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Abstract. The effective-field-theory (EFT) approach to the clustering of galaxies and other
biased tracers allows for an isolation of the cosmological information that is protected by
symmetries, in particular the equivalence principle, and thus is robust to the complicated
dynamics of dark matter, gas, and stars on small scales. All existing implementations proceed
by making predictions for the lowest-order n-point functions of biased tracers, as well as
their covariance, and comparing with measurements. Recently, we presented an EFT-based
expression for the conditional probability of the density field of a biased tracer given the
matter density field, which in principle uses information from arbitrarily high order n-point
functions. Here, we report results based on this likelihood by applying it to halo catalogs in
real space, specifically an inference of the power spectrum normalization og. We include bias
terms up to second order as well as the leading higher-derivative term. For a cutoff value
of A = 0.1 hMpc!, we recover the ground-truth value of og to within 95% CL for different
halo samples and redshifts. We discuss possible sources for the remaining systematic bias in
og as well as future developments.
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1 Introduction

State-of-the-art approaches for the analysis of large-scale structure (LSS) data typically make
use of summary statistics like the two-point correlation function to compare theoretical mod-
els to observational data , e.g. [1-14]. However, as has been realized early on [15], the galaxy
distribution is non-Gaussian, and even an infinite hierarchy of higher order correlation func-
tions may be insufficient to fully capture all cosmological information encoded in LSS data
sets [16, 17].

Alternative approaches have since been developed that take a different, more ambitious
avenue to cosmological signal inference. Instead of focusing on summary statistics, they
aim directly at reconstructing the three-dimensional underlying matter density field from
observations of astrophysical tracers like galaxies [18-30]. In an important step, ref. [28]
improved on previous implementations by introducing a physical forward model for the matter
field as a means to more precisely predict the intricate statistical properties of the evolved
density field. Starting from a set of simple Gaussian initial conditions at high redshift as
probed by cosmic microwave background radiation experiments , e.g. [31-37], nonlinear effects
of gravitational collapse are taken into account via approximate analytical or purely numerical
methods to compute the corresponding evolved density field at low redshift that can then
be compared to observations. Owing to the Gaussian nature of the initial density field, the
two-point correlation function becomes a lossless form of data compression in this regime
and fully captures all information relevant to cosmology. As a by-product of extending
the reconstruction to the initial density field, a fully probabilistic description of all possible
histories of the structure formation process compatible with the analyzed data set becomes
available, offering interesting opportunities to implement other cosmological tests , e.g. [38].



Unsurprisingly, these sophisticated approaches are faced with numerous challenges that
are both theoretical and numerical in nature. For example, exploring an extremely high-
dimensional parameter space typical of the reconstruction of a three-dimensional field ne-
cessitates the use of sophisticated sampling algorithms [39], e.g. [24, 40]. Further, since a
comprehensive theoretical understanding of the formation of actual observed tracers such
as galaxies is still lacking, an effective model for galaxy biasing is necessary to connect
any underlying dark matter density field to actual observables like galaxy positions and red-
shifts [41-47]. Finally, a statistical comparison of observational data to theoretical predictions
requires the use of a likelihood function that quantifies the probability to observe the given
data realization under the model hypothesis.

Numerous functional forms for this likelihood have been proposed to compare model
predictions to observations , e.g. [19, 48-51]. Based on the effective field theory (EFT)
approach [52, 53], however, only recently a rigorous description for the LSS likelihood has
been developed [54, 55]. Most notably, and in contrast to previous attempts at modeling the
statistics of LSS data, this likelihood is formulated in Fourier space. In this paper, we use
numerical simulations to provide an in-depth analysis of the EF'T LSS likelihood, using dark
matter halos in different mass bins as tracers. In particular, we test whether it allows for
unbiased cosmological parameter inference from reconstructed matter density fields.

Since they are based on simulations, our tests use the correct phases of the initial density
field. Hence, we eliminate an important source of uncertainty that would normally result in
noticeably larger error bars on cosmological parameters in real surveys. Our tests are thus
more stringent to pass compared to a realistic application, where the initial density field is
unknown and has to be simultaneously inferred from the data.

The paper is organized as follows. In section 2 we briefly review the statistical framework
to analyze LSS data developed in [54], which forms the basis of our analysis. We also present
an analytical marginalization scheme which greatly reduces the number of free parameters
that need to be varied. We then introduce a set of simulations used to assess the performance
of the likelihood in section 3. After presenting our implementation in section 4, we turn to
the results in section 5. We summarize our findings in section 6. The appendices present
further details and a derivation of the Poisson expectation for stochasticity.

