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Abstract
In the first part of the present work, the correction to the photon emission rate of an oscillating
two-level atom in the presence of an electromagnetic quantum vacuum field has been
investigated for two different configurations: (i) an atom is trapped in the vicinity of a perfect
conductor and (ii) an atom is trapped between two perfect conductors. In the second part, the
correction to the decay rate of an initially excited oscillating two-level atom due to the presence
of a perfectly conducting surface is found.
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1. Introduction

Quantum vacuum fluctuations are a ubiquitous result of quan-
tizing classical field theories. One of the most important clas-
sical field theories with extensive applications in science and
technology is Maxwell’s electromagnetic field theory. Electro-
magnetic quantum vacuum fluctuations are a direct result of
quantizing the electromagnetic field theory so that its manifes-
tation can be approved from experimental observations such as
the Casimir effect [1–10], Lamb shift of atomic transitions
[11–14] and spontaneous emission of an initially excited atom
[14–20]. In addition to quantum vacuum fluctuations, there may
be some external fields. Then, the fluctuating field satisfies
predefined boundary conditions at the location of the external
fields. For example, in the case of electromagnetic vacuum
fluctuations, the presence of metallic or dielectric materials
leads to a nonhomogeneous electromagnetic energy density due
to boundary conditions causing Casimir forces among the
material fields [21, 22]. Also, the spectroscopic measurements
of the atoms show that the transition frequencies of an atom in
the presence of boundary conditions differ from their free space
value [23]. Therefore, the radiation properties of atoms will
change when they are placed in front of a metallic or dielectric
surface [13, 14]. On other hand, the dynamical interaction
between light and moving atoms in the realm of non-relativistic
atom optics has been studied extensively in related fields such

as laser cooling and trapping and quantum optomechanics
[24, 25]. A neutral atom can interact with the electric comp-
onent of the electromagnetic field through its electric dipole
moment. In addition, a moving electric dipole carries a magn-
etic dipole moment that can interact with the magnetic comp-
onent of the electromagnetic field. Therefore, a moving atom
can couple to both electric and magnetic components of the
electromagnetic field. Consequently, the moving atoms or
equivalently dipoles, exhibit phenomena such as Röntgen
quantum phase shift [26, 27]. Barton and Calegoracos investi-
gated the spontaneous emission of atoms moving in a classi-
cally assigned trajectory [28]. Also, Muller studied the role of
the vacuum fluctuations in spontaneous excitation of a uni-
formly accelerated atom in its ground state [29]. This process
corresponds to the famous Unruh effect [30]. In general, the
Unruh effect expresses that the vacuum state is different for
inertial and accelerated observers. The vacuum state for the
inertial observer means no particle state, but the accelerated
observer detects a thermal bath of particles at temperature T. In
[31], the non-relativistic oscillation of an atom in its ground
state has been investigated in free space. In the present article,
we have generalized the problem studied in [13, 31] to the case
where there are boundary conditions due to the presence of
metallic surfaces that modify the Green’s tensor of the fluctu-
ating field. In the absence of the boundary conditions, the
results are in agreement with those reported in [13, 31].

The main motivation for the present work is: (i) in order
to have more control on the photon emission rate of an
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oscillating two-level atom, some boundary conditions such as
the presence of conductors have been considered as a gen-
eralization of the results reported in [31] and (ii) from the
experimental point of view, holding an atom at an exact
distance from a surface is impossible due to Heisenberg
uncertainty relations; the best we can do is to trap the atom at
an average distance from a surface. Therefore, the decay rate
of an initially excited two-level atom needs to be corrected
due to the oscillation of the atomic center of mass.

The paper is organized as follows. In section 2, the basic
formulation is presented and the correction to the photon
emission rate of an oscillating two-level atom in the presence
of an electromagnetic quantum vacuum field has been
investigated in two different cases: (i) an atom is trapped in
the vicinity of a perfect conductor and (ii) an atom is trapped
between two perfect conductors. In section 3, the spontaneous
decay rate of an initially excited atom oscillating in the
vicinity of a perfect conductor has been investigated. Finally,
we conclude in section 4.

