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Abstract
The evolution of finitely many particles obeying Langevin dynamics is described 
by Dean–Kawasaki equations, a class of stochastic equations featuring a non-
Lipschitz multiplicative noise in divergence form. We derive a regularised 
Dean–Kawasaki model based on second order Langevin dynamics by 
analysing a system of particles interacting via a pairwise potential. Key 
tools of our analysis are the propagation of chaos and Simon’s compactness 
criterion. The model we obtain is a small-noise stochastic perturbation of the 
undamped McKean–Vlasov equation. We also provide a high-probability 
result for existence and uniqueness for our model.

Keywords: interacting particles, propagation of chaos, weakly self-consistent 
Vlasov–Fokker–Planck equation, Dean–Kawasaki model, mild solutions, 
second order Langevin dynamics
Mathematics Subject Classification numbers: 60H15 (35R60)

1.  Introduction

The Dean–Kawasaki model [6, 15] describes the evolution of a system of finitely many particles 
obeying Langevin dynamics. A key feature of the particle system is the stochastic independence 
of the forcing terms driving the particles. The particles themselves, on the other hand, might be 
independent [19] or interact through a potential [6]: in this work, we focus on the latter case.

In its simplest form, the Dean–Kawasaki model reads
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∂tρ = ∇ ·
(
ρ∇δF(ρ)

δρ

)
+∇ · (σ√ρ ξ) ,� (1)

with σ ∈ R, where ρ  is the particle density, F is an energy functional, and ξ is a space-time 
white noise. The model (1) may be obtained from either a first-order Langevin equation [6], 
or from second-order Langevin dynamics in an overdamped limit [19].

Equations such as (1) pose a challenge for existence theory, in particular due to the multi-
plicative structure of the noise in divergence form and to its square-root coefficient function. 
The latter is related to the independence of the forcing terms driving the particles [6, 19]. 
Consequently, well-posedness for (1) is an open question, with the exception of the purely 
diffusive case [18]. More specifically, for the deterministic drift being N

2 ∆, where N  >  0, 
equation (1) admits a unique trivial (atomic) solution only if N ∈ N, and has no solutions if 
N /∈ N. This striking result indicates how subtle the analysis of equations of this kind is.

In order to obtain non-trivial solutions to (1), different approaches have been developed in 
recent years. One approach is to correct the drift [2, 16, 17, 28], another one is to regularise the 
equation [10, 21]. For a regularised undamped equivalent of (1), corresponding to a regularised 
stochastic wave equation in the density/momentum density pair (ρ, j), a result of existence and 
uniqueness is found in [4]; that model, here referred to as the regularised Dean–Kawasaki 
model, is derived from independent particles. The key regularisation chosen in [4] is a represen-
tation of particles by Gaussians, rather than their limiting Dirac measures. The main contrib
utions of this work is to extend this idea to some important systems of interacting particles. 
Specifically, we derive and analyse a regularised Dean–Kawasaki model set in the undamped 
regime, as in [4], but describing the evolution of a system of finitely many weakly interacting 
particles governed by undamped McKean–Vlasov dynamics, see for example [3, 9, 23].

Throughout the paper, we rely on some methodology found in [4]. However, the interac-
tion of the particles also requires various new approaches. Specifically, in contrast to [4], we 
employ propagation of chaos techniques [20] and Simon’s compactness criterion [25] to over-
come the difficulties posed by stochastically dependent particles. In addition, as the resulting 
model is superlinear (as specified below), we also need to localise the solutions using suitable 
stopping times. More details are provided in section 1.2 below.

1.1.  Weakly interacting particles on a one-dimensional torus

The system studied here consists of N interacting particles on the one-dimensional flat torus of 
length one, denoted by T. Each particle i ∈ {1, . . . , N} is described in terms of position and 
velocity (qi, pi) ∈ T× R. The system obeys the following undamped Langevin dynamics on 
a probability space (Ω,F ,P),





q̇i = pi,

ṗi = −γpi −
1
N

N∑
j=1

W ′(qi − qj) + σ β̇i, i = 1, . . . , N,
� (2)

where {βi}N
i=1 are independent Brownian motions, the interaction potential W is periodic and 

smooth, say W ∈ C2(T), the initial conditions {(qi,0, pi,0)}N
i=1 are independent and identically 

distributed, and σ and γ  are positive constants. The dissipative term −γpi is a frictional drag, 
balancing the fluctuating Brownian term σβ̇i. The particles {(qi, pi)}N

i=1 are exchangeable, but 
not necessarily independent.

Remark 1.1.  Throughout this work, diacritical dots ( ̇  ) are used to indicate time differentia-
tion of finite or infinite dimensional Itô processes (e.g. see (2)).
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In order to study (2), we introduce an auxiliary Langevin system of particles {(qi, pi)}N
i=1 

obeying
{

q̇i = pi,

ṗi = −γpi − W ′ ∗ µt(qi) + σ β̇i, i = 1, . . . , N,
� (3)

where ∗ denotes the convolution operator on T, µt  denotes the law of qi(t), and the Brownian 
motions and the initial conditions coincide P-a.s. with their respective counterparts in (2). As 
a result of these assumptions, the particles {(qi, pi)}N

i=1 are clearly independent. System (3) is 
associated with the Vlasov–Fokker–Planck equation

∂ft
∂t

+ p
∂ft
∂q

− W ′ ∗ ρ[ ft](q)
∂ft
∂p

=
σ2

2
∆pft +

∂(γpft)
∂p

� (4)

in the probability density function ft(q, p) : [0, T]× T× R → [0,∞), where ρ[ ft](q) =  ∫
R ft(q, p)dp; see [3, 27].

1.2.  Outline of the paper

We derive and analyse a regularised Dean–Kawasaki model in the undamped regime, based on 
the interacting particle system (2). A portion of our analysis is based on [4], and the relevant 
methodological novelties are sketched and put into context below.

Section 2 contains some auxiliary results. Section 2.1 establishes a propagation of chaos 
result (proposition 2.1) linking (2) and (3), using ideas from [20, 22]. This sort of result, which 
is not required in [4], is here needed to compare the system of interest (2) to the more tractable 
system of independent particles (3). Specific aspects of the latter system’s regularity, and in 
particular of the regularity of solutions to (4), are studied in proposition 2.3 in section 2.2; 
there, we explain the reason for choosing T (rather than R  as in [4]) as the spatial domain. 
Section  2.3 relies on propositions 2.1 and 2.3 to establish proposition 2.6: for ε > 0, this 
result provides ε-independent uniform estimates for certain Sobolev-space norms applied to 
the regularised densities

ρε(x, t) :=
1
N

N∑
i=1

wε(x − qi(t)), jε(x, t) :=
1
N

N∑
i=1

pi(t)wε(x − qi(t)),� (5)

j2,ε(x, t) :=
1
N

N∑
i=1

p2
i (t)w

′
ε(x − qi(t)).� (6)

Above, (x, t) ∈ T× [0, T], while wε is the periodic von Mises distribution [12] on T with loca-
tion parameter µ := 0 and concentration parameter κ := ε−2, namely,

wε(x) := Z−1
ε e−

sin2(x/2)
ε2/2 , Zε :=

∫

T
e−

sin2(x/2)
ε2/2 dx.� (7)

The quantities in (5) are the regularised empirical density and momentum density for (2), and 
will be the building block of our final model; as for (6), this is a relevant auxiliary quantity 
emerging from the analysis of (5).

The kernel wε is introduced for smoothing and regularisation purposes. More precisely, we 
work with the quantities (5) and (6) rather than their atomic counterparts defined by a replace-
ment of wε with Dirac delta functions centred on the particles; this is a key aspect of our 
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approach, as it allows us to use standard tools from stochastic analysis and work with smooth 
functions. We refer to [4, section 1] for a similar discussion. The kernel wε, which recovers a 
Dirac delta as ε → 0, is the toroidal equivalent of a Gaussian distribution with variance ε2. The 
basic inequality |x/4| � |sin(x/2)| � |x/2|, valid for all x ∈ [0,π], implies that the ε-scalings 
of all the moments of wε are identical to those of a Gaussian of variance ε2. In particular, we 
have that C1ε � Zε � C2ε, for some constants C2 > C1 > 0. We can thus effectively use the 
kernel wε as if it is a Gaussian of variance ε2, thus reusing much of scaling considerations (of 
polynomial type in ε−1 and N−1) found in [4], where wε is Gaussian.

Remark 1.2.  Throughout the paper, the quantities in (5) and (6) will always be understood 
under scalings of the type Nεθ = 1, for θ large enough. Such a scaling is convenient to deal 
with the simultaneous limits ε → 0 and N → ∞. This is because most bounds that we will 
prove with respect to (5) and (6) feature a polynomial contribution in ε−1 and N−1, as men-
tioned above.

Section 3 is concerned with the evolution of the particle system (2). Section 3.1 contains 
proposition 3.2, which provides relative compactness in law for the families {ρε}ε, { jε}ε, and 
{ j2,ε}ε in the limit ε → 0. In this result, the crucial feature of time regularity of the processes 
is settled not by the Kolmogorov criterion [14, corollary 14.9] (as for the corresponding result 
in [4]), but by Simon’s compactness criterion [25, theorem 5] applied in the context of the 
Prokhorov theorem [14]. The need for the latter method arises since the estimates for the time 
regularity obtained here are less sharp than those in [4], due to the use of the propagation of 
chaos (proposition 2.1).

We then focus on the evolution equations  for (5), which are the building blocks of our 
regularised Dean–Kawasaki model. As the evolution equations for (5) are not closable in (5), 
we rely on three relevant approximations. The first one, explained in section 3.2, provides 
the distinctive particle interaction term {W ′ ∗ ρε} ρε. The second one, detailed in section 3.3, 
gives the relevant Dean–Kawasaki type noise (depending on ρε and on a regular infinite-
dimensional noise). The key differences with respect to the analogous argument performed in 
[4] (these being primarily due to the use of the propagation of chaos, the use of the von Mises 
kernels, and the lack of control over inverse powers of ρε in the case of dependent particles) 
are explained there. The third and final approximation, which we justify in a low-temperature 
regime, allows us to replace j2,ε (defined in (6)) with a multiple of ∂ρε/∂x .