2 Method

We start by giving an overview of the main aspects of the methodology used in our analysis,
and then introduce a useful extension, analytical marginalization, that aims at obtaining
numerical results more efficiently.

2.1 Recap: Fourier-space likelihood

In this section, we provide a short summary of the results presented in [54]. Our main
objective is to obtain a probabilistic reconstruction of the initial density field (in, cosmological
parameters, and additional nuisance parameters necessary to capture the uncertainties of the
process of structure formation. To do so, we need to model the effects of various aspects of
the underlying physical processes. More precisely, we have to specify a prior characterizing
the statistical properties of the initial density perturbations, and provide a forward model,
describing the gravitational collapse of matter overdensities over time. Additionally, we need
to include a bias model, connecting the observed tracers to the matter density field, and,
finally, a likelihood, describing the stochastic aspects involved in this process and therefore
allowing for a quantitative comparison of model predictions to observations.



We begin by reviewing the basic notation introduced in [54] that we will make use of in
the remainder of this paper. For simplicity and in view of the tests presented in section 2.4,
we will refer to the tracers of the matter density field as halos. Then, given the evolved
matter density field 5, at any order in perturbation theory, the deterministic halo density,
S'h,det, can be expressed as linear sum over a finite set of operators, 6,

On,det[0, {bo}] = Zbo o), (2.1)

where the bp are the associated bias parameters (see [47] for a review). Here and throughout,
the vector notation denotes fields, in our case discretized on a uniform cubic grid. In the
following, we will use the discrete Fourier transform, so that fields in Fourier space are
dimensionless as well. Following ref. [54], we use the bias expansion up to second order in
perturbations, i.e., we restrict ourselves to the following set of operators:

0 € {5, V35, 62, K?}, (2.2)

where 9§ is the fractional matter density perturbation, and

K? = (K;)® = ([%‘Zj - ;@-J} 5)2 (2.3)

is the tidal field squared. The corresponding bias parameters are denoted as
Bo = {b1, cy2s, b2/2, by=}. (2.4)

The coefficient of V2§ is denoted as cy25 to emphasize that it also absorbs other higher-order
contributions, as discussed in [54]. All operators in eq. (2.2) are constructed from the density
field filtered with a sharp low-pass filter in Fourier space which only retains Fourier modes at
|k| < A, where A functions as a cutoff for the theoretical description. The sharp cut in Fourier
space naturally arises in effective field theory approaches which integrate out initial density
perturbations above a cutoff A [55], although this does not mean that other filter shapes are
excluded in principle. However, we derived in [54] that a sharp-k filter is a condition for
obtaining an unbiased maximum-likelihood point of the Fourier-space likelihood in the form
used here.

Moreover, the operators in eq. (2.1) are renormalized, which in this case essentially
means that the quadratic operators 42 and K? are made to be orthogonal to 6. We refer to
appendix A for details on the exact definition and renormalization procedure. It is worth
noting that the renormalization is not essential to obtain an unbiased og estimate, but allows
for a comparison of the resulting bias parameters with measurements from n-point functions.

Notice that eq. (2.1) involves an expansion in two small parameters, essentially orders of
perturbations and spatial derivatives (see section 4.1 of [47] for a detailed discussion). Here,
we assume that both small parameters are comparable, which leads us to include terms up
to second order in perturbations as well as the leading higher-derivative operator V2§ in
eq. (2.2). The reasoning behind this is discussed in greater detail in [54].

As derived in [54], for an observed halo field, 5h, we can then compute the conditional
probability for the halo density field given the matter density in Fourier space,

k max

In P (Sh(& {bo}) =-> [; no® (k) + 5

1 o 2
3 7 51 (k) — Op.aec]d, {bo}](k)] ] . (25)



In the following, we will refer to this conditional probability simply as “likelihood,” since it
is the part of the overall likelihood of biased tracers that is relevant for the study presented
in this paper. Here, 0?(k) is a dimensionless variance that is analytic in k, specifically a
power series in k2. For our numerical implementation, we include terms up to order k*, and
parametrize o2 (k) as follows:

0'2(]{7) = (0'5 + k2[0'572 + 610'56"“2])2 . (2.6)

The parametrization is chosen so that o2(k) is positive definite. o2 can be interpreted as the
amplitude of halo stochasticity in the large-scale limit (k — 0). In appendix B we derive
the expectation for o2 for a Poisson process, which will be useful for the interpretation of
numerical results on this parameter. 0372 is the leading scale-dependent correction to the
halo stochasticity (see section 2.7 of [47] for a discussion). Finally, o..,, 2 captures the cross-
correlation of stochasticity in the halo and matter fields; the stochasticity in the matter field
em(k) is constrained by mass- and momentum conservation to be of order k? on large scales.

