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1.  Introduction

Due to its superiority on soft-tissue contrast and its non-invasive feature, MRI is an established modality in 
clinical routine. In particular, it has become a promising technique for imaging moving organs at the abdomen 
or cardio-thoracic level with the possibility of obtaining time-resolved 3D images (4D-MRI). Many applications 
can be considered, such as lung exploration and detection of lung nodules (Ohno et al 2017, Feng et al 2019), 
cystic fibrosis (Dournes et al 2016), or, to an even more complex degree, 3D-cine cardiac imaging (Jahnke et al 
2006). 4D-MRI is also a tool of choice for planning sessions in radiation (Paganelli et al 2015, Jinsoo et al 2017) 
and high intensity focused ultrasound (HIFU) (Ferrer et al 2019) therapies of abdominal tumors: it thereby 
facilitates the prospective analysis of organ localisation on the therapeutic treatment and allows monitoring 
changes in target motion patterns during the treatment course (Stemkens et al 2016).

A wide range of approaches have been developed to obtain 4D-MRI images. The data needs to be re-ordered 
retrospectively in 3D according to the respiratory or cardiac cycles. For this purpose, the most recent approaches 
use self-gating techniques where a motion signal is extracted from the acquired data (Trotier et al 2016, Han 
et al 2017, Higano et al 2017). Then, to construct high-resolution 4D-MR data, both prospective gated imaging 
and retrospective binning methods have been explored in previous studies (Tryggestad et al 2013, Liu et al 2015, 
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Abstract
4D-MRI is a promising tool for organ exploration, target delineation and treatment planning. 
Intra-scan motion artifacts may be greatly reduced by increasing the imaging frame rate. However, 
poor signal-to-noise ratios (SNR) are observed when increasing spatial and/or frame number per 
physiological cycle, in particular in the abdomen.

In the current work, the proposed 4D-MRI method favored spatial resolution, frame number, 
isotropic voxels and large field-of-view (FOV) during MR-acquisition. The consequential SNR 
penalty in the reconstructed data is addressed retrospectively using an iterative back-projection 
(IBP) algorithm. Practically, after computing individual spatial 3D deformations present in the 
images using a deformable image registration (DIR) algorithm, each 3D image is individually 
enhanced by fusing several successive frames in its local temporal neighborood, these latter being 
likely to cover common independent informations. A tuning parameter allows one to freely readjust 
the balance between temporal resolution and precision of the 4D-MRI.

The benefit of the method was quantitatively evaluated on the thorax of 6 mice under free 
breathing using a clinically acceptable duration. Improved 4D cardiac imaging was also shown in 
the heart of 1 mice. Obtained results are compared to theoretical expectations and discussed. The 
proposed implementation is easily parallelizable and optimized 4D-MRI could thereby be obtained 
with a clinically acceptable duration.
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Stemkens et al 2015). For both prospective and retrospective binning, the challenge is to populate motion bins 
densely enough within an acceptable acquisition duration. Missing-data artefacts are frequenlty encountered 
and a large slice-thickness is generally mandatory to obtain sufficient field-of-view (FOV) and signal-to-noise 
ratio (SNR). These approaches are generally limited in spatial resolution, and super-resolution (SR) techniques 
have thus recently been proposed to compensate for large voxel sizes in acquired images (Van Reeth et al 2015, 
Chilla et al 2017, Freedman et al 2018): several low-resolution images containing independent information of 
the same region are fused using an iterative back-projection (IBP) to produce one high-resolution image. An 
intrinsic drawback of such SR-approaches is that it can not provide any additional information in image regions 
prone to unmoving tissues. Alternatively, sparse imaging has also been introduced and has enabled to obtain 
5D cardiac information (3D images plus two distinct temporal dimensions representing cardiac and respira-
tory phases, respectively) with extension of XD-GRASP techniques (Feng et al 2018). These different techniques 
use specific k-space encoding, most often radial or spiral trajectories. These last methods are known to be more 
robust to motion. Further motion correction methods based on linear phase correction to all the acquired 
k-space have been introduced (Cheng et al 2012) and it can be coupled with acceleration technique to obtain 
free-breathing images in a wide range of applications (Cheng et al 2015, Zhang et al 2015, Chen et al 2017). In the 
latter approaches, the presence of movement due to breathing generates long acquisition times to obtain high 
spatial resolution images in 4D, preventing the use of this type of imaging in clinical routine. The complexity of 
reconstruction methods using self gating information, and/or compressed sensing reconstructions with multi-
channel coils is also an issue that must be taken care of for the development of abdominal and cardiopulmonary 
MRI in clinical routine.

For all above-mentioned methods, multiple 2D or 3D images with sufficient SNR need to be acquired, which 
imposes several restrictions during MR-acquisition in terms of either: image FOV, spatial resolution, frame num-
ber, voxel sizes or acquisition duration. In the current paper, our approach is to put aside any SNR considerations 
during the MR-signal acquisition. A 4D-data set is acquired during the physiological motion cycle (breathing or 
cardiac) with a large FOV, privileged spatial resolution and frame number (thereby avoiding intra-scan motion 
artifacts, only inter-scan motion are present) and isotropic voxels. The consequential SNR penalty in recon-
structed data is retrospectively addressed by adjusting the balance between temporal resolution and precision of 
the 4D-MRI, using an IBP strategy (Irani and Peleg 1993).

