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Abstract

We consider the compressible Navier—Stokes system describing the motion of
a viscous fluid confined to a straight layer Qs = (0, ) x R2. We show that the
weak solutions in the 3D domain converge strongly to the solution of the 2D
incompressible Navier—Stokes equations (Euler equations) when the Mach
number ¢ tends to zero as well as § — 0 (and the viscosity goes to zero).

Keywords: compressible Navier—Stokes system, dimension reduction, low
Mach number limit, vanishing viscosity
Mathematics Subject Classification numbers: 35Q35, 35B25, 35D30

1. Introduction and main results

The paper is devoted to the problem of the limit passage from three-dimensional to
two-dimensional geometry, and from compressible and viscous to incompressible viscous or
inviscid fluid.
In the infinite slab geometry
Qs = R? x (0,6), 6 >0,

we consider the following compressible Navier—Stokes system describing the motion of a
barotropic fluid,

ath + diVx (Qeus) = 0» (11)
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. 1 .
at (Qeua) + lex (qus ® ue) + ?pr (96) = ,U/dlvxg(vxus)s (]2)

where p is the shear viscosity and we assume the bulk viscosity to be zero, € > 0 is the Mach
number and

2 3
S(V,u) = (qu +Viu— 3divxu]I) ,p(0)=A0",A>0,v> X (1.3)

The system is supplemented with the initial conditions

u. (0,x) =g (x), 0:(0,x) = 0o =1+ 6985) , (1.4)
the complete slip boundary conditions

U 'n|6Q5 =0, [S(vxu)nhanbgé =0, (1.5)

and the far field conditions for the velocity and density,
u. —0, 9. > 1 as |x] = 0. (1.6)

Let x, = (x1,x,) and for a function defined in €25, denote the average in the x3 variable as

6
Pl =7 ) = 5 [ Flonm)s, 1)

We assume the thickness d of the domain s depends on ¢ such that § = §(¢) — 0 as € — 0.
If (%0, u0e) — (1,up) in a certain sense, then the formal limits of (gz, u;)-the average of the
solution (g, u.) to the initial-boundary value problems (1.1)—(1.6)-are the incompressible
Navier-Stokes equations in R?, namely

Ov+ (v- V) v+ Vym — pAv =0, div,v =0 (1.8)
supplemented with the initial value
vo (xn) = H(ugy) (x3) € L*(R* R?), (1.9)

see theorem 1.4 below. Note that here we use notation u, = (uy,uy) for a vector field
u = (uy,us,u3) € R3, v = (vy,1,) always represents a vector field in R? and

Vi = (axl’axz) , divy =V, Ay =V, V) = axlxl + axzxz,

while H =1d — V;,Ah_ldivh is the Helmholtz projection to solenoidal vector fields in R2.
Finally, in addition to § = §(g) — 0, if we assume p = u(e) — 0 as € — 0, we obtain the
following Euler equations in the plane R?.

v+ (v- V) v+ V,m =0, divyy = 0.

The goal of this paper is to rigorously justify these two multiple limit passages. We recall
that in [19, 21] Lions and Masmoudi initiated the study of incompressible (and inviscid) limit
of global weak solutions to the compressible Navier—Stokes equations. See also more recent
works [1, 3, 6, 7, 9], among others, on analysis of multi-scale singular limit of compressible
viscous fluids. Raugel and Sell have first studied the thin domain problem to the incompress-
ible fluids, see [13, 22]. We also note that in a recent paper [11], the authors considered the
incompressible inviscid limit on expanding domains.

As in most cases of singular limits problems in fluid dynamics in the ill- prepared data
framework, the main difficulties are due to poor a priori bounds and on the presence of the
so called acoustic waves which propagate at the high speed of order 1/ as € goes to zero.
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It turns out that those waves are supported by the gradient part of the velocity and the main
consequence is the loss of compactness of the velocity field or of the momentum and the
impossibility to define the limit of nonlinear quantities such as the convective term. On the
other hand since in the present paper we are working on an unbounded domain we can exploit
the dispersive behaviour of the underlying wave equations structure of those waves. Hence, as
we will see later on, our approach is a combination of regularization and dispersive estimates
of Strichartz type, this will allow us to recover the necessary compactness in order to perform
the limit process, see [2, 23], among others.

We end this part by introducing some notations used in the context. Besides standard
Sobolev spaces W52(Q2), k = 1,2,3, - - - and space-time mixed spaces such as L?(0, T; L(2))
and LP(0,T; W'2(Q2)), we especially use W)2(£; R?) to denote the space of all vector fields
v € W2(Q;R?) such that v-n =0 on 9. Note that in our case of Qs =R? x (0,d),
v - n = v3-the third component of v. The notation f € Cyex ([0, T]; B) with B a Banach space,
means that f = f(¢,x)-as a function of time variable 7 taking value in B (of space variable
X)-is continuous in the weak topology of B. A bar over a function/vector is used to denote the
average over x3 € (0,0) as defined in (1.7), which is distinct from the notation of weak limit
commonly used in the related literature.

1.1. Weak solution to the compressible system

Following Maltese and Novotny [20] or Ducomet et al [5] we define the weak solutions to the
compressible Navier—Stokes system. To simplify notations, in this section we use {2 to denote
Q5 for every fixed § € (0, 1).

