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Introduction

Good clinical practice and scientific developments in oncology are enabled by high quality data (Bray and Parkin 
2009). Imaging data in particular has potential for large variations in quality, which has led to the development 
of standardized site specific imaging guidelines (Olliff et al 2014, Lewis-Jones et al 2016). The National Cancer 
Institute (NCI) has also recognized the importance of data quality, with multiple projects defining quality 
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Abstract
Enabling automated pipelines, image analysis and big data methodology in cancer clinics requires 
thorough understanding of the data. Automated quality assurance steps could improve the 
efficiency and robustness of these methods by verifying possible data biases. In particular, in head 
and neck (H&N) computed-tomography (CT) images, dental artifacts (DA) obscure visualization 
of structures and the accuracy of Hounsfield units; a challenge for image analysis tasks, including 
radiomics, where poor image quality can lead to systemic biases. In this work we analyze the 
performance of three-dimensional convolutional neural networks (CNN) trained to classify DA 
statuses. 1538 patient images were scored by a single observer as DA positive or negative. Stratified 
five-fold cross validation was performed to train and test CNNs using various isotropic resampling 
grids (643, 1283 and 2563), with CNN depths designed to produce 323, 163, and 83 machine generated 
features. These parameters were selected to determine if more computationally efficient CNNs 
could be utilized to achieve the same performance. The area under the precision recall curve (PR-
AUC) was used to assess CNN performance. The highest PR-AUC (0.92  ±  0.03) was achieved with 
a CNN depth  =  5, resampling grid  =  256. The CNN performance with 2563 resampling grid size 
is not significantly better than 643 and 1283 after 20 epochs, which had PR-AUC  =  0.89  ±  0.03 
(p -value  =  0.28) and 0.91  ±  0.02 (p -value  =  0.93) at depths of 3 and 4, respectively. Our 
experiments demonstrate the potential to automate specific quality assurance tasks required for 
unbiased and robust automated pipeline and image analysis research. Additionally, we determined 
that there is an opportunity to simplify CNNs with smaller resampling grids to make the process 
more amenable to very large datasets that will be available in the future.
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assurance protocols for national and clinical screening trials (Moore et al 2005, Cagnon et al 2006). Traditional 
data quality requirements and detection methods are sufficient for most research questions and controlled 
clinical trials; however, the number of data quality ‘rules’ increases as we move towards Big Data methodology 
and data-driven science in Radiology (Raghupathi and Raghupathi 2014, Kansagra et al 2016). Detecting and 
fixing the issues also becomes more challenging, and in some cases may not be feasible or appropriate.

Digitization of patient health information and images provides opportunities for integration of big data 
and automation into all aspects of patient care. In particular, the area of automated information generation 
through quantitative analysis of medical images for detection and prognostic modeling has seen immense inter-
est in recent years. This field is being referred to as radiomics (Gillies et al 2015, Lambin et al 2017) and leverages 
past pattern recognition and computer vision research (Hall et al 1971, Harlow and Eisenbeis 1973) to develop 
prognostic and predictive models based on image intensity values. However, radiomic features extracted from 
images without an understanding of data quality may incorrectly assign causality to features and signatures, 
rendering results unusable (Welch and Jaffray 2017). To safeguard against this, it was suggested by our group in 
a previous publication that greater understanding of image quality prior to utilization in radiomic pipelines is 
needed (Welch et al 2019). In that work we discovered that the performance of a well cited radiomic signature 
did not depend on the image intensity values and only required the patient’s tumour contour. Data quality cura-
tion would safeguard these methods, thereby representing a fundamental step towards reliable and reproducible 
results.

A common contributor to poor data quality in head and neck (H&N) computed tomography (CT) images 
are dental artifacts (DA). Although clinical metal artifact reduction (MAR) techniques (Diehn et al 2017) and 
new deep learning methods for metal artifact suppression (Zhang and Yu 2018, Huang et al 2018, Hu et al 2019) 
exist, salvaging incorrect HU data in H&N image can be a challenging task. This is due to new artifacts being 
introduced into the image (Block et al 2016), and uncertainty as to whether the new resulting voxel information is 
representative of the actual patient phenotype that was masked by the artifact initially. Therefore, most radiomics 
studies choose to remove patient image volumes impacted by DAs; a method which was recently proven by Wei 
et al to improve prediction performance of a radiomic signature (Wei et al 2019). Alternatively, some researchers 
choose to remove image slices from the overall imaging volume that contain visible Das (Ger et al 2018, Elhala-
wani et al 2018); granted, justification would be required to explain the implications of slice removal on shape 
and texture features. In both of these cases user intervention is required to decide whether the patient is appropri-
ate for inclusion in the study. This is currently a feasible, yet time consuming task in the recent proof-of-concept 
radiomic studies. However, as more retrospective data becomes available, and more sites begin to share their data, 
a method of automated patient classification would increase efficiency and reduce subjectivity of these impor-
tant radiomic pipeline steps.