The closed-form expression for the likelihood in eq. (2.5) affords a straightforward way
to derive maximum likelihood estimates for bias parameters, and, as shown in [54], for the
cosmological parameter og. This framework was used in [54] to demonstrate unbiased pa-
rameter estimation from LSS data without the explicit use of conventional summary statis-
tics. Here, we will obtain results using the field-level likelihood, rather than the analytical
maximum-likelihood point discussed in [54].

The degeneracy between b; and og, which is perfect in linear theory, is broken when
including nonlinear information. In particular, the fact that the displacement term contained
in the second-order matter density is also multiplied by b1, coupled with the fact that the
second-order matter density scales differently with og than the linear-order one. Thus, fun-
damentally, the possibility of estimating og in this way is due to the equivalence principle,
which ensures that galaxies move on the same trajectories as matter on large scales, and thus
requires that the second-order displacement term is multiplied by the same bias coefficient
as the linear-order density field (see also section 2 of [47]). At higher orders in perturba-
tions, more such terms that are protected by the equivalence principle appear, and the EFT
likelihood will consistently capture those as well once extended to higher order.

2.2 Marginalizing over bias parameters

In the approach summarized in the previous section, a number of nuisance parameters have
been introduced to capture the uncertainties associated with some of the poorly understood
physical processes describing halo and galaxy formation. In practical applications, these pa-
rameters would then be estimated alongside cosmological parameters in a statistical analysis
of observational data. Interestingly, owing to the simple functional form of the likelihood in
eq. (2.5), it is easily possible to analytically marginalize over some of the bias parameters bo.
Here, we consider only those that do not appear in the variance o2(k); given eq. (2.6), this
includes all bias parameters except b;. While it might be possible to extend the analytical
marginalization to parameters which appear in the variance, the marginalization performed
here is sufficient for our purposes.
Let us thus write

Snact(k) = p(k)+ > boOk), k)= > boO(k), (2.7)
OGOmarg Oeoall\omarg



where Oparg denotes the subset of operators, whose bias parameters we wish to marginalize

over (we denote the cardinality of this set as nmarg). We can then write the likelihood
eq. (2.5) as

L )
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where N is a normalization constant which is independent of all parameters. This expression
can be more compactly written as

)25 )

1
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Note that Apor is a Hermitian and positive-definite matrix. The former is immediately obvi-
ous from its definition. The latter follows from the fact that Apos is the zero-lag covariance
matrix of a set of sharp-k-filtered real fields O(x). Eq. 2.9 then allows us to perform the
Gaussian integral over the bp. Here, we will assume uninformative priors, although Gaussian
priors can trivially be introduced by adding a prior covariance to Apos. The result is!

P(S’h“, :( I1 /dbo> 5h )
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!Using the well-known Gaussian integral identity
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We have thus reduced the parameter space from {bo} to {bo }unmarg. This marginaliza-
tion applies to an arbitrary number of bias coefficients to be marginalized over. The price to
pay is that we now need to compute the vector Bp and the matrix Apor. Further, we need
the determinant of Apos and its inverse. Note, however, that nmare — and therefore the
size of Bp and Appr — will rarely become a large number in practical applications. More
specifically, in the tests presented below, we marginalize over cyz4, b2, b2 and so Npmarg = 3.
Further, Apos is independent of the remaining, unmarginalized bias parameters. On the
other hand, Apo does depend on the parameters entering the variance o%(k), eq. (2.6).

