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Abstract
We study shrinking target problems and the set Eah of eventually always 
hitting points. These are the points whose first n iterates will never have 
empty intersection with the nth target for sufficiently large n. We derive 
necessary and sufficient conditions on the shrinking rate of the targets for Eah 
to be of full or zero measure especially for some interval maps including the 
doubling map, some quadratic maps and the Manneville–Pomeau map. We 
also obtain results for the Gauß map and correspondingly for the maximal 
digits in continued fraction expansions. In the case of β-transformations we 
also compute the packing dimension of Eah complementing already known 
results on the Hausdorff dimension of Eah.

Keywords: shrinking target problems, eventually always hitting points, 
dynamical Borel–Cantelli, hitting time statistics, interval maps, continued 
fractions
Mathematics Subject Classification numbers: 37A05, 37E05, 11J70

1.  Introduction and setup

The term shrinking target problems in dynamical systems describes a class of questions which 
seek to understand the recurrence behaviour of typical orbits of a dynamical system. The 
standard ingredients of such questions are a measure-preserving dynamical system (X,µ, T), 
T : X → X  and µ being a finite measure. Also, we have a sequence of subsets {Bm}∞m=1 with 
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Bm ⊂ X  and µ(Bm) → 0. Recently shrinking target problems have also been investigated in 
the case when the measure is infinite, see [11].

In this paper we focus mostly on the case of finite measure and whenever this is the case 
we assume the measure to be normalized to a probability measure. If nothing else is stated this 
may be assumed to be the setting. A few of our results concern infinite measures and it will be 
stated explicitly whenever this is the case.

Throughout this paper (X,µ, T) will always denote a measure preserving system and 
B := {Bm}∞m=1 will always denote a sequence of subsets of X for which µ(Bm) → 0. We refer 
to this as a sequence of shrinking targets. We call the sequence nested if Bm ⊃ Bm+1 for all m.

Classical questions in this area focus on the set of points in X whose nth iterate under T lies 
in the set Bn for infinitely many n. That is, given a sequence B = {Bm}∞m=1

Ai.o. = Ai.o.(B) := {x ∈ X : Tnx ∈ Bn for infinitely many n ∈ } .

If 
∑

µ(Bm) < ∞ the Borel–Cantelli lemma tells us that µ(Ai.o.) = 0. If 
∑

µ(Bm) = ∞ the 
situation is more complicated since the Borel–Cantelli lemma only guarantees µ(Ai.o.) = 1 
for independent events and this is usually not satisfied for dynamical systems. If we do have a 
sequence B for which µ(Ai.o.(B)) = 1 then we call B a Borel–Cantelli (BC) sequence. If we 
can prove that a large family B of sequences are all BC-sequences then we say that we have 
a dynamical Borel–Cantelli lemma. In many cases such lemmas hold if the system satisfies 
some version of mixing which essentially acts as a replacement for independence. However, 
it is known that for any measure-preserving system we can find a sequence B satisfying ∑

µ(Bm) = ∞ which is not BC for the system. We may even find such a sequence B which 
is nested [4, proposition 1.6]. Hence there is no hope for B to be all sequences satisfying ∑

µ(Bm) = ∞. It is therefore natural to look for the largest possible sub-families of B which 
consist only of BC-sequences. It turns out that on metric spaces sequences of balls with fixed 
center, and nested sequences of balls with fixed center are good and natural candidates. We say 
that (X,µ, T) has the shrinking target property (STP) if for every x0 ∈ X , every sequence of 
balls Bm centered at x0 satisfying 

∑
µ(Bm) = ∞ is a BC-sequence. We say that (X,µ, T) has 

the monotone shrinking target property (MSTP) if for every x0 ∈ X , every nested sequence of 
balls Bm centered at x0 satisfying 

∑
µ(Bm) = ∞ is a BC-sequence. Many interesting systems 

are known to have either the STP or MSTP property, see [2, 25], and references therein for 
examples. A more comprehensive introduction to dynamical Borel–Cantelli lemmas, includ-
ing examples, can be found in [4].

In this paper we are interested in similar properties for a certain subset of Ai.o. known as 
the set of points which are eventually always hitting. (More precisely, we consider a subset of 
Ai.o. ∪ Λ, where Λ is a set of zero measure, see (1) for details.) Due to the central importance 
of this concept in this paper we introduce it through a separate definition.

Definition 1 (Eventually always hitting).  A point x ∈ X  is said to be eventually always 
hitting (EAH) for B = {Bm}∞m=1 under T if there exists some m0(x) ∈  such that for all 
m � m0(x) we have

{
x, T(x), T2(x), . . . , Tm−1(x)

}
∩ Bm �= ∅.

The set of all points in X which are eventually always hitting for B under T will be denoted 
Eah := Eah(B).

We remark that some authors study a slightly different version of eventually almost hitting, 
and require that for all m � m0(x) we have Tk(x) ∈ Bm for some k with 1 � k � m, whereas 
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we require 0 � k < m. For the results that we are discussing in this paper, it is insignificant 
which definition we use. The results are the same, with the same proofs, if we use the other 
definition instead.

Note that Eah may also be written as

Eah =

{
x ∈ X :

∃m0(x) ∈ ∀m > m0(x)
∃ k ∈ {0, . . . , m − 1} s.t. Tk(x) ∈ Bm

}

=

∞⋃
n=1

∞⋂
m=n

m−1⋃
k=0

T−k(Bm).

From this point on we will always assume the sequence {Bm} to be nested. Set

Λ :=
∞⋃

k=0

T−k

(∞⋂
i=1

Bi

)
.� (1)

Then µ(Λ) = 0 since µ(Bi) → 0, and we have that Eah\Λ ⊂ Ai.o.. In this sense, being eventu-
ally always hitting for Bm is a stronger property than hitting Bm infinitely often.

The term eventually always hitting was coined by Kelmer in [14] where this set was 
studied in the context of flows on hyperbolic manifolds. Kelmer proved necessary and suf-
ficient conditions for the set of eventually always hitting points to be of full measure. Shortly 
afterwards Kelmer and Yu [15] extended the investigation to flows on homogeneous spaces. 
Also, Kleinbock and Wadleigh [17] studied the concept in the context of higher dimensional 
Diophantine approximations and Oh and Kelmer considered the case of geodesic flow on 
geometrically finite hyperbolic manifolds [21]. Imposing a long-term independence property 
on the shrinking target system Kleinbock et al [16] recently obtained tight conditions on the 
shrinking rate of the targets so that Eah has measure zero or full measure. In particular, their 
assumptions are satisfied for specific choices of targets in product systems and Bernoulli 
shifts.

However, the concept had already been considered a few years earlier by Bugeaud and 
Liao [3] for a particular sequence of targets with exponential rate of shrinking in the setting 
of β-transformations Tβ(x) = βx mod 1 on [0, 1] for every β > 1. For x ∈ [0, 1] they intro-
duce the exponent ν̂β(x) as the supremum of real numbers ν̂  for which for every sufficiently 
large N ∈  the inequality Tn

β(x) <
(
βN

)−ν̂  has a solution 1 � n � N . Note that this cor-
responds to x satisfying {Tn

β(x)}N
n=1 ∩ [0,β−ν̂N) �= ∅ for every sufficiently large N. Hence 

the set {x ∈ [0, 1] : ν̂β(x) � ν̂} corresponds to Eah([0,β−ν̂N)) in our notation (aside from the 
discrepancy in definition mentioned above). They show that

dimH ({ x : ν̂β(x) � ν̂ }) =
(1 − ν̂

1 + ν̂

)2

for every ν̂ ∈ [0, 1], where dimH is the Hausdorff dimension. Bugeaud and Liao also obtain 
analogous results in the setting of b-ary expansions.

