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Abstract
We propose an unconventional scheme for quantum entangled state distribution (QESD) and
quantum state transfer(QST) based on a fiber–cavity–atom system, in which three atoms are
confined, respectively, in three bimodal cavities connected with each other by optical fibers. The
key feature of the scheme is the virtual excitation of photons, which yields QESD and QST
between the two atoms in the edge cavities conditioned on one-step operation only on the atom
in the middle cavity. No actual operation is performed on the two atoms in the edge cavities
throughout the scheme. Robustness of the scheme to operational imperfection and dissipation is
discussed and the results show that system fidelity is mostly above 95%. Finally, the
experimental feasibility is justified using laboratory-available values.

Keywords: distributed quantum information processing, quantum network, quantum state
transfer

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum entangled state distribution(QESD), which aims to
achieve quantum entanglement between distant nodes in a
quantum network [1–3], plays a critical role in quantum cryp-
tography implementation [4, 5], quantum secret sharing [6],
quantum teleportation [7] and distributed quantum computation
[8]. So far, there have been many schemes proposed for QESD
using single atoms [2, 9, 10], trapped ions [3, 11], atomic
ensembles [12] and nitrogen-vacancy centers [13], as well as
cavity quantum electrodynamics [14–25]. Furthermore, QESD in
noisy channels [26, 27], even over long distances [28], has also
been well studied in photonic systems. Fast QESD with atomic
ensembles and fluorescent detection has also been studied [29].
Quantum state transfer(QST) [1, 30] aims to transmit quantum
states (or quantum information) from one node to another in a
quantum network. The mathematical form of the simplest QST
between two nodes A and B can be expressed as ∣ ∣yñ ñ 0A B

∣ ∣yñ ñ0 A B, where ∣yñ is the transferred state. Like QESD, a lot of

schemes have been proposed for QST using atomic systems
[2, 9, 10, 12, 31], trapped ions [3, 11], spin chains [32–34],
superconductors [35–38] and nitrogen-vacancy centers [13].
Dissipative dynamics has also been introduced into the QST
working in circuit QED [39] and Rydberg atom systems [40].
Very recently, deterministic QESD and QST have been imple-
mented experimentally in a superconducting circuit system [14]
using microwave photons based on an all-microwave cavity-
assisted Raman process.

The QESD and QST schemes between two remote fiber-
connected cavities(nodes) can be roughly categorized into the
following cases, as sketched in figure 1. For cases (a, b, c), two
separate nodes are operated one by one in sequence or simulta-
neously, and measurement of the output photons is required. For
cases (d, e) with dissipative dynamics involved, the QESD is
achieved by a steady state due to competition between the drive
and decoherence. But these two cases are not for QST, which
works based on unitary dynamics. Case (f) is a new scheme
proposed in the present work, which, unlike the previous QESD
and QST schemes, has the following favorable characteristics:
(i) two qubits employed for QESD and QST are not necessary
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under actual operations, but are coupled/entangled due to an
auxiliary atom and virtually excited photons; (ii) the state of the
auxiliary atom remains invariant throughout the scheme, which
makes the scheme robust to decoherence. The paper is organized
as follows. We first present an effective Hamiltonian for the
atom–cavity–fiber model, based on which QESD and QST are
implemented. Then we assess how well the scheme can be
accomplished and how robust it is against imperfections and
dissipation. Experimental feasibility is justified based on labora-
tory-available values. The results show that the fidelity of the

system is more than 96.26% by adjusting laser shape. Finally, we
give a brief conclusion.

2. The system and Hamiltonians

2.1. The basic model

Our scheme consists of three atoms confined, respectively, in
three identical bimodal cavities connected by optical fibers.