At this point, let us briefly comment on the relation of this analytic marginalization to
other approaches presented in the recent literature. In particular, refs. [56, 57] perform a
Gram-Schmidt orthogonalization on the fields entering the bias expansion eq. (2.1), arguing
that lower-order operators thus become independent of higher-order fields and make their
corresponding bias parameters more robust to higher-order corrections. This approach is
directly related to the analytic marginalization pointed out here. To see this, consider the
case where an orthogonalization has been performed on the operators. In particular, this
implies that (u(k)O(k)) = 0 for all O € Oparg. This in turn renders Bp independent of all
unmarginalized bias parameters, so that it becomes a constant vector. Then, the marginalized
likelihood reduces to the same form as the unmarginalized likelihood keeping only the terms
involving unmarginalized bias parameters. In this sense, orthogonalization is equivalent to
marginalizing over bias parameters. The computational cost of both approaches is expected to
be essentially the same. However, the marginalization described here does offer the possibility
of including prior information on the bias parameters that are marginalized over.

2.3 Estimating systematic errors

One of the crucial advantages of the rigorous perturbative approach pursued here is that it
allows for an estimate of the systematic error due to imperfections in the likelihood. We
can distinguish three principal sources of such systematic errors (see [55] for more details on
Types 2 and 3 in particular):

Type 1: errors in the forward model for the matter density field (and correspondingly the
operators constructed from it);

Type 2: higher-order bias terms neglected in the expansion in 0y det;

Type 3: higher-order contributions to the variance o%(k) as well as in the form of the like-
lihood itself.

The most rigorous way to evaluate the size of these contributions is to include the set
of leading higher-order terms that have been neglected in the forward model, bias expansion,
and likelihood, and evaluate the shift in resulting parameter values. In case of the forward
model (Type 1), this can be tested by using the density field from N-body simulations instead
of 2LPT to construct the bias operators. This will be presented in section 5. In case of
the bias expansion (Type 2), this test is not too difficult either, since the coefficients can be
marginalized over analytically, as shown in the previous section. We defer an implementation
of the higher-order contributions to future work however.

Let us here approximately estimate the size and scaling with k. of the systematic error
of Type 2. Note that strictly speaking we have two cutoffs: the cutoff A of the sharp-k filter,
and kpax < A. In practice, one will choose knyax as a fixed fraction of A (see section 5); hence,



it is sufficient to consider the dependence on A here. For simplicity, we evaluate the systematic
shift in the bias parameters bp. As described in [54], one can similarly evaluate the shift
in og by introducing scaled bias parameters So. We will also count higher-derivative terms
as higher order in perturbations, which assumes that the scale controlling higher-derivative
terms does not differ greatly from the nonlinear scale. Thus, “higher-order contributions”
include higher-derivative contributions in what follows.

Incorporating both sources of error described above, the correct likelihood can be writ-

ten as
kmax 1 2
—2In P(50) = > [ln o* (k) + 520 2 + S (k) = > b0 (O + Oerr) (K) ]
k0 g o)
=—2In Pﬁd(5h|5) —2 Z Bgrbo + Z A‘gro/bobol s (2.12)
o 0,0’
where

k
orr max 1 . . .
B =) — Ok [Ocre (k) 35K + O" ()03 (k'Y
k+£0

kmax

err 1 *

Bl = D g Oen k)00 ') (2.13)
k#£0

Here, Og (k) denotes the error field in the operator O due to deficiencies in the forward
model, while 5,}_2‘0‘(143) denotes the higher-order bias contributions to the actual halo density
field. Finally, Pgq(0,|d) stands for the fiducial likelihood, which differs from the correct one
due to the systematic error terms. In the second line of eq. (2.12), we have dropped an
irrelevant constant term which does not depend on the parameters being varied. Let us write
the fiducial likelihood in analogy to eq. (2.9) as

kmax
—2In Psa(0p|0) = > Ino®(k)+ Y _ boborAoor —2Y  Bobo, where
k0 0,0’ 1)
kmax
Aoor =Y LO(k)ol*(k’/)/
o?(k)
k=0
klnax
1 .
Bo=Y_ - (k)m(k)(sh(k’)’. (2.14)
k0

Under the assumption that the parameter shift Abp due to the systematic errors is small, one
can immediately solve for this shift based on the maximum-likelihood points of the correct
and fiducial likelihoods. One can then estimate the expected amplitude of the shift by taking
the expectation values of A, B, A®", B®"*. This is closely analogous to the “Fisher bias.”
Using bold-face to denote vectors in the np-dimensional vector space of operators considered,
we obtain in matrix notation

Ab=b—bid = (A714°) (bﬁd) —ATN(B) . (2.15)



This expression involves the expectation value of the correlators in eq. (2.13) and eq. (2.14)
which are straightforward to evaluate in perturbation theory. We begin by estimating at
which order in perturbation theory the various correlators contribute.