In this paper we prove various results concerning the measure and also dimension of Eah in 
different settings. Our results apply in various levels of generality, hence it would be compli-
cated to state them all accurately in this introduction. Instead we illustrate our results through 
application to specific systems with simpler assumptions.

Note that throughout the paper log will denote the natural logarithm.
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1.1.  Main results for specific systems

Theorem 1 (The doubling map).  Let X = [0, 1], let T : X → X  be the doubling map 
Tx = 2x mod 1 and let µ denote the Lebesgue measure on X. Let {Bm}∞m=1 denote a nested 
sequence of shrinking intervals with fixed center.

	(a)	�If µ(Bm) � c
m for some c ∈ , then µ(Eah) = 0.

	(b)	�If µ(Bm) �
c(log m)2

m  for some c  >  0 sufficiently large, then µ(Eah) = 1.

We remark that through our corollary 2 and theorem 5 we prove this theorem for many other 
dynamical systems, for instance piecewise expanding maps and some quadratic maps. See 
section 4 for more details.

We note that for the doubling map, Bm = B(0, 2−sm), and 0  <  s  <  1, the result of Bugeaud 

and Liao [3] implies that dimHEah =
( 1−s

1+s

)
2. Hence, for the doubling map we have an almost 

complete picture of how the the size of Eah behaves across the spectrum of possible shrinking 
rates of Bm. In the following theorem we add to this picture by computing the packing dimen-
sion of Eah.

Theorem 2.  Let X = [0, 1], let T : X → X  be the β-transformation for some β > 1, 
Tx = βx mod 1. Let Bm = B(0,β−sm), s  >  0 and let dimP denote the packing dimension.

	(a)	�If s ∈ (0, 1), then dimPEah = 1 − s.
	(b)	�If s � 1 then Eah = Λ. Hence it is countable and in particular dimPEah = 0.

Figure 1 illustrates and compares the results of theorems 1 and 2 for the doubling map. It 
summarises the known results on the measure, Hausdorff dimension and packing dimension 

of the sets Ai.o. and Eah. Note that if µ(Bm) = 2−sm, then dimHAi.o. =
1

1+s  [1, corollary 1].

Theorem 3 (The Manneville–Pomeau map).  Let X = [0, 1], let α > 0 and let 
gα : [0, 1) → [0, 1) be the Manneville–Pomeau map given by

gα(x) =
{

x(1 + 2αxα) if x ∈ [0, 1
2 )

2x − 1 if x ∈ [ 1
2 , 1).

� (2)

Let µα denote the absolutely continuous to the Lebesgue measure invariant measure for 
([0, 1), gα), which is finite if and only if α ∈ (0, 1). Let {Bm}∞m=1 denote a nested sequence of 
intervals with a fixed center which is not 0.

If α ∈ (0, 1) then we have the following results.

	(a)	�If µα(Bm) � c
m for some constant c, then µα(Eah) = 0.

	(b)	�If µα(Bm) �
c(log m)2+ε

m  for some ε > 0 and any c  >  0, then we have µα(Eah) = 1.

If α � 1 then we have the following results.

	 (c)	�If α > 1 and µα(Bm) � c

m
1
α

+ε
 for some ε > 0 and any c  >  0, then µα(Eah) = 0.

		 If α = 1 and µα(Bm) � c
m for some c  >  0 then µα(Eah) = 0.

	(d)	�If µα(Bm) � c

m
1
α

−ε
 for some ε > 0 and any c  >  0, then µα(�Eah) = 04.

4 Throughout the paper we denote the complement of a set A by �A.

M Kirsebom et alNonlinearity 33 (2020) 892



896

We remark that the measure µα is equivalent to Lebesgue measure on [0, 1]. Hence the 
statements µα(Eah) = 0 and µα(�Eah) = 0 are equivalent to the corresponding statements 
involving the Lebesgue measure instead. Note also that in the case α ∈ (0, 1) after normalis-
ing the measure µα we can state µα(�Eah) = 0 as the equivalent statement µα(Eah) = 1. This 
is not possible if α � 1, since the measure µα is not finite in this case.

We may also consider the Gauß map defined by G : (0, 1] → [0, 1) given by G(x) = 1
x mod 1. 

The map G admits an absolutely continuous invariant probability measure known as the Gauß 

measure which has density 1
log 2

1
1+x. Statement (b) of theorem 1 also holds true for the Gauß 

map and measure, while (a) of theorem 1 holds true in this setting when Bm := [0, rm) with 
rm � c

m. This allows us to obtain a statement about the eventually always hitting property for 
maximal digits of continued fractions expansions. Recall that every point x ∈ (0, 1] can be 
written as a continued fraction, i.e.

x =
1

a1(x) + 1
a2(x)+ 1

a3(x)+ 1

. . .

where the ai(x)’s are generated by the algorithm a1(x) = � 1
x � and aj(x) = a1(G j−1(x)). In 

compact notation we write x = [a1(x), a2(x), . . . ].

Theorem 4 (Continued fractions).  Let µ denote the Gauß measure.

	(a)	�For any c  >  0 we have

µ
({

x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max
1�k�m

ak(x) � cm
})

= 0.

	(b)	�If c  >  0 is sufficiently small, then

µ

({
x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max

1�k�m
ak(x) �

cm
(logm)2

})
= 1.

Figure 1.  Illustration of the sizes of the sets Ai.o. and Eah for different decay rates of 
µ(Bm), in the case of the doubling map.
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1.2.  Structure of the paper

In section 2 we give some preliminary, general results concerning the set of eventually always 
hitting points that will prove useful later in the paper. In section 3 we give necessary and suf-
ficient conditions for Eah to be of full measure. In section 4 we cite various results on mixing 
and hitting time statistics which in conjunction with the results of section 3 allow us to deduce 
the conclusions of theorems 1, 3 and 4 (except theorems 1(a) and (b)). We also discuss further 
systems for which the results of section 3 can be applied. Section 5 is dedicated to the proof 
of theorems 1(a) and (b).

2.  Preliminaries on eventually always hitting points

Recall that

Eah =

∞⋃
n=1

∞⋂
m=n

m−1⋃
k=0

T−k(Bm).

It will prove convenient to write

Eah =

∞⋃
n=1

An

where

An =

∞⋂
m=n

Cm , Cm =

m−1⋃
k=0

T−k(Bm).

Note in particular that An ⊂ An+1 and hence

µ(Eah) = lim
n→∞

µ(An).

The following lemma will prove very useful for studying the measure of Eah when the sets 
Bm are assumed to be nested. It states that Eah is an essentially invariant set under T. More 
precisely, the symmetric difference between Eah and T−1(Eah) is a set of measure zero.

Lemma 1.  Let (X,µ, T) be a measure-preserving dynamical system (µ either finite 
or infinite) and let {Bm}∞m=1 be a nested family of shrinking targets, i.e. Bm ⊃ Bm+1 and 
µ(Bm) → 0, with µ(E) < ∞. Then

µ
(
Eah�T−1 (Eah)

)
= 0.

