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Abstract
With the development of electron scattering experiments off exotic nuclei,
many theoretical researches have been devoted to investigate the nuclear
charge form factors ∣ ( )∣F qC

2 recently. In this paper, we extend the studies of
electron scattering by combing the deformed Hartree–Fock–Bogolyubov
(HFB) model and the distorted wave Born approximation (DWBA) method.
Comparing the theoretical ∣ ( )∣F qC

2 with the experimental data, the validity of
the deformed HFB model to describe the nuclear density distributions can be
verified for both the spherical and deformed nuclei. By further investigating
the ∣ ( )∣F qC

2 of the isotopic chain, the effects of the nuclear deformation on the
changing trends of ∣ ( )∣F qC

2 of isotopes are provided. For even–even Xe iso-
topes, the nuclear deformation can influence the positions of the diffraction
minima of ∣ ( )∣F qC

2. For odd-A Cs isotopes, the nuclear deformation can affect
the values of diffraction minima of ∣ ( )∣F qC

2. The studies in this paper can offer
useful guidances for the coming electron scattering experiments on unstable
nuclei.
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1. Introduction

Electron scattering plays a significant role in studying nuclear electromagnetic structures
[1–6]. In past decades, plenty of electron scattering experiments have been performed on
stable nuclei and a large amount of nuclear information has been accurately extracted, such as
the charge radii and charge density distributions [7, 8]. There are two main benefits to use the
electron as probes. On one hand, the basic theory of electromagnetic interaction between
electron and nuclei is well understood. By the electron scattering, the theoretical uncertainties
in the data analysis can be significantly eliminated. On the other hand, compared with the
strong interaction, the electromagnetic interaction is much weaker, which means the prop-
erties of the nuclei can hardly be influenced.

In recent years, on account of the new experimental phenomena discovered in exotic
nuclei, the researches on the structures of unstable nuclei have increasingly become a hot
point in nuclear physics [9–12], for example the neutron skin, the proton halo, and the bubble
nuclei [13–16]. It has been received considerable attention to investigate the nuclear structure
of short-lived nuclei by the electron scattering. For this purpose, the new-generation radio-
active isotope facilities are constructed at RIKEN [17–19] and GSI [20, 21]. The new
technique self-confining radioactive-isotope ion target can perform the ion-trapping
phenomenon in electron storage ring, and produce the exotic nuclei in A=130 region of
nuclear chart [22]. The first elastic electron scattering experiment has been finished on the
nucleus 132Xe recently [19]. With the new facilities, the structure of nuclei far from the β-
stable line can be measured by the electron scattering in the future.

In order to better interpret the experimental data, many theoretical models are developed
accordingly to calculate the electron scattering form factors. The plane-wave Born approx-
imation (PWBA) is considered as a convenient method [2, 3], which expresses the scattering
form factors as the Fourier transformation of the charge density distributions. However, the
PWBA calculations are not accurate enough, because the nuclear Coulomb distortion effects
are neglected when applied to the heavy nuclei. In order to obtain more precise results, the
distorted wave Born approximation (DWBA) method is developed where the nuclear Cou-
lomb distortion effects on wave functions of scattered electron are taken into account [23–25].

With the DWBA method, the charge form factors ∣ ( )∣F qC
2 have been systematically

investigated where the corresponding charge density distributions are calculated from a
variety of different nuclear structure models, such as the relativistic-mean-field (RMF) model,
the shell model, the Hartree–Fock–Bogolyubov (HFB) model and the three body model [9,
26–36]. By comparing the theoretical results with the experimental data, the validity and
suitability of the nuclear structure models can be examined. Nevertheless, for some nuclei,
there are deviations between the theoretical ∣ ( )∣F qC

