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Abstract
A new interpretation for the wobbling bands in 163Lu is given within a particle-
triaxial rotor semi-classical formalism. While in the previous papers the bands
TSD1, TSD2, TSD3 and TSD4 are viewed as the ground, one, two and three
phonon wobbling bands, here the corresponding experimental results are descri-
bed as the ground band with spin equal to I=R+j, for R=0, 2, 4,K (TSD1),
the ground band with I=R+j and R=1, 3, 5, K (TSD2), the one phonon
excitations of TSD2 (TSD3), with the odd proton moving in the orbit j=i13/2,
and the ground band of I=R+j, with R=1, 3, 5,K and j=h9/2 (TSD4). The
moments of inertia (MoI) of the core for the first three bands are the same, and
considered to be free parameters. Due to the core polarization effect caused by
the particle-core coupling, the MoI’s for TSD4 are different. The energies and the
e.m. transitions are quantitatively well described. Also, the phase diagram of the
odd system is drawn. In the parameter space one indicates where the point
associated with the fitted parameters is located and also which is the region of
transversal wobbling mode as well as where the wobbling motion is forbidden.

Keywords: wobbling motion, semi-classical description, triaxial superdeformed
bans, even–odd nuclei, excitation energies, e.m. transitions, phase diagram

(Some figures may appear in colour only in the online journal)

The wobbling motion consists in a precession of the total angular momentum of a triaxial
system combined with an oscillation of its projection on the quantization axis around a steady
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position. Bohr and Mottelson described the wobbling motion within a triaxial rotor model for
high spin states, where the total angular momentum almost aligns to the principal axis with
the largest moment of inertia [1]. This pioneering paper was followed by a fully microscopic
description due to Marshalek [2]. Since then a large volume of experimental and theoretical
results has been accumulated [3–22]. Also, the concept of wobbling motion has been
extended to even–odd nuclei. Experimentally, the wobbling states excited in triaxial strongly
deformed (TSD) bands are known in several nuclei like 161,163,165,167Lu, 167Ta [15, 16], 135Pr
[23–26] and 187Au [22].

In various versions, the theoretical phenomenological studies are based on semi-classical
descriptions. Thus, the equations of motion for the classical rotor Hamiltonian are exactly
treated in [27] while in [9, 25] the harmonic approximation is adopted for the wobbling
frequency. The approximation is justified for large angular momentum but not for values
close to that of the band head state. Moreover, the odd particle angular momentum is rigidly
coupled to the core, along the axis 1, of largest moment of inertia. In [28, 29] the classical
picture is obtained via a time dependent variational principle, the collective and individual
coordinates being treated on equal footing. The quantal treatment uses the boson description
of the angular momenta describing the even/odd system. Thus, the Holstein–Primakoff [14]
and Dyson [30] boson expansion methods have been used. The drawback of such approaches
consists in that the zero point energy is crudely approximated. In [27] a new boson repre-
sentation, in terms of elliptic functions, for the components for angular momenta is proposed.
The Bargmann representation for the rotor Hamiltonian allows to separate the potential
energy which provides an exact description for the ground state of the wobbling motion.
Alternatively [20], such a separation is achieved by making use of the Pauli quantization
recipe [31]. The microscopic theories use the random phase approximation (RPA) plus
cranking, but, however, the higher RPA effects are ignored.

Depending on the relative position of the rotation axis of the collective core and that of
the odd nucleon, the wobbling motion has a longitudinal or a transversal character. In the first
case the two rotation axes are parallel, while for the transversal wobbling the rotation axis of
the rotor and that of the odd nucleon are prependicular. In the latter case the particle-core
interaction drives the whole system to a shape of a large and stable deformation, and this
rotates around the axis of maximal moment of inertia. The concept of the transversal wob-
bling was introduced by Frauendorf in [25], but not confirmed by the calculations of Tanabe
[24]. A comment about the debate on this issue is presented in the present paper. in the
context of the phase diagram.