Hence, for ergodic transformations with respect to a finite µ, Eah obeys a zero–one law. 
That is, either µ (Eah) = 0 or µ (Eah) = 1. For ergodic transformations with respect to an infi-
nite µ, Eah obeys a zero–infinity law.

Proof.  Let x ∈ Eah. Then there is m0 := m0(x) ∈  such that for all m � m0  there 
is k ∈ {0, 1, . . . , m − 1} with Tk(x) ∈ Bm. Actually, if x /∈

⋂
m∈ Bm  there is even 

m̃0 := m̃0(x) ∈  such that for all m � m̃0  there is k ∈ {1, . . . , m − 1} with Tk(x) ∈ Bm (be-
cause otherwise x  =  T0(x) would have to be in Bm for all m due to x ∈ Eah and the nesting 
property). Since the targets are nested, we also get for those x ∈ Eah \

⋂
m∈ Bm that for all 

m � m̃0  there is k ∈ {1, . . . , m − 1} with

Tk−1(T(x)) = Tk(x) ∈ Bm ⊆ Bm−1.

M Kirsebom et alNonlinearity 33 (2020) 892
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Hence, T(x) ∈ Eah. So, Eah \
⋂

m∈ Bm ⊆ T−1 (Eah). Since µ
(⋂

m∈ Bm
)
 is a set of measure 

zero by µ(Bm) → 0 and T is measure-preserving, it follows that

µ (Eah) = µ

(
Eah \

⋂
m∈

Bm

)
� µ

(
T−1 (Eah)

)
= µ (Eah) ,

which implies that Eah \
⋂

m∈ Bm  and T−1 (Eah) differ by a null set. Since µ
(⋂

m∈ Bm
)
= 0, 

the claim follows.� □ 

In [14] Kelmer gave the following simple conditions for Eah to be of measure zero or one. 
We repeat the proof for completeness. Note that no assumption is made on the shape of the 
target sets.

Proposition 1.  Let {Bm}∞m=1 denote a sequence of shrinking targets in X.

	(a)	�Let µ be a probability measure and assume that µ(Eah) = 1. Then there exists a sequence 
cm → 1 such that µ(Bm) �

cm
m .

	(b)	�Let µ be an infinite measure and assume that µ(Eah) = ∞. Then there exists a sequence 
cm → ∞ such that µ(Bm) �

cm
m .

Proof.  (a) By the assumption we get that

µ

( ∞⋃
n=1

An

)
= lim

n→∞
µ(An) = lim

n→∞
µ

( ∞⋂
m=n

Cm

)
= 1

which implies that µ(Cm) → 1 as m → ∞. Now,

µ(Cm) = µ

(
m−1⋃
k=0

T−k(Bm)

)
�

m−1∑
k=0

µ
(
T−k(Bm)

)
= mµ(Bm)

where we used the T-invariance of µ. Hence we have µ(Bm) �
µ(Cm)

m . Since µ(Cm) → 1, we 
obtain (a).
(b) The proof goes exactly like for (a) with the obvious adaptations.� □ 

For nested sequences {Bm}∞m=1 and T being ergodic we get the following sufficient condi-
tion for µ(Eah) = 0. The proof is just the negation of proposition 1 followed by an application 
of lemma 1.

Corollary 1.  Assume that T is ergodic and that {Bm}∞m=1 is a nested sequence of shrinking 
targets.

	(a)	�Let µ be a probability measure. If there exists a c  <  1 such that µ(Bm) � c
m holds for 

infinitely many m, then µ(Eah) = 0.
	(b)	�Let µ be an infinite measure. If there exists a c ∈  such that µ(Bm) � c

m holds for infi-
nitely many m, then µ(Eah) = 0.

3.  Necessary and sufficient conditions for µ(Eah) = 1

In this section we give proofs of various new necessary and sufficient conditions for µ(Eah) to 
be of measure zero or one.

M Kirsebom et alNonlinearity 33 (2020) 892
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3.1.  Necessary conditions for µ(Eah) = 1

We introduce some terminology and notation about hitting times in dynamical system. Given 
a set E ⊂ X , we denote by τE : X →  the first hitting time to E which is defined by

τE(x) = inf
{

i ∈ : Tix ∈ E
}

.

Let Em ⊂ X  denote a sequence of sets for which µ(Em) → 0 and define the function

GEm(t) := lim sup
m→∞

µ

({
x ∈ X : τEm(x) �

t
µ(Em)

})
.

The next easy proposition gives a necessary condition for Eah to be of full measure when 
G(t) < 1 for all t ∈ . We note that while this condition might appear arbitrary at this point, 
it is very often satisfied for dynamical systems. Indeed, it is a weaker condition than the sys-
tem having exponential hitting time statistics, a concept much studied and often satisfied in 
dynamics. Later in this section we discuss hitting time statistics and in section 4 we discuss 
examples of systems where this property is known.

Proposition 2.  Let {Bm}∞m=1 denote a sequence of shrinking targets and assume that 
GBm(t) < 1 for all t ∈ . If µ(Eah) = 1, then for every c ∈  we have µ(Bm) � c

m for all suf-
ficiently large m ∈ .

Proof.  To get a contradiction, fix c ∈ , and assume that there is a sequence mj → ∞ such 

that µ(Bmj) �
c

mj
 for all j . We then have

{
x ∈ X : τBmj

(x) � mj

}
⊂

{
x ∈ X : τBmj

(x) �
c

µ(Bmj)

}
.

Using this inclusion we may rewrite as follows

Eah =

∞⋃
n=1

∞⋂
m=n

{
x ∈ X :

{
Tix

}m−1
i=0 ∩ Bm �= ∅

}

=

∞⋃
n=1

∞⋂
m=n

{x ∈ X : τBm(x) < m}

⊂
∞⋃

n=1

⋂
mj�n

{
x ∈ X : τBmj

(x) � mj

}
⊂

∞⋃
n=1

⋂
mj�n

C̃mj ,

where

C̃mj =

{
x ∈ X : τBmj

(x) �
c

µ(Bmj)

}
.

Assuming that µ(Eah) = 1, we argue as in proposition 1 that we must have µ(C̃mj) → 1 which 
means that

µ

({
x ∈ X : τBmj

(x) �
c

µ(Bmj)

})
→ 1

for mj → ∞. However, lim supj→∞ µ(C̃mj) � GBm(c) < 1 by assumption and hence we have 
a contradiction. Since this inequality is true for all c ∈  we get the desired conclusion.� □ 
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Again we get a sufficient condition for µ(Eah) = 0 under additional assumptions.

Corollary 2.  Assume that T is ergodic and that {Bm}∞m=1 is a nested sequence of shrinking 
targets and assume that GBm(t) < 1 for all t ∈ . If there exists c ∈  such that µ(Bm) � c

m 
for infinitely many m, then µ(Eah) = 0.

As already mentioned, the condition GBm(t) < 1 is easily satisfied in many cases. It is inter-
esting to note that often much more is known about GBm(t). If we assume Bm to be a nested 
sequence of shrinking balls with fixed center it is often known that

GBm(t) = lim
m→∞

µ

({
x ∈ X : τBm(x) �

t
µ(Bm)

})

exists and is non-degenerate which means that GBm(t) takes at least one value different than 0 
or 1. This property is known as the system having hitting time statistics (HTS) to Bm. Among 
these systems, many have exponential HTS to Bm meaning that GBm(t) = 1 − e−t. See [20, 
chapter 5] for a long list of examples of such systems. It is from the rich theory of HTS for 
dynamical systems that we borrow in order to prove theorems 1(a), 3(a) and 4(a). We elabo-
rate on this point and give examples as well as exact statements statements concerning HTS 
in section 4.

