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Abstract
We analytically find a new simple α-decay formula for a modified harmonic
oscillator with the spherical Coulomb potential by employing Wentzel–Kra-
mers–Brillouin approximation in terms of taking into account the Bohr–
Sommerfeld quantization condition. We systematically investigate the favored
α-decay half-lives of  Z52 107 parent nuclei. Our results are in good
agreement with the experimental data and other models. We emphasize the
importance of shape of the nuclear potential in the examination of α-decay
half-lives of the parent nuclei.
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1. Introduction

The first correlation between the half-life T1/2 and the decay energy Q of the emitted α

particle was empirically found by Geiger and Nuttall in 1911 [1]. The origin of this relation
was understood after quantum mechanics was developed. In 1928, this relation was explained
within the framework of the quantum tunneling through the Coulomb barrier by Gamow [2],
and independently by Gurney and Condon [3]. The famous decay law of Geiger and Nuttall
depending on α-decay energy Q is = + -T A BQlog 1 2

1 2 and the decay constants A as well
as B are obtained by fitting experimental data. In the Gamow model, the constants A and B are
related to the parameters of the Coulomb potential and mass of the interacting particles. The
extended version of the Geiger and Nuttall decay law was given by Viola–Seaborg [4]. The
Viola–Seaborg relation is = + +-T A BQ Flog log1 2

1 2 . Here Q, A, B and F are the α-
decay energy, coefficients dependent on atomic number and hindrance factor presented to
unpaired nucleons in the nucleus, respectively [4]. The parameter in the Viola–Seaborg
relation was readjusted for new experimental data of the nuclei by Sobiczewski et al [5].

Since the nuclear decay is one of the main sources of our knowledge about the nuclear
structure, the experimental and theoretical studies on the determination of decay half-life are
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still one of the most current issues in the nuclear physics. After Geiger–Nuttall, the discovery
of the new empirical or semi-empirical formulas to determine the decay half-life of the nuclei
is still up to date over the last forty years. Some of the interesting articles are the followings:
Poenaru et al [6, 7] develop the analytical super asymmetric fission model (ASAFM). In
ASAFM, the action integral is defined from the overlapping region (inner part of the barrier)
to the separated fragments region and obtained the analytical formula called the universal
curve of cluster radioactivity (UNIV). A nearly universal straight line for the α-decay half-life
is found as a function of Z Q0.6 in [8]. The analytical formula depending on atomic mass
number A, atomic number Z and cluster decay energy Q for decay half-life is suggested by
Royer [9] and a detailed examination is given in [10] as well as the modified form in [11, 12].
Royer also extends the generalized liquid drop model (GLDM) to include the volume, sur-
face, a proximity energy term and Coulomb energies as well as numerically reproduce the α-
decay half-life of the parent nuclei by Wentzel–Kramers–Brillouin (WKB) method [13]. In
[14], the α-decay half-life of super-heavy nuclei is examined by extending the GLDM with
1977 nuclear proximity potential. The empirical expressions depending on the angular
momentum of the α-particle for the even–odd, odd–even and odd–odd nuclei are proposed in
[15] and extended version is studied in [16]. Another angular momentum depended empirical
relations are given in [17, 18]. Horoi suggests a truncated Coulomb potential from inner
turning point to touching radius and taking the point Coulomb potential from touching radius
to outer turning point and finds an analytical cluster decay formula [19]. The decay formula of
Gamow is modified by using some approximation and linearization depending on the cluster
decay energy, atomic number and atomic mass of the interaction nuclei [20]. In [21, 22], a
decay formula called universal decay law (UDL) based on the R-matrix description of the
cluster decay is obtained by using the Coulomb–Hankel function with some approximation.
The standard deviations of α-decay half-lives are calculated with the UNIV and compared
with UDL [21, 22] for a total of 534 α-emitters [23]. Delion [24] investigates the α-decay
half-life formula by using the outgoing spherical Coulomb–Hankel function. The last term of
obtained formula is modified by using the ground state of a shifted harmonic oscillator [24].
The universal decay formula studies based on the WKB penetration probability or the R-
matrix description of the cluster decay are to proceed with some approximations [20, 25–31].

