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Abstract
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The quantum states of plasmon-exciton polariton are generally revealed through its scattering
spectra in experiments. Here, we present the exact quantum-electrodynamics results of the
spectra of plasmon-exciton composite, considering the multimode features of the plasmonic
cavity. Different from a single-mode cavity, we find that the existence of higher-order modes
leads to incoherent plasmon-exciton coupling, which saturates the cooperativity as the dipole
moment of the quantum emitter (QE) increases. Furthermore, the competition of the coherent
and incoherent coupling yields an optimal dipole moment for maximum spectral splitting.
Though the higher-order modes are nonradiative, they modify the local dynamics of the QE,
which present in the scattering spectra through the interplay between the dipolar plasmonic mode
and the QE. We demonstrate that the scattering spectra are dominant by the cavity radiation and
essentially different from the spontaneous emission (SE) spectrum. However, we show that the
photoluminescence spectra of the QE coincide with its SE spectrum, which is a more reliable

way to demonstrate the vacuum Rabi splitting.

Keywords: quantum plasmonics, scattering spectra, strong coupling, cQED

1. Introduction

As the efficient coherent light-matter interaction is at the
heart of quantum optics and its applications, a considerable
amount of attention and effort has been devoted to accessing
the strong coupling regime by tailoring the local density of
states (LDOS) of vacuum electromagnetic field with various
materials and structures [1-5]. Among them, the plasmonic
nanostructures are of great interest for recent studies that
demonstrate the strong coupling between the plasmon and the
single quantum emitter (QE) at room temperature [6-9]. The
realization of strong coupling is often evidenced by a splitting
in the scattering, absorption, and photoluminescence (PL)
spectra, and these two spectral peaks are anticipated to present
an avoided crossing when varying the excitation wavelength.
This implies the form of dressed states between the QE and
plasmon, or equally speaking, the level structures of
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quasiparticle termed plasmon-exciton-polariton (PEP) [10]. In
general, the Rabi oscillation is rather difficult to monitor due
to the ultra-fast (fs) response of plasmonic field, and the PL
spectra of the QE is also hard to observe because of the strong
quenching in close proximity of metallic interface [11];
therefore, a majority of relevant experimental reports refer to
the scattering or absorption spectra.

Strong coupling means the existence of coherent and
reversible energy exchange between a QE and the surround-
ing environment, and it occurs when the coupling strength of
plasmon-exciton interaction exceeds the dissipation of the
hybrid system. We noticed that there is more than one defi-
nition of strong coupling in the literature, but they are based
on the single mode approximation [10, 12]. Unlike the di-
electric optical cavity, the plasmonic cavity modes have a low
quality factor (low Q) and are concentrated [13]. The over-
lapping of different modes gives rise to one or more dominant
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pseudomodes, whose LDOS can be much greater than the
dipolar mode if the QE is close to the plasmonic structure.
However, in the experimental scenarios, the QEs are designed
to resonate with the dipolar mode because the higher-order
modes are purely nonradiative, and, therefore, unobservable.
In this case, the contribution of these nonresonant modes
should not be excluded if they are not well separated from the
dipolar mode. For example, previous studies have shown
the effects of higher-order plasmonic modes in determining the
photon statistics in weak plasmon-exciton coupling [14—16].
Intuitively, the existence of nonresonant modes not only implies
that the actual coupling strength is lower than that indicated by
the spectral density but also guides the energy out of the reso-
nant mode, thereby offering additional dissipative channels for
the QEs. In this sense, the evaluation of strong coupling based
on the single mode approximation is ill-considered. Besides, the
dynamics of the QE during SE and in the driving scheme are
quite different, the physical meanings of the observable splitting
in the experimental spectra should be carefully studied and
clarified.