2 and experimental data. This is due to the
assumption of the spherical symmetry during the calculations. It has been proved experi-
mentally and theoretically that most nuclei are deformed [37–40]. The influences of defor-
mation on electron scattering are first discussed in [41, 42]. In recent researches [43, 44], the
authors developed the scattering models by combining the deformed RMF model and the
DWBA method. Based on the deformed scattering model, the ∣ ( )∣F qC

2 of even–even nuclei
and odd-A nuclei are calculated.
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Apart from the RMF model, the deformed HFB method is also extensively applied in
studying the nuclear properties of exotic nuclei. For instance, the nuclear energies of spherical
and deformed nuclei, the structure of halo nuclei and weakly bound nuclei are investigated in
[45–49]. By the electron scattering, the nuclear density distributions and single particle wave
functions from deformed HFB model can also be discussed. In recent paper [50], the authors
calculated the magnetic form factors within the deformed HFB model for the first time. By
comparing the theoretical results with the experimental data, the reliability of single-particle
wave functions obtained by the deformed HFB model are demonstrated.

Based on previous researches, we further extend the studies of the nuclear charge form
factors ∣ ( )∣F qC

2 to the region of deformed HFB calculations. A developed scattering model is
constructed by combining the deformed HFB model and the DWBA method. Some typical
spherical and deformed nuclei are chosen as the candidates. Comparing the theoretical
∣ ( )∣F qC

2 with experimental data, the reliability of the deformed HFB model to describe the
charge density distributions can be verified. Next, the ∣ ( )∣F qC

2 of the even–even Xe isotopes
and odd-A Cs isotopes are systematically calculated. By further constraining the nuclei to
certain shapes, the influences of the nuclear deformation on ∣ ( )∣F qC

2 of isotopic chains can be
analyzed. For even–even Xe isotopes, the positions of the diffraction minima of ∣ ( )∣F qC

2 have
noticeable distinctions when the deformation parameter β2 increases. For odd-A Cs isotopes,
the values of the diffraction minima of ∣ ( )∣F qC

2 are sensitively influenced by different β2. The
electron scattering experiments off exotic nuclei have been carried out successfully in RIKEN
recently [19]. With the studies in this paper, the Coulomb form factors of unstable isotopes
can be analyzed in advance, which can provide an effective guide for the scattering experi-
ments in the future.

The paper is organized as follows: in section 2, the theoretical framework for the HFB
model and DWBA method is provided. In section 3, the numerical results and discussions are
presented. Finally, a summary is given in section 4.

2. Theoretical framework

In this section, the developed scattering model is constructed by combing the axially
deformed solutions of HFB model and DWBA method. The corresponding formalism for the
Coulomb form factors is presented.

2.1. Axially deformed HFB model

For the Skyrme force, the energy density functional can be written as the sum of the mean-
field and pairing energy densities [51]

( ) ( ) ˜ ( ) ( )= + H Hr r r , 1

where
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By the variation of the HFB energy, the HFB equation can be obtained as
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For axially symmetric deformed nuclei, the quasiparticle HFB states can be characterized by
eigenvalue Ωi of the third component Jz of the total angular momentum:
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where L = W  1 2k .
The upper and lower components of the quasiparticle states are further expanded by the

eigenfunctions of the axially deformed harmonic-oscillator potential with the quantum
numbers { }a = L Sn n, , ,r z ,
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where nr and nz represent the numbers of nodes in r and z directions, respectively, and Λ and
Σ represent the projections of the angular momentum and the spin along the symmetry axis.

The local densities can be calculated from the quasiparticle HFB solutions [52, 53]

( ) (∣ ( )∣ ∣ ( )∣ ) ( )år = ++ -r z V r z V r z, , , . 7
k

k k
2 2

Combining the equations (4)–(7), the HFB equations can be solved iteratively until the
desired accuracy is achieved.