In literature, it is seen that the universal decay formulas obtained empirically or semi-
empirically depend only on Coulomb potential parameters and atomic mass. Moreover, the
universal decay formulas are linearized by using some approximation with the atomic mass
number, atomic number and angular momentum quantum number. However, if we want to
understand the dynamic nature of the parent nucleus, we need to take into account not only
the Coulomb barrier, but also the effective potential between the daughter nucleus and the
alpha cluster. In order to study the dynamic structure of the parent nuclei, the effective
potential could be obtained by the inversion from the universal decay formula to the effective
potential within the framework of the WKB penetration probability or the R-matrix
description of the cluster decay. In this paper, our aim is to find the α-decay half-life formula
depending on the parameters of the effective potential by employing WKB method within the
framework of the Bohr–Sommerfeld quantization condition for the effective potential
including the spherical Coulomb potential and modified harmonic oscillator.

In next section, we introduce the model including the α clustering in parent nuclei within
the framework of the Bohr–Sommerfeld quantization condition by employing the WKB
method. In section 3, we give the results and discussion. Then, we conclude the results in
section 4.
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2. The model

One of the first successful applications of the quantum mechanics is the use of quantum
tunneling through a potential barrier by Gamow [2], independently by Gurney and Condon
[3] to explain the α-decay. With the idea of tunneling of the α particle through the Coulomb
barrier, Gamow obtained a simple analytical formula similar to the empirical formula pro-
posed by Geiger and Nuttall [1] for the decay half-life of the α particle.

Buck et al [32, 33] has proposed a simple cluster model so that the α particle is already
preformed in the parent nucleus and revolves around it. The interacting potential between the
α cluster and core (daughter nucleus) purposed by Buck et al [32, 33] has the square-well plus
surface charge Coulomb form for the inside of the parent nucleus and a point charge Coulomb
potential for the outside in figure 1. The model potential of Buck et al [32, 33] is as follows

Figure 1. The effective potentials in terms of the different potential depths are shown as
a function of the nuclear radius for the 218Th 214 Ra+α system with α-decay
energy Q=9.848 MeV. Dashed line shows the effective potential of Buck et al [32].
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where VN, R and C=2(Z−2)e2 are the potential depth and radius as well as the product of
charges, respectively. This potential model has two important features. First one, an analytical
relationship between the experimental observables such as the excitation energy E*, half-lives
T1/2, etc and potential parameters can be obtained. In this way, it can be easily discussed how
the experimental observables depend on nuclear potential parameters. Secondly, there is one
degree of freedom in the potential which is depth of the nuclear potential. Decreasing the
degree of freedom reduces the uncertainty in the nuclear potential [34]. On the other hand,
since the nucleus has a diffusive structure towards the surface, the square-well potential is not
suitable in describing the α cluster and core interactions. The model of Buck et al [32, 33] has
also a simplification for the spherical Coulomb potential which is considered a constant inside
of the nucleus. However, the Coulomb potential has r-dependent form inside of the nucleus
for the spherical nuclei.

In this paper, we propose a modified harmonic oscillator potential to systematically
examine the α-decay half-life of the parent nuclei as follows

= - +V r V V r , 2N 0 1
2( ) ( )

where V0 and V1 are depth and diffusivity parameters of the nuclear potential. This potential
model is very important from a physical point of view. While we expand an arbitrary potential
V(r) at the equilibrium distance, we can only take the constant plus harmonic oscillator terms
for the low vibration limit [35]. Therefore, we can analytically determine the approximate
form of realistic nuclear potential in the low vibration limit. Moreover, the modified harmonic
oscillator has a diffused form towards the surface of the nuclei and has an analytical solution
with the spherical Coulomb potential.

The Coulomb potential due to a point charge Zαe interacting with a charge Zde dis-
tributed over a uniformly sphere with radius RC is taken as [36]
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where = +aR A A1.07C d
1 3 1 3( ) [37]. The symbols Zα, Aα, Zd and Ad denote the atomic

numbers, and atomic mass numbers of and daughter nuclei, respectively. Since we only
consider the favored α-decay of the parent nuclei, the angular momentum quantum number L
is taken zero in the calculations. The effective potential becomes with the spherical Coulomb
potential as follows
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2. The innermost, inner and outermost

classical turning points r1, r2 and r3 can be calculated by Veff(r)=Q equation. The innermost
turning point r1 is zero. The inner and outermost turning points can be analytically obtained as

r2= + -
-

Q V C

V C
0 0

1 1
and r3=C

Q
2 . The turning points explicitly depend on the effective potential
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parameters and α-decay energy Q. We plot the effective potential given by equation (4) and
compare the model of Buck et al [32, 33] given by equation (1) in figure 1. The advantage of
our potential model is both more physical than the model of Buck et al [32, 33] and has
analytical solution with the spherical Coulomb potential. The weakness of our model is that it
has a sharp discontinuity in the region between r2 and at the top of the barrier. This
discontinuity can be removed by adding the inverted harmonic oscillator potential at the
region of top of the barrier [38, 39]. Moreover, many parent nuclei have the deformed
structures and the deformation effect should be take into account in calculations [40–43]. In
order to avoid losing simplicity in our model, we do not consider deformed or more complex
potential forms.

