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CrossMark
Abstract
We study the rare decay Zy — H% at O(al,, ;) accuracy including two-loop
QCD corrections in the context of the littlest Higgs model (LHM) without 7-
parity. We revisit analytically and numerically the leading-order (LO) con-
tributions of the one-loop diagrams induced by massive fermions, scalars and
charged gauge bosons in the LHM, and further study the NLO QCD correction
to this decay process. We perform the numerical calculation by taking the
LHM input parameters f= 3,4 TeV and 0.1 < ¢ < 0.6, and discuss the
numerical results of the decay width up to the QCD NLO within the recent
experimentally constrained LHM parameter space region. Our results show
that the two-loop QCD correction always reduces the LO decay width and the
top-induced QCD correction is the dominant contribution at the QCD NLO.
For f =4TeV and ¢ = 0.3, the NLO QCD corrected decay width reaches
75.099 keV and the NLO QCD relative correction is about —11.0%.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Although the standard model (SM) [1, 2] has got a remarkable success in describing high-
energy phenomena at the energy scale up to 10? GeV, the mechanism of electroweak sym-
metry breaking (EWSB) remains the most prominent mystery, and the Higgs boson mass
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suffers from large radiative corrections in the SM. Alternatively, in the little Higgs (LH)
models [3, 4] based on dimensional deconstruction [5], the quadratic divergence induced at
the one-loop level by the SM gauge bosons is canceled by the heavy gauge boson one-loops.
Therefore, there arouse more and more interests on the LH models as they offer an alternative
approach to solve the hierarchy problem, and the LH models were proposed as one kind of
models of EWSB without fine-tuning in which the Higgs boson is naturally light as a result of
nonlinearly realized symmetry [3, 4, 6-8].

The most economical model of them is the littlest Higgs model (LHM), which is based
on an SU(5)/SO(5) nonlinear sigma model [4]. In the LHM without T-parity, in addition to
the SM particles, a set of new heavy gauge bosons (Ag, Zy, Wg) and an exotic heavy vector-
like quark (7) are introduced which just cancel the quadratic divergences induced by the SM
gauge boson loops and the top quark loop, respectively. The key feature of this model is that
the Higgs boson is a pseudo-Goldstone boson of a global symmetry, which is spontaneously
broken at some higher scale f, and thus the Higgs boson is naturally light. On the other hand,
there are also several other models that predict the existence of a neutral massive gauge
boson, identified as Z' gauge boson, such as the 331 model [9] and the grand unified models
[10]. This type of particles are under exhaustive search at the LHC [11-13], where the
ATLAS and CMS collaborations have imposed experimental bounds over the mass of a new
particle related to the Z' gauge boson.

It is well known that the parameters of the LHM without T-parity are very constrained by
the electroweak precision observables [14, 15], such as Z-boson mass and partial widths for Z
decaying into lepton or light hadron pairs, since the new heavy particles predicted by the
LHM can contribute to those SM processes at the tree level via s-channel exchange. Thus, we
may expect that the virtual effects on all other SM processes induced by the exchange of new
heavy particles are also negligible after considering the stringent constraints on the parameter
space. However, the characteristic signal processes of the LHM, such as the productions of
new heavy gauge bosons and their decays, are not very severely restricted by those constraints
from the electroweak precision observables. Thus, it is still worthwhile to study them in
considerable detail within the framework of the LHM without T-parity.

The Zy — H%y decay process can be used to identify the production of the Zy gauge
boson at high energy colliders, since recent measurements on the Higgs boson discovery
channels and electroweak precision observables have provided severe constraints on its
parameter space [16]. Another advantage in probing the Zy — H%y decay channel is due to
the fact the SM background is naturally suppressed [17, 18]. Therefore, H%y associated
production at high energy colliders opens a new window to test the gauge sector of the SM
and Higgs physics [19-22]. Previous study on the Z' — H%y decay has been performed in the
context of left—right symmetric models [19], where the branching ratio is estimated [23]. In
this paper, we investigate the QCD two-loop correction to the Zy — H%y decay and provide
the decay width up to the O(a2, o) in the LHM.

The rest of this paper is organized as follows. In section 2 we briefly review the LHM. In
section 3 we present the analytical calculation at the LO and QCD NLO for the Zy — H%
decay in the LHM without 7-parity. The numerical results and discussion are provided in
section 4. Finally, we give a short summary in section 5.