Definition 1.1. We say that (p,u) is a weak solution to the compressible Navier—Stokes
system (1.1)—(1.6) if

e the functions (p, u) belongs to the class

0—1€L™([0,T];L" () +L*(Q)), 0>0 aa in (0,7) xQ,  (1.10)

we I (0.7: Wy (URY)), ouel™ (0,307 (R) + 177 (). (11D

® 0— 1€ Cyeax ([0,T];L7 () + L* (£2)), and the continuity equation is satisfied in the
weak sense,

/gw(fw)dx—/@oso(ow)dx:/ /9(8,w+u~vx<p)dxdt (1.12)
Q Q 0 Q

for all T € [0, 7] and any test function ¢ € C° ([0, T] x Q).
e ou € Cyeak ([O, T]; L% (Q) + Lo (Q)), and the momentum equation is satisfied in the

weak sense,

/QQ“'¢(T")CIX—/QQOUO'¢(O,-)dx+u/OT/QS(Vu):qubdxdt

= /T/ <gu O +ouu: Vg + p(g)divxgb) dxdt (1.13)
0o Ja

g2

for all 7 € [0, 7] and any test function ¢ € C° ([0, 7] x Q; R?).
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e the energy inequality

/Q BM“QJFE(%I)} (T)deru/OT/QS(Vu):Vudxdz

9

1 E (0o, 1
</ [290 u0|2+(9‘;>}dx (1.14)
Q &

holds for a.e. 7 € [0, T}, where

E(o,1)=H(0)—H (1)(e—1)—H(1),
with

e
pz
H(o)=¢ / #dz
1 Z
1.2. Main results

To state our result, we first introduce the following classical result to the target system-the
initial value problem to two dimensional Navier—Stokes equations (1.8), see [17] for example.

Theorem 1.2. Given vy € L*(R?), div,vo = O in the sense of distribution, there exists a
unique weak solution

v € C([0,00); L*(R* R?)) N L, (0, 00; W (R* R?)), v(0,) = vy
to (1.8) such that for any ¢(t,x,) € C([0,T] x R*;R?), divyp = 0,

/]RZ V- (T, x,)dxy, — /]RZ vo(x) - #(0,x;)dx;

:/ /v-8,¢+v~th~¢—th:thbdxhdt (1.15)
0 R2

forany T € [0,T].
Remark 1.3. 1In fact we only need the definition of weak solution to (1.8) and (1.9) and its
uniqueness, from which we have the strong convergence of the whole sequence u;.

The first result of the present paper is the following theorem on the incompressible and thin
domain limit. We assume 6 — 0 as ¢ — 0 while the viscosity x > 0 is fixed.

Theorem 1.4. Let o, u. be the weak solution to the compressible Navier—Stokes system
(1.1)—(1.6) with the initial data

—_— 2
wo..|* bounded in L' (R?), |o{"|" bounded in L' N L°°(R? (1.16)
X 0,e

843



Nonlinearity 33 (2020) 840 M Caggio et al

uniformly for e € (0, 1) such that

Oo<toe — Wy = (ugy, 0) € L (R R) (1.17)
as€ — 0. Then

0: = 1in L™(0,T;L* + L (R?)), uz — (v,0) in L*(0, T; L, (R%))  (1.18)
forany T > 0, where v is the unique weak solution to the initial value problem (1.8) and (1.9).

We also consider the inviscid incompressible limit, meaning the viscosity u = p(e) — 0O as
€ — 0. To this end, let us recall the following classical result, see [17] for example.

Theorem 1.5. Given vy € W3?(R?), div,vg = 0, there exists a unique solution

v € C([0,00), W TRH(R%R?)), 7 € CX([0, 00), W TR(R?)), k = 0,1,2,3

to the following initial value problem

Ov+ (v-Vy) v+ Vr =0, divyv =0, (1.19)
v(0,x) = vo (1.20)
such that for any T > 0,
HV”W"«OO(O,T;W3—"~2(R2;R2)) + H7T||kaOO(O,T;W3—"«2(R2)) < C(T)”VO”WM(]R?)- (1.21)
Our result on incompressible, inviscid and thin domain limit is stated as follows.

Theorem 1.6. Suppose 0,1 — 0 as € — 0. Assume there exist g(()l) € L*(R?),uy =
(ugy, 0) € L*(R*; R?) such that

m_

)goﬁ — o], Juge — uo? = 0in L (R?) (1.22)

and vo = H(ugy) € W32 (R?), V, Uy = H' (ug,,) € L>(R%;R?). Let v be the unique solution
to the initial value problem (1.19) and (1.20) and 0, U, be the weak solution to the compress-
ible Navier—Stokes system (1.1)—(1.6). Then, as € — 0,

0 — 1in L(0,T;L* + L"(R?)), Jocu., — vin L*(0,T; L} (R?))  (1.23)
for any T > 0 and any compact set K C R?.

Remark 1.7. It immediately follows from (1.22) that

08 — ol in [2(R?), Wz — g in L2(R%R).

Remark 1.8. Comparing with results [4, 5] and [20], we are interested in multi-scale sin-
gular limit, which means that we study not only reduction of dimension but also low Mach
number limit or low Mach number inviscid limit. As a target system we get the weak solution
of Navier—Stokes equation or strong solution of Euler equation.

Remark 1.9. The assumption §, u — 0 as € — 0 is only for notation simplification, that
is, to avoid the use a notation such as u. s, to denote dependence of solutions to these three
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parameters. In fact, it is obvious from the proof that one can send ¢, §, u — 0 simultaneously
and independently.

Remark 1.10. The reason to choose the complete slip boundary condition (1.5) for the
velocity u. is two folds. On one hand, if one uses the homogeneous Dirichlet boundary con-
ditions, namely u. = 0 on 95, then the limit velocity is naturally to be trivially zero since
the thinness 6 — 0 as € goes to zero. On the other hand, in the procedure of incompressible
inviscid limit, such a (slip) boundary condition allows the limit velocity v-the solution to the
incompressible Euler equations-to be served as an admissible test function in the relative en-
tropy inequality, which is essential in such an approach, see [3, 6, 21], among others.