Our contribution is four-fold:

	(i)	� An image-enhancement method is proposed to optimize 4D abdominal MRI: a 4D data set with a 
high spatio-temporal resolution is acquired during the physiological motion. Each 3D image are 
subsequently individually enhanced by fusing several successive frames—these latter being likely to 
contain common independent anatomical informations—using an IBP-strategy.

	(ii)	� An input parameter—referred to as ρ ∈ [0, 1] in the scope of this study—is introduced to freely adjust 
the balance between the precision (favored by increasing ρ  toward 1) and the temporal resolution 
(favored by decreasing ρ  toward 0) of the 4D output.

	(iii)	� The performance of the proposed 4D image-enhancement method is quantitatively analysed in terms 
of both precision and accuracy in the thorax of 6 mice. Intrinsic limits of the method in the presence of 
complex organ deformations are illustrated in the heart of 1 mouse. Obtained results are compared to 
compressed sensing reconstructions and to theoretical expectations, and discussed.

	(iv)	� The benefit of using multi-CPU, GPU (graphics processing unit) and computer cluster architectures is 
evaluated.

2.  Materials and methods

2.1.  Proposed retrospective 4D IBP-enhancement method
The proposed method (detailed in figure 1) consists of three successive steps:

	 •	�Step #1—MR-acquisition/reconstruction: A 4D-MRI with isotropic voxels and optimized spatial 
resolution/frame number is first acquired during the physiological motion cycle (i.e. breathing if the thorax 
is screened, cardiac cycle if it is the heart) (see section 2.1.1). In order to obtain each dynamic 3D image in a 
reduced scan time (thereby avoiding intra-scan motion artefacts), the amount of acquired data in the k-space 
has to be limited. This largely affects in turns the signal-to-noise ratio (SNR).

	 •	�Step #2—Estimation of 3D organ deformations: At this point, we have a set of low-SNR 4D data with 
optimized spatial resolution/frame number. 3D inter-scan spatial deformation present in the 3D images were 
individually estimated using a deformable image registration (DIR) algorithm (see section 2.1.2). Potential 
deformation perturbations in motion estimates induced by the presence of noise in input images were 
compensated.

Phys. Med. Biol. 65 (2020) 015003 (15pp)
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	 •	�Step #3—IBP-enhancement: Each 3D low-SNR image was individually enhanced by fusing several 
successive frames covering commmon informations using an IBP approach (Irani and Peleg 1993) (see 
section 2.1.3). Practically, we iteratively minimized differences between acquired 3D low-SNR images and 
images generated from back-registering a guess of the unnoisy image.

2.1.1.  Step #1: acquisition of 4D data with optimized spatial resolution/frame number
A Self-Gated 3D UTE (ultrashort echo time) sequence was used, as described in section 2.2.2. For the rest of the 

manuscript, let N be the number of 3D noisy frames. We denote by I(k)
LQ  the original ‘low quality’ (noisy) images (k 

is a time index, k ∈ {1, ..., N}). Assuming the periodicity of the breathing and cardiac activities, k is taken modulo 
N once it goes out the range [0, N] in equations that follow.

2.1.2.  Step #2: estimation of 3D organ deformations

∀(n, k) ∈ {1, ..., N}2, let Tn,k be the 3D spatial transformation that allows registering the frame k (i.e. I(k)
LQ , 

referred to as the ‘moving image’) onto the frame n (i.e. I(n)
LQ , referred to as the ‘reference image’). Both forward 

and backward non-rigid displacements (i.e. Tn,k and T−1
n,k ) are mandatory for the achievement of Step #3. Tn,k 

and T−1
n,k  were estimated using a 3D optical flow (OF) algorithm (Zachiu et al 2015). Briefly, the OF-algorithm 

calculates non-rigid displacement between two imaging frames according to a transport equation, with an 
additional constraint on motion smoothness to model elastic organ deformation. An inverse consistency error 
(ICE), as defined by Christensen and Johnson (2001), was minimized in order to provide a pair of symmetric 

transformations (Tn,k, T
−1
n,k ) for a given pair of frames indexed by (n, k).

At this point, it must be noticed that OF-estimates are inherently sensitive to the presence noise in OF-input 
(noisy) images. ∀(n, k) ∈ {1, ..., N}2, the potential noise in forward transformations Tn,k were reduced using the 
following two-steps process:

	(i)	� Perturbations in Tn,k arising from the presence of noise in ‘moving images’ (index k) could be easily 
reduced using a voxelwise temporal (along k) average-filter (kernel size  =  5) applied on Tn,k, for each 
n ∈ [1, ..., N] individually.