2. Related theory of LHM

The LHM is based on an SU(5)/SO(5) nonlinear sigma model. The nonlinear sigma model
SU(5) symmetric tensor field X is parameterized as
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Y(x) = eiH(X)/fEOeiH(X)T/f’ 2.1
where the vacuum expectation value (VEV) of 3(x) is given by [4, 24]

Lx2
Yo=(¥)= 1 . (2.2)

Lo

At the energy scale f~ O(TeV), the SU(S) global symmetry breaks down to its SO(5)
subgroup, and the [SU(2) ® U(1)]* gauge subgroup of SU(5) simultaneously breaks down to
its diagonal subgroup SU(2); ® U(l)y, which is identified as the SM electroweak gauge
group. The SU(5)/SO(5) symmetry breaking leads to 14 massless Nambu—Goldstone bosons.
The Goldstone boson matrix is written as IT(x) = 7%(x) X“. X“ are the broken generators of
SU(S5) which satisfy the relation

X% — X = 0. 2.3)

Then the Goldstone boson matrix I1(x) can be expressed as
nt /2 &
II=|n/2 r* /N2 | (2.4)
¢ h'/N2
where & and ¢ are the SM SU(2), doublet and triplet, respectively, and can be expressed as
-+ + /2
h = (h*t h%, ¢ = ¢ ¢ /2 . 2.5)
¢t /N2 ¢

The leading order dimension-two term for the scalar field ¥(x) in the LHM is given by
1 2
L= 1 Tr|D, X[, (2.6)
24

D, is the covariant derivative for gauge group [SU(2) ® U = [SUQ); @ U(1)] ®
[SUQ2), ® U(1),], and we have

2 3

DY =95 - iz[gj SIWHQIY + D07) + g/ By (Y + EY,-T>], @.7)
j=1 a=1

where Wy, and B,; are the SU(2); and U(1); gauge fields, respectively. The generators of the

SU(2); and U(1); gauge groups are written as

a

o
of=|"2 , ¥y = diag{-3, -3, 2, 2, 2} /10,
033
033
tal — o%* |, Y, = diag{—2, -2, —2, 3, 3} /10, (2.8)
2

where o (a = 1, 2, 3) are the Pauli matrices. As we know, in the LHM there is no Higgs
potential at tree-level. Instead, the Higgs potential is generated at one-loop and higher orders
due to the interactions with gauge bosons and fermions. The Higgs potential (Coleman—
Weinberg potential) up to the operators of dimension four can be expressed as [24, 25]
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V =X 2 Tr(¢'}) + iXngnf (h¢'hT — h*¢h") — p2hht + s (hh)?
+ Nngonhd OhT + Nppg2hll Tr(¢' ) + X2 (Tr(¢'¢))?
+ A Tr(¢ ¢ ). (2.9)

By minimizing the Coleman—Weinberg potential, we obtain (h°) = v/+/2 and (i¢®) = v/,
which give rise to the EWSB. After the EWSB, the gauge sector acquires additional mass and
mixing term due to the VEVs of i and ¢. By diagonalizing the quadratic term of the gauge
sector, we may get the mass eigenstates A;, Z;, W;, Ay, Zy and Wy, and their masses.

To avoid large quadratic divergence in the Higgs boson mass due to the top Yukawa
interaction, we introduce a pair of new fermions 7 and 7’ [24] and a set of new interactions.
The scalar couplings to the top quark can be taken from the following Lagrangian [24]:

1 ~
Ly = SN feien XS Tpu” + M fif' + he, 2.10)

where x = (b3, t3, ), €;jx and e,, are antisymmetric tensors with i, j, k € {1, 2, 3} and x,
y € {4, 5}, and the coupling constants \; and )\, are supposed to be of the order of unity.
After expanding the above Lagrangian and performing field redefinition [24, 26], we get the
SM top quark 7 and a new heavy vector-like quark 7. The masses of the two mass eigenstates
are given by

i 1
m, = cfxzv{l + ;72[5 + % +5qa - cf)]}, 2.11)
2
= 2] [1 B V_zchz(l _ Cg)], 2.12)
1 — c/\z fe2
A

V/
where ¢y, = and x = 4f—. Considering the EWSB, we may obtain the masses of
NEYESY v?

the new heavy gauge bosons and scalars as [26]

o S 2 o P
m2, =m — 1|, mz =m — 11, 2.13
Wy w ( $2c22 ) Zn W ( 2022 ] (2.13)
2 2 2
2 2.2 / ) 2myf 1
my =mzsy|———— — 1|, mg = . 2.14
Ay z W[SSIZCIZVZ ) o v (1 —x?) ( )