Until now research into DAs has focused on their reduction. However, recent radiomics publications have 
shown an interest in their classification, permitting operators to decide whether the patient’s image is appro-
priate for inclusion. In Wei et al (2019) features extracted from regions of interest were capable of classifying 
DA+  patients with an AUC of 0.89. Oh et al (2019) developed a method for classification of DA+  slices that 
performs with a prediction rate of 97.10% and 74.10% for DA+  and DA−  image slices, respectively. Both of 
the mentioned classification methodologies required the definition of a region of interest and the extraction of 
features, as well as operator interaction. Convolutional neural networks (CNN) (Krizhevsky et al 2012) are an 
alternative machine driven method that can provide an automated classification, and have shown promise for 
identifying motion artifacts in various magnetic resonance imaging (MRI) types (Kelly et al 2016, Graham et al 
2018). Although we are interested in a different data quality issue, these results motivate the usage of similar tech-
niques for the classification of DA artifacts in H&N CT imaging.

An automated process designed to flag images as ‘dental artifact positive’ would increase efficiency and sub-
jectivity of these tedious, but important, tasks. After classification users could then decide if an image should be 
removed or included in a specific study based on artifact magnitude or interference of the artifact with a region-
of-interest. This work aims to demonstrate that a CNN can be trained and validated using H&N data to classify 
CT images as those with and without DAs, while exploring the impact of CNN depth and image resolution on 
prediction performance.

Methods

Dataset and dental artifact classification
Training and testing of the model utilized 1538 H&N planning CTs from the Princess Margaret Cancer Centre. 
Image details can be found in table 1. We converted the images from DICOM to nearly raw raster data (nrrd) 
to enable processing by the CNN using Python and the SimpleITK library (Yaniv et al 2017). This conversion 
removes meta-data related to patient, institution and scanner, but retains meta-data regarding resolution, size, 
center and directionality of the image. nrrd format was chosen for this study, but any data format that can be 
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loaded as a SimpleITK object is compatible with this methodology. This process was done automatically for all CT 
volumes. A single observer with 8 years of medical imaging experience then scored the DA status of each patient’s 
converted CT volume as DA present/positive (DA+, status  =  1) or DA absent/negative (DA−, status  =  0); the 
magnitude of the DA was not considered. For example both (a) and (b) in figure 1 were scored with a status of 1, 
despite having different impacts on HU across the entire image.

Data preprocessing
Prior to training or testing of our CNN, image volumes were processed using a multistep procedure: (1) CT 
volumes were interpolated to iso-tropic voxel sizes of 1 mm3 using the SimpleITK linear resampling image filter 
to reduce variability within the images, thereby improving processing by the CNN; (2) 10% of the training CT 
volumes were randomly selected for cropping and 60% for flipping. Images selected for cropping were reduced 
three quarters of their original size in all directions, while maintaining the image center. This cropping size was 
selected to ensure that cropping of the dental artifacts was highly unlikely. Images selected for flipping were 
flipped using Python’s NumPy (Oliphant 2006) function ‘flip’ in the ‘left/right’ direction to create a mirror 
image. This data augmentation introduces a form of uncertainty into the training data to improve generalizability 
of the model; (3) CT volumes were padded to a uniform size to maintain the aspect ratio of the volume during 
resizing that occurs in step 4. Python’s NumPy function ‘pad’ was used. The largest dimension of the 3D image 
array (width, height or slice number) was found, and all other dimensions were padded using zeros; (4) CT 
image volumes were resized to determine the impact of various resampling grids on CNN performance, and 
to generate a uniform volume more conducive with CNN training. Resizing was performed using the open-
source scikit-image library (van der Walt et al 2014), which preserves the image’s HU distribution. For our work, 
resampling grids of 256, 128 and 64 voxels were analyzed for performance. Examples of image slices at these 
different resampling grids can be found in figure 2.

Model training
For this study we used the open-source python library, PyTorch (Paszke et al 2017), to train our three-dimensional 
CNN. A virtual machine from VMware, Inc. with 10 Intel Xeon CPU E5-2690 processors and a NVIDIA Tesla 
K40m GPU was used for training and testing.

Stratified five-fold cross validation was used for training and testing. Batches of 14 images randomly selected 
from the training data without replacement were fed into the CNN. Batch normalization and rectified linear 
unit functioning (ReLU) were present on all convolutional layers and max pooling was used on all convolutional 
layers except the final one (figure 3) (Nielsen 2015, LeCun et al 2015); average pooling was used on the outputs 
of the final convolutional layer, followed by a fully connected layer and softmax classification. A convolutional 

Table 1.  Dataset details outlining the imaging year range, tube voltage peak, scanner types, and median number of slices, thickness and 
resolution for all images.