	(ii)	� We could then take benefit of the assumption that Tn,n has to be identically equal to 0 ∀n ∈ [1, ..., N] 
(no organ motion): once filtered as done in (i), Tn,n is filled by OF persistant biases arising from 
the presence of noise in the ‘reference image’ (index n). For any given n, Tn,n thereby provides a 
voxelwise OF-bias map which was subtracted to Tn,k ∀k ∈ [1, ..., N] (practically: Tn,k = Tn,k − Tn,n, 
∀k ∈ [1, ..., N]).

Figure 1.  Data processing sequence designed for 4D abdominal MRI using the proposed IBP-algorithm. The dashed light-grey line 
encompasses data involved in the reconstruction of one single frame (here frame #1).

Phys. Med. Biol. 65 (2020) 015003 (15pp)
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This two-steps process was performed for backward transformations T−1
n,k , ∀(n, k) ∈ {1, ..., N}2, similarly.

2.1.3.  Step #3: IBP image enhancement

We denote by I(k)
HQ the N the desired ‘high quality’ 3D images. We recall that each frame in I(k)

HQ is calculated 

by fusing several successive frames in ILQ covering commmon informations. Practically, only successive frames 
contained in a sliding temporal window (centered on the working frame) were taken into account (let ∆T � 2 
be the size of this temporal window). We denote by ρ ∈ [0, 1] the ratio between the temporal window size and 

the total amount of frame N (we have ρ = ∆T
N ). We underline that ρ  is a crucial user-defined parameter for the 

algorithm, and its impact on the overall results will be carrefully evaluated and discussed later.
An IBP algorithm (Irani and Peleg 1993) was employed in each 3D frame invidually in order to compensate 

for inherent numerical approximations arising from the application of 3D spatial transformations on images. 

We denote by I(n)
HQ

∣∣∣
i
 the unnoisy guess (frame n) obtained at iteration i.

	(i)	� An initial guess of the desired unnoisy image was first computed. For each frame n ∈ [1, ..., N], we 

computed the mean of noisy images contained in the above-mentioned temporal window (i.e. I(k)
LQ , 

∀k ∈
[
n − ∆T

2 , n + ∆T
2 [), each image being registered onto the current position:

I(n)
HQ

∣∣∣
0
=

1

∆T

∑

k∈[n−∆T
2 ,n+∆T

2 [

Tn,k

(
I(k)

LQ

)
.� (1)

The theoretical SNR improvement is analysed in appendix.

	(ii)	� Noisy images I(k)
LQ

∣∣∣
i+1

 (k ∈
[
n − ∆T

2 , n + ∆T
2 [) which would be acquired if the guess was correct could 

then be estimated. To this end, the current guess of the unnoisy image I(n)
HQ

∣∣∣
i
 was back-registered on 

each frame position using the 3D spatial deformations T−1
n,k :

I(k)
LQ

∣∣∣
i+1

= T−1
n,k

(
I(n)

HQ

∣∣∣
i

)
.� (2)

	(iii)	� For each frame, the voxelwise differences between original and generated 3D noisy images could be 
calculated as follows:

Σ(n) =
1

∆T

∑

k∈[n−∆T
2 ,n+∆T

2 [

Tn,k

(
I(k)

LQ

∣∣∣
0
− I(k)

LQ

∣∣∣
i+1

)
.� (3)

	(iv)	� From a fixed-point scheme mimizing Σ(n), an updated unnoisy guess I(n)
HQ

∣∣∣
i+1

 could be generated 

∀n ∈ {1, ..., N}:

I(n)
HQ

∣∣∣
i+1

= I(n)
HQ

∣∣∣
i
+Σ(n).� (4)

	(v)	� The iterative process (ii)–(iv) was repeated (I(n)
HQ

∣∣∣
i
→ I(n)

HQ  ) until the relative variation of the residual 

error (i.e. the mean squared of Σ(n)) fell below a pre-defined user threshold (noted ε). While a reduced 
value for ε may lead to an advantageous decrease of the residual error, it must also be high enough to 
prevent the algorithm to get caught in an infinite loop (for numerical precision considerations). In all 
presented experiments, a good compromise for ε = has been found for a common value of 10%.

Note that, for the completion of all frames, the total number of forward/backward transformation pairs (Tn,k, 

T−1
n,k ) involved in equations (1)–(3) reached N×(N−1)

2  using a temporal window size ∆T = N . For computation 

time considerations, only needful pairs of transformations were pre-calculated in Step #2 and stored in random 
access memory (RAM) for fast access.

2.2.  Experimental validation
Both the precision and the accuracy of the 4D outputs were quantitatively evaluated on the abdomen of 6 mice 
under free-breathing. The performance of the method was subsequently analysed on the heart of one mouse.