In a previous publication [28] we formulated a semi-classical formalism so as to describe
the main features of the wobbling motion for a particle-triaxial-rotor system, which was
successfully used for 163Lu. The odd particle is a proton in the j=i13/2 orbital. The method
was subsequently applied to 165,167Lu [29]. Therein, each state of the TSD1 band is deter-
mined by a time dependent variational principle equation under the restriction of small
amplitudes. The solution leads to a phonon operator which applied successively to the ground
states with the spin I=R+j and R=0, 2, 4,K, gives rise to the so called TSD2 band.
Applying the phonon operator twice to the TSD1 states, one obtains the TSD3 band. The
states of the TSD4 have negative parity and are obtained by acting with three phonons, two of
positive and one of negative parity, on the TSD1 states. The negative parity wobbling phonon
corresponds to a j=h9/2 proton coupled to a triaxial rotor with the moments of inertia (MoI)
modified due to the coupling of a new proton orbit. The phonon operator increases the spin of
state by one unit. Also, the e.m. properties of the mentioned isotopes have been well
described. The sketched approach is consistent with the experimental result claiming that it
provides evidence of multiple wobbling phonon states.
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Here we present an approach which does not use the multi-phonon states in order to
account for the experimental features of 163Lu. We begin with a brief description of the new
method.

We thus study an odd-mass system consisting of an even–even core described by a
triaxial rotor Hamiltonian Hrot and a single j-shell proton moving in a quadrapole deformed
mean-field:

( )
[ ( ) ( )] ( )g g= +

+
- - -H

V

j j
j j jj

1
cos 3 3 sin . 1jsp 3

2 2
1
2

2
2

Here òj is the single particle energy and γ, the deviation from the axial symmetric picture. In
terms of the total angular momentum I(=R+j) and the angular momentum carried by the
odd particle, j, the rotor Hamiltonian is written as:

( ) ( )å= -
=

H A I j . 2
k

k k krot
1,2,3

2

where Ak are half of the reciprocal MoI associated to the principal axes of the inertia ellipsoid,
i.e. ( )= A 1 2k k , which are considered as free parameters.

The expressions for the single particle coupling potential, Hsp, and the triaxial rotor term,
Hrot, have been previously used by many authors, the first being Davydov [32, 33].

The eigenvalues of interest for ˆ ( )= +H H Hrot sp are obtained through a time dependent
variational principle equations. Thus, the total Hamiltonian Ĥ is dequantized through the time
dependent variational principle:
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with the trial function chosen as:

∣ ⟩ ∣ ⟩∣ ⟩ ( )ˆ ˆY = - -e e IMI jjN , 4Ij M
zI sj

;

with -̂I and -̂j denoting the lowering operators for the intrinsic angular momenta I and j,
respectively, while N is the normalization factor. ∣ ⟩IMI and ∣ ⟩jj are extremal states for the
operators ˆ ˆI I,2

3 and ˆ ˆj j,2
3, respectively. Note that the trial function is a linear combination of

components of definite K, which is consistent with the fact that for triaxial nuclei, K is not a
good quantum number. Some authors refer to the TSD bands as to the super-deformed bands
suggesting that the ground band head state is an isomeric state with a relative large half-life.

The variables z and s are complex functions of time and play the role of classical phase
space coordinates describing the motion of the core and the odd particle, respectively:
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the classical equations of motion acquire the canonical form:
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where  denotes the average of Ĥ with the trial function ∣ ⟩YIjM and plays the role of the
classical energy function. The classical energy has the expression:
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and is minimal ( ( ) jI,min ) in the point (j, r)=(0, I); (ψ, t)=(0, j), when A1<A2<A3.
Linearizing the equations of motion around the minimum point of, one obtains a harmonic
motion for the system, with the frequency given by the equation:
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where the coefficients B and C have the expressions:
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As mentioned in [29] in the expression for the classical energy of [28] in the fourth line of
equation (8) the factor 2 in the first term, which couples the variable j, ψ and the free term,
- IjA2 2

2, are missing due to a lamentable error. We checked that the same spectrum is obtained
by a proper renormalization of the MoI’s.

Under certain restrictions for MoI’s the dispersion equation (9) admits two real and
positive solutions. Hear after these will be denoted byWI

1 and W ¢
I
1 for j=i13/2 and Ω2 andW ¢2

for j=h9/2. These energies are ordered as: W < W ¢
I I
1 1 and W < W ¢

I I
2 2 . Energies of the states in

the four bands are defined as:
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The spin sequences from equation (12) correspond to the rule presented before, that is j+R
with R=2n, n=0, 1, 2, K for TSD1, R=2n+1, n=0, 1, 2, K for TSD2 and R=2n,
with n=1, 2, 3,K for TSD3 where R stands for the core angular momentum, while j is the
angular momentum of the odd proton. The excitation energies are obtained by subtracting
E13 2

TSD1 from the above expressions. Fitting the experimental data for the excitation energies,
through a least square procedure one obtains the MoI and the strength of the particle-core
coupling potential. The results of the fitting procedure are collected in table 1.