Median slice thickness 

and range (mm)

Median slice 

num. and range

Median pixel size 

and range (mm)

Imaging 

year range

Tube voltage 

peak (kVp)

Scanner Type

Toshiba Philips

GE 

medical

2 (1–4) 182 (130–330) 0.98 (0.61–2.00) 2010–2019 120 1223 257 58

Figure 1.  Three patient images showing examples of DA+  and DA−  image slices. (a) Example image slice from CT volume with 
prominent artifacts classified as DA+, (b) example image slice from CT volume with less artifact interference classified as DA+, 
and (c) example image slice from volume with no artifacts classified as DA−. Window width and level were set to 1346 and  −325, 
respectively.
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kernel size of 5 with a padding of 2 was used on the first convolutional layer, all subsequent layers used a kernel 
size of 3 with a padding of 1. Weighted optimization was used to account for uneven class distribution. CNNs 
were trained for the various resampling grids (2563, 1283 and 643) and depths (1, 2, 3, 4, and 5) of interest. Three 
depths were analyzed for each resampling grid size, whereby the final machine generated features fed into the 
fully connected layer were of size 323, 163 and 83, respectively. The kernel used in the final CNN layers was of 
size 3, therefore 83 was chosen as the smallest machine generated feature size to ensure adequate sampling of the 
convolutional output layers by the kernel. Details of input and output sizes used for the different depths and resa-
mpling grids are found in table 2. Training was performed for 20 epochs based on knowledge regarding model 
convergence gained through unpublished studies completed by the authors. Model training for each resampling 
grid and depth was repeated five separate times using different splits of the data.

Model evaluation
Models were evaluated every 5 epochs for performance on both training and hold-out test datasets. During 
evaluation of a CNN, each image volume from a dataset was fed through the CNN to obtain the model’s softmax 
prediction of DA status. The Area Under the Precision Recall curve (PR-AUC) was calculated for the training 
and testing datasets across all five-folds. The PR curve summarizes the precision and recall of a given predictive 
model. Precision describes the ratio of the number of true positives divided by the sum of true positives and false 
positives, while recall describes the ratio of the number of true positives divided by the sum of true positives and 
false negatives of a predictive model. PR curves are more sensitive to class imbalances and therefore provide a 
better metric for our study which is heavily imbalanced towards DA+  images. The PR-AUC was calculated using 
Python’s Sci-kit learn library (Pedregosa et al 2011).

Figure 2.  Example of image slices at various resampling grids of interest. (a) shows a DA with a large magnitude, (b) shows a DA 
with a small magnitude.

Figure 3.  Example schematic of the DA status CNN. For simplicity, the training is shown here with a 2D image. Batches of 14 images 
were input into the network. The output of the convolutional layers underwent BatchNormalization, rectified linear unit (ReLU) 
and pooling. The final layer of the CNN only underwent BatchNormalization, ReLU and average pooling. A single fully connected 
layer was followed by a softmax classification which returned probabilities that a given image was DA+  or DA−. The ellipses (…) 
indicates the additional convolutional layers that are added as a function of the image resolution.

Phys. Med. Biol. 65 (2020) 015005 (9pp)



5

M L Welch et al

Furthermore, the performance of the CNNs was compared to a more simplistic baseline method. This 
method generated regions of interest (ROI) for each image in the dataset by thresholding above 2000 HU, captur-
ing voxels with a density greater than bone. The values were then sorted based upon volume of the resulting ROI 
and used as a predictor for the presence of DA to calculate a PR-AUC.

Results

Manual classification of dental artifact status by a single observer resulted in 1092 DA+  and 446 
DA−  classifications, 71% and 29%, respectively. The simplistic baseline classification using volume of the high 
density ROI had a PR-AUC of 0.73.

A resampling grid of 2563 with CNN depth of 5 resulted in the highest overall PR-AUC of 0.92  ±  0.03 calcu-
lated across all five-folds of the test datasets, as shown in table 3 and figure 4(c)). The average precision and recall 
for this CNN across the five-folds of test datasets were 0.96  ±  0.03 and 0.90  ±  0.05, respectively.

The highest average PR-AUC values for resampling grids 643 (PR-AUC  =  0.89  ±  0.03) and 1283 (PR-
AUC  =  0.91  ±  0.02) occurred after 20 epochs at depths of 3 and 4, respectively (table 3 and figures 4(a) and 
(b)). We cannot conclude from these results that a CNN trained and tested with a resampling grid size of 2563 
performs significantly better than with a resampling grid of 64 (p -value  =  0.28) or 128 (p -value  =  0.93), indi-
cating that our CNN performance is reasonably consistent regardless of resampling grid size. PR-AUC values for 
individual folds of all resampling grids and CNN depths can be found in the supplementary material (stacks.iop.
org/PMB/65/015005/mmedia).