2.2.1.  Experimental setup
Experiments were performed on a 7T Bruker Biospec system (Ettlingen, Germany), using a 4-phased array coil 
in a volume configuration (19 × 25.5 mm diameter, Rapid Biomedical). Acquisitions were performed on a group 
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of healthy mice (C57BL/6, body weights  =  19–25 g, Charles River, France). All experimental procedures were 
approved by the Animal Care and Use Institutional ethics committee of Bordeaux, France (approval no. 5012032-
A). The respiration was monitored using a balloon placed on the mouse abdomen. Respiratory rhythm was 
stabilized at 100 inspirations per minute and anesthesia was regulated by modifying the proportion of isoflurane 
inhaled. Before mouse positioning facing up in the magnet, 100 µmol Fe/kg of ultrasmall superparamagnetic 
iron oxide particles (Ferumoxytol, AMAG Pharmaceuticals) was injected through the tail vein to decrease the 
blood T1 longitudinal relaxation time and obtain a high blood signal.

2.2.2.  MR protocol
A radial 3D self-gated UTE sequence (Cardiet et al 2019) was used to perform the acquisitions with the following 
parameters: Repetition time/Echo time (TR/TE)  =  3.5/0.081 ms, excitation pulse/duration/angle  =  bloc 
pulse/0.05 ms/15°, field-of-view  =  22.5 × 22.5 × 22.5 mm3, matrix  =  128 × 128 × 128, resulting in an 
isotropic voxel size of 176 µm, receiver bandwidth  =  100 kHz. The number of samples per projection is equal 
to 75: 64 (matrix size)  +  6 (ramp compensation)  +  5 (Self-Gating samples). The radial acquisition scheme 
corresponding to 30 000 projections was repeated 40 times (with the number of repetitions noted NR) 
corresponding to a total acquisition duration of 70 min.

The self-gating signal, as already described in Hoerr et al (2013) and Trotier et al (2016), enables to identify 
respiratory and cardiac cycles. With the same data, cardiac or respiratory cine frames can be reconstructed. To do 
this, the k-space data were attributed, retrospectively, to the corresponding cine frame, according to their tempo-
ral position within the respiratory or cardiac cycle in order to generate 40 frames per breathing cycle or 30 frames 
per cardiac cycle.

To reconstruct the undersampled images, the 35 first minutes (NR  =  20) and the 17 first minutes (NR  =  10) 
and the 8 first minutes (NR  =  5) of the acquired data were used.

2.2.3.  Performance assessment in the thorax of 6 mice

Spatial analysis
All data acquired during the stable phase of the respiration cycle (from the 70 min acquisition time image, 
NR  =  40) were summed retrospectively in order to produce a gold-standard high resolution 3D image. Then, 
the performance of the proposed approach could be assessed by evaluating the peak-SNR (pSNR) between the 
3D enhanced output obtained at the stable phase of the exhalation and the gold-standard. For this purpose, for 
images with normalised intensity (values in the range [0, 1]), the pSNR can be obtained as follows:

pSNR = 10 × log

(
1

EQM

)
.� (5)

EQM being the mean quadratic error between our output and the goldstandard, obtained after image registration 
(using an algorithm which aims at maximizing edge alignment between the images being registered (Denis de 
Senneville et al 2016), in order to prevent any impact on the EQM) and intensity standardization (Nyul and 
Udupa 1999) (an histogram matching of order 2 was employed (Christensen 2003)).

Temporal analysis
A signal intensity drop was observable in the lung at the end of the inhalation, presumably caused by the variation 
of proton density per voxels along breathing. The accuracy over time was evaluated by analysing time-intensity 
curves (TIC) calculated over a cubic region of 15 × 15 × 15 voxels (noted Γ) located in the lung. The TIC, applied 
on a given 4D image I, can be calculated as follows:

fI,Γ(n) =
1

|Γ|
∑
�r∈Γ

I(n)
HQ(�r)� (6)

�r ∈ Ω being the spatial location, Ω the image coordinates domain, n the time index, and |Γ| the number of voxels 
in Γ (|Γ| = 153 in the current study).

The signal bias could then be evaluated by computing the mean absolute error (MAE) between TICs result-
ing from original ( fILQ,Γ(n)) and enhanced ( fIHQ,Γ(n)) data-sets, over the N frames of the observed physiological 
cycle, as follows:

MAE =
1

N

N∑
n=1

∣∣fILQ,Γ(n)− fIHQ,Γ(n)
∣∣ .� (7)
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Comparison with compressed sensing techniques
Two compressed sensing strategies (referred to as ‘CS-[1-2]’) were analysed:

	(i)	� CS-1: each 3D frame in the time sequence was individually reconstructed using a L1-Wavelet 
regularization.

	(ii)	� CS-2: the complete 4D data set was reconstructed using a L1-Wavelet regularization for both spatial 
and temporal dimensions.

Compressed sensing reconstructions were performed using the Berkeley Advanced Reconstruction Toolbox 
(BART, DOI: https://doi.org/10.5281/zenodo.592960). The estimation of the coil sensitivity was performed 
using the ESPIRiT calibration approach (Uecker et al 2014). A manual tuning of regularization parameters was 
performed and only best achievable results are reported in this study.