3.2.  Sufficient conditions for µ(Eah) = 1

Let X ⊂  in our probability measure preserving system (X, T ,µ) and let Bm = B(ym, rm) 
be a sequence of balls in X. We consider the L1 and BV  norms of functions on f : X → , 
defined by

||f ||1 =

∫
|f | dµ,

||f ||BV = varf + ||f ||1,

where varf  denotes the total variation of f .
We say that correlations decay as p : →  for L1 against BV , if

∣∣∣∣
∫

f ◦ Tng dµ−
∫

f dµ
∫

g dµ
∣∣∣∣ � ||f ||1||g||BVp(n)� (3)

holds for all n and all functions f  and g with ||f ||1, ||g||BV < ∞.

Theorem 5.  Suppose that correlations decay as p  for L1 against BV .
If p  satisfies

p(n) � Ce−τn� (4)

for some τ > 0, then µ(Eah) = 1 provided

µ(Bm) �
c(logm)2

m

for some c > τ−1 and all sufficiently large m. In particular µ(Eah) = 1 provided 

µ(Bm) �
c(log m)2h(m)

m  for any c  >  0 and any function h for which h(m) → ∞ as m → ∞.
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If p  satisfies

p(n) �
C
nt� (5)

for some t  >  0, then µ(Eah) = 1 provided

µ(Bm) �
c

ma

for any c  >  0 and a < t
1+t .

Note that we do not require that the balls are nested in theorem 5. We will need the follow-
ing lemma.

Lemma 2.  Suppose that (3) holds for all n and functions f  and g. If fk : X → [0,∞) and 
nk ∈ , then

∫ n∏
k=1

fk ◦ Tn1+···+nk dµ �
∫

fn dµ
n−1∏
k=1

(∫
fk dµ+ p(nk+1)||fk||BV

)
.

Proof.  Note that since fk � 0, we have 
∫

fk dµ = ||fk||1. By (3), we have
∫ n∏

k=1

fk ◦ Tn1+···+nk dµ �

(∫
f1dµ+ p(n2)||f1||BV

)∫ n∏
k=2

fk ◦ Tn1+···+nk dµ,

and the inequality follows by induction.� □ 

Proof of theorem 5.  Recall that

Eah =

∞⋃
n=1

An.

We prove that µ(An) → 1 as n → ∞ which is equivalent to µ(�An) → 0. We can write �An as

�An =

∞⋃
m=n

Dm, where Dm =

m−1⋂
k=0

T−k(�Bm).

Since µ
(
�An

)
�

∑∞
m=n µ (Dm), it is sufficient to prove that

∞∑
m=1

µ(Dm) < ∞.� (6)

We will now bound µ(Dm) from above. Let ∆m > 15. We have that

µ(Dm) � µ(D̃m), where D̃m =
⋂

0�k�(m/∆m)−1

T−∆mk(�Bm).

Then, we have by lemma 2 that

5 Since ∆m is typically non-integer we should, in principle, be more diligent and write �∆m� and �∆mk� in the 
subsequent estimates. However, to improve readability we let the relevant ceiling and floor functions be implicitly 
understood throughout the proof. The outcome is invariant under this abuse of notation.
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µ(D̃m) =

∫ ∏
0�k�(m/∆m)−1

1�Bm
◦ T∆mk dµ

�
∏

0�k�(m/∆m)−1

(
µ(�Bm) + p(∆m)||1�Bm

||BV

)
.

Since Bm are balls, we have var1�Bm
� 2 and ||1�Bm

||1 � 1. Hence we have ||1�Bm
||BV � 3 and 

we get

µ(D̃m) �
∏

0�k�(m/∆m)−1

(
1 − µ(Bm) + 3p(∆m)

)

= exp

( ∑
0�k�(m/∆m)−1

log
(
1 − µ(Bm) + 3p(∆m)

))

� exp

(
m
∆m

3p(∆m)−
∑

0�k�(m/∆m)−1

µ(Bm)

)
,

where the last inequality holds since log(1 + x) � x.
Assume now that p(n) � Ce−τn. We prove that µ(Eah) = 1 if for all sufficiently large m, 

we have µ(Bm) �
c(log m)2

m  where c > τ−1.
Take ∆m = 1

τ logm. Then

m
∆m

3p(∆m) → 0 as m → ∞,

so we can assume (m/∆m)3p(∆m) < 1 if m is large.

We assume that we have µ(Bm) �
c(log m)2

m  for all m. The proof also works with obvious 

changes if this is only the case for all large enough m. We have

∑
0�k�(m/∆m)−1

µ(Bm) �
m
∆m

c(logm)2

m
= cτ logm.

Taken together, these two estimates give us the estimate

µ(D̃m) � exp
(
1 − cτ logm

)
,

which implies that µ(D̃m) is summable since cτ > 1.
We now consider the case that p(n) � C/nt and µ(Bm) � c

ma. Let ∆m = m
1

1+t. Then

∑
0�k�(m/∆m)−1

3p(∆m) �
m
∆m

3C
∆t

m
= 3C.

Hence

µ(D̃m) � exp

(
3C −

∑

0�k�m
t

1+t −1

c
ma

)
= exp

(
3C − cmβ

)
,

where β = t
1+t − a. If a < t

1+t , then β > 0 and µ(D̃m) is summable, which proves (6).� □ 
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We note that the sufficient condition obtained by Kelmer [14] in the setting of discrete time 
homogeneous flows acting on a finite volume quotient of n is slightly better than what we get 
in our setting. More precisely, [14, theorem 2] states that in the mentioned setting

∞∑
j=0

1
2 jµ(B2 j)

< ∞ ⇒ µ(Eah) = 1.

Inserting either µ(Bm) �
c(log m)2

m  or µ(Bm) � c
ma in the above both result in convergent sums. 

A bound like µ(Bm) �
c(log m)

m  or lower would be a sharper bound compared to that of Kelmer. 
However, the settings are very different and it is not clear what an optimal bound would look 
like in either setting.

4.  Application to examples

Many systems are known to have either polynomial or exponential decay of correlation for 
L1 against BV  in the sense of (4) and (5). Examples of exponential decay includes T being a 
piecewise expanding interval map and µ being a Gibbs measure, T being a quadratic map for 
a Benedicks–Carleson parameter and µ being the absolutely continuous invariant measure, 

[18, 19, 26]. Hence, for these systems, µ(Eah) = 1 whenever µ(Bm) �
c(log m)2

m  for some c  >  0 

sufficiently large.
Hitting time statistics is known for many interesting dynamical systems. Since HTS is 

often true for systems with sufficiently nice mixing properties, our necessary and sufficient 
conditions tend to hold for many of the same systems. Examples of HTS in dynamics include 
transitive Markov chains, Axiom A diffeomorphisms, uniformly expanding maps of the inter-
val, non-uniformly hyperbolic maps, partially hyperbolic dynamical systems and toral auto-
morphisms. Hence, for these systems µ(Eah) = 0 whenever µ(Bm) � c

m for some c ∈ . For 
a comprehensive overview of these results and references, see [20, chapter 5]. Furthermore, 
[7, 8] establish a direct connection between HTS and so-called extreme value theory meaning 
that many HTS results can be obtained simply by translating known extreme value laws. See 
again [20] for an overview of such results.