Figure 1. Schematics for typical schemes to create long distance entanglement. (a) The input–output process of photons due to laser-driven
atoms. By interacting with the input photons of the laser, the atom emits a photon to the cavity mode in the left node. Then the photon transmits
to the right node through an optical fiber and interacts with the laser-driven atom there to complete the QESD and QST [1, 14–16, 21] . (b)
Similar to (a) but without laser driving [17–22]. (c) Interference of photons from the atoms in different nodes due to laser driving simultaneously
[2, 12]. (d) Involvement of squeezed light under dissipation. Two atoms trapped in different nodes are driven by squeezed light simultaneously
and then get entangled in steady states under dissipation [23]. (e) Dissipative dynamics. One or both of the laser-driven atoms in fiber-connected
nodes distribute entanglement in a steady state [24, 25]. (f) The present scheme: the quantum entangled state and QST between two atoms in the
edge cavities can be achieved conditioned on one-step operation only on the atom in the middle cavity through the virtual photon process. The
state of the driving atom (in the middle cavity) is almost invariant while the atoms in the edge cavities are free of laser driving.

Figure 2. Level scheme for figure 1(f), where the transitions ∣ ∣ ( )ñ « ñe gn L R n (n=1, 2, 3 denoting different atoms as labeled at the bottom) are
off-resonantly coupled to the left(right)-circularly polarized modes of the cavities. Detunings Δ2 exist in transitions ∣ ∣ ( )ñ « ñe gn L R n and the
corresponding coupling constant is ( )gn L R, . Another laser is applied to off-resonantly drive the transition ∣ ∣ñ « ñe f1 1 in atom 1 with detuning

Δ1 and Rabi frequency Ω.
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Each cavity, as detailed in figure 2, contains a single three-level
atom interacting with the cavity by the Jaynes–Cummings
model [41] under the rotating-wave approximation [42]. In the
interaction picture, the total Hamiltonian can be written, in
units of ÿ=1, as

ˆ ˆ ˆ ˆ

ˆ ˆ ∣ ∣

ˆ ∣ ∣

ˆ ˆ ( ˆ ˆ ) ( )†
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where ˆ ˆH H,CA LA and ĤCF denote the cavity–atom interaction,
the laser–atom interaction and the cavity–fiber interaction,
respectively. ˆ ( )= =a k j L R1, 2, 3; ,k j, is the annihilation
operator of the j-circularly polarized mode of the cavity k;
ˆ ( )=b k 1, 2k j, is the annihilation operator of the j-circularly
polarized mode of the optical fiber k; ν is the coupling strength
between the cavities and the fibers [43, 44]; and gk j, is the
coupling strength between the atom k (k=1, 2, 3) and two
circularly polarized modes of the cavity k. A laser field is
applied to atom 1 with Rabi frequency Ω. Δ2 and Δ1 are,
respectively, detunings in the transitions ∣ ∣ ( )ñ « ñe gn L R n

and ∣ ∣ñ « ñe f1 1.

HCF is a working Hamiltonian for high-fineess cavities
under resonant operations over timescales much longer than
the fiber’s round-trip time [43–45] in the short fiber limit.
We assume the mode separation between neighboring fiber
modes to be pc L2 . This means that the number of the
fiber modes coupling to the cavity mode is of the order of

( ) ( )n p=N l c2 , where n is the cavity decay rate under the
coupling with the fibers and c is the light speed in optical
fibers. In this case, we set N�1 and the coupling of the
cavity mode to an individual fiber mode can be calculated
approximately as npc L4 . As such, there is only one

resonant mode b̂k of the fiber k coupled between the adjacent
cavities.

2.2. Effective Hamiltonian

To gain an insight into the significant nature of the system, we
first perform the following bosonic-mode transformation [43]
for ĤI ,
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Then turning it into the interaction representation by per-
forming the unitary operation ( ˆ ∣ ∣)- ¢ -D å ñ á=e i H e e tCF k k1 1

3
, we obtain
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ˆ ( ˆ

ˆ ˆ )∣ ∣

[ ˆ ˆ

( ) ˆ

( ) ˆ ˆ ] ∣ ∣
( )

å

å å

 =

+ - ñ á

+ +

+ -

+ - + ´ ñ á +

d

d d

d d

d

d d

=
+

-

= =
+ -

-
+

-
-

+

-

+ -

+

-

H
g

c e

c e c e e g

g
c e c e

c e

c e c e e g

3

2 3

1 3

1 3 2 H.c.

