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Abstract
The spin-polarized 2D dipolar Fermi gas trapped in a harmonic potential provides an opportunity
to study the many-fermion systems with strong particle–particle correlation in a controlled fashion.
In this paper, we investigate the role of the correlation part of the interaction energy on the ground-
state properties and on the collective oscillation frequencies of a 2D dipolar Fermi gas by
employing density functional theory (DFT) within local density approximation. We employ a
purely density-based, orbital-free approach of DFT to study the ground-state properties. We
employ an orbital-free approach, as it is suitable for handling a large number of fermions (103–104

atoms/molecules), which are typically the number of atoms/molecules contained in the samples of
dipolar Fermi gas created in the laboratories. We derive analytical expressions for the frequencies
of the monopole and quadrupole modes of the collective oscillations by employing a method based
on the sum-rule approach of linear response theory. We find that the exchange and correlation part
of the fermion–fermion interaction contributes significantly to the total energy, and their
contributions increase with increasing number of fermions and interaction strength. In particular,
the correlation part lowers the total energy of the 2D dipolar fermionic system, thereby stabilizing
the system. Similarly, the inclusion of the correlation effect lowers the frequencies of the monopole
mode of the collective oscillations appreciably in comparison to the case when this effect is not
taken into account. On the other hand, the frequency of the quadrupole mode of the collective
oscillations is not appreciably altered by the correlation part of the interaction over a wide range of
values of interaction strength and number of fermions.
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1. Introduction

The many-body system of ultracold dipolar Fermi gas grab-
bed the attention of the research community because of the
unique and long-range anisotropic nature of the interaction
between the dipolar atoms or molecules [1]. Experimental
realization of degenerate dipolar gas of fermionic atoms or
molecules such as K Rb40 87 and Na K23 40 [2–7] opened the
door to understanding the many-body physics associated with
the correlated fermionic system. The novel physics of both
the equilibrium and dynamical properties of such systems can

be explored as functions of the strength and type (attractive or
repulsive) of interaction, geometry of the trapping potential
and the dimensionality of the system. The long-range aniso-
tropic nature of the interaction potential is expected to yield
interesting physical properties such as topological super-
fluidity with fermionic molecules [8–10], interlayer pairing
between 2D systems [11, 12] and the formation of dipolar
quantum crystals [13].

The dipolar Fermi gases confined in a 2D trapping
potential are of particular interest as the strong suppression in
reaction rate for a gas of hetero-molecules in a 2D geometry
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results in enhancement of the lifetime of molecules, thereby
stabilizing the dipolar Fermi gas [6]. The 2D dipolar Fermi
gases have been realized experimentally by tight trapping
along one (mostly vertical) direction [14–18]. These 2D
dipolar Fermi gases provide scope for studying the fermionic
system with strong correlations. For example, in a series of
recent theoretical studies it has been shown that 2D Fermi gas
can undergo interesting quantum phase transition from a
normal Fermi liquid-like state at low densities to a more
ordered 1D strip phase (1DSP) for lower dipolar strength or a
triangular Wigner crystal phase for higher dipolar strength
[19]. Due to the interesting properties of 2D Fermi gases, the
ground-state properties of both uniform and harmonically
trapped 2D dipolar fermions have been calculated by
employing theoretical methods based on Hartree–Fock
formalism and density functional theory (DFT) [19–29]. In
this paper, we employ a DFT-based approach to calculate the
ground-state properties of a spin-polarized dipolar Fermi gas
trapped in a 2D harmonic oscillator potential. We employ the
DFT-based method for two reasons: (1) DFT takes into
account the effect of both exchange and correlation arising
from the Pauli exclusion principle and inter-fermion interac-
tion and (2) DFT is suitable for handling fermionic systems
with a large number of particles, as the basic variable of this
formalism is particle density—a function of just three spatial
variables [30–32]. In principle, DFT is exact in nature.
However, due to a lack of knowledge of the exact forms of
the exchange and correlation functional, it becomes necessary
to use approximate forms for them to carry out any practical
calculation. For electronic systems, a tremendous amount of
effort has gone into the development of exchange and cor-
relation functionals with increasing degree of accuracy
[31, 32]. Recently, approximate expressions for both
exchange (Hartree and exchange together) and correlation
energy functionals for a spin-polarized 2D dipolar Fermi gas
have been derived within local density approximation (LDA)
by replacing the constant particle density in the expressions
for exchange and correlation energies of a corresponding
homogeneous gas by the local density of the inhomogeneous
system [23, 24]. In a very recent study, the accuracy of these
LDA-based expressions for exchange and correlation func-
tionals have also been assessed against the exact results for a
model system of two dipolar fermions [33]. It has been found
that the exchange and correlation energies are a sizeable part
of the total energy and their contributions increase with higher
value of interaction strength.

In this paper, our main aim is to study the effect of the
exchange and correlation parts of the interaction between the
dipolar fermions on the ground-state properties and collective
oscillations of a harmonically trapped 2D dipolar Fermi gas.
In view of the large number of fermions (typically N of the
order of 103–104), we employ an orbital-free DFT (OF-DFT)-
based approach rather than the orbital-based Kohn–Sham
approach of DFT. For such systems with a large number of
particles, the purely density-based OF-DFT approach is more
advantageous as it scales approximately linearly with particle
number N in contrast to the N3 scaling of the orbital-based
Kohn–Sham approach. Consequently, the calculations of

ground-state properties of 2D dipolar fermions by the OF-
DFT-based approach can be accomplished with significantly
less computational cost and effort. We note here that the OF-
DFT-based approach has been employed previously to study
the ground-state properties of 2D dipolar Fermi gas within
Thomas–Fermi (TF) [23] and Thomas–Fermi–von Weiz-
sacker (TFvW) [24] models including only the effect of
exchange and completely ignoring the effect of fermion–fer-
mion correlation. To calculate the frequency of the collective
oscillations, we use the sum-rule-based approach [34, 35] and
derive analytical expressions for frequencies of the monopole
and quadrupole modes of collective oscillations. The calcul-
ation of these frequencies requires ground-state densities of
the system as input, which are obtained by employing the OF-
DFT-based approach.