In section  4 we take advantage of the approximations discussed above and derive our  
regularised Dean–Kawasaki model for weakly interacting particles in undamped regime

 




∂ρ̃ε
∂t

(x, t) = −∂ j̃ε
∂x

(x, t), (8a)

∂ j̃ε
∂t

(x, t) = −γ j̃ε(x, t)−
(
σ2

2γ

)
∂ρ̃ε
∂x

(x, t)− {W ′ ∗ ρ̃ε(·, t)}(x)ρ̃ε(x, t) +
σ√
N

√
ρ̃ε(x, t) ξ̃ε, (8b)

ρ̃ε(x, 0) = ρ0(x), j̃ε(x, 0) = j0(x),

for (x, t) ∈ T× [0, T], where (ρ0, j0) is a suitable initial datum, where ξ̃ε is a regular Q-Wiener 
process (e.g. in the sense of [24]), and where the aforementioned approximations are visible 
in the last three terms of the right-hand side of (8b). We use (ρ̃ε, j̃ε) to refer to the solution of 
the approximate model (8), and (ρε, jε) to refer to the original densities in (5).

We provide a few preliminary results concerning the existence of local mild solutions to 
(8) and also to its noise-free version. We then prove the main existence and uniqueness result 
of the paper, theorem 4.4. More specifically, we perform a small-noise regime analysis, in a 
similar way to the one carried out in [4], to prove a high-probability existence and uniqueness 
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result of mild solutions to (8). On top of the arguments in [4], additional localisation proce-
dures via stopping times and the conservation of mass for the system are needed to treat the 
locally bounded (superlinear) interaction term {W ′ ∗ ρ̃ε}ρ̃ε.

2.  Preliminary results

We prove a few results which will be used in section 3 for the derivation of the undamped 
regularised Dean–Kawasaki model for weakly interacting particles.

2.1.  Propagation of chaos

We first quantify how much the particles in (2) follow their counterparts in (3).

Proposition 2.1 (Propagation of chaos).  Let N ∈ N, let α � 2 be an even natural 
number, let T  >  0, and let W ∈ C2(T). There exists a constant C = C(W, T ,α) such that

sup
t∈[0,T]

E [|q1(t)− q1(t)|α + |p1(t)− p1(t)|α]
1
α �

C(W, T ,α)√
N

,� (9)

where the particle notation is inherited from (2) and (3).

Proof.  We adapt the proof of [20, theorem 3.3]. Let βN(t) :=  
E [|q1(t)− q1(t)|α + |p1(t)− p1(t)|α]. We apply the Itô formula for the function f (z) = |z|α 
applied to the processes qi(t)− qi(t) and pi(t)− pi(t), for each i ∈ {1, . . . , N}, and sum the 
results. We notice that the stochastic noise for pi(t)− pi(t), i ∈ {1, . . . , N}, vanishes by as-
sumption. We obtain

N∑
i=1

|qi(t)− qi(t)|α =

∫ t

0

N∑
i=1

α(qi(r)− qi(r))
α−1( pi(r)− pi(r))dr =: T1,

�

(10a)

N∑
i=1

|pi(t)− pi(t)|α = −α

N

∫ t

0

N∑
i,j=1

( pi(r)− pi(r))
α−1 (W ′(qi(r)− qj(r))− W ′ ∗ µr(qi(r))) dr

+

∫ t

0

N∑
i=1

α( pi(r)− pi(r))
α−1(−γ [ pi(r)− pi(r)])dr =: T2 + T3.

� (10b)

We bound T1 using the Young inequality with exponents α and α/(α− 1). We thus obtain for 
T1 + T3

T1 + T3 � C(α, γ)
∫ t

0

N∑
i=1

(|qi(r)− qi(r)|α + |pi(r)− pi(r)|α)dr.� (11)

As for T2, we rewrite it as T2 = −α
N

∫ t
0

∑N
i,j=1

{
c(1)

ij (r) + c(2)
ij (r)

}
dr, where

c(1)
ij (r) :=

[
W ′(qi(r)− qj(r))− W ′(qi(r)− qj(r))

]
( pi(r)− pi(r))

α−1 ,

c(2)
ij (r) :=

[
W ′(qi(r)− qj(r))− W ′ ∗ µr(qi(r))

]
( pi(r)− pi(r))

α−1 .

F Cornalba et alNonlinearity 33 (2020) 864
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We use the boundedness of W ′′, a Taylor expansion of W ′, and the Young inequality with 
exponents α and α/(α− 1) to find

∣∣∣∣∣∣
−α

N

∫ t

0

N∑
i,j=1

c(1)
ij (r)dr

∣∣∣∣∣∣

�
α

N

∫ t

0

N∑
i,j=1

∣∣W ′(qi(r)− qj(r))− W ′(qi(r)− qj(r))
∣∣ |pi(r)− pi(r)|

α−1dr

�
C(W,α)

N

∫ t

0

N∑
i,j=1

{
|qi(r)− qi(r)|+

∣∣qj(r)− qj(r)
∣∣} |pi(r)− pi(r)|

α−1dr

�
C(W,α)

N

∫ t

0

N∑
i,j=1

{
|qi(r)− qi(r)|

α
+
∣∣qj(r)− qj(r)

∣∣α + |pi(r)− pi(r)|
α}dr

= C(W,α)
∫ t

0

N∑
i=1

{|qi(r)− qi(r)|
α
+ |pi(r)− pi(r)|

α}dr.

�

(12)

Fix r ∈ [0, t] and i ∈ {1, . . . , N}. We employ the Hölder inequality with exponents α and 
α/(α− 1) to obtain

E




N∑
j=1

c(2)
ij (r)


 = E




N∑
j=1

[
W ′(qi(r)− qj(r))− W ′ ∗ µr(qi(r))

]
( pi(r)− pi(r))

α−1




� E [|pi(r)− pi(r)|
α
]
(α−1)/α

θ
1/α
i (r),

�

(13)

where

θi(r) := E



∣∣∣∣∣∣

N∑
j=1

ξqi(r),qj(r)

∣∣∣∣∣∣

α
 = E






N∑
j=1

ξqi(r),qj(r)




α
 ,

with ξqi(r),qj(r) := W ′(qi(r)− qj(r))− W ′ ∗ µr(qi(r)), and where we have also used the fact 
that α is an even natural number. We define

T1,α := {j = ( j1, . . . , jα) ∈ {1, . . . , N}α : ∃jk �= i such that jk appears exactly once in j} ,
T2,α := {j = ( j1, . . . , jα) ∈ {1, . . . , N}α : j /∈ T1,α} .

We have #T2,α � C(α)Nα/2, where # denotes set cardinality. To see this, consider a generic 
j ∈ T2,α. There are at most α/2 values attained in j: arguing by contradiction, if this is not the 
case, then i is attained exactly once (due to the definition of T2,α). However, this means that 
the remaining α− 1 occurrences of j are distributed among at least α/2 values, granting the 
existence of jk �= i appearing exactly once in j, and thus contradicting the definition of T2,α. 
We therefore have no more than C(α)Nα/2 possible configurations in T2,α, where C(α) is a 
suitable constant. We expand the definition of θi(r) as

θi(r) =
∑

j∈T1,α

E

[
α∏

k=1

ξqi(r),qjk
(r)

]
+

∑
j∈T2,α

E

[
α∏

k=1

ξqi(r),qjk
(r)

]
.

F Cornalba et alNonlinearity 33 (2020) 864
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For any j ∈ S1,α, it holds that E
[∏α

k=1 ξqi(r),qjk
(r)

]
= 0. To see this, let z ∈ T, and let j �= i be 

an index appearing just once in j. Then

E

[
α∏

k=1

ξqi(r),qjk
(r)

∣∣∣∣∣ qi(r) = z

]
=

∏
jk=i

ξz,z · E




 ∏

jk �=i,jk �=j

ξz,qjk
(r)


 ξz,qj(r)

∣∣∣∣∣∣
qi(r) = z




=
∏
jk=i

ξz,z · E




 ∏

jk �=i,jk �=j

ξz,qjk
(r)


 ξz,qj(r)




� (14)

=
∏
jk=i

ξz,z · E


 ∏

jk �=i,jk �=j

ξz,qjk
(r)


E

[
ξz,qj(r)

]
� (15)

=
∏
jk=i

ξz,z · E


 ∏

jk �=i,jk �=j

ξz,qjk
(r)


E

[(
W ′(z − qj(r))− W ′ ∗ µr(z)

)]
= 0,� (16)

where independence of particles is used in (14) and (15), and 
E
[(

W ′(z − qj(r))− W ′ ∗ µr(z)
)]

= 0 settles (16). The exchangeability of particles, the 
Hölder inequality, the boundedness of W ′, and the bound #T2,α � C(α)Nα/2 then give

θi(r) =
∑

j∈S2,α

E

[
α∏

k=1

ξqi(r),qjk
(r)

]

� C(α)N
α
2 E

[
|W ′(q1(r)− q2(r))|

α
+ |W ′ ∗ µr(q1(r))|

α]
� C(W,α)N

α
2 .

� (17)

We sum (10a) and (10b), combine (11)–(13), and (17), and use the exchangeability of the 
particles to obtain

βN(t) �
∫ t

0
C(α, γ)βN(r)dr +

∫ t

0
C(W,α)N−1/2(βN(r))(α−1)/αdr.� (18)

Applying the Young inequality in the second integral of (18) and then Gronwall’s inequality 
completes the proof.� □ 

We point out a couple of differences between proposition 2.1 and [20, theorem 3.3]. Firstly, 
we do not require convexity for the interaction potential W, as we are only interested in an 
estimate up to a given finite time; there is thus no need for a dissipative term in (18). Secondly, 
since the derivative W ′ is bounded, we can choose α arbitrarily large without violating the 
validity of (17). In the proof of proposition 2.6 below, we will pick α > 2.

2.2.  Fokker–Planck regularity estimates

We now establish useful regularity properties of the particle system (3). We use Cn to denote 
n times continuously differentiable functions on T, for n ∈ N ∪ {0}. We first specify our 
assumptions on (3).

F Cornalba et alNonlinearity 33 (2020) 864
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Assumption 2.2.  We assume that the initial datum (q(0), p(0)) of (3) coincides with 
(qaux(t0), paux(t0)) for some t0  >  0, where (qaux, paux) is an auxiliary process satisfying (3) 
and starting from an initial datum distributed according to a probability density f 0 satisfying

∫

T

∫

R
f0(q, p)(1 + p2)kdpdq < ∞.