4

AC
j L R

j
j

i t

j
i t

j
i t

j

k j L R

k j
j

i t
j

i t

k
j

i t

k
j

i t
j

i t
k j

,

1,
3 ,

3 , 0, 1

2

3

,

,
3 , 3 ,

1
,

1
, 0,

3

3 0

3 3

0

and ˆ ∣ ∣ (∣ ∣ ∣ ∣) = D å ñ á + W ñ á + ñ á=H e e e f f eLA j j1 1
3

1 1 with the

detuning satisfying d n= D - D + nn 2 1 ( =  n 3 , , 0).
By selecting suitable detuning δm=0, in the large

detuning limit ( )d ¹g n mn k j, , equation (4) can be reduced
to a simple model in which a bimodal cavity cn j, is coupled to
an imaginary five-level atom system. All in all, the large
detuning limit corresponds to n gk j, . Choosing d =+ 0
(d =- 0), under the rotating-wave approximation only the
terms containing ˆ+c j, ( -̂c j, ) in equation (4) are reserved.
However these two modes ˆ+c j, ( -̂c j, ) are decoupled with state
∣ ñe 1 which implies that atom 1 is out of interaction with the
bimodal field. Similarly, if δn=0 ( = n 3 , 0) there are
also only two modes ĉn j, . However, the state ∣ ñe 1 is coupled to
these two modes and a full coupling structure is obtained. In
these situations, we write the effective Hamiltonians in a
uniform form ( = n 3 , 0),
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where we define the state ∣ ≔ ¯ ∣ ¯/Jñ å ñ= g e gj k k j k j1
3

, with the nor-

malization coefficient ¯ ¯ /=g g g, 3j j j1, 1, and ¯ =g g 2 3k j k j, ,
with k=2, 3. (Some details can be seen in the appendix.)
Equation (5) is one of the main results in our model. To simplify
the representation, we set ¯ =g gj c1, 1 and ¯ =g gk j c, 2 with k=2, 3.

3. Simplification in a subspace

For our purpose of achieving high-quality QESD and QST, we
encode qubits in the ground states ∣ ñg gL R 23 and ∣ ñg gR L 23. To this
end, we impose the system to be initially in the state
∣ ∣ ∣ ∣ ∣f ñ = ñ ñ ñ ñf g g 000 00R L c f0 1 23 denoting atoms 1, 2 and 3 in the
states ∣ ñf , ∣ ñgR and ∣ ñgL , respectively, and the fibers and three
cavities in vacuum states. This initial state, after the bosonic-
mode transformation in equation (2), becomes ∣ ∣f fñ  ñ =0 1
∣ ∣ ∣ñ ñ ñf g g 0R L1 23 , as the initial state of the effective Hamiltonian
described by equation (5). ∣ ñ0 in ∣f ñ1 is the vacuum state of the
bosonic mode in equation (5). In order to describe Ĥeff in single-
exciton space, we introduce new basis states {∣ }f ñn , as given in
the appendix, and rewrite equation (5) as
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Equation (6) can be graphically understood as shown in figure 3.
Because two paths exist in the coupling from ∣f ñ2 to ∣f ñ13 , we
further consider a group of transformations,
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and then, by setting = =g g g2 c c1 2 , equation (6) becomes
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which implies that the system is effectively divided into two
subspaces relating to {∣ }F ñ+

m and {∣ }F ñ-
m (see figure 3). If the

system is initially prepared in ∣f ñ1 or ∣f ñ14 , no state would evolve
into the subspace regarding {∣ }F ñ-

m . As such, in the following
treatment, we just consider the state evolution within a nine-
dimensional Hilbert subspace spanned by {∣ ∣ ∣f f fñ ñ ñ, ,1 2 13 ,
∣ ∣ ∣f ñ F ñ F ñ+ +, ,14 1 2 , ∣ ∣ ∣ }F ñ F ñ F ñ+ + +, ,3 4 5 .