First, the expectation values of Apor and Bo are of order Pp(k) + Piioop(k) (in case
of Ass and Bg), or of order Pjjoop(k) (all other elements). On the other hand, both B®™
and A®" are of order Pso0p(k). To see this, notice that both O and (5,1:'0' are at least of
cubic order in the linear density field. This means that all correlators which involve these
error fields are two-loop contributions, apart from the cross—correlation with 5( ) Which is at
1-loop order. The latter however only appears in B§'", via <5err > and < > As we
argue in appendix C of [54], these particular 1- loop contributions are of very similar shape
as that coming from the higher-derivative bias, and are thus largely absorbed by cy25.

Thus, without performing any detailed calculation, we can very roughly estimate that

ZZI;%X 72( )P2-100p(k')
oors T o 2(k)PL(K)

As an approximate estimate of the size of two-loop correlators, we will use the auto-correlation
of [6%]:

Ab

(2.16)

P2—loop(k) ~ <[53](k)[53](k/)>/ =06 / dgr [EL(T)]geik‘r ) (217)

where &1,(r) is the linear matter correlation function. We emphasize that this is a very
rough estimate: in reality, Ab involves many different contributions with various order-unity
coefficients, which could add up or partially cancel. The main prediction of eq. (2.16) is the
scaling with kpax.

Finally, let us consider systematics of Type 3, i.e. higher-order terms in the likelihood
itself. Similar to the bias expansion, these come in two forms: an expansion in powers of
k, equivalent to spatial derivatives; and an expansion in powers of perturbations, in this
case the error field (k) whose variance is 02. Beginning with the former, a naive counting
following loop contributions to the power spectrum indicates that a term Ck?, where C is a
constant and which corresponds to the term « 0.0, 2 in eq. (2.6), is of 2-loop order (see, e.g.,
section 4.1. of [47]). Hence, terms of order C'k* should have a negligible impact. This is cor-
roborated by our numerical results (section 5). The second type of higher-order stochasticity
corresponds to non-Gaussian corrections such as the stochastic three-point function (eee)
as well as coupling between stochasticity and the long-wavelength perturbations. These are
briefly discussed in section 5 of [54] (see also [55]). A derivation of the precise form of these
contributions to the likelihood requires more theoretical investigation, and is left for future
work. However, we can guess the approximate magnitude of these contributions by relating
them to the terms we have kept here, which are nonlinear in the long-wavelength modes that
determine d5. The higher-order stochastic contributions are expected to be suppressed at
least by

~1/2

Ab . k)l PL(kmax)} , (2.18)

stoch. |(5(k:)|

- P P01sson [
kmax PL(kmax)

where in the last equality we have assumed the Poisson expectation, P. = 1/n where 7 is the
mean number density of halos, which is a reasonable first-order estimate for this purpose.
While the proper result will involve a summation over k modes similar to eq. (2.16), we
conservatively evaluate the ratio at kpax here, as it is unclear what precise weighting should



be employed for this type of higher-order contribution. Notice that eq. (2.18) also approaches
0 as £k — 0, but depends sensitively on the abundance of halos. In particular, it becomes
large for small number densities.

2.4 The og profile likelihood

We now introduce the framework used in our numerical tests to obtain maximum likelihood
values and confidence intervals for cosmological parameters. Below, we center our discussion
around the normalization of the primordial power spectrum, described by og. The reasoning
for choosing og as parameter is that it can only be inferred by using information in the non-
linear density field, as mentioned in section 2.1. An unbiased inference thus means that the
specific part of the information content in the nonlinear density field that is robust has been
properly isolated. In particular, nonlinear information is explicitly necessary in order to break
the degeneracy with the bias parameter b1, rendering it the most direct test of our nonlinear
inference approach. Future work will consider other cosmological parameters as well.