In section 2, we present a brief derivation of the Kohn–
Sham-like equation in terms of the density of fermions within
the OF-DFT-based approach. In section 3, we present and
discuss the results. The paper is concluded in section 4.

2. Methodology

2.1. OF-DFT for ground-state properties

We consider a system of N identical spin-polarized fermionic
neutral atoms (or molecules) of mass m with electric dipole
moment d, which are polarized along the z axis and confined
in the x-y plane by a 2D isotropic harmonic oscillator
potential having radial trap frequency ω. These fermions
interact with each other via an isotropic repulsive potential
given by,

( ) ( )=v
C

r
r , 1dd

dd
3

where r is the distance between the dipoles and
p= C d 4dd

2
0 denotes the strength of dipolar interaction. To

calculate the ground-state properties of the above-mentioned
2D dipolar Fermi gas, we use the OF-DFT-based method,
which takes into account the effect of both exchange and
correlation within LDA. In accordance with the basic theorem
of DFT, the ground-state energy of a collection of N dipolar
fermions can be written as a functional of the single-particle
density ρ(r) [30, 32]:

[ ] [ ] ( ) ( ) [ ] ( )òr r r r= + +E T v d Er r r , 2s ext int

where Ts[ρ] denotes the kinetic energy of a non-interacting N-
particle system in a multiplicative potential, the state of the
system is represented by a Slater determinant constructed
from the lowest energy solutions of the Schrödinger equation,
and it is determined by the expectation value of the kinetic
energy operator in this state. On the other hand, the inter-
acting kinetic energy T[ρ] is determined by the expectation
value of the kinetic energy operator in the exact many-body
state and its magnitude is higher than that of Ts[ρ]. The term
Eint[ρ] in the above expression represents the interaction
energy functional, which takes into account the effects of both
classical and quantum mechanical many-body interactions.
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We note here that Eint[ρ] also includes a contribution of small
difference [ ] [ ]r r-T Ts , which is introduced due to the
replacement of the interacting kinetic energy functional by a
non-interacting one. The major contribution to the quantum
part of Eint[ρ] comprises the exchange and correlation energy
functionals capturing the effect of the Pauli exclusion prin-
ciple and fermion–fermion correlation in the many-body
wave function, respectively. The second term in the above
equation represents the energy due to the interaction of N
fermions with the external 2D harmonic trapping potential
vext(r) ( )w= m r1

2
2 2 , which is used for confining these

fermions.
For non-interacting kinetic energy functional Ts[ρ], we

make use of the expression proposed and tested in [24] within
TFvW approximation given by,

[ ] [ ] [ ] ( )r r r= +T T T , 3s TF vW

with

[ ] ( ) ( )òr
p

r=


T
m

dr r, 4TF

2
2

and

[ ] ∣ ( )∣
( )

( )òr l
r
r

=


T
m

d
r
r

r
8

1

8
. 5vW vW

2 2

In the above equations, TTF[ρ] corresponds to the kinetic
energy functional of a fermionic system in 2D within LDA
and TvW[ρ] denotes the von Weiszacker correction to the
kinetic energy functional originating from the inhomogeneity
in the density. We note here that for the 2D case conventional
methods do not yield any gradient correction and therefore to
incorporate the effect of inhomogeneity, in analogy with the
3D case a gradient-dependent von Weizsacker-like term has
been introduced with λvW as a parameter. It has been shown in
[24] that the parameter λvW depends weakly upon the number
of particles in the system and is related to N by
l l= +¥ p NvW vW

q with l = =¥ p0.018 4, 0.057 7vW and
q=0.157 2.

Next, following general convention of DFT, we divide
Eint[ρ] into two parts:

[ ] [ ] [ ] ( )r r r= +E E E , 6int HF c

where EHF[ρ] is analogous to the Hartree–Fock (HF) energy,
which is a sum of two terms, one taking into account the
effect of classical dipole–dipole interaction (Hartree energy)
and the other one accounts for exchange interaction. On the
other hand, Ec[ρ] denotes the correlation energy arising from
the quantum mechanical inter-particle correlations. It is
important to note that even for 2D uniform dipolar Fermi gas,
individually both Hartree and exchange energies are singular
due to 1/r3 form of the interaction potential. However, the
singularities in Hartree and exchange energies get canceled
when the two energies are evaluated with appropriate reg-
ularization of the dipole–dipole interaction potential vdd(r).
To calculate the energies it is required that the regularized
potential should not have singularity at r=0. This is
achieved by associating with each interacting physical elec-
trical dipole a Gaussian charge distribution [23, 24]. Upon

regularization, the HF part EHF can be decomposed as,

[ ] [ ] [ ] ( )r r r= +E E E , 7HF HF HF
1 2

with

[ ] ( ) ( )òr pr=


E a
m

r dr
256

45
, 8HF dd

1
2

5 2

( )

[ ] ( )
( )

( )( )ò ò òr p r
p

r= - ¢ ¢- - ¢

9

E
a

m
d d

d
ker r r

k
r

2
,HF

dd ik r r2
2

2
.

where = a mCdd dd
2. We note here that the above expres-

sion for [ ]rEHF
1 is obtained from the results for uniform dipolar

Fermi gas within LDA. On the other hand, the above expression
for [ ]rEHF

2 is an exact one and it is spatially non-local in nature.
This term vanishes for a uniform system. As with [ ]rEHF

1 , the
exact form of the correlation energy Ec[ρ] is not known and one
needs to use an approximate expression for it to perform any
calculation. To this end, several researchers have derived an
expression for correlation energy within LDA by various
methods [25]. In this paper, we employ the expression derived
in [25] by using an empirical fit to the data obtained through
Monte Carlo simulation for uniform gas given by,

[ ] ( ) ( ) ( )òr r r= E dr r. 10c c

c being correlation energy per particle, is obtained using an
empirical fit to quantum Monte Carlo simulation (QMC) data in
[25] as the following,

⎡
⎣⎢

⎤
⎦⎥( )

( )

r
p

r
r r r

=
-

+
+ +


 a

m A B C

2
ln 1

1
,

11

c
dd

2 2 2
2

1 2 3 2

where = = = -A x B x C x1.2 , 1.101 7 , 0.010 0c c c
1 4 1 2 3 4 with

( )p=x a4c dd
2 . The above parameterized form for the correlation

energy functional yields results for total energy, which match
well with the corresponding QMC data up to l r= =xo c a

72, where ρa is the average density defined as
( )

r = ò
ò

r
a

d

d

r r

r
.