3.1. Zeno subspace

In this section, we introduce Zeno conditions ˆ ˆ W g ,
which means g ? Ω, to simplify the dynamics of the system.
After discarding the subspace regarding {∣ }F ñ-

m , we rewrite
the Hamiltonian equation (8) based on ∣ ∣f fñ ñ,1 14 and the

Figure 3. Schematic for the simplification steps of Hamiltonians from equation (6) to equation (8) and then to equation (11).
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eigenstates of ̂g(listed in table 1),
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Equation (9) can be further simplified under a unitary trans-

formation ˆ- ¢e i tg and the condition of quantum Zeno
dynamics [46], i.e. omitting the highly oscillating terms for g
? Ω. Then we have a new simplified Hamiltonian as below,
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Despite the ∣Y ñ+m and ∣Y ñ-
m which are decoupled from

{∣ ∣ ∣ }f fY ñ ñ ñ, ,0 1 14 , the system can be described as a Λ-type
three-level quantum system possessing an upper state ∣Y ñ0 and
two lower states ∣f ñ1 and ∣f ñ14 .

3.2. Effective model

Starting from equation (10), for the large detuning condition
ˆD W , eff1 could be further simplified as
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The evolution on the Hilbert space corresponding to the ori-
ginal Hamiltonian equation (1) is
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4. Application

4.1. QESD

Now from the effective Hamiltonian ̂eff in equation (10) with
the initial state ∣f ñ0 , we tuneΔ1 and Ω, and the system evolves to

∣ ( ) ∣ [ ∣
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where ω is Ω2/4Δ1. The result clearly shows that
throughout the evolution, atom 1 stays in the state ∣ ñf 1 and
the bosonic mode remains in a vacuum state, whereas atom 2
and atom 3 become entangled. The maximum entanglement
occurs at τ=π/4ω yielding the target state ∣y ñ =tar

1

2

∣ (∣ ∣ ) ∣ ∣ñ Ä ñ - ñ Ä ñ ñf g g i g g 000 00R L L R c f1 23 23 . If we have a π/
2-phase operation on atom 2, the system will be a standard Bell
state ∣ ∣ (∣ ∣ ) ∣ ∣ñ = ñ Ä ñ + ñ Ä ñ ñBell f g g g g 000 00R L L R c f

1

2 1 23 23 .

4.2. QST

Based on equation (13), we may achieve the QST for arbitrary
quantum states. For example, for an initial quantum state
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15
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an evolution for ωt=π/2 and then a π/2-phase operation on
atom 3 could yield the state transfer from atom 2 to atom 3 as

( )∣ ∣ ∣ [ ∣ ∣ ] ∣ ∣y a bñ = ñ Ä ñ Ä ñ + ñ Ä ñ ñ 16f g g g 000 00 .QST L R L c f1 2 3 3

5. Numerical simulation

Since we have simplified the original Hamiltonian by a series
of approximations, we have to justify the effective Hamiltonian

Table 1. Eigenvalues and eigenstates of ̂g. Here we define x =  2 2 and h =  1 2 .
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l =  g21 ∣ (∣ ∣ ∣ ∣ ∣ ∣ )f fY ñ = ñ  F ñ + F ñ - F ñ F ñ - ñ + + + +2 21
1

2 2 2 1 2 4 5 13

l x= 
+g2 ∣ [∣ (∣ ∣ ∣ ) (∣ ∣ ) ∣ ]f x h fY ñ = ñ  F ñ + F ñ + F ñ + F ñ + F ñ + ñ

x


+
+ + +

+
+ +

+
22

2
4 2 1 2 5 2 4 13

l x= 
-g3 ∣ [∣ (∣ ∣ ∣ ) (∣ ∣ ) ∣ ]f x h fY ñ = ñ  F ñ - F ñ + F ñ + F ñ + F ñ + ñ

x


-
+ + +

-
+ +

-
23

2
4 2 1 2 5 2 4 13
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after simplification. In order to make the simplified model hold,
the relationships that need to be satisfied are ν ? g ? Ω and
Δ1 ? Ω. Here we exemplify the QESD and check numerically
the validity of those approximations by comparing the original
Hamiltonian with the effective one.

5.1. Different parameter conditions

In this subsection, we check three groups of parameter con-
ditions, d d d+ -, ,3 3 0, by comparing the results of the time
evolution of ∣f ñ0 calculated from the original and the effective
Hamiltonians (see equation (10)).

