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Abstract. In scalar-tensor theories we revisit the issue of strong coupling of perturbations
around stealth solutions, i.e. backgrounds with the same forms of the metric as in General
Relativity but with non-trivial configurations of the scalar field. The simplest among them
is a stealth Minkowski (or de Sitter) solution with a constant, timelike derivative of the
scalar field, i.e. ghost condensation. In the decoupling limit the effective field theory (EFT)
describing perturbations around the stealth Minkowski (or de Sitter) solution shows the
universal dispersion relation of the form w? = ak*/M?, where M is a mass scale characterizing
the background scalar field and « is a dimensionless constant. Provided that « is positive
and of order unity, a simple scaling argument shows that the EFT is weakly coupled all
the way up to M. On the other hand, if the structure of the underlining theory forces the
perturbations to follow second-order equations of motion then @ = 0 and the dispersion
relation loses dependence on the spatial momentum. This not only explains the origin of the
strong coupling problem that was recently pointed out in a class of degenerate theories but
also provides a hint for a possible solution of the problem. We then argue that a controlled
detuning of the degeneracy condition, which we call scordatura, renders the perturbations
weakly coupled without changing the properties of the stealth solutions of degenerate theories
at astrophysical scales.
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1 Introduction

Scalar-tensor theories serve a simple framework of modification of gravity for models of
primordial /present accelerating expansion of the Universe, as well as testing gravity at dy-
namical system in the strong field regime with observations of gravitational waves. In the
last decade, a lot of efforts has been made to clarify how much general derivative couplings
between scalar field and gravity are allowed without pathology. One of the central issues is
that nondegenerate higher-derivative theories in general suffer from unbounded Hamiltonian,
known as the Ostrogradsky theorem [1, 2]. While imposing a degeneracy of the Lagrangian
with respect to the highest-order derivatives avoids the assumption of the Ostrogradsky the-
orem, there still exist ghost degrees of freedom associated with non-highest but higher-order
derivatives [3]. A certain set of conditions should be imposed on Lagrangian to eliminate all
the Ostrogradsky ghost, which is known as the degeneracy condition [3-7]. Being built upon
the degeneracy condition, degenerate higher-order scalar-tensor (DHOST) theories involve
second-order derivatives of the scalar field up to quadratic order [4] and cubic order [8] and
evade the Ostrogradsky ghost.

The degeneracy condition is not related to a symmetry in general and thus is expected
to be spoiled by quantum corrections, leading to apparent ghost degrees of freedom whose
masses are decreasing functions of the amount of deviation from the degeneracy condition.
From the effective field theory (EFT) point of view [9-12], however, we should restrict our
consideration to sufficiently low energies, momenta and amplitudes of fluctuations below a
cutoff. Therefore, if there is an apparent ghost degree of freedom and if it has a mass larger
than the cutoff of the EFT then it should not be considered as a problem since the properties



and even the existence of the apparent ghost are UV sensitive and can be completely altered
by the infinite series of higher dimensional operators that become prominent above the cutoff.
This means that, assuming the existence of a good UV completion, one can safely relax the
degeneracy condition as far as the deviation from the degeneracy is small enough so that the
apparent ghost is heavier than the cutoff scale. In this case, the limit of taking the mass
of the apparent ghost infinity corresponds to the standard degenerate theories in which the
apparent ghost is eliminated by a set of constraints.

One of interesting properties of higher-derivative scalar-tensor theories is the existence of
stealth solutions, which consist of the same forms of the metric as in General Relativity (GR)
solutions but with nontrivial scalar field profiles that do not contribute to the stress energy
tensor. With a trivial or constant scalar field profile, it is possible to derive systematically a
set of sufficient conditions for a wide class of arbitrarily higher-order derivative theories to
allow the metric same as in GR as an exact solution [13]. Similarly, for stealth solution with
nontrivial profile of the scalar field, one can also perform a systematic analysis to identify a
subclass of theories that allow a GR solution in a class of theories of interest. In particular,
shift-symmetric theories allow linearly time dependent scalar field profile compatible with
static or stationary metric ansatz. For instance, various stealth black hole solutions were
found for shift symmetric Horndeski theory with linearly time dependent scalar field with X =
g* 0,0, ¢ = const. [14, 15].1 Another class of stealth solutions with the scalar field profile

= ¢(r) and X # const. were also found for non-shift-symmetric Horndeski theory [17].
Stealth black holes in DHOST theories have been attracting much attention recently [18-22].
Stealth solutions may also be used as seed solutions in a certain generating-solution method
based on disformal transformations [23].

Stability analysis of stealth solutions have also been extensively investigated. In the case
of stealth solution with ¢ = ¢(r) and X # const. in non-shift-symmetric Horndeski theory
found in [17], since the scalar field profile ¢ = ¢(r) is static, one can apply general results
of odd- and even-parity perturbation theory around static, spherically symmetric spacetime
in Horndeski theory established in [24, 25]. It was found in [17] that the kinetic term of the
second even mode vanishes, signaling strong coupling. The strong coupling implies that such
a black hole solution cannot be trusted as it is beyond the regime of validity of the EFT of
ghost-free higher-derivative theory.

For a class of stealth solutions with X = const. and linearly time-dependent scalar
field configurations, it was recently pointed out that one of the even-parity modes of liner
perturbations has a vanishing sound speed, that the effective metric on which the mode
propagates is singular and that as a result the mode is infinitely strongly coupled [26]. In
particular, a sufficient condition for the sound speed to vanish was derived.? Therefore, the
results obtained in [17, 26] for spacelike and timelike profiles of the scalar field respectively
show that for these two types of stealth solutions the second even mode is infinitely strongly
coupled, and hence they cannot be trusted. Of course, these results do not exclude the

Tn the context of k-essence, a stealth Schwarzschild solution was found in [16] in the k-essence limit of the
ghost condensate, i.e. in the limit o — 0.

2For this analysis, one carefully performs a coordinate redefinition to diagonalize the time and spatial
derivative terms and then checks the un/boundedness of the Hamiltonian [27, 28]. Taking into account this
point, stability analysis of static, spherically symmetric spacetime with a linearly time-dependent scalar field
in DHOST theories can be formulated for the odd-parity perturbations [22]. While the full stability analysis
of even-parity perturbations has still been not clarified yet, [26, 29] succeeded in extracting the equation of
motion of one of the even mode without the full analysis, and [26] obtained the sufficient condition for the
strong coupling.



possibility of other stealth solutions without strong coupling. Indeed, there exist other stealth
solutions [19, 22] in DHOST theories that violate the sufficient condition for the vanishing
sound speed, for which an independent study is required.