With the MoI’s, V and γ determined, equations (12) give the energies for the four bands.
The excitation energies are compared with the corresponding experimental data in figure 1,

Table 1. The MoI’s, the strength of the single particle potential (V ) and the triaxial
parameter (γ) as provided by the adopted fitting procedure.

j Bands [ ] MeV1
2 [ ] MeV2

2 [ ] MeV3
2 V (MeV) γ (degrees)

13/2 TSD1,TSD2,TSD3 63.2 20 10 3.1 17
9/2 TSD4 67 34.5 50 0.7 17

Figure 1. Calculated energies for the bands TSD1, TSD2 and TSD3 are compared with
the corresponding experimental data taken from [12].
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where a good agreement can be seen. Note that for the first three bands the excitation energies
do not depend on the single particle energies. On the contrary, the excitation energies for the
TSD4 states contain the constant term ò9/2−ò13/2=−0.334MeV, which according to
equations (1) and (12) are just the difference in energy for the spherical shell model states h9/2
and i13/2.

It is worth adding a short comment about the band parity. The states of the collective core
can be classified by the irreducible representations of the discrete group of transformations
D2; these are characterized by the vectors (r0, r1, r2, r3) where rk denotes the eigenvalues of
the unity rotation (r0) and of the rotations with π around the principal axes xk (rk)with k=1,
2, 3, respectively. The states (1, 1, 1, 1) and (1, −1, 1, −1) are of positive parity while (1, −1,
−1, 1) and (1, 1, −1, −1) of negative parity. The mentioned representations are con-
ventionally called A, B2, B1 and B3, respectively. Thus, the states of type A and B2 are of
positive while those of the B1 and B3 kind are of negative parity. The parity of the odd system
is obviously given by the product of parities brought by the core and single particle,
respectively. In the case of TSD4 the factors of the parity product correspond to the states of
the type A or B2 and the single particle orbit h9/2. Microscopically, the particle-hole exci-
tations involve one single particle state belonging to the core and the negative parity-odd
particle.

We notice that the least square fit predicts that the maximal moment of inertia corre-
sponds to the one-axis and therefore the system rotates around the short axis. Moreover, the
odd proton angular momentum is oriented also along the short axis and thereby the system
motion is of longitudinal wobbling character. The numerical values of MoI’s are consistent
with the angular momenta orientation corresponding to the minimum point of . However,
although our results agree well with the data they do not reproduce the decreasing behavior of
the energy spacings with increasing angular momentum which, as claimed in [25], is a
signature for a transversal wobbling (see figure 2). This behavior is predicted by the
microscopic calculation using a cranking type of Hamiltonian. However, the conclusions of
such calculations are induced by two main ingredients: (i) the single particle basis are

Figure 2. Wobbling energies, Ewobb=E1(I)−0.5(E0(I+1)+E0(I−1)), with E1

and E0 defined as excitation energies from TSD3 and TSD2 band, respectively.
Experimental data are taken from [12].
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provided by a deformed mean field consistent with a hydrodynamic model, which favors the
rotation around the middle axis; (ii) The cranking term, which cranks the system to rotate
around the short axis. The balance of the two effects determines one regime or another. It is
worth mentioning that besides the very good agreement between predictions and experimental
data we compared, with a positive result, the energies of the four TSD bands with the exact
eigenvalues of the starting Hamiltonian [29]. This confirms that the proposed formalism is
appropriate not only for simulating the data, but also provides a good approximation for the
exact results. In our opinion, the decreasing behavior of the wobbling energy with the spin is
not a decisive test for a given formalism. As a matter of fact, using the standard definition, the
wobbling energy for the one phonon band, i.e. the TSD3, was plotted in figure 2 as function
of the angular momentum. Surprisingly, the wobbling frequency increases slightly with spin,
as predicted by our approach. Indeed, the experimental wobbling energy increases from 144
to 170 keV when the spin goes from 33/2 to 77/2 and finally decreases for the last two states,
with spins 81/2 and 85/2, to 143 keV. On the other hand, the calculated wobbling energy
increases faster with angular momentum, from 331 keV at spin 33/2 up to 570 keV for spin
85/2. The agreement between the wobbling energy behavior given by our calculations and
the corresponding experimental data is to be considered as a specific feature of the present
approach.

