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Abstract. Inflation predicts that quantum fluctuations determine the large scale structure
of the Universe. This raises the striking possibility that quantum mechanics, developed to
describe nature at short distances, can be tested by studying nature at its most immense
— cosmology. We illustrate the potential of such a test by adapting the simplest form
of the inflationary paradigm. A nonlinear generalization of quantum mechanics modifies
predictions for the cosmological power spectrum. If we assume that the nonlinear parameter
b is a comoving quantity observational cosmology, within the context of single field inflation,
is sufficiently precise to place a stringent limit, b < 3 x 10737 eV, on the current, physical size
of the nonlinear term.
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1 Introduction

Quantum mechanics may be the most successful theory in all physics. It has been applied
successfully to widely diverse situations and each successful prediction in an atomic, or quan-
tum electrodynamic context is of course a test of quantum mechanics. It is, however, difficult
to subject the fundamental theory to precision tests. All theories benefit from having an al-
ternative to serve as a foil. This is neither easy nor commonly done for quantum mechanics.
In the words of Steven Weinberg [18],

“Considering the pervasive importance of quantum mechanics in modern physics, it is
odd how rarely one hears of efforts to test quantum mechanics experimentally with high
precision. . . it ought to be possible to test quantum mechanics more stringently than any
individual quantum theory...Perhaps we can formulate experiments that would show up
departures from quantum mechanics itself.”

It is important to find venues where we can test our most basic assumptions and theories.
The cosmos presents us with one new arena. A spectacular, and naively counter intuitive,
prediction of inflation is that the large scale structure of our Universe originates from primor-
dial, microscopic quantum fluctuations of the inflaton field ¢ which drives inflation. This is
possible because of inflation’s ability to stretch small regions of space to enormous size. The
picture receives strong support from recent experiments [13]. Data show we are in the age
of precision cosmology and confirm, to good accuracy, this cardinal prediction of inflation —
the imprint of quantum mechanics on the Universe.

The successful inflationary, quantum mechanical prediction of the power spectrum of-
fers the novel and surprising possibility that cosmological data can be used to test Quantum
Mechanics! To illustrate the feasibility of such a program we accept the single field inflation
model and study its predictions for a modification of Quantum Mechanics incorporating a
non-linear addition. This modification introduces corrections to the power spectrum. Cos-
mological data put a very tight limit on the magnitude of the non-linear term, a limit which
exceeds in precision limits derived from table top experiments in the lab. This shows that,
in principal, the Universe can provide a precision test of Quantum Mechanics.

We adopt the single field, slow roll model of inflation and start from the action of
the scalar inflaton field in a Friedmann Lemaitre Robertson Walker (FLRW) background
characterized by the scale factor a(t). We work in flat gauge, follow the standard treatment,
and write the inflaton field as ¢ = ¢. + d¢(x) where d¢(x) is the deviation from a uniform
background. The action is then expanded, to second order, in the perturbed inflaton field
v(z) with d¢(x) = v(@)/a. Slow roll correction terms are neglected. Care must be taken in
properly defining variables such as v to ensure that we are calculating physical effects rather



than gauge artifacts. Finally we perform a Fourier transform to k space and arrive at the

classical action 1 1
S = 2/d7'd3k [(02)2 - (kz - C;) ”1%] : (1.1)

Primes denote differentiation with respect to conformal time 7 and k/a is the physical
wavenumber (inverse wavelength) of each mode. Details of the steps involved are found
in standard treatments of inflationary cosmology. The equations of motion following from
eq. (1.1) lead to a simplified Mukhanov-Sasaki [9, 12, 15] equation for vy,

" k2—‘i” =0 1.2
Uk+ 0 V. = U. ()

Since v, is complex eq. (1.2) represents two equations one each for the real and imaginary
parts(vg{ and Ug) of vg. During the early quasi-de Sitter, slow roll phase of inflation, @ /a is
proportional to 1/72> becoming very small at early times 7 — —oo. We recognize eq. (1.1) and
eq. (1.2) as those of a classical harmonic oscillator (HO) with time dependent frequency and
potential

V(vg, 7, k) = <k2 - T22> o | (1.3)

In the limit 7 — —oo this becomes a simple harmonic oscillator (SHO). The discussion to
this point has been purely classical.