Besides from being a function of og, the marginalized likelihood eq. (2.11) also depends
on bias and other nuisance parameters (including the entire set of Fourier modes of the
three-dimensional matter density field). Since the probabilistic inference of the initial matter
density field from tracers like a halo catalog is numerically very expensive, see e.g. [28], we
instead constrain it to the actual initial conditions used in the simulations, evolved to low
redshifts using either second-order Lagrangian perturbation theory (2LPT), or the N-body
code directly. This forward evolution is then performed for a set of discrete og values around
the fiducial og = 0.85 (see section 4). We can then maximize the likelihood to simultaneously
obtain best-fit values for cosmological and the remaining nuisance parameters. As mentioned
in section 1, this is in fact the most stringent test possible for any systematic bias, since the
absence of any flexibility in the phases means that there is less room for errors in the likelihood
to be absorbed by changing the initial conditions.

On the other hand, by fixing the phases, the only way to obtain rigours error estimates
would be to analyze a large ensemble of large-volume simulations. Since these are costly, we
here resort to a different method, allowing us to obtain error estimates from the likelihood
itself: the profile likelihood method [58] provides estimates of confidence intervals for individ-
ual parameters of multivariate distributions within a frequentist approach. For a probability
distribution P(a, {b;}), the profile likelihood for parameter a is defined as

PPt (q) = arg max[P(a, {b;})], (2.19)
{bi}

where the additional set of parameters {b;} has been profiled out. Constructing a full profile
likelihood for og is still numerically expensive, since it formally requires a recomputation of
the final matter density field each time the function argument is updated. To speed up the
analysis, we instead interpolate the profile likelihood evaluated on a predefined grid in og
centered about the fiducial value of the simulation. The details of this procedure will be
described in section 4.

3 Simulations

All numerical tests presented below are based on the N-body simulations presented in [59].
They are generated using GADGET-2 [60] for a flat ACDM cosmology with parameters
Qm = 0.3, ng = 0.967, h = 0.7, and og = 0.85, a box size of L = 2000~ 'Mpc, and 15363



Redshift logll\:aj\sj[;anlg;d Nhalo (tun 1) Npago (tun 2) 7 [( A~ Mpc) 3]
0 [13,13.5] 2807757 2803575 3.5 x 1074
0 [13.5, 14] 919856 918460 1.1 x 1074
1 [13,13.5] 1507600 1506411 1.9 x 10~*
1 [13.5,14] 301409 302182 3.8 x 1077

Table 1. The halo samples used in our numerical tests. Throughout, masses M = Msgg,, are
spherical-overdensity masses with respect to 200 times the background matter density.

dark matter particles of mass Mpary = 1.8 X 101! h~'M. Initial conditions for the N-body
runs were obtained at redshift zi,; = 99 using second-order Lagrangian perturbation theory
(2LPT) [61] with the 2LPTic algorithm [62, 63]. ref. [59] also presented runs for two further
values of og bracketing the fiducial value in order to perform the derivative of the halo
mass function with respect to og (for studies related to the scale-dependent bias induced by
primordial non-Gaussianity). We use these, in addition to simulations for 4 additional og
values which were performed specifically for this paper, as well.

Dark matter halos were subsequently identified at redshift z = 0 as spherical over-
densities [64-66] applying the Amiga Halo Finder algorithm [67, 68], where we chose an
overdensity threshold of 200 times the background matter density. The halo samples consid-
ered here consist of two mass ranges each at two redshifts, and are summarized in table 1.
We only consider halos above 10'3 h=1 M), corresponding to a minimum of 55 member par-
ticles. Note that differences in the number densities of the halo samples imply differences
in the expected parameters as well as errors on the inferred og, an important aspect in our
validation of the inference framework.

4 Implementation

We now provide additional details of the setup and numerical implementation used in our
tests. We take as given the halo catalogs described in the previous section, as well as a set
of matter particles generated either via 2LPT or full N-body for a set of values. Since the
matter density field is a function of og, our main parameter of interest, mapping the profile
likelihood as a continuous function of og would require to recompute the set of operators for
each function evaluation. To expedite the analysis, we instead generate representations of
the evolved matter density field for fixed initial phases and a discrete set of values for og (as
well as redshifts z = 0 and z = 1 of the halo samples) given by

os € {0.65, 0.75, 0.80, 0.83, 0.85, 0.87, 0.90, 0.95, 1.00, 1.10, 1.20} (2LPT),
os € {0.68, 0.78, 0.83, 0.85, 0.87, 0.92, 1.02} (N-body). (4.1)

For a given halo sample at a given redshift, and a fixed value o}, the steps for evaluating
the og profile likelihood are as follows:

1. The halos and matter particles are assigned to a 10242 grid using a cloud-in-cell density
assignment. The high resolution is chosen to avoid leakage of the assignment kernel to
the low wavenumbers of interest.
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Figure 1. Examples of the profile likelihood —2In PP™f(gg)/PP™f(4g), plotted as a function of
a = og/ofd. In all cases, results are for run 1 and A = 0.1 hMpc™! at z = 0. Also shown are the
parabolic fits whose maximum point results in the value 6g or equivalently & listed in table 2. The
value for —2In PP™f(4g), which is subtracted for better readibility, is taken from the parabolic fit.