In the following subsections we describe in more detail how theorems 1, 3 and 4 are 
deduced.

4.1. The doubling map

HTS is known to hold for the doubling map. The precise statement is as follows. Let rm ∈  
be a sequence and set Em = B(y, rm), i.e. the ball with center y ∈ [0, 1] and radius rm. For any 
sequence rm → 0 we have6

GEm(t) =

{
1 − e−t if y is not a periodic point

1 − e−
(

1− 1
2

) p
t if y is a periodic point of prime period p ∈ .

This explicit result can be deduced by applying [7, theorem 2] (along with [8, p 7]) to [20, 
corollary 4.2.11]. Hence theorem 1(a) follows directly from corollary 2.

6 A point y  is a periodic point with prime period p  if p  is the smallest natural number such that Tp (y )  =  y .
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The doubling map with Lebesgue measure is a well-known example of a piecewise expand-
ing interval map with a Gibbs measure. Hence it is exponentially mixing for L1 against BV  
[19] and theorem 1(b) follows directly from theorem 5.

4.2. The Manneville–Pomeau map

Here we explain how theorem 3 follows from our results. We begin with theorem 3(a).
For the Manneville–Pomeau maps the following is known regarding hitting time statistics 

in the case when α < 1, that is when the invariant measure µα is finite. Let Em = B(y, rm) as 
above, then for any sequence rm → 0 we have

GEm(t) =





1 − e−t if y is not a periodic point

1 − e
−
(

1− 1
|Dg p

α(y)|

)
t

if y is a periodic point of prime period p
0 if y = 0,

where Dg p
α(y) denotes the derivative of g p

α at the point y . This follows again by applying [7, 
theorem 2] (along with [8, p 7]) to [9, theorems 1 and 2]. Hence theorem 3(a) follows directly 
from corollary 2. Note that theorem 3(a) actually also holds for balls centered at 0.

We proceed to deducing theorems 3(b), (c) and (d). Note first that the case α = 1 in theo-
rem 3(c) follows directly from corollary 1(b).

The Manneville–Pomeau map is not known to have decay of correlations for L1 against 
BV . However, through a technique known as inducing, explained below, we can obtain results 
almost as strong as if it had exponential decay of correlations with respect to said norms. We 
let S : [ 1

2 , 1) → [ 1
2 , 1) be the first return map of gα to the interval [ 1

2 , 1). The structure of the 
map S is illustrated in figure 2.

Given a point x ∈ [ 1
2 , 1), there is then a sequence Rk(x) such that

Sk(x) = gRk(x)
α (x).

The sequence Rk(x) satisfies

Rk(x) =
k−1∑
j=0

R(S j(x)),

where R is the return time R(x) = min{ n � 1 : gn
α(x) ∈ [ 1

2 , 1) }.
The return map S is uniformly expanding and it follows by the paper of Rychlik [23] that it 

has exponential decay of correlations for L1 against BV . Hence we may apply theorem 5 to S.
The absolutely continuous invariant measure µα of gα is finite on [ 1

2 , 1) and we write µ̃α for 
the normalized measure, i.e. µ̃α([

1
2 , 1)) = 1. The measure µα is finite on [0, 1) if and only if 

α ∈ (0, 1). In fact, the density h of the measure µα is a decreasing and positive function, and 
it satisfies h(x) ∼ x−α when x is close to zero [24].

Using the first return map enables us to estimate µ̃α(Eah(B) ∩ [ 1
2 , 1)) for B = {B(y, rm)}∞m=1 

with center y ∈ [ 1
2 , 1) depending on the rate of shrinking of rm. At the end of the section we 

argue why this is sufficient. For now set Bm = B(y, rm) and assume that y ∈ [ 1
2 , 1). By using 

the fact that gn
α(x) ∈ Bm  can only happen along the subsequence nk := Rk(x), a short argument 

gives the inclusions

A1 ⊂ Eah ∩
[1

2
, 1
)
⊂ A2� (7)
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where

A1 =
{

x ∈
[1

2
, 1
)

: ∃m0 ∀m � m0 ∃ k < m : Sk(x) ∈ BRm+1(x)

}
,

and

A2 =
{

x ∈
[1

2
, 1
)

: ∃m0 ∀m � m0 ∃ k < m : Sk(x) ∈ BRm(x)

}
.

The small argument verifying (7) is left to the reader.
Assume first that µα is finite, i.e. α ∈ (0, 1). We will use (7) together with the following 

estimate of Rn from [11, theorem 2.19]. There exists a constant C  >  1 such that the set of x for 
which the inequality,

n � Rn(x) � Cn� (8)

does not hold is of arbitrarily small measure if n is sufficiently large. Let N0 be so large 
that the set of x for which (8) holds for n  >  N0 is of measure at least 1 − δ and call this 

set Dδ. For x ∈ Dδ we may apply (8) and we find that the condition µ̃α(Bm) �
c(log m)2+ε

m  

implies that µ̃α(BRn(x)) �
c(log n)2+ε

Cn > c0(log n)2

n  for large n. So by picking Cm := B(y, rm) with 

µ̃α(Cm) =
c(log m)2+ε

m  we get Ã1 ⊂ A1 where

Ã1 :=
{

x ∈
[1

2
, 1
)

: ∃m0 ∀m � m0 ∃ k < m : Sk(x) ∈ Cm

}
∩ Dδ .

The first set in the intersection is Eah(Cm) for the system ([ 1
2 , 1), S, µ̃α) which has measure one 

by theorem 5. This shows that µ̃α(Ã1) � 1 − δ and since δ is arbitrary we get µ̃α(A1) = 1. 
This implies that µ̃α(Eah ∩ [ 1

2 , 1)) = 1.
Assume now that α > 1 in which case µα is infinite. In this case we use (7) together with 

a different estimate of Rn which also originates from [11, theorem 2.19]. In this case we have 
that for any κ > 0, the set of x for which the estimate

nα−κ � Rn(x) � nα+κ� (9)

Figure 2.  The Manneville–Pomeau map and its first return map.
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does not hold is of arbitrarily small measure if n is sufficiently large. Let again N0 be so large 
that the set Dδ of x for which (9) holds for n  >  N0 is of measure at least 1 − δ. For x ∈ Dδ we 
have that if there exists an ε > 0 such that µ̃α(Bm) � c

m
1
α

+ε
 for any c  >  0, then

µ̃α(BRn) �
c

R
1
α+ε
n

�
c

nnεα− κ
α−εκ

<
c1

n
, c1 < 1

for sufficiently large n when we choose κ sufficiently small compared to ε. As before we may 
pick Cm := B(y, rm) such that µ(Cm) =

c1
m . As before we can define a set Ã2 to which we can 

apply corollary 1 and by the same reasoning we conclude µ̃α(Eah ∩ [ 1
2 , 1)) = 0.

The proof that µ̃α(Bm) � c

m
1
α

−ε
 implies µ̃α(�Eah ∩ [ 1

2 , 1)) = 0 is similar to the previous 
two cases and we omit the details.