Having set up the energy functional for a system of spin-
polarized dipolar fermions trapped in a 2D harmonic oscil-
lator potential, we now exploit the variational nature of the
ground-state energy with respect to the density (second part of
the Hohenberg–Kohn theorem) [30] to derive a working
equation for calculation of the ground-state density. By
making the total energy functional (given in equation (2))
stationary with respect to density ρ(r) along with normal-
ization constraint condition ∣ ( )∣ò r =d Nr r2 , we get the fol-
lowing Euler equation:

( ) ( )d dr m+ =T v r , 12s

where μ is the chemical potential and v(r) is the effective
potential given by,

( ) ( )w d dr= +v m r Er
1

2
. 13int

2 2

By defining ( ) ( )f r=r r and ( ) d dr=v Erint int , the above
Euler equation can be transformed to a Kohn–Sham-like
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equation given by,

( ) ( ) ( ) ( ) ( )l
f f mf-  + =



m
r v r r r

2 2
, 14vW

eff

2
2

with

( ) ( ) ( ) ( )p
f w= + +


v

m
m r vr r r

2 1

2
, 15eff int

2
2 2 2

where vint(r) is given by,

( ) ( ) ( ) ( ) ( )= + +v v v vr r r r , 16int HF HF c
1 2

with

( ) ( )

( )
( )

( )

( ) ( ) ( ) ( )

( )ò ò

pr

p
p

r

r r
r

=

=
-

¢ ¢

= +
¶
¶

- - ¢








v
a

m

v
a

m
d

d
ke

v

r r

r r
k

r

r r

128

9
2

2

. 17

HF
dd

HF
dd i

c c
c

k r r

1
2

3 2

2
2

2
.

We note that the first term in the Kohn–Sham-like
equation, equation (14), arises from the functional derivative
of TvW[ρ] and on the other hand, the functional derivative of
TTF[ρ] yields the first term in veff(r). By further dividing both
sides of equation (14) by λvW, it can be rewritten as,

( ) ( ) ( ) ( )f f m f-  + ¢ = ¢


m
r v r r

2
, 18eff

2
2

where l¢ =v veff eff vW and m m l¢ = vW .
To obtain the ground-state density ρ(r) (f(r)), we need to

solve the above Kohn–Sham-like equation in which the
potential ( )¢v reff itself depends on ρ(r). To solve equation (18),
we apply a self-consistent imaginary-time propagation tech-
nique, which has previously been used quite successfully for
solving the Kohn–Sham-like equation in the realm of elec-
tronic systems [36]. A brief description of the self-consistent
method, which we employed, is presented in appendix A. In
the next section, we present and discuss the results for the
ground-state properties of 2D dipolar fermions obtained by
solving equation (18). Furthermore, using the ground-state
densities, we also calculate the frequencies of the monopole
and quadrupole modes of the collective oscillations by
employing a method based on the sum-rule approach of linear
response theory, and these results are also presented in the
next section.

3. Result and discussion

3.1. Ground-state properties

Before proceeding with the discussion on the results we
obtained, we make a survey of the basic characteristic para-
meters of the samples of dipolar Fermi gas, which have been
realized experimentally by various groups. Recently, a series
of experiments [2, 3] have reported realization of dense gas of
4×104 polar molecules of K Rb40 87 at a temperature below
400 nK. The electric dipole moment of KRb molecules is
found to be 0.5 D (where = ´ -D1 3.335 10 30 C m), yielding

the dipolar strength add≈0.47 μm. In a very recent experi-
ment, De Marco et al [7] have also reported realization of a
degenerate gas of 105 fermionic K Rb40 87 molecules at
250 nK and another sample at 50 nk containing 2.5×104 of
the same molecules. In this experiment, the fermionic cloud
of KRb molecules is trapped in a harmonic potential with
frequency ω=2π×40 Hz, which corresponds to the value
of harmonic oscillator length » ´ -a m1.42 10ho

6 (where
w= a mho ), thereby resulting in dimensionless interac-

tion strength of the order of »a a 0.33dd ho . In another
experiment, Park et al [5] reported realization of ultracold
dipolar Fermi gas of 5×103 molecules of Na K23 40 in a
harmonic trap with frequency ω=2π×160 Hz. The dipole
moment of NaK molecule is d=0.8D, which corresponds to
add=0.6 μm and »a a 0.6dd ho .

We carry out theoretical calculations for several values of
dipolar strength a add ho and number of dipolar fermions N in
accordance with the experimentally realized values, as dis-
cussed above. We begin with the discussion of our results,
highlighting the effect of inter-particle correlation on the
ground-state properties followed by the results for frequencies
of the collective oscillations of trapped 2D dipolar Fermi
gases. Before proceeding with the detailed discussion of the
results, we wish to note here that the ratio ∣ ∣E EHF HF

2 1 scales as
N1 in the large-N limit [23, 24]. Consequently, for N 1,

the contribution of the non-local term EHF
2 will be sig-

nificantly lower than that of EHF
1 to the total energy. This has

also been verified in [24] by calculating the two energy
components using the ground-state densities of a collection of
fermions trapped in a harmonic oscillator potential without
dipolar interaction. It has been found that with increasing
number of fermions N, the value of the above ratio diminishes
from around 0.13 for N=55 to 0.013 for N=5151. To
study the effect of dipolar interaction on the above ratio, we
solve equation (18) for =a a 0.3dd ho and N is varied from
102 to 104. In table 1, we present the results for different
energy components along with the total energy and the
corresponding ground-state density profiles are displayed in
figure 1. It can be clearly seen from table 1 that the ratio
∣ ∣E EHF HF

2 1 decreases from around 0.03 for N=103 to 0.01
for N=104 in conformity with the N1 scaling mentioned
above. Moreover, we also note that as N is increased from
102 to 104, the percentage contribution of the non-local part
EHF
2 to the total energy reduces from around 2.48% to 0.40%.