Our choice to only consider a process ‘restarted’ at some time t0  >  0 is motivated by the 
need of the uniform-in-time Sobolev estimates found in [27, 17.2], which we will use in the 
following result.

Proposition 2.3.  For n, n1 ∈ N ∪ {0} and c � 2, let w be a Cn-probability density function 
and g ∈ Cn. Let the initial datum of (3) be as specified in assumption 2.2. Then

∫

T

∣∣∣∣E
[

g(q(t))pn1(t)
∂n

∂xn w(x − q(t))
]∣∣∣∣

c

dx � C(g, t0, f0, n), for all t � 0,

where C(g, t0, f0, n) does not depend on w.

Proof.  We first prove that, for f t(q,p ) being the probability density function of (q(t), p(t)) 
and for any g̃ ∈ C0, we have

∫

T

∣∣∣∣
∫

R
|g̃(q)pn1 |

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣ dp

∣∣∣∣
c

dq � C(g̃, t0, f0, n), for m ∈ {0, 1, . . . , n}.

� (19)

We use the boundedness of g and the Hölder inequality with exponents c and c/(c − 1) to 
obtain

∫

T

∣∣∣∣
∫

R
|g̃(q)pn1 |

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣ dp

∣∣∣∣
c

dq � C(g̃)
∫

T

∣∣∣∣∣
∫

R
|pn1 |

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣

2
c
∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣

c−2
c

dp

∣∣∣∣∣

c

dq

� C(g̃)
∫

T

(∫

R
|pn1c|

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣
2 ∣∣1 + p2

∣∣kc
dp

)(∫

R

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣

c−2
c−1 ∣∣1 + p2

∣∣− kc
c−1 dp

)c−1

dq.

� (20)

The second p -integral in (20) can be bounded by a constant C(t0, f0, n), provided we pick k > c−1
2c . 

To see this, we notice that [27, 17.2] gives uniform bounds in time for ‖ft‖Wn+2,2(T×R), where 
we use the Sobolev space notation. The continuous embedding Wn+2,2(T× R) ⊂ Cm(T× R), 
which is a result of the application of [1, theorem 4.12, part I, case A, equation (1)]) thus im-
plies that

sup
q∈T,p∈R

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣ � C(t0, f0, n), for all t � 0.

As a result, the argument of the second p -integral in (20) is controlled by (1 + p2)−
kc

c−1, which 
is integrable thanks to the choice of k. Thus (20) is bounded by

C(g̃, t0, f0, n)
∫

T

∫

R
|pn1c|

∣∣∣∣
∂m

∂qm ft(q, p)
∣∣∣∣
2 ∣∣1 + p2

∣∣kc
dpdq,
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which is in turn uniformly bounded in time due to [27, 17.2]. We have thus verified (19). 

We now define f̃t(q) :=
∫
R (∂n/∂qn) {g(q)pn1 ft(q, p)} dp. We use integration by parts and 

Young’s inequality for convolutions to bound
∫

T

∣∣∣∣E
[

g(q(t))pn1(t)
∂n

∂xn w(x − q(t))
]∣∣∣∣

c

dx =

∫

T

∣∣∣∣
∫

T

∫

R
g(q)pn1 ft(q, p)

∂n

∂qn w(x − q)dpdq
∣∣∣∣
c

dx

=

∫

T

∣∣∣∣
∫

T

∫

R
w(x − q)

∂n

∂qn {g(q)pn1 ft(q, p)} dpdq
∣∣∣∣
c

dx

=

∫

T

∣∣∣∣
∫

T
w(x − q)f̃t(q)dq

∣∣∣∣
c

dx =
∥∥∥w ∗ f̃t

∥∥∥
c

Lc(T)
� ‖w‖c

L1(T)

∥∥∥f̃t
∥∥∥

c

Lc(T)
=

∥∥∥f̃t
∥∥∥

c

Lc(T)

=

∫

T

∣∣∣∣
∫

R

∂n

∂qn {g(q)pn1 ft(q, p)} dp
∣∣∣∣
c

dq

� C(n, c)
n∑

j=0

∫

T

∣∣∣∣
∫

R

∣∣∣∣
∂ j

∂q j {g(q)} pn1
∂n−j

∂qn−j { ft(q, p)}
∣∣∣∣ dp

∣∣∣∣
c

dq.

�

(21)

As g ∈ Cn, it is clear that each of the (n + 1) terms in (23) is as prescribed by the left-hand-
side of (19), for some appropriate choices of g̃ and m. The proof is complete.� □ 

Remark 2.4.  The use of [27, 17.2] is the reason for having T, and not R , as the spatial 
domain.

Remark 2.5.  With the same notation and assumptions of propositions 2.1 and 2.3, let the 
initial datum of the particles systems (2) and (3) have density (qaux(t0), paux(t0)). It is easy to 
prove that the particle systems (2) and (3) have moments of any order uniformly bounded on 
[0, T]. This is a simple consequence of the boundedness of W ′.

2.3.  A useful application of the propagation of chaos

The result proved in this subsection is used in section 3 in order to provide estimates indepen-
dent of ε for the Hk-norm of the expressions (5) and (6). We use the standard Sobolev space 
notation Hk := Hk(T), for k ∈ N, and also L p := L p(T), for p ∈ [1,∞]. As already men-
tioned, we will always assume a scaling of type Nεθ = 1, for θ large enough, say θ > θ0. In 
this paper, we are not interested in optimising in θ (i.e. in finding its lowest admissible value).

Proposition 2.6.  Let the assumptions of Propositions 2.1 and 2.3 be satisfied, and let 
N � c � 2. Then, in the regime Nεθ = 1, for θ large enough, we have that

E

[∥∥∥∥∥
1
N

N∑
i=1

pn1
i (t)

∂n

∂nx
wε(· − qi(t))

∥∥∥∥∥
c

Lc

]
� (22a)

and

E



∥∥∥∥∥∥

1
N

N∑
i=1





1
N

N∑
j=1

W ′(qi(t)− qj(t))



 pn1

i (t)
∂n

∂nx
wε(· − qi(t))

∥∥∥∥∥∥

c

Lc


� (22b)

are uniformly bounded in ε, N, and t ∈ [0, T].
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Even though the proof of proposition 2.6 is a suitable extension of [4, proof of proposition 
1.1], we include it here to keep the paper as self-contained as possible. For the benefit of the 
curious reader, we point out the analogies between the two proofs in the subsequent remark 
2.7, which may be skipped on a first reading.

Proof of proposition 2.6.  We first deal with (23a). Set ai(x, t) := pn1
i (t) ∂n

∂nx wε(x − qi(t)). 
If we expand the Lc-norm, we get

E

[∥∥∥∥∥
1
N

N∑
i=1

pn1
i (t)

∂n

∂nx
wε(· − qi(t))

∥∥∥∥∥
c

Lc

]

=
1

Nc

∑
j∈S1,c

E

[∫

T

c∏
k=1

ajk(x, t)dx

]
+

1
Nc

∑
j∈S2,c

E

[∫

T

c∏
k=1

ajk(x, t)dx

]
,

where S1,c and S2,c are given by

S1,c := {j = ( j1, . . . , jc) ∈ {1, . . . , N}c : j does not have repeated components} ,
� (23a)

S2,c := {j = ( j1, . . . , jc) ∈ {1, . . . , N}c : j has repeated components} .� (23b)

We use the exchangeability of the particles, the fact that #S2,c � C(c)Nc−1, the Hölder in-
equality, and the fact that all moments of p i are uniformly bounded on [0, T] (see remark 2.5) 
to obtain

1
Nc

∑
j∈S2,c

E

[∫

T

c∏
k=1

ajk(x, t)dx

]
�

C(c)
N

∫

T
E [ac

1(x, t)] dx �
Q(ε−1)

N
→ 0 as ε → 0,� (24)

where Q is some polynomial whose degree depends on n. The convergence to zero is granted 
by the scaling Nεθ = 1, assuming that θ is large enough. For each j ∈ S1,c, we now analyse 
E
[∫

T
∏c

k=1 ajk(x, t)dx
]
. The particles {(qi, pi)}N

i=1 not being independent, we rely on the prop-
agation of chaos, i.e. on proposition 2.1. The strategy is the following: in each ajk(x, t), we add 
and subtract relevant quantities associated with (3). More specifically, we split

pn1
i (t) = pn1

i (t)− pn1
i (t)︸ ︷︷ ︸

A1,i:=

+ pn1
i (t)︸ ︷︷ ︸

B1,i:=

,
� (25a)

∂n

∂nx
wε(x − qi(t)) =

∂n

∂nx
wε(x − qi(t))−

∂n

∂nx
wε(x − qi(t))︸ ︷︷ ︸

A2,i:=

+
∂n

∂nx
wε(x − qi(t))︸ ︷︷ ︸

B2,i:=

.

� (25b)

The estimates

|A1,i| � C(n1)|pi(t)− pi(t)|(|pi(t)|n1−1 + |pi(t)|n1−1),� (26a)

|A2,i| � Q(ε−1)|qi(t)− qi(t)|,� (26b)

|B2,i| � Q(ε−1),� (26c)

where Q is a polynomial, follow easily from Taylor expansions and bounds on de-
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rivatives of wε. We regroup the 22c terms arising from the expansion of the product ∏c
k=1 (A1,jk + B1,jk) (A2,jk + B2,jk) as

c∏
k=1

(A1,jk + B1,jk) (A2,jk + B2,jk) =

c∏
k=1

B1,jk B2,jk +

22c−1∑
s=1

Cs,

where the sum spans all 22c  −  1 terms of the expansion which feature at least one factor of 
type A (i.e. each Cs is a product of 2c terms of type A and B, with at least one being of type 
A). As a result, we write

E

[∫

T

c∏
k=1

ajk(x, t)dx

]
= E

[∫

T

c∏
k=1

B1,jk B2,jk dx

]
+

22c−1∑
s=1

E
[∫

T
Csdx

]
:= T1 + T2.