The electric quadrupole intra- and inter-band transitions were calculated by using the
transition operator
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with Q0 and Q2 taken as free parameters and the wave function:
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,

with NIj standing for the normalization factor and ∣ ⟩0 I for the vacuum state of the bosons †a
and †b determined by the classical coordinates j, ψ and the corresponding conjugate
momenta r and t through the canonical parameters k and ¢k . The expansion coefficient of the
trial function corresponding to the minimum point, in terms of the normalized Wigner
function, CIK, were analytically expressed in [29]. Since our fitting procedure predicts that 1

is the maximal MoI, according for [1], Q0 represents the quadrupole moment with respect to
the one-axis while Q2 is a measure of the asymmetry in the shape with respect to this axis.
They determine the static moment and the B(E2) values for the intra-band transitions
I→(I−2). Both of them are involved in the inter-band transitions I→(I−1) and
I→(I+1).

Note that MoI’s are free parameters, that is, no option for their nature, rigid or hydro-
dynamic, is adopted. To be consistent with this picture the strengths Q0 and Q2 were also
considered as free parameters. However, this is not consistent with the structure of the single
particle potential, which considers the collective quadrupole operator as emerging from the
hydrodynamic model. These are fixed by fitting the B(E2) values for one intra-band (TSD1)
and one inter-band (TSD2→TSD1) transition. Thus, one obtained Q0=18.43eb and
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Q2=19.81eb. The remaining B(E2) transitions and the quadrupole transition moments, listed
in tables 2 and 3, are free of any adjustable parameter. Results for the B(E2) values are
compared with the corresponding data in tables 2 and 3.

The magnetic transition operator used in our calculations is:

( ) [ ] ( )åm
p
m= + º +

n
n n mn m m

= 
 M g R qg j D M M1,

3

4
, 15N R j

0, 1

1
1
coll

1
sp

Table 2. The E2 intra-band transitions I→(I−2) for TSD1 and TSD2 bands. Also,
the transition quadrupole moments are given. Theoretical results (Th.) are compared
with the corresponding experimental data (Exp.) taken from [8]. B(E2) values are given
in units of e b2 2, while the quadrupole transition moment in b.
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Table 3. The B(E2) and B(M1) values for the transitions from TSD2 to TSD1. Mixing
ratios are also mentioned. Theoretical results (Th.) are compared with the corresp-
onding experimental (Exp.) data taken from [8]. Data labeled by a) are from [34].
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+51
2

0.49 0.54-
+

0.08
0.09 0.018 0.017-

+
0.005
0.005 −1.58−3.1±0.4a)

+55
2

0.44 0.70-
+

0.15
0.18 0.019 0.024-

+
0.007
0.008 −1.61−3.1±0.4a)

+59
2

0.34 0.65-
+

0.26
0.34 0.019 0.023-

+
0.011
0.013 −1.64−3.1±0.4a)

+63
2

0.36 0.66-
+

0.24
0.29 0.020 0.024-

+
0.010
0.012 −1.66
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with Rν denoting the components of the core’s angular momentum with the corresponding
gyromagnetic factor, gR=Z/A, while gj is the free gyromagnetic factor for the single proton
angular momentum j(=13/2), which was quenched by a factor q=0.43 in order to account
for the polarization effects not included in gj.

This factor takes care of the interaction of the odd-proton orbit with the currents dis-
tributed inside the core as well as of the internal structure of the proton, which may also
influence its magnetic moment. To evaluate the transition matrix elements, the involved states
are written in the form:

∣ ⟩∣ ⟩ ( )åY =
+

W
W

W
j

C C RMK j
1

2 1
. 16IM

M
M M
RjI

RK

R

R

The expansion coefficients of the core’s wave function in the basis of the normalized Wigner
function are denoted by CRK. Results for the relevant B(M1) values of the inter-band
transitions as well as for the mixing rations are collected in table 3.

Concluding the above analysis, the present formalism describes in a realistic fashion the
experimental excitation energies in the bands TSD1, TSD2, TSD3, TSD4, the intra- and inter-
band B(E2) values, the transition quadrupole moments, the dipole magnetic transitions from
the levels of TSD2 to those of TSD1, B(M1), as well as the mixing ratios, δI→I−1.

Now, it is worth summarizing the specific features of the present approach:

(i) the TSD2 band consists of the ground states provided by the variational principle of
minimum action applied for each angular momentum of the set I=R+j with R=1, 3,
5, K, and j=13/2;

(ii) the TSD3 states, I, are obtained by acting with the phonon operator on the TSD2 states of
angular momenta I-1;

(iii) the negative parity band TSD4 is formed of the ground states corresponding to I=R+j
with R=1, 3, 5,K and j=9/2.