2. The basic formalism

In this section, we introduce very briefly the basic material and
notations that will be used in the following subsections. Let us
consider a two-level atom described by the ground state ∣ ñg and
excited state ∣ ñe with energies Eg and Ee, respectively. The
internal frequency is defined by ( ) w- =E Ee g 0 and r(t)
denotes the center of mass motion of the moving atom with
corresponding velocity ( ) ( )=t tv r . Then, the interaction
Hamiltonian in dipole approximation in CGS units can be
written as:

⎡
⎣⎢

⎤
⎦⎥ˆ ( ( )) ( ) ˆ ( ( )) ( )= - + ´H r t

t

c
r td E

v
B. , 1int

where electric and magnetic field operators are in the interaction
picture and are evaluated at the position of the atom. Let the
atom be initially in its ground state, then the single-photon
emission rate can be calculated from the time-dependent per-
turbation theory as:
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where T is the duration of the interaction. In equation (2), by
∣ ñg0, we mean that the atom is in its ground state ∣ ñg and the
field state is the vacuum state ∣ ñ0 . Similarly, ∣ ñle, 1q, means that
the atom is in its excited state and the field state is a single-
particle state described by a photon with wavenumber q and
polarization λ.

The electromagnetic field operators can be decomposed
into positive ˆ ( ˆ )+ +E B and negative ˆ ( ˆ )- -E B frequency parts as:
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where the negative and positive frequency parts involve the
photonic creation and annihilation operators, respectively.
The dipolar matrix elements in the interaction picture can be
written as ˆ ( ) ˆ ( )= w-d t d e0i i

i t0 . For a spherically symmetric
atomic state, the matrix elements of the electric dipole satisfy:

∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ∣ ( )∣ ∣ ( )dá ñá ñ = á ñe d g g d e e gd0 0 0 3. 4i j ij
2

Using equations (1)–(4), we find that the single-photon
emission rate has contributions from quadratic terms in
electric and magnetic fields given by

( )G = G + G + G , 5EB EE BB
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and the repeated subscript indices (i, j, l=x, y, z) are sum-
med over. Equation (6) can be rewritten as:
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where we made use of the following identities:
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The fluctuation-dissipation relation connects the correlation
functions of the vector potential components to the imaginary
part of the electromagnetic Green’s tensor as [32]:
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The electromagnetic Green’s tensor in a medium described by
the dielectric function ( )e wr, satisfies the equation:
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where w=q c2 2 2. Therefore, the contribution ΓEB can be
rewritten in terms of the Green’s tensor as:

⎡
⎣⎢

⎤
⎦⎥

∣ ∣ ( )∣ ∣

( ) · ( ) · [ ( ( ) ( ) )]
( )

( )( )

ò

ò ò
p

w w

w

G =
á ñ

´ ¢

´ - -
¢

¢

w w

¥

- + - ¢

T

e g

c
d

dt dt e

t

c

t

c
G t t

d

v
q

v
q r r

1 0

3

Im , , .

13

EB

T T
i t t

ii

2

0

0 0

0

Similarly, we have:
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Recently, the population of one-photon states resulting from
the non-relativistic oscillatory motion of an atom initially
prepared in its ground state and interacting with the quantum
vacuum in free space was investigated in [31]. In the fol-
lowing subsections, we generalize this problem to the case
where there are external material fields such as the presence of
perfect conductors.

2.1. Oscillating atom in the vicinity of a perfect conductor

In this section, we will find the single-photon emission rate
from the non-relativistic oscillatory motion of a two-level
atom in front of a perfect conductor. The atom moves along
the z-axis, which is perpendicular to the conductor surface. In
this case, the dielectric function is defined by:
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and the electromagnetic Green’s tensor can be obtained easily
following the method applied in [33] (appendix A). The
location of the trapped atom along the z-axis at time t is given
by ( ) ( ) ˆ [ ( )] ˆw= = +t z t k b a t kr cos cm (ωcm is the frequency
of oscillation) and implicitly we have assumed that b>a, see
figure 1. We have:
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After straightforward calculations, we find from equations (13),
(14) and (15) (appendix A):
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where we have assumed ( )w w= - = q c v0 ,cm0 0 max
w acm , and Γ0 is the free space emission rate
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When the atom is far enough from the plate, the radiation
rate tends to the radiation rate in free space Γ1 [31]:
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Note that the result reported in [31] slightly differs from
equation (21) due to a minor typographical error2. In figure 2,
the scaled emission rate G G1 of a non-relativistic oscillating
two-level atom located in front of a perfectly conducting plate
has been depicted in terms of the scaled distance b/b0
(b0=c/2ωcm) for ωcm=1.1ω0 and ωcm=3 ω0. By increasing
the distance between the atom and the plate, the reflected field
by the plate becomes weaker. Therefore, the emission rate tends
to the free space emission rate, as expected. But in the vicinity
of the plate, the plate effect becomes substantial. Here, we have
not considered a real plate where plasmonic effects are

dominant at b 0 [14]. For ωcm/ω0=3 and within limit
b 0, the emission rate tends to G = G13

25 1. Due to the con-
structive and destructive interference of the vacuum field in the
location of the atom, a damped oscillatory behavior of the
photon emission rate around the free space value Γ1 occurs with
the maximum and minimum values appearing at regular dis-
tances from the conductor.