2. A sharp-k filter is applied to the matter and halo fields in Fourier space, such that
modes with |k| > A are set to zero. The Fourier-space grids are subsequently restricted
to 3843, chosen such that the Nyquist frequency of each grid remains above 3A for all
values of A considered here.

3. Quadratic and higher-derivative operators are constructed from the sharp-k filtered
matter density field and held in memory. The quadratic operators are renormalized
following appendix A.

4. The maximum of the likelihood over the parameter space spanned by the remaining bias
and stochastic variance parameters is then found via function minimizer MINUIT [69]
(in practice we minimize —21In £, i.e. the pseudo-x?). The operator fields do not need
to be recomputed for each evaluation, as only their coefficients are varied.

More precisely, we employ the analytic marginalization described in section 2.2 for the pa-
rameters by, cy25 and by, leaving only by and the three stochastic amplitudes to be varied in
the minimization. We have not found any significant impact of the term o..,, 2 in eq. (2.6),
but a significant degeneracy with o, 2. For this reason, we fix the former to zero in our default
analysis. This leaves a three-dimensional parameter space to be searched in the minimiza-
tion, which typically converges quickly. We have found the minimization robust to varying
initialization points and number of successive MINUIT cycles. Our default choice for the
maximum wavenumber in the likelihood kpayx is A/2.

This procedure results in a set of values {4, —21In PP™(5})}; which we find is fit well by
a parabola in all cases (we disregard values of og where the minimization failed to converge).
The best-fit value &g is given by the minimum point of the best-fit parabola, while the
estimated 1o error on 63 is given by the inverse square-root of the curvature of the parabolic
fit. We emphasize that this error does not include any residual cosmic variance, and is

essentially purely governed by the halo stochasticity which appears in the variance of the
likelihood.
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5 Results

In the following, we present results for the best-fit value 6g. For convenience, we phrase these
in terms of the ratio to the fiducial value, introducing

o
—. 5.1

e}

First, figure 1 shows examples of the profile likelihood determined as described in the previous
section, with the parabolic fit that is used to determine 5. All panels are for A = 0.1 h Mpc~!.
Clearly, the log-profile likelihood is well approximated by a parabola, so that we expect
maximum point and curvature to yield unbiased estimates of the maximum and 68%-level
confidence intervals with respect to a full scan of the profile likelihood. The results for all
halo samples and A = 0.1 A Mpc™!, our fiducial choice, are summarized in table 2. We find
that an unbiased value of Jg is recovered to within ~ 20 in most cases. Notice that the run-
to-run variance is larger than the estimated error bars in several cases. This could be due
to residual cosmic variance, which is not contained in the estimated error bars as discussed
in the previous section, although possible issues with the minimizer in isolated cases also
cannot be excluded. In order to investigate this, more realizations would be needed.

The remaining columns in table 2 show the value of by as well as the stochastic ampli-
tudes, all corresponding to the maximum-likelihood point for the fiducial value USﬁd. Recall
that all other parameters are analytically marginalized over. The bias b; is essentially fixed
by the cross-correlation of §, with . Correspondingly, we find that the combination bjoyg is
constant for all og values to within several percent. The stochastic amplitude 052 is scaled to
the Poisson expectation following appendix B. Values greater (less) than one thus correspond
to super- (sub-)Poisson stochasticity. We do find evidence for a smaller stochasticity for the
rarer halo samples, in agreement with previous findings [70]. The last column shows the ratio
of the higher-order (in k?) stochastic parameter to the leading-order one. This gives a rough
indication for the spatial length scale squared associated with the scale-dependent stochas-
ticity. We thus find this length scale to be of order (1 — 5)h~!Mpc. Notice however that
this parameter is expected to also absorb various higher-order contributions not explicitly
included in the likelihood, as discussed in [54], so that one cannot robustly infer a physical
length scale from this value.