In this work, we aim to reveal the role of nonresonant
modes in determining the plasmon-exciton strong coupling.
We will also address the differences between the SE spectrum
and the experimental scattering spectra collected from the
plasmon-exciton composite illuminated by a weak coherent
pump light. Based on the cavity QED (cQED) approach, we
obtain the analytic expressions for the PL spectra of the QE
and the scattering spectra of the plasmon-exciton composite
under weak coherent pumping, which can capture the multi-
mode feature of plasmonic cavity. We first demonstrate the
saturation of cooperativity and the non-monotonic variation
of spectral splitting as dipole moment of QE increases,
resulting from the competition of the coherent and incoherent
interactions between the plasmonic cavity and the QEs. Our
findings are fully coincident with a recent study that is based
on a semiclassical model with quasi-normal modes [17]. We
have performed a detailed study on the characteristics of SE,
scattering, and PL spectra, and show that the PL spectra of the
QE can reveal the genuine vacuum Rabi splitting (VRS) while
the scattering spectra cannot.

2. Theoretical methods

2.1. Field quantization for pseudomodes

We treat the plasmonic structure as a multimode cavity and
consider that a nearby two-level QE located at r, couples to
the plasmonic cavity with transition frequency w, and a
dipole moment d = dn, where n is the unit vector of dipole
orientation. The QE dynamics is governed by the spectral

density J (w) = Ek - 7@] T

resonance frequency and decay rate of the k th plasmonic
Ty

where wy and +, are the

mode, respectively. Gy = d

n fi(rp) is the coupling

coefficient between the quantlzed plasmonic eigenmodes and
QE, where V, and f,(r;) are the corresponding mode volume
and mode field distribution, respectively. If the plasmonic

cavity is sufficiently small, then only its dipolar mode can be
excited by the incident plane wave and radiate to the far field
as the dipole moment of higher-order modes are vanishing
[15]. Thus, all higher-order modes remain ‘dark’ in the
scattering spectra, and will be treated in the same manner.
However, on the one hand, there are infinite eigenmodes in
the plasmonic cavity, only several specific structures can be
analytically obtained while the spectral density of the other
structures must be obtained via numerical calculations. On the
other hand, in general, the higher-order modes overlap each
other and are irresolvable in the spectral density; thus, it is
hard to extract the spectral density of a single eigenmode from
its assembly. To overcome these diffculties in dealing with
the plasmonic cavity, we adopt the pseudomodes method
[18, 19], which replaces the numerous eigenmodes with a few
pseudomodes to greatly reduce the complexity of the multi-
mode problem.

In this study, we focus on the interaction between the
dipolar mode and the QE. We extract the dipolar plasmonic
eigenmode (k = 1) from the spectral density and approximate
the remaining spectral density by the sum of a few Lorentz
functions. Then the spectral density can be rewritten as

B = ¥,
ting parameters obtained from the spectral density for k > 2
while g = G| and k; = +,. The Lorentz functions with the
parameters (w, k;, g) represent the so-called pseudomodes,
which comprise one or several eigenmodes in the plasmonic
cavity, i.e. the dipolar mode, quadrupolar mode, etc, while
those with the parameters (wy, 7, g) correspond to the
eigenmodes. Though the fitting parameters are not unique, the
QE dynamics are accurate as long as the fitted spectral density
is in good agreement with the original one. The pseudomodes
method considerably simplifies the numerical calculations and
allows for the results to fit well with the exact model.

where g;, k;, and w; are the fit-

2.2. System Hamiltonian and equations of motion

With the conception of pseudomodes, the Hamiltonian of the
composite system can be written as

H=H,+ H + H, (D
with

W0 &
Hy = —2 L+ ZUJIalI ap,
l

H =Y gla/ o+ ao}),
1

Hp — Qe(mre*i““'b’ + O'_ei‘””) 4 Ql(alTé’*"“"L’ 4 aleisz)’

where 0, = 0,0 — o_oy is the inversion operator of QE, with
raising and lowering operators o, and o_, respectively. a; is
the /th quantized pseudomode with the resonance frequencies
wy and the coupling coefficient g; to QE. Driving Hamiltonian
H, is for the coherent pumping scheme in which w; is the
laser frequency, 2, = E; - d and €, = E; - u are the Rabi
frequency for the QE and the / th pseudomode, respectively.
1 is the induced dipole moment of the plasmonic cavity, and
E, is the intensity of the pumping field. The system dynamics
follows the Liouvillian equation
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where Lp(p) = 20Ap0AT — {OATOA, p} is the Lindblad super-
operator associated with the operator 0. La(p) Ls(p), and
L, (p) are the superoperators for pseudomode damping,
nonradiative decays of the QE at room temperature, and
radiative decays of QE, respectively. In the weak pumping
regime, the population of the QE is concentrated at the ground
state; thus, o, ~ —1 and the quantum jump term 2(5p(54f in the
Lindblad superoperator can be omitted.