Whereas, for the same values of N, the contribution of local
term EHF

1 to the total energy increases from around 34% to
41%. Furthermore, it can be seen from figure 1 that for N
ranging from 103 to 104, the ground-state density profiles with
and without the inclusion of non-local terms hardly exhibit
any appreciable differences. As we are interested in studying
the properties of dipolar fermions with N 1, and in view of
the results discussed above, we safely ignore the contribution
of non-local term EHF

2 and use the approximate expres-
sion »E EHF HF

1 .
Having appraised the contribution of EHF

2 towards the
total energy, we next focus our attention on the role of the
correlation energy Ec in determining the ground state and
the collective oscillation properties of spin-polarized 2D

4
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dipolar fermions. We point out here that the range of values of
dipolar strength a add ho and the number of fermions N cho-
sen to perform the calculations are consistent with the validity
range of LDA-based expression for the correlation energy given
by equation (11). For example, for N=104 and =a a 1.0dd ho

we get λo≈7.0, which is well below the validity limit of λo≈
72. We note here that the negative values of correlation energy
signify that the corresponding potential is attractive in nature
and thus helps in lowering the ground-state energy of the sys-
tem. Moreover, we find that the contribution of correlation
energy increases with higher values of N. For example, the
contribution of the correlation part of the interaction to the total
energy increases from around 8.5% at N=103 to about 12% at
N=104 for dipolar strength =a a 0.3dd ho . Similarly, the ratio
∣ ∣E Ec HF

1 also increases from around 0.25 for N=103 to 0.29
for N=104. We note here that unlike the electronic case, for
spin-polarized dipolar fermions, the contribution of correlation
energy is quite sizeable to the total energy. Consequently, the

LDA-based expression for the interaction energy will over-
estimate the total energy of the system if the correlation part is
not taken into account.

Next, we focus our attention on the ground-state density
profiles of trapped 2D dipolar Fermi gas and how these
profiles are affected by the correlation part of the inter-particle
interaction. To this end, in figure 2 we compare the ground-
state density profiles of dipolar fermions with and without the
inclusion of the correlation energy term in the total energy
functional for various values of particle number N and dipolar
interaction strength a add ho. From this figure, first we note
the following general features of the density profiles (see
dashed curves in the figure): (a) for a given value of N, the
peak density shows a decreasing trend and correspondingly
the radius of the cloud increases for stronger dipole interac-
tion, and (b) for a given value of the interaction strength, the
size of the density profile increases with increasing value of
N. This behavior is attributed to the repulsive nature of 2D
dipole–dipole interaction force and the enhancement of this
repulsion with increasing number of fermions.

Now, we proceed with the assessment of the effect of
correlation on the density distribution of trapped 2D dipolar
fermions. To this end, we observe from figure 2 that with the
inclusion of the effect of correlation, the maxima of the
density profiles is enhanced and the corresponding radius of
the cloud is shortened. For example, with the correlation
effect included, the radius of the cloud for =a a 0.3dd ho and
N=104 decreases by around 6% with respect to the case
when correlation is not taken into account. On the other hand,
after including the correlation energy term and keeping the
other parameters at the same values, the peak of the density
profile increases by around 13% over the density profile
obtained without the inclusion of the correlation energy term.
This indicates that the correlation potential is attractive in
nature, which pulls the fermions towards the center, thereby
increasing the central density and reducing the radius of the
cloud . Furthermore, this modification in the density profiles
become more prominent for a larger number of particles and
for higher values of dipole–dipole interaction strength.

To further estimate the contribution of the correlation energy
term to the total energy and to study its role on the ground-state
properties, we estimate the percentage relative difference in the

Table 1.Results for various ground-state energy components along with the total energy (per particle) as a function of the number of fermions
N. The percentage contribution of the exchange energy EHF

1 , non-local energy EHF
2 and the correlation energy Ec to the total energy have been

listed in the last three columns. The results for the energies are in the unit of harmonic oscillator energy ÿω.

=a a 0.3dd ho

N ETotal Eint EHF
1 EHF

2 Ec ∣ ∣EHF
1 ∣ ∣EHF

2 ∣ ∣Ec

(%) (%) (%)

100 12.411 2.260 3.250 −0.309 −0.681 26.18 2.48 5.48
1000 44.725 10.938 15.191 −0.469 −3.785 33.96 1.05 8.46
2500 74.781 19.670 27.468 −0.535 −7.263 36.73 0.72 9.71
5000 110.498 30.492 42.920 −0.591 −11.837 38.84 0.53 10.71
7500 138.938 39.335 55.684 −0.626 −15.723 40.07 0.45 11.32
10000 163.501 47.090 66.957 −0.651 −19.216 40.95 0.40 11.75

Figure 1. Comparison of the ground-state densities obtained with
and without the contribution of the non-local potential EHF

2

(equation (17)) for =a a 0.3dd ho , and for different values of the
number of dipolar fermions such as 10 000, 7500, 5000, 2500 and
1000 (order is indicated by a downward arrow). Solid curves
correspond to the density with non-local contribution and the dotted
curves correspond to the distribution obtained without non-local
contribution.