� (27)

We bound T2. As each term Cs contains a factor of type A, we can use (26) to deduce that

|Cs| �

(
c∏

i=1

|pi(t)− pi(t)|αi |qi(t)− qi(t)|βi

)

×

(
c∏

i=1

[
C(n1)(|pi(t)|n1−1 + |pi(t)|n1−1)

]αi [Q(ε−1)
]βi

)

×

(
c∏

i=1

[pi(t)]
1−αi

[
Q(ε−1)

]1−βi

)
=: T3 × T4 × T5,

for some αi,βi ∈ {0; 1}, 
∑c

i=1 αi + βi ∈ {1, . . . , 2c}. We can bound E [|Cs|] by applying a 
multi-factor Hölder inequality involving each term of the product E [T3 × T4 × T5]. More pre-
cisely, the expectation of each term of T3 is either unitary, or dealt with by using proposition 
2.1 (propagation of chaos); the expectation of each term of T4 and T5 is either unitary, or dealt 
with by relying on the fact that all moments of pi(t), p i(t) are uniformly bounded on [0, T], 
see remark 2.5. Due to the constraint 

∑c
i=1 αi + βi ∈ {1, . . . , 2c}, we can apply proposition 

2.1 at least once. Thus E [|Cs|] � C(n1)N−γ1ε−γ2 , for some γ1, γ2 > 0, for s = 1, . . . , 22c − 1. 
Provided that θ is large enough, we deduce that T2 → 0 as ε → 0.

As for T1, we rely on independence and identical distribution of the particles {(qi, pi)}N
i=1 

and write

E [T1] = E

[∫

T

c∏
k=1

pn1
i (t)

∂n

∂nx
wε(x − qi(t))dx

]

�
∫

T

∣∣∣∣E
[

pn1
1 (t)

∂n

∂xn w(x − q1(t))
]∣∣∣∣

c

dx � C(t0, f0, n),

where the last inequality is given by proposition 2.3. The expectation in (23a) is thus dealt 
with.

As for the expectation in (23b), the analysis proceeds similarly, and we only sketch the 
relevant details. We may think of the argument of the Lc-norm as a sum over two indexes 

i, j = 1, . . . , N , thus defining ai,j(x, t) := W ′(qi(t)− qj(t)) pn1
i (t) ∂n

∂nx wε(x − qi(t)). We split the 
Lc-norm expansion into the contributions given over the index sets S1,2c and S2,2c (c couples of 
indexes). The expectation associated with the index set S2,2c vanishes in the limit ε → 0, using 
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the same arguments leading to (26). Now fix j ∈ S1,2c. If we add the rewriting

W ′(qi(t)− qj(t)) = W ′(qi(t)− qj(t))− W ′(qi(t)− qj(t))︸ ︷︷ ︸
A3,i,j:=

+W ′(qi(t)− qj(t))︸ ︷︷ ︸
B3,i,j:=

to those in (26), with the associated bound

|A3,i,j| � C(W)
{
|qi(t)− qi(t)|+ |qj(t)− qj(t)|

}

we may then write

E

[∫

T

c∏
k=1

aj2k−1,j2k(x, t)dx

]
= E

[∫

T

c∏
k=1

B1,j2k−1 B2,j2k−1 B3,j2k−1,j2k dx

]
+

23c−1∑
s=1

E
[∫

T
Csdx

]

=: T1 + T2,

� (28)

where the notation is in analogy to (27). The convergence T2 → 0 is settled as in the first part 
of the proof, and we omit the details. To bound T1, we simply need to bound

∫

T

∣∣∣∣E
[

W ′(q1(t)− q2(t))p
n1
1 (t)

∂n

∂nx
wε(x − q1(t))

]∣∣∣∣
c

dx,� (29)

where we have used again independence and identical distribution of the particles {(qi, pi)}N
i=1. 

We notice that

E
[

W ′(q1(t)− q2(t))p
n1
1 (t)

∂n

∂nx
wε(x − q1(t)) |q1(t) = zq, p1(t) = zp

]

= zn1
p

∂n

∂nx
wε(x − zq)E [W ′(zq − q2(t)) |q1(t) = zq, p1(t) = zp ]

= zn1
p

∂n

∂nx
wε(x − zq)E [W ′(zq − q2(t))] = zn1

p
∂n

∂nx
wε(x − zq)W ′ ∗ µt(zq),

which implies

E
[

W ′(q1(t)− q2(t))p
n1
1 (t)

∂n

∂nx
wε(x − q1(t))

]
= E

[
W ′ ∗ µt(q1(t))p

n1
1 (t)

∂n

∂nx
wε(x − q1(t))

]
.

The above equality shows that (30) is of the form prescribed by proposition 2.3, for 
g := W ′ ∗ µt; as a matter of fact, W ′ ∗ µt ∈ Cn because of the uniform regularity of µt  for 
t ∈ [0, T], see [27, 17.2]. This ends the proof.� □ 

Remark 2.7.  The proof of proposition 2.6 is built on two splittings. The first one separates 
the index set in S1,c, S2,c (and also S1,2c, S2,2c); the second one distinguishes terms of type 
A and B for every element in S1,c (and also in S1,2c). The first splitting benefits from scaling 
arguments (in N, ε) which are found also in [4, proposition 1.1] (see the distinction between 
terms ct, and I1–I4 therein). The second splitting benefits from Propagation of chaos, and does 
not have a counterpart in [4, proposition 1.1].

Remark 2.8.  In the proof of proposition 2.6, the minimum power α that we need to employ 
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when using the propagation of chaos is α = 2c (for (23a)) and power α = 3c (for (23b)). In 
the case of (23a), this can be seen easily from the multi-factor Hölder inequality used to deal 
with the one term E [|Cs|] for which 

∑c
i=1 αi + βi = 2c. An analogous consideration holds for 

(23b). This justifies the need for the propagation of chaos for α > 2.

3.  Evolution of the weakly interacting particle system

We analyse the time evolution of the densities (5) and (6) and start by deriving the relevant 
evolution equations.

Lemma 3.1.  The evolution equations for ρε, jε, and j2,ε are given by

∂ρε
∂t

(x, t) = −∂jε
∂x

(x, t),� (30a)

∂jε
∂t

(x, t) = −γjε(x, t)− j2,ε(x, t)− 1
N

N∑
i=1


 1

N

N∑
j=1

W ′(qi(t)− qj(t))


wε(x − qi(t))

+
σ

N

N∑
i=1

wε(x − qi(t))β̇i

︸ ︷︷ ︸
=:ŻN(x,t)

,
�

(30b)

∂j2,ε

∂t
(x, t) = −2γj2,ε(x, t)− j3,ε(x, t)− 2

N

N∑
i=1


 1

N

N∑
j=1

W ′(qi(t)− qj(t))


 pi(t)w′

ε(x − qi(t))

+ σ2 ∂ρε
∂x

(x, t) +
σ

N

N∑
i=1

2pi(t)w′
ε(x − qi(t))β̇i,

�

(30c)

where j3,ε := N−1 ∑N
i=1 p3

i (t)w
′′
ε (x − qi(t)).

The proof of the lemma above is a simple application of the Itô formula, and thus omitted.

3.1.  Compactness argument

We now turn to the main result of this section.

Proposition 3.2.  Let T  >  0. Let the assumptions of propositions 2.1 and 2.3 be satisfied. 
Assume the scaling Nεθ = 1, for θ large enough. The families of processes {ρε}ε, { jε}ε, and 
{ j2,ε}ε are tight (hence relatively compact in distribution) in C(0,T;L2), as ε → 0.

Proof.  Assume for the time being (we will show this below) that

E [‖ρε‖U ] , E [‖jε‖U ] , E [‖j2,ε‖U ] are uniformly bounded as ε → 0,
� (31)

where ‖ · ‖U  is the natural norm of the space

U := L∞(0, T; H1) ∩ Cβ(0, T; H−1), for some β ∈ (0, 1/2).� (32)
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Using [25, theorem 5], it is straightforward to deduce that the embedding U ↪→ Z := C(0, T; L2) 
is compact. In addition, the sets Gj := {u ∈ U : ‖u‖U � j} are compact in Z , for each 
j ∈ N. Now fix a  >  0. If we denote the law of ρε by χε, we get

χε (Z \ Gj) =

∫

Z \Gj

χε(dρ) =
∫

U \Gj

χε(dρ) �
1
j

∫

U

‖ρ‖U χε(dρ) � a

for all ε ∈ (0, 1], provided that j  is large enough, thanks to (31). An analogous argument applies 
to { jε}ε and { j2,ε}ε. This corresponds to tightness for the families {ρε}ε, { jε}ε, and { j2,ε}ε, 
hence the Prokhorov theorem [14, theorem 14.3] is applicable and gives relative compactness 
in distribution for the three families. In order to complete the proof, we need to show (31).

Uniform bounds for {ρε}ε. We show that

E
[
‖ρε‖L∞(0,T;H1)

]
� C,� (33a)

E
[
‖ρε‖Cβ(0,T;H−1)

]
� C,� (33b)

for a constant C, independent of ε and N. Using (30a), we deduce

‖ρε‖2
L∞(0,T;H1) = sup

t∈[0,T]
‖ρε(·, t)‖2

H1 � 2‖ρε(·, 0)‖2
H1 + 2T

∫ T

0
‖jε(·, s)‖2

H2 ds.

Estimate (33a) is then settled by invoking proposition 2.6. We now take v ∈ H1 and compute

|〈ρε(·, t)− ρε(·, s), v〉L2 | =
∣∣∣∣
∫

T
[ρε(x, t)− ρε(x, s)] v(x)dx

∣∣∣∣ =
∣∣∣∣
∫

T

(∫ t

s
−∇ · jε(x, z)dz

)
v(x)dx

∣∣∣∣

=

∣∣∣∣
∫

T

(∫ t

s
jε(x, z)dz

)
∇v(x)dx

∣∣∣∣ �
∥∥∥∥
∫ t

s
jε(·, z)dz

∥∥∥∥
L2

‖v‖H1

� |t − s| 1
2

(∫ t

s
‖jε(·, z)‖2

L2 dz
) 1

2

‖v‖H1 .

�

(34)

The bound x � 1 + x2 valid for any x ∈ R, the definition of the usual norm of Cβ(0, T; H−1), 
and (34) imply

E
[
‖ρε‖Cβ(0,T;H−1)

]
� C + C E

[
‖ρε(·, 0)‖2

L2 +

∫ T

0
‖jε(·, z)‖2

L2 dz
]
� C,� (35)

for some β ∈ (0, 1/2), where the last inequality follows from proposition 2.6. We have thus 
proved (33b).