2.2. The emission rate of an oscillating atom between perfectly
conducting parallel plates

In order to have more control on the quantum dynamics of the
oscillating two-level atom, we consider the geometry depicted
in figure 3.
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Following calculations similar to the previous section, we
will find (appendix B):
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where = -u q q0
2 2 . The emission rate is:
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Figure 1. Two-level atom oscillating in non-relativistic regime with
frequency ωcm in the vicinity of an ideal conducting plate. Parameter
b denotes the distance from the center of oscillation: ( ) =z t

( ) ( )w+ >b a t b acos ,cm .

2 By taking integrals over angular variables in equation (4) in [31], one
recovers the same equation, equation (21) in the present work.
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As a consistency check, it can be easily seen that for the case
where one of the plates goes to infinity (  ¥d ),
equation (20) is reproduced, as expected.

In figure 4, the scaled emission rate Γ/Γ1 of a non-
relativistic oscillating two-level atom located between perfect
parallel conductors (b=d/2) has been depicted in terms of
the scaled distance d/d0, (d0=c/ωcm) for ωcm=1.1 ω0 and
ωcm=3 ω0. By increasing the distance between the plates,
the emission rate tends to the free space result as expected.
Again, due to the constructive and destructive interference of
the vacuum field at the location of the atom, a damped
oscillatory behavior of the photon emission rate around the
free space value Γ1 occurs with the maximum and minimum
values appearing at regular distances from the conductors.

3. The decay rate of an oscillating atom

In this section, we calculate the spontaneous decay rate of an
initially excited two-level atom due to coupling to the vacuum
field in the vicinity of a perfect conductor. The atom oscillates
in z direction perpendicular to the conductor surface with
frequency Ω. The position of the center of mass of the atom is
considered as:

( ) ( )= + Wz b a tcos , 25

with the velocity

( ) ( )= - Wv v tsin , 26max

where = Wv amax . We consider a fully quantum model and
assumed that the atom is initially in its excited state denoted
by ∣ ñe and the fluctuating field is in its vacuum state ∣ ñ0 . In
order to obtain a real description of atom-field interaction
within the laboratory frame, we add the Röntgen term to the
interaction Hamiltonian:

⎜ ⎟⎛
⎝

⎞
⎠( ) · ˆ ( ( )) ( ) ˆ ( ( ) ( )= - + ´H t t

t

c
td E r

v
B r , 27int

where the atomic dipole operator is defined by [34]:

( ) ∣ ( )∣ (∣ ∣ ∣ ∣) ( )= á ñ ñá + ñág e g e e gd d0 0 . 28

The electric and magnetic field operators in the presence of an
ideal conductor plate can be obtained as [34]:

ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( ( ) ) ˆ ( ) ( )

å

å

p w

p
w

= - +

=  ´ +

l
l l
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l l
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E r f r

B r f r

, 2 .

,
2

. , 29 

k
k k k

k k
k k

,
, ,

,
, ,

where ˆ lak, annihilates a photon with wavenumber k and
polarization λ, and ˆ †

lak, creates such a photon. The function

lfk, is the spatial profile for the two polarizations λ=TE, TM
given by:

⎛
⎝⎜
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ˆ ˆ ( )





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k
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k

k
k z e

f k z

f k z

2
sin ,

2
sin cos , 30

TE z
ik r

TM
z

z z
ik r

k

k

,

,

respectively. The polarization TE(TM) means that the electric
(magnetic) field is parallel to the plate. In equations (30), kP
and kz refer to the parallel and perpendicular components of
the wave vector k with respect to the conductor surface,
respectively. The normalization or quantization volume is
denoted by V. The decay rate of an initially excited atom can

Figure 2. Scaled emission rate Γ/Γ1 of a non-relativistic oscillating two-level atom located in front of a perfectly conducting plate in terms of
the scaled distance b/b0, (b0=c/2 ωcm) for ωcm=1.1 ω0 (left) and ωcm=3 ω0 (right).