Approximate training time per epoch with a resampling grid size of 2563 and depth of 5 is 70 min, 1283 and 4 
is 40 min, and 643 and 3 is 30 min. Approximate CNN prediction times with a resampling grid sizes of 2563 and 
depth of 5 is 4 s, 1283 and 4 is 2.2 s, and 643 and 3 is 1.5 s.

Discussion

Data quality is integral for the future of automated pipelines and processes. Integration of a diverse set of disease 
and host factors, including imaging data, is expanding the volume, variety, velocity and veracity of measurement 
data. As the big data paradigm approaches clinical cancer management, utilization of efficient quality assurance 
methods become of paramount importance. In this work we trained CNNs to predict DA status of H&N patients 
from the Princess Margaret Cancer Institute. A CNN with depth 5 trained and validated on images resampled 
with a grid of 2563 had the highest PR-AUC of 0.92  ±  0.03. PR-AUC values for resampling grids of 643 with depth 
3 (PR-AUC  =  0.89  ±  0.03, p -value  =  0.28) and 1283 with depth 4 (PR-AUC  =  0.91  ±  0.02 p -value  =  0.93) 
were not significantly different than our best performing CNN. These models demonstrate the potential to 
increase the efficiency of data quality checks in radiation oncology, thereby improving automated pipelines and 
processes important to patient prognosis and treatment.

Our CNNs were capable of classifying DA statuses from single institution images effectively, even when uti-
lizing small resampling grid sizes. The ability to use a simplified CNN with smaller resampling grid sizes speeds 
up training and predictions, making it more amenable to very large datasets that will be available in the future. 
It is also important to note that although training time may be lengthy it often occurs as an offline task. For these 
types of models, which are designed for automation of routine tasks, prediction time is most important. For our 

Table 2.  Details of the number of convolutional layers, sizes of convolutional layers input (IN) and outputs (OUT), and size of the fully 
connected layer are given in this table relative to the resampling grids used. The number of layers used was a function of the resampling grid 
size, and the experimental design that stated the size of the fully connected layer would be 83, 163 and 323.

Conv_1 Conv_2 Conv_3 Conv_4 Conv_5
Fully connected 

layer feature sizeResampling grid Depth IN OUT IN OUT IN OUT IN OUT IN OUT

2563

3 1 4 4 8 8 16 N/A N/A N/A N/A 323

4 1 4 4 8 8 16 16 32 N/A N/A 163

5 1 4 4 8 8 16 16 32 32 64 8 3

1283

2 1 4 4 8 N/A N/A N/A N/A N/A N/A 323

3 1 4 4 8 8 16 N/A N/A N/A N/A 163

4 1 4 4 8 8 16 16 32 N/A N/A 8 3

643

1 1 4 N/A N/A N/A N/A N/A N/A N/A N/A 323

2 1 4 4 8 N/A N/A N/A N/A N/A N/A 163

3 1 4 4 8 8 16 N/A N/A N/A N/A 8 3

Phys. Med. Biol. 65 (2020) 015005 (9pp)
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CNNs, prediction times with a resampling grid size of 2563 and depth of 5 is 4 s, 1283 and 4 is 2.2 s, and 643 and 3 
is 1.5 s; when extrapolated to large datasets, for example 5000 images, this results in predictions times of approxi-
mately 5.6 h, 3.1 h, and 2.1 h, respectively. A user may therefore decide that the increase in speed gained by using 
a smaller resampling grid outweighs the non-significant increase in PR-AUC seen at higher resampling grids. 
However, it should be noted that these results are for classification of DA status. In more complex tasks, such as 
disease prognostication with images, higher resampling grids may be required to retain important disease infor-
mation embedded in the image that could be lost through resampling.

Furthermore, our most simplistic CNN (resampling grid 643 and depth of 1) achieved a PR-AUC 
(0.74  ±  0.06) comparable to our baseline high density ROI volume metric (0.73). A check was performed on a 
number of images falsely classified by the baseline high density ROI volume metric. It was found that many of the 
patient images that were incorrectly flagged as DA+  (false positives) contained other apparatuses in the field of 
view (i.e. pacemakers and trachea tubes). There was also a trend for the false negative classifications to occur in 
patient images with a smaller magnitude DA.

It was also observed in our results that as the depth of the CNN increased, so did the average PR-AUC. This 
was consistent across all epochs and resampling grids. This result indicates that in this classification problem 
the depth of the CNN may be more important to performance than resampling size. Additionally, going from 
machine generated feature sizes of 323 to 163 generated the greatest gains in PC-AUC, versus going from 163 to 
83; this demonstrates that feature values quantifying finer details of the image are needed for this classification 
problem.