Uniform bounds for { jε}ε. Again, we show that there exists a constant C, independent of ε 
and N, such that

E
[
‖jε‖L∞(0,T;H1)

]
� C,� (36a)

E
[
‖jε‖Cβ(0,T;H−1)

]
� C.� (36b)
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We use (30b) and deduce that

‖jε‖2
L∞(0,T;H1) = sup

t∈[0,T]
‖jε(·, t)‖2

H1

� C
{
‖jε(·, 0)‖2

H1 + γ

∫ T

0
‖jε(·, z)‖2

H1 dz +
∫ T

0
‖j2,ε(·, z)‖2

H1 dz

+

∫ T

0

∥∥∥∥∥∥
1
N

N∑
i=1


 1

N

N∑
j=1

W ′(qi(z)− qj(z))


wε(· − qi(z))

∥∥∥∥∥∥

2

H1

dz

+ sup
t∈[0,T]

∥∥∥∥∥
∫ t

0

σ

N

N∑
i=1

wε(· − qi(z))dβi

∥∥∥∥∥
2

H1


 =: T1 + · · ·+ T5.

Uniform bounds for E [T1] ,E [T2] ,E [T3], and E [T4] are directly given by proposition 2.6. As 
for E [T5], we invoke [5, theorem 4.36] and bound

E [T5] � C E

[∫ T

0

N∑
i=1

∥∥∥ σ
N

wε(· − qi(s))
∥∥∥

2

H1
ds

]
= C

∫ T

0

σ2

N2

N∑
i=1

E
[
‖wε(· − qi(s))‖2

H1

]
ds

� CT
σ2

N2 N
(

1
ε
+

1
ε3

)
�

CTσ2

Nε3 ,

where the reader is also referred to [4, proof of proposition 1.1] for the scalings of Sobolev 
norms of wε(· − qi(s)), which we have used in the second line above. Estimate (37a) is thus 
established. In order to prove (37b), we analyse the quantity |〈 jε(·, t)− jε(·, s), v〉H−1,H1 |. 
Bounding the relevant contributions coming from the initial datum and the three deterministic 
integrands is analogous to (34)–(37). As for the stochastic noise, we rely on [11, lemma 2.1] 
and write, for α ∈ (0, 1/2) and λ > 2 satisfying αλ > 1,

E



∥∥∥∥∥
∫ ·

0

σ

N

N∑
i=1

wε(· − qi(t))dβi(s)

∥∥∥∥∥
λ

Wα,λ(0,T;H−1)




� C(α,λ)E



∫ T

0

σλ

Nλ

(
N∑

i=1

‖wε(· − qi(s))‖2
L2

)λ/2

ds




� C(α,λ)T
σλ

Nλ

(
CN
ε

)λ/2

=
C(α,λ,σ)T
(Nε)λ/2 .

We conclude the analysis for E [T5] using the embedding Wα,λ(0, T; H−1) ↪→ Cβ(0, T; H−1) 
for some β ∈ (0,α− 1/λ). This embedding is a consequence, e.g. of [7]. Thus (37b) is set-
tled.

Uniform bounds for { j2,ε}ε. The argument is almost identical to that used for the family { jε}ε. 
We show that

E
[
‖j2,ε‖L∞(0,T;H1)

]
� C,� (37a)

E
[
‖j2,ε‖Cβ(0,T;H−1)

]
� C,� (37b)
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for a constant C, independent of ε, N . We use (30c) and deduce that

‖j2,ε‖2
L∞(0,T;H1) = sup

t∈[0,T]
‖j2,ε(·, t)‖2

H1

� C
{
‖j2,ε(·, 0)‖2

H1 + γ

∫ T

0
‖j2,ε(·, z)‖2

H1 dz +
∫ T

0
‖j3,ε(·, z)‖2

H1 dz

+

∫ T

0

∥∥∥∥∥∥
1
N

N∑
i=1


 1

N

N∑
j=1

W ′(qi(z)− qj(z))


 pi(t)w′

ε(· − qi(z))

∥∥∥∥∥∥

2

H1

dz

+ sup
t∈[0,T]

∥∥∥∥∥
∫ t

0

σ

N

N∑
i=1

pi(t)w′
ε(· − qi(z))dβi

∥∥∥∥∥
2

H1


 =: T1 + · · ·+ T5.

The analysis involving the terms T1, . . . , T4 is analogous to that of the homonyms for { jε}ε. 
We only need to deal with the stochastic noise. As for E [T5],

E [T5] � C E

[∫ T

0

N∑
i=1

∥∥∥ σ
N

pi(t)w′
ε(· − qi(s))

∥∥∥
2

H1
ds

]
= C

∫ T

0

σ2

N2

N∑
i=1

E
[
p2

i (t) ‖w′
ε(· − qi(s))‖

2
H1

]

� CT
σ2

N2 NE
[
p2

1(t)
]( 1

ε3 +
1
ε5

)
�

CTσ2

Nε5 .

�

(38)

For α and λ as in the previous part of the proof, we use the � p-Hölder inequality and bound

E



∥∥∥∥∥
∫ ·

0

σ

N

N∑
i=1

pi(t)w′
ε(· − qi(t))dβi(s)

∥∥∥∥∥
λ

Wα,λ(0,T;H−1)




�
C(α,λ)σλ

Nλ

∫ T

0
E



(

N∑
i=1

‖pi(s)w′
ε(· − qi(s))‖

2
L2

)λ/2

 ds

�
C(α,λ)σλ

Nλε3λ/2

∫ T

0
E



(

N∑
i=1

p2
i (s)

)λ/2

 ds

�
C(α,λ)σλ

Nλε3λ/2

∫ T

0
Nλ/2−1E

[(
N∑

i=1

pλi (s)

)]
ds =

C(α,λ)σλ

Nλ/2ε3λ/2

∫ T

0
E
[
pλ1 (s)

]
ds =

C(α,λ, T)σλ

Nλ/2ε3λ/2 .

� (39)

Inequalities (38) and (39) allow us to deduce (37a) and (37b), and the proof is complete.� □ 

Remark 3.3.  In contrast to the methodology employed in [4, proposition 1.1], which settles 
tightness in the case of independent particles, the proof of proposition 3.2 does not rely on the 
Kolmogorov criterion. The reason is that the time regularity associated with the application of 
the propagation of chaos is not sufficiently high.

Remark 3.4.  In principle, there is more than one natural choice for the definition of the 
space U . Specifically, in (33), one might replace H−1 with any H−k, where k ∈ N ∪ {0}, thus 
including L2. This would result in adapting estimate (34) in the case of {ρε}ε (and analogous 
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expressions in the case of { jε}ε and { j2,ε}ε), thus invoking proposition 2.6 with a different 
parameter n. This directly reflects in a possibly different requirement for the scaling Nεθ = 1. 
Since we are not concerned with the lowest admissible value of θ, the choice of H−1 is as good 
as any other of those listed above.

3.2.  Approximating the interaction term

We show that the third term of the right-hand-side of (30b) is asymptotically equivalent (in the 
limit ε → 0 and N → 0) to the nonlocal interaction term {W ′ ∗ ρε}ρε.

Proposition 3.5.  Let T  >  0. Let the assumptions of propositions 2.1 and 2.3 be satisfied. 
Assume the scaling Nεθ = 1, for θ large enough. We have the equality

1
N

N∑
i=1


 1

N

N∑
j=1

W ′(qi(t)− qj(t))


wε(x − qi(t)) = {W ′ ∗ ρε(·, t)} (x)ρε(x, t) + r1,ερε(x, t) + r2,ε,

� (40)

where r1 and r2 are stochastic remainders such that |r1,ε| � C(W)
√
ε and E [|r2,ε|] �  

C(W, f0){
√
ε+ εβ}, for some β = β(θ) > 0, and where f 0 is as in proposition 2.3.

Before we prove the result above, we recall a simple lemma.

Lemma 3.6.  Let f ∈ C0(T) be a Lipschitz function. There is a constant C = C( f ), independent  
of ε > 0 and a ∈ T, such that 

∣∣∫
T wε(y − a) f (y)dy − f (a)

∣∣ � C
(√

ε+ exp
{
−Cε−1

})
.

Proof.  Let Aε := (a −
√
ε, a +

√
ε). Since f  is Lipschitz, we obtain

∫

T
wε(y − a) f (y)dy =

∫

Aε

wε(y − a) f (y)dy +
∫

T\Aε

wε(y − a) f (y)dy

� ( f (a)− C
√
ε)

∫

Aε

wε(y − a)dy +min
x∈T

f
∫

T\Aε

wε(y − a)dy

� f (a)

(
1 −

∫

T\Aε

wε(y − a)dy

)
− C

√
ε+min

x∈T
f
∫

T\Aε

wε(y − a)dy.

�

(41)

It is immediate to notice that 
∫
T\Aε

wε(y − a)dy � C exp
{
−Cε−1

}
 for some C  >  0. From 

(41), we obtain
∫

T
wε(y − a) f (y)dy − f (a) � −f (a)

∫

T\Aε

wε(y − a)dy +min
x∈T

f
∫

T\Aε

wε(y − a)dy − C
√
ε

� C
(
min
x∈T

f −max
x∈T

f
)
exp

{
−Cε−1}− C

√
ε.

An analogous inequality (with opposite sign) may be obtained in a similar way, completing 
the proof.� □ 
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Proof of proposition 3.5.  We split the left-hand-side of (40) as T1 + T2, where

T1 :=
1
N

N∑
i=1


 1

N

N∑
j=1

W ′(x − qj(t))


wε(x − qi(t))

and

T2 :=
1
N

N∑
i=1


 1

N

N∑
j=1

{W ′(qi(t)− qj(t))− W ′(x − qj(t))}


wε(x − qi(t)).

As for T1, we separate the sums in i and j  and deduce

T1 =

(
1
N

N∑
i=1

wε(x − qi(t))

)
 1

N

N∑
j=1

W ′(x − qj(t))


 = ρε(x, t)


 1

N

N∑
j=1

W ′(x − qj(t))




= ρε(x, t)


r1,ε +

1
N

N∑
j=1

∫

T
W ′(x − y)wε(y − qj(t))dy




= {W ′ ∗ ρε(·, t)} ρε(x, t) + r1,ερε(x, t).