We now argue why our results for µ̃α(Eah(B) ∩ [ 1
2 , 1)) imply the general statement. Notice 

first that each assumption on µ(Bm) in Theorem 3(b), (c) and (d) is invariant under multiplica-
tion by a constant. This also yields for any k ∈ N that if a sequence of targets {Bm} satisfies 
the assumption in Theorem 3(b), (c) or (d), then the sequence {B′

m} with B′
m = Bm+k satisfies 

that assumption as well.   
For a start, we still consider the case of center y ∈ [ 1

2 , 1). Note that for every 
x ∈ (0, 1

2 ) there is a smallest positive integer k(x) such that gk(x)
α (x) ∈ [ 1

2 , 1). Then 
x ∈ Eah({Bm}) if and only if gk(x)

α (x) ∈ Eah({Bm+k(x)}) ∩ [ 1
2 , 1). Hence, we have 

Eah({Bm}) ⊂
⋃

k∈N g−k
α

(
Eah({Bm+k}) ∩ [ 1

2 , 1]
)
. Under the assumption from part (c) we con-

clude that Eah({Bm}) is a null set since it is a countable union of null sets by our previous 
observations. The identical argument works for parts (b) and (d) when Eah is replaced by �Eah.

To go from center y ∈ [ 1
2 , 1) to y ∈ (0, 1) requires only a little more consideration. We 

again use that each assumption on µ(Bm) in theorem 3(b), (c) and (d) is invariant under mul-
tiplication by a constant. Assume for example the setting of theorem 3(c), i.e. α � 1 and 

µ(Bm) � c

m
1
α

+ε
 for some ε > 0 and any c  >  0. Assume that y ∈ (0, 1

2 ). Let k0 denote the small-
est number such that gk0

α (y) ∈ [ 1
2 , 1). There exists a K  >  0 such that for all m ∈  we have 

µα(gk0
α (B(y, rm))) � Kµα(B(y, rm)). This is an easy consequence of l’Hôpitals rule applied to 

the function f (r) := µα(gα(B(y, r)))/µα(B(y, r)). Pick B̃m  to be the smallest ball with center 
gk0
α (y) such that gk0

α (B(y, rm)) ⊂ B̃m. Then B̃m  also satisfies the assumption of theorem (c) and 
we know that µα(Eah(B̃m)) = 0 from the arguments above.

We argue that Eah(Bm) ⊂ Eah(B̃m). Assume that x ∈ Eah(Bm), i.e. ∃m0 ∀m � m0 ∃ k <  
m : gk

α(x) ∈ Bm. But if gk
α(x) ∈ Bm  then gk+k0

α (x) ∈ B̃m. Hence ∀m � m0 + k0 ∃ k < m such 
that gk

α(x) ∈ B̃m , i.e. x ∈ Eah(B̃m). The cases theorem 3(b) and (d) follow by analogue argu-
ments. This completes the proof of theorem 3.

4.3. The Gauß map

In this section, we will consider the Gauß map G : (0, 1] → [0, 1) defined by G(x) = 1
x mod 1. 

This is a piecewise expanding map with infinitely many branches. There is a unique mea-
sure which is an invariant probability measure and absolutely continuous with respect to the 
Lebesgue measure. We denote this so-called Gauß measure by µ, and its density with respect 

to Lebesgue measure is given by h(x) = 1
log 2

1
1+x.

HTS for the Gauß map is known for Bm := [0, rm), i.e. the interval with fixed left endpoint 
being 0 and right endpoint shrinking towards 0. More precisely, for Em = [0, rm] we have,
7 To be precise, Doeblins proof contained a gap which was repaired by Iosifescu [13] in 1977, but not before 
Galambos [10] had proven a special case 1972 which is sufficient for our purposes.
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GEm(t) = 1 − e−t.

This follows from a classic result of Doeblin7 [5] which may easily be translated into the 
above, see for example [12, section 5]. Hence for this choice of targets, corollary 2 applies. In 
particular, we have µ(Eah) = 0 provided µ([0, rm)) �

c0
m  for some constant c0  >  0.

In order to show that we may apply theorem 5 we need the following short argument. 

Define g : [0, 1] → [0, 1] by g(x) = 1
|G′(x)| = x2 whenever x is not 0 or of the form x = 1

n for 
some n ∈ . In the remaining points, we let g(x) = 0. Obviously, g is then of bounded varia-
tion, since the heights of the jumps at 1n are summable.

We have ||g||∞ = 1, but ||g · (g ◦ G)||∞ < 1, since g(x) → 1 only if x → 1, and x  =  1 
is not a fixed point under G. This implies that G2 together with g2 = g · g ◦ G  satisfies the 
assumptions of Rychlik [23]. Hence we may conclude that if P : BV → BV  denotes the trans-
fer operator associated to G, then, since G is mixing, there is only one eigenvalue on the unit 
circle, and P can be written in the form P  =  Q  +  R , where Q is the projection on the invariant 
density h, R has a spectral radius which is strictly less than 1 and QR  =  RQ  =  0 [23, theorem 
1 (c)]. That Q is the projection on the invariant density means that

Qf = h
∫

f dx.

Let f ∈ L1 and g ∈ BV . Let c = −
∫

g dµ, so that 
∫
(g + c) dµ = 0. Then

∫
f ◦ Gng dµ =

∫
f ◦ Gn(g + c) dµ+

∫
f dµ

∫
g dµ.

By the choice of c, we have Q((g + c)h) = 0. Hence
∫

f ◦ Gn · (g + c) dµ =

∫
f · Rn((g + c)h) dx.

Since R has a spectral radius strictly less than 1, there are positive constants C1 and τ  such that 
||Rn((g + c)h)||BV � Ce−τn||(g + c)h||BV . In particular

||Rn((g + c)h)||∞ � ||Rn((g + c)h)||BV � C1e−τn||(g + c)h||BV

� C1e−τn(||gh||BV + ||ch||BV) � C2e−τn||g||BV .

From this, it follows that
∣∣∣∣
∫

f · Rn((g + c)h) dx
∣∣∣∣ �

∫
|f | dx · ||Rn((g + c)h)||∞

�
||f ||1

2 log 2
· C2e−τn||g||BV .

Hence, with C = C2
2 log 2 we have

∣∣∣∣
∫

f ◦ Gng dµ−
∫

f dµ
∫

g dµ
∣∣∣∣ � Ce−τn||f ||1||g||BV .

In conclusion, we may apply theorem 5 to the Gauß map. In particular, we have µ(Eah) = 1 

provided µ(Bm) �
c0(log m)2

m  for some constant c0 > τ−1.
In order to obtain theorem 4 we now use the fact that when rm is small and 

G j−1(x) ∈ [0, rm) then aj(x) ∼ 1
G j−1(x). An easy calculation shows that in the defini-

tion of Eah([0, rm)) for the Gauß map we can replace 
{

Gk(x)
}m−1

k=0 (x) ∩ [0, rm) �= ∅ with 

M Kirsebom et alNonlinearity 33 (2020) 892



908

{ak(x)}m
k=1 ∩

[
1
rm

,∞
)
�= ∅. The only thing left to do now is to compute the bounds on rm 

when µ([0, rm)) �
c0
m  and µ([0, rm)) �

c0(log m)2

m . Using the density of the Gauß measure we 

get that

µ([0, rm)) =
1

log 2
log(1 + rm).