(i) d =+ 03

In this situation, the parameter relationship that
needs to be satisfied is  nD - D = Wg31 2

and Δ1? Ω. As plotted in figures 4(a1), (b1), Δ1

mainly decides the frequency of the evolution while g
and ν influence the local fluctuation. This situation
needs a large Δ which means a long operation time
τ=πΔ/Ω2.

(ii) d =- 03

Nearly the same as (i); the parameter relationship that
needs to be satisfied is  nD - D = Wg32 1 and
Δ1? Ω. As plotted in figures 4(a2), (b2), the result is
very similar to (i). That is the reason why the calculation
of (ii) is similar to (i).

(iii) δ0=0
In this situation, ν is independent from Δ1 and Δ2.

The parameter relationship that needs to be satisfied is
 n Wg and Δ1? Ω. As plotted in figures 4(a3),

(b3), when Δ1=Δ2, the results of the effective model
and the actual model match very well.

From the fitting in figure 4, we know that the frequency
of the evolution in our scheme is mainly controlled by
detuning D1 and Δ2. Meanwhile, local fluctuation is caused
by hopping strength ν and coupling strength g. In con-
sideration of the impact of operation time, we adopt the
scheme in (iii) for further discussion.

The fidelity of the system is calculated by

∣ ˆ ( )∣ ( )y r t y= á ñF 17tar tar

where ∣y ñtar is the target state that we want to implement, and
ˆ ( )r t denotes the density operator of this system at operation
time τ. Then, we check the validity of the quantum Zeno
condition g ? Ω and hopping strength ν. The result in
figure 5(a) reveals that g mainly affects the fidelity of the
system. When g�20Ω, the effective model also has a high
fidelity when the condition ν ? g is not fully satisfied.

A sufficiently large ν can suppress the excitation of
boson modes except ĉ j0, . Experimentally, it is relatively dif-
ficult to achieve high-strength fiber–cavity coupling ν. In a
cold atom system, the coupling between microcavity and fiber
is about 20MHz, which is not strong enough to satisfy our

Figure 4. Comparison of the population of ∣f ñ0 from the original Hamiltonian with that from the effective Hamiltonian. (a1) n = = Wg5 25
and (b1) n = = Wg5 2 50 , where other parameters used are nD = D - =g g3 , 6 2c2 1 1 and =g g2 3c2 . (a2)n w= =g5 25 and
(b2)n = = Wg5 2 50 , where other parameters used are nD = D + 32 1 , =g g6 2c1 and =g g2 3c2 . (a3)n w= =g5 25 and
(b3)n = = Wg5 2 50 , where other parameters used are D = D = -g g, 6 2c1 2 1 and =g g3c2 .
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condition n gk j, [47]. The fluctuation of fidelity will increase
but the maximal value of the fidelity is almost invariant when ν

takes a small value, as shown in figure 5(b). The population of
modes ˆc j, is the main reason for the failure of our scheme.
Furthermore, we find when n  gk j, , the total population N of
mode ˆ ( )c L R, is an oscillation curve in figure 5(c) where

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † †= + + ++ + + + - - - -N c c c c c c c c 18L L R R L L R R, , , , , , , ,

and N could be a small number at some time which means there
are few photons escaping the boson mode that we use to
transfer. This will lead to a displacement of the frequency we
predict but the effective model still stands.

5.2. Validity of the virtual photon

One of the advantages of our scheme is the achievement of
entanglement and state transfer between the distant nodes via

virtual photon effects. As presented in figure 6, we justify this
virtual photon condition numerically, in which the approx-
imation can be found to work nearly perfectly. The population
in excited states, cavities and fibers are all less than 0.01 and
this illustrates that the system is robust. In the next section, we
will discuss the robustness of the system in detail.

5.3. Robustness against decoherence

Taking decoherence into consideration, we check the
evolution of the whole system using the Lindblad master
equation,

[ ˆ ] [

( )]

[ ( )]

[ ( )]

[ ( )]
( )

†

† †

† † †

† † †

† † †

 å å

å å

å å

r r r

r r

r r r

r r r

r r r

= +

- +

+ - +

+ - +

+ - +

= =

= =

= =

 

   

     

     

     

i H,
1

2
2

1

2
2

1

2
2

1

2
2 ,

19

I
k j L R

k j k j

k j k j k j k j

m j L R
m j m j m j m j m j m j

n j L R
n j n j n j n j n j n j

1

3

,
, ,

, , , ,

1

3

,
, , , , , ,

1

2

,
, , , , , ,

0 0 0 0 0 0

Figure 5. (a) F of the original Hamiltonian with respect to g and ν at t p= D W1
2, whereD = D = W = -g g20 , 6 2c1 2 1 and =g g3c2 .