3. Calculation strategy

3.1. General setup

We employ the modified FeynArts-3.9 package [27] to generate all the one- and two-loop
Feynman diagrams and their corresponding amplitudes. The reduction of output amplitudes is
accomplished by the FeynCalc-9.0 package [28, 29]. In our one- and two-loop amplitude
calculation, we apply the FIRE [30] and Reduze2 [31] packages, in which the integration-by-
parts (IBP) identities and Lorentz invariance identities are adopted, to perform the loop
reduction and express the amplitude in terms of a certain number of independent master
integrals (MIs) depending on the loop order. A scalar multi-loop integral in d = 4 — 2e
dimensions is defined as
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d
G(ay s ay) = fH (;”)dHID 3.1

where L is the number of loops, /; is the ith loop momentum n is the number of independent
propagators, and a; € Z. The jth propagator is D; = p. — m2 with p; being the linear
combination of loop and external momenta and m; the mass of correspondmg propagator. A
specific set of D; is called a propagator family. Nonnally, we can directly use FIESTA+ParInt
program [32, 33] to evaluate the MI in the physical region, but some of the principal integrals
will be difficult to improve accuracy and the calculation is very time consuming. In the
calculation of MlIs, we firstly adopt the FIESTA+ParInt program using the sector
decomposition method to get the values of the MIs in the non-physical region, where the
convergence of the integral functions is faster and the MIs can be calculated efficiently with
very high precision. Secondly, the obtained results serve as initial conditions of a suitable set
of differential equations built upon all the MIs, and then the values of all Mls in physical
region can be evaluated through the numerical integration of the differential
equations [34, 35].

Since the energy scale fis constrained to be several TeV or even higher [16], we omit the
terms in couplings with order of O(v2/f?) (see appendix A). Throughout our calculations we
adopt the unitary gauge, and neglect the masses of electron, muon and light-quarks (u, d, s)
due to their exceedingly tiny Yukawa couplings. Generally, the amplitude for Z; — H% at
any order can be expressed as

M(Zy — H%) = M e, (q) e, (k). (3.2)

where g and k; are the four-momenta of Z and ~, respectively. The matrix element M*” can
be written as

M = Agh + BGUk{" + Cq ke + Darkl’ + Eq'q” + Fhl'k{, (3.3)
where 121 = ﬁ and § = L. As we know, the matrix element should satisfy the Ward
mZH mZH
2mZZH

identity, i.e. kj, M = 0,thus € =0 and B = A. Furthermore, the coefficients

2 2
(my — mZH)

D and F have no contribution to | M|?. Then we only consider the first three terms of the right
side of M"” in our calculation, i.e.

M — Ag’”’ + Bé]wélh + ankl ‘36/”””‘3, (3.4

and the decay width for Zy — H%y is obtained as

2 2 2 2
1mz, —my| A2 n (mz, — mj)?

['(Zy — H%) = —
G ) =3 |8 327

c2l. (3.5)

3.2. Leading-order (LO) amplitude

The LO contributions to the decay width of the Zy — H%y process in the LHM have been
comprehensively described in [23]. In this work we are going to evaluate the NLO QCD
corrections to this decay process, and thus should calculate the LO amplitude at first. The LO
one-loop Feynman diagrams can be divided into two sets of graphs: (1) triangle loop
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-H -~ _H
- - -
W, Wi, (6) 4
Zy 14 Y Zy v
(a)

S _H
W, Wy

Z A/

-— - W, Wy ) -
P
P ~ y
W Wy *’WVV\, ! ZH W Wy 7

(d)

Figure 1. Representative one-loop Feynman diagrams for Zy — H%y, where f = 7, c,
b, t, =T, V=7, Zy, Ay, and ¢ denotes charged scalars.

diagrams, and (2) tadpole and self-energy loop diagrams. Since the T — T — Zy gauge
coupling is at the O(v2/f?), it is reasonable to omit the pure 7T-quark triangle diagram.

We depict some representative triangle one-loop Feynman diagrams which contribute to
the LO decay width of Zy — H% in figures 1(a)—(d). Figure 1(a) shows some self-energy
diagrams of one external line. Figure 1(b) represents the triangle loop diagrams which are
mediated by massive charged fermions (f = 7, ¢, b, t, =T). (f = t-T represents the triangle
loop diagrams with +~7T mixing.) In figure 1(c) the triangle graphs are actually mediated by the
SM and new heavy charged gauge bosons and the mixing of these two types of particles. In
figure 1(d) the typical loop graphs are induced by scalar and scalar plus gauge boson loops.
Our calculation shows that the contribution from tadpole and self-energy diagrams vanishes.
Then from all the relevant one-loop Feynman diagrams and the Feynman rules (some of the
relevant LHM couplings are listed in appendix A) and using equation (3.4) we can get the

one-loop matrix element M’} as

MY = Arogh + Brog’k{ + Cuoki aqge . (3.6)