Before the end of this section we introduce some results on regularization that will be used
in the following context.

Let n € (0,1) and define x,(z) = x(nz) € C5°(R), as

x() =11z <1, x =0,z > 2. (1.24)
For a function f € L?(IR?), denote
fo=F 7 0xaf) = F () # 1

where f is the Fourier transform in R? and F~'(f) is its inverse. Then f, € C*(R?)N
WEP(R?) for any p € [1,00]and k = 0, 1,2, ---. For f € LP(R?), p € [1,00),

Wallr@ey < W ller e
and
fy = finLP(R*) asn — 0, p € [1,00). (1.25)

Moreover,

I llwser w2y < (s, p1> P2, M) If 1202 (2 s

anwa ®R?) S C(Sl’Sz,Pl,Pz»77)|lfn||wwz(R2) (1.26)
for any s,51,52 € R,p; = ps € [1,00] and fixed n € (0, 1).

2. Uniform bounds

For any function f defined in (0, T) x s, we introduce the decomposition

f= [f]ess + [f]res

where

[f]ess = K’(Q)f’ [f]res = (1 _K(Q))f,
with
1
k(0) € CX(0,00), 0< k(o) <1, k(g)=1if [o—1| < 5
The above decomposition is understood in the sense that the essential part is the quantity that

determines the asymptotic behavior of the system, while the residual part will disappear in
the limit passage.
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We start with the uniform bounds following from the energy inequality (1.14). Dividing
both sides of (1.14) by ¢ and recalling assumption (1.16) added on the initial data, we have
the following estimates:

0 |u€|2 uniformly bounded in L*° (0, T;L' (RZ)) , 2.1

0: — 1 ? loc — 1]? . . 1 (12
-_ < | — uniformly bounded in L*° (O, T;L (R )) ,
S8 €ess

€ s €2
(2.2)
es5 50,0 | @l Iy < 55500 || [22] [y <5 23)
€8S Sup; ¢ (0,7 | [ es |2 (m2) < ce?, (2.4)
L imf < um uniformly bounded in L (0, T;L' (Rz)) . 2.5

As consequences of these bounds,

(-5, < |o- [uf|  uniformly bounded in L (0.T:L' (R EY))  (2.6)
and

[o-u],,, — 0in L™ (0,T;L° (R; R?)) ase — 0 2.7)
forany s € [1,27v/ (y + 1)] by

€
2y

‘%
LI (R?)

LI(R?)

2
0 |ug|

H [@]reSHL"lel (Rz) < H [Q?] res

and the uniform bounds (2.1), (2.3) and (2.4). Especially, it follows that

|o-u.|" < |o-u;|" uniformly bounded in L (0,T;L' (R?)). (2.8)

Also we observe that from (2.2) and (2.3),
=1 ‘
Fe 1= g uniformly bounded in L (0, T; L 4+ L™™{27}(R?)). 2.9
€

Moreover,

2: — 1in L™ (0, T; L7 (R?) + L* (R?)) . (2.10)

For fixed y we have uniform bound of u; in L?(0, T; W!?(R?; R?)). To this end we write
o < ]+ el @.11)

where

(@] < [P

es:

uniformly bounded in L>(0, T; L' (R?)) (2.12)
S

according to (2.1). While by (2.3) and (2.4),

1 2

S [wep] ar<s o= 1] o dx
é Qs[ res 1) QB“{|Q—]\>%}
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1 o 1/~ 1 4 1/2
(5/ . dx) e (5/ u. | dx)
Qs Qs
1 e g T
2+7 247
<ot (/ |u5|2dx> (/ |u8|6dx)
5 Jo, 5 o,
| NS C o\
- dx - dx
“5(6/95 o ) (5., )
3 1 1
1 ot 1(-2)
<ot (/ |u5|2dx> (/ |Vu€2dx>
6 Qs 5 Qs

1 1/4 1 3/4
+ce (/ |us|2dx> (/ |Vu€|2dx> . (2.13)
5 Jo, 5 Ja,

Together with (2.11) and the uniform bound (2.5) we find

/

o
(L)
2

W

lu.|* uniformly bounded in L' (0, T; L' (R?))
by applying Young’s inequality. Consequently,
u. uniformly bounded in I? (O, T; w'? (]RZ; R3)) . (2.14)

We emphasize that this uniform bound is only valid for fixed p > 0. Going back to (2.13) we
have

e min{1,2/~} Hu—sl]feS <e min{1,2/~v} [|u6|2:|
res

uniformly bounded in L' (0, T; L' (R?)). (2.15)

We remark that in the last step of (2.13) the following type of Sobolev’s embedding in
domain € is used.

1 1/3 c )
(5/Qlf(x)|"’dx> < 5/95 [Vf|* dx, § < 1.

Indeed, for a function f such that Vf € L*(Qs), f(x) — 0 as |x| — 0 in certain sense, let
S5(x1,x2,x3) = f(x1,%2,0x3),x3 € [0,1]. Applying Sobolev embedding to f5 in the fixed
domain R? x [0, 1] we find

(51, ) - </ol . Vé'ﬁ‘b‘) E e[ [t

=£/ IVif|” + 6[0af Pdx < 5/ IVAf|? + |04 Pdxif § < 1.
g Qs 0 Qs
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3. Energy and Strichartz estimates

We consider the following acoustic system in R,
e0he + AU =0, €0,V V. + @*Vihe =0, a> = p'(1) > 0, 3.1)
supplemented with the initial data

e (0,x,) = Yo(x) € W™A(R?), VU (0,x,) = Vi Tg(x,) € W™(R%:R?),
(3.2)

for some m = 0, 1,2, - - -. The acoustic system conserves energy,

1 1
5/ latpe (1, x4) | + VW (t,23) | doy = E/ lavo ()| + [V ()| dxy
R? R?