In order to reduce the degree of freedom of the effective potential describing the inter-
action between the daughter nucleus and α cluster, we take into account the cluster model by
using the Bohr–Sommerfeld quantization condition which is [33]:

ò
p

= +rk r Gd 1
2

, 5
r

0

2

( ) ( ) ( )

where = -m


k r Q V r2
eff2( ) ( ( )) is the wave number in the internal region of the effective

potential. Q and μ are the α-decay energy and reduced atomic mass of the daughter and α

cluster system, respectively. In calculation, Q and μ are evaluated from [49]. The relation
between V0 and V1 parameters can be analytically found by using the Bohr–Sommerfeld
quantization condition as follows

m
= +
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under the integral condition, Q+V0>C0 and V1>C1. Thus, we have the opportunity to
systematically examine the α-decay half-life of parent nuclei with a single potential parameter
V0. The global quantum number G in equation (5) is determined by Wildermuth rule [44].

In semiclassical WKB approximation, the α-decay width Γ is given by [45]

m
G = -


PF S

4
exp 2 , 7

2
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where P, F and S23 are the preformation factor of the daughter-α cluster system, the
normalization factor and the action integral, respectively. The normalization factor is [45]
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with the integral condition, Q+V0>C0 and V1>C1. The action integral S23 is as follows
[45]

ò k=S r rd , 10
r

r

23
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where k = -m


r V r Q2
eff2( ) ( ( ) ) is the wave number in the barrier region of the effective

potential. With the integral conditions Q>0 and > C Q r 02 2 in equation (10), the action
integral can be analytically obtained as,

J. Phys. G: Nucl. Part. Phys. 47 (2020) 025102 O Bayrak

5



m
= - -


S

C

Q

Qr

C

Qr

C

Qr

C

2
arccos . 1123 2

2 2

2

2

2

2

2

2⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟ ( )

The relation between the α-decay half-life and decay width is =
G

T1 2
ln 2 [45]. With

equation (7) the decay half-life can be formulated by the following equation,

m
=
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T
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ln 2 4
e . 12S

1 2
2 23 ( )

Here, the most dominant term in calculation of α-decay half-lives of the parent nuclei is the
action integral S23 depending on the reduced mass and atomic number of daughter-α system,
α-decay energy and r2 terms. In fact, the action integral is the area intersecting between
Coulomb barrier and decay energy from the turning point r2 to turning point r3 in figure 1.
Since the turning point r3 is constant for a decay mechanism under examination, the area
depends on r2 turning point. Since the turning point r2 also depends on the potential
parameters V0 and V1, the form of the nuclear potential seems to be important in determining
the action integral and the α-decay half-life. As a result, the nuclear potential should be taken
into account in cluster decay calculations.

Inserting the normalization factor F in equation (9) and the action integral S23 in
equation (11) into (12) and taking the decimal logarithm, we can analytically obtain decay
formula as

= +T A
B

Q
log , 131 2 ( )

where A and B are decay parameter as follows:
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It should be noted that the outermost turning point r3 is generally much larger than the outer
turning point r2, i.e. r r3 2 . Therefore, an approximation to the terms in round brackets in B
parameter can be made [20]. By using basic principles of the quantum mechanic, we obtain
the traditional Geiger and Nuttall formula [1] for the modified harmonic oscillator in terms of
the spherical Coulomb potential. The most important feature of this formula is that it
establishes a correlation between the experimental observables and parameters of interaction
potential. In this way, we can examine the nuclear structure and reaction dynamic of the
parent nuclei [32, 46–48].