In what follows we shall spend few words about the phase diagram associated with the
classical energy function , for a given total angular momentum. From the equations of
motion written in the Hamilton canonical form it results that the angles play the role of the
classical coordinate, while the variables r and t of the corresponding conjugate momenta. In
virtue of this we may denote, more suggestively, the conjugate coordinates as:

( )j y= = = =q q p r p t, , , . 171 2 1 2

The critical manifolds associated to the classical energy function are determined from the
equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

( )¶
¶ ¶

= = = + =


q p
i j k l k ldet 0, , , 1, 2; , 0, 1, 2; 2. 18

i
k

j
l

2

After some algebraic manipulations on the above equation one arrives at the equation:

( )=C 0, 19

where C has the expression from equation (11). From (9) it is obvious that for this value of C,
one solution vanishes. Thus, equation (19) defines a Golstone mode which suggests a
transition to a new nuclear phase. Equation (19) splits to the following equations:
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( ( ) ) ( ) ( )
( ) ( )

( )
( ( ) ) ( ( ) ( ( ) ( ) )

( ) ( ) )
( ) ( )

=
- - + + - + + - - + -

- - - -
º

=
- - + - + + - + + +

- - - -
º

z
I j x I j Ij j I x I j

G I j x I
f x

z
I j x I j y I j I j xy

G I j x I y
f x y

1 4 4 4 8 2 2 2 2 2 1

2 2 1 2 1
,

1 4 1 2 2 2 1

2 2 1 2 1
, . 20

2 2 2 2

1

1
2 2 2 2

2

2

Here the following notations were used:

( )
( )

( )
( )g g g

= = =

=
-
+

+ =
-
+

x
A

A
y

A

A
z

V

A

G
j

j j
G

j

j j

, , ,

2 1

1
3 3 cos sin ,

2 1

1
2 3 sin . 21

1

3

2

3 3

1 2

For a fixed γ(=17°), the equations (20) represent two singular surfaces, having the
asymptotic planes:

( )=
-

- -
=

- -
-

x
I

I j
y

I j

I
x

2 1

2 2 1
,

2 2 1

2 1
. 22

On the other hand, we recall [29] that the wobbling frequencies are obtainable by a
quadratic expansion of the energy function around the minimum point, which results in
obtaining a Hamiltonian for two coupled oscillators. Quantizing the independent oscillators,
the coupling term is diagonalized through a canonical transformation. Thus, the same fre-
quencies as given by equation (9) are obtained. The frequencies for the uncoupled oscillators
are real, provided the following restrictions hold:

( )
< < < <

> + > +
S A A A S A A A

A T A G A T A G

or ,

, , 23
Ij Ij

Ij Ij

1 2 3 1 3 2

3 1 1 2 1 2

with

( )=
- -

-
=

- -
-

S
I j

I
T

j I

j

2 1 2

2 1
,

2 1 2

2 1
. 24Ij Ij

The intervals (23) together with the surfaces (20) define, in the parameter space, sectors
surrounded by separatrices which are conventionally called nuclear phases. The phase
diagram is presented pictorially in figure 3, where the separatrices are shown. Therein, the
planes x=y, x=0, y=0 are associated with the axial symmetric cases, which are
forbidden. The fixed MoI’s and V are the coordinates of a point specified by a white small
circle. Inside a given phase, the classical Hamiltonian has specific stationary points. If one of
these is a minimum, then the classical trajectories surround it with a certain time period. If the
point in the parameter space approaches the separatrices, the period tends to infinity [27].
When V>0, j is always oriented along the short axis, that is the axis x and the region where

> >  2 1 3 is the phase where the transversal wobbling may take place. More specifically,
this region is bounded by four surfaces: one being the diagonal plane, one is given by the
second equation (22), the third one is the plane x=1, and the fourth which is defined by
equation z=f2(x, y). For this region we have to depict the minimum of , if that exists.
Furthermore, the frequencies describing the small oscillations around the minimum found are
to be determined. Keeping MoI’s inside the mentioned phase, we may proceed to fitting the
experimental energies using the specific wobbling frequencies. Comparing the quality of the
obtained fit with that of the present work, one may decide whether the transversal or
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longitudinal character of the wobbling prevails. It is worth noting that for z<0, the axis 3
(the long one) is energetically favored in aligning j. Therefore, another region where the
transversal wobbling motion may show up, is bordered by the planes x=0, y=1, the
asymptotic plane for the surface z=f1(x), and below the surface z=f2(x, y). In the region
between the two surfaces z=f1(x) and z=f2(x, y) the motion of the odd system is not
allowed. Indeed, there C<0 and consequently the wobbling phonon frequencies become
imaginary.