Statistical analysis
A Wilcoxon paired test was carried out in order to study whether pSNR and MAE differences are statistically 
significant between original, Compressed sensing and IBP-enhanced data sets, and between all pairs of tested ρ  
values. A significance threshold of p   =  0.05 was used.

2.2.4.  Performance assessment in the heart of a mouse
A qualitative analysis was performed as follows: we first observed mis-registered areas by analysing image 
difference between the images being registered. Subsequently, intensity biases on enhanced images were analysed 
on voxelwise difference maps calculated between original and enhanced images.

Note that the use of a goldstandard image was hardly feasible in the heart (insufficient steady periods were 
present in the cardiac motion pattern), preventing pSNR calculations in the scope of this experiment.

2.2.5.  Benchmark
Above-mentioned performance indicators were evaluated for acquisition durations of 8, 17 and 35 min and for ρ  
values of 5%, 20% and 100%.

Figure 2.  Typical registration results obtained using the implemented OF-algorithm (Step #2, see section 2.1.2) on the thorax 
of a mouse (acquisition duration  =  35 min). The original input noisy images obtained at the begining (a) and at the end of the 
exhalation (b) are reported. (c) shows the image in (b) registered on position in (a) using the implemented optical-flow algorithm. 
Note that the displacement in the liver/lung interface can be observable thanks to the red dashed lines in ((a)–(c)). The estimated 
spatial deformation field is reported in (d). The voxelwise image difference obtained before (e) and after image registration (f) are 
reported. The maximum absolute difference is reported in (g) for each of the 40 frames before (black dashed plot) and after (red 
plot) image registration. (a) ILQ (frame #1). (b) ILQ (frame #20). (c) Registered frame #20. (d) T1,20. (e) Difference (c)–(a). (f) 
Difference (b)–(a).

Phys. Med. Biol. 65 (2020) 015003 (15pp)
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Note that, for the thorax experiment, ρ  values of 5%, 20% and 100% corresponded to temporal sliding win-
dows sizes ∆T of 2, 8 and 40 frames, respectively. For the heart experiment, it corresponded to ∆T = 2, 6 and 30 
frames, respectively.

2.2.6.  Hardware and implementation
We evaluated the computational overhead of our method using two different hardware architectures:

Test platform #1
This platform employed commodity CPU/GPU hardwares. An Intel 2.5 GHz i7 workstation (Quad-core) with 
32 GB of RAM was used. The GPU was a NVidia GeForce GTX 770 with 2 GB of dynamic random-access memory 
(NVIDIA, Santa Clara, CA, USA). We separately tested three hardware configurations: (i) OF-registration tasks 
were performed by the CPU only (each individual OF-registration being multi-threaded on the four available 
CPU); (ii) registration tasks were performed by the GPU only; (iii) OF-registration tasks were split into two 
groups, each group being respectively tackled simultaneously by the CPU and the GPU (the size of each group 
was optimized for an optimal hardware utilisation).

Test platform #2
This platform was a computer cluster with 9 nodes of Intel Xeon E5-2680 2.5 GHz (2 Dodeca-core) with 128 GB 
of RAM.

The implementation was performed in C++ and parallelized through multi-threading. The GPU imple-
mentation was realized using the compute unified device architecture (CUDA) (NVIDIA 2008).

3.  Results

3.1.  Performance assessment in the thorax of 6 mice
A visualization of typical OF-registration results obtained in the thorax of a mouse is reported in figure 2. The 
implemented OF-algorithm estimated a spatially regular elastic deformation (mainly head-foot, as expected), 
as shown in figure 2(d). The maximum absolute difference between the reference and the registered image 

Figure 3.  Typical example of the IBP-enhancement (Step #3, see section 2.1.3) of an image acquired on the abdomen of a mouse 
during the stable phase of the exhalation. (a) original image (acquisition duration  =  35 min, ρ = 100%), (b) IBP-enhanced 
image at convergence, (c) residual error as a function of the iteration number. The original image (d), the initial guess (e) and its 
corresponding residual error map at (f), the guess at convergence (g) and its corresponding residual error map (h) are emphasized 
within a region of interest delimited by the red dashed rectangles in ((a) and (b)). Note that units in ((c), (f) and (h)) are arbitrary 
intensity units (a.i.u). (a) Original. (b) IHQ at convergence. (d) Original. (e) IHQ (inital guess). (f) Σ (initial guess). (g) IHQ 
(convergence). (h) Σ (convergence).

Phys. Med. Biol. 65 (2020) 015003 (15pp)
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Acquired image (ILQ)

(a)

IBP-enhanced image (IHQ)

(b)

Gold-standard

(c)

(d) (e) (f)

(g) (h) (i)

Figure 4.  Typical results obtained on the thorax of a mouse during the stable phase of the exhalation. The original (left column, 
acquisition duration  =  17 min), the corresponding IBP-enhanced (center column, ρ = 100%) and the goldstandard images (right 
column) are shown. Coronal, transversal and sagittal images are displayed in the 1st, 2nd and 3rd lines, respectively.