The two types of stealth solutions exhibit the infinite strong coupling not only in the
bulk of the geometry but also in the asymptotic region, where the metric approaches either
Minkowski or de Sitter. Therefore, let us consider a stealth Minkowski or de Sitter solution,
hoping that it provides a hint for a possible solution of the problem. Here, for simplicity we
consider a stealth Minkowski solution with a constant, timelike derivative of the scalar field,
i.e. ghost condensation [30]. The EFT describing perturbations around the stealth Minkowski
solution can be constructed systematically (see section 6 of [30]). In the decoupling limit it is

1 -
S = 2M4/dtd3f[7'r2 — %(V%)Q o (1.1)

where we have chosen the time coordinate t so that the background scalar field has the form
¢ = M?t, 7 is the (rescaled) perturbation of the scalar field, « is a constant of order unity and
dots represent nonlinear interactions of 7. This shows an universal dispersion relation of the
form w? = ak*/M? without the usual k? term. In order to estimate the energy dependence
of the nonlinear interactions, let us first determine the scaling dimension of 7 as the energy
scale F is scaled as E — sE (and thus dt — s~1dt), where s is a constant. The dispersion
relation implies that dZ — s~ Y/2d# under the scaling. By requiring that the quadratic part
of the above action be invariant under the scaling, one concludes that 7 should scale as
7 — sY/47, meaning that the scaling dimension of 7 is not 1 but 1 /4. This then makes it
possible to estimate the scaling dimensions of any nonlinear operators. For example, the
leading nonlinear operator M* i dtdf(ﬁﬂ')%i’ scales as s!/4 and thus is suppressed at low
energy as ~ (E/M )1/ 4. Similarly, one can check that any nonlinear operators are suppressed
by ~ (E/M)Y* or higher order in E/M, meaning that the theory is weakly coupled all the
way up to the scale M, as far as dimensionless parameters in the action are of order unity.

The structure of the EFT action (1.1) is determined solely by the symmetry breaking
pattern and the derivative expansion, and thus can describe the low energy behavior of a
wide class of underlining theories. However, if the underlining theory has a specific structure
that forces the perturbations to follow second-order equations of motion (this is the case in
DHOST theories) then o = 0 and the dispersion relation in the decoupling limit no longer
depends on the spatial momentum as the k? term is forbidden by the symmetry. This explains
the origin of the infinite strong coupling problem around stealth solutions in DHOST theories.
This, at the same time, gives a hint for a solution of the problem: one can slightly detune the
degeneracy condition to introduce higher spatial derivative terms suppressed by some high
scale. A new term contributes to the quadratic action, bringing back the dispersion relation
2 ~ ak*/M? since there is no symmetry reason to forbid the k* term.
The detuning also introduces higher time derivative terms and thus apparent ghost degrees
of freedom. However, as far as the amount of detuning is small enough, those apparent extra
modes have large masses above the cutoff and, as already stressed in the second paragraph
of this section, should not be considered as physical. Therefore, a controlled detuning of
the degeneracy condition is expected to solve the infinite strong coupling problem of the
stealth solutions in DHOST theories. We name this mechanism as scordatura, an Italian
word literally meaning “detuning”, after a non-standard tuning of string musical instruments
intended for making special chords possible and/or certain passages easier to play than the
standard tuning.

to the universal form w



The corrections to the metric due to the higher dimensional operators are expected
to be unobservably small at astrophysical scales. This can be shown explicitly in ghost
condensation, which admits approximately stealth black hole solutions. As shown in [16],
the deviation of the metric from the corresponding GR solution is suppressed by the ratio
M? /M3, with M < 100 GeV [31], and thus is unobservably small at astrophysical scales.®> On
the other hand, as we have seen above at least in the asymptotic flat region, the perturbation
around the solution is weakly coupled all the way up to the cutoff scale M. Hence, the
approximately stealth black hole solution in ghost condensation is stealth for all practical
purposes* and do not suffer from the above mentioned problem of the infinite strong coupling.
We expect the same in scordatura DHOST theories. Namely, we expect that, as far as the
amount of detuning of the degenerate condition is under control, stealth black hole solutions
in scordatura DHOST theories are stealth for all practical purposes and do not suffer from
the above mentioned problem of infinite strong coupling.

In this paper, we focus on the stealth solution with timelike derivative of the scalar
field. (As we shall show later in this paper, the scordatura mechanism does not work if
the derivative of the scalar field is spacelike.) We first point out that the strong coupling
problem is universal and thus unavoidable, at least in the decoupling limit in the asymptotic
region, where the background approaches stealth Minkowski or de Sitter solution. Away from
the decoupling limit, the dispersion relation may receive corrections suppressed by negative
powers of Mgl. However, because of the Planckian suppression, those corrections are small
and the strong coupling scale of the perturbation remains too low for the EFT to be useful
for interesting applications. We then show that the problem can be cured by scordatura,
i.e. a controlled detuning of the degeneracy with introduction of additional higher-derivative
terms. Therefore, stealth solutions in scordatura degenerate theories should be free from the
problem of infinite strong coupling, provided that the derivative of the scalar field is timelike.

The rest of the paper is organized as follows. In section 2, we estimate the energy
scale of strong coupling in the asymptotic region of stealth solutions, where the geometry
approaches either Minkowski or de Sitter, based on EFT of inflation in the decoupling limit.
We also derive the dispersion relation in the decoupling limit, leaving the full analysis beyond
the decoupling limit to appendix B. In section 3, we focus on a stealth solution of a specific
class of a scordatura DHOST theory. We shall see that without the scordatura term, either
strong coupling or gradient instability is inevitable for this class of theory. To be more precise,
without the scordatura term we shall see that the strong coupling scale is much lower than M
and that the sound speed squared is negative and of order O(M? /Mlgl). Here, it is supposed
that the action of the system in the decoupling limit is parameterized by the scale M and
dimensionless parameters of order unity. Therefore, the strong coupling scale is rather low
(suppressed by some powers of M?/M3, < 1) and the system exhibits gradient instability in
the rather narrow window below this low strong coupling scale, if the scordatura mechanism
is not employed. We then show that an introduction of the scordatura term cures the issue.
In section 4, we discuss our results and outlook.

2 Simple estimates of strong coupling scales

In this section, we consider general theory with timelike derivative of the scalar field in
the Einstein frame that respects spatial diffeomorphism invariance in a Friedmann-Lemaitre-
Robertson-Walker (FLRW) background. In particular, our treatment includes the case of the

3The same conclusion holds for gauged ghost condensation [32].
4Conceptually, on the other hand, the deviation from the corresponding GR solution is important for the
recovery of the generalized second law [33, 34].



flat chart of de Sitter spacetime as a special case. The discussion here is based on the EFT
of single-field inflation [35, 36], which extends the EFT of ghost condensation, developed in
section 6 of [30] (see also [37]), to a general FLRW inflationary background.