3. Results and discussion

Considering the α clustering in the parent nucleus by using Bohr–Sommerfeld quantization
condition with the Wildermuth rule, we systematically examine the ground state to ground
state α transitions of the parent nuclei in the range of  Z52 107 nuclei which have 136
even–even, 48 even–odd, 49 odd–even, 30 odd–odd and totally 263 isotopes. In the calc-
ulation, we have three parameters which are depth of the nuclear potential V0, global quantum
number G and preformation factor P. In the optimization of the parameters V0, G and P, we
firstly use the literature values for G and P parameters in [43, 45] and determine V0 values for
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each decaying parent nuclei by using equation (13) and calculate average value as
V0=195.8 MeV and the root-mean-square (rms) deviation δ=0.58 for all parent nuclei. By
using G and P in [33], we calculate average value of potential depth V0=223.0 MeV and
rms error δ=0.53. By changing potential depth we reduce the rms error and we find
V0=221MeV as well as δ=0.52. In order to compare our results with Buck et al [33], we
recalculate α-decay half-lives of the parent nuclei for the model of Buck et al [33] since it is
only calculated the α-decay half-lives of even–even nuclei in [33] and the α-decay energy as
well as reduced mass of daughter-α cluster are slightly different in their calculations. We
obtain the total rms error of Buck et al [33] model is δ=0.53 for all parent nuclei.

Taking into account the neutron shell closure, we optimize global quantum number G
and determine G=20 for N 82, G=22 for < N82 126 and G=24 for N>126. We
choose the preformation factor to be P=1.25 for even–even nuclei, P=1 for odd-A nuclei
and P=1 for odd–odd nuclei. Thus, we calculate average value of potential depth as
V0=223.1 MeV and δ=0.484 and search optimum values of potential depth as
V0=222MeV and obtain rms error δ=0.482. In table 1, we calculate the α-decay half-lives
of spherical even–even parent nuclei from the ground state to ground state α transitions and
compare with the experimental data and theoretical models. In calculation, the α-decay
energy and reduced mass of daughter-α cluster system are evaluated from [49]. The first
column shows symbols of the parent nuclei and the second column is the α-decay energy.
The third and fourth columns denote the decimal logarithm of the experimental and our
theoretical α-decay half-lives. The fifth, sixth and seventh columns show logarithmic ratio of
the experimental and theoretical α-decay half-lives which are the present model, Buck et al
[33] model and Denisov et al [41] model called unified model for the α-decay and α-capture
(UMADAC), respectively. We recalculate the α-decay half-lives of all parent nuclei with the
model of Buck et al [33] by employing same α-decay energy Q and reduced mass μ of
daughter-α cluster system in our calculations in table 1. It is know that there are differences in
the use of the α-decay energy Q and reduced mass μ [17]. In table 1, we compare our results
with Buck et al [33] model and UMADAC model [41] which take into account the quad-
rupole and hexadecapole deformations of the daughter nuclei. Our theoretical model seems to
produce better results than Buck et al [33] and UMADAC [41] models for even–even parent
nuclei (table 1). Similar comparisons for the α-decay half-lives of the spherical even–odd,
odd–even and odd–odd parent nuclei are shown in tables 2 and 3, respectively. In figure 2, we
show the decimal logarithm deviations between the experimental and calculated α-decay half-
lives for the even–even (e–e), even–odd (e–o), odd–even (o–e) and odd–odd (o–o) parent
nuclei versus the atomic number Z of the parent nuclei. The decimal logarithm deviations
between the experimental and calculated α-decay half-lives are approximately ±0.5 which
are reproduced to within a factor of three.

For a more quantitative comparison of deviation between the experimental data and
theoretical results, we calculate the rms deviation of the decimal logarithmic values by
employing the following equation [41]

åd =
-

-
=n

T T
1

1
log log , 15

i

n

i i
1

10 ,1 2
theo

10 ,1 2
exp 2( ) ( )

where n indicates number of the parent nuclei. In table 4 we calculate rms errors of the
decimal logarithm of the favored α-decay half-lives in the range of  Z52 107 parent
nuclei which have 136 even–even, 48 even–odd, odd–even 49, 30 odd–odd and totally 263
isotopes. The first, second and third line show the rms errors of the present study, Buck et al
[33] and UMADAC [41] models. The other lines shows different models and are taken from
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[41]. The present model produces better results than other models in calculation the α-decay
half-lives of the parent nuclei in table 4.

In figure 3, we plot the decimal logarithm α-decay half-lives of Os, Hg, At and U nuclei
as a function of Q−1/2 by using the α-decay formula in equation (13) and compare the
experimental α-decay half-lives of parent nuclei. There is clearly a linear correlation between
the decimal logarithm half-lives and the parameter Q−1/2. The effect of neutron shell closure
is obviously seen for At isotopes in figure 3.