8 17 35
Acquisition duration [min]

26

28

30

32

34

36

pS
N

R
 [d

B
]

Original =5% =20% =100%

Figure 5.  Summary of pSNR values obtained for various acquisition durations (8, 17 and 35 min) and ρ  values of 5%, 20% and 
100%. Standard deviations over the 6 mice are given by the size of the red error bars.
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decreased by 60% when the OF-based registration was applied (figure 2(f)), even for two images associated to 

opposite instants of the breathing cycle (i.e. I(1)
LQ

∣∣∣
0
 and I(20)

LQ

∣∣∣
0
). This maximum absolute difference remained 

almost constant throughout the complete breathing cycle and did not exceed the basal level (see figure 2(g)), 
demonstrating steady performance of the employed OF algorithm.

The image quality visually improved with an increasing iteration number in the IBP algorithm, as shown in 
figures 3(d), (e) and (g). The corresponding voxelwise error decreased accordingly (see figures 3(f) and (h)). The 
residual error, as a function of the iteration number, depicted a strict decrease toward zero (figure 3(c)) show-
ing the convergence of the implemented fixed point scheme (equation (4)). At convergence, figure 4 shows that 
the enhanced image obtained at the end of the exhalation (figures 4(b), (e) and (h)) was visually more similar to 
the gold-standard (figures 4(c), (f) and (i)) as compared to the original one (figures 4(a), (d) and (g)). Videos of 
typical IBP-enhanced 4D images (acquisition duration  =  8 min, ρ = 100%) are provided in supplemental data 
(stacks.iop.org/PMB/65/015003/mmedia). This visual inspection is confirmed in figure 5 and table 1 for all tested 
mice. Only the following test did not shown statistically significantly different pSNR values: (35 min/ρ = 20%) 
versus (35 min/ρ = 100%) (p   =  0.16). For all other scenarios, the pSNR significantly increased for increased ρ  
value, for all tested acquisition durations (p   <  0.03). Using the proposed approach, an acquisition duration of 
8 min led to a pSNR higher than the one obtained on the original image with an acquisition duration of 35 min. 
Figures 6 and 7 provide a temporal analysis of the data. The signal in the lung drop during the exhalation, as 
shown by the black dashed line in figure 6. Although the time intensity curve obtained for ρ = 5% visually fit-
ted nicely this trend (red line), this were not the case at the end of inhalation for ρ = 20% (green line), and even 
worse for ρ = 100% (black line. No temporal variation was screened here). These observations are confirmed for 
all tested mice and acquisition durations in figure 7. The proposed IBP approach is compared with several up-to-
date compressed sensing strategies in figure 8. It can be observed that both pSNR (figures 8(e)) and MAE (figure 
8(f)) values were better using combined the spatio-temporal regularization strategy (CS-2) as compared to the 
frame-by-frame based strategy (CS-1). One can notice that, by setting ρ = 20%, a significantly higher pSNR was 

Table 1.  Summary of pSNR and MAE numerical values obtained for various acquisition durations (8, 17 and 35 min) and all tested 
reconstruction methods.

Experiment

8 min 17 min 35 min

Reconstruction pSNR MAE (×10−4) pSNR MAE (×10−4) pSNR MAE (×10−4)

Original 27.3 ± 1.1 0 ± 0 27.4 ± 1.3 0 ± 0 28.3 ± 1 0 ± 0

IBP [ρ = 5%] 29 ± 1 34 ± 7 29.3 ± 1.5 34 ± 15 30.7 ± 0.9 25 ± 5

IBP [ρ = 20%] 31.3 ± 0.9 47 ± 14 31.9 ± 1.8 47 ± 19 34.3 ± 1.1 37 ± 14

IBP [ρ = 100%] 32 ± 0.7 199 ± 45 32.6 ± 1.9 195 ± 43 34.7 ± 0.6 194 ± 41

CS-1 28.4 ± 1.4 40 ± 14 28.8 ± 1.1 42 ± 9 29.5 ± 1.1 49 ± 8

CS-2 29.7 ± 1.4 49 ± 14 29.6 ± 1 49 ± 9 29.8 ± 1 53 ± 6

Figure 6.  Time intensity curves obtained in a region of 15 × 15 × 15 voxels located in the lung a mouse (red arrow in figure 4(a)) for 
ρ  values of 5%, 20% and 100%.
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obtained using the proposed IBP approach (p   <  0.03), as compared to CS-1 and CS-2, together with a similar 

MAE penalty (p   >  0.3).