Eq. (1.2) determines the evolution of the fluctuations but does not set their size. This
is where quantum mechanics makes its entrance. In the quantum regime, fluctuations are
inevitable and if we have the proper quantum model we can calculate the size of those
fluctuations. Think of the SHO where quantum fluctuations of the position around the
potential minimum gives (x?) = ﬁ Eq. (1.2) embodies the physical picture of quantum
fluctuations arising early in the Universe and then growing with inflation only to exit the
horizon and freeze out. Fons after inflation has ended these fluctuations re-enter our horizon
and begin the process of collapsing into today’s structures.

Quantization is achieved by first defining a canonical momentum and Hamilton with

e,

giving rise to the Hamiltonian

H= /d3k: [pi + 2 <k2 -~ ‘2/)] = /d?’k”H (1.5)

Creation and annihilation operators are then introduced. (Many discussions introduce these
operators before the Fourier transform to k space but this is a matter of choice. We chose to
develop the classical picture as far as possible before introducing quantization.)

The quantization of the SHO at early times leads to the fluctuations (v?) = % fixing
the magnitude of vg. The solution to eq. (1.2) is now

vr(T) :\/;lke“” (1 — ];T> : (1.6)

'Because ¢ is real, vz = v_g which gives rise to eq. (1.2) with v;; dependent only on the magnitude .




An important measure of fluctuations in density is the power spectrum

k3
Pk) = k(|0 [*) = g(\vk\QHHO- (L.7)
For a de Sitter universe, one finds the scale free behavior
P(k) = Ak 1 (1.8)

with n = 1. The coefficient A contains a factor of A making the quantum nature of the
prediction explicit. Henceforth we take h = 1. Depending on the precise model for inflation
there will be corrections to eq. (1.8). Most importantly, slow roll inflation moves n slightly
below 1. The exact shift depends on details of the inflationary potential. The Planck data
gives n = 0.9655 + 0.0062 [13].

Another property of quantum mechanics needed for the prediction of eq. (1.8) is that
fluctuations for different values of k (e.g. k and k') are independent of each other. This
property is usually attributed to the linear nature of quantum mechanics.

2 Nonlinear quantum mechanics (NLQM)

How sensitive is P(k) to the detailed quantum nature of the fluctuations? One way of
answering this question is to use a generalization of quantum mechanics which makes testable
predictions for the power spectrum and to compare these predictions to those of standard
quantum mechanics.

The logical structure of quantum mechanics is rigid and this rigidity makes it difficult
to match its successes with a modified theory. What can an imagined change or correction
to quantum mechanics look like? Because almost all physical linear theories have, at some
level, nonlinear corrections, it is natural to ask if there exists small nonlinear corrections to
quantum mechanics. This is more challenging to do than to say, since it is difficult to add
nonlinear terms and maintain sensible physical interpretation. Nevertheless, several authors
have tried [2, 18]. While there are reasons to be uncomfortable with the nonlinearities
(see [1, 4, 5, 7, 14] for discussions and many references) physics requires testing not comfort.

The chief source of discomfort is the predicted existence of superluminal signaling [4, 14]
although there are claims (see [7] for discussion and further references) that this is not immedi-
ately disqualifying. Furthermore unpalatable consequences should be subject to experimental
tests and we know of no high precision tests ruling out superluminal signalling arising from
nonlinearities. For example, Gisin’s experiment (see discussion in [7]) showing superluminal
signaling would take an extremely long time to conduct given present limits on the non lin-
ear parameters. It is therefore interesting to examine what cosmology has to say about this.
Remarkably the simplest picture of inflation says something significant.