2.3. Spectra of plasmon-exciton composite

There are several ways to study the dynamics of a QE in a
cavity. One is to monitor its PL spectra in the far field, which
is obtained by taking the Fourier transform of the normally
ordered correlation function of the emitted field, and

expressing as S(w) x 2Re[f dre T (o (t + 7')(L(t)>]
0
[20]. Another way is to measure the steady-state scattering
spectrum [ = lim dre”" (E-(0)ET(t + 7)) [21], where
s—0"J0

E* = pa; + do_ is the field operator at the detector. Note
that the plasmonic cavity has subwavelength mode volume,
i.e. is open, and hence, the field felt by the dectector is the
superposition of the radiation from the plasmonic cavity and
the QE. The PL spectra as well as the scattering spectra are
involved in the two-time correlation functions of the QE or
light field, which can be calculated using the quantum
regression theorem (QRT) from single-time averages if the
system dynamics is Markovian [22]. A recent study has
verified the validity of the QRT when the reduced time
evolution of a quantum system is not Markovian, and shown
the violation can happen even in some special models without
non-Markovianity [23]. In our model, the initial correlations
between the system and environment is absent, and the QRT
is valid for any coupling strength at + = 0 [24]. Under the
stationary condition (f — o0), the correlation function
(0+(t + 710 (¢)) used to calculate the spectra depends only
on the time difference 7 [20]. Therefore, the spectra is cal-
culated from the quanitity <0+ 00~ (7)), which can be
analytically obtained using the QRT.

From equation (2), we can obtain the evolution of the
single-time averaged pseudomode operator a; and the atomic
operator o_ in the rotating frame

1(t t 06
<f11( )> — _iM <al( )> _ i[ 1 1,1:|’ 3)

(o-(0)) (o-() Q,
where the dot over the operators indicates the derivative with
respect to time. In the above equation, Aw; = w; — wp — ik,
Awy = wy — w, — Iv, and &, is the Kronecker delta. §;;

means that only the dipolar plasmonic mode is excited. The
matrix M is defined as

Awr g
Y8 Awol )
7

By transforming equation (3) to the spectral domain and
eliminating the nonresonant pseudomodes (I > 2) in the
equation of the atom operator, we obtain

; 7 + Q]
1 w— AW()
= —— 5 5
(a(w)) S AL ® 5)
1 wawf)
glﬂl
R TLL N 0 )
(0 (W) = —i e ©6)
1
w — Awy — —

where Awjy = wy + Aw — w — i(y, + ’ym) With the mod-
ified radiative decays of QE, v, = Zz> 231 oo M)Z oo A nd
. w— u)/

the Lamb shift, Aw = Zz>2gl R induced by
nonresonant pseudomodes. Unlike in the Markovian
approximation [14, 15], both  and Aw are frequency-
dependent in this case.

The QRT states that the two-time correlation functions
obey the same structure as the equations describing the single-
time averages. Hence, we have

(a] (t)o-(0)) . [<a;(,)g_(0)>]
(o (00 (0))) CAOLAO)
Q6,1
+i[ o | ), D
(@ OaO)| _ [<ai(r)a1(0)>]
(o (1) a1 (0)) | CAQII)
_l_l,[ﬂsfz,l (a1(0) ). ®)

In a similar fashion as equations (5) and (6), the two-time cor-
relation functions (o (t)o_(0)), {a, ()a;(0)) and (o (t)a;(0))
can be easily solved in the S domain. A detailed deduction is
provided in appendix A. As the system is initially in the
ground state, the initial conditions are (o, (0)o_(0) = 0) and
(a/(0)a;(0) = 0). The analytical expression of the PL
spectra 1s