5
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total energy DE ETotal
2 (where ∣ ∣D = -E E ETotal Total

2 1 ) of the
system when it is calculated with and without incorporation of
the correlation energy term. These results are presented in
tables 2 and 3 for two different values of the interaction strength

=a a 0.3dd ho and =a a 1.0dd ho , respectively. From these
two tables, we observe that the correlation contribution enhances
the stability in the system of 2D dipolar fermions by lowering the
total ground-state energy. As expected from equation (11), we
find that the contribution of the correlation term is enhanced as
the strength of dipolar interaction increases. These results also
indicate that the relative percentage difference in the total energy
for 104 fermions (which is a typical number realized in many
experiments with ultracold atoms) is 10.49% and 16.86% for the
values of dipolar interaction strength =a a 0.3dd ho and

=a a 1.0dd ho , respectively. Furthermore, from tables 2 and 3,
we also observe that the correlation energy exhibits a saturating

trend with increasing number of particles. This trend may be
attributed to the logarithmic dependence of the correlation energy
on the density (see equation (11)). From these results, we con-
clude that the contribution of the correlation effect significantly
lowers the total energy of the system, thereby making it more
stable. Therefore, the correlation energy term taking into account
the effect of inter-fermion correlation needs to be included for the
correct description of a system of 2D dipolar fermions. We also
note that the contribution of correlation in ultracold Fermi gas is
markedly different from Coulombic systems where the correla-
tion component contribution to the total energy is quite small.

3.2. Collective oscillations

In this section, we discuss the results, highlighting the role of
correlation on the frequencies of collective oscillations. To
this end, we first briefly describe the sum-rule approach of the
many-body linear response theory, which is employed in the
present paper for calculating the frequencies of the monopole
and quadrupole modes of the collective oscillations. The main
advantage of this method is that to calculate the frequencies of

Figure 2. Comparison of the ground-state densities obtained with and without contribution of the correlation part in the inter-fermion
interaction energy. Dashed and continuous lines correspond to ground-state densities without and with the correlation term taken into
account, respectively: (a) =a a 0.3dd ho , (b) =a a 1.0dd ho . In each figure, the densities are also shown for two different values of the
number of particles N (=10 000 and 1000).

Table 2. Comparison of the total ground-state energy (per fermion)
obtained without (woc) and with (wc) the contribution of the
correlation energy term taken into account for different values of the
number of fermions N with =a a 0.3dd ho . The last column presents
the results for the percentage relative difference in the total energy
( ∣ ∣D = -E E ETotal Total

2 1 ) as a function of N. The results for the
energies are in the unit of harmonic oscillator energy ÿω.

=a a 0.3dd ho

N ETotal
1 ETotal

2 DE ETotal
2

(woc) (wc) (%)

100 13.358 12.715 5.05
1000 48.613 45.185 7.58
2500 81.868 75.309 8.71
5000 121.735 111.083 9.59
7500 153.673 139.558 10.11
10000 181.366 164.148 10.49

Table 3. Same as in table 2, but for dipolar strength
of =a a 1.0dd ho .

=a a 1.0dd ho

N ETotal
1 ETotal

2 DE ETotal
2

(woc) (wc) (%)

100 18.433 16.642 10.76
1000 70.256 61.720 13.83
2500 120.162 104.443 15.05
5000 180.576 155.720 15.96
7500 229.266 196.812 16.49
10000 271.636 232.442 16.86
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the collective oscillations, it is only necessary to have
knowledge of the ground-state wave function or the
corresponding density of the system. In the following, we
provide a brief description and present the relevant results of
the sum-rule approach within linear response theory. For a
detailed description of this approach, we refer the reader to
some comprehensive reviews already available in the litera-
ture [34, 35, 37]. Furthermore, for applications of the sum-
rule approach to various 2D systems similar to the one con-
sidered in the present paper, we refer the reader to [38–40].
The collective excitations of any system can be investigated
by subjecting the system to an external perturbing field. The
effect of perturbation is formally included in the Hamiltonian
as,

( ) ( )†= + +w w-H H Fe F e , 19i t i t
0

where H0 represents the unperturbed Hamiltonian of the
system and F denotes the excitation operator. The choice of
this excitation operator is dictated by the nature of the col-
lective mode of excitation. We will come back to the dis-
cussion on the choice of the excitation operator F pertinent to
our purpose. For a given excitation operator F, the strength
function is defined as,

( ) ∣ ∣ ∣ ∣ ( ) ( )å d= á ñ -S E n F E E0 , 20
n

n
2

0

where ∣ ñ0 and ∣ ñn are the ground and nth excited states of the
unperturbed Hamiltonian H0, respectively, and = -E E En n0 0

represents the excitation energy of the nth excited state.
According to the sum-rule approach, it is possible to define
various sum rules in terms of the moments of the strength
function S(E) given by,

( )

∣ ∣ ∣ ∣ ( ) ( )
ò
å

=

= á ñ

m E S E dE

F n E0 . 21

p
p

n
n

p2
0

For a highly collective excited state, the strength function is
almost fully exhausted by this single mode having excitation
energy Ecoll and the corresponding strength function may be
approximated as,

( ) ( ) ( )sd= -S E E E , 22coll

where σ is related to the matrix element of F between the
ground and the respective collective excited state. Using this
approximate expression for S(E), it can be easily verified that,

( )=E
m

m
. 23coll

3

1

A more rigorous derivation of the above expression is available
in [38, 41]. We note here that for a general case the above
expression for Ecoll represents an upper bound to the energy of
a collective excitation. Therefore, to calculate energy/fre-
quency of a collective excitation we need to determine the
moments m3 and m1. To this end, we exploit the results that the
moments may be expressed as ground-state expectation values
of the commutators of the excitation operator F with the
unperturbed Hamiltonian H0 of the many-body system
[34, 38]. For example, the moments m3 and m1, which are

relevant to the present study are given by,

∣[ [ ]]∣

∣[[ ] [[ [ ]]]∣ ( )

†

†

= á ñ

= á ñ

m F H F

m F H H H F

1

2
0 , , 0 ,

1

2
0 , , , , 0 . 24

1 0

3 0 0 0

To calculate the moments by using the above expressions, we
need to specify the excitation operator F for each mode of our
interest. Therefore, we now come back to the discussion on the
excitation operator F. As mentioned before, the choice of the
excitation operator F is dictated by the nature of the collective
mode one wants to describe. In this paper, we focus our
attention only on the two modes, namely, the breathing or
monopole mode and the quadrupole mode. The breathing
excitation corresponds to the oscillation of the average radius
of the cloud about its ground-state value. In 2D, the breathing
or monopole mode is induced by the operator [37, 38],