3.2.  Performance assessment in the heart of a mouse
A visualization of typical OF-registration results obtained in the heart of a mouse is reported in figure 9. The 
implemented OF-algorithm estimated a complex local deformation, as shown in figure 9(d). The maximum 
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Figure 7.  Summary of MAE (as defined in equation (7)) obtained for various acquisition durations (8, 17 and 35 min) and ρ  values 
of 5%, 20% and 100%). Standard deviations over the 6 mice are given by the size of the red error bars.
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Figure 8.  Typical results obtained using IBP and compressed sensing approaches. (a) Original image (acquisition 
duration  =  8 min), (b) gold-standard image, (c) IBP-enhanced image (ρ = 20%), (d) compressed sensing reconstruction (CS-2). 
pSNR and MAE values are summarized for each tested reconstruction methods (original, IBP with ρ = 20% and compressed 
sensing values) for various acquisition durations (8, 17 and 35 min) in (e) and (f), respectively. Standard deviations over the 6 mice 
are given by the size of the red error bars. (a) Original (ILQ). (b) Gold-standard. (c) IBP-enhancement. (d) Compressed sensing.
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absolute difference between the reference (reported in figure  9(a)) and the registered image (reported in 
figure 9(b)) decreased by only 20% when the OF-based registration was applied (figure 9(f)). The maximum 
absolute difference increased during the cardiac cycle, even approaching the values obtained when no registration 
was applied, demonstrating poor performance of the employed OF algorithm for images prone to complex 
deformations.

Figure 10 displays the performance of IBP-enhancement for ρ  values of 5%, 20% and 100%. For ρ  values of 
5% and 20%, voxelwise image differences between original and IBP-enhanced images shown comparable val-
ues in the heart and in the surrounding tissues (see figures 10(e) and (f)). This was however not the case for 
ρ = 100%: large image differences are observable in figure 10(g), especially in areas pointed by red arrows. Note 
that these regions match nicely mis-registered areas (see red arrows in figures 9(c) and (f)).

3.3.  Computational request
A computational benchmark of our implementations of the proposed reconstruction strategy, obtained for 
different ρ  values using our two test platforms, is provided in table 2. As expected, the computation time greatly 
benefited from our combined CPU/GPU implementation, and huge speed-up could be obtained using the 
computer cluster. About 15 min were necessary to enhance 40 frames of 128 × 128 × 128 voxels (the thorax MR-
scan) with ρ = 5% using our commodity hardware. A computer cluster complete the same task within less than 
a minute. While around one hour was needed using our commodity hardware for ρ = 100%, three minutes only 

were mandatory using our computer cluster.

4.  Discussion

The strategy consists of privileging spatial resolution/frame number of the acquired MR-data as well as isotropic 
voxel sizes and large FOV, the consequential SNR penalty being adressed using an IBP approach. The benefit of 
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Figure 9.  Typical registration results obtained using the implemented OF-algorithm (see section 2.1.2) on the heart of a mouse. 
The original input noisy images are reported for two different instants of the cardiac cycle in (a) and (b). (c) Shows the image in (b) 
registered on position in (a) using the implemented OF algorithm.The estimated spatial deformation field is reported in (d). The 
voxelwise image difference obtained before (e) and after image registration (f) are reported. Note that high values in (f) are obtained 
in mis-registered areas (see red arrows in (c) and (f)). The maximum absolute difference is reported in (g) for the individual 
registration of all acquired frames onto the image in (a) before (black dashed plot) and after (red plot) image registration. (a) 
Original (frame #1). (b) Original (frame #15). (c) Registered frame #15. (d) T1,15. (e) Difference (b)–(a). (f) Difference (c)–(a).
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the increased frame number is two-fold: first, reduced scan times allows limiting intra-scan motion artifacts. 
Second, the temporal resolution is converted into SNR thanks to the IBP strategy.

The proposed IBP approach acts like an ‘improved’ temporal filter in the sense that it is able to compensate 
for spatial organ deformations, and ensuing interpolation biases. The input parameter ρ  controls the kernel size 
(∆T) of this average filter and, by the way, its cut-of-frequency. ρ  thereby allows adjusting the balance between 
the precision gain and the inherent resulting penalty on the output accuracy. Practically, the algorithm is prone to 
catch high temporal frequencies of the signal for low ρ  values (see red curve in figure 6). Conversely, any temporal 
signal variations not attributed to motion may be dropped for ρ = 100% (see blue curve in figure 6).

In theory, the overall precision gain (i.e the noise standard deviation reduction) is equal to 
√
∆T  (see appen-

dix). In return for the above-mentioned precision benefit, a penalty factor of ∆T is applied on the temporal 
resolution of signal variations not attributed to motion. On the thorax experiments, it is interesting to note that 
a moderate ρ  value of 5% (which corresponded to a temporal window of 2 frames) improved greatly the pSNR 
(by �2 dB, which matched the theoretical SNR improvement ratio of 

√
2  arising from equation (A.1)): this ren-

dered the pSNR obtained using an acquisition duration of 8 min greater than the one obtained using an acquisi-
tion duration of 35 min without IBP-enhancement (see figure 5). This was achievable together with a moderate 
impact on the output accuracy: a penalty factor of 2 was applied on temporal signal variations not attributed to 
motion (see the red curve in figure 6).