(3.3)
for any ¢ > 0.
Also, standard energy estimates give us
10e (8 ) lwea @y + IV (2, )| wer w2
< e (ol ez + [VrPollweaee)) 3.4

fork=1,2,--- ,m.
The acoustic wave system disperse local energy. We recall the following L? — L9-estimate
as a special case of the well-known Strichartz estimates in R?, see [12].

e llo@r )y + IVaVellorir @)

1
< ced (H’(/)()”Wa,z(RZ) + th‘l/()HWa.Z(Rz)) (35)
for any
2 1 1 3
peER,0),—=-—-,g€ (400),0==-<1. 36
(2.00) 7 2 1 (4.00) 7 (3.6)

Hence forany k =0,1,--- ,m — 1,

%ellLa@wrr @)y + VAP llo@wer @2))

< cet ([ollwmage) + V5 Tollwmeee)) - (3.7)
Now consider the inhomogeneous case of (3.1),
e0be + ANV, = efy, 0,V U, 4+ a* Vit = efy (3.8)
supplemented with the initial data
e (0,x1) = o (xn), Vi¥e(0,2x,) = Vi Wo(xp), (3.9)

where fi,f, € L9(0, T; W™2(R?)) and o (x1), V¥ € W™2(R?). By using Duhamel’s prin-
ciple it is easy to show the following energy estimates.

% [l Lo w2 m2)) + [[VaVellLoo (mowr2®2))

< e ([[vollwma @y + 1Vaollwnz(r2))
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+e (Iill2o.rwme @)y + If2ll20.rwme®2)) 5 (3.10)

as well as the Strichartz estimates

% | comowro )y + IV We |l o mwio (r2))
1
< cev ([Yollwmeezy + [[VaPollwm g2y )

1
+c(T)e (Ifillzoorwmrey) + If2llzoorwmw2))) (3.11)

for the same k, p, g as above, see [2].
4. Weak to weak limit
This section is devoted to proving Theorem 1.4. Motivated by Lighthill [15, 16], we take aver-

age over (0, ¢) in the x3-variable to the original Navier-Stokes system (1.1) and (1.2) and write
the resulting system in the following form in (0, T) x R?,

0: — 1 o
ea,(g . )—l—dlvh(gsuah):O, 4.1

o1
Eat (Qeueh) + azvh (Q - )

. _ P —— _
- < (uasviam) - dvzin s+ 5 (e - @ -0 -p)) @2

supplemented with the conditions (1.5) and (1.6), where a®> = p’ (1). In fact, the system (4.1)
and (4.2) should be understood in the weak sense, namely

T
/ / ereOpp + Mg - Vydx,de + 6/ r0,e©(0,x,)dx, =0 4.3)
0o Jre R?

holds for every ¢ € C° ([0,T) x R?), while

T T
/ / EE . 8,(;3 + rgdivhgbdxhdt + / E . ¢>(O, xh)dxh = 8/ / fe . thf)dxhdt (44)
0 R2 R2 0 R2

for any ¢ € C2° ([0,T) x R?; R?), where

Qe_l

- , m; = Qe s fs = f; + f?: + fg,

fi- = 0:Ucy Q Ugy, fg_- = —//LS(V;,@),

1 /—
=5 (ple)-a@-1-p))L
such that

fg uniformly bounded in L’ (0, T;L? (Rz; RZXZ)) 4.5)
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and f!, £ uniformly bounded in L*°(0, T; L' (R?; R**?)) according to the uniform bounds

g2 e

established in (2.1)—(2.5). Hence
f., £2 uniformly bounded in L>(0, T; W~5*(R?; R?*?)), s > 1, (4.6)

[SE)

since L!(R?) continuously embedded in W~*2(R?).
The averaged momentum m. can be written in terms of its Helmholtz decomposition,
namely

m. = H[m:] + H" [m_],
where
HJ_ [mie} = vhés

represents the presence of the acoustic waves, with ®, the acoustic potential, while H [m,] the
solenoidal part. In the following we will show the compactness of the solenoidal component,
while dispersive estimates for the acoustic wave equations will show that V,®. tends to zero
on compact subsets and therefore becomes negligible in the limit ¢ — 0.

4.1. Compactness of the solenoidal component
As a direct consequence of (2.14), there exists some V(¢,x1,x;) € R3 such that
u: — V weakly in L* (0, ; W'? (R%; R?)) . 4.7
From the weak formulation of the continuity equation, it follows
div,V=0in D/,
which is equivalent to
diviv =0, v=V, =V, (t,x;).

We remark that in fact the third component of V is zero according to (2.14) and Poincaré’s
inequality. In order to show the strong convergence of H(u_ ) we first observe that the sole-
noidal component of the vector field m; is (weakly) compact in time. Indeed, relations (2.6)
and (2.7) imply that

m, — v weakly-(*) in L™ (O, T: (L2 + Lz"*/(7+')) (Rz;Rz)) (4.8)
since 0. — 1. From (4.4) and the bounds (4.5) and (4.6), we have
|:7' — m, - qbdxh} — |:T — / V- ¢dxh] in C[0,T7) 4.9)
R2 R2

for any ¢(x,) € C° (R?*;R?), div;¢ = 0. This compactness in time of H(T;), together with
the fact that H(u_,) are bounded in L2(0, T; W'2(R?,R?)), yield
H(m;) - H(u) — |v?

in the sense of distribution according to Lemma 5.1 in [18]. Hence [H(uz)|*> — |v|? weakly
since

/ / (H(w;) — H(ws)) - H(i) / H((o: — Du.y) - Hu:)
0 R2 0 R2
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< o - 1||L;>°(L2+L~(R2))||@H;(L4+L%(R2)) =0
according to (2.10) and (2.14). We thus conclude by (4.7) that

H(u:;) - v e L*(0,T; L (R R?)) (4.10)
and

H(u;) » ve L (0,T; L), (R;R?)) .11

for any p € [2,00).