If in the expression of energy function one ignores the square root term, one obtains an
energy surface having a minimum at the point j y= = = =p r I t j, 0, ,

2
. The small

oscillations around this minimum have the frequencies:

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

( )[( )( )]

( ) )
( )

(

( )
( )

( )

w

w g
p

g

= - - -

= - - +
+

+

´ - +
+

I A A A A

j A A
V

j j

A A
V

j j

2 1 ,

2 1
2 3

1
sin

3

2 3

1
sin . 25

1 3 2 1 2
1 2

2 3 1

1 2

2 1

1 2

Switching on the ignored term, the whole Hamiltonian is diagonalized through a canonical
transformation of the RPA type, if that exists, the final frequencies being solutions of an
equation of the type (9) with the coefficients B and C defined by:

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

⎧
⎨
⎩

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) ( )( ) ( )

)
( )

( ( )
( )

( )( )( ) ( )
( )

( )( )( ) )
( )

(
( )

g
p

g

g

g
p

- = - - - + -

´ - +
+

+ - +
+

= - - - - +
+

´ - - - - +
+

+ -

B I A A A A j

A A
V

j j
A A

V

j j

C I j A A A A
V

j j

I j A A A A
V

j j
IjA

2 1 2 1

2 3

1
sin

3

2 3

1
sin ,

2 1 2 1
2 3

1
sin

2 1 2 1
2 3

1
sin

3
4 .

26

2
3 2 1 2

2

3 1 2 1
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Figure 3. The phase diagram for a j-particle-triaxial rotor coupling Hamiltonian with
j=13/2 and I=45/2.
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The existence conditions are:

( )

( ) ( )
( ) ( )

> < >
-

-

>
- -

+
-

-

x y y z
G

j
x y

z
Ij

I G y

j

G
x

, 1,
2 1

,

4

2 1 1

2 1
1 . 27

2

1 1

The classical angular momentum components, corresponding to the minimum point, are:

( )= = - = = = =I I I I j j j j0, , 0, , 0, 0. 281
cl

2
cl

3
cl

1
cl

2
cl

3
cl

Such a situation is met with the hydrodynamic model for the MoI parameters and the particle-
core potential given by equation (1). The newly determined representation defines the true
ground state which, however, might become unstable due to the Coriolis interaction. Such an
instability reclaims a redefining of a new stable ground state which is associated with the
longitudinal wobbling motion. Note that the transversal motion takes place if two severe
conditions, marked by ‘if exists’, are fulfilled.

For a rigid coupling, the coordinates t, ψ disappear and the stationary point (r=I,
j=α), with α defined by

( )a =
- -
j

I

A

A A
cos

2

2 1
, 291

1 2

is a minimum of the energy function which results in having a stable ground state, but by
ignoring the Coriolis interactions determined by the core angular momentum components
corresponding to the middle and long axes. Note that a ¹ p

2
and only for I j, one may

approximate a » p
2
. We may conclude that even for a rigid coupling of the odd proton along

the short axis, the transversal wobbling mode may show up only in the limit of a very large I.
Actually, the rigid coupling means that the initial Hamiltonian is truncated to a sum of two
terms, one describing a triaxial rotor and one term linear in I1, which cranks the system to
rotate around the one-axis. When this happens, the longitudinal wobbling regime is achieved.
Indeed, the first term favors the rotation around the middle axis, for hydro-dynamic MoI’s,
while the second term leads to a rotation around the one-axis. The character of the wobbling
motion is fixed by the result of the competition between the two effects. Similarly, in the
present formalism the transversal wobbling appears with the price of ignoring important terms
which leads to an energy function describing two independent oscillators. In this picture, the
collective wobbling mode is determined exclusively by the core. Switching on the ignored
interaction, new wobbling frequencies are obtained and the transversal picture is gradually
blurred.

It is conspicuous that the scenario presented here, points out that the picture where the
transversal wobbling shows up, corresponds to ideal restrictions [25], while within the
Holstein-Primakoff description, the minimum for energy surface reflecting a transversal
wobbling regime does not exist [24], if one keeps all energy terms. Therefore, there is no
contradiction between the two formalisms [35, 36], since they deal with different Hamilto-
nians which, moreover, are subject to specific approximations.

In conclusion, we can assert that the present formalism is based on the longitudinal
concept and describes fairly well the main experimental properties of 163Lu.
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