Lemma 3.6 gives |r1,ε| � C(W)
√
ε, where C is independent of x, t,ω. With the notation of 

(40), it holds that r2,ε = T2. We use a Taylor expansion and bound

|r2,ε| �
1

N2

N∑
i,j=1

|W ′(qi(t)− qj(t))− W ′(x − qj(t))|wε(x − qi(t))

�
C(W)

N2

N∑
i,j=1

|x − qi(t)|wε(x − qi(t)) =
C(W)

N

N∑
i=1

|x − qi(t)|wε(x − qi(t))

=
C(W)

N

N∑
i=1

|x − qi(t)|wε(x − qi(t))

+
C(W)

N

N∑
i=1

{|x − qi(t)|wε(x − qi(t))− |x − qi(t)|wε(x − qi(t))} =: T3 + T4.

Since the particles are identically distributed, we have

E [|T3|] = C(W)E [|x − q1(t)|wε(x − q1(t))]

= C(W)

∫

T
|y − x|wε(x − y) fq(t, y)dy � C(W, f0)

√
ε,

where fq(t, ·) is the probability density function of q(t), and f 0 is as in proposition 2.3. The last 
inequality above is given by lemma 3.6: in particular, the constant C does not depend on time, 

as supt�0,q∈T
∂
∂q fq(t, q) is finite. To see this, one may apply [27, 17.2] and [1, theorem 4.12], 

with analogous considerations to those made in the proof of proposition 2.3.
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As for T4, we use a Taylor expansion, the bounds maxx∈T wε(x) � Cε−1 and 
maxx∈T |w′

ε(x)| � Cε−2, and write

E [|T4|] = C(W)E [|x − q1(t)|wε(x − q1(t))− |x − q1(t)|wε(x − q1(t))]

� C(W)E [|x − q1(t)| · |wε(x − q1(t))− wε(x − q1(t))|]
+ C(W)E [|q1(t)− q1(t)|wε(x − q1(t))]

� C(W)ε−2E [|x − q1(t)| · |q1(t)− q1(t)|]
+ C(W)ε−1E [|q1(t)− q1(t)|] � C(W)εβ ,

for some β = β(θ) > 0, where the last inequality follows from the propagation of chaos 
(proposition 2.1), and the scaling Nεθ = 1. The bound for r2,ε is established, and the proof is 
complete.� □ 

3.3.  Noise comparison

We want to replace the stochastic noise of (30b) (previously referred to as ZN ) with a noise 
closed in ρε and jε. We suitably adapt [4, subsections 3.2 and 3.3].

We first recall a useful fact. Let γε be the probability density function of a Gaussian random 
variable with mean zero and variance ε2. It is not difficult to show that, for rε := wε − γε, it 
holds that

‖rε‖C0(−π;π) � εα, for some α ∈ (0, 1).� (42)

Proposition 3.7.  Let the assumptions of propositions 2.1 and 2.3 be satisfied. Assume the 
scaling Nεθ = 1, for θ large enough. We define the stochastic noise

ẎN := σN−1/2√ρε/
√

2 Q1/2√
2ε
ξ,

where ξ is space-time white noise and Q√
2ε : L2 → L2 is the convolution operator with kernel 

w√
2ε (i.e. ξ̃ε := Q1/2√

2ε
ξ is an H1-valued Q-Wiener process with covariance operator Q√

2ε). 

For some positive C = C(T), c1(θ), and c2(θ), and α as in (42), we have

|E [ZN(x1, t)ZN(x2, t)]− E [YN(x1, t)YN(x2, t)]|

�
Cσ2

N
w√

2ε(x1 − x2)×
{
|x1 − x2|+ εc1(θ) + εα + εc2(θ)|x1 − x2|1/2

}
+

Cσ2

N
εα.

This result is an adaptation of [4, proof of theorem 1.3]. We sketch the proof below, and 
defer more technical considerations to remark 3.8.

[Proof of proposition 3.7] In what follows, the residuals rε in (42) appear several times. 
We do not specify the argument, as ultimately only their C0-norms will play a role. Set 
m := (x1 + x2)/2. We use the multiplication rule for Gaussian kernels [4, lemma A.4], the 
independence of the Brownian noises, and we apply (42) several times to obtain
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E [ZN(x1, t)ZN(x2, t)]

= E

[(∫ t

0

σ

N

N∑
i=1

wε(x1 − qi(u))dβi(u)

)(∫ t

0

σ

N

N∑
i=1

wε(x2 − qi(u))dβi(u)

)]

=
σ2

N2 E

[
N∑

i=1

∫ t

0
wε(x1 − qi(u))wε(x2 − qi(u))du

]

=
σ2

N2 E

[
N∑

i=1

∫ t

0
(γε(x1 − qi(u)) + rε) (γε(x2 − qi(u)) + rε) du

]

=
σ2

N2 E

[
N∑

i=1

∫ t

0
γ√2ε(x1 − x2)γε/

√
2(m − qi(u))du

]

+
σ2

N2 E

[
N∑

i=1

∫ t

0

{
r2
ε + rεγε(x1 − qi(u)) + rεγε(x2 − qi(u))

}
du

]
.

We use (42) to switch back to the von Mises kernels, and use the definition of ρε/
√

2 to obtain

|E [ZN(x1, t)ZN(x2, t)]− E [YN(x1, t)YN(x2, t)]|

�

∣∣∣∣
σ2

N
w√

2ε(x1 − x2)

∫ t

0
E
[
ρε/

√
2(m, u)

]
du

−σ2

N
w√

2ε(x1 − x2)

∫ t

0
E
[√

ρε/
√

2(x1, u)ρε/√2(x2, u)
]

du
∣∣∣∣

+

∣∣∣∣∣
σ2

N2 E

[
N∑

i=1

∫ t

0

{
3r2

ε + rε/√2r√2ε

}
du

]
+

σ2

N2 E

[
N∑

i=1

∫ t

0

{
rε/√2w√

2ε(x1 − x2)
}

du

]

+
σ2

N2 E

[
N∑

i=1

∫ t

0

{
rεwε(x1 − qi(u)) + rεwε(x2 − qi(u)) + r√2εwε/

√
2(m − qi(u))

}
du

]∣∣∣∣∣
=: |A1 − A2|+ |A3 + A4 + A5|.

The bound |A3 + A4 + A5| � (Cσ2/N){εα + εαw√
2ε(x1 − x2)} follows easily from (42). In 

order to control |A1 − A2|, it is sufficient to bound

E
[∣∣∣ρε/√2(m)−

√
ρε/

√
2(x1)ρε/

√
2(x2)

∣∣∣
]

,� (43)

where we have fixed u ∈ [0, T], and dropped the time dependence for notational convenience. 
We bound the random variable in (43) as

∣∣∣ρε/√2(m)−
√
ρ2
ε/

√
2
(m) + b(x1, x2)

∣∣∣ �
√
|b(x1, x2)|,� (44)

where

b(x1, x2) := ρε/
√

2(m)
[
ρε/

√
2(x1) + ρε/

√
2(x2)− 2ρε/√2(m)

]

+ (ρε/
√

2(x1)− ρε/
√

2(m))(ρε/
√

2(x2)− ρε/
√

2(m)).

The Hölder inequality implies that E
[√

|b(x1, x2)|
]
 is bounded by

F Cornalba et alNonlinearity 33 (2020) 864



884

E
[
ρ2
ε/

√
2(m)

]1/4
E
[∣∣∣ρε/√2(x1) + ρε/

√
2(x2)− 2ρε/√2(m)

∣∣∣
2
]1/4

+ E
[∣∣∣ρε/√2(x1)− ρε/

√
2(m)

∣∣∣
4
]1/8

E
[∣∣∣ρε/√2(x2)− ρε/

√
2(m)

∣∣∣
4
]1/8

=: T1T2 + T3T4.

We notice that

E

[∣∣∣∣∣
1
N

∑
i=1

wε(x − qi(t))

∣∣∣∣∣
c]

= N−c
∑

j∈S1,c

E

[
c∏

k=1

wε(x − qjk(t))

]
+ N−c

∑
j∈S2,c

E

[
c∏

k=1

wε(x − qjk(t))

]

� E [wε(x − q1(t))]
c
+ N−1ε−c � ‖wε(x − ·)‖c

L1‖fq(t, ·)‖c
L∞ + N−1ε−c

= ‖fq(t, ·)‖c
L∞ + N−1ε−c,
�

(45)

where fq(t, ·) is the probability density function of q(t), and f 0 is as in proposition 2.3. As θ 
is large enough, and taking into account supt�0 ‖fq(t, ·)‖c

L∞ < ∞ (implied by assumptions 
of proposition 2.3 thanks to [27, 17.2]) we see that the left-hand side of (45) is uniformly 
bounded in ε, x, and t. We may now bound T1, . . . , T4. We write

T1 � KE
[
ρ2
ε/

√
2(m)

]1/4
+ KE

[∣∣∣ρε/√2(m)− ρε/
√

2(m)
∣∣∣
2
]1/4

,

where ρε is the smoothed density with respect to the particle system (3). The first term in the 
right-hand side above is bounded by (45), while the second is bounded using the propagation 
of chaos. As a result, T1 � C.

As for T2, again by adding and subtracting relevant evaluations of ρε, we obtain

T2 � KE
[∣∣∣ρε/√2(x1) + ρε/

√
2(x2)− 2ρε/√2(m)

∣∣∣
2
]1/4

+ KE
[∣∣∣ρε/√2(x1)− ρε/

√
2(x1)

∣∣∣
2
]1/4

+ KE
[∣∣∣ρε/√2(x2)− ρε/

√
2(x2)

∣∣∣
2
]1/4

+ KE
[∣∣∣ρε/√2(m)− ρε/

√
2(m)

∣∣∣
2
]1/4

.

�

(46)

The first term in the right-hand side of (46) can bounded by K|x1 − x2|, using the same strategy 
used in [4, adaptation of proof of theorem 1.3]; the remaining ones are controlled using the 
propagation of chaos. As a result, we get T2 � K|x1 − x2|+ εγ1, for some γ1 = γ1(θ) > 0. 
The analysis of T3, T4 is similar to that of T2. In the case of T3

T3 � KE
[∣∣∣ρε/√2(x1)− ρε/

√
2(m)

∣∣∣
4
]1/8

+ KE
[∣∣∣ρε/√2(x1)− ρε/

√
2(x1)

∣∣∣
2
]1/4

+ KE
[∣∣∣ρε/√2(m)− ρε/

√
2(m)

∣∣∣
2
]1/4

.