4.2. Compactness of the gradient component

From (4.1) and (4.2) (or its weak formulation (4.3) and (4.4)) we know that r, = Q?T_l and
V,®. = H* (p-u.,)-the gradient part of p.u. 4, obey the following equations in the sense of
distribution.

e0re + MA@, = 0, €0,P. + a*V)re = eg., (4.12)
supplemented with the initial data

ro(0,-) = 0§, V4 @.(0,-) = H* (300027 4.13)
where g. = g! + g2 + g2 and gl is the corresponding gradient part of f., i = 1,2, 3 such that

gg uniformly bounded in L? (0, T:L? (Rz; RZXZ)) (4.14)

gl, g uniformly bounded in L™ (0, 7; W2 (R R*?)), s > 1, (4.15)

according to (4.5) and (4.6).

We realize that system (4.12) and (4.13) is nothing but the inhomogeneous acoustic wave
system (3.8) and (3.9). In order to apply Strichartz estimates we regularize (4.12) and (4.13)
by using the mollifiers x,, introduced in (1.24) to obtain

Eatre,n + Ahq)e,n = O, Eatq)s,'q + azvhre,n = E8e> (416)

with the initial data

re,v;(o’ ) = (Q(()ls))n s vhq)s,n(o’ ) = (HL(QO,EUO,E,h))n- 4.17)

Now by (1.26) and the Strichartz estimates (3.11) (with k = 0 and p = 4,q = 8 for example),

[7e pllzoLr@eyy + IVa®enyllewr @y

1 — 1
< ce <||r5,n(0, ‘)leyz(RQ) + ||Vh<I>5,,,(O~)||W1,2(R2)> + C(T)é“i ”gE,nHW"z(RZ)

< e(net +c(n,T)ev, n € (0,1)

according to the uniform-in-€ bounds (4.14) and (4.15) on g. and (1.16) on g(()}s) and ug.
However, this argument is not valid for g2 due to the lack of high enough integrability on
time. To overcome this difficulty we split g2 = ggm + gg,res according to (2.11) and (2.15),
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with g2 ., uniformly bounded in L*°(0, T; W~22(R?)), which can be handled as above, and
g~ min{l2/7v}g?  uniformly bounded in L?(0, T; W~2?(R?)). Hence the corresponding acous-
tic wave produced by g2, .. vanishes in L?(0,T; L*(R?)) as ¢ — O (for fixed n € (0,1)), by
using the energy estimates (3.10). Accordingly, sending ¢ — 0 we find that for any 1 € (0, 1),

Vi®., — 0in L*(0,T; L}, (R?)) (4.18)

loc

since p,q > 2. By using the uniform-in-¢ bound of V;®. in L?(0, T; W!?(R?)), which fol-
lows from the corresponding bound (2.14) for u, and (1.25), we have

Vi®. — V@, — 0in L*(0, T; L, (R*)) as — 0
uniformly for € € (0, 1). By writing
Vi®e = (Vi®e — Vi ®.py) + Vi,
and taking € — O first and then 7 — 0, we finally obtain
Vi®. — 0in L2(0,T; L. (R?*)) ase — 0 (4.19)

and consequently

Vy®. = 0in L*(0,T; L7 (R*)) as € — 0 (4.20)

loc

for any p € [2, 00).

4.3. The weak—weak limit passage
The strong convergence (4.20) of . = H+ (0zuz), together with the uniform bound (2.9) of
re = 2= yields

H* (u) = eH" (roue,) + HY (02005) — 01in L2(0, T5 L, (R?))
for s < min{2,~v}. Hence

H*(uz;) — 0in L*(0, T; L”_(R?))

loc

for any p € [2,00) according to (2.14). Together with the strong convergence (4.11) of the
solenoidal part we conclude that

., — vin L2(0,T; L7 _(R?)), p € [2,00). 4.21)

loc

Finally, by applying all these strong convergence in the weak formulation (1.12) and (1.13)
(after taking d-average as in (4.1) and (4.2)), we find

/ V- Vipdy =0
R2

for any ¢ € C>°(R?). Moreover,

/ V- qb(T,xh)dxh — / Vo qb(O,xh)dxh
R2 R2

= / / A\ az(b +VRV: Vh¢dxhdt — / Vv : Vh¢dxhdt
0 R2 0 R2
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forany ¢ € C°([0,T) x R?), divé = 0, which are nothing but the weak formulation (1.15) of
v-the unique solution to two dimensional Navier—Stokes system (1.8) and (1.9). Indeed, one
only needs to show the limit passage for the convective term

1 /7 T
7/ / 0sUej @ Ugy @ Viptpdxdt — / / VRV : Vydxde.
4 0 Qs 0 R2

To this end, we note that

1 T
5 / / 0o @ Ugp : Viytpdxde
0o Jas

1 (7 L T -
= g / / Pl & (ua,h - lls,h) : Vipbdxdr + / / 0l @Ugy Vyhdxyde.
0 Qs 0 R2

According to (4.8) and (4.21), the last term on the right hand side exactly converges to the
corresponding v-term as we want. To show that the remaining term goes to zero, we use
Poincaré’s inequality in the x3-variable to find that