2
S(w) o —Im[w(w — Awj — 2371]
T w— Aw

) —1
8

X +A/*—§7l . 9

(w o T w+ Aw ©)

While the steady-state scattering spectra contains three parts
and can be expressed as

I=1+ 1+ I (10)
with
2
QiAW) — g,
la = | B )
AwpAw; — g
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Figure 1. (a) Schematic of the hybrid system. A two-level QE
couples to a plasmonic cavity and resonates with the dipolar mode.
Decay rates of the excited QE, including nonradiative relaxation -,
radiative decay to vacuum y,, and an equivalent relaxation +,, due to
the coupling to pseudomodes constituted of higher-order modes. The
hybrid system is embedded in vacuum. (b) Normalized LDOS (black
dashed line), the fitted dipolar mode (blue solid line), and two
nonresonant pseudomodes (red and yellow solid lines) of the hybrid
system.
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Note that the scattering spectra are similar to those obtained
by the real space random phase approximation in [22].
However, our method is based on the cQED and goes
beyond the single mode approximation. To further demon-
strate the difference, we compare the scattering spectra and
the PL spectra with the SE spectrum, which contains the
information regarding the local dynamics of the QE. The SE
spectrum C, (w) can be directly obtained from equation (3) with
the initial conditions (o (0)o_(0)) = 1 and (¢, (0)o_(0)) = 0,
which means the QE is initially in the excited state and there is
no correlation between the QE and the LSP. In the absence of
pumping, we can obtain

) —1
C(w) = —Im[w — (wo — i) — Zg—lm)} :
I

] W (w1 —
(14)

The analytical expressions of various spectra (equations (9)—
(14)) provided here are suitable for both weak and strong
coupling, and are in good agreement with the result of num-
erical simulations, as we show in appendix B. Furthermore, the
results can be extended to the N-QEs system, given the col-
lective coupling strength g/ =N g by equation (3) under the
condition that the QEs are independently coupled to the plas-
monic cavity without dipole—dipole interaction, as in the case
of using dye molecules as QEs [6, 8].

3. Results and discussion
We use a model to illustrate our results, which is schematically

shown in figure 1(a). A two-level QE is 2 nm away from the
sliver nanosphere. The radius of the nanosphere is R = § nm,

and the permittivity is described by the Drude model ¢, (w) =
oo — wf, /(W? + iwy,). The parameters are e, = 6, w, =
7.90 eV, and Y, = 51 meV [25]. The induced dipole moment
of the plasmonic cavity is evaluated as ;4 = 13.6 ¢ - nm using
the formulation +/1277insoR?, where n~' = d Rele,, (w)]/
dep(W)|w=w, [16]. The dipole moment of the QE is d =
le-nm (=48 D), with a nonradiative decay rate -, =
20 meV. The dipole orientation is perpendicular to the surface
of the nanosphere and parallel to the polarization of the laser
field. The normalized LDOS p = Im[n - G(xy, ry, w) - n]/Gg
[26], where Gy = (w/c)3/6m is the Green’s function in
vacuum and calculated via the spherical Green’s function [25]
and shown in figure 1 (b). In the normalized LDOS, three
dominant peaks can be seen, and it is well reproduced by a
3-Lorentzian fitting model with the following parameters for the
spectral density: Jy(w): g = 29.01 meV, g, = 42.95 meV,
and g; = 101.7 meV for the coupling strength between the
pseudomodes and QE; 2x; = 41.94 meV, 2k, = 59.14 meV,
and 2k3 = 67.90 meV for the pseudomode damping rates;
and w; = 2.787 eV, w, = 2.89 eV, and w; = 2.95 eV for the
pseudomode resonance frequencies. We have assumed
wg = wy, unless specified otherwise. The fitting results are
indicated by the solid lines in figure 1(b), from which we can
clearly see that the coupling of the QE to the LSP at the QE
transition frequency wy (the peak location of the blue solid line)
is partially supported by the nonresonant pseudomodes. We
consider this part of coupling as incoherent, while the coupling
of the QE to the resonant dipolar mode (blue solid line) as
coherent. This model is simple but has all the features necessary
to elucidate the characteristics of various spectra.