�

(47)

The first term in the right-hand side of (47) can bounded by K
√
|x1 − x2|, using the same 

strategy used in [4, adaptation of proof of theorem 1.3]; propagation of chaos controls the 
remaining ones. So T3 � K

√
|x1 − x2|+ εγ2, for some γ2 = γ2(θ) > 0. The estimate for T4 is 

the same, with the couple (x1, m) replaced by (x2, m).
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Putting everything together, we obtain the bound

E
[∣∣∣ρε/√2(m)−

√
ρ2
ε/

√
2
(m)− b(x1, x2)

∣∣∣
]
� C

{
|x1 − x2|+ εc1(θ) + εc2(θ)|x1 − x2|1/2

}
,� (48)

where c1(θ) := min{γ1; 2γ2} and c2(θ) := γ2. This concludes the proof.

Remark 3.8.  The error bound of proposition 3.7 is less sharp than the one provided in [4, 
theorem 1.3] in the following sense: firstly, the spatial term contributions in (48) are not quad-
ratic. This is due to the use of the suboptimal bound (44), as clarified in [4, remark 3.4]. More 
precisely, we do not have an analogue of [4, proposition B.8] in the case of weakly interacting 
particles, so we can not use more precise bounds involving inverse powers of ρε; secondly, 
the propagation of chaos produces stand-alone contributions in ε (vanishing as ε → 0); finally, 
the need to switch from von Mises to Gaussian kernels (and vice versa) produces additional 
contributions in ε (also vanishing as ε → 0).

4. The regularised model

While the equations (30a) and (30b) describe the ‘exact’ evolution of the relevant densities 
(ρε, jε) associated to the weakly interacting particle system (2), they are not, however, closable 
in (ρε, jε): more precisely, they contain three terms (specifically, j2,ε, ZN , and the nonlocal 
interaction term of (30b)) which can not be related directly to (ρε, jε). In this final section, 
under suitable assumptions, we derive and analyse an SPDE which approximates (30a) and 
(30b). We propose the following approximations associated with the three terms mentioned 
above, and we point out the extent to which they are valid.

		  Approximation 1. The interaction term in (30b) is replaced by {W ′ ∗ ρε}ρε. proposition 
3.5 implies that this replacement gives a vanishing error (in the L1 sense) as ε → 0.

		  Approximation 2. We replace j2,ε with σ
2

2γ
∂ρε

∂x . This has been done also in [4], and we 

adapt the essential details here. In local equilibrium, the probability density function of 
the couple (qi(t), pi(t)) is approximately separable in the two variables (as shown in [8, 
corollary 3.2]). We can thus write E [j2,ε] = E

[
p2

1(t)
]
E [∂ρε/∂x], which suggests the 

proposed replacement. In a small temperature regime (corresponding to σ2/(2γ) � 1), 
we see that Var[ p2

i (t)] � Cσ4/(2γ)2 � σ2/(2γ) ≈ E
[
p2

i (t)
]
, see again [8, corollary 3.2]. 

It is in this case sensible to replace p2
i  with E

[
p2

i

]
, which means replacing j2,ε with σ

2

2γ
∂ρε

∂x .

		  Approximation 3. We replace ZN  with σN−1/2√ρε ξ̃ε. This is justified along the lines of 
[4], and we adapt the necessary details. First, we notice that ZN  and YN are asymptoti-
cally equivalent in distribution for ε → 0, as shown in proposition 3.7. In addition, one 
can show that, for each t ∈ [0, T], {ρε(·, t)}ε has a unique limit in L2 as ε → 0. This can be 
seen be taking two sequences {an; Na

n}, {bn; Nb
n} (both satisfying the usual θ-scaling) and 

using scaling arguments (similar to those used, for example, in (45)) and the propagation 
of chaos to show that E

[
‖ρan(·, t)− ρbn(·, t)‖2

L2

]
→ 0 as an, bn → 0. As a result, the two 

quantities ρε(·, t) and ρε/
√

2(·, t) coincide in the limit. Therefore, for ε � 1, we consider 
σN−1/2√ρε ξ̃ε in spite of YN, thus obtaining the overall noise replacement.

These approximations give the following regularised Dean–Kawasaki model for interacting 
particles in undamped regime
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



∂ρ̃ε
∂t

(x, t) = −∂ j̃ε
∂x

(x, t), (49a)

∂ j̃ε
∂t

(x, t) = −γ j̃ε(x, t)−
(
σ2

2γ

)
∂ρ̃ε
∂x

(x, t)− {W ′ ∗ ρ̃ε(·, t)}ρ̃ε(·, t) +
σ√
N

√
ρ̃ε(x, t) ξ̃ε, (49b)

ρ̃ε(x, 0) = ρ0(x), j̃ε(x, 0) = j0(x),

for (x, t) ∈ T× [0, T], and where (ρ0, j0) is a suitable initial datum. We used the notation 
(ρ̃ε, j̃ε) to distinguish the solution of the SPDE (49) from the smoothed (exact) densities 
(ρε, jε). We establish a high-probability existence and uniqueness result (in the sense of mild 
solutions) for (49). Following [4, subsection 4.3], we smooth the coefficient function of the 
noise in (49b) and study the system

{
dXε(t) = [AXε(t) + α(Xε(t))] dt + BN,δ(Xε(t))dWε,
Xε(0) = X0,� (50)

for Xε(t) := (ρ̃ε(·, t), j̃ε(·, t)), X0 := (ρ0, j0), Ẇε := (0, ξ̃ε), and where A (respectively, α) is a 
linear (respectively, nonlinear) operator on W := H1(T)× H1(T) defined by

AXε(t) :=
(
−∂ j̃ε

∂x
(·, t),−γ j̃ε(·, t)−

(
σ2

2γ

)
∂ρ̃ε
∂x

(·, t)
)

, α(Xε(t)) := (0,−{W ′ ∗ ρ̃ε(·, t)}ρ̃ε(·, t)) ,

and BN,δ : W → { f : W → L2 × L2} is defined as BN((ρ, j))(a, b) := σN−1/2 (0, hδ(|ρ|) · b), 
for hδ being a C2(R)-regularisation of the square-root function on [−δ, δ], for some δ > 0. A 
mild solution to (50) on [0, T] is a W -valued predictable process Xε,δ = (ρ̃ε,δ , j̃ε,δ) defined on 

[0, T] such that P(
∫ T

0 ‖Xε,δ(s)‖2
Wds) = 1, and satisfying, for each t ∈ [0, T]

Xε,δ(t) = S(t)X0 +

∫ t

0
S(t − s)α(Xε,δ(s))ds +

∫ t

0
S(t − s)BN,δ(Xε,δ(s))dWε, P-a.s.

where {S(t)}t�0 is the C0-semigroup generated by A (see [4, lemma 4.2]).
We first of all analyse the noise-free version of (50).

Lemma 4.1.  Fix 0 < c1 < c2. Consider the system
{

dX(t) = [AX(t) + α(X(t))] dt,
X(0) = X0 := (ρ0, j0),

� (51)

and assume that minx∈T ρ0(x) > c1 and ‖X0‖W < c2. Then (51) has a unique local W -valued 
mild solution Z := (ρZ , jZ) up to some T  >  0, such that

min
x∈T

ρZ(x, s) > c1 and ‖Z(s)‖W < c2, for all s ∈ [0, T].� (52)

Proof.  The operator A generates a C0-semigroup of contractions on W , see for example 
[4, lemma 4.2]. In addition, α is locally Lipschitz and locally bounded. To see this, choose 
(u1, v1) and (u2, v2) in a W -ball of radius n. Then, using the Sobolev embedding H1 ⊂ C0 and 
the boundedness of W ′ and W ′′, we obtain
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‖α((u1, v1))− α((u2, v2))‖2
W

= ‖{W ′ ∗ u1}u1 − {W ′ ∗ u2}u2‖
2
L2 + ‖(∂/∂x) ({W ′ ∗ u1}u1 − {W ′ ∗ u2}u2)‖

2
L2

� C
{
‖{W ′ ∗ (u1 − u2)}u1‖

2
L2 + ‖{W ′ ∗ u2}(u1 − u2)‖

2
L2 + ‖{W ′′ ∗ (u1 − u2)}u1‖

2
L2

+ ‖{W ′′ ∗ u2}(u1 − u2)‖
2
L2 + ‖{W ′ ∗ (u1 − u2)}u′1‖

2
L2 + ‖{W ′ ∗ u2}(u′1 − u′

2)‖
2
L2

}

� C(n, W) ‖(u1, v1)− (u2, v2)‖2
W ,

�

(53)

which is the local Lipschitz property for α. Local boundedness is settled with an analogous 
computation. We apply [26, theorem 4.5] to deduce the existence of a unique local W -valued 
mild solution Z := (ρZ , jZ) to (51) up to some T  >  0. Since the solution is càdlàg by [26, re-
mark 4.6], using the Sobolev embedding H1 ⊂ C0, we can choose T  >  0 so that (52) is satis-
fied.� □ 

Lemma 4.2.  Let X0 be a deterministic initial datum for (50). Then (50) admits a unique 
local mild solution.

Proof.  This follows from [26, theorem 4.5], since (i) A generates a C0-semigroup of con-
tractions on W ; (ii) α is locally Lipschitz and locally bounded, see lemma 4.1; (iii) BN,δ is 
locally Lipschitz and satisfies the linear growth condition, see [4, lemma 4.5]; (iv) the noise 
Wε is a W -valued Q-Wiener process whose covariance operator Q√

2ε has rapidly decaying 
eigenvalues, see [4, subsection 4.2].� □ 

Now let Xε be the unique local mild solution to (50). For some positive constants T , δ, and 
k, we define two relevant stopping times associated with (50), namely

τk := inf {t > 0 : ‖Xε(t)‖W � k} ∧ T , µδ := τk ∧ inf

{
t > 0 : min

x∈T
ρ̃ε(x, t) � δ

}
.� (54)

Lemma 4.3.  Fix k  >  0, δ > 0, and T  >  0. Let Xε be the unique local mild solution to (50). 
The following statements hold:

	(a)	�The total mass of the system is conserved up to τk, i.e. 
∫
T ρ̃ε(x, s)dx =

∫
T ρ0(x, s)dx for all 

s � τk.
	(b)	�There exists a constant C  =  C(X0,W) such that, for all x ∈ T and for all s � µδ

−C � W ′ ∗ ρ̃ε(x, s) � C, −C � W ′′ ∗ ρ̃ε(x, s) � C.� (55)

Proof. 