T T )
/ / Ju, — 0oy dedr = / / / Jucs — Wel” desd,dr
0o Jo, o Jr2Jo
T §
< (5/ / / |83u5,h|2dx3dxhdt<052
0 R2 J0

according to the uniform bound (2.5). Consequently,

T —2
H e = Wi HLI((O,T)xRZ) S0 0as0 =0 (4.22)

Finally, by Sobolev’s embedding lemma together with the uniform bounds (2.8) and (2.14),

we have for s € ( } (since v > 2) and ¢/ =25 €[2,6)

57 y+1

‘ U @ (ue,h - E)HL' (R?) < HMHL‘ (R?) ‘m‘ L'(R?)
H|u5h llsh| HLI(]RZ) ‘|v(ush u.y | HL‘ (R?)
10 10
H|u5h u5h| HLI (R2) " €h| HLl (R?) ; B 5 T

We conclude the proof by (4.22) after integrating in time and using the uniform bound (2.5)
for Vu,.

5. The relative energy inequality
Motivated by [10], we introduce the relative energy inequality which is satisfied by any weak

solution (¢, u.) of the Navier—Stokes system (1.1)—(1.6). First, we define a relative energy
functional

1 1 1
£l [1n0) = 5 [ Solu—UP+ S (He) ~H0) (e =) =HODd )
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The following relative energy inequality holds, see [8, 10].

£ (0esu. | 1,0) (1) + % / / S(Vu, — V,U) : (Vyu, — V,U) dxdr
0 Qs

1 T
< E(gesue | 1,U) (0) + 5/ R (0-,u. | r,U)dt, (5.2)
0
with the remainder term

R(Qf’u8|r7U):/ QE(B;U-i-llEVXU)'(U—uE)dX
Qs

+u S (VXU) : (VXU — V,u.)dx
Qs

1

+7
2
£ Qs

(0 — r)OH' (r) — p (0c)div,U — gcu. - VH' (r) dx (5.3)
for any pair of smooth functions r, U such that
r>0, r—1€CX([0,7] x Qs), Ue X ([0,T] x Q5:R?), U-n|y,, =0.

Note that the class of test functions r, U can be extended to a wider ones ensuring all terms
appeared in the relative energy inequality make sense.

6. The incompressible inviscid limit

6.1. Test functions

In contrast to section 4, we consider the acoustic wave equations (3.1) and (3.2) with initial
data

o = o, Vg = H (ug).
Let

(Yo ViPosy) = ((05")n H: (wos))

and 1., Va¥., be the corresponding solution to (3.1). Since the acoustic wave system is
linear,

¢a,n = (ws)n’ Vh\pe,n = (vh\ps)n'
Let €¢ be small enough such that for ¢ < €q, 1., 1= 1 + €1p.,, > 0. We use the couple
[Fes Uen), Ueyy = (V+ V, 0, 0)

as the test function [r, U] in the relative energy inequality (5.2), where v the solution to the 2D
Euler equations (1.19) and (1.20). We remark that since its third component is identically zero
(not only on the boundary of {25), U, ,, can be served as an admissible test function in (5.2).

Enlou n 0@+ 4 [7 [ 8(V0- V.0 (V- 90 g
0 Qs
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1 T
ggs,n (Q,ll|r,U) (0)4’5/ Rs,n (g,u|r,U)dt. (61)
0

Here to avoid notation complexity we omit the subscript € of [g.,u.] and ,n of [r-, U.,]
unless it is necessary. Also we tacitly admit that, when using addition/dot between a vector
u € R3 and another vector v € R2, v is viewed as a 3d vector such that its third component is
Zero.

For the initial data we have

1 1
0w ) (0) = 5 [ Sone e —wl ds
8

rr 1 M\ _ g MY (D _ D )

o [ () e () (2 ) - (v e @2
where uy = Hlug ;] + V,;,¥y. For the first term on the right hand side of the equality (6.2) we
have

1 1 1

6/05 590,5‘“0,€7u0|2dx:5/ ‘1+€Q § 7u0|2dx

1
<3 |u05 |’ dx+5 2‘6905 lug,c — uo|* dx

1 1 2
R A
5/ = |uge u0| + € (|02 L&) 8 952‘u0’€ u|

<et+e) |luns —ul| (6.3)

LI(RZRY)

For the second term on the right hand side of the equality (6.2), setting a = 1 + sg( ) and

b=1+ EQ(() ) and observing that

H(a) = H(b) + H'(b)(a — b) + %H"(ﬁ)(a —b)%, €€ (ab),

|H(a) = H'(b)(a — b) — H(b)| < cla—b[*,

we have

%/Q 512 [ (1 +sg(1)) (1+5Q(1)) (g(()lg) (1)) (1+EQ(1)):| d
5
<ei [, 3 (e (-

1 (1
< H’@éﬁ fgo)( (6.4)

LI(R?)
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Finally, we can conclude

]

2
m an‘
L'(R?)

LI (R2RY) + H Qo,e

£(e.u R UNO) < c[(1+2) lan — |

By sending € — 0 and then 1 — 0 we find, according to (1.16),
g(@E?“E | FE,UE) (0) —0ase — 0. (6.5)

Denote

3

Rey (0u|r,U) =D "R,
j=1
The remaining part of this section is to estimate each R; to conclude the proof of Theorem 1.6
by Gronwall’s inequality.
In the following we will use notation ¢, which may change from line to line, to mean a
constant depending only on the uniform bound of the given initial data. Notations ¢(T), c(n, T)
mean the constants may depending on its components but independent of €.