In order to make comparison for the analytical expressions of the form factor coefficients
with those in [23], we follow the LO analysis in [23] and present the explicit amplitude
expressions in appendix B. All the form factor coefficients A o, Bro and C g are expressed in
terms of Passarino—Veltman scalar functions, which are defined same as in [36]. Furthermore,
we divide each of the form factor coefficients, A; o and By o, into three parts contributed by
different diagram sets as”

— 3 2
Ao= > AL+ STAL + > AP,
f=T.c,bt i=1 i=1

3 2
Bio= > B?O +2 BI&? +2 BE-O’ Cio = C%r, 3.7

f=7,c,b,t i=1 i=1

where f runs over 7, ¢, b, t and +~T mixing in the LHM, G; symbolizes charged gauge bosons
(W, Wy, and W-Wy mixing), and S; denotes charged scalars. After our calculation we find that

* The nonzero contribution to the form factor Cro is only from the 7~T mixing quark triangle diagrams.
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Figure 2. Representative generic two-loop Feynman diagrams related to the NLO QCD
corrections to the Zy — H% decay.

our expressions for the LO amplitude coefficients have some differences compared with the
corresponding ones in [23]. Accordingly, we provide the explicit expressions for the one-loop
form factor coefficients appeared in equation (3.7) in appendix B.

3.3. NLO QCD corrections

The O(agw a;) contribution to the decay width is from the interference between one-loop and
QCD two-loop amplitudes for the decay channel Zy — H%. The two-loop correction
includes all the contributions from the generic two-loop Feynman diagrams shown in figure 2
which are based on the heavy quark one-loop triangle diagrams in figure 1(a) and induced by
attaching one gluon propagator to the heavy quark lines in every possible way. We express
the unrenormalized two-loop amplitude, Mb.iq0p, analytically by means of a number of
independent MIs.

The top family, corresponding to ¢ = ¢ in figure 2, can be reduced to 31 MIs by adopting
IBP technique. For example, a typical MI of the top family with 7 independent propagators is

ddll ddlz 1
em? @myd (1 — mH (I3 — mp)

12
LT — 1) 4mp?
— [—m?%[ ;’j )] : (3.8)

where [/, ; are the loop momenta and p is the mass scale of dimensional regularization. The
bottom and charm families, which correspond to ¢ = b and g = c in figure 2, can be easily
obtained from the top family by performing the replacements of m, — m;, and m, — m,,
respectively. For ¢ = T in figure 2, there are two families and each family can be reduced to
35 MIs. It is obvious that the MIs of the two families can be obtained from each other by
performing the exchange between m, and my in all propagators.

The NLO QCD bare amplitude M,_jo0p has to be renormalized to remove the UV
divergence. We choose the dimensional regularization in our calculation, and adopt the on-
shell (OS) scheme [37] in handling the renormalization of quark-masses and Yukawa cou-
plings. We note that there is no requirement for the renormalization for the relevant weak
gauge couplings except the renormalization of the quark mass in Yukawa coupling, because
the two-loop amplitude is the LO in «. Actually, the QCD NLO amplitude renormalization
for this decay channel is implemented by the charm-, bottom-, top- and 7-quark mass
renormalization for relevant Yukawa couplings, i.e. ccH, bbH, tfH, TTH and tTH couplings.
They are directly related to 6m,., émy, ém; and dmy, and the counterterms for those couplings
can be expressed as

G(0,0,0,0,1,0, )= [
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S~ _H o _H S~ _H o _H
q q q q
Zy v ZH v ZH v ZH v

Figure 3. Representative counterterm diagrams for Zy — H%y, where the crosses
signify the NLO QCD counterterms for ggH (¢ = ¢, b, t, t-T) vertices and quark

propagators.
omy 1 VAR 2y2
8Gy = —i—=[1 = =s§ + =% — = | (f=T.¢c, b 3.9
i H , [ 0T Ty f )s (3.9)
om; 1, v 2y2
60Ggyg = —i—|1 — =55 + ——= — — + c1+c 3.10
ttH v [ ) 0 f\/E 3f2 f2 /\( )\) ( )
5mT 2
6GTTH = —i— C)\(l + ¢ )\)f (311)
For the counterterm of §G,ry, we have
om; v omr v 2PL 3.12)

(SGtTH = T?(l + C/\)PR + —

We write the NLO QCD renormalized amplitude A My o as
AMnro = Myigep + Mers (3.13)

where M_jpop and Mer are the amplitudes contributed by two-loop diagrams and its
corresponding NLO QCD counterterms separately. The counterterm amplitude Mcr comes
from the contributions of counterterm diagrams shown in figure 3. We divide the total
counterterm amplitude into four groups, i.e. Mg, (¢ = ¢, b, t, +=T), which are c-, b-, t-quark
and T mixing triangle loop diagram groups, respectively. Each group has four diagrams
with a cross marked on one propagator or vertex as shown in figure 3. The total counterterm
amplitude from figure 3 can be expressed as

t—T
Mer = Y, Mip = [m” Mo + G + (b — c)] . Omayy y Omr e (3.14)
q=c,b,t m; my

where /\/lfo is the LO amplitude for the b-quark one-loop triangle diagrams, %M}ﬁo and
my