In general, for the EFT to cover a wide class of theories of modified gravity, one needs
a further generalization of the EFT action to include additional terms [38—44]. In particular,
Horndeski theory generates a peculiar interaction between curvature and lapse, and general
DHOST theories include time derivative of lapse. However, we restrict our analysis to the
canonical EFT action, since requiring the compatibility to gravitational wave observations,
the additional EFT interactions should vanish [45]. The remaining subclass of Horndeski
or DHOST theories can be recast to the Einstein frame action through conformal and/or
disformal transformations. These transformations simply changes a de Sitter solution with
X = cosnt. to another de Sitter solution with X = cosnt. as it merely causes constant
rescaling of the lapse and scale factor. The scalar field profile is also unchanged.

Another subtlety is about the chart of de Sitter spacetime. We focus on asymptotically
de Sitter stealth solutions with linearly time dependent scalar field, and consider the limit
of spatial infinity. The asymptotic form of the Schwarzschild-de Sitter or Kerr-de Sitter
metric is given by the static chart of de Sitter spacetime, which can be transformed to the
flat chart of de Sitter spacetime. Under this transformation, the radial dependency of the
scalar field can be removed for a certain class of solutions, and hence we can regard it as the
unitary gauge. Specifically, for the Schwarzschild-de Sitter solution in the shift-symmetric
quadratic DHOST theories, such a class is Case 1-A identified in [19]. We provide more
detailed argument in appendix A.

Therefore, the de Sitter limit of the following EFT analysis in the unitary gauge can be
regarded as the limit of spatial infinity of asymptotically de Sitter stealth solutions of Case
1-A in Class Ia of DHOST theories, including Horndeski/GLPV subclass, with timelike scalar
field. Using this framework, below we focus on the decoupling limit action to estimate the
strong coupling scale and show that at the de Sitter limit the dispersion relation of Nambu-
Goldstone mode contains k? and k* term. The linear perturbation analysis away from the
decoupling limit in Minkowski limit is provided in appendix B.

2.1 EFT action

Assuming the existence of the timelike scalar field, we take the unitary gauge so that the scalar
field is given by ¢ = t. The perturbation of the scalar field vanishes d¢ = 0 by definition. The
residual gauge degree of freedom is purely spatial transformation, ¥ — &' = # (¢, Z). In the
unitary gauge the EFT action which respects spatial diffeomorphism invariance and describes
the perturbation of general theory in the Einstein frame around the FLRW spacetime is
given by

1 ~ _ ~
S = Mg, / d*z/—g LR +er(t) + ea(t)g” + LD (56%, 0K, S Rypors ty Gus 9" V) |
(2.1)

where
£ = 2y (£)(5g%)2+ Aa(t) (39%0)° + Xg ()36 K+ A () GKA)2 + As (D KLSKY +- -, (2.2)
and
5900 — goo 1,
0K = Ky — Hyu s
0Ruvpo = Ryuvpe — 2(H + K/a*) Y761 + (H + H?) (5069 + (3perm.)) . (2.3)
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Here, n, = (52 /v/—g% is the unit normal vector, v,, = gu + nun, is the induced metric,
and K/a? is the spatial curvature of the FLRW background geometry with the scale factor
a(t). The background lapse function is set to be unity so that the Hubble expansion rate for
the background is H = a/a with a dot denoting a derivative with respect to ¢. The mass
dimension of the \; functions are A1, As: 2, A3: 1, and Ay, As: O.
The terms linear in the perturbation give the background equations of motion as
3H2—|—3af’2C:—Cl—Cg, H—%ZCQ. (24)
Solving the background equations of motion with respect to ¢; and cy and plugging them
back into the action (2.1), we obtain

1 . 2K . K
S = Mgl/dﬂ‘x\ﬁ—g [23— <3H2 + H + ) + (H - aQ) g% +£<2>] . (2.5)

a?
2.2 Decoupling limit action

Leaving the full analysis taking metric perturbations into account in appendix B, for the rest
of section 2 we focus on the decoupling limit action neglecting metric perturbations. This
treatment dramatically simplifies the analysis, and is justified on sufficiently small scales [36].
In the unitary gauge action (2.5), perturbation of scalar field does not appear explicitly but
is encoded in the metric perturbations. By following Stiickelberg trick, we can obtain the
quadratic action for the Nambu-Goldstone mode 7 at the decoupling limit. By acting the
broken time diffeomorphism ¢ — ¢’ =t — w(¢’, ) on the unitary gauge action (2.5) and then
rewriting ¢’ as t, one obtains the covariant EFT action. In practice, one only needs to make
the following replacements in (2.5)

0 -\ <0 7
60 =5 (14 7)00 + ol
H(it)—>H({t+m), H{t)—H{t+n), MN()—=N{E+mn), a(t) = a(t+m),
Guv — Guv g = g, vu - vu ) R,uz/pa — R/wpa . (26)

In the decoupling limit one neglects the metric perturbations to obtain the action for the
Nambu-Goldstone mode 7 as

. . ; 2
S, = ME / dtd>z a® [(H + 472 + H@ +4(\ — 2Mp)73
a
. (Oim)? _ 2
—AN\ T 2 +O(r*, &) + E%I)QSR , (2.7)

where we have set L = 0 for simplicity, we have assumed the adiabatic evolutions of H and
\; as

(0¢)" Ai
Hm™ )\,

' (O)"H
It

= O, '

— 0@, ld<1, n=12-, (2.8)

(2
and £ SKSR
terms and that depend on higher derivatives of .

Below we estimate the energy scale E.upic, at which the cubic terms become comparable
to the quadratic kinetic terms, for each case where | — H/(4A1)| is not too small, or | —

H/(4\)| < 1. Eeupic gives an upper bound of the strong coupling scale.

represents those terms in £3 that involve SKW and /or SRWW such as A3, A4, A5



2.2.1 Case with not-too-small cg

For the case where | — H/(4)1)| is not too small, the decoupling limit action (2.7) can be
rewritten as

= H . (81'77)2 . 1 C3 . . (&77)2
2 3 2 2 3
Sﬂ— = Mpl/dtd Tra |:— 07 <7T — Cq o2 ) - H <02 - 1) <627T - T o2

S

4 2 (2)
+0O(n", € )+£SK,SR] , (2.9)
where we have introduced ¢2 and c3 by

1 4\ 5 82y (1 !
=1 = - LA [ | . 2.10
c2 g TS h (2.10)

Therefore, if | — H/(4\1)] is not too small, so is ¢2. If ¢ is not too small then one can safely
(2)
SK,SR’

To estimate the strong coupling scale, for simplicity we further assume that c¢s ~ const.
in the time scale of order 1/F, where E is the energy scale of interest, and rescale the spatial

coordinates as

ignore the effects of £

Ky

7= c (2.11)

We then obtain
= . 5171- 2 1 . . 5Z7T 2
Sr = /dtd3:c a3 (cse M3 H?) {7@ _ 2) + <02 - 1) v <C37T2 _ aQ) > +-- ] . (2.12)

a S

where ¢ = —H/H? is the slow-roll parameter. From now on we assume that 0 < ¢2 < 1.
Avoidance of strong coupling requires that the first two terms dominate over the nonlinear
terms. With this condition one can estimate the amplitude of quantum fluctuations for a

given energy scale E as
5, 2 E4
2 O — (2.13)
a? cseMp H?
We now would like to estimate the energy scale E.uhic at which the cubic terms become
comparable with the quadratic terms, i.e.