(b) The effect on local evolution fluctuation due to different ν when g=20 Ω. (c) The total population of photons in mode ˆ ( )c L R, .

Figure 6. Dynamics of the system, where (a) ( )Plog A10 with PA being
the sum of all the atomic excited-state populations; (b) ( )Plog C10 with PC
being the sum of the populations of the cavity’s nonzero photon-number
states; (c) ( )Plog F10 with PF being the sum of the populations of the
fiber’s nonzero photon-number states; (d) population in ∣ ñg gR L (blue
solid), ∣ ñg gL R (brown solid) and F (green dashed), which is the fidelity of
creating the target state ∣y ñtar . Parameters used here: = W =g g30 , c1

- =g g g6 2, 3c2 , n = W D = D = W50 , 201 2 .

Figure 7. Fidelity of the target state at t p= D W1
2 under different

values of dissipation. Parameters used here: = W =g g30 , c1

n- = = Wg g g6 2, 3 , 50c2 , D = D = W201 2 .
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where ∣ ∣g= ñ á f e0 1 1 , ∣ ∣g= ñ á g ek j k j j k, , , ˆk= am j m j m, ,

and ˆk= bn j n j n, , describe various decoherence effects in the
system. To simplify our treatment, we assume g g g= = 3j1 1, ,
g g g= = 2j j2, 3, and k k k= = 2m j n j, , with the spontaneous
emission rate γ of each atom and the photon leakage rate κ of
the cavity or fiber.

We plot in figure 7 the fidelity, with respect to the ideal
case, as a function of γ/Ω and κ/Ω at evolving time

p= D Wt 1
2. This scheme is very robust against decoherence

induced by atomic spontaneous emissions and photonic lea-
kages from the cavity–fiber system. From figure 7, we can see
that when γ and κ are around 1.5Ω and Ω respectively, the
fidelity at t can still exceed 0.93 even if ν ? g is not satisfied.
The atomic spontaneous emissions rate γ influences the sys-
tem more than other decaying factors.

6. Experimental feasibility

The system under consideration could be realized in cold alkali-
metal atoms, such as 135Cs or 87Rb [48–50], as considered in
figure 8(a). Based on recent experimental reports employing
high-Q cavities and strong atom–cavity coupling [51–56], we
may choose the parameters as p ~g 2 100 MHzn j, , γ/2π∼
6MHz and k p ~2 1.5 MHzc . The fiber decay rate and cou-
pling strength can be set as k p ~2 152 kHzf [57] and
ν/2π=20MHz [47].

Using these parameters, we simulate our scheme with
different values of Ω, as shown in figure 8(b), where the
fidelity is about 95.38% after the system has evolved for 11.1
μs under Ω/2π=3MHz.

Actually, the system is mainly affected by the decay of
atom γ. Moreover, coupling of the fiber and cavity is limited
by the technique. Experimentally, there are two ways to
improve the fidelity of our model. (1) Suppressing sponta-
neous emission. People have developed techniques such as
adding two parallel conducting planes or mirrors around
atoms [58, 59], trapping them in a microwave cavity [60] to
eliminate the vacuum modes at the transition frequency. (2)
Improving coupling strength. Fibers can be replaced by

current-biased Josephson junctions. Correspondingly, the
cavity QED system can be replaced by a circuit QED system
[61] and the coupling could achieve g/2π≈183MHz [62].
Maybe this is a promising system.

In order to minimize the influence of experimental imper-
fections, we try to accelerate the implementation as discussed
above. From equation (10) we know the final fidelity depending
on ò W dt2 . As such, we choose a cosine-like function,

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )p

pW = W
¢

- +t
t

T
cos

2
1 2, 20m

where Ωm is the maximum amplitude. To satisfy ( )ò W =
¢

t dt
T

0
2

ò W dt
T

0
2 , we obtain W ¢ = WT T3 8m

2 2 , implying that a larger Ωm

could effectively accelerate entanglement generation and QST.
Figure 8(c) indicates that the laser pulse with cosine-like func-
tion works much better than the usual rectangular form with
fidelity 96.26%.