Before studying the spectra, we use specific criteria to
estimate whether the composited system can be in the strong
coupling regime. In strong coupling, the plasmon-exciton
coupling strength exceeds the dissipation of the hybrid sys-
tem, i.e. g > (k, ), where v =~ + ~,. Then, the coop-
erativity C = gl2 / (k17y) can be used to determine the coupling
regime. Accordingly, realizing the strong light-matter inter-
action requires C > 1. Using the aforementioned parameters,
we obtain C = 1.291, which implies that the interaction
between the dipolar plasmonic mode and the QE is in the
strong-coupling regime. For g o< d, we note that in a single-
mode cavity the cooperativity is divergent if the dipole
moment of a QE increases; however, in our model, the
cooperativity will not increase indefinitely, as shown in
figure 2(a). As 7, o< >, g’ the cooperativity will ultimately
approach Cyx = gl2 /K17, if d — oo. Therefore, for a given
metallic nanoparticle (MNP) and a fixed QE position, it is
impossible to achieve stronger coherent coupling between
plasmon and exciton beyond this bound by using a QE with a
larger dipole moment. This may set a limit to some applica-
tions based on plasmonic structures. For example, it can lead
to a lower bound of the spacing threshold, which is mainly
determined by the cooperativity [27]. However, this topic is
beyond the scope of this study.

In addition to the cooperativity, we also consider the
operational definition of strong coupling, Q = 8Ng2/
((2k)* + ~?), where N is the number of QEs. Q > 1 indicates
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Figure 2. (a) Cooperativity of the coupling between the dipolar plasmonic mode and the QE in the single-mode case (blue line) and the exact
multimode model (red line). (b) Minimum QE number N to obtain two resolvable peaks in the spectra via dipole moment. The red line

indicates the single-mode case with , = 20 meV, and the blue and yellow lines represent the exact multimode model with v, = 20 meV and
7, = 80 meV, respectively. ~,, is frequency-dependent and can be obtained from the spectral density. (c) Normalized scattering spectrum /

versus laser frequency for various dipole moments. The red and blue solid lines indicate two energy bands of PEP, and the white dashed lines
show the corresponding energy bands in the single-mode case. A, = wy — wy.

an observable splitting in the experimental spectra [8]. The
required number of QEs for resolvable peaks as the function
of the dipole moment is plotted in figure 2(b). We can see that
the result is monotonous if the MNP is treated as a single-
mode cavity (v, = 0, red line); while the non-monotonic
variation can be observed with consideration of the non-
resonant pseudomodes (blue and yellow lines denoting
v, = 20 meV and 80 meV, respectively).

The unusual phenomena shown in figures 2(a) and (b) are
due to the fact that a larger dipole moment leads to stronger
coupling in both the dipolar mode and the higher-order
modes, while the coupling to the latter is incoherent. This
incoherent coupling induces an additional QE dissipation, ,,
that dominates over the nonradiative relaxation and results in
the saturation value of cooperativity. Therefore, a larger
dipole moment does not guarantee a greater part of coherent
energy exchanged between the plasmonic cavity and the QE.
The competition between these two types of couplings is
responsible for the non-monotonic behavior presented in
figure 2(b), and the trade-off yields an optimal dipole moment
for the maximum splitting in the spectra. In our model, the
optimal dipole moment is around 60 D, and it increases with
greater nonradiative relaxation . In figure 2(c), we plot the
scattering spectra as the function of the dipole moment and
the laser frequency at zero atom-cavity detuning. The upper
band (UB) and lower band (LB) of the PEP are indicated by

the red and blue solid lines, respectively. We can clearly see
that at first, the splitting of the two peaks becomes wider as
the dipole moment increases and reaches the maximum at
approximately 80 D; then, it narrows with the continually
increasing dipole moment. This behavior is distinguished
from a QE interacting with a single-mode cavity, in which a
larger dipole moment always produces a greater splitting, as
shown by the white dashed lines.