1 1
(2 - 1) 7| ~—— (2.14)
G =B, max[lcs|, 1]
Combining (2.13) and (2.14), one can estimate Ecypic as
(Fehgy 1) 215

Ecubic S y
~Y 2
\1—cE

where we have assumed that the first two terms in (2.12) remain to be the dominant quadratic
terms all the way up to F ~ FEcupic. Obviously, the strong coupling scale is lower than
or equal to Fcypic since higher order terms may or may not become comparable with the
quadratic terms below Ecupie. Therefore, if the first two terms in (2.12) remain to be the
dominant quadratic terms then the system would be infinitely strongly coupled in the limit

Pe/(1 — c2)? = 0. However, in this limit, ¢; < 1 or | — H/(4\1)| < 1, terms in £®

SK,0R are

not negligible and need to be taken into account, which we shall address below.



2.2.2 de Sitter limit (cg <L1)

Let us focus on the case where | — H/(4\1)] < 1 and estimate the strong coupling scale.
In this case the background expansion is close to de Sitter H =~ const, and the sound speed
is small ¢2 < 1. This limit is not necessarily a fine-tuning since the de Sitter limit can be

naturally realized as an attractor of a system [30].

2)
SK,0R’
that 2 is not too small. In the case ¢2 < 1 or de Sitter limit, extra terms hidden in £

assuming
@
SKOR
of (2.9) cannot be ignored. With ¢ < 1 the EFT action (2.7) for 7 at the decoupling limit
reads

As stated just after (2.10), in the previous subsection we have ignored £

a2 (9m)?
Sy = M2 / dtd3 7 a® [4)\1 (er _ 2l a;r) i a;r) > 4\ — 209)73

O3\ (9;m)? 027)?
+>\3(H—;2><a7;)+(A4+A5)(;Z) + -

: (2.16)

where we performed integration by parts and neglected subdominant terms under H/M < 1,
w/M < 1, k/(Ma) < 1, otherwise the EFT would be useless.
Let us employ the notation

M* M8 M(a +7) My
AL = SM2. A3 = M2 MT T T oz As = SN2 (2.17)

Pl Pl Pl Pl

The action (2.16) can then be rewritten as
M* 3= 3.2 2(62'77)2 ,(81-77)2 o (8.271')2
Sw:2/dtdxa [7? B e ki ety ;4
B &\ (9ym)?

+M H 2 o +-, (2.18)

Let us estimate the energy scale Eypic at which the cubic term 7 (9;7)%a~2? becomes
comparable to the canonical kinetic term 72 which we assume is order unity. First, requiring
order unity kinetic term part of the action yields E~'p~3M*(En)? ~ 1, namely, the am-
plitude of quantum fluctuations for given energy scale E and physical momentum scale p is
estimated as

E3/2
Second, requiring cubic term comparable to the quadratic term yields
Emp?
~ 1. (2.20)
E2 E=FEcubic

Combining (2.19) and (2.20), we obtain the following equation that should be satisfied at
E = Ecubic

~1. (2.21)

( P )7/4 E
E=FEcubic

E M




To explicitly write down FE.unic we need a relation between E and p. Below the strong
coupling scale the quadratic terms in (2.16) should dominate over the nonlinear terms and
the physical momentum p is related to E through the dispersion relation obtained by the
quadratic terms.

We assume de Sitter limit ¢2 < 1 and the EFT assumption H/M < 1, w/M < 1,
k/(Ma) < 1, and |al,|5] = O(1). The dispersion relation for general case is then given by

w? s HY K K
o= <cs - BM> TP T (2.22)

Thus, the dispersion relation varies depending on which term on the right hand side is
dominant. As we shall see below, there is a crucial difference of the estimation of E¢ypic
between the case where o term is dominant and other cases.

First, let us consider the case where ¢2 term is dominant,

k2

H
e rmM] <, (2.23)

max [[oa[

which requires non-exact de Sitter spacetime and includes the case o = 0. In this case (2.22)

reads ) )
w 9 k
It means E ~ cgp, with which from (2.21) we can estimate Ecypic as
Beupic ~ ¢//*M < M. (2.25)

Therefore, the strong coupling scale is much lower than M. In this case we have neglected

terms originating from 5?[3,5 > and hence (2.25) is consistent with (2.15) in the limit 2 < 1.
Next, let us consider the case where § term is dominant,

]{22

H
MQGQ] <IBly; <1, (2.26)

max [cg, ||

which includes the case a« = 0 and/or exact de Sitter. In this case (2.22) reads
W Bﬂﬁ
M? UM M?%a?

meaning E ~ (|3|H/M)/?p, with which from (2.21) we obtain

(2.27)

H 7/8
Ecubic = <|6|M> M < M. (228)

Again, the strong coupling scale is much lower than M.

Finally, let us consider the case where o term is dominant,
H k2
2
max |:CS, |B|M:| < ‘OK|MTQ2 < 1, (229)

which is possible if a # 0, and includes the case of exact de Sitter. In this case (2.22) reads

w? k4
VERRRS VeI (2.30)



meaning E ~ |a|'/?p? /M, with which from (2.21) we obtain
Beupic ~ |a|?M. (2.31)

Unlike the first two cases (2.25) and (2.28), in the last case case the strong coupling
scale (2.31) can be as high as M provided that « is of order unity. This is consistent with
the estimation of the scaling dimensions of nonlinear operators which we argued below (1.1).
The EFT action for 7 in this regime is

L og M. a (02m)? . (9m)?
SW—/dtdgxag’z[wz—W( a4) —7r( a2) 4], (2.32)

where the first two terms are dominant. This is precisely an analogous equation to (1.1).
The stability of 7 requires that M* > 0 and « > 0.