Bialynicki-Birula and Mycielski were able to formulate a nonlinear generalization of the
Schrodinger equation with an acceptable interpretation [2]. They suggested replacing the
standard Schrédinger equation with the following nonlinear version.

h

2—V2\I/(r,t) — V(x, )T — bW (r, t)In(|¥(r,t)]*d) = —ihdy¥(r, 1) (2.1)
m

The constant b, with dimensions of energy, is a universal, positive constant, while d, with

dimensions such that W?d is dimensionless, has no physical significance and only adds a



phase to the wavefunction. This choice of nonlinearity preserves several desirable properties
of quantum mechanics, i.e. factorization of wavefunctions, existence of a lower energy bound
and the Planck relation £ = hAw. There are also Gaussian solutions. A general pathology
of nonlinear adjustments to the Schrédinger equation is that noninteracting particles will
influence each other [6]. The logarithmic addition is unique in allowing factorization of the
nonlinear Schrédinger equation for two noninteracting, nonentangled particles, thus avoiding
this pathology. This independence manifests itself in the condition (vivg/) proportional to
Orrr. (For the remainder of this discussion we adopt quantization in a box rather than in the
continuum.)

Experiments were performed [3, 16, 17] to find limits on the parameter b with the most
stringent limits establishing b < 3 x 1071 eV [3].

The technical task confronting us is to calculate (Jvg|?) in this nonlinear generalization
of quantum mechanics. Because this generalization relies on the Schrodinger equation rather
than creation and annihilation operators (as is most common in cosmology literature), we
quantize in the Schrodinger Picture. The Schrodinger approach has been used in cosmology
by J. Martin [10] where many calculational details and an extensive set of references can be
found. See also [8] for earlier relevant work. The Schrodinger picture was used in an interest-
ing attempt to find cosmological limits for theories of wave function collapse by comparing
collapse predictions to the power spectrum. See [11], which includes further references on
this topic.

3 Inflaton fluctuations in nonlinear quantum mechanics

Our strategy is to quantize the fluctuations v by formulating a Schrédinger equation for
Uy (vg, 7) following [10]. We then modify this Schrédinger equation by adding the non-linear
term —bW (vy,, 7)In| W (vg, 7) |2

We start with the standard action eq. (1.1) but now perform the Fourier decomposition

in a box. o ;/dek: [(U’;)Q ~ <k2 _ ‘Z') Ug} , (3.1)

We begin quantization by treating vi and pj as operators and imposing the standard com-
mutation relation between pp and v

[0k, Drr] = 10kpr (3.2)

which leads to the standard representation

owv
00 = Vg, pPr¥s = —1t 3 i (3.3)
Vg
The Schrodinger equation then follows
i0- Uy (vg, 7) = HU (v, 7) = [(Br)* + V (vk, 7, k)] Wi (g, 7), (3.4)

We exploited the property of the independence of noninteracting oscillators. This property
is rare in arbitrary nonlinear additions to the Schrédinger equation, but is satisfied by the
nonlinear term of Birula et al. Not surprisingly, given the formal similarity between the per-
turbative inflaton action and the action for the HO, eq. (3.4) is essentially identical to the



non-relativistic Schrédinger equation for the HO and for which we have a recipe for modifica-
tion, eq. (2.1). According to [2] the intervention for nonlinearization occurs at this stage by
adding the suggested nonlinear term, bWy (vg, 7)In|Wy(vg, 7)|2, to the standard Schrédinger
equation. The final Schrédinger equation, including the nonlinear term, is

Vo, Ui(vi, 7) = V (v, T) U (vg, ) = bW (vg, T)I| W (v, 7)Pd = —ihO, (v, 7)  (3.5)

We need to calculate
2 2
(or(m)]2)0 :/dvkxp;; [(v?) + (1) ]\yk (3.6)

Since the solution to eq. (3.5) with b = 0 is a Gaussian and the solution for a nonzero b but
V(vg, 7) independent of 7, is also a Gaussian it is natural, especially for small b, to try a
Gaussian as a solution for the full eq. (3.5). We thus make the Gaussian ansatz for v]* and
vg separately and omit the superscripts from now on.