6.2. The convective term

We write

T 1 T
1/ Rldt:f/ / 0(0U+U-VU)- (U - u)dedt
d Jo 0 Jo Jas

1 T
+f/ / o(u—U)-VU- (U — u)dxd:. (6.6)
The last term is controlled by

T 1 T
/ Vv (1, ) | oo (ko) Ecn (1)t + 5/ / o(u—U)-VVU - (U~ u)duds
0 0 JQs

T 1 T
< / c(t)Eep(H)dt — — / / ou®u: VVUdrds
0 0 Jo Jay

2 T 1 T
_= / / o(u®U): VVUdxds + ~ / / 0(U®U) : VVUdxdz. (6.7)
d 0 Qs d 0 Qs

Applying (1.26) and Sobolev’s embedding lemma to pu ® u term,

1 T
‘/ / ou®u: VVUdxds
0Jo Ja,

< () |ofuP| 19l

L5 (L(R?)) (R2))

17 1
<c(n,T) HQ\HIZH V20| s ey < € T)e (6.8)

L2 (LN (R?))

according to the uniform bound (2.1) and Strichart estimate (3.7). Moreover, by using the
2y

uniform bound of gu in L>(0, T; L* + L7+ (R?)),
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1 T
’/ / 0 (u®U): VVUdxds
d 0 Qs

— 2
<) HQ“||L$°<L2+L%<RZ>) ||U||L§’°(L4+L% (®2)) IV oy 2 ey

< e(T)e(n) (g% + g%) < e(n.T)ek. (6.9)

To handle the last U ® U term in (6.7), we use the uniform bound (2.9) to obtain

1 T
7/ / 0(U®U) : VVTdxds
oJo Jas

+

<al// Qil(U@U):VV\I/dxdt //(U@U):VV\I/dxhdt
3 Jo Qs € 0 JRr2

< ce(T)e + ¢(n, T)sé < c(n.T)es. (6.10)
For the first term on the right side of (6.6),

1/ / 0(OU+U-V,U) - (U—u)dxdr
dJo Jas

:1/ / Q(&,V+V-th)'(Ufu)dxdt+l/ / 00,V - (U — u) dxdt
d 0 Qs d 0 Qs

1 T
+-— / / th\l’ -V V0 - (U — u) dxdr
d 0 Qs

1 T
+g/ / Q(V‘Vh(vh\lf) +V;,\I/-th) . (U—ll) dxdz. (6.11)
0 JQs
Since v is the solution to the Euler equations (1.19), we have

1 T
f/ / 0OV +v-Viv) - (U—u)dxds = I + I,
0 Jo Ja,

1 [T 1 L[
Il = 7/ / ou- Vhﬂ'dxdt = */ Qﬂ'dx ‘;—:0 - */ / Qatﬂ-dxdt
5 0 Qs 5 Qs 5 0 Qs

1 —1 1 /7 -1
=e= / 0 rdx Iy — 57/ / e Oymdxdt < ¢(n, T)e (6.12)
1 Qs g 1) 0 Qs 13

according to (1.21) and (2.2)—(2.4) and

] T
~ / / oU - Vjmdxdt
4 0 Qs

857
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1 T
+’/ / U - V,mrdxde| .
4 0 Qs

Similarly to the analysis above, for the first term on the right hand side of (6.13), we have

‘1//(9—1)-U~erdxdt<sl// (9_1)-U-vh7rdxdt
0 0 Qs ) 0 Qs £

<c(T)e

(6.13)

according to (1.21), (2.2)—(2.4) and the energy estimate (3.4). For the second term on the right
hand side of (6.13), we have

1/ / U~Vh7rdxdt:l/ / V~Vh71'dxdl‘+1/ V¥ - V,mdxde.
o 0 Qs 4 0 Qs 4 0 Qs

Performing integration by parts in the first term on the right-hand side of (6.14), we have

1 T
- / / div,v - wdxdr = 0
dJo Jas

thanks to incompressibility condition, div,v = 0. For the second term on the right-hand side
of (6.14) using integration by parts and acoustic equation, we have

/ V¥ - Vyrdxdt = ! ARV - wdxde
5 QS 6 95
1 T
=e— / Op - wdxdt
oJo Ja,
1 =T
—c [ v - wdx] e / ¥ - Oyrdxdt, (6.15)
4 Qs =0 g Qs

that it goes to zero for e — 0.
Moreover, by using similar argument as above, the last two terms in (6.11) are of order

(. T)(1+ ) Va3 wisqeey) < e, T)e (6.16)

Finally, using divv = 0,

//gﬁtvh\ll (U—u)dxdr = //gu 0,V ¥dxdt
5 Q(s Qé

1 /7 1 /7
+f/ / (o— 1)V~8,Vh\11dxdt+f/ / 00,V ¥ -V, Wdxdt.  (6.17)
0Jo Jas 0Jo Jas

The first term on the right side of (6.17) will be cancelled later by the pressure term while by
using the acoustic wave equations (3.1), the second term equals to

17 _1 17
7/ / e 58,Vh‘ll~vdxdt=—f/ / e
5 0 Qs 5 0 Qs
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vl

0—1
<c(T 4y \Y
( ) H c Lo (2L (R2)) L%o(L4+L3'374 (R2)) H wh||L87(L4+L4(]R2))

<c(n T)et, 12 = min{2,7} (6.18)
by (2.9). Finally, by using the acoustic equations, €9,V ¥ = —a’>V1,

l T

1 / / 00,V -V, Udxds

d Jo Qs
1" -1 !