4. Conclusion

We systematically examine the α-decay half-lives of 263 parent nuclei, which have 136
even–even, 48 even–odd, 49 odd–even, 30 odd–odd and totally 263 isotopes from the ground

Table 1. Comparison of the experimental and calculated α-decay half-lives of spherical
even–even parent nuclei for the ground state to ground state α transitions. Q are
evaluated from [49] and the experimental half-lives are taken from [41].

Parent
nuclei

Q MeV( )
[49]

Tlog10 1 2
exp (s)

[41] Tlog10 1 2
theo(s)

log
T

T10
1 2
exp

1 2
theo

log
T

T10
1 2
exp

1 2
Buck

[33]

log
T

T10
1 2
exp

1 2
Denisov

[41]

Nd60
144

84 1.903 22.86 22.87 0.01 0.107 −0.58
Sm62

146
84 2.529 15.51 15.21 0.30 0.36 −0.12

Gd64
148

84 3.271 9.37 9.05 0.32 0.37 0.01
Dy66

150
84 4.351 3.08 2.73 0.35 0.4 0.27

Pb82
186

104 6.47 0.68 0.92 −0.24 −0.15 0.28
Pb82

188
106 6.109 2.06 2.4 −0.34 -0.24 −0.16

Pb82
190

108 5.698 4.25 4.27 −0.02 0.09 0.12
Pb82

192
110 5.221 6.57 6.71 −0.14 −0.02 0.34

Pb82
194

112 4.738 9.99 9.57 0.42 0.55 0.86
Pb82

210
128 3.792 16.57 15.57 1. 1.06 −0.02

Po84
204

120 5.485 6.28 6.38 −0.1 0.05 0.01
Po84

206
122 5.327 7.14 7.23 −0.09 0.07 0.06

Po84
210

126 5.408 7.08 6.81 0.27 0.43 0.8
Po84

212
128 8.954 −6.52 −6.86 0.34 0.32 0.15

Po84
214

130 7.834 −3.78 −3.92 0.14 0.14 0.06
Po84

216
132 6.906 −0.84 −0.9 0.06 0.08 −0.21

Rn86
210

124 6.159 3.95 4.12 −0.17 −0.02 0.47
Rn86

212
126 6.386 3.16 3.15 0.01 0.16 0.37

Rn86
214

128 9.209 −6.57 −6.79 0.22 0.19 0.18
Rn86

216
130 8.197 −4.35 −4.22 −0.13 −0.13 −0.32

Rn86
218

132 7.263 −1.46 −1.33 −0.13 −0.12 −0.47
Rn86

220
134 6.405 1.75 1.9 −0.15 -0.12 −0.35

Rn86
222

136 5.59 5.52 5.68 −0.16 -0.12 −0.25
Ra88

214
126 7.273 0.39 0.61 −0.22 -0.08 0.19

Ra88
216

128 9.525 −6.74 −6.85 0.11 0.09 −0.01
Th90

216
126 8.073 −1.57 −1.2 −0.37 −0.24 −0.05

Th90
218

128 9.848 −6.96 −6.93 −0.03 −0.06 −0.16
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state to ground state α transitions by using WKB method with taking into account the Bohr–
Sommerfeld quantization condition in terms of the Wildermuth rule. We propose the modified
harmonic oscillator potential which is more convenient than the model of Buck et al [33] and
has analytical solution with the spherical Coulomb potential in order to explain the decay
mechanism of the daughter-α interaction systems. We reduce the degree of freedom to one
(V0) in the effective potential by employing the Bohr–Sommerfeld quantization condition and
find the analytical formula for the α-decay half-life. We compare our result with the exper-
imental α-decay half-lives, Buck et al [33], UMADAC [41], and other empirical or semi-
empirical models [9, 10, 50, 51]. Although we do not take the deformation of the parent
nuclei into consideration, our model produces better results than UMADAC model [41]. We

Table 2. Same with table 1 but for spherical even–odd and odd–even parent nuclei.