Despite the promising performance of our CNN, it is not without limitations. One such limitation is the utili-
zation of data from a single institution and classification of a single type of artifact. Although our CNN accurately 
predicts DA status on Princess Margaret Cancer Centre patients, and will be useful for future big data projects 
within the institution, it may also be biased towards imaging practices from our institution (e.g. couch, imag-
ing apparatuses, slice thicknesses, reconstruction methods, etc). Additionally, we have not evaluated our CNN 
for its classification performance on different types of metal artifacts (e.g. pacemakers and joint replacements) 
that degrade images in a similar way to DAs. If it is found that our CNN is not generalizable to external dataset or 
different metal artifacts there are opportunities to implement transfer learning (LeCun et al 2015, Kensert et al 
2019) or increase data augmentation (e.g. rotation, warping) (Mikolajczyk and Grochowski 2018) as a way to fine 
tune the models and/or increase their generalizability and reduce overfitting. We plan to leverage these prelimi-
nary results to motivate increased sharing of data by other groups to make these future studies possible.

Future work may also choose to focus on different neural network topologies, as there are many other ones 
that could be selected for this type of image quality classification. These range from completely state of the art 
methods such as dense nets (Huang et al 2017) or residual nets (He et al 2016), to different data augmentation 
methods (Mikolajczyk and Grochowski 2018) or activation functions (Klambauer et al 2017). However, for this 
study we were focused on feasibility and determining whether resampling grid sizes and/or CNN depths would 
affect performance. Different topologies may provide improvements in performance, but gains are minimal (He 
et al 2016, Huang et al 2017). A thorough investigation of all state of the art methods is beyond the scope of this 
manuscript, but would be an interesting avenue to pursue in future work.

The utility of our CNNs can be seen in the promising field of radiomics, which relies on the quantification 
of intensity based imaging features in a region of interest (ROI) for prognostic and predictive model develop-

Table 3.  Average training and testing PR-AUC values for all resampling grids and CNN depths. Averages and standard deviations (STDEV) 
are calculated across the five-folds of model training and testing.

PR-AUC and STDEV at 20 epochs

Resampling grid Depth Testing Training

2563

3 0.80  ±  0.09 0.99  ±  0.01

4 0.90  ±  0.03 0.99  ±  0.01

5 0.92  ±  0.03 1.00  ±  0.01

1283

2 0.81  ±  0.06 0.99  ±  0.02

3 0.88  ±  0.05 0.99  ±  0.01

4 0.91  ±  0.02 0.99  ±  0.01

643

1 0.74  ±  0.06 0.98  ±  0.01

2 0.84  ±  0.04 0.97  ±  0.01

3 0.89  ±  0.03 0.97  ±  0.01

Phys. Med. Biol. 65 (2020) 015005 (9pp)
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ment. Therefore, incorrect HU and segmentations could lead to misinterpretation of results and suboptimal 
model accuracies. Additionally, robust radiomic-based models require large datasets, and an automated method 
of quality assurance would reduce subjectivity of quality scoring, while changing a time consuming manual task 
to a passive one. Although it is not possible to study the impact DA’s have on patient features due to the inability 
to obtain images with and without DAs, groups like Block et al (2016), Leijenaar et al (2016) and Elhalawani et al 
(2018) have all stated the importance of considering these artifacts. It is also worth noting that the CNNs we pre-
sent in this paper do not specify whether the DA is present inside or outside a ROI; however, radiomic features are 
designed to probe imaging biomarkers not visible to an observer, and therefore DA streaking may impede feature 
quantification even if it does not visibly enter the ROI. For this reason, addition of this model to a radiomics pipe-
line would require the user to decide whether the image is appropriate for model training and testing based on the 
research question, clinical application and any other pertinent information. Alternatively, it may be possible to 
use DA status as a feature in radiomics modeling.

Additionally, automated radiation treatment (RT) planning software is being developed and implemented 
clinically that could benefit from methods similar to ours. These automated planning pipelines are designed to 
improve efficiency, standardization and quality of treatments for radiation therapy, and have seen commercial 
and clinical success in sites such as H&N (Mcintosh et al, Bodensteiner 2018). However, some plans and sites 
may be inherently more difficult to plan due to the presence of metal artifacts; this can be seen in the planning 
of prostate plans containing hip replacements that require special consideration and plan characteristics such 
as increased numbers of treatment beams (Dirkx et al 2013). Therefore, a quality assurance step designed to flag 
patients requiring further clinician involvement due to the presence of metal artifacts (e.g. dental artifacts, hip 
replacements, stents) would reduce the chance of erroneous treatment planning, while still increasing efficiency 
for patients without.

Figure 4.  Average PR-AUC values across epoch 5, 10, 15 and 20 with error bars representing STDEV of PR-AUCs across the five-
folds of model training and testing. (a) Resampling grid size of 64 with CNN depths of 1, 2 and 3; (b) resampling grid size of 128 with 
CNN depths of 2, 3, and 4; and (c) resampling grid size of 256 with CNN depths of 3, 4, and 5.