This leads to the following conclusions. If rm � e
c0 log 2

m − 1 for some c0  >  0, then

µ
({

x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max
1�k�m

ak(x) � r−1
m

})
= 0,� (10)

and if rm � e
c0 log 2(log m)2

m − 1 for some c0  >  0 sufficiently large, then

µ
({

x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max
1�k�m

ak(x) � r−1
m

})
= 1.� (11)

Since c0 log 2
m � e

c0 log 2
m − 1 � 2c0 log 2

m  if m is large and since c0  >  0 arbitrary, we can con-

clude that (10) holds provided rm � 1
cm  for some c  >  0. Letting bm = r−1

m , we have that

µ
({

x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max
1�k�m

ak(x) � bm

})
= 0,

if bm � cm for some c  >  0. This is statement theorem 4(a).

Similarly, we may conclude that (11) holds provided rm � (log m)2

cm  for some sufficiently 

small c  >  0. Letting bm = r−1
m  we then have

µ
({

x ∈ [0, 1] : ∃m0 ∈ ∀m � m0 : max
1�k�m

ak(x) � bm

})
= 1,

if bm � cm
(log m)2 for some sufficiently small c  >  0. This is theorem 4(b).

5.  Results on the packing dimension

In this section  we consider the case when T = Tβ is the β-transformation [0, 1) → [0, 1), 
defined for β > 1 by Tβ(x) = βx mod 1, and µ is the unique invariant probability measure 
which is equivalent to Lebesgue measure. If we put Σ = {0, 1, . . . ,β − 1}  in case of β an 
integer and Σ = {0, 1, . . . , �β�}  otherwise, then every x ∈ [0, 1) can be coded by a sequence 
(xi) = (di(x))∞i=0 such that

di(x) =




0 if Ti(x) ∈ [0, 1
β ),

1 if Ti(x) ∈ [ 1
β , 2

β ),
. . . . . .

�β� if Ti(x) ∈ [ �β�β , 1).

Unless β is an integer, not every sequence of Σ occurs in this way. The closure (in the product 
topology) of d([0, 1)) is called the β-shift and is denoted by Sβ.

Note that in the symbolic setting the doubling map becomes the left shift σ on Σ, i.e. 
for d(x) = x0, x1, . . . we have d(Tβ(x)) = σ(d(x)) = x1, x2, . . .. Given a finite sequence 
x0, x1, . . . , xm, we let

C(x0, x1, . . . , xm) = { x ∈ [0, 1) : di(x) = xi for n = 0, 1, . . . , m }.
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Then C(x0, x1, . . . , xm) is an interval of length at most β−(m+1). (If β is an integer, then all 
intervals C(x0, x1, . . . , xm) are of the same length β−(m+1). Otherwise these intervals are of 
different lengths.)

We recall the construction of the packing dimension. Let F ⊂ d and let δ > 0. A collec-
tion {Bi} of disjoint balls of radii at most δ with centres in F is called a δ-packing collection 
for F. For s � 0, let

P s
δ(F) = sup

{∑
i

|Bi|s : {Bi} is a δ-packing collection for F

}

and

P s
0(F) = lim

δ→0
P s
δ(F).

We then define the s-dimensional packing measure by

P s(F) = inf

{∑
i

P s
0(Fi) : F ⊂

⋃
i

Fi

}

where the infimum is taken over all countable covers of F. Finally, the packing dimension of 
F is defined by

dimPF = sup {s : P s(F) = ∞} = inf {s : P s(F) = 0}.

In the hierarchy of dimensions the packing dimension falls between the Hausdorff dimension 
and the upper box-counting dimension in the sense that

dimHF � dimPF � dimBF.

Theorem 6.  Suppose Bm = B(0,β−sm), where s ∈ (0, 1). Then,

dimPEah = 1 − s.

If s � 1 then dimPEah = 0. Indeed, Eah is a countable set in this case.

Proof.  We will first give the proof in the case that β = 2. This case is somewhat easier since 
in this case we have Sβ = Σ. When β is an integer larger than 2, the proof only needs notation-
al changes, but when β is not an integer, a little more care has to be taken. We will explain in 
the end of the proof which changes are needed to cover also the case when β is not an integer.

If s  =  1, then we will prove that Eah consists only of those x ∈ [0, 1), such that Tn(x)  =  0 for 
some n. Hence Eah is the set of all finite words concatenated with an infinite tail of zeroes from 

which it is clear that Eah is countable. Then Eah must also be countable for all s  >  1. Assume 

x ∈ Eah. Then x ∈ An for some n which means that 
{

Tix
}m−1

i=0 ∩ Bm �= ∅ for all m � n. Then 

somewhere from digit number 0 to digit number m  −  1, a block of m zeroes starts. Regardless of 
where this block starts it will overlap with the digit at place m  −  1 and hence the digit on place 
m  −  1 is 0. Since this is true for all m � n we have shown that dm(x)  =  0 for all m � n − 1.

From now on, we assume that s  <  1. We will first prove that dimPEah � 1 − s. Since dimP 
is countably stable, Eah =

⋃
An, An ⊂ An+1 and dimP � dimB, it is enough to prove that 

limn→∞ dimBAn � 1 − s, where dimB denotes the box dimension. If there is an n such that 
Tn(x)  =  0, then x ∈ An . As in the introduction, let Λ denote the set of all such points which, 
as discussed above, is countable and may be disregarded, since the packing dimension of any 
countable set is 0. Set A′

n := An\Λ.
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We first prove that x ∈ A′
n if and only if (di(x))∞i=0 has blocks of nj   +  1 zeroes starting at 

position mj −1 for all j � 1 where (nj)
∞
j=0 and (mj)

∞
j=0 are strictly increasing sequences satisfying

	 (a)	�m0  <  n.
	(b)	�nj � smj.
	 (c)	�mj−1 < (1 − s)mj.

Suppose first that x ∈ A′
n . Then starting somewhere not later than at position n  −  1, the se-

quence (di(x))∞i=0 contains a block of at least sn zeroes8. We let n1 be the length of the largest 
such block, and let m0  <  n be the position of its first zero. This satisfies (a).

The above property is true for all m � n, i.e. starting somewhere not later than at position 
m  −  1 a block of at least sm zeroes start. This allows us to define sequences (nj)

∞
j=1 and (mj)

∞
j=0 

as follows. The numbers n1 and m0 are already defined. Suppose that nj  and mj −1 are defined. 
Then we let mj  be the position of the first digit of the leftmost block of at least nj   +  1 consequ-
tive zeroes in the sequence (di(x))∞i=0 and we let nj +1 be the maximal number of zeroes in such 
a block. Note that, if we make any change in the digits di(x) outside of the blocks of nj  zeroes 
described above, then we get a new sequence di(y ) with y ∈ A′

n .
Since x ∈ A′

n  and nj  was chosen to be maximal, the block of length nj  must be long enough 

to ensure that 
{

Tix
}mj−1

i=0 ∩ Bmj �= ∅, i.e. we always have nj � smj and (b) is satisfied. Further-

more, again due to nj  being maximal and since x /∈ Λ, the blocks of zeroes are separated, and 
we have mj−1 + nj < mj. Hence mj−1 < (1 − s)mj and (c) is satisfied.

Conversely it is clear that any x ∈ [0, 1] for which (a)–(c) holds true for (di(x))∞i=0 is an 
element of A′

n.
Let now N be fixed and take k such that mk−1 < N � mk. From mj−1 < (1 − s)mj we obtain 

that

1 < m1 < (1 − s)k−2mk−1 < (1 − s)k−2N.