During the calculations, the Bogolyubov approximation does not conserve the particle
number, therefore the particle-number projection operator is included in the model to restore
the particle number symmetries

( )( ˆ )òp
f= f -P

1

2
d e , 8N N Ni
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where N̂ denotes the number operator. In order to obtain the potential energy surface along
the quadrupole moments, the HFB energies at certain deformation are also constrained by an
unrestricted variation of the function during the calculations:

(⟨ ˆ⟩ ) ( )= -E C Q Q . 9Q
Q

2

⟨ ˆ⟩Q is the expectation value of the quadrupole moment, and CQ is the stiffness constant.

2.2. Nuclear Coulomb form factors

From the HFB equation, the accurate density distributions can be obtained. Neglecting the
effect of the neutron contributions, the charge density distributions ρc(r) can be derived by
integrating the single-proton charge distributions [54]

( ) ( ) (∣ ∣) ( )òr r r= ¢ - ¢ ¢r r r r rd , 10c p
p

where ( )r =
p
L -Lr ep r
8

3

with Λ=842.61MeV.
The deformed charge densities are further expanded into the multipole moment dis-

tributions by the Legendre function [55]

( ) ( ) ( ) ( ) ( ) ( ) ( )år r q r r q= = + +r z R P R R P, cos cos , 11c
k

k k 0 2 2
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2
cos cos , sin d cos . 12k k

1

1

The ρ0(R) represents the spherical part of charge distribution and ρ2(R) provides the nuclear
quadrupole distribution.

With the density multipoles ρk(R), the nuclear Coulomb form factors ∣ ( )∣F qC
2 can be

investigated. In the PWBA method, ∣ ( )∣F qC
2 are simply calculated from the charge densities

via the Fourier transform

( ) ( ) ( )·ò r=F q
Z

r r
1

e d . 13C c
q ri

Substituting the equation (11) into equation (13), the Coulomb form factors can be
decomposed into several Coulomb multipoles [42]
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The Coulomb multipoles can be derived by the intrinsic multipoles

F⟨ ∣ ⟩ ( )l l=l lF Jk J Jk0 , 15C C

where the intrinsic multipoles F lC reflect the contributions of the charge density multipoles

F ( ) ( ) ( )ò
p
l

r=
+

l
l lZ

r r j qr r
4

2 1
d . 16C 2

The Clebsch–Gordan (CG) coefficient ⟨ ∣ ⟩l lJk J Jk0 provides the weights of different intrinsic
multipoles, and the k is the total spin projection along the symmetry axis.

With the PWBA method, the nuclear Coulomb form factors can be obtained con-
veniently, which is beneficial for the physical discussions. However, the results of the PWBA
method are not accurate enough, due to the lack of the nuclear Coulomb distorted effects.
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Therefore, the influences of nuclear Coulomb distortions are further included by the DWBA
calculations.

For the C0 multipole, which represents the contributions of spherical parts of charge
densities, the distorted wave function of scattered electron can be obtained by solving the
Dirac equation with a spherical Coulomb potential Vc(r) from the ρ0(r)

[ · ( )] ( ) ( ) ( )a b+ + Y = Yp m V r Er r . 17c

With the distorted wave function, the direct scattering amplitude f (θ) and spin-flip
scattering amplitude g(θ) can be derived, and the C0 multipole can be written as

( ) (∣ ( )∣ ∣ ( )∣ ) ( )q q s= +F q f g , 18C0 2 2
Mott

where σMott is the Mott scattering cross section.
The deformations of most nuclei are not large, therefore, the C0 multipoles occupy the

major parts of the Coulomb form factors, which are calculated precisely by the DWBA
method. The higher multipoles Cλ represent the contributions of deformed parts of charge
densities, which only influence the positions of the diffraction minima of Coulomb form
factors ∣ ( )∣F qC

2. Compared with total Coulomb form factors, the values of C2 multipoles are
small enough, which can be seen in figure 1 of [56] and figure 11(b) of this paper. Therefore,
the effects of coulomb distortions and the interferences between the Coulomb distortions and
deformation can be neglected for C2 multipoles. Instead of DWBA method, the PWBA
method are used to calculate the higher multipoles Cλ, and the corresponding coulomb
distortions of higher multipoles are taken into account from a simple prescription by replacing
the momentum transfer q with the effective momentum transfer qeff [50].