Phys. Med. Biol. 65 (2020) 015005 (9pp)
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Commercialized metal artifact reduction software has also been developed by multiple groups (Li et al 2015, 
Huang et al 2015). These methods commonly reduce the impact of DAs by interpolating voxel HUs within the 
image sinogram (Abdoli et al 2010), but research is also being done to salvage image signal using deep learning 
methods (Zhang and Yu 2018, Huang et al 2018, Hu et al 2019). Although these methods are designed to reduce 
the qualitative impact of the artifact, it is possible for new artifacts to be generated in the image that mitigate its 
benefits in fields such as radiomics (Block et al 2016). In the future, a classification model, such as the one pre-
sented in this paper, could determine whether these methods are effectively removing the DA prior to utilizing 
the data for other purposes. This type of test would also be beneficial for companies to perform on their methods 
to demonstrate the effectiveness of their techniques.

Furthermore, the utilization of a single observer for scoring of DA status permitted consistency amongst the 
classification of DAs since each manual observer has a specific sensitivity and specificity for what is considered 
a DA. However, it is possible that misclassifications occurred due to fatigue or inappropriate window leveling, 
thereby reducing the reproducibility of the DA status classification. These potential misclassifications would not 
only affect validation, but also the training of the model. Multi-observer classification is often preferred to single 
observer classification in order to obtain more reliable ground truth labels. Future work may be able to reduce 
potential spurious misclassifications and increase classification reproducibility by using multi-observer scoring 
with standardized window-leveling and well defined classification rules.

This work demonstrates the potential for efficient image quality assurance methods. Our findings demon-
strate the usage of accepted methods, and data from a single institution for the generation of a DA sorting model 
that could be used in automated pipelines and image analysis protocols. These automated methods are capable of 
completing routine tasks and freeing up clinician time for more important duties, but only if done correctly. The 
current state of machine learning in cancer care still requires standardized, high quality data because there is not 
enough openly available data to generate models robust to all potential variants. Therefore, development of qual-
ity assurance protocols and models are essential to the progress of automated methods in clinical cancer care.

Conclusion

Our work demonstrates the potential to automate specific quality assurance steps through model development, 
making an important and time consuming task passive. Our best performing CNN classified H&N CT images 
from a single institution based on the presence of DAs with an AUC of 0.92  ±  0.03, and the studied CNN 
resampling grid sizes were found to impact the AUC non-significantly; indicating that smaller resampling grid 
sizes could be used effectively if increased speed is required. Future work will explore the generalizability of our 
model to external datasets.

Acknowledgments

The authors thank Scott Bratman, Mike Sharpe, Shao Hui Huang, Brian O’Sullivan and Biu Chan for their 
assistance in obtaining and curating the utilized datasets. The work was supported by the Natural Sciences and 
Engineering Research Council, the Strategic Training in Transdisciplinary Radiation Science for the 21st Century 
Program, the Canadian Institutes for Health Research, the Ontario Institute for Cancer Research, and the Terry 
Fox Research Institute.

Conflicts of interest

The authors have no conflicts of interest to report.

References

Abdoli M, Ay M R, Ahmadian A, Dierckx R A J O and Zaidi H 2010 Reduction of dental filling metallic artifacts in CT-based attenuation 
correction of PET data using weighted virtual sinograms optimized by a genetic algorithm Med. Phys. 37 6166–77

Block A M et al 2016 Radiomics in head and neck radiation therapy: impact of metal artifact reduction Int. J. Radiat. Oncol. Biol. Phys.  
99 E640

Bodensteiner D 2018 RayStation: external beam treatment planning system Med. Dosim. 43 168–76
Bray F and Parkin D M 2009 Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and 

timeliness Eur. J. Cancer 45 747–55
Cagnon C, Cody D, McNitt-Gray M, Seibert J, Judy P and Aberle D 2006 Description and implementation of a quality control program in an 

imaging-based clinical trial Acad. Radiol. 13 1431–41
Diehn F E et al 2017 CT dental artifact: comparison of an iterative metal artifact reduction technique with weighted filtered back-projection 

Acta Radiologica Open 6 1–8
Dirkx M, Voet P, Breedveld S and Heijmen B 2013 Automated multicriterial plan generation for prostate cancer patients with metal hip 

prostheses: comparison of planning strategies Med. Phys. 40 380

Phys. Med. Biol. 65 (2020) 015005 (9pp)

https://doi.org/10.1118/1.3511507
https://doi.org/10.1118/1.3511507
https://doi.org/10.1118/1.3511507
https://doi.org/10.1016/j.ijrobp.2017.06.2146
https://doi.org/10.1016/j.ijrobp.2017.06.2146
https://doi.org/10.1016/j.meddos.2018.02.013
https://doi.org/10.1016/j.meddos.2018.02.013
https://doi.org/10.1016/j.meddos.2018.02.013
https://doi.org/10.1016/j.ejca.2008.11.032
https://doi.org/10.1016/j.ejca.2008.11.032
https://doi.org/10.1016/j.ejca.2008.11.032
https://doi.org/10.1016/j.acra.2006.08.015
https://doi.org/10.1016/j.acra.2006.08.015
https://doi.org/10.1016/j.acra.2006.08.015
https://doi.org/10.1177/2058460117743279
https://doi.org/10.1177/2058460117743279
https://doi.org/10.1177/2058460117743279
https://doi.org/10.1118/1.4815181
https://doi.org/10.1118/1.4815181