( )= +F x y . 25m
2 2

This operator can be realized by a short switch of the trap
frequency. On the other hand, in 2D the multipole excitation
operator with polarity l (where l=1,2, L) is given by [38],

( )
( )

= +
= q

F x iy

r e . 26
l

l

l il

The excitation operator for the quadrupole mode of col-
lective oscillation corresponds to the case of l=2. The real
part of the excitation operator for the quadrupole mode is given
by,

( )= -F x y . 27q
2 2

Using energy functional for spin-polarized dipolar Fermi gas
given by equations (2) to (11) and appropriate scaling transfor-
mations of the density given by ( ) ⟶ ( )r l r l ll

a a+ x yr ,1 , we
obtain after some tedious but straightforward algebra, expressions
for the frequency of the monopole and quadrupole modes. The
basic outline of the derivation of the expressions for frequencies
of the two modes is described in appendix B. The expression for
the frequency (W = Em coll ) of the monopole mode is given
by (in the unit of harmonic oscillator frequency ω),

⎛
⎝⎜

⎞
⎠⎟ ( )

W = +
+

+

+ + + +

U U

U

U

U

U

U

U

U

I

U

I

U

2 1
9

4

9

4

4

4 4
, 28

m
TF vW

ext

HF

ext

HF

ext

c

ext

c

ext

c

ext

1

2
1 2

1 2

with

( )

˜ ˜ ( )

ò r=

= =
 

U r d

I
m

I I
m

I

r r
1

2

and , 29

ext

c c c c

2

1

2

1 2

2

2

where the expressions for Ĩc1 and Ĩc2 are given in appendix B. In
the above expressions UTF, UvW, UHF

1 , UHF
2 and Uc represent the

respective energy functionals calculated with the ground-state
density. On the other hand, the expression for the frequency
(W = Eq coll ) of the quadrupole mode is given by (in the unit

7

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 035301 R Gangwar et al



of oscillator frequency ω),

⎛
⎝⎜

⎞
⎠⎟ ( )W = + + +

U

U

J

U

J

U
2 1

4 4
, 30q

vW

ext ext ext

1 2
1 2

where

˜ ˜ ( )= =
 

J
m

J J
m

Jand . 311

2

1 2

2

2

The expressions for J̃1 and J̃2 are given in appendix B. Fur-
thermore, in the process of deriving the above expressions for
frequencies, we also obtain virial relation connecting various
energy components given by,

( )

+ - + + + + =U U U U U U
I

2 2 2 3 3 4
9

0.

32

TF vW ext HF HF c
c1 2 1

We note that the above expression is a generalization of the virial
relation reported in [23], which did not take into account the
correlation energy term.

Before presenting the results for the frequencies of col-
lective oscillations, we note that unlike the monopole mode,
the expression for the frequency of the quadrupole mode does
not explicitly depend on the local TF kinetic, exchange, and
correlation energies. Moreover, it can be easily verified that
the term J1 in the expression for Ωq vanishes for spherically
symmetric ground-state density, and like UHF

2 , the magnitude
of J2 is negligibly small for large N. Therefore, we neglect the
contribution of J2 in the expression for Ωq. In the following,
we discuss the results for the frequencies of the monopole and
quadrupole modes obtained via equations (28) and (30),
respectively, by using the various energy components and the
corresponding ground-state densities, which are presented in
the last subsection. In figure 3, we display the variation of Ωm

and Ωq with interaction strength a add ho for N=5000 trap-
ped fermions. On the other hand, in figure 4 we plot Ωm and
Ωq as functions of the number of trapped fermions N for a

fixed value of =a a 0.3dd ho . First of all, we note that the
results presented in figures 3 and 4 match qualitatively with
the corresponding results reported in [42], which were
obtained without taking into account the inter-particle corre-
lation effect and by employing a method different to the one
used in the present paper. Furthermore, we note that the
results for the monopole frequency correctly start with Ωm=
2 for zero interaction and saturate to the value W = 5m for
large value of interaction strength. On the other hand, the
values of the quadrupole frequency remain almost constant at
W = 2q throughout the interaction range considered in
our work.

Next, we discuss the results, highlighting the role of the
correlation part of the particle–particle interaction on the
collective oscillations. From figures 3 and 4, we observe that
even with the inclusion of the correlation energy term within
LDA, the frequency of the quadrupole mode remains more or
less fixed at the value of 2 and it appears to be independent
of both interaction strength and the number of particles on the
scale of the plot. From these results, we conclude that the
frequency of the quadrupole mode of the collective oscillation
is not appreciably altered by the correlation effect (within
LDA) over a wide range of values of interaction strength and
number of particles. On the other hand, the frequency of the
monopole mode is clearly affected by the correlation part of
the interaction. In particular, the values of the monopole
frequency are lowered due to the inclusion of the correlation
energy (Ec[ρ]) contribution in the total energy. From figure 3,
we observe that the correlation effect leads to nearly uniform
(on the scale of plot) lowering of around 1.35% in the mag-
nitude of the monopole frequency in comparison to the case
when the correlation effect is not taken into account. Fur-
thermore, from figure 4 it can be seen that the monopole
frequency shows similar variation with respect to the
increasing number of fermions. The lowering of the

Figure 3. Variation of monopole (Ωm) and quadrupole (Ωq)
frequencies with number of fermions N for =a a 0.3dd ho . Symbols
‘woc’ and ‘wc’ correspond to ‘without correlation’ effect and ‘with
correlation’ effect taken into account, respectively.

Figure 4. Variation of monopole (Ωm) and quadrupole (Ωq)
frequencies with dipolar interaction strength a add ho for
N=5×103 fermions. Symbols ‘woc’ and ‘wc’ correspond to
‘without correlation’ effect and ‘with correlation’ effect taken into
account, respectively.

8

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 035301 R Gangwar et al



monopole oscillation frequency is consistent with the reduc-
tion in the radius of the cloud caused by the attractive nature
of correlation potential (discussed in the previous subsection),
as the monopole mode excites the oscillation of the radius of
the cloud. From the above results, we conclude that the cor-
relation effect not only lowers the ground-state energy of the
2D spin-polarized dipolar fermions, but shifts the monopole
frequency of the collective oscillations to lower values.