To further verify the strong coupling, the anticrossing
behavior of two bands of the PEP should be examined, and
this behavior is witnessed through various spectra in the
experiment. We focus on the discrepancy of the anticrossing
presented in different types of spectra. Figures 3(a) and (b)
show the SE spectrum and scattering spectra as the function
of laser frequency, respectively. By varying the QE transition
frequency, the anticrossing of the strong coupling between the
dipolar plasmonic mode and the QE can be extracted from
two spectra, which are shown in figure 3(c) for comparison.
The anticrossings show great discrepancies from that in the
single-mode case, which is shown as the black dotted lines in
figure 3(c). In our model the anticrossing shows a vertical
shift from A; = 0 due to the Lamb shift produced by the
higher-order modes, which is about —80 meV as we have
plotted in figure 3(d). Further, the energy (location) of the
upper band is squeezed by another PEP formed by the higher-
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Figure 3. (a) Normalized SE spectrum C,(w) of the QE and (b) normalized scattering spectrum / of the plasmon-exciton composite. White
dashed lines trace the spectral peaks. Ay = wy — wy, &) = wg — wy. (c) Anticrossing of the SE spectrum C,(w) (red dashed line) and
scattering spectrum / (blue solid line). Two black dashed lines label the QE transition frequency wy and the resonance frequency of the
dipolar mode w;. The black dotted lines present two bands of the PEP in the single-mode case. (d) Lamb shift (black dashed line) and the
contributions of the dipolar mode (blue solid line) and higher-oder modes (red solid line). The vertical dashed line labels A; = 0. (e) and (f)
present the SE spectrum C, (w) (red line) and the scattering spectrum / (blue line) for Ay = 0 and A; = 88.3 meV, respectively. The vertical

dashed lines mark the position of the peaks in the SE spectrum.

order modes, whose upper band lies in 200-300 meV. This
PEP can be seen in the SE spectrum (figure 3(a)) but not in
the scattering spectra (figure 3(b)), because the modes are
purely nonradiative. However, the QE interacts with all cavity
modes and this information is encoded in the eigenfrequency
of the PEP; hence, the anticrossings in the two spectra exhibit
minor differences as they own the same poles, see the
denominators of equations (14) and (11)—(13).

Figures 3(e) and (f) show the SE spectrum and scattering
spectra for A} = 0 and A} = 88.3 meV (equal splitting in SE
spectrum), respectively. We can see that the splittings in the
scattering spectra are slightly wider, and they demonstrate a
spectral shape of detuning even if the SE spectrum presents
equal splitting. Therefore, the splitting in the scattering
spectra cannot reflect the genuine energy level of the polaron
states. Conventionally, the splitting in the SE spectrum is
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Figure 4. (a) Scattering spectra / (black dashed line) and its spectral components Z,, (blue solid line), /,, (red solid line) and I, (yellow solid
line) for A} = 0. (c) Normalized PL spectra S (w) (dashed line) and SE spectrum C, (w) (solid line) of QE for A; = 0. (b) and (d) are the same

as (a) and (c), respectively, but for A} = 88.3 meV.

identified as VRS; we emphasize that the splitting in the
scattering spectra is not the VRS. Though the anticrossing in
the scattering spectra shows minor differences compared to
the SE spectrum, the underlying physical process and hence
the quantum states of the system in scattering and SE are
essentially different. In the scattering process, the composited
system is illuminated by a probe light, and all the components
in the system are excited and subsequently collected in the
steady state. On the contrary, in SE, either the cavity or the
QE is excited and then evolves without external driving and
finally returns to the ground state. Mathematically, different
ways of evolution will alter the initial conditions when
applying the QRT. Considering this, we do not refer to, or
consider the splitting in the scattering spectra as VRS.

A remarkable difference in the SE and scattering spectra
is presented in the spectral symmetry. For example, at zero
atom-cavity detuning (A; = 0, figure 3(e)) the peaks in both
the SE and the scattering spectra are strongly asymmetrical,
but their symmetries are opposite. This feature can be seen
more clearly by comparing the bright areas of the antic-
rossings in figures 3(a) and (b), which are complementary.
This is because one energy band of the PEP is ‘cavity-like’
whereas the other is ‘atom-like.” In the scattering spectra, the
‘cavity-like’ band is brighter for the main radiation channel of
scattering is the cavity mode. While the SE spectrum is about
the local dynamics of the QE, in which the intensity of the
‘atom-like’ band will be stronger.