There are several remarks on the above analysis. As mentioned above, a caveat for the
decoupling limit analysis is that it is valid only on sufficiently small scales. This is because
in general quadratic terms with h,, and 7 have fewer derivatives than the kinetic term of =,
and hence they can be neglected only above some energy scale. Therefore, it is inevitable for
the decoupling limit analysis to have an ambiguity for terms in lower order in k.

Another point about the O(k") term is that for expanding universe the contribution
from superhorizon mode at O(k?) depends on a choice of coordinate or gauge. Therefore, we
focus stability of subhorizon modes, i.e. terms in higher order of k.

As a complementary analysis taking into account these subtleties, in appendix B we
provide an analysis beyond the decoupling limit by including metric perturbations. It is
found that the corrections to the dispersion relation is of order O(M?/M3)) (see (B.6)).
Also, we take the Minkowski limit to avoid the ambiguity of a choice of gauge, so we can
discuss stability including terms in lower order in k.

The above analysis suggests the possibility to fix strong coupling for k? term by taking
into account k% term. However, so long as ones considers a Lorentz invariant theory satisfying
degeneracy condition, such as DHOST theories, one would not have k* term in the dispersion
relation since such a theory is essentially governed by (temporal and spatial) second-order
differential equations. The k* term appears if we consider detuning of such a theory, by
introducing either of Lorentz violating term or higher-derivative term, which violates the
degeneracy condition. We shall investigate this realization in a specific class of a scordatura
DHOST theory in section 3.

2.3 Timelike vs spacelike

Finally, before closing this section, we remark that the above logic does not hold if 9,¢ is
spacelike. For simplicity, let us consider the Minkowski limit of the analaysis in section 2.2.2.
First, to reiterate, with timelike and constant d,¢ in the Minkowski background, we
have shown in (2.32) that the leading-order quadratic action for the Nambu-Goldstone boson

is of the form

M* «
2 3 2 2 2 212

52) — - /dtd 7 [6(8,571) — W(&,ﬂr +Oym + 9;m)7 |, (2.33)
where € = +1, « is a dimensionless constant, M is an energy scale and we have chosen the
Lorentz frame so that 0,¢ 5; for the background. If one fine-tunes the parameters of the
theory so that the equation of motion is second-order differential equation then o = 0 and
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the theory is strongly coupled at all scales. On the other hand, for ¢ = 1 and a positive « of
O(1), from (2.31) the strong coupling scale is of order M and thus the theory is under a good
theoretical control. In this way the strong coupling problem of the fine-tuned (o = 0) theory
can be easily and consistently cured by simply relaxing the fine-tuning, if the condensate of
0u¢ is timelike.

In contrast, if we instead consider a Minkowski background with spacelike and constant
0u¢ then the leading-order quadratic action for the Nambu-Goldstone boson would be of

the form A

S@ = MT / dtd?’f[e(aﬂﬁ — (=0 + B+ O (2.34)
where we have chosen the Lorentz frame so that d,¢ o ¢ for the background. Again, the
fine-tuned theory with o = 0 is strongly coupled at all scales. On the other hand, for non-
vanishing a of O(1) there always is a ghost without mass gap. Therefore, if the condensate
of 0,¢ is spacelike then one cannot cure the strong coupling problem of the ov = 0 theory by
relaxing the fine-tuning.

3 Stealth solution in scordatura DHOST theories

In section 2 we employed EFT approach to explore general quadratic action in the Einstein
frame with timelike scalar field, and clarified that to avoid the low strong coupling scale it
is crucial to take into account k% term in the dispersion relation. For covariant degenerate
theory, such a term only shows up by considering detuning of covariance or degeneracy. In
this section, as a concrete model we consider detuning or scordatura of a class of DHOST
theory. Considering the dispersion relation in the Minkowski limit, we shall see that the
scordatura term — 537 (Og)? precisely plays the role of resolving the strong coupling clarified
in section 2.

3.1 Background

Let us consider a scordatura DHOST theory

= / d'oy/=g | Fy+ Fi06 + Bl + A4 60" or + As(D6)?] | (3.1)
where )
_ 6Fyy B «
A4 - F2 ) A2 - 2M27 (32)

Fy, Iy, Fy are functions of X = ¢"¢,¢,, o is a dimensionless constant, and M is a mass
scale. The last term with « is the scordatura term, or detuning term. For o = 0, this
model satisfies the degeneracy condition, and hence there is no Ostrogradsky ghost. It also
satisfies the conditions for ¢; = ¢ [46] and no graviton decay [45]. For a # 0, the degeneracy
condition is violated, so the model (3.1) possesses an Ostrogradsky ghost, which shows up
at the energy scale M. So long as we consider the theory as an EFT up to the energy scale
M, this apparent ghost degree of freedom is not a problem, since the properties and even the
existence of the apparent ghost are sensitive to UV completion. Rather, since the degeneracy
condition is not related to a symmetry in general, it is expected to be spoiled by quantum
corrections, leading to apparent ghost degrees of freedom above a cutoff scale. Therefore, the
scordatura DHOST model (3.1) is a simple model of viable EFT with cutoff energy scale M.
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This model allows stealth Schwartzschild-de Sitter solution of Cases 1-A and 2-A [19].
Actually, for this model, Cases 1-A and 2-A conditions for the coupling functions are the same,
and the remaining difference is only about the scalar field profile ¢ = gt + ¥(r): X = —¢°
for Case 1-A and X # —q? for Case 2-A.

Let us introduce the following normalized quantities. First, we denote ¢ = M? and
normalize coupling functions as Fy = foM*, F, = Mf), F, = fQME,I. Derivatives are
denoted as Fy x = fox, Fo,xx = fowa/M 4 and so on. We also normalize Hubble parameter
as H = hoM?/Mp, and assume that u = M/Mp) < 1.

Let us focus on the spatial infinity limit of the Case 1-A stealth Schwarzschild-de Sitter
solution with the scalar field profile ¢ = gt +1(r) with X = —¢?. At the spatial infinity, the
Schwarzschild-de Sitter metric can be approximated by the static chart of de Sitter spacetime.
For the Case 1-A solution, we can transform it to the one in the flat chart with ¢ = gt (see
appendix A). Therefore, as the background spacetime, we consider the flat chart of de Sitter
spacetime (A.1) and work on the unitary gauge, i.e. ¢ = gt. The background equations are
then given by

3
fo = —Sh3(Afs + 3ass?),
fox = 3ho(—4ho for + p1f1), (3-3)
where the functions f; and their derivatives are evaluated at X = —q?. These equations

coincide with those obtained for Schwarzschild-de Sitter solution in [19] when taking the de
Sitter limit.