U (1,v,) = N(7) exp(fQ(T)(vk)2). (3.7)
1/4
with Q(7) = g(7) 4+ ih(7). Normalization of ¥ requires N = (%g) , consistent [8, 10] with
the Schrodinger equation, giving
1

2 —_
(log|)o = 1 (3.8)
Eq. (3.5) tells us that the functions g and h satisfy
1 1
2 2 2
g = 4gh. (3.9b)

These equations do not, as far as we could determine, allow a closed solution but we can

check interesting limits. If b = 0 the solutions gg = T Bt o and ho = m reproduce

2(1+k272)
the well known results for (vZ) obtained from eq. (1.6). For early times 7 — —oc the solution
toegs. (3.9)ish=0and g = % (b + Vb + k2>. The choice of this solution to the quadratic

equation for g is dictated by imposing the boundary condition that b — 0 is the standard
SHO result. This leads to

(v, 7) = e 7FD (g>

™

N

(VP (VIR +D)) (3.10)

where
b+Vb2+kZ b
E= %—5 (ln7r<b+\/b2+k2)) (3.11)

is the ground state energy of the SHO in the nonlinear theory [2]. Thus we start out in the
appropriate vacuum (lowest energy) state.

The power spectrum is determined by 7 — 0 and, since b is very small, we approximate
the solutions to eqs. (3.9) as a power series in b, g = go +bgy + ... and h = hg+bh; +... To
first order in b we find

1 k372
b—0 2k%272 4+ 1

g(7) 1+%+4£ / hi(t)dt |, (3.12)

which is readily seen to satisfy eq. (3.9b).
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Figure 1. The modified power spectrum, eq. (3.14), is red (solid) and the 20 errors to the Planck
value of n eq. (1.8), are blue (dash dot) and green (dash). The central value for n is black (dotted).
For b = 0.001 the modified spectrum just fits inside the 20 limits.

Numerical integration of the system of egs. (3.9) gives

9(r) — kzﬁ (1 +1.7 (Z)) (3.13)

leading to the prediction for the power spectrum

1

Pk) = Akt ——— 3.14
) 1+1.7¢ (3:14)
Slow roll corrections will be the same as for the standard treatment.
We estimate the constraint on b by first rewriting the power spectrum as
E\" 1
Pk)=A () . (3.15)
Ry () ()

The parameter k., is the (physical) pivot scale for fits to P(k) and the (physical) quantities
bemb and kemp correspond to b/ac., and F/a.., respectively. acmp is the FLRW scale factor
at recombination. k¢ is the physical wavenumber as measured at recombination We then
compare. Eq. (3.14) with the Planck data via eq. (1.8). Our limit on beyy is the largest value
of bemp for which eq. (3.14) sits within the 20 variation on n, n = 0.9655+0.0124. We used the
same pivot scale k, = 0.05 Mpc~! and normalized the modified power spectrum to agree with
the Planck parameterization at k.. This results in bems /&, < 1x1072 see figure 1, setting a limit

bemp < 3 x 10734 eV, (3.16)

compared to the best terrestrial limit of 3 x 10~ eV.
What is the interpretation of eq. (3.16)7? (recall bemb = Y/acas) €q. (3.14) is unusual
for a measurable cosmological quantity. k, appearing in the denominator, is the co-moving



wavenumber not the physical wavenumber. Thus we have to confront the nature of the
parameter b (with dimension of energy). We consider two possibilities (i) b appearing in
eq. (3.5) is a new, universal, fundamental constant of nature which introduces a new scale
into physics and (i7) b is fundamental but is a comoving quantity. We treat these in turn.

In case (i) the power spectrum, eq. (3.14), is a function of the ratio of a physical
quantity with a co-moving quantity. This is usually considered inadmissible but in our case
it has a physical interpretation. Because b is a fundamental physical constant which breaks
diffeomorphism invariance (see below) it introduces a new scale into physics. This allows
for extra time and scale dependence to enter. (A similar result is obtained in [11] with
respect to the new fundamental constant which governs wave function collapse.) The power
spectrum is now time dependent (through its dependence on a(t)) and in principle allows
for the determination of the absolute scale factor of expansion in units of our new constant
b. If we have an independent measurement of b, say from a table top quantum mechanical
experiment, eq. (3.16) provides a lower bound on aGepp in units of the fundamental length 1/b.
If the power spectrum fixes a non zero value for /a.,., we have a determination of a¢yp in units
L/ If the only data point we have is eq. (3.16) we cannot put a limit on b but only on /...