Figure 3. Two-level atom oscillating in non-relativistic regime with
frequency ωcm between ideal conducting plates. Parameter b denotes
the distance from the center of oscillation: ( ) ( )w= +z t b a tcos ,cm

( )> >d b a .
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be obtained from the time-dependent perturbation theory as:

∣ ( )∣ ( )∣ ∣ òG = á ñlñ ñ
T

g H t e dt
1 1

1 , 0, . 31e g

T

intk2 0
,

2

Now, by inserting equation (27) into equation (31), and doing
straightforward calculations, we find the decay rate of the
oscillating atom (appendix C). In the limiting case a 0, we
recover the results reported in [13]:
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where k0=ω0/c (ω0 is the characteristic frequency of the
atom). Also, within the limits =  ¥a b0, , the sponta-
neous emission rate tends to the vacuum spontaneous decay
rate ∣ ∣ ( )∣ ∣ wG = á ñ e g cd4 0 30

2
0

3 3, as expected.
In figures 5 and 6, the dimensionless decay rate for

parallel and perpendicular polarizations of an initially excited

oscillating atom near a conducting half-space is depicted in
terms of the dimensionless variable ¢b b0, ( w¢ =b c 20 0).

4. Conclusions

The corrections to the photon emission rate of an oscillating
two-level atom in the presence of electromagnetic quantum
vacuum were investigated for two geometries: (i) an atom was
trapped in the vicinity of a perfect conductor and (ii) an atom
was trapped between two perfect conductors. The presence of
conductors caused a damped oscillatory behavior of the
photon emission rate around the free space result Γ1 with
maximum and minimum values occurring at regular distances
from the conductors. This oscillatory behavior was due to the
constructive and destructive interference of the vacuum field
by the plates. By increasing the distance between the atom
and the plates, the emission rate tended to the free space
result. In the vicinity of a perfectly conducting plate and
within the limit b 0, the emission rate tended to G = G13

25 1.
The spontaneous decay rate of an initially excited atom
oscillating in the vicinity of a perfectly conducting plate was
investigated. The decay rates had a damped oscillatory

Figure 4. Scaled emission rate Γ/Γ1 of a non-relativistic oscillating two-level atom located between two perfectly conducting plates (b=d/2)
in terms of the scaled distance d/d0, (d0=c/ωcm) for ωcm=1.1 ω0 (left) and ωcm=3 ω0 (right).

Figure 5. Dimensionless decay rate of an initially excited oscillating
atom between conducting plates in terms of the dimensionless
variable ¢b b0, ( w¢ =b c 20 0) for = -v 343 m smax

1 and parallel
polarization.

Figure 6. Dimensionless decay rate of an initially excited oscillating
atom between conducting plates in terms of the dimensionless
variable ¢b b0, ( w¢ =b c 20 0) for = -v 343 m smax

1 and perpend-
icular polarization.
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behavior around the free space value Γ0 with the maximum
and minimum values occurring at regular distances from the
conductor.

Appendix A

Using the Fourier transform in x-y directions, we define the
dimensionally reduced dyadic tensor [33]:

( )
( )

( ) ( )( )
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p
w¢ = ¢- ¢

d
e z zG r r

q
g q, ,

2
, , , , A.1iq r r

2

2
.

where ( ) = q qq , , 0x y and ( ) = x yr , , 0 . The diagonal
components of g matrix for conducting plate boundary con-
ditions ( )¢ >z z, 0 are given by [33]:
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2 . By inserting the coordinates given in

equation (17) into (A.2), the components of the reduced
Green’s tensor up to the second order in a = qa, are:
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where ( ) ( )w w= - ¢m t tcos coscm cm and ( )w= +n tcos cm

( )w ¢tcos cm .
By inserting equations (A.3), (A.4) and (A.5) into

equation (A.1), and using equations (13), (14) and (15), we
will find within large-time limit:
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Appendix B

The diagonal components of g in the presence of two parallel
conducting plates for < ¢ <z z d0 , are given by [33]:
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By inserting equation (17) into (B.1), and expanding the
result up to the second order in a = qa, we find:
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Now, by inserting equations (B.2), (B.3) and (B.4) into equation
(A.1), and using equations (13), (14) and (15), we find the
following results for the geometry of parallel conductors:
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which lead to equations (23) after straightforward simplifica-
tions. The integrals in equations (23) can be calculated leading
to the following results:
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Appendix C

By inserting equation (27) into (31), we find:
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where ω0 is the internal frequency of the atom and
∣ ∣= á ñg ed dge . By inserting equation (30) into equation (C.1)

and expanding the result up to the second order in k a 1z ,

we obtain:
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Now, integrals over time variables ¢t t, can be calculated
similar to (A.7). The summation over the modes can be
approximated by integrals according to

( ) òå 
p

d kV
k 2

3
3 , and

by changing the integration variable as = -u k k2 2 , we
obtain:
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where ( )w= + Wq c1 0 and ( )w= - Wq c2 0 . From
equation (C.6), we have:
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