[ ( )] ( )a= + q q Z c ER1 1.5 , 19eff 0

where R0=1.20A1/3 and A is the mass number of nucleus. Combining the equations (14)–
(19), the nuclear Coulomb form factor ∣ ( )∣F qC

2 can be obtained.

3. Numerical results and discussion

In this section, the Coulomb form factors ∣ ( )∣F qC
2 of the even–even nuclei and odd-A nuclei

are calculated with the formulas of section 2.

3.1. ∣FC ðqÞ ∣2 for representative nuclei

We first present the theoretical binding energies per nucleon B/A (MeV), charge root-mean-
square (RMS) radii RC (fm) and deformation parameters β2 for both the spherical and
deformed nuclei in table 1, which are calculated by the spherical and axially deformed HFB
model with the SLY4 parameter set. From table 1, one can see that both the spherical and
deformed HFB model can provide robust descriptions for the binding energies and charge
radii. Besides, the deformed HFB model can also give reasonable deformation parameters β2.

The charge RMS radii RC only describe the nuclear electromagnetic properties roughly.
Compared with the charge radii RC, the nuclear electromagnetic structures can be reflected by
∣ ( )∣F qC

2 more exactly. Therefore, the theoretical ∣ ( )∣F qC
2 for nuclei in table 1 are calculated

with the density distributions from the spherical and deformed HFB model, and the results are
compared with each other.

3.1.1. Spherical nuclei. Decomposing the charge density ρc(r, z) from the axially deformed
HFB model with equations (11) and (12), the multipole moment of charge distributions ρk(r)
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of 40Ca and 208Pb are calculated and presented in figures 1(a) and 2(a). It can be seen that the
spherical part ρ0(r) is the major part while the quadrupole distributions ρ2(r) and
hexadecapole distributions ρ4(r) are close to zero. For comparison, ρ(r) from the spherical
HFB model are also presented in the figures 1(a) and 2(a). There are only tiny differences
between the spherical component ρ0(r) and ρ(r). Therefore, for the case of spherical nuclei,
the deformed HFB densities can return to the results of spherical HFB model.

With the charge distributions in figure 1(a), the Coulomb form factors ∣ ( )∣F qC
2 of 40Ca

are further calculated by the DWBA method, and the results are given in figure 1(b). The
experimental data are also given in this figure for comparison. As shown in figure 1(b), the
∣ ( )∣F qC

2 from the deformed and spherical HFB densities are almost coincident exactly with
each other, and both of them agree with the experimental data. This is due to the ρ2(r) and
ρ4(r) of spherical nuclei are close to zero, which can be reflected in the figure 1(a). Besides,
there are almost no differences between the ρ0(r) from the deformed HFB model and ρ(r)

Figure 1. (a) Charge density multipoles ρk(r) of
40Ca from the deformed HFB model

and the charge distributions ρ(r) from the spherical HFB model. (b) Coulomb form
factors ∣ ( )∣F qC

2 of 40Ca calculated from spherical and deformed HFB densities. The
experimental data are taken from the [59].

Table 1. Theoretical binding energies per nucleon B/A (MeV), charge RMS radii RC

(fm), and deformation parameters β2 for the candidate nuclei, calculated by the
spherical and axially deformed HFB model with the SLY4 parameter set. The exper-
imental data are taken from the [8, 57, 58].

Nuclei Model B/A RC β2

40Ca Sphe. −8.62 3.51 0.00
Defo. −8.64 3.50 0.00
Expt. −8.55 3.48 0.12

208Pb Sphe. −7.86 5.52 0.00
Defo. −7.87 5.52 0.00
Expt. −7.87 5.50 0.05

52Cr Sphe. −8.77 3.67 0.00
Defo. −8.79 3.70 0.14
Expt. −8.78 3.65 0.22

132Xe Sphe. −8.40 4.79 0.00
Defo. −8.41 4.81 0.12
Expt. −8.43 4.79 0.14
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from the spherical HFB model. Therefore, the corresponding ∣ ( )∣F qC
2 in figure 1(b) are very

close to each other.
Besides 40Ca, the ∣ ( )∣F qC

2 of 208Pb are also calculated with the DWBA method, and the
results are presented in the figure 2(b). In this figure, the theoretical ∣ ( )∣F qC

2 from the
deformed HFB densities and spherical HFB densities agree with the experimental data, which
can be attributed to the similarity between the ρ0(r) and ρ(r) in figure 2(a). The figures 1(a)
and 2(a) show that the deformed HFB model is a more general method and contains the
solutions of the spherical HFB model. Moreover, the deformed HFB model can provide
reasonable descriptions for the charge distributions of spherical nuclei.

3.1.2. Deformed nuclei. Besides the spherical nuclei, the theoretical ∣ ( )∣F qC
2 of the deformed

nuclei in table 1 are also calculated in this paper. The multipole charge density distributions of
132Xe are shown in figure 3(a), which are investigated by the deformed HFB model with the
SLY4 parameter set. For comparison, the charge density distributions ρ(r) obtained from the
spherical HFB model are also given in this figure. In figure 3(a), the spherical part ρ0(r) plays
a major role in the contributions of charge distributions, though 132Xe has a deformation of
β2=0.12. Compared with the spherical part ρ0(r), the quadrupole distribution ρ2(r) is much
smaller. As the multipole order k increases, the values of the ρk decrease rapidly. For k>4,

Figure 2. Same as the figure 1, but for 208Pb. The experimental data are taken from
the [60].

Figure 3. (a) Multipole charge density distributions for 132Xe from the deformed HFB
model. ρ(r) from the spherical HFB model are also presented for comparison. (b) The
nuclear Coulomb form factors of 132Xe are calculated from the spherical and deformed
HFB densities. The experimental data are taken from the [19].
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the multipole components ρk can be neglected. Because of the existence of ρ2 multipole, there
are definite differences between ρ0(r) from the deformed HFB model and ρ(r) from the
spherical HFB model.

The ∣ ( )∣F qC
2 of 132Xe are calculated with the charge density distributions in figure 3(a)

and compared with the latest experimental data in figure 3(b). In this figure, the theoretical
∣ ( )∣F qC

2 of 132Xe investigated by the spherical and the deformed scattering model are similar
to each other, and both of them coincide with the experimental data. At the second diffraction
minimum (q≈1.3 fm−1), there are differences between the spherical and deformed results.
This is owing to the distinction of the ρ0(r) and ρ(r) in figure 3(a).

The charge density distributions of 52Cr from the deformed HFB model are also
investigated and decomposed into different multipole components ρk in figure 4(a). The
values of ρ2(r) of

52Cr and 132Xe are similar, because of the almost identical deformation
parameters β2 in table 1. With the charge density distributions in figure 4(a), the ∣ ( )∣F qC

2 of
52Cr are calculated and presented in figure 4(b). As shown in figure 4(b), the theoretical
∣ ( )∣F qC

2 from the deformed HFB charge density are in better agreement with the experimental
data. The results of figures 1–4 indicate that the deformed HFB model can well describe the
nuclear charge distributions for both the spherical and deformed nuclei. The nuclear charge
form factors can be investigated by combing the deformed HFB model and the DWBA
method.

3.2. Investigations on even–even Xe isotopes

In this part, the Coulomb form factors ∣ ( )∣F qC
2 of even–even isotopic chains are studied by

combining the deformed HFB model and the DWBA method. Analyzing the diffraction
minima of the ∣ ( )∣F qC

2 of isotopic chain, the influences of nuclear deformation on the
structures of nuclei can be reflected.

The theoretical binding energies per nucleon B/A and charge RMS radii RC of Xe
isotopes are first calculated by the spherical and deformed HFB model, and the results are
presented in figure 5. From this figure, one can see that compared with the spherical HFB
model, the calculations from the deformed HFB model coincide with the experimental data
better. For charge radii RC in figure 5(b), the deformed results are larger than the spherical
one. This phenomenon can attribute to the connection between deformed and spherical radius
[62]

Figure 4. Same as the figure 3, but for 52Cr. The experimental data are taken from
the [61].
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where the Rsphe is the spherical radius and is proportional to A1/3.
Besides the B/A and RC, the Coulomb form factors ∣ ( )∣F qC

2 of Xe isotopes are also
investigated. In figure 6(a), we present the DWBA form factors from the spherical HFB
model. The positions of diffraction minima play a significant role in studying the Coulomb
form factors of isotopic chain. It can be seen that the Coulomb form factors of 106Xe, 116Xe
and 126Xe in figure 6(a) are close to each other. With the increase of mass number A, the
diffraction minima of the Coulomb form factors move inward, which has been discussed in
previous researches [27, 29, 30].

For comparison, the DWBA form factors of 106Xe, 116Xe and 126Xe obtained from the
deformed HFB model are presented in the figure 6(b). Compared with the results in
figure 6(a), the ∣ ( )∣F qC

2 in figure 6(b) are much different. Instead of the inward shifts with
increasing of mass number A in figure 6(a), the diffraction minima of 116Xe locate at the same
positions as those of 106Xe. Besides, the ∣ ( )∣F qC

2 of 116Xe are smaller than the 106Xe on the
whole. These differences are owing to the nuclear deformation. For 106Xe with small
deformation parameter β2=0.16, the ∣ ( )∣F qC

2 from the spherical and deformed calculations
are almost the same in figures 6(a) and (b). However, for 116Xe with β2=0.28, there are
distinct downward and outward trends for the ∣ ( )∣F qC

2 from the deformed HFB model.

Figure 5. Binding energies per nucleon B/A (MeV) and charge RMS radii RC (fm) for
Xe isotopes from the spherical and deformed HFB model with the SLY4 parameter set.
The experimental data are taken from the [8, 58].

Figure 6. (a) ∣ ( )∣F qC
2 of 106,116,126Xe calculated by the spherical scattering model.

(b) ∣ ( )∣F qC
2 of 106,116,126Xe calculated by the deformed scattering model.
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In order to analyze the influences of the nuclear deformation on ∣ ( )∣F qC
2, the charge

density multipoles of 116Xe from the constrained HFB calculations (β2=0.00, 0.28 and
0.50) are presented in figure 7(a). There are noticeable distinctions of the ρ0(r) with different
β2 in figure 7(a). When the deformation parameter β2 increases, the deformed parts ρ2(r)
become lager and the shape of ρ0(r) also changes. With the charge density multipoles in
figure 7(a), the corresponding DWBA Coulomb form factors are presented in figure 7(b). One
can see that the positions of the diffraction minima of the ∣ ( )∣F qC

2 have downward and
outward shifts, as the deformation parameter β2 increases. Therefore, by measuring the
positions of diffraction minima, the influences of nuclear deformation on ∣ ( )∣F qC

2 can be
reflected.

It should be mentioned that the influences of the nuclear deformations on ∣ ( )∣F qC
2 have

been analyzed in [43] based on deformed RMF calculations. In figures 6 and 7 of this paper,
the similar results are obtained from the deformed HFB calculations, which are consistent
with previous researches. This means both the RMF model and HFB model can well describe
the nuclear electromagnetic structures. However, due to the lack of experimental data of
neutron radii in the process of building models, the RMF and HFB models lead to very
different nuclear neutron properties and slope parameters of symmetry energy [63–65]. These
differences can be further analyzed by the parity violating electron scattering and other
methods. Combining the previous studies and the results of this paper, it can be concluded
that for electron scattering off isotopic chain, the influences of deformation need to be
considered. Recently, the electron scattering experiments of 132Xe have been performed in
RIKEN. If the electron scattering experiments on other unstable Xe isotopes are carried out in
the future, the effects of nuclear deformation cannot be ignored.

3.3. Investigations on the odd-A Cs isotopes

Apart from the even–even Xe isotopic chain, we also choose the Cs isotopes to investigate the
Coulomb form factors ∣ ( )∣F qC

2 of odd-A nuclei. The electron scattering experiment of 137Cs
will be carried out in the coming future in RIKEN. The corresponding theoretical investi-
gations are useful to guide the experimental measurements and interpret the exper-
imental data.

Similar to the studies of Xe isotopes, we first present the theoretical binding energies per
nucleon B/A and charge RMS radii RC of Cs isotopes in figure 8, respectively. Comparing
with the spherical HFB model, the theoretical results from the deformed HFB model show

Figure 7. (a) Charge density multipoles of 116Xe for deformation parameter β2=0.00,
0.28 and 0.50 from the constrained HFB calculations, respectively. (b) The
corresponding DWBA form factors of 116Xe with different deformation parameters.
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better agreement with experimental data. Figure 8 shows that the ground properties of odd-A
nuclei can be well described by the deformed HFB model.

In addition to B/A and RC, the ∣ ( )∣F qC
2 of the odd-A Cs isotopic chain are further

calculated to give a more detailed description on the nuclear electromagnetic structures.
Unlike the even–even Xe isotopes, the angular momentum of the ground state of odd-A Cs
isotopes is ¹pJ 0. With the equation (14), the ∣ ( )∣F qC

2 of Cs isotopes contain not only the
multiples C0, but also higher multipoles C2 and C4.

In figure 9(a), we first provide the DWBA form factors of Cs isotopes from the spherical
HFB calculations, whose changing trends are similar to Xe isotopes in figure 6(a). With the
increase of the mass number A, the diffraction minima of the ∣ ( )∣F qC

2 shift inward. This is
because the charge distributions of spherical HFB model only contain the spherical part ρ0(r)
and lack the higher multipoles ρ2(r) and ρ4(r). Therefore, there are no significant changes
between the results of figures 6(a) and 9(a). By combining the deformed HFB model and
DWBA method, the nuclear deformations are taken into account to investigate the ∣ ( )∣F qC

2,
and the results are presented in figure 9(b). As shown in figure 9(b), there are marked changes
in the shape and the variation tendency of the ∣ ( )∣F qC

2. As the deformation parameter β2
increases, the corresponding ∣ ( )∣F qC

2 gradually become flat. For 117Cs with the biggest
nuclear deformation β2=0.26, there is no obvious diffraction minimum for the ∣ ( )∣F qC

2.

Figure 8. Binding energies per nucleon B/A (MeV) and charge RMS radii RC (fm) for
Cs isotopes calculated by the spherical and deformed HFB model with the SLY4
parameter set. The experimental data are taken from the [8, 58].

Figure 9. (a) ∣ ( )∣F qC
2 of 117,127,137Cs calculated by the spherical scattering model.

(b) ∣ ( )∣F qC
2 of 117,127,137Cs calculated by the deformed scattering model.
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To further analyze the effects of nuclear deformation on the diffraction minima of figure 9(b),
the ∣ ( )∣F qC

2 of 117Cs from the constrained HFB calculations with different deformation para-
meters β2 are presented and compared in figure 10. With the increase of β2, the diffraction minima
of ∣ ( )∣F qC

2 gradually become flat, which are similar to the results mentioned above. To illustrate
the changing trends of ∣ ( )∣F qC

2 in figure 10, the charge density multipoles from constrained HFB
calculations are given in figure 11(a). For 117Cs with β2=0.50, the deformed multipole density
ρ2(r) is the largest. The corresponding Coulomb multipoles C0 and C2 are also presented in
figure 11(b). Compared with the C0 multipole, the C2 multipole is much smaller in most
momentum transfers. However, at the diffraction minima of C0 multipole, the C2 multipole
cannot be ignored. The angular momentum of the ground state of 117Cs is =p +

J 9

2
, and its

∣ ( )∣F qC
2 contain C0 and the higher multipoles from equation (14). Taking into account the

contributions of deformed parts ρ2(r) of density distributions, the ∣ ( )∣F qC
2 of 117Cs in figure 10

become flat and do not have obvious minima. Combining figures 9 and 10, we can draw a
conclusion that the nuclear deformation can influence the values of the diffraction minima of the
∣ ( )∣F qC

2 for odd-A Cs isotopes. With the increase of β2, the diffraction minima of the ∣ ( )∣F qC
2

fade away. Both theoretical and experimental investigations have indicated that most of Cs

Figure 10. ∣ ( )∣F qC
2 of 117Cs for deformation parameter β2=0.00, 0.26 and 0.50

calculated by DWBA method, where the corresponding ρc(r) are obtained by the
constrained HFB calculations.

Figure 11. (a) Charge density multipoles of 117Cs for β2=0.00, 0.26 and 0.50 from the
constrained HFB calculations. (b) The corresponding Coulomb multipoles C0

2 and C2
2

of different deformation parameters β2 of
117Cs.
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isotopes are deformed [37, 39]. Therefore, the nuclear deformation needs to be taken into account
in the studies of electron scattering off odd-A nuclei.

It should also be mentioned that, for the odd-A nuclei 127Cs and 137Cs, there still are
diffraction minima in figure 9(b). The angular momentum of 127Cs is =p +

J 1

2
, and from the

equation (14) it only contains the C0 multipole. For the 137Cs, the angular momentum is
=p +

J 7

2
and its form factors have the C0, C2 and C4 multipoles. However, 137Cs is a magic-

number nucleus with the β2=0.0 from the deformed HFB calculations, and its C2 and C4
multipoles can be neglected.

4. Summary and conclusion

The Coulomb form factors ∣ ( )∣F qC
2 are significant to investigate the nuclear electromagnetic

structure. In previous studies, the deformed RMF model and the DWBA method were
combined to calculate the ∣ ( )∣F qC

2. In this paper, we further extend the studies of ∣ ( )∣F qC
2 with

the deformed HFB model and DWBA method.
With the DWBA method, the theoretical Coulomb form factors of both the spherical

nuclei (40Ca and 208Pb) and deformed nuclei (132Xe and 52Cr) are calculated, where the
corresponding charge densities are obtained from the deformed HFB calculations, respec-
tively. Results indicate that the deformed HFB model can provide reasonable descriptions on
the nuclear density distributions of both the spherical and deformed nuclei.

Combining the HFB model and DWBA method, the ∣ ( )∣F qC
2 of the isotopic chains are also

calculated to study the influences of nuclear deformation on the ∣ ( )∣F qC
2 of isotopic chain. For

even–even Xe isotopes, the nuclear deformation can influence the positions of the diffraction
minima of ∣ ( )∣F qC

2. With the increase of deformation parameter β2, the diffraction minima of
∣ ( )∣F qC

2 have noticeable downward and outward shifts. For odd-A Cs isotopes, the values of the
diffraction minima of ∣ ( )∣F qC

2 can be sensitively affected by the nuclear deformation. The
∣ ( )∣F qC

2 become flat and do not have obvious minima, when the β2 increases. The electron
scattering experiments of Xe isotopes and Cs isotopes have been finished or will be started in
the near future in RIKEN. The methods proposed in this paper can offer effective guides for the
coming experiments and can also be used to interpret the experimental data.
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