Finally, we further discuss the characteristics of the
scattering spectra. From equations (11)—(13), it can be seen

that the scattering spectra has three components I, I,,, and
L, weighted by 2, d?, and 2ud, respectively. In figures 4(a)
and (b), we plot each spectral component (solid lines) and the
total scattering intensity (black dashed line) for A} = 0 and
A; = 88.3 meV, respectively. We can see that the scattering
spectra present distinct spectral symmetry and splitting width
in different scattering channels, due to the unequal decay
rates. Obviously, the scattering spectra are dominated by the
scattering from cavity I, (blue line) for a large weight, while
the scattering from QEs I, (red line) are too weak to be
recognized. The interaction part I, (yellow line), which
represents the scattering from the cavity to the QE and
vice versa, can be negative due to the interferences of light
scattered from the cavity and the QE, which slightly enhances
the spectral asymmetry. In addition, the Rabi frequency of the
pumping for QE €2, and for the plasmonic cavity €2, are not
equal. These two factors are together responsible for the
spectral asymmetry. Particularly, because the Rabi frequency
is proportional to u, both of these two factors originate from
the large induced dipole moment g of the plasmonic cavity.
Thus, we conclude that if g is much larger than d, the scat-
tering spectra will be nearly symmetrical. This is true for
experimentally studied structures such as NPoM [6] and
dimers [7]. However, the observation of VRS by pumping the
plasmonic cavity is still extremely difficult because of the
inevitable simultaneous excitation of the QEs by the scatter-
ing field from the plasmonic cavity. By comparing
equations (9) and (14), we infer that the PL spectra of the QE
will coincide with its SE spectrum, and the results are
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presented in figures 4(b) and (d). Moreover, from equation (9)
we can learn that the discrepancy originates from the pumping
process at the beginning. Therefore, the technology of
molecular electroluminescence [28] may be a potential can-
didate in directly uncovering the VRS in experiments of
strong plasmon-exciton coupling.

4. Conclusion

We studied the role of higher-order modes in determining the
characteristics of strong plasmon-exciton coupling using
analytic expressions based on a multimode cQED approach.
By approximating the higher-order modes via the pseudo-
mode method, we showed the coupling of the QE to higher-
order modes provides an additional dissipation to the QE.
Therefore, an optimal dipole moment maximizes the pro-
portions of coherent and incoherent coupling. The competi-
tive behavior of these two types of couplings can be indirectly
observed via the scattering spectra. We compared the antic-
rossing in the SE spectrum and the scattering spectra, and
studied the characteristics of the scattering spectra in detail.
The results show that the scattering spectra of the plasmon-
exciton composite under the weak coherent pumping contain
the information of the local dynamics of the QE; however, it
is distinguished from the SE spectra obtained from an excited
QE or cavity, especially in that the splitting in the scattering
spectra cannot be regarded as the VRS. Furthermore, we show
that the spectral symmetry of the scattering spectra is opposite
to that of the SE spectrum, and it reveals the complex inter-
action between the dipolar mode and the QE in the scattering
process by decomposing the scattering spectra into corresp-
onding scattering channels. Finally, we show that the true
VRS can be experimentally revealed via the PL spectra of the
QE. Our work helps to analyze and explain the experimental
results, as well as provide a better understanding of light—
matter interaction in nanoscale.
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Appendix A. Calculation of two-time correlation
functions

The equations of motion of the field and atom operators are
(see equation (3) in the main text)

<(i1(l)> = —iAwl<al(t)) — igl<0*([)> . inélﬁlu(t)
(6 (0)) = —iAwo (o)) — iY_glai(t)) — iQu®), (Al)
1

where u(¢) is the step function. Applying the Laplace trans-
formation, in s domain we have

(s + iAwp {a(s)) = —ig(o_(s)) — iﬂlézy%
(s + iAwp)(o_(5)) = —iZg,(a;(s)) — iﬂgé. (A2)
]

Substituting the higher-order mode (/ > 2) into (o_(s)), we can
obtain a set of closed equations only for dipolar mode and atom