3.2 Perturbations

Let us consider perturbations around the flat chart of de Sitter spacetime (A.1). Since FhR
is the only term involving the curvature, the no-ghost condition for tensor perturbations is
simply given by

fa>0. (3.4)

The vector perturbation vanishes as in the standard case. Below we focus on the scalar
perturbation. Working on the unitary gauge, the perturbation of the scalar field vanishes
d¢ = 0 by definition. In general, scalar-perturbed flat FLRW metric is given by

. A L
ds®> = —N?(1 + 2®)dt* + 2aN9; Bdtdz' + a* [(1 +2W)6;; + (c‘wj - 3> E] dz'dx?, (3.5)

where IV, a are the lapse function and the scale factor respectively, and ®, B, ¥, E/ are per-
turbation variables. Using the remaining gauge degree of freedom, we fix ' = 0. Therefore,
our gauge fixing condition is §¢ = E = 0, which can be safely imposed at the action level
since the metric and the scalar field profile share the same coordinate dependency and we do
not lose any independent equation of motion [47].

We can integrate out nondynamical variables and reduce the quadratic Lagrangian £2)
in the Fourier space as follows. First, by using integration by parts, we remove terms such as
U, U0, BB, which are contained in £(2). Further integration by parts allows us to remove
time derivative from B, while ® and ¥ remain in the Lagrangian. At this stage, we arrive
at the form

L% =W, v, ¢, o, B). (3.6)
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To further reduce the system, we introduce an auxiliary variable () and a Lagrange multiplier
A to replace @ by Q:

L? =L@V, 0,Q,8,B) + A\(Q — P)
= LO(F,7,Q,0,B) + AQ + A2, (3.7)

where for the last line we used integration by parts. From (3.7), ®, B, @ are clearly non-
dynamical variables. We can derive their constraint equations and solve them to express
®, B,Q in terms of ¥, ¥, )\, A. Substituting them back into L3 we obtain the quadratic La-
grangian depending on U, ¥, A, \. If a # 0, we are left with two degrees of freedom, whereas
if & = 0, we can further integrate out one nondynamical degree of freedom and arrive at the
final Lagrangian with only one dynamical degree of freedom.

3.2.1 Casea=0

First, let us consider the standard DHOST case by setting @ = 0. Since the full expres-
sions are lengthy, from now on we shall demonstrate the reduction of E(z)(\i/, v, )\, A) at the
Minkowski limit, which actually suffices our purpose. For @ = 0, we can complete the square
the kinetic terms

F(2) — _ fo . s s, -
¢ mw%thgﬁT+3ﬁﬁkl+N@Mﬁ@ﬁnkﬁ_{UﬂN%NA+3N@MLU& 2f12)¥]

o (3:8)

where dots indicate terms at most linear order in ¥ and A. We then define a new variable
X by

X = A+ 3ME A (fi — 2f12) P, (3.9)
and erase A by substitution. We can then integrate out ¥, and further integration by parts
leads us to the final Lagrangian

L = Al(4fore f2 + 3170)5° + FLA2 ), (3.10)
where the overall factor is given by

fop*
A= .
32f221(f2 + f21)2k4 - 8f2xk2M1%1/‘4[4f0xxf2f21 + 3f12$(2f2 + 3f2:1:),“*2] + 18file1%1:ul2
(3.11)
We see that at the leading order of u = M /Mp), A is proportional to fo, which is positive
from the no-ghost condition (3.4) for tensor perturbations. Therefore, at the leading order
of u, the no-ghost condition for scalar perturbation is given by

Jowaz > 0, (3.12)
and the sound speed is given by
2= Tialt® (3.13)
4f0$zf2

Note that the denominator is positive under the no-ghost conditions for tensor (3.4) and
scalar (3.12). For fi, = 0, the sound speed vanishes and the system is strongly coupled as
is studied in section 2. On the other hand, for fi, # 0, the system suffers from gradient
instability. Therefore, either strong coupling or gradient instability is inevitable for the model
with @ = 0. The negative sound speed squared is of order O(M?/ME), which is consistent
with the general dispersion relation (B.6) away from the decoupling limit.

~13 -



3.2.2 Casea #0

Next, we shall show that the above issue can be cured if we take into account the scordatura
term with nonzero a.. For o # 0, the system possesses two degrees of freedom. One of them is
the apparent Ostrogradsky ghost originating from the detuning of the degeneracy condition,
which exists above the EFT cutoff energy scale. The quadratic Lagrangian 5(2)(\11, v, A, A)
at the Minkowski limit is given by

N Lo o 1
£?) = 5YTKY +YTMY — §YTWY, (3.14)

where Y7 = (¥, \), K and W are 2 x 2 symmetric matrices, and M is 2 x 2 antisymmetric
matrix. From the equations of motion, the dispersion relation is given by

det[~w?K +iw(M? — M + K)+ (W — MT)] = 0. (3.15)

While it is a lengthy expression, it is sufficient for our purpose to consider the Minkowski
limit. At the Minkowski limit, the dispersion relation is given by

w? k? - M?\ w? K M? k2
St [y by + Do ) o+ adg ey + g = 1
O‘M4+(O‘ 2z T OMF2,1> VR VTR VoA VR (3.16)

where we used the background equations (3.3), and defined the dimensionless coefficients as

b :_M b :_M i) :_3f2(f12x+af0xm)
? fo+3fo’ ’ (f2 + 3f2z)? ‘ (fo+3f2)?
 (fat fon)? AU+ afor)
d4 B (f2 + 3f2:1:)2’ d2 B (f2 + 3f21)2 ' (317)

Clearly, for « = 0 we have one degree of freedom but for a # 0 there are two branches for
w?. Below we explicitly see that they exist at low and high energy scales, the latter of which
is the apparent Ostrogradsky ghost.

Regarding M as a cutoff scale, i.e. w/M,k/M,M/Mp < 1, we can solve (3.16) and
obtain two branches of w?/M?:

W (MR
7 S Ve VR VT
(fE, + afoea) M2 k*  a(fo+ fou)? K

= — — 3.18
4f0x$f2 MI%I M? 4f0mmf22 M ( )
or
w ko
M2 o«
1 4 2
_ 1 Yowals 5. (3.19)
a(f2+f2:c)

The second mode (3.19) does not satisfy the assumption w/M < 1, so it is beyond the
regime of the validity of EFT. This mode is also characterized by the fact that it diverges
at the limit « = 0. This is actually a typical behavior of the Ostrogradsky ghost associated
with nondegenerate higher-derivative term [2]. Indeed, this mode exists only for theory with
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a # 0, which violates the degeneracy condition. Therefore, as expected, the scordatura
DHOST model possesses the apparent Ostrogradsky ghost above the EFT cutoff scale.

