small datasets used for prediction in this study. 
Nevertheless, non-linear models might result in a better fit, and further studies are needed.

Conclusion

CBCT-based delta-radiomics features early during a course of treatment may be associated with overall survival 
in locally advanced NSCLC. Further large-scale studies are needed to validate these preliminary findings.
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