Now consider possibility (i7) that b is comoving. The formal reason for allowing only the
physical wavenumber to enter into observables is diffeomorphism invariance, an important
requirement of General Relativity. The appearance of factors of ¢/k in eq. (3.14) seem to
violate diffeomorphism invariance which, in its simplest form, asserts that physics should be
invariant under the rescaling @ — Aa and © — A~'x. We are considering changes to quantum
mechanics, but are wary about also introducing changes to General Relativity. Therefore, it
is worthwhile to see if we can maintain diffeomorphism invariance.

To analyze this, we examine the properties of b under such transformations. We insist
that the action for each k mode S, = [ drduvy Ly, from which the modified Schrodinger
eq. (3.5) can be derived, is diffeomorphism invariant. Ly, the Lagrangian density, is given by

oW, OV OW,

Ly =15 5 + V(vg, 7, k) Wi |2 = b| 2 In(| Ty |*d). (3.17)

T Ovy, Ovuy,

7, k, and ¢(z), the inflaton field, are assumed to have the standard variations under a — Aa
ie. k— M, 7 — A'r and ¢(x) — ¢(A"1x). The properties of vy and ¥}, can be determined
by the definition of vp in terms of d¢p and the normalization of Wy. This implies that
vk — A 2u, and Uy, — A4y, The action will be invariant if £, — A*2£;, which will be
true if b — \b.

This means that b is not a true constant but is itself a comoving quantity. This is
unusual but conceivable. For instance b could be proportional to v/ K where K is the Gaussian
curvature of the Universe. It would thus be comoving and naturally exceedingly small at the
present time. One could imagine that the nonlinear term containing b somehow arises from
quantization of gravity. (The so called constant b varying with the size of the Universe is
also reminiscent of Dirac’s large number hypothesis).

How does this limit relate to the laboratory tests of NLQM? In order to maintain
diffeomorphism invariance we chose to treat the cosmological application of NLQM as the
fundamental appearance of the NLQM parameter b on the physical stage. We modified
eq. (3.4), the appropriate Schrodinger equation for the quantization of the inflaton fluctua-
tions, by adding the nonlinear term —bWy, (v, 7)In|Wx(vy, 7)|2d. Maintaining diffeomorphism
invariance required b to be a comoving quantity. From this point of view the non-relativistic
eq. (2.1) is now an approximation with b, along with all other quantities appearing in eq. (2.1),



physical. Thus it will appear in eq. (2.1) as bpow Or ?/an... For terrestrial time scales, a is
essentially constant and so by is a constant as required by the interpretation of eq. (2.1) as
a candidate NLQM. Since a0y is about 1000 times acmp, bnow 18 1/1000 bep. From eq. (3.16).

bnow < 3 x 10737 eV, (3.18)

4 Summary and conclusion

The purpose of this note is not to challenge quantum mechanics but to celebrate modern
cosmology. The strides made in experimental and theoretical cosmology in the past decades
have made it a precision science. This precision strongly re-enforces the inflationary paradigm
whose most spectacular result is that the large scale structure of the Universe is determined
by small scale quantum fluctuations. To highlight this striking prediction we made the opti-
mistic assumption that simple inflation is strictly true and used it to test quantum mechanics.
If we further assume that the fundamental nonlinear parameter b is comoving we obtain an
extremely tight restriction on a specific nonlinear generalization of quantum mechanics that
far exceeds precision laboratory experiments. We find it highly noteworthy that measure-
ments of large sale structure of the Universe, within a well defined, if idealized, theoretical
framework, provide a precision test of quantum mechanics. The connection between the
Universe and the quantum world is quite tight.
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