Let us focus on the first mode (3.18). This mode is consistent with the assumption
w/M < 1, and hence lives at low energy. In contrast to the high energy mode (3.19), this
mode has a smooth limit & — 0 to the case of the standard DHOST. For o = 0, the no-ghost
condition is given by (3.12), and we recover the result obtained in section 3.2.1. Namely, if
fiz = 0, the system is strongly coupled, whereas if fi, # 0, the system suffers from gradient
instability since foz.f2 > 0 under the no-ghost conditions for tensor (3.4) and scalar (3.12).
By introducing the scordatura term with « # 0, for the regime k?/M? > M? /M3, the issue
can be cured if a > 0. For a > 0, the remaining instability is IR one analogous to the
standard Jeans instability and thus is harmless (see [30, 31]). The result is consistent with
the EFT decoupling limit analysis in section 2.2.2 as well as the EFT linear perturbation
theory away from the decoupling limit in appendix B (see (B.6)).

4 Discussion

In the context of scalar-tensor theories we have revisited the issue of strong coupling around
stealth solutions. We have pointed out an interesting role of weak and controlled violation of
the degeneracy condition dubbed scordatura, which fixes the pathological dispersion relation
in stealth backgrounds to healthy one and helps to make the strong coupling scale sufficiently
high, while the Ostrogradsky ghost associated to the violation of degeneracy condition is
adjusted to show up above the EFT cutoff scale. A scordatura DHOST theory thus realizes
a ghost condensation near stealth solutions while it behaves as a usual DHOST theory away
from them. We have illustrated the scordatura mechanism first by using the EFT action in
section 2 and appendix B, and then in the context of a specific class of DHOST theories in
section 3.

As a strategy for the analysis we have employed the EFT to describe perturbations. An
advantage of this is that the EFT is universal and thus makes our argument applicable to a
wide class of theories. On the other hand, the symmetry assumed to derive the EFT restricts
our consideration to the asymptotic region. Therefore, as a future work it is important to
confirm the results of the present paper not only in the asymptotic region but also in the
bulk of the geometry by using a model-dependent but more explicit methods, such as those
employed in [16, 17, 26].

Without the scordatura mechanism the vanishing sound speed and the strong coupling
would be inevitable in a wide class of theories and stealth backgrounds, which notably includes
the stealth black hole solutions in DHOST theories respecting ¢; = ¢ and no graviton decay.
Indeed, without the scordatura mechanism we found that the strong coupling scale is much
lower than M in the decoupling limit. Here, we have supposed that the action of the system
in the decoupling limit is parameterized by the scale M and dimensionless parameters of
order unity. Away from the decoupling limit, the strong coupling scale may become nonzero
but should still be rather low since this is due to tiny corrections suppressed by negative
powers of M]E2’l' Moreover, away from the decoupling limit we found that the sound speed
squared receives a negative correction of order M? /Mlgl. The negativity is probably due to
the attractive nature of gravity and thus is expected to be universal. This leads to gradient
instability but can be applied to a rather narrow window below the low strong coupling scale.
For this reason, we consider the lowness of the strong coupling scale more problematic than
the tiny negative sound speed squared.
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The consideration leading to these conclusions without the scordatura mechanism still
leaves some possible loop holes (see [19, 21, 22] for other type of stealth solutions to which the
consideration in the present paper does not directly apply), one of which is to consider theories
that are not consistent with gravitational wave observations or cubic order DHOST theories,
and another of which is to consider stealth backgrounds with non-vanishing spatial derivative
of the scalar field in the cosmic frame at infinity such as Case 2-A solution. While the former
is only of theoretical interest, the latter may lead to some interesting signatures through
statistical anisotropies of cosmological observables. However, the latter case is reduced to
the case considered in this paper in the limit of vanishing spatial derivative in the cosmic
frame at infinity or in the limit of vanishing cosmological constant. Hence, the strong coupling
scale in the decoupling limit for the latter case in the asymptotic region should be suppressed
at least by some positive powers of the remnant spatial derivative of the scalar field as well as
some positive powers of the cosmological constant, meaning that the strong coupling scale in
the latter case without the scordatura mechanism should also be rather low. It is nonetheless
important to confirm this expectation explicitly as a future work.

In summary, without scordatura, most (if not all) of phenomenologically viable stealth
solutions suffer from the strong coupling problem. This problem can be cured by the addi-
tional higher-derivative term due to the scordatura mechanism. The scordatura degenerate
theory is a natural realization of EFT, and resolves the issue existing in the standard degen-
erate theory.

While we have demonstrated the scordatura mechanism for the spatial infinity limit of a
stealth solution which can be recast to static de Sitter chart in Einstein frame in section 2 and
a specific class of DHOST theory in section 3, in general the introduction of higher-derivative
term would affect to the strong coupling scale and the dispersion relation. Therefore, it is
natural to expect that it would work for a wider class of stealth solutions and theories such
as other class of DHOST theory, or Horndeski/GLPV subclass.

An important limitation is that we have assumed the existence of timelike scalar field.
As stressed in section 2.3, the logic would not work if d,,¢ is constant and spacelike. Therefore,
it is conceivable that the strong coupling for the stealth solution with the spacelike profile
¢ = ¢(r) with X # const. in non-shift-symmetric theory [17] could not be resolved by the
scordatura mechanism.

While we adjusted the mass scale of the Ostrogradsky ghost associated with the scor-
datura term above the EFT cutoff scale, one may still think that the introduction of the
scordatura term causes some physical process such as accretion of the scalar field, and leads
to a significant difference from GR metric. However, within the validity of the regime of EF'T,
deviation from the stealth solution in the standard DHOST model should remain sufficiently
small, and we expect that the evolution of the stealth black hole would also remain slow, as
far as the deviation from the degeneracy condition is under controll. Indeed, in the case of
ghost condensate, the accretion of the scalar field for the stealth solution was shown to be suf-
ficiently slow so that it cannot be distinguished from observations [16]. We expect the same
scenario for the stealth solution in the scordatura degenerate theory. Therefore, in practice,
one could employ the stealth solution in standard degenerate theory as an approximation of
the stealth solution in the scordatura degenerate theory.