Hence

k < 2 +
logN

− log(1 − s)
.

The numbers of zeroes in (di(x))∞i=0 between digit number m0 and digit number N is at 
least s(N  −  m0). This is the case, since the finite sequence dm0(x), . . . , dN(x) can be cut into k 
sequences starting at dmj(x), j = 0, 1, . . . k − 1 and on each of these subsequences a proportion 
of at least s of the length consists of zeroes.

We will now cover the set A′
n by intervals of the form

C(x0, x1, . . . , xN).

The sequences x0, x1, . . . , xN  that we need to consider are only those that can be obtained 
from a sequence (nj)

k
j=1 and (mj)

k
j=0 satisfying the inequalities (a)–(c) and therefore also with 

k � 2 + log N
− log(1−s).

The sequence (mj)
k
j=0 can be chosen in at most Nk+1 different ways, and once (mj)

k
j=0 is 

chosen, we can choose (nj)
k
j=1 in at most Nk different way, hence in total at most N2k+1 different 

ways to choose the sequences. (These are very rough estimates, but sufficient for our purpose.)

8 Since sn is typically non-integer we should, in principle, be more diligent and write �sn�. However, to improve 
readability we let the relevant ceiling and floor functions be implicitly understood throughout the proof. The out-
come is invariant under this abuse of notation.
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Once the sequences (nj)
k
j=1 and (mj)

k
j=0 are chosen, we have specified a certain number of 

zeroes, while the other digits in the sequence x0, x1, . . . , xN  remain free. There are at most 
m0 + (1 − s)(N − m0) � (1 − s)N + n digits that are free, and hence once the sequences 
(nj)

k
j=1 and (mj)

k
j=0 are chosen, we may choose the sequence x0, x1, . . . , xN  in at most 2(1−s)N+n 

ways.
In total, the number of sequences x0, x1, . . . , xN  that we need in order to cover A′

n with the 
sets C(x0, x1, . . . , xN), are not more than

N2k+12(1−s)N+n � N5+2 log N
− log(1−s) 2(1−s)N+n.� (12)

Since the sets C(x0, x1, . . . , xN) have diameter 2−(N+1) we get from the definition of box di-
mension that

dimB(A′
n) � lim

N→∞

log
(
N5+2 log N

− log(1−s) 2(1−s)N+n
)

− log
(
2−(N+1)

) = 1 − s.� (13)

The last equality follows since Nlog N  grows with N slower than any exponential. Since the 
bound is independent of n it also holds as n → ∞.

We now finish by proving that dimPEah � 1 − s. Let (mj)
∞
j=1 be a strictly increasing se-

quence of natural numbers. Using this sequence, we will construct a subset of Eah and prove 
that the packing dimension of this subset is 1  −  s if the sequence (mj)

∞
j=1 is chosen such that

lim
k→∞

∑k
j=1 mj

mk
= 1.� (14)

For example, we could choose the sequence inductively as mk := k
∑k−1

j=1 mj, however, the 
explicit choice is irrelevant. Let F consist of those x ∈ [0, 1) such that

dmj(x), dmj+1(x), . . . , dmj+smj+1(x) = 0, 0, . . . , 0

for all j � 0. Then F ⊂ Eah.
We let µ be the probability measure on F defined by

µ(C(x0, x1, . . . , xn)) =
1

N(n)
,

if C(x0, x1, . . . , xn) intersects F where N(n) is the number of intervals C(x0, x1, . . . , xn) that 
have non-empty intersection with F. Otherwise we assign measure 0. The upper pointwise 
dimension of µ at x ∈ F  is defined by

dµ(x) = lim sup
r→0

logµ (B(x, r))
log r

.

Let rn = 2−n−2. Then B(x,rn) is contained in the cylinder C(x0, x1, . . . , xn) and one of the neig-
bouring cylinders. The measure of the neighbouring cylinder is either zero or equal to that of 
the cylinder C(x0, x1, . . . , xn). Hence

µ(B(x, rn)) � 2µ(C(x0, x1, . . . , xn)),

and since log rn < 0 we have

µ(B(x, rn))

log rn
�

log(2µ(C(x0, x1, . . . , xn)))

log rn
.

It therefore follows that
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dµ(x) = lim sup
r→0

logµ
(
B(x, r)

)
log r

� lim sup
n→∞

logµ
(
B(x, rn)

)
log rn

� lim sup
n→∞

logµ
(
C(x0, x1, . . . , xn)

)

log 2−(n+2)

� lim sup
k→∞

logµ
(
C(x0, x1, . . . , xmk)

)

log 2−(mk+2) .

We will use this inequality to show that dµ(x) � 1 − s for any x ∈ F . By [6, proposition 10.1], 
this implies that dimPF � 1 − s.

We have that

µ(C(d0(x), d1(x), . . . , dmk(x))) =
1

N(mk)
,� (15)

and

N(mk) = 2mk−s
∑k

j=1 mj .� (16)

Hence

dµ(x) � lim
k→∞

mk − s
∑k

j=1 mj

mk + 2
= lim

k→∞
1 − s

∑k
j=1 mj

mk + 2
.

Since mk are chosen so that (14) holds, we have

dµ(x) = 1 − s,

which implies that dimPEah � dimPF � 1 − s.
We will now comment on the changes needed when β is not an integer. In the proof of 

the upper bound, when constructing the cover, we need to make the following change. In the 
blocks between the blocks of zeroes, we only consider sequences which occur in Sβ (rather 
than Σ). It is well known that the number of sequences of length n in Sβ is approximately 
βn, and certainly less than (β + εn)

n , for some sequence εn → 0 as n → ∞. This leads to the 
estimate that we can cover A′

n by

N5+2 log N
− log(1−s) (β + εn)

(1−s)N+n

sets of the form C(x0, x1, . . . , xN) (compare with (12)). The sets used in the cover do not have 
to be of the same size, but making some larger so that they are all of diameter β−(N+1) we still 
have a cover which implies that the box dimension can be estimated by

dimB(A′
n) � lim

N→∞

log
(
N5+2 log N

− log(1−s) (β + εn)
(1−s)N+n

)

− log
(
β−(N+1)

) = (1 − s)
log(β + εn)

log β
.

(Compare with (13).) Letting n → ∞ gives us limn→∞ dimB(A′
n) � 1 − s.

To obtain the lower bound, let F be the set of those x ∈ [0, 1) such that (di(x))∞i=0 ∈ Sβ  and

dmj(x), dmj+1(x), . . . , dmj+smj+1(x) = 0, 0, . . . , 0
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for all j � 0. We again construct a measure as in (15). However, computing N(mk) exactly is 
not as simple for general β as in (16). But we may bound this number from below and thereby 
get an upper bound on dµ(x) at x ∈ F . Analogue to the upper bound we may estimate

N(mk) � (β − εk)
mk−s

∑k
j=1 mj

for some sequence εk → 0 for k → ∞.
Finally, consider a ball B(x,rn), where rn = β−n−2. The ball B(x,rn) is then contained in 2n 

consequtive cylinders C(x0, x1, . . . , xn) [22, lemma 3]. Hence

µ(B(x, rn)) � 2nµ(C(x0, x1, . . . , xn))

and the same computations as in the proof leads to

dµ(x) � (1 − s).
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