7. Conclusion

To summarize, we have proposed a practical scheme to
achieve QESD and QST in an atom–cavity–fiber model,
which could work for future quantum networks. Three
favorable features, i.e. the auxiliary atom under laser driving
is always in the ground state, no excitation for every atom and
field mode throughout implementation, and no actual opera-
tion performed on the atoms for entanglement, make our
scheme experimentally feasible with current laboratory tech-
niques and robust to experimental imperfections. In this
context, we argue that our scheme is easily extended to the
multi-atom case with each cavity confining N atoms, for
which the coupling strength could become larger with more
atoms involved and thus less operation time is required. We
argue that our scheme would be helpful for exploiting
quantum networks connected by optical fibers or even in a
wireless way. Finally, we suggest the choice of Δ1=Δ2,
under which the laser action time can be decreased greatly
and ν is independent of Δ1 and Δ2. In addition, the value of ν
can take νg when g?Ω.

Figure 8. (a) Energy levels and related transitions in 87Rb atoms, where s s+ -, and π denote the left-circular, right-circular and linear
polarizations, respectively. (b) Time evolution of the fidelity for creating the target state with different values of Ω, where

p =g 2 100 MHzn j, , g p =2 6 MHz, k p =2 1.5 MHzc , k p =2 152 kHzf , ν/2π=20 MHz and Δ1(Δ2)/2π=200 MHz. X and Y,

respectively, denote the operation time and fidelity at the red point. (c) Fidelity with respect to the deviation from the ideal operation time.
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Appendix

Choosing different detuning δn we could reduce equation (4)
to the following effective Hamiltonians,

(i) d =+ 03

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ˆ ∣ ∣ ˆ ∣ ∣

ˆ ∣ ∣ ∣ ∣ ( )

å

å å

= W ñ á + ñ á

+ ñ á + +D ñ á
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+

=
+

=

H e f
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c e g
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c e g e e

3

2 3
H.c. , A.1
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j L R

j
j j

k

k j
j k j

j
j

1 1
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1,
3 , 1

2

3
,

3 , 1
1

3

where d d d d- + - g, , ,3 0 . In the large detuning limit,
we have conditions ( ) ( ) n n+ -g g3 1 , 3 1
and n g3 .

(ii) d =- 03
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where d d d d+ + - g, , ,3 0 . In the large detuning limit,
we have conditions ( ) ( ) n n+ -g g3 1 , 3 1
and n g3 .

(iii) δ0=0
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where d d d d- + + - g, , , ,3 3 . In the large detuning
limit, we have conditions n g3 and ν ? g.

(iv) δ+=0
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where d d d d+ - - g, , ,3 3 0 . In the large detuning limit,
we have conditions ( ) ( ) n n+ -g g3 1 , 3 1
and ν ? g.

(v) δ−=0
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where d d d d+ - + g, , ,3 3 0 . In the large detuning limit,
we have conditions ( ) ( ) n n+ -g g3 1 , 3 1
and ν ? g.

So to summarize, ν ? g should be satisfied in equation (5).
In order to describe Ĥeff in a single-exciton space, we

introduce a set of bases as below,

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

f f
f f
f f
f f
f f
f f
f f

ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ
ñ = ñ ñ ñ ñ = ñ ñ ñ

f g g e g g

g g g R g g g L

g eg g g e

g g g L g g g R

g g e g eg

g g g R g g g L

e g g f g g

0 , 0 ,

, ,

0 , 0 ,

, ,

0 , 0 ,

, ,

0 , 0 . A.6

R L R L

R R L L R L

R L L R

R L L L R R

R L L R

R L R L L R

L R L R

1 1 23 2 1 23

3 1 23 4 1 23

5 1 23 6 1 23

7 1 23 8 1 23

9 1 23 10 1 23

11 1 23 12 1 23

13 1 23 14 1 23

Then we reach equation (6) in the main text.
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