%Qb are the contributions induced by the NLO QCD counterterms for bbH vertex and
mp

b-quark propagator, i.e. the contributions from the first and the last three diagrams in figure 3
for ¢ = b, respectively. H and K can be obtained by computing the #-quark and 7 mixing
triangle diagrams in figure 3. In the OS scheme the heavy quark mass counterterm is given by
(371

_ 4712
by — -y 2200 ¢ o 22 G G-20 _ 3Gaft 4 m
T my ) 4 e(l —2¢) 4 7 \e 3 m,
(g=c, b, 1, T), (3.15)
4 —d . 3 . .
where ¢ = ———, ~g is the Euler constant, Cr = —, C(e) = (4m)T(1 + ¢€), and p is the mass

scale of dimensional regularization. Finally, the total renormalized amplitude is expressed in
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mz,(TeV) mz, (TeV)
9.838 6,600 4995 4043 3419 2085 2660 2434 2250 2129 2038 (1313 8806 6664 5395 4563 3982 3561 3249 3015 2842 2720
5 5
- ; — LO g ;, — LO
500 [ =23TeV 500 f=4TeV .
- NLO NLO

— —
=00 ) =400 )
g \ Excluded region B Excluded region
= =

300 <a> - 300] %

0.0 015 020 025 030 035 040 045 050 055 0.60 “0.10 015 020 025 030 035 040 045 050 055 0.60
C c

Figure 4. LO and NLO QCD corrected decay widths and the corresponding relative
corrections for the Zy — H%y process versus my, (or parameter c) for (a) f = 3 TeV

and (b) f = 4 TeV.

terms of a certain number of independent MIs, and their numerical calculations are performed
by adopting the FIESTA+ParInt program combined with the differential equation method.

4. Numerical results and discussion

In this section, we present some numerical results of the LO and NLO QCD corrected
Zy — H% decay widths in the LHM without T-parity. In the numerical calculation, we ignore
the masses of electron, muon and light-quark masses i.e. m, = m, = m, = my = m, = 0, and
take the other relevant SM input parameters as follows [38]

my = 80.379 GeV, my = 91.1876 GeV, my = 125.18 GeV,
m, =1.776 86 GeV, m, = 1.67 GeV, my, = 4.78 GeV, m, = 173.1 GeV,

Qe =1/137.035 999 139, Gp = 1.166 38 x 107> GeV2. 4.1)

The VEV in the SM, vgy, can be got as vey = (V2 Gp) /2 ~ 246 GeV, and one of the VEVs
in the LHM, v, which triggers the EWSB gets a modification up to the O(VSZM / 'f2) as [39]

2 2

Vém 5 X
= 11— M- = 4+ =] 4.2
1% VSM[ f2 ( 24 + 3 \J:| ( )

The strong coupling constant c,(1t) is obtained by the expression in the MS scheme up to the
two-loop order. We applied the Mathematica package RunDec [40] to evolve the strong
coupling constant ¢, up to scale u = mz,.

In the LHM there are five independent input parameters in addition to the SM input
parameters, which are chosen as f, ¢, ¢/, x, and \;/\;. In our numerical calculation, we take
f=3,4TeV,x=0,c = 1/\/5, A1/X2 = 1, and ¢ parameter varying from 0.1 to 0.6.

In figures 4(a) and (b), we depict the LO and NLO QCD corrected decay widths of the
Zy — H% decay as functions of the Zy mass (or parameter c), for f = 3, 4 TeV separately.
Recently, ATLAS experiment provides a lower limit of up to 4.5 TeV on the mass of heavy
neutral vector boson Z [13], hence in these plots we mark out the present excluded regions
which are beyond the most recent experimental constraints on the parameters space. We see

9
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mz,(TeV) mz,(TeV)
9838 66 4095 4.043 3419 2.085 2.660 2.434 2250 2120 2.03 13.13 8.806 6.664 5395 4563 3982 3561 3249 3015 2842 272
10” 107
. — LO . — LO
f=3TeV f=4TeV
NLO - NLO
10-4 Excluded region 10-4 Excluded region
- —
- ~
S0 \_»»\\\ <a> S 1007 e (b)
X = &g ~
9 9 ~
1076 1076
107" — — X 107" — —
010 015 020 025 030 035 040 045 050 055 0.60 010 015 020 025 030 035 040 045 050 055 0.60
c c

Figure 5. LO and NLO QCD corrected branching ratio for Zy — H% versus my, (or
parameter ¢) for (a) f=3TeV and (b) f=4TeV.