Before concluding this section, we note here that
although the correlation effect introduces a small change in
the monopole frequency of the collective oscillations, changes
of this order can be detected, as the current experimental
development in this area allows one to measure the fre-
quencies of the collective oscillation with very high precision
[43]. Therefore, it is expected that the inclusion of the cor-
relation effect in the interaction energy will enhance the
match between the theoretical and experimental results for the
frequency of the monopole mode of the collective
oscillations.

4. Conclusion

In this paper, we have studied the role of the correlation effect
on the ground-state properties and on the frequencies of
collective oscillations of a spin-polarized dipolar Fermi gas
confined in a 2D harmonic trap. We have employed purely
the density-based OF-DFT method along with LDA-based
expressions for the exchange and correlation energy func-
tionals to calculate the ground-state energies and the density
profiles of the dipolar Fermi gases. Using the sum-rule-based
approach within linear response theory we have obtained
semi-analytical expressions for the frequencies of the mono-
pole and quadrupole modes of the collective oscillations. The
calculations of frequencies via these expressions require
knowledge of the ground-state densities only. We find that the
correlation part of the inter-fermion interaction potential is
attractive in nature and it helps in lowering the ground-state
energy of a dipolar Fermi gas. The correlation part contributes
significantly (around 8%–11%) to the ground-state energy
and its contribution increases with increasing values of
interaction strength and the number of particles. The attractive
nature of the correlation potential is also responsible for
reduction in the size and enhancement of the peak density of
the trapped fermionic cloud. Similarly, we find that the
reduction in the radius of the cloud due to the correlation
effects also lowers the frequency of the monopole mode of the
collective oscillations appreciably in comparison to the cases
for which the correlation part of the interaction is neglected.
In contrast to this, the inclusion of the correlation part within
LDA in the interaction energy and potential does not alter the
frequency of the quadrupole mode of the collective oscillation
appreciably for a wide range of values of interaction strength
and the number of fermions contained in the trap.

Appendix A

In this appendix, we give a brief description of the method
employed to solve equation (18), which is a nonlinear Kohn–
Sham-like equation in a self-consistent manner. First, we
rewrite equation (18) by scaling the coordinates and energy
with harmonic oscillator length ( w= a mho ) and oscil-
lator energy (ÿω), respectively. Next, we consider the
corresponding time-dependent counterpart of equation (18)
and then change time t by t = -it, which leads to,

( ) ( ) ( ) ( )f
t

t f
¶
¶

= -
r

H r , A1

where Hamiltonian H is,

( ) ( ) ( )t t= -  + ¢H v r
1

2
, . A2eff

2

The formal solution of equation (A1) can be written as,

( ) ( ) ( )ˆ ( )f t t f t+ D = t t-Dr e r, , , A3H

with tD 1.
The function f(r) is evolved in time by Δτ via a non-

unitary exponential operator ˆ t- De H iteratively. After suffi-
ciently long time evolution (i.e. large τ limit) the ground-state
wave function is retrieved as the higher excited states decay
much faster compared to the ground state.

To proceed further, we choose polar coordinate system
(r, θ), and the Hamiltonian operator in this coordinate system
can be written as,

ˆ ( )
q

= -
¶
¶

-
¶
¶

-
¶
¶

+ ¢H
r r r r

v
1

2

1

2

1 1

2

1
. A4eff

2

2 2

2

2

For the ground state, the third term in the above equation
(equation (A4)) vanishes as the ground-state density is inde-
pendent of θ. Thus, equation (A1) transforms into a 1D
differential equation surviving in variable r. This variable can
be discretized as =r jhj with integer = ¼j M1, 2, . In our
calculations, we have used h=0.008. After discretization,
equation (A3) can be rewritten in more symmetric form as,

( )ˆ ˆf f=+ -t tD D
e e , A5H

j
n H

j
n1j j2 2

where superscript n corresponds to time discretization. The
expansion of the exponential operator on both sides up to first
order and approximating the operators ¶ ¶r and ¶ ¶r2 2 by
two- and three-point difference formulae yield the following
set of M simultaneously equations:

( )f f f+ + =-
+ +

+
+P Q R S , A6j j i

n
j j

n
j j

n
j
n1 1

1
1

where

( )

t t t t

t t

=-
D

+
D

= +
D

+
D ¢

=-
D

-
D

P
h r h

Q
h

v

R
h r h

4 8
, 1

2 2
,

4 8
, A7

j
j

j eff

j
j

2 2

2

( )

f f f

t t

=- + -

= -
D

-
D ¢

- +S P T R

T
h

v

,

1
2 2

. A8

j
n

j j
n

j j
n

j j
n

j eff

1 1

2
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Furthermore, equation (A6) can be written in the form of a tri-
diagonal matrix equation:

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥



 

f

f

f

f

=

-

+

+

-
+

+

-

Q R
P Q R

P Q

R
P Q

S

S

S

S

0

0

.

M

M M

n

n

M
n

M
n

n

n

M
n

M
n

1 1

2 2 2

3 3

1

1
1

2
1

1
1

1

1

2

1

To solve equation (A6) self-consistently, we start with an
initial guess of the wave function f j

n to obtain for f +
j
n 1 by

Thomas algorithm [44]. In this scheme, the parameter Δτ

needs to be chosen carefully so that the truncation of expo-
nential beyond first order in Δτ remains valid. In the present
work, we have chosen Δτ=10−5 for our calculations.
Ground-state wave function should satisfy both cusp and
asymptotic conditions. Therefore, f¶

¶r r

1

2

1 has to be zero at

r=0, so f f=n n
0 1 (fn

0 is wave function at r=0) and the
wave function is required to vanish at the end point of the
mesh. After solving for f +

j
n 1, we update H with generated

f +
j
n 1, which is properly normalized to N. The convergence

criterion for achieving the self-consistent solution is taken to
be ∣ ∣f få - <+ j

M
j
n

j
n1 . The ground-state energy can be

calculated by substituting the converged density into
equation (2).