9

M L Welch et al

Elhalawani H et al 2018 Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal 
head and neck cancer patients Sci. Rep. 8 1524

Ger R B et al 2018 Practical guidelines for handling head and neck computed tomography artifacts for quantitative image analysis Comput. 
Med. Imaging Graph. 69 134–9

Gillies R J, Kinahan P E and Hricak H 2015 Radiomics: images are more than pictures, they are data Radiology 278 151169
Graham M S, Drobnjak I and Zhang H 2018 A supervised learning approach for diffusion MRI quality control with minimal training data 

NeuroImage 178 668–76
Hall E L et al 1971 A survey of preprocessing and feature extraction techniques for radiographic images IEEE Trans. Comput. C–20 1032–44
Harlow C A and Eisenbeis S A 1973 The analysis of radiographic images IEEE Trans. Comput. C–22 678–89
He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit. vol 2016-Decem pp 770–8
Hu Z et al 2019 Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks Med. Phys. 46 1686–96
Huang G, Liu Z, Van Der Maaten L and Weinberger K Q 2017 Densely connected convolutional networks Proc.—30th IEEE Conf. Comput. 

Vis. Pattern Recognition, CVPR 2017 vol 2017-Janua pp 2261–9
Huang S J et al 2015 An evaluation of three commercially available metal artifact reduction methods for CT imaging Phys. Med. Biol. 

60 1047–67
Huang X et al 2018 Metal artifact reduction on cervical CT images by deep residual learning BioMed. Eng. 17 175
Kansagra A P et al 2016 Big data and the future of radiology informatics Acad. Radiol. 23 30–42
Kelly C, Pietsch M, Counsell S and Tournier J 2016 Transfer learning and convolutional neural net fusion for motion artefact detection Proc. 

Intl. Soc. Mag. Reson. Med. 3523 1–2
Kensert A, Harrison P J and Spjuth O 2019 Transfer learning with deep convolutional neural networks for classifying cellular morphological 

changes SLAS Discov. 24 466–75
Klambauer G, Unterthiner T, Mayr A and Hochreiter S 2017 Self-normalizing neural networks Adv. Neural Inf. Process. Syst. 

2017-Decem 972–81 (arXiv:1706.02515v5)
Krizhevsky A, Sulskever Ii and Hinton G E 2012 ImageNet classification with deep convolutional neural networks Adv. Neural Inf. Process. 

Syst. 60 84–90
Lambin P et al 2017 Radiomics: the bridge between medical imaging and personalized medicine Nat. Rev. Clin. Oncol. 1–20
LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44
Leijenaar R T H et al 2016 Radioimcs in OPSCC: a novel quantitative imaging biomarker for HPV status? ESTRO 35 p S196
Lewis-Jones H, Colley S and Gibson D 2016 Imaging in head and neck cancer: United Kingdom national multidisciplinary guidelines 

J. Laryngol. Otol. 130 S66–7
Li H et al 2015 Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy Med. 

Phys. 39 7507–17
Mcintosh C, Welch M and Mcniven A Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose 

prediction and dose mimicking method Phys. Med. Biol. 62 5926–44
Mikolajczyk A and Grochowski M 2018 Data augmentation for improving deep learning in image classification problem 2018 Int. 

Interdiscip. PhD Work. IIPhDW 2018 pp 117–22
Moore S M et al 2005 Image quality assurance in the prostate, lung, colorectal, and ovarian cancer screening trial network of the national 

lung screening trial J. Digit. Imaging 18 242–50
Nielsen M A 2015 Neural Networks and Deep Learning (San Francisco: Determination Press)
Oh J H, Pouryahya M, Iyer A, Apte A P, Tannenbaum A and Deasy J O 2019 Kernel Wasserstein Distance pp 1–10 (arXiv:1905.09314)
Oliphant T E 2006 A guide to NumPy (USA: Trelgol Publishing)
Olliff G, Richards J, Connor P, Wong S, Beale W L and Madani T 2014 Recommendations for cross-sectional imaging in cancer management 