Parent
nuclei

Q
(MeV)
[49]

Tlog10 1 2
exp (s)

[41] Tlog10 1 2
theo(s)

log
T

T10
1 2
exp

1 2
theo

log
T

T10
1 2
exp

1 2
Buck

[33]

log
T

T10
1 2
exp

1 2
Denisov

[41]

Pm61
145

84 2.323 17.3 17.17 0.13 0.29 −0.62
Eu63

147
84 2.991 10.98 11.01 −0.03 0.12 −0.54

Po84
207

123 5.215 8. 7.95 0.05 0.31 0.03
Po84

213
129 8.536 −5.38 −5.74 0.36 0.44 −0.3

Po84
215

131 7.526 −2.75 −2.89 0.14 0.24 −0.56
At85

209
124 5.757 5.68 5.62 0.06 0.31 −0.03

At85
211

126 5.982 4.79 4.56 0.23 0.48 0.2
At85

213
128 9.255 −6.9 −7.13 0.23 0.3 −0.11

At85
215

130 8.178 −4. −4.43 0.43 0.52 −0.06
Rn86

215
129 8.839 −5.64 −5.81 0.17 0.25 −0.53

Rn86
217

131 7.888 −3.27 −3.23 −0.04 0.05 −0.84
Fr87

213
126 6.905 1.54 1.62 −0.08 0.15 −0.08

Fr87
215

128 9.54 −7.07 −7.11 0.04 0.11 −0.47
Ac89

215
126 7.746 −0.77 −0.47 −0.3 −0.07 −0.24

Ac89
217

128 9.832 −7.16 −7.11 −0.05 0.01 −0.39
Ac89

219
130 8.827 −4.93 −4.74 −0.19 −0.11 −0.62

Pa91
217

126 8.489 −2.45 −1.95 −0.5 −0.28 −0.43
Pa91

219
128 10.081 −7.28 −7.02 −0.26 −0.19 −0.68

Table 3. Same with table 1 but for spherical odd–odd parent nuclei.

Parent
nuclei

Q MeV( )
[49]

Tlog10 1 2
exp (s)

[41] Tlog10 1 2
theo(s)

log
T

T10
1 2
exp

1 2
theo

log
T

T10
1 2
exp

1 2
Buck

[33]

log
T

T10
1 2
exp

1 2
Denisov

[41]

At85
208

123 5.751 6.04 5.64 0.4 0.65 0.24
At85

214
129 8.988 −6.25 −6.51 0.26 0.33 −0.26

Fr87
216

129 9.174 −6.15 −6.28 0.13 0.2 −0.27
Fr87

218
131 8.013 −2.97 −3.22 0.25 0.35 −0.26

Ac89
218

129 9.376 −5.97 −6.09 0.12 0.19 −0.33
Pa91

218
127 9.815 −3.76 −6.45 2.69 2.75 1.87
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Figure 2. The decimal logarithm deviations between the calculated and experimental α-
decay half-lives versus the atomic number of parent nuclei Z in the range of
52�Z�107 for the even–even (e–e), even–odd (e–o), odd–even (o–e) and odd–odd
(o–o) nuclei.

Table 4. Rms errors of the decimal logarithm for different models. In table, first and
second lines show rms errors of the decimal logarithm of the favored α-decay half-lives
in the range of 52�Z�107 parent nuclei which have 136 even–even, 48 even–odd,
49 odd–even, 30 odd–odd and totally 263 nuclides. Other lines are taken from [41].

Total Even–even Even–odd Odd–even Odd–odd References

0.4818 0.2896 0.5060 0.5952 0.8397 This study
0.5335 0.3009 0.5781 0.6960 0.8981 [33]
0.6248 0.3088 0.7816 0.7621 0.7546 [41]
1.3813 1.2928 1.4300 1.5607 1.2751 [50]
1.1130 0.3837 1.4762 1.3688 1.3340 [9]
1.1285 0.3712 1.5425 1.3541 1.3307 [51]
1.0185 0.5165 1.1611 1.3348 1.2568 [10]
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have also achieved better results than Buck et al [33] and other empirical or semi-empirical
models [9, 10, 33, 50, 51] in explaining the α-decay half-lives of the favored nuclei. In
calculations of the α-decay half-life, we observe that the nuclear potential should be taken
into account since shape of the nuclear potential changes the turning point r2 and action
integral as well as the decay half-life of the parent nuclei. Since it can be analytically
established a correlation between the experimental data and potential parameters in our
model, we might have more information about nuclear structure and reaction dynamic of the
parent nuclei [32, 46–48]. We only consider the first three terms of the Taylor series of the
realistic nuclear potential in our nuclear potential model. A more suitable α-decay half-life
formula could be obtained analytically, taking into account more terms in Taylor series of the
realistic nuclear potential.

Figure 3. The linear relations between the decimal logarithm α-decay half-lives and α-
decay energy Q−1/2 for Os, Hg, At and U isotopes. The solid lines show the theoretical
results. Circle, square, star and triangle show the experimental α-decay half-lives.
Numbers on experimental data show neutron numbers N related Isotopes.
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