Table 1. LO and NLO QCD corrected decay widths for Z; — H% and the corresp-
onding relative QCD corrections for some typical values of ¢ and f.

£ (TeV) 3 4

c 0.1 0.22 0.1 0.3
' (keV)  467.585 147.573 395.925 84.342
™0 (keV) 460.878 139.190  389.752 75.099
5 (%) —1.43 —5.68 -156 —11.0

from the two figures that the plotted experiment permitted region for Zy mass is
my, € [4.5, 9.838 TeV] (corresponding to ¢ € [0.1, 0.223]) for f = 3 TeV, and my, < [4.5,
13.13 TeV] (i.e. ¢ € [0.1, 0.305]) for f = 4 TeV correspondingly. Figure 4(a) for f = 3 TeV
shows that when the parameter ¢ increases from 0.1 to 0.22 in the experiment allowed range,
the LO (NLO) decay width decreases from 467.585keV (460.878 keV) to 147.573 keV
(139.190 keV). While figure 4(b) for f = 4 TeV tells us that the LO (NLO) decay width
decreases from 395.925 keV (389.752keV) to 84.342keV (75.099 keV) with the increment
of parameter ¢ from 0.1 to 0.3. These data read off from figures 4(a) and (b) correspond to
different values of the LHM parameter set (¢ and f), which are in the most recent experiment
permitted regions, are also listed in table 1. The corresponding NLO QCD relative corrections
to the Zy — H%y decay width are presented in the table too. We can see from figures 4(a), (b)
and table 1 that the NLO QCD correction always diminishes the decay width of the
Zy — H %y process in our chosen parameter space, and the NLO QCD relative correction can
reach —11.0% for f = 4 TeV and ¢ = 0.30. It shows that the QCD two-loop correction is
very significant and should be included in the precision prediction of the decay width.

In [23], the authors calculated the branching ratio of the decay channel Z; — H% only
at the LO. For comparison, we also depict the LO as well as the NLO QCD corrected
branching ratio of Z; — H% as a function of c in figures 5(a) and (b) for f = 3 and 4 TeV,
respectively, where ¢ varies in the range of 0.1 < ¢ < 0.6. The total decay width of Zy is
calculated by using the analytical expressions for the partial decay widths of the dominant

10
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Table 2. LO contributions to the decay width of Z; — H%. I's2 and I'k2 are the
contributions induced by the boson and fermion loops, respectively, while T'L2
represents the interference between the boson and fermion loop amplitudes.

Partial decay width f=3TeV,c=0.2 f=4TeV,c=0.3

FLO(keV) 146.258 56.770
LO(keV) 20.103 19.823
)Lp?(keV) 3.360 7.749

Table 3. NLO QCD contributions to the decay width of Zyz — H%, AF}ELO, where
i=B, Fand g = c, b, t, +-T, for some typical values of the LHM parameters f and c.

Partial decay width f=3TeV,c =02 f=4TeV,c=03

ATEO(keV) —7.104 —6.743

ATEO(keV) —0.006 00 —0.005 87
ATEO(keV) —0.000 857 —0.000 833
AFFLO(keV) —1.086 —2.481

NLO

(keV) —0.004 50 —0.0106
NLO(keV) —0.001 56 —0.003 67
ATNEO, (ke V) 0.0107 0.002 24

decay channels of Zy [41]. We can see that the curves for LO branching ratio in figures 5(a)
and (b) behave similarly as the corresponding ones in [23], but have different branching ratio
values. As we know, if we only consider the contribution from the W-boson and SM fermion
loops, the LO decay width of Z; — H%y can be obtained from the analytical expression for
the LO decay width of Z — H%y in [42] by rescaling some coupling strengths and per-
forming the replacement of my; — my,. To check the correctness of our LO calculation, we
compute the contribution from the W-boson and SM fermion loops to the decay width of
Zy — H%y, and find that our numerical result is coincident with that obtained from the decay
width of Z — H%y by performing relevant replacements within the calculation error.

Now let us discuss the contributions from various groups of diagrams. Firstly, we
separate the total contribution to the LO decay width of the Zy; — H O'y decay (') into three
origins: (1) the amplitude of all the boson one-loop diagrams, M{, = 3, M o, where the
superscript i runs over ®, W=, Wi; and Wi—WH mixing one-loop triangle diagrams, (2) the
amplitude of all the fermion one-loop diagrams, ./\/lfo = Zf M{O with f running over 7, ¢, b,
t and #~T-mixing triangle diagrams, and (3) the interference between the above two ampli-
tudes. Then we can write the decay width as

IO =T + Typ + Trp. (4.3)

The values of the partial decay widths from above three components are listed in table 2.
From this table we see clearly that T'59 provides most of the contributions and has to be taken
into account. The interference between the amplitudes of MPy and Mf, TE?, gives the
contribution of one order of magmtude smaller than I'52, while the contribution component
' is about one order smaller than T'L2

We list some typical values of the two-loop QCD corrections to the decay width in
table 3. The correction component A]_"NLO (AI‘I}ICII“O) describes the contribution from the
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interference between the boson (fermion) one-loop amplitude MP, (M ) and the amplitude
Mo for the diagrams with g-quark in two-loop. The superscript ¢ represents the possible
quark (c, b, t or +=T) in QCD two-loop (shown in figure 2). We can see that the most dominant
NLO QCD correction to the decay width is AFNLO and AFNLO is the second largest NLO
QCD contribution. The NLO QCD contributions AF%},‘O, AF%O, ATREO and ATREC ar
about three orders of magnitude smaller than ATX-C, and thus can be neglected in the case of
our chosen LHM parameter space region. As shown in equation (B.1) in appendix B, the
coefficients in M{ ' for the one-loop ~T mixing triangle diagrams have the values as
ALC, = BEO, = 0, and CX9, is nonzero. Therefore, AI‘NLOT is actually only contributed by
the nonzero interference between the one-loop amplitude M} ;[ and the two-loop amplitude
M. From table 3 we can see that only AFI}I,L,(_)T has positive value, which is the third
largest correction part among all the seven correction parts listed in the table. We can
conclude that the top-induced two-loop contribution is the main source of the NLO QCD
correction.

5. Summary

In this work we investigate the Zy — H%y decay channel in the LHM without T-parity up to
the O(a2, o). At the LO level we involve the contributions from the one-loop diagrams
mediated by heavy fermions, scalars, gauge bosons, and the admixture of these later two type
particles. We revisit analytically and numerically the LO decay width for Zy; — H% and
compared them with the previous work. In our calculation, we accomplish the two-loop
evaluation by using the IBP identities for the reduction to MIs. The numerical integration for
the Mls is carried out by our developed program combining the FIESTA+ParInt package
with the differential equations method. The LO and NLO QCD corrected decay widths are
calculated by taking the LHM input parameters f = 3, 4 TeV and 0.1 < ¢ < 0.6. We focus
on the discussion of the numerical results of the decay width and NLO QCD correction by
taking the LHM parameters within the recent experimental constraint region. We find that in
the LHM parameter space region we considered, the NLO QCD correction is always negative
and the top related QCD correction is the dominant contribution at the QCD NLO. For
f=4TeV and ¢ = 0.3, the NLO QCD corrected decay width has the value of 75.099 keV
and the NLO QCD relative correction can reach —11.0%.
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Appendix A. Relevant couplings
The Feynman rules of the couplings relevant to our work, can be read out from the

Lagrangian shown in equation (2.10), which have been already provided in [24, 26]. In the
following we list some of the related LHM couplings in unitary gauge.

] (f=r1,¢b), (A.1)
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.my 1 v S 2y2 2
GHi :—1—1—— +————+—c1+c s A2
ttH v |: 2 f \/— 3f2 fz A ( /\):| ( )
GHL = —ic2(1 + &), (A3)
f
v
GHL = "Y1 4 )Py + —-cfPL, (A.4)
v f A
GVLH__ﬁ’ GALH_g, A5
Ty 4 Ty 4s ( )
v . 8C aLH _ 8¢
bezH Z’ beZH K’ (A.6)
GVLH_g’ GALH__E’ AT
cCZy 4 cCly 4 ( )
c
GtYZﬁH = thzﬁH = 7g_’ (A-8)
4s 4s
V.LH v? A,LH v
GTTZH ~ O = GTTZ ~ O = (A.9)
A f
vid _ .2 V¢ ALH _ 2o ve
tTZy C/\ 4_](:9’ tTZy )\ 4fS (Alo)

where P g = (1 F )/2, GV and G* are the vector and axial-vector coupling Constants

shown as i(GY + G4y)~#, and sy gives the mixing of Higgs fields, sy =~ 2\/— — =

XV
\/_Tf ~ OW/f).

Appendix B. Amplitude coefficients

Here we provide the explicit formulas for the relevant form factor coefficients introduced in
(3.7). For fermion loop the coefficients are given by

LO __ NfoTf 8SWC

A= e SOy — 1) my &y (2(By — By) + (g — D(Caldyy — vy + 1) + 2)],
2
B%'O:i-Af,
' g — D
At T — B%OT = 0
1 gZswev?
Cior = 2g Vo ety (2 + DC. — ypc2Cal,
472 sy f?
(B.1)
where f=7, ¢, b, 1, N/ =1, N'=N!=N/=3, and we define yf:mf/mZzH,
)’H:mé/mzz,, and yT:m%/mZZH. Oy is the charge of fermion, ie. Q,= —1,

0.=0;,=2/3 and Q, = —1/3. T; denotes the third component of isospin: 7° = T = 1 and
T? = T? = —1. The coupling constant g 7 n the first expression of equation (B.1) is defined as
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g7y = iGFy where the explicit expressions for Ggpy are given in equations (A.1-A.3).
B,, B, C,, C. and C, are defined as

B, = Bo(mg, mf, mj),

B, = By(mz,, mf, mj),

C,= mZZH Co(mlf,, mzzH, 0, mj%, mfz, mf),
C.= mZ2H Co(mfl, mzzﬁ, 0, m,z, mTZ, mtz),

2 2 2 2 2 2
Co=mgz, Co(my, mz , 0, mg, m, my), (B.2)

where the integral functions By and C, are the known Passarino—Veltman scalar functions.
For the one-loop diagrams containing W* and W;F bosons, the coefficients Ag, Bg, and
Cg, (i =1, 2, 3) are given by

1
- [Bs. — Bs)(yy(1 = 2y,) + 2(1 — 6y,)
< 6472 (yy — 1)yvf, Gia G1) O € Yw ( Vi) V)

— 2Cq,, Yy (1 = 6yy) + 3y (dys + 4yy, — 1) — 12y2 — 6y, + 2)
+ v (1= 2yp) + vy (= 1297 + 4y, — 1) + 2y, (6yy, — DI,

Ag)=cC

B = —2— Ag,
Oy — D
Ce® =0, (B.3)
where Cg, = —%[cg“s(c2 — sDswvl, yy = mj /m7,, yy = my /m7 . and we define
Bg,, = Bo(mfy, mi, m3),
Ba,, = Bo(m7, . myy, myy),
Car, = mz, Colmgz, mz,, 0, miy, myy, myp). (B4)

Moreover, A'@? and Bé? can be obtained from A]é? and Blé? by performing the replacement
1

of my — my, and Cg, — Cg,, where Cg, = ——[g*swv(c? — s?)].
cs

The coefficients Aé?, Bé? and C(L;? are concerned with the loop diagrams with the
mixing between W and Wy, and they are given by

LO 1
A@::C@3%ﬂgﬂ—lbwy%
X {Boy, = Bou)l=yy, Oy + 100y = 1) = Oy = DO +yw) = vy, ]
= Co,, O = Dywlyu( = yw = Svw,) + 35 + 100y, + yw + ¥y, + Sy, — 21
= Cay, O = Dyw, (1 = Syw = y) + 0y + Sy @y, + 1 + 33, + vy, — 21
— Oy — DOy, O + 10y — D + Oy — DOy + yy) + yv%/H)}’

2
— = Ag,
Gy — D¢

CLo =0, (B.5)

LO _
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1
where Cg, = —[g*swv(c? — s?)], and
2cs . 5
BG3[, = BO(mH’ mW? mWH)’
Bg,, = Bo(m},, my, my, ),
Cay, = mz, Colmiz, m7,, 0, myy, my, . my),
Cg,, =m;, Colmg, m7,, 0, my , my, my,). (B.6)
The .A]S“lo and B]S“IO coefficients for loop diagrams contributed by scalars and scalars plus
gauge bosons are presented as
1
S T6-2(v — v
1672(yy — Dy
X g +yw = %) +Cs, Oy — DOy + vy — 3p)

= Cs,,(yy — DywQy + 3 —yw — 2+ Oy — DOy + yw — W1

2
BO— 2y,
STy -7

ko =, (B.7)

A =c [(Bs,, — Bs,)

1
where Cg, = g[eg%cz — W (25 — sl vy = moz/mzz,, and
Bs,, = Bo(mj;, myy, m3),

2 2 2
Bs, = BO(mZH’ My, mg),

_ 2 2 2 2 2 2
CS]a = Mgz, CO(mH’ mz, ., 0, mgy, My, m(;s),
2 2 2 2 2 2
CS]b =mg, Co(my, mz., 0, my, mgy, my). (B.8)

The mixing angle s,, in the pseudoscalar and singly-charged sectors can be easily extracted in

/ /
% ~ 22 The AIS“ZO and BIS“ZO coefficients can be
v: + 8/ v

obtained by doing the replacement of my — my, and Cs, — Cs, in equation (B.7),

leg?(c? — sH)(c* + sV (V250 — 5,)].

terms of the VEVs, s, =

where Cs, =

4¢3s3
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