:—azf/ / LVhl/)'Vh‘I’dde‘f‘*/ Vi [Pdx |
5y Jo, < 2 Je

1
< e, T)ev + */ Va0 [*dx |, . (6.19)
2 Jg

From (6.6) to (6.19) we find

% / Ridr < c(n, T)es + / c(t)E..(1)dt
0 0

1 1 /7
+f/ |Vl |2dx |, — 7/ / ou - O,V Tdxdz. (6.20)
2 Rz 6 0 95

6.3. The dissipative term

We have

! / Rodr = & / S(VU) : (Vu — VU)dxds
4 Jo o Jo

<h / S(Vu— VU) : (Va — VU)dxdr + cp / / IdivS(VU)|? dudr.
0 0 R2

Hence the first term can be absorbed by its counterpart on the left side of (6.1) and the second
term is dominated by ¢(7, T) i, which goes to zero as € — 0 since u = p(e) — 0.

6.4. Terms depending on the pressure

Recalling that
1" 117 ) , )
— [ Radt=—5-= (o—r)0H (r) —p(0)divU — pu - VH' (r) dxds,
1) 0 52 1) 0 Qs

where r = r.;, = 1+ etp .

11 (7 17
—27/ / ou-VH' (r)dxsz/ / ou - VyoH" (r)dxds
) 0 Qs 1) 0 Qs
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11 gy
/ / L+ ey) = HY() o +,,/ / @ ou - Vipdxds
(5 Qs g Qs

since H”(1) = p’(1) = &> Realizing that

‘H”(l +eyp) —H'(1) ‘
€

< cldl,

the first term on the right side is controlled by

c(n, T) |[oul 22 o Il g roe oy VYL

Lo (L2 4L+ (R?)) L“(R’))H‘W(U ' (R?)

<c(n, T)e™ et 6.21)

By using the acoustic equations,

11 /7 1 [
—— / / a*ou - Vyhdxdt = —— / / ou - 9,Udxdr,
€ Jo Jas 0.Jo Jas

which cancels the same term appeared on the right side of (6.17). Now we write

325/ /95 r)OH' (r) = p (o) divUdxdr
=1 /m
/ /Q ig—l) ()Ah\I/dxdt

/ /Q 7*Ah\11dxdt (6.22)
/ / H“ VOphdxdt = — / / 1)0ypdxde
Q(s Q(S

5 / /95 (H"(r) = H" (1)) Opdxd.

We find the first term on the right side is cancelled by the last term in (6.22) while the remain-
ing term equals to

IH// H/l 1
1 / / D A, wdxdr
Qs €

5 AVA'
Loo L2+L7(R2)) H’(/)||L$°(L4+L3’37*4 (RZ)) || h ||L87(L4+L4(]R2))

(r)Onpdxdr + / »H" (r)Opbdx,de
R2

Note that

ool—

c(n,T)e (6.23)

860



Nonlinearity 33 (2020) 840 M Caggio et al

Similarly,

/T IJZ)H//( )8,1/)dx;,dt = /T ¢H’/(1)8,wdxhdt
R? 0 R?

/ b (H(r) — H"(1)) bdyds
RZ

1 o
< 5 /]R{? a W" doxy, |t=0 + C(T) ||1/’||L;°(L2(]R2)) ||7/’HL;>°(L4(R2)) ||Ah\P||L8T(L4(Rz))

1 2 2 T 1
<5 ¢ [ dxy = 4 c(n, T)es. (6.24)

Finally, realizing that } ple)=p (1)(9 D=, is uniformly bounded in L=(0, T; L' (),
—1

/ / PNe==p(l) 5 gy

5 Qs &
1
() 1 80W gy e i) < T T80 s ey < O TIER. (6.25)

From (6.21) to (6.25) we conclude that

1 /7 1 1 1
! / Radt < & / @ [P dvy [ + (0. T)e", a = min{ e, ——}.  (626)
6 0 2 RZ 8 4

6.5. Proof of Theorem 1.6

Using the conservation of energy for acoustic wave system and all estimates in the above three
subsections, we find

£ (0u| R U)(r //Q (Vu— VU) : (Vu — VU) ddr
5

< (. T)e + /0 " () (e

where c(t) = [|[Vv(t, -)|| 1o m2) < c||V(2, )|l ws2(r2yaccording to Sobolev’s embedding lemma.
By Gronwall’s inequality,

Een (0u | 1, U) (1 5/ s (Vu—VU) : (Va — VU) dxdr
8

<ce(n, T)e® 4+ ¢(T)E»(0), ae. 7€ (0,7), (6.27)
where ¢(T) = exp fOT Vav(t, )|l Lo (roydt. Sending & — 0 and then  — 0 we find

lim lim € (oc, 0. | 1oy, Ucyy) (7) = 0 uniformly in 7 € (0,7),
n—0e—0
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as well as

1ir%€ (0c,u; | re, Ue) (7) = 0 uniformly in 7 € (0,7),
e—

where r. = 1 + 9., U, = (v + V,, ¥, 0). We thus conclude the proof of Theorem 1.6 by real-
izing that V,¥., — 0 in L9(0,T;LP(R?)) as € — 0 for any p > 2,¢ > 4 according to the
Strichartz estimate (3.7). Indeed, for any compact set K C R2,

H\/Qiaua -V < H\/qus - Ua,n

L3 (L*(K)) L3 (L2 (R2))

+e(T K Vi¥enll g o i) »

which vanishes as ¢ — 0 and then 7 — 0. Finally we remark that if one assumes that the initial
data V;, ¥ € W32(R?), then the regularization procedure can be omitted.

7. Conclusion

We derive as a target system a weak solution of incompressible Navier—Stokes equation and
the strong solution of incompressible Euler equation. What remains open is to derive-using
the singular limit-the strong solution of incompressible Navier—Stokes in case of ill-prepared
data. The case of getting the strong solution of incompressible case for well prepared data can
be seen as corollary of ‘inviscid’ case. Another very interesting problem is to prove reduction
of dimension from weak solution of compressible 3D barotropic case to weak solution of 2D
barotropic case.
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