Allowing A to vary, we obtain the results shown in figure 2. In each case, we show
results for both simulation runs. While the differences in & from unity are broadly consistent
with being residual stochasticity and cosmic variance for A < 0.1 hMpc~!, this no longer
holds for higher cutoff values which at z = 1 should still be under good perturbative control.
On the other hand, the results appear remarkably stable toward higher values of A up to
A = 0.2hMpc~! in many cases. Notice that the majority of the modes contributing to
the profile likelihood with A = 0.14 hMpc™?!, say, are not included in the likelihood with
A =0.12Mpc~!, so that these are largely independent measurements.

Before turning to possible explanations for these trends, let us briefly comment on the
choice of kpax/A. We do not find strong trends with this parameter. Increasing kp,ax at fixed
A yields similar trends as increasing A itself, which is shown in figure 2. For this reason, we
fix kmax = A/2 throughout.

As a test of the systematics of Type 1, we use the N-body density field itself instead of
2LPT for the construction of the bias operators. The result is shown in figure 3. We only find
minor shifts in 6g. Indeed, the cross-correlation coefficient between the 2LPT and N-body
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Figure 2. Best-fit values & = Gg/0fi¢ as a function of the cutoff A (with kpya. = A/2 in each case)
for the low- and intermediate-mass samples in the left and right panels, respectively. In each panel,

the upper plot shows results at z = 0 while the lower plot shows z = 1.

Redshift Mass rajlge & (run 1) & (run 2) b1 U‘g %’2/08
logyo M[h~1Mg] [Poisson]  [(h~'Mpc)?]
0 [13.0-13.5] 0.96 £0.02 0.90+£0.02 1.20 1.11 —25.5
0 [13.5-14.0] 1.02£0.03 1.014+0.03 1.61 0.96 —11.7
1 [13.0-13.5] 1.05+0.04 1.164+0.04 2.36 0.93 1.3
1 [13.5-14.0] 1.05+0.056 0.93+£0.06 3.49 0.89 10.5

Table 2. Summary of results for A = 0.1 hMpc ™t and kpax = A/2; with the likelihood settings
described in the text. For the best-fit scaled og estimate &, results from run 1 and run 2 are shown
individually with estimated 68% CL error bars. b; and stochastic amplitudes are reported for the

fiducial oy = 0fi4 and averaged over both runs. The stochastic variance o2 is scaled to the Poisson

expectation for the given halo sample, as described in appendix B. The last column shows the ratio
of the higher-derivative stochastic amplitude to the lowest-order one, indicating the scale associated
with the expansion of o2(k) in k.

density fields in Fourier space is better than 0.97 for all scales and redshifts considered here,
so a large shift would be surprising. Although there is some improvement, we conclude that
the 2LPT density field is not primarily responsible for the bias in &g found.

We next turn to systematics of Type 3, specifically the possible impact of the chosen
implementation of o(k) in terms of two free parameters (since we fix o..,, 2 to zero). Since
the halo number density is smaller at higher redshift, and the stochasticity correspondingly
larger, this could possibly explain the increased bias in g at z = 1 compared to z = 0.
Performing the profile likelihood analysis with varying o..,, 2 on the one hand, and both the
former parameter and o, 2 fixed to zero on the other, leads to sub-percent shifts in g (this
can also be gleaned by the values shown in the right-most column of table 2, which, when
multiplied by k2, indicate the upper bound on the fractional contribution of the term o, ok?
to the total variance). Thus, we conclude that the parametrization of ¢%(k) is unlikely to be
responsible for the bias in &g as well.

This leaves two possible sources of systematic error: our Type-2 systematic, i.e. higher-
order terms in the bias expansion (both in perturbations and derivatives); and other system-
atics of Type-3, namely higher-order corrections to the form of the likelihood itself. Both
types of terms are expected to be largest for the rarest and most highly biased halo samples.
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Figure 3. Same as figure 2, but using the density field from the N-body simulation. Results for run
1 are shown.

It is worth nothing that higher-order bias contributions are not necessarily smaller at higher
redshift for fixed halo mass, since higher-redshift samples are more biased. Further, higher-
derivative terms, which are expected to be tied to the Lagrangian radius of halos, most likely
do not decrease toward higher redshift (see for eample the results of [71]). Indeed, preliminary
investigations show that incorporating higher-order terms in the derivative expansion, