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Abstract
We study the rare decay gZ HH

0 at a a sew
3( ) accuracy including two-loop

QCD corrections in the context of the littlest Higgs model (LHM) without T-
parity. We revisit analytically and numerically the leading-order (LO) con-
tributions of the one-loop diagrams induced by massive fermions, scalars and
charged gauge bosons in the LHM, and further study the NLO QCD correction
to this decay process. We perform the numerical calculation by taking the
LHM input parameters f=3,4 TeV and 0.1<c<0.6, and discuss the
numerical results of the decay width up to the QCD NLO within the recent
experimentally constrained LHM parameter space region. Our results show
that the two-loop QCD correction always reduces the LO decay width and the
top-induced QCD correction is the dominant contribution at the QCD NLO.
For f=4 TeV and c=0.3, the NLO QCD corrected decay width reaches
75.099 keV and the NLO QCD relative correction is about −11.0%.

Keywords: two-loop calculation, littlest Higgs model, ZH decay

(Some figures may appear in colour only in the online journal)

1. Introduction

Although the standard model (SM) [1, 2] has got a remarkable success in describing high-
energy phenomena at the energy scale up to 102 GeV, the mechanism of electroweak sym-
metry breaking (EWSB) remains the most prominent mystery, and the Higgs boson mass
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suffers from large radiative corrections in the SM. Alternatively, in the little Higgs (LH)
models [3, 4] based on dimensional deconstruction [5], the quadratic divergence induced at
the one-loop level by the SM gauge bosons is canceled by the heavy gauge boson one-loops.
Therefore, there arouse more and more interests on the LH models as they offer an alternative
approach to solve the hierarchy problem, and the LH models were proposed as one kind of
models of EWSB without fine-tuning in which the Higgs boson is naturally light as a result of
nonlinearly realized symmetry [3, 4, 6–8].

The most economical model of them is the littlest Higgs model (LHM), which is based
on an SU(5)/SO(5) nonlinear sigma model [4]. In the LHM without T-parity, in addition to
the SM particles, a set of new heavy gauge bosons (AH, ZH, WH) and an exotic heavy vector-
like quark (T) are introduced which just cancel the quadratic divergences induced by the SM
gauge boson loops and the top quark loop, respectively. The key feature of this model is that
the Higgs boson is a pseudo-Goldstone boson of a global symmetry, which is spontaneously
broken at some higher scale f, and thus the Higgs boson is naturally light. On the other hand,
there are also several other models that predict the existence of a neutral massive gauge
boson, identified as Z′ gauge boson, such as the 331 model [9] and the grand unified models
[10]. This type of particles are under exhaustive search at the LHC [11–13], where the
ATLAS and CMS collaborations have imposed experimental bounds over the mass of a new
particle related to the Z′ gauge boson.

It is well known that the parameters of the LHM without T-parity are very constrained by
the electroweak precision observables [14, 15], such as Z-boson mass and partial widths for Z
decaying into lepton or light hadron pairs, since the new heavy particles predicted by the
LHM can contribute to those SM processes at the tree level via s-channel exchange. Thus, we
may expect that the virtual effects on all other SM processes induced by the exchange of new
heavy particles are also negligible after considering the stringent constraints on the parameter
space. However, the characteristic signal processes of the LHM, such as the productions of
new heavy gauge bosons and their decays, are not very severely restricted by those constraints
from the electroweak precision observables. Thus, it is still worthwhile to study them in
considerable detail within the framework of the LHM without T-parity.

The gZ HH
0 decay process can be used to identify the production of the ZH gauge

boson at high energy colliders, since recent measurements on the Higgs boson discovery
channels and electroweak precision observables have provided severe constraints on its
parameter space [16]. Another advantage in probing the gZ HH

0 decay channel is due to
the fact the SM background is naturally suppressed [17, 18]. Therefore, H0γ associated
production at high energy colliders opens a new window to test the gauge sector of the SM
and Higgs physics [19–22]. Previous study on the g¢ Z H 0 decay has been performed in the
context of left–right symmetric models [19], where the branching ratio is estimated [23]. In
this paper, we investigate the QCD two-loop correction to the gZ HH

0 decay and provide
the decay width up to the a a sew

3( ) in the LHM.
The rest of this paper is organized as follows. In section 2 we briefly review the LHM. In

section 3 we present the analytical calculation at the LO and QCD NLO for the gZ HH
0

decay in the LHM without T-parity. The numerical results and discussion are provided in
section 4. Finally, we give a short summary in section 5.

2. Related theory of LHM

The LHM is based on an SU(5)/SO(5) nonlinear sigma model. The nonlinear sigma model
SU(5) symmetric tensor field Σ is parameterized as
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where the vacuum expectation value (VEV) of Σ(x) is given by [4, 24]
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At the energy scale ~ f TeV( ), the SU(5) global symmetry breaks down to its SO(5)
subgroup, and the [SU(2)⊗U(1)]2 gauge subgroup of SU(5) simultaneously breaks down to
its diagonal subgroup SU(2)L⊗U(1)Y, which is identified as the SM electroweak gauge
group. The SU(5)/SO(5) symmetry breaking leads to 14 massless Nambu–Goldstone bosons.
The Goldstone boson matrix is written as Π(x)=π a(x) Xa. Xa are the broken generators of
SU(5) which satisfy the relation
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where h and f are the SM SU(2)L doublet and triplet, respectively, and can be expressed as
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The leading order dimension-two term for the scalar field Σ(x) in the LHM is given by

= Sm 
f1

2 4
Tr . 2.6

2
2∣ ∣ ( )

m is the covariant derivative for gauge group [SU(2)⊗U(1)]2=[SU(2)1⊗U(1)1]⊗
[SU(2)2⊗U(1)2], and we have
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where mW j
a and Bμj are the SU(2)j and U(1)j gauge fields, respectively. The generators of the

SU(2)j and U(1)j gauge groups are written as
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where σ a(a=1, 2, 3) are the Pauli matrices. As we know, in the LHM there is no Higgs
potential at tree-level. Instead, the Higgs potential is generated at one-loop and higher orders
due to the interactions with gauge bosons and fermions. The Higgs potential (Coleman–
Weinberg potential) up to the operators of dimension four can be expressed as [24, 25]
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By minimizing the Coleman–Weinberg potential, we obtain =h v 20⟨ ⟩ and f = ¢vi 0⟨ ⟩ ,
which give rise to the EWSB. After the EWSB, the gauge sector acquires additional mass and
mixing term due to the VEVs of h and f. By diagonalizing the quadratic term of the gauge
sector, we may get the mass eigenstates AL, ZL, WL, AH, ZH and WH, and their masses.

To avoid large quadratic divergence in the Higgs boson mass due to the top Yukawa
interaction, we introduce a pair of new fermions t̃ and ¢t̃ [24] and a set of new interactions.
The scalar couplings to the top quark can be taken from the following Lagrangian [24]:

l c l= S S ¢ + ¢ +  f u ft t
1

2
h.c., 2.10Y ijk xy i jx ky

c c
1 3 2 ˜˜ ( )

where c = b t t, ,3 3( ˜), òijk and òxy are antisymmetric tensors with i, j, kä{1, 2, 3} and x,
yä{4, 5}, and the coupling constants λ1 and λ2 are supposed to be of the order of unity.
After expanding the above Lagrangian and performing field redefinition [24, 26], we get the
SM top quark t and a new heavy vector-like quark T. The masses of the two mass eigenstates
are given by
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. Considering the EWSB, we may obtain the masses of

the new heavy gauge bosons and scalars as [26]
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3. Calculation strategy

3.1. General setup

We employ the modified FeynArts-3.9 package [27] to generate all the one- and two-loop
Feynman diagrams and their corresponding amplitudes. The reduction of output amplitudes is
accomplished by the FeynCalc-9.0 package [28, 29]. In our one- and two-loop amplitude
calculation, we apply the FIRE [30] and Reduze2 [31] packages, in which the integration-by-
parts (IBP) identities and Lorentz invariance identities are adopted, to perform the loop
reduction and express the amplitude in terms of a certain number of independent master
integrals (MIs) depending on the loop order. A scalar multi-loop integral in d=4−2ò
dimensions is defined as

J. Phys. G: Nucl. Part. Phys. 47 (2020) 025001 M-M Long et al

4



ò 
p

=
=

G a a
d l

D
,...,

2

1
, 3.1n

i

L d
i
d

j

n
j
a1

1
j

( )
( )

( )

where L is the number of loops, li is the ith loop momentum, n is the number of independent
propagators, and Î aj . The jth propagator is = -D p mj j j

2 2 with pj being the linear
combination of loop and external momenta and mj the mass of corresponding propagator. A
specific set of Dj is called a propagator family. Normally, we can directly use FIESTA+ParInt
program [32, 33] to evaluate the MI in the physical region, but some of the principal integrals
will be difficult to improve accuracy and the calculation is very time consuming. In the
calculation of MIs, we firstly adopt the FIESTA+ParInt program using the sector
decomposition method to get the values of the MIs in the non-physical region, where the
convergence of the integral functions is faster and the MIs can be calculated efficiently with
very high precision. Secondly, the obtained results serve as initial conditions of a suitable set
of differential equations built upon all the MIs, and then the values of all MIs in physical
region can be evaluated through the numerical integration of the differential
equations [34, 35].

Since the energy scale f is constrained to be several TeV or even higher [16], we omit the
terms in couplings with order of v f2 2( ) (see appendix A). Throughout our calculations we
adopt the unitary gauge, and neglect the masses of electron, muon and light-quarks (u, d, s)
due to their exceedingly tiny Yukawa couplings. Generally, the amplitude for gZ HH

0 at
any order can be expressed as

g = mn
m n  Z H q k , 3.2H

0
1( ) ( ) ( ) ( )

where q and k1 are the four-momenta of ZH and γ, respectively. The matrix element mn can
be written as
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. Furthermore, the coefficients

 and  have no contribution to  2∣ ∣ . Then we only consider the first three terms of the right
side of mn in our calculation, i.e.
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and the decay width for gZ HH
0 is obtained as
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3.2. Leading-order (LO) amplitude

The LO contributions to the decay width of the gZ HH
0 process in the LHM have been

comprehensively described in [23]. In this work we are going to evaluate the NLO QCD
corrections to this decay process, and thus should calculate the LO amplitude at first. The LO
one-loop Feynman diagrams can be divided into two sets of graphs: (1) triangle loop
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diagrams, and (2) tadpole and self-energy loop diagrams. Since the - -T T ZH¯ gauge
coupling is at the v f2 2( ), it is reasonable to omit the pure T-quark triangle diagram.

We depict some representative triangle one-loop Feynman diagrams which contribute to
the LO decay width of gZ HH

0 in figures 1(a)–(d). Figure 1(a) shows some self-energy
diagrams of one external line. Figure 1(b) represents the triangle loop diagrams which are
mediated by massive charged fermions ( f=τ, c, b, t, t–T). ( f=t–T represents the triangle
loop diagrams with t–T mixing.) In figure 1(c) the triangle graphs are actually mediated by the
SM and new heavy charged gauge bosons and the mixing of these two types of particles. In
figure 1(d) the typical loop graphs are induced by scalar and scalar plus gauge boson loops.
Our calculation shows that the contribution from tadpole and self-energy diagrams vanishes.
Then from all the relevant one-loop Feynman diagrams and the Feynman rules (some of the
relevant LHM couplings are listed in appendix A) and using equation (3.4) we can get the
one-loop matrix element mnLO as

e= + +mn mn n m
a b

mnab   g q k k q . 3.6LO LO LO 1 LO 1ˆ ˆ ( )

In order to make comparison for the analytical expressions of the form factor coefficients
with those in [23], we follow the LO analysis in [23] and present the explicit amplitude
expressions in appendix B. All the form factor coefficientsLO, LO and LO are expressed in
terms of Passarino–Veltman scalar functions, which are defined same as in [36]. Furthermore,
we divide each of the form factor coefficients, LO and LO, into three parts contributed by
different diagram sets as4

å å å

å å å
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1

2
LO

LO
LO

i i

i i
( )

where f runs over τ, c, b, t and t–T mixing in the LHM, Gi symbolizes charged gauge bosons
(W,WH, andW–WH mixing), and Si denotes charged scalars. After our calculation we find that

Figure 1. Representative one-loop Feynman diagrams for gZ HH
0 , where f=τ, c,

b, t, t–T, V=Z, ZH, AH, and f denotes charged scalars.

4 The nonzero contribution to the form factor LO is only from the t–T mixing quark triangle diagrams.
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our expressions for the LO amplitude coefficients have some differences compared with the
corresponding ones in [23]. Accordingly, we provide the explicit expressions for the one-loop
form factor coefficients appeared in equation (3.7) in appendix B.

3.3. NLO QCD corrections

The a a sew
3( ) contribution to the decay width is from the interference between one-loop and

QCD two-loop amplitudes for the decay channel gZ HH
0 . The two-loop correction

includes all the contributions from the generic two-loop Feynman diagrams shown in figure 2
which are based on the heavy quark one-loop triangle diagrams in figure 1(a) and induced by
attaching one gluon propagator to the heavy quark lines in every possible way. We express
the unrenormalized two-loop amplitude, 2 loop‐ , analytically by means of a number of
independent MIs.

The top family, corresponding to q=t in figure 2, can be reduced to 31 MIs by adopting
IBP technique. For example, a typical MI of the top family with 7 independent propagators is

ò p p
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
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d l d l

l m l m
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1 2
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⎞
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⎤
⎦
⎥⎥

( )
( ) ( ) ( )( )

( ) ( )

where l1,2 are the loop momenta and μ is the mass scale of dimensional regularization. The
bottom and charm families, which correspond to q=b and q=c in figure 2, can be easily
obtained from the top family by performing the replacements of m mt b and m mt c,
respectively. For q=t–T in figure 2, there are two families and each family can be reduced to
35 MIs. It is obvious that the MIs of the two families can be obtained from each other by
performing the exchange between mt and mT in all propagators.

The NLO QCD bare amplitude 2 loop‐ has to be renormalized to remove the UV
divergence. We choose the dimensional regularization in our calculation, and adopt the on-
shell (OS) scheme [37] in handling the renormalization of quark-masses and Yukawa cou-
plings. We note that there is no requirement for the renormalization for the relevant weak
gauge couplings except the renormalization of the quark mass in Yukawa coupling, because
the two-loop amplitude is the LO in αs. Actually, the QCD NLO amplitude renormalization
for this decay channel is implemented by the charm-, bottom-, top- and T-quark mass
renormalization for relevant Yukawa couplings, i.e. ccH¯ , bbH¯ , ttH¯ , TTH¯ and tTH¯ couplings.
They are directly related to δmc, δmb, δmt and δmT, and the counterterms for those couplings
can be expressed as

Figure 2. Representative generic two-loop Feynman diagrams related to the NLO QCD
corrections to the gZ HH

0 decay.
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For the counterterm of dGtTH¯ , we have
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We write the NLO QCD renormalized amplitude DNLO as

D = +   , 3.13CTNLO 2 loop ( )‐

where 2 loop‐ and CT are the amplitudes contributed by two-loop diagrams and its
corresponding NLO QCD counterterms separately. The counterterm amplitudeCT comes
from the contributions of counterterm diagrams shown in figure 3. We divide the total
counterterm amplitude into four groups, i.e.CT

q (q=c, b, t, t–T), which are c-, b-, t-quark
and t–T mixing triangle loop diagram groups, respectively. Each group has four diagrams
with a cross marked on one propagator or vertex as shown in figure 3. The total counterterm
amplitude from figure 3 can be expressed as
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whereb
LO is the LO amplitude for the b-quark one-loop triangle diagrams,

d
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b
LO and

d


m

m
b

b

b are the contributions induced by the NLO QCD counterterms for bbH¯ vertex and

b-quark propagator, i.e. the contributions from the first and the last three diagrams in figure 3
for q=b, respectively.  and  can be obtained by computing the t-quark and t–T mixing
triangle diagrams in figure 3. In the OS scheme the heavy quark mass counterterm is given by
[37]
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q q
s

q

F F s
E

q

2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

( )
( )

( ) ( )

where =
-


d4

2
, γE is the Euler constant, =C

3

4
F , C(ò)=(4π)òΓ(1+ò), and μ is the mass

scale of dimensional regularization. Finally, the total renormalized amplitude is expressed in

Figure 3. Representative counterterm diagrams for gZ HH
0 , where the crosses

signify the NLO QCD counterterms for qqH¯ (q=c, b, t, t–T) vertices and quark
propagators.
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terms of a certain number of independent MIs, and their numerical calculations are performed
by adopting the FIESTA+ParInt program combined with the differential equation method.

4. Numerical results and discussion

In this section, we present some numerical results of the LO and NLO QCD corrected
gZ HH

0 decay widths in the LHM without T-parity. In the numerical calculation, we ignore
the masses of electron, muon and light-quark masses i.e. me=mμ=mu=md=ms=0, and
take the other relevant SM input parameters as follows [38]

a

= = =
= = = =
= = ´

t
- -

m m m
m m m m

G

80.379 GeV, 91.1876 GeV, 125.18 GeV,
1.776 86 GeV, 1.67 GeV, 4.78 GeV, 173.1 GeV,

1 137.035 999 139, 1.166 38 10 GeV . 4.1

W Z H

c b t

ew F
5 2 ( )

The VEV in the SM, vSM, can be got as = »-v G2 246 GeVFSM
1 2( ) , and one of the VEVs

in the LHM, v, which triggers the EWSB gets a modification up to the v fSM
2 2( ) as [39]

= - - +v v
v

f

x
1 1

5

24 8
. 4.2SM

SM
2

2

2⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

The strong coupling constant αs(μ) is obtained by the expression in the MS scheme up to the
two-loop order. We applied the Mathematica package RunDec [40] to evolve the strong
coupling constant αs up to scale μ=mZH

.
In the LHM there are five independent input parameters in addition to the SM input

parameters, which are chosen as f, c, ¢c , x, and λ1/λ2. In our numerical calculation, we take
f=3, 4 TeV, x=0, ¢ =c 1 2 , λ1/λ2=1, and c parameter varying from 0.1 to 0.6.

In figures 4(a) and (b), we depict the LO and NLO QCD corrected decay widths of the
gZ HH

0 decay as functions of the ZH mass (or parameter c), for f=3, 4 TeV separately.
Recently, ATLAS experiment provides a lower limit of up to 4.5 TeV on the mass of heavy
neutral vector boson ZH [13], hence in these plots we mark out the present excluded regions
which are beyond the most recent experimental constraints on the parameters space. We see

Figure 4. LO and NLO QCD corrected decay widths and the corresponding relative
corrections for the gZ HH

0 process versus mZH (or parameter c) for (a) f=3 TeV
and (b) f=4 TeV.
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from the two figures that the plotted experiment permitted region for ZH mass is
Îm 4.5, 9.838 TeVZH [ ] (corresponding to cä[0.1, 0.223]) for f=3 TeV, and mZH

ä[4.5,
13.13 TeV] (i.e. cä[0.1, 0.305]) for f=4 TeV correspondingly. Figure 4(a) for f=3 TeV
shows that when the parameter c increases from 0.1 to 0.22 in the experiment allowed range,
the LO (NLO) decay width decreases from 467.585 keV (460.878 keV) to 147.573 keV
(139.190 keV). While figure 4(b) for f=4 TeV tells us that the LO (NLO) decay width
decreases from 395.925 keV (389.752 keV) to 84.342 keV (75.099 keV) with the increment
of parameter c from 0.1 to 0.3. These data read off from figures 4(a) and (b) correspond to
different values of the LHM parameter set (c and f ), which are in the most recent experiment
permitted regions, are also listed in table 1. The corresponding NLO QCD relative corrections
to the gZ HH

0 decay width are presented in the table too. We can see from figures 4(a), (b)
and table 1 that the NLO QCD correction always diminishes the decay width of the

gZ HH
0 process in our chosen parameter space, and the NLO QCD relative correction can

reach −11.0% for f=4 TeV and c=0.30. It shows that the QCD two-loop correction is
very significant and should be included in the precision prediction of the decay width.

In [23], the authors calculated the branching ratio of the decay channel gZ HH
0 only

at the LO. For comparison, we also depict the LO as well as the NLO QCD corrected
branching ratio of gZ HH

0 as a function of c in figures 5(a) and (b) for f=3 and 4 TeV,
respectively, where c varies in the range of 0.1<c<0.6. The total decay width of ZH is
calculated by using the analytical expressions for the partial decay widths of the dominant

Figure 5. LO and NLO QCD corrected branching ratio for gZ HH
0 versus mZH (or

parameter c) for (a) f= 3 TeV and (b) f= 4 TeV.

Table 1. LO and NLO QCD corrected decay widths for gZ HH
0 and the corresp-

onding relative QCD corrections for some typical values of c and f.

f (TeV) 3 4

c 0.1 0.22 0.1 0.3
ΓLO(keV) 467.585 147.573 395.925 84.342
ΓNLO(keV) 460.878 139.190 389.752 75.099
δ(%) −1.43 −5.68 −1.56 −11.0
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decay channels of ZH [41]. We can see that the curves for LO branching ratio in figures 5(a)
and (b) behave similarly as the corresponding ones in [23], but have different branching ratio
values. As we know, if we only consider the contribution from the W-boson and SM fermion
loops, the LO decay width of gZ HH

0 can be obtained from the analytical expression for
the LO decay width of gZ H 0 in [42] by rescaling some coupling strengths and per-
forming the replacement of m mZ ZH

. To check the correctness of our LO calculation, we
compute the contribution from the W-boson and SM fermion loops to the decay width of

gZ HH
0 , and find that our numerical result is coincident with that obtained from the decay

width of gZ H 0 by performing relevant replacements within the calculation error.
Now let us discuss the contributions from various groups of diagrams. Firstly, we

separate the total contribution to the LO decay width of the gZ HH
0 decay (ΓLO) into three

origins: (1) the amplitude of all the boson one-loop diagrams, = å B
i

i
LO LO, where the

superscript i runs over Φ, W±, WH
± and W±

– WH mixing one-loop triangle diagrams, (2) the
amplitude of all the fermion one-loop diagrams, = å F

f
f

LO LO with f running over τ, c, b,
t and t–T-mixing triangle diagrams, and (3) the interference between the above two ampli-
tudes. Then we can write the decay width as

G = G + G + G . 4.3BB BF FF
LO LO LO LO ( )

The values of the partial decay widths from above three components are listed in table 2.
From this table we see clearly that GBB

LO provides most of the contributions and has to be taken
into account. The interference between the amplitudes of B

LO and F
LO, GBF

LO, gives the
contribution of one order of magnitude smaller than GBB

LO, while the contribution component
GFF

LO is about one order smaller than GBF
LO.

We list some typical values of the two-loop QCD corrections to the decay width in
table 3. The correction component DGBq

NLO (DGFq
NLO) describes the contribution from the

Table 2. LO contributions to the decay width of gZ HH
0 . GBB

LO and GFF
LO are the

contributions induced by the boson and fermion loops, respectively, while GBF
LO

represents the interference between the boson and fermion loop amplitudes.

Partial decay width f=3 TeV,c=0.2 f=4 TeV,c=0.3

G keVBB
LO( ) 146.258 56.770

G keVBF
LO( ) 20.103 19.823

G keVFF
LO( ) 3.360 7.749

Table 3. NLO QCD contributions to the decay width of gZ HH
0 , DGiq

NLO, where

i=B, F and q=c, b, t, t–T, for some typical values of the LHM parameters f and c.

Partial decay width f=3 TeV,c=0.2 f=4 TeV,c=0.3

DG keVBt
NLO( ) −7.104 −6.743

DG keVBb
NLO( ) −0.006 00 −0.005 87

DG keVBc
NLO( ) −0.000 857 −0.000 833

DG keVFt
NLO( ) −1.086 −2.481

DG keVFb
NLO( ) −0.004 50 −0.0106

DG keVFc
NLO( ) −0.001 56 −0.003 67

DG - keVF t T,
NLO ( ) 0.0107 0.002 24
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interference between the boson (fermion) one-loop amplitudeB
LO (F

LO) and the amplitude
q

NLO for the diagrams with q-quark in two-loop. The superscript q represents the possible
quark (c, b, t or t–T) in QCD two-loop (shown in figure 2). We can see that the most dominant
NLO QCD correction to the decay width is DGBt

NLO, and DGFt
NLO is the second largest NLO

QCD contribution. The NLO QCD contributions DGBb
NLO, DGFb

NLO, DGBc
NLO and DGFc

NLO are
about three orders of magnitude smaller thanDGFt

NLO, and thus can be neglected in the case of
our chosen LHM parameter space region. As shown in equation (B.1) in appendix B, the
coefficients in -t T

LO for the one-loop t–T mixing triangle diagrams have the values as
= =- -  0t T t T

LO LO , and -t T
LO is nonzero. Therefore, DG -F t T,

NLO is actually only contributed by
the nonzero interference between the one-loop amplitude -t T

LO and the two-loop amplitude
-t T

NLO. From table 3 we can see that only DG -F t T,
NLO has positive value, which is the third

largest correction part among all the seven correction parts listed in the table. We can
conclude that the top-induced two-loop contribution is the main source of the NLO QCD
correction.

5. Summary

In this work we investigate the gZ HH
0 decay channel in the LHM without T-parity up to

the a a sew
3( ). At the LO level we involve the contributions from the one-loop diagrams

mediated by heavy fermions, scalars, gauge bosons, and the admixture of these later two type
particles. We revisit analytically and numerically the LO decay width for gZ HH

0 and
compared them with the previous work. In our calculation, we accomplish the two-loop
evaluation by using the IBP identities for the reduction to MIs. The numerical integration for
the MIs is carried out by our developed program combining the FIESTA+ParInt package
with the differential equations method. The LO and NLO QCD corrected decay widths are
calculated by taking the LHM input parameters f=3,4 TeV and 0.1<c<0.6. We focus
on the discussion of the numerical results of the decay width and NLO QCD correction by
taking the LHM parameters within the recent experimental constraint region. We find that in
the LHM parameter space region we considered, the NLO QCD correction is always negative
and the top related QCD correction is the dominant contribution at the QCD NLO. For
f=4 TeV and c=0.3, the NLO QCD corrected decay width has the value of 75.099 keV
and the NLO QCD relative correction can reach −11.0%.
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Appendix A. Relevant couplings

The Feynman rules of the couplings relevant to our work, can be read out from the
Lagrangian shown in equation (2.10), which have been already provided in [24, 26]. In the
following we list some of the related LHM couplings in unitary gauge.

t= - - + =G
m

v
s

v

f

s
f c bi 1

1

2 2
, , , , A.1ff H

LH f
0
2 0

⎡
⎣⎢

⎤
⎦⎥ ( ) ( )¯
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= - - + - + +l lG
m

v
s

v

f

s v

f

v

f
c ci 1

1

2 2

2

3
1 , A.2ttH

LH t
0
2 0

2

2

2

2
2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( )¯

= - +l lG c c
v

f
i 1 , A.3TTH

LH 2 2( ) ( )¯

= + +l lG
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,

4
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H H
( )¯ ¯
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s
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,

4
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H H
( )¯ ¯
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gc

s
G

gc

s4
,

4
, A.8ttZ
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A LH, ,

H H
( )¯ ¯
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v

f
G

v

f
, , A.9TTZ

V LH
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A LH,

2

2
,

2

2H H

⎛
⎝⎜

⎞
⎠⎟
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fs4
,

4
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where g=P 1 2L R, 5( ) , GV and GA are the vector and axial-vector coupling constants

shown as g g+ mG Gi V A
5( ) , and s0 gives the mixing of Higgs fields,

¢
=s

v

v
2 20 

~ 
xv

f
v f

2
( ).

Appendix B. Amplitude coefficients

Here we provide the explicit formulas for the relevant form factor coefficients introduced in
(3.7). For fermion loop the coefficients are given by

p

p

=
-

- + - - + +

=
-

= =

= + -l l l

- -

-



 

 



N Q T g s c

s y
m g B B y C y y

y

g s c

sv

v

f
c y c C y c C

16 1
2 1 4 1 2 ,

2

1
,

0,

1

4
1 ,

B.1

f
f
c

f f W

H
f ff H a b H a f H

f
H

f

t T t T

t T
W

t c T d

LO
3

2

2

LO

LO LO

LO
2

2 2

2
2 2 2

( )
[ ( ) ( )( ( ) )]

( )

[ ( ) ]
( )

¯

where f=τ, c, b, t, =tN 1c , = = =N N N 3c
c

c
b

c
t , and we define =y m mf f Z

2 2
H
,

=y m mH H Z
2 2

H
and =y m mT T Z

2 2
H
. Qf is the charge of fermion, i.e. Qτ=−1,

Qc=Qt=2/3 and Qb=−1/3. Tf
3 denotes the third component of isospin: = =T T 1c t

3 3 and

= = -tT T 1b
3 3 . The coupling constant g f fH¯ in the first expression of equation (B.1) is defined as
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=g Giff H ff H¯ ¯ where the explicit expressions for Gff H¯ are given in equations (A.1–A.3).
Ba,Bb,Ca,Cc and Cd are defined as

=

=
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where the integral functions B0 and C0 are the known Passarino–Veltman scalar functions.
For the one-loop diagrams containing W± and WH bosons, the coefficients Gi

, Gi
and

Gi
(i=1, 2, 3) are given by
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are concerned with the loop diagrams with the

mixing between W and WH, and they are given by
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The S
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1
and S

LO
1
coefficients for loop diagrams contributed by scalars and scalars plus

gauge bosons are presented as
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The mixing angle sp in the pseudoscalar and singly-charged sectors can be easily extracted in

terms of the VEVs, =
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