(s + iAwD{ai(s)) = —ig{o_(s)) — iﬂlé

1

(s + iAwp) (o (s)) = —ig{ai(s)) — iﬂg;, (A3)

2

! o g, . .
where Awg = Awg — i), —— x,- Transforming into the

2
frequency domain, we can find that —izpzj—fA =
225 +iAw

812

122w — Aw
2 Ki
22[22& (W= w)? + (1)
w—w
(@ —w)? + ()
After some algebraic operations, we decouple (a;(s)) and
(o_(s)) from each other

yields the modified radiative decay of QE -, =
and the Lamb shift Aw = Zl>2g12

8152

1 s+ iAw) + lQl
(@) = -~ el - (A4)
. 1
s+ lAqu + s+ iAw)
815 .
1 s+ iAw + lQe
(o-()) = = e ; — (AS)
. 1
s + iAwgy + T ibe

Now we obtain the single-time averages that are needed for
calculating the two-time correlation functions. According to
QRT, the two-time correlation functions obey the same
structure as the equation (A1). In order to obtain the two-time
correlation function of the electric field operator Et =
pa; + do_, we need to calculate two sets of equations, i.e.
equations (7) and (8) in the main text. We rewrite the
equation (7) in here

(a] (t)o-(0))
(o4 (1) 0-(0))

+{%ﬁ*a@»

:Wrdma©q
(0 (1)0-(0))

(A6)

Aw g

. Per-
Z[gl AWO]

forming the Laplace transformation for above equations, we
can obtain

(s — iAw)(a o (5)) = ig (o0 (5)) + i€2:8,1 {0 (5))
(s — iAwg) (oyo_(s)) = iEgl(a,ToL(s)) + Q. (o_(s)). (A7)
1

where the matrix M is given by M = l

We leave the dipolar mode alone and eliminate the non-
resonant pseudomodes in the second equation. Following the
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similar procedure from (A1) to (A3), we can solve that

With (A4) and (AS) at hand, one can obtain equation (9) by
substituting s with jw in equation (AS8), and apply final value

8191 .

_& 0 . . .
_ s — ihw, e theorem to equations (A8)-(All) to obtain equations (11)—
(ovo(s)) = s A+ Z g2 (o)) (A3) (13) in the main text. We can see that no Markovian

0 Ls—ilw approximation has been made in above deduction.

. glzl _ - lQe
o s — iAwy
{a)0-(5)) = ——— = () (A9)  Appendix B. Comparison of analytical expressions
s —iAwi + with numerical simulations

In a similar fashion, from equation (8) in the main text we
have

Figure Bl shows the numerical calculations of steady-state

scattering spectra (equations (11)—(13)) and PL spectra

g% i (equati'on (14)),.With the Hamilton (equation ('1 ) ip 'the main t'ext

(ajfa(s)) = — s — iAwj — (ay(s)) (A10) by using QuTip [29, 30] to solve the Liouvillian equaugn

s — ifw + —5 (e.:quatlon 2)). In ﬁgure B2 we compare t.he spontaneous. emis-

iAwg sion (SE) dynamics of QE (the Fourier transformation of

o ‘ equation (14)) calculated via the quantization of absorbing

S ide; i€ medium based on Green’s tensor [31-33] and the pseudomodes

{orai(9)) = — ] pe {a(s)- (All) method. In all simulation €2, /x; = 0.1, while other parameters
s — iAwy + Zl N can be found in the main text.

(b)
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Figure B1. Comparison of the analytical expressions of spectra with numerical simulations. (a) and (b) Various spectral components for the
steady-state scattering spectra. (c) and (d) Corresponding normalized PL spectra. In (a) and (c) A; = 0 while A = 88.3 meV in (b) and (d).
The solid lines and dashed lines are for the analytical expressions and the numerical calculations using QuTip, respectively.
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Figure B2. Comparison of the spontaneous emission dynamics of QE obtained by the quantization of absorbing medium based on Green’s
tensor and the numerical simulations with pseudomodes method using QuTip for (left) A; = 0 and (right) A; = 88.3 meV.
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