Headn and Neck Cancers 2nd edn (London: The Royal College of Radiologists)
Pedregosa F, Weiss R and Brucher M 2011 Scikit-learn: machine learning in Python J. Mach. Learn. Res. 12 2825–30 (arXiv:1201.0490)
Raghupathi W and Raghupathi V 2014 Big data analytics in healthcare: promise and potential Heal. Inf. Sci. Syst. 2
Paszke A et al 2017 Automatic differentiation in PyTorch 31st Conf.on Neural Information Processing Systems (NIPS 2017) pp 1–4
van der Walt S et al 2014 Scikit-image: image processing in Python PeerJ 2 e453
Wei L et al 2019 Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics 

modeling Phys. Imaging Radiat. Oncol. 10 49–54
Welch M L and Jaffray D A 2017 Radiomics: the new world or another road to El Dorado? JNCI Natl Cancer Int. 109 7–8
Welch M L et al 2019 Vulnerabilities of radiomic signature development: the need for safeguards Radiother. Oncol. 130 2–9
Yaniv Z, Lowekamp B C, Johnson H and Beare R 2017 SimpleITK image-analysis notebooks: a collaborative environment for education and 

reproducible research J. Digit. Imaging 31 290–303
Zhang Y and Yu H 2018 Convolutional neural network based metal artifact reduction in x-ray computed tomography IEEE Trans. Med. 

Imaging 37 1370–81

Phys. Med. Biol. 65 (2020) 015005 (9pp)

https://doi.org/10.1038/s41598-017-14687-0
https://doi.org/10.1038/s41598-017-14687-0
https://doi.org/10.1016/j.compmedimag.2018.09.002
https://doi.org/10.1016/j.compmedimag.2018.09.002
https://doi.org/10.1016/j.compmedimag.2018.09.002
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.neuroimage.2018.05.077
https://doi.org/10.1016/j.neuroimage.2018.05.077
https://doi.org/10.1016/j.neuroimage.2018.05.077
https://doi.org/10.1109/T-C.1971.223399
https://doi.org/10.1109/T-C.1971.223399
https://doi.org/10.1109/T-C.1971.223399
https://doi.org/10.1109/TC.1973.5009135
https://doi.org/10.1109/TC.1973.5009135
https://doi.org/10.1109/TC.1973.5009135
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1002/mp.13415
https://doi.org/10.1002/mp.13415
https://doi.org/10.1002/mp.13415
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1088/0031-9155/60/3/1047
https://doi.org/10.1088/0031-9155/60/3/1047
https://doi.org/10.1088/0031-9155/60/3/1047
https://doi.org/10.1186/s12938-018-0609-y
https://doi.org/10.1186/s12938-018-0609-y
https://doi.org/10.1016/j.acra.2015.10.004
https://doi.org/10.1016/j.acra.2015.10.004
https://doi.org/10.1016/j.acra.2015.10.004
https://doi.org/10.1177/2472555218818756
https://doi.org/10.1177/2472555218818756
https://doi.org/10.1177/2472555218818756
https://arxiv.org/abs/1706.02515
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1017/S0022215115003047
https://doi.org/10.1017/S0022215115003047
https://doi.org/10.1017/S0022215115003047
https://doi.org/10.1118/1.4762814
https://doi.org/10.1118/1.4762814
https://doi.org/10.1118/1.4762814
https://doi.org/10.1088/1361-6560/aa71f8
https://doi.org/10.1088/1361-6560/aa71f8
https://doi.org/10.1088/1361-6560/aa71f8
https://doi.org/10.1007/s10278-005-5153-1
https://doi.org/10.1007/s10278-005-5153-1
https://doi.org/10.1007/s10278-005-5153-1
https://arxiv.org/abs/1905.09314
https://arxiv.org/abs/1201.0490
https://doi.org/10.1186/2047-2501-2-3
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1016/j.phro.2019.05.001
https://doi.org/10.1016/j.phro.2019.05.001
https://doi.org/10.1016/j.phro.2019.05.001
https://doi.org/10.1093/jnci/djx116
https://doi.org/10.1093/jnci/djx116
https://doi.org/10.1093/jnci/djx116
https://doi.org/10.1016/j.radonc.2018.10.027
https://doi.org/10.1016/j.radonc.2018.10.027
https://doi.org/10.1016/j.radonc.2018.10.027
https://doi.org/10.1007/s10278-017-0037-8
https://doi.org/10.1007/s10278-017-0037-8
https://doi.org/10.1007/s10278-017-0037-8
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1109/TMI.2018.2823083

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Automatic classification of dental artifact status for efficient image veracity checks: effects of image resolution and convolutional neural network depth﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿﻿Introduction
	﻿﻿﻿Methods
	﻿﻿﻿Dataset and dental artifact classification
	﻿﻿﻿Data preprocessing
	﻿﻿﻿Model training
	﻿﻿﻿Model evaluation

	﻿﻿﻿Results
	﻿﻿﻿Discussion
	﻿﻿﻿Conclusion
	﻿﻿﻿Acknowledgments
	﻿﻿﻿Conflicts of interest
	﻿﻿﻿﻿﻿﻿﻿References