The input parameter ρ  has thus to be chosen according to the final practical application: for segmentation/
delineation propagation tasks, a high ρ  value may be beneficial in order to enhance anatomical contrasts what-
ever the gray intensities of these latter. For processings based on a quantitative image contrast analysis, low ρ  
value may be preferable in order to prevent inherent reconstruction biases on overall results.

The performance of the reconstruction also rely on the ability of the employed image registration algorithm 
to catch organ deformations. We chose a 3D OF algorithm, because of its short processing time and minimal user 
intervention. The implemented OF algorithm shown steady efficiency throughout the complete breathing cycle 
in the thorax experiment (see figure 2), allowing the use large temporal window sizes (see figures 5 and 7). Low 
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Figure 10.  IBP-enhanced image of the heart of a mouse. The original (a) and the IBP-enhanced images obtained for ρ  values of 
5% (b), 20% (c) and 100% (d) are shown. The voxelwise image difference between the original image and the IBP-enhanced images 
obtained for ρ  values of 5% (e), 20% (f) and 100% (g) are reported. (a) Original. (b) IHQ (ρ = 5%). (c) IHQ (ρ = 20%). (d) IHQ 
(ρ = 100%). (e) Difference (b)–(a). (f) Difference (c)–(a). (g) Difference (d)–(a).
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ρ  value (�20%) were however mandatory for the heart experiment in order reduce the complexity of spatial 
deformations within the used temporal window (see figures 9 and 10). It must be however underlined that there 
is no easy approach to establish the robustness of OF-estimates without having any sort of silver or gold standard. 
We believe that the use of quality assurance criteria (QA) on motion estimates (Zachiu et al 2018) is a promising 
path of investigation.

It must be reported that the use of a goldstandard image for pSNR evaluation has several inherent limita-
tions. We recall that sufficient steady periods needed to be present in the motion pattern in order to increase the 
amount of data in the k-space while avoiding intra-scan motion artifacts. In the thorax experiments, only data 
acquired at the end of the exhalation could be used. However, quite lenghty acquisition (70 min) were mandatory 
and peristaltic/motion drifts were likely to occur (see red arrow in figure 4(i)). These latter may not be present in 
the used input data sets, which hampered in turns our pSNR evaluation.

While existing motion correction strategies operating in the k-space are inherently restrained to translational 
and rotational movements, the proposed approach, which operates in the spatial domain, allows accumulating 
signal with complex elastic organ deformations. We expect that motion correction strategies in the k-space may 
be beneficial to reduce intra-scans artifacts of our input images and, in turn, to further improve our output qual-
ity.

Most of computation time are devoted to the completion of needed OF-calculations. Using the proposed 
technique, OF-calculations can be performed individually for different frame pairs. That way, the computation 
time greatly benefits from a combined CPU/GPU (test platform #1) or computer cluster architectures (test plat-
form #2).

5.  Conclusion

The proposed method enriches the acquisition and reconstruction tasks by a subsequent IBP-enhancement step. 
Our results match theoretical expectations: a pSNR gain of 2 dB could be obtained with a moderate penalty 
factor 2 on the temporal resolution. In this context, the IBP-enhancement of a 4D-MRI acquired in 8 min led 
to a precision higher than the one acquired in 35 min. Up to 6 dB was also achievable by totally sacrificing the 
temporal resolution. The proposed implementation is easily parallelizable and takes great benefit of computer 
cluster architectures. The method was thus compatible with a clinically acceptable time duration: 8 and less 
than 3 min were successively mandatory for MR-acquisition and IBP-algorithm (including OF-calculations), 
respectively.

Future works will include the compensation of additional sources of artifacts (potential biases arising either 
from intra-scan movements or from the Rician noise distribution in MR-magnitude images which is a non-
zero mean distribution), the developement of an improved motion estimation model, the IBP-enhancement of 
MR-T1, -T2 and -T∗

2  images as well as the evaluation of the method on patients.
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Table 2.  Computation time (in minutes) obtained using our implementation (OF-calculations  +  IBP algorithm) on our two test 
platforms, for the thorax and heart experiments, for different ρ  values.

Computation time (min)

Test platform #1
Test platform #2

9-Nodes of 24-CPUExperiment 4-CPU GPU 4-CPU/GPU

Thorax ρ = 5% 34 28 15 1

ρ = 20% 69 46 31 2

ρ = 100% 145 117 65 3

Heart ρ = 5% 25 20 11 1

ρ = 20% 41 34 19 1

ρ = 100% 81 68 37 2
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Appendix.  Theoretical analysis of noise reduction

A temporal data averaging is performed in equation (1). Let σ(ILQ) be the noise standard deviation in Tn,k

(
I(k)

LQ

)
, 

assuming an identically distributed noise ∀k ∈ {1, ..., N}. It quickly comes that the noise standard deviation of 

I(n)
HQ

∣∣∣
0
 is theoretically equal to:

σ
(

I(n)
HQ

∣∣∣
0

)
=

1√
∆T

σ (ILQ) .� (A.1)

Equation (1) thus enabled a theoretical SNR reduction by 
√
∆T .
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