Appendix B

In this appendix, we give an outline of the basic steps
involved in the derivation of the expressions for moments m1

and m3, and which in turn yield the frequency of the collective
oscillations via equation (23). To this end, we first combine
the excitation operators for the monopole and quadrupole
modes and construct a general operator given by,

( )a= +F x y , B12 2

with α=1 and α=−1 representing the monopole and
quadrupole modes, respectively.

Using the above expression for F and the commutator
relations [ ] [ ]= = x p y p i, ,x y , it can be shown that,

⟨ ∣[ [ ]]∣ ⟩

(⟨ ∣ ∣ ⟩) ( )

†

a

=

= +


m F H F

m
x y

1

2
0 , , 0 ,

2
0 0 . B2

1 0

2
2 2 2

Therefore, for both the monopole and quadrupole modes, the
above expression for the first moment m1 can be written as,

( ) ( )ò r=


m
m

r dr r
2

. B31

2
2

The calculation of the third moment m3 is more involved
and it can be calculated by employing appropriate scaling
transformation of the ground-state wave function [34, 38]. For
this purpose, we define a transformed ground-state wave
function as,

∣ ∣ ( )F ñ = ñh
he 0 , B4Q

where Q is an anti-Hermitian operator given by Q=[H0, F].
Furthermore, it can be shown that the spatial form of the
transformed wave function can be written as,

( ) ( ) ( )( )l l lF = Fh
a a+x y x y, , , B51 2

0

where l = h-- 
e m

2 2

. In terms of scaled wave function ∣F ñh , the
third moment m3 can be written as,

( ∣ ∣ )∣ ( )
h

=
¶
¶

áF F ñh h h=m H
1

2
. B63

2

2 0 0

Now, the Hohenberg–Kohn theorem of DFT allows us to
write ∣ ∣ [ ]ráF F ñ =h h hH E0 with,

[ ] [ ] [ ] [ ] ( )r r r r= + +h h h hE T E E , B7s ext int

where [ ] ( ) ( )òr r=h hE v dr r rext ext and the transformed density
ρη is given by,

( ) ( ) ( )r l r l l=h
a a+x y x y, , . B81

Now, by combining equations (B6) and (B7) we get the
following expression for the third moment m3:

( ) ( ) ( ) ( )= + +m m T m E m E , B9s ext int3 3 3 3

where

( ) [ ]∣

( ) [ ]∣

( ) [ ]∣ ( )

h
r

h
r

h
r

=
¶
¶

=
¶
¶

=
¶
¶

h h

h h

h h

=

=

=

m T T

m E E

m E E

1

2

1

2

1

2
. B10

s s

ext ext

int int

3

2

2 0

3

2

2 0

3

2

2 0

Finally, by using the above relations and the forms for various
energy components given by equations (2) to (11), we arrive
at the following expressions for the respective contributions
to m3:

⎛
⎝⎜

⎞
⎠⎟( ) [( ) [ ] [ ]] ( )a r r= + +


m T

m
T T

1

2

2
1 4 , B11s TF vW3

2 2
2

⎛
⎝⎜

⎞
⎠⎟( ) [ ] ( )r=


m E

m
E

1

2

2
4 , B12ext ext3

2 2

⎛
⎝⎜

⎞
⎠⎟( ) ( ) [ ] ( )a r= +


m E

m
E

1

2

2 9

4
1 . B13HF HF3

1
2 2

2 1

The calculation of the contribution of EHF
2 to m3 is more

involved and requires some lengthy algebra. We get the fol-
lowing expressions for ( )m EHF3

2 : for the case of α=1

⎛
⎝⎜

⎞
⎠⎟( ) [ ] ( )r=


m E

m
E

1

2

2
9 , B14HF HF3

2
2 2

2

and on the other hand, for α=−1
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⎛
⎝⎜

⎞
⎠⎟( ) ( ˜ ˜ ) ( )= +


m E

m
J J

1

2

2
, B15HF3

2
2 2

1 2

where

( )

˜ ( )
( )

( ) ( )

˜ ( )
( )

( ) ( )

( )

( )

ò ò ò

ò ò ò

p r
p

r

p r
p

r

=- ¢ ¢

=- ¢ ¢

- - ¢

- - ¢ B16

J a d d
d

F e

J a d d
d

F e

r r r
k

k r

r r r
k

k r

2

2
,

dd
i

dd
i

k r r

k r r

1 2 1
.

2 2 2
.

with

( )
( )

( )
( )

( )
( )

=
-

+

=
+

+

F
k k

k k

F
k k k

k k

k

k
2 3

. B17

x y

x y

y x y

x y

1

2 2

2 2 1 2

1

2 2 2

2 2 3 2

Similarly, after some tedious algebra we get the following
expressions for the contribution of Ec[ρ] to m3:

⎛
⎝⎜

⎞
⎠⎟( ) ( [ ] ˜ ˜ ) ( )r= + +


m E

m
E I I

1

2

2
16 , B18c c c c3

2 2

1 2

where
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

˜ ( ) ( )
( )( ( ))

˜ ( )

( ( ) ( ) ( ) ( ) ( ) ( ) ( ))
( )( ( ))

ò

ò

p r

p r

=
+

=-

´ + - -
+

B19

I a
Y

X X
d

I a

Y Y X X Z X Z

X X
d

r
r

r r
r

r

r r r r r r r
r r

r

18
1

2

2
1

,

c dd

c dd

1
2 2 3

2
2 2 3

2 2 2

2 2

with

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r r r

r r r

r r

= + +

= + +

=- +

X A B C

Y
A

B
C

Z
A C

r r r r

r r r r

r r r

2

3

2

4

3

4
, B20

1 4 1 2 3 4

1 4 1 2 3 4

1 4 3 4

for α=1 and

( ) ( )=m E 0, B21c3

for α=−1. We use the above expressions for the contrib-
ution of various energy components to m3 and m1 to calculate
the frequencies of the monopole and quadrupole modes of the
collective oscillations.
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