	 (a)	�We consider the W -inner product of the mild formulation of (50) with the constant ele-
ment ζ := (1, 0) ∈ D(A�), the symbol � denoting the adjoint. As A�ζ = 0, we trivially 
get that

∫ T

0
E
[∫ t

0
‖〈S(t − s)BN,δ(Xε(s)), A�ζ〉‖2

L2(W ,R) ds
]

dt < ∞.

		 We define α̂ := α ◦ Rk, where
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Rk : W �→ W : y �→

{
y, if ‖y‖W � k,
k y
‖y‖W

, if ‖y‖W > k

		 is a standard retraction map. Since the map α̂ is Lipschitz continuous, we have a unique 
global mild solution X̂ε to (50) with α replaced by α̂, which then clearly satisfies 

P(
∫ T

0 ‖X̂ε(t)‖W dt < ∞) = 1. Since we have predictability of both the deterministic and 
stochastic integrands involved in the definition of mild solution (to (50) with α replaced 
by α̂), we follow the proof of [13, proposition 2.10, part (ii)], but only with the specific 
choice of ζ made above (and not with any ζ ∈ D(A�)). We deduce that X̂ε satisfies, P-a.s.

〈X̂ε, ζ〉 = 〈X0, ζ〉+
∫ t

0

[
〈X̂ε(s), A�ζ〉+ 〈α̂(X̂ε(s)), ζ〉

]
ds +

∫ t

0
〈BN,δ(X̂ε(s)), ζ〉dWε(s) = 〈X0, ζ〉.

		 Uniqueness of mild solutions implies that X̂ε(s) = Xε(s) for all s � τk, and the claim is 
settled. Notice that we have not proved that Xε is a weak solution to (50).

	(b)	�The potential W being smooth, there exists C such that −C � W ′(y − x) � C 
for all x, y ∈ T. If s � µδ, then ρ̃ε(y, s) > 0 for every y ∈ T. We deduce that 
−Cρ̃ε(y, s) � W ′(x − y)ρ̃ε(y, s) � Cρ̃ε(y, s), for all y ∈ T. Since µδ � τk , we can rely on 
(a) and integrate in y , thus deducing that −C(X0, W) � W ′ ∗ ρ̃ε(x, s) � C(W, X0) for all 
x ∈ T and for all s � µδ. An identical argument applies with W ′′ replacing W ′.� □ 

We now turn to the proof of our main existence and uniqueness result for (49). This result 
is an adapted version of [4, proposition 4.10 and theorem 1.4].

Theorem 4.4 (High-probability existence and uniqueness result).  Fix ν ∈ (0, 1), 
and fix 0 < δ < c1 < c2 < k . Let X0 = (ρ0, j0) ∈ W  be a deterministic initial condition, such 
that minx∈T ρ0(x) > c1 and ‖X0‖W < c2, and let T  >  0 be as in the statement of lemma 4.1. 
Assume the scaling Nεθ = 1, for θ large enough. It is possible to choose a sufficiently large 
number of particles N such that there exists a unique W -valued mild solution Xε = (ρ̃ε, j̃ε) 
satisfying (49), up to time T, on a set Fν ∈ F  such that P(Fν) � 1 − ν.

Proof.  Consider the time t ∧ µδ, for t ∈ [0, T], with µδ defined in (54). Let Xε and Z be the 
local mild solutions to (50) and (51), respectively. We subtract the mild solution expressions 
for Xε(t ∧ µδ) and Z(t ∧ µδ), thus obtaining

Xε(t ∧ µδ)− Z(t ∧ µδ) =

∫ t∧µδ

0
S(t ∧ µδ − s) [α(Xε(s))− α(Z(s))] ds

+

∫ t∧µδ

0
S(t ∧ µδ − s)BN,δ(Xε(s))dWε.

�

(56)

We look for a small-noise regime estimate up to time t ∧ µδ. In order to do so, we first 
prove that

‖α(Xε(s))− α(Z(s))‖2
W � K2

1 (W, ‖ρ0‖H1 , T) ‖Xε(s)− Z(s)‖2
W , for all s � µδ .� (57)
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We reuse computation (53) and deduce

‖α(Xε(s))− α(Z(s))‖2
W

� 2
{
‖{W ′ ∗ (ρZ − ρ̃ε)}ρZ‖

2
L2 + ‖{W ′ ∗ ρ̃ε}(ρZ − ρ̃ε)‖

2
L2 + ‖{W ′′ ∗ (ρZ − ρ̃ε)}ρZ‖

2
L2

+ ‖{W ′′ ∗ ρ̃ε}(ρZ − ρ̃ε)‖
2
L2 + ‖{W ′ ∗ (ρZ − ρ̃ε)}ρ′Z‖

2
L2 + ‖{W ′ ∗ ρ̃ε}(ρ′Z − ρ̃′ε)‖

2
L2

}

=: T1 + · · ·+ T6.

�

(58)

For s � µδ, we bound the terms T2, T4, T6 using lemma 4.3, and we bound the terms T1, T3, T5 
using the Sobolev embedding H1 ⊂ C0 and lemma 4.1. Estimate (57) is proved.

We are now in the position to provide the small-noise regime estimate for (56). We closely 
follow the proof of [4, proposition 4.10]. Let q  >  2. We use [5, proposition 7.3] to deduce that, 
for some K2 = K2 (W, ‖ρ0‖H1 , T , q) and some K3 = K3(σ, δ, T , q, k)

E

[
sup

s∈[0,t]
‖Xε(s ∧ µδ)− Z(s ∧ µδ)‖q

W

]

� K2 E
[∫ t

0
‖Xε(u)− Z(u)‖q

W 1[0,µδ](u)du
]

+ E

[
sup

s∈[0,T]

∥∥∥∥
∫ s

0
S(s ∧ µδ − u)BN,δ(Xε(u))1[0,µδ](u)dWε

∥∥∥∥
q
]

� K2

∫ t

0
E

[
sup

s∈[0,u]
‖Xε(s ∧ µδ)− Z(s ∧ µδ)‖q

W

]
du

+ K(σ, δ, T , q)Mq(ε, N)E
[∫ T

0
(1 + ‖Xε(u)‖q

W)1[0,µδ](u)du
]

� K2

∫ t

0
E

[
sup

s∈[0,u]
‖Xε(s ∧ µδ)− Z(s ∧ µδ)‖q

W

]
du + K3Mq(ε, N),

�

(59)

where Mq(ε, N) was derived in [4, lemma 4.5], and decays to 0 as ε → 0 for θ large enough. 
It is easy to deduce that

E

[
sup

s∈[0,T]
‖Xε(s ∧ µδ)− Z(s ∧ µδ)‖q

W

]
� K3Mq(ε, N)eTK2 .� (60)

For some small enough η > 0, define

S :=

{
ω ∈ Ω : sup

s∈[0,T]
‖Xε(s ∧ µδ)− Z(s ∧ µδ)‖q

W � η

}
.

Using the Chebyschev inequality in (60), we deduce that there exists N large enough so that 
P(S) � 1 − ν. If η is chosen small enough, for any ω ∈ S, we have that µδ = τk = T . If this was 
not the case, we would have one of the following contradictions: on one hand, if µδ < τk � T , 
since minx∈T ρZ(x, s) > c1 > δ for all s ∈ [0, T] thanks to lemma 4.1, and since η is small 
enough, we can use the embedding H1 ⊂ C0 to deduce that minx∈T ρ̃ε(x,µδ) > δ, contradict-
ing the definition of µδ; on the other hand, if µδ = τk < T , since ‖ρZ(s)‖W < c2 < k  for all 
s ∈ [0, T] thanks to lemma 4.1, and since η is small enough, we can use the same embedding 
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H1 ⊂ C0 to deduce that ‖ρ̃ε(τk)‖W < k, contradicting the definition of τk. This concludes the 
proof.� □ 

Remark 4.5.  The main difference between this section and [4, section 4] is the combination of a 
solution localisation via stopping times (needed because the interaction term {W ′ ∗ ρ̃ε(·, t)}ρ̃ε(·, t) 
is superlinear) and the conservation of mass, see theorem 4.4 and lemma 4.3.

Remark 4.6.  The existence theory described in this subsection can be slightly simplified, as 
one could deduce the validity of (55) for all x ∈ T and all s � τk (rather than for all s � µδ). 
In this case, the bounding constants would depend on k (hence on ‖ρ0‖H1) rather than on ∫
T ρ0(x)dx, simply because of the embedding H1 ⊂ C0. The proof of theorem 4.4 could then 

be adapted by using the stopping time τk instead of µδ in the small-noise regime analysis lead-
ing up to (60), thus making the use of lemma 4.3 superfluous.

However, lemma 4.3 provides a lower constant K2 for the benefit of (60). The reason for 
this can be deduced from (58). The bounds associated with T1, . . . , T6 are of the type

Ti � C2
i ‖Xε(s)− Z(s)‖2

W , i ∈ {1, . . . , 6},

where the constants Ci, i ∈ {1, . . . , 6}, depend on ‖ρZ‖H1 (or equivalently, on ‖ρ0‖H1 and T). 
However, the terms T2, T4, and T6 can be controlled more precisely, as C2, C4, and C6 can be 
computed with the initial mass 

∫
T ρ0(x)dx only (lemma 4.3). In the case of an initial datum 

satisfying 
∫
T ρ0(x)dx � ‖ρ0‖H1, this corresponds to obtaining a constant K2

1  in (57) which is 
approximately half the one we would get if we did not rely on lemma 4.3 to deal with T2, T4, 
and T6; this is simply because K2

1 = C2
1 + · · ·+ C2

6, and C2
2 + C2

4 + C2
6  would, in this case, be 

negligible compared to C2
1 + C2

3 + C2
5 . This is turn implies that the constant K2 in (60) can be 

scaled down by a factor up to 2q/2. Overall, this gives a smaller right-hand-side in (60), which 
reflects into a lower number of particles needed to meet the requirements of theorem 4.4.
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