Further, based on [16], it was shown in [33, 34] that the generalized second law of black
hole thermodynamics was recovered for a stealth solution in ghost condensate due to the
existence of higher-derivative interaction. It would be also intriguing to clarify if the same
result holds for the stealth solution in the scordatura degenerate theory. We leave these
works for future exploration.
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A de Sitter charts

In general, de Sitter spacetime can be expressed in several ways, which cover whole or some
part of the Penrose diagram of de Sitter spacetime. Among the various charts, the flat chart
is given by

ds? = —dt* + 2115, ;da'da? (A1)
whereas the static chart of de Sitter is given by
2 A
ds® = (1 — R> dr? + (1 — R2> dR* + R%d0?, (A.2)
Rj Ry

the latter of which amounts to the spatial infinity limit of the Schwarzschild-de Sitter
spacetime.
The coordinate transformation from the flat chart to the static chart is given by

Ry < RZ) R _T/R
t—T+—1 — ), r=——— /Mo, A3

Rj V1-R?/R} (49)
Therefore, de Sitter solution with unitary gauge scalar field ¢ = ¢t in the flat chart can be
transformed to de Sitter solution with the scalar field profile ¢ = ¢T + ¢(R) with ¥(R) =

qRO In (1 - R—) for which we have ¢/(R) = %

Considering the limit of spatial infinity of the stealth Schwarzschild-de Sitter solution
with X = Xy = const., the metric approaches the static chart of de Sitter metric and the
scalar field follows ¢/ (R) —> +/¢% + Xo(1 - AR2/3)/( — AR?/3). In particular, for Case 1-
A solution with Xo = —¢? [19], we have ¢/(R) — +q+/AR?/3/(1 — AR?/3). This asymptotic
behavior coincides with the one for the stealth solution obtained above by the transformation
of the stealth de Sitter solution with ¢ = gt. Therefore, by using the inverse transformation,
for the Case 1-A solution in static chart can be transformed into the one with ¢ = gt in the
flat chart. However, it is not the case for Case 2-A solution with Xy # —q?.

B Linear perturbation theory of EFT action at Minkowski limit

Let us investigate the EFT action (2.5) without employing the decoupling limit, i.e. taking
into account metric perturbations with the scalar-perturbed flat FLRW metric (3.5) with the
gauge fixing condition £ = d¢ = 0. We also take the Minkowski limit so that we can avoid
the ambiguity of a choice of gauge as well as discuss stability including lower-order &k terms.
Since A2 term in (2.5) is third order, it does not appear in the quadratic action. Employing
the notation (2.17), the quadratic terms of the EFT action (2.5) can be written as

2 . .
S@ — /d%: [ — (Ml%1 + W) (302 + 2k2BY) + K2 ME, ¥ (20 + U)

. M4
+ BMPO(K B + 30) + —- 7 %k4M2Bz . (B.1)
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Assuming o + % # 0, we can solve constraint equations for B and ® to obtain

[2ME + (3o + 38% + 29) M2 M + 28k> M2, ¥

B=—
k2M3 (o 4 32) ’
28(M?2 MM — 20k2 M2, U
P — B(Mp, + M) ak”Mp, ' (B.2)
M4 (a+ (2)

Plugging them back into the quadratic action, we obtain

ME (1 +vu2)[2 + (Ba + 382 + 2y)p?] 200 kM3
(2) _ 4 Pl W2 2072 _ Pl | 2
> /dx[ M?(+ 32) +<k Pla+ 52 M4 ) }

(B.3)
where yu = M /Mp). Thus, at the leading order of M /Mp), no-ghost condition is given by

M?*(a+ B%) >0, (B.4)

and the no gradient instability condition is given by

2

m > 0- (B.5)

The corresponding dispersion relation at the leading order of M /Mp; is given by

2 2 1.2 4

w 1 M= k k

T E .. (B.6)

M? 2 Mgz, M? M*
This corresponds to H = 0 limit of the dispersion relation (2.22) at the decoupling limit
together with the correction of O(M?/M3,) to sound speed squared away from the decou-
pling limit.

If a]{% < |a+ ﬁﬂjj\\j—;, notably including the case a = 0, we have
Pl

w? 1 M? k2

1p = plet 3% (B.7)

As a very rough estimation of Eypic, let us employ the estimation (2.21) at the decoupling
limit, while we are addressing the case away from the decoupling limit. We then obtain

M 7/4
Ecubic ~ ‘05 + 52|7/8 <]\4P1> M < M. (BS)

Therefore, the strong coupling scale is expected to be much lower than M, and its supression
factor is about ~ MQ/MI%I. As a special case, for a = 0 and 8 # 0, the system exhibits
gradient instability in the rather narrow window below the low strong coupling scale £ <
Eeubic- In this regime, however, the timescale of the gradient instability is very long E~! >
M~ so the instability is rather weak.

In contrast, if |a + ﬁ2|1]\‘j—§1 < 04]\'2—22, requiring @ # 0, we have

w? E*
2 = o (B.9)
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which matches the Minkowski limit of the dispersion relation (2.30) in the decoupling limit.
Therefore, assuming o = O(1), the decoupling limit corresponds to k*/M? > M?/M3,.
Similar to the previous case, a very rough estimation employing (2.21) yields

Eeubic ~ o'? M, (B.10)

which can be as high as M provided that o = O(1).

In summary, away from the decoupling limit, without the scordatura term, the strong
coupling scale is rather low and the system exhibits gradient instability in the rather narrow
window below this low strong coupling scale. This issue can be cured if we employ the
scordatura term with o > 0. If @ = O(1), the decoupling limit is k?/M? > M?/M3, for
which (2.30) is recovered. The result we obtained here is consistent with the decoupling limit
analysis in section 2.2.2 as well as the stealth solution in the scordatura DHOST theory in
section 3.2.

Finally, for the remaining exceptional case o + 32 = 0, the two constraint equations are
degenerate, and hence one cannot solve B and ¢ at the same time, unlike (B.2). Integrating
out ® and performing integration by parts, we obtain

. M3
5(2) _ /d%[— 3(M1§1 +7M2)\Il2 + k2 (Mgl — 2k2]\ﬁl> P2

. M2
—2k’B ((M§1+7M2)\I/+ﬁk2]\;1\lf>]. (B.11)

Along the same line as (3.7), we can replace U to an auxiliary field Q by adding a new
term A(Q — \I/) to the Lagrangian, where X is a Lagrange multiplier. Integrating by parts to
move the time derivative from ¥ to A, the quadratic action can be written down in terms of
Q, U, B, )\, A\. Now we can solve constraint equations for Q, ¥, B and express them in terms
of \, A. Plugging them back into the quadratic action and performing integration by parts,
we arrive at

5(2) _ /d4x M2H2(1 4 7/’62)2).‘2 4 k4ﬂ2u2>‘2
4k2(1 + yp2) [MA E2{2 + (382 + 2v)u2} — MA(1 + yu?)]’

(B.12)

and at the leading order of M/Mp; no-ghost condition is M? > 0. The corresponding
dispersion relation at the leading order of M /Mp) is given by

LQ ~ _ﬁ2k74
~ T

e (B.13)

Therefore, while the reduction of the quadratic action for the case o + 2 = 0 requires
a different treatment from the one for the case o + % # 0 above, the outcome (B.13) is
consistent with (B.9) in the limit o + 5% = 0. However, in the present case, the system
suffers from either gradient instability or strong coupling, and hence the scordatura with
a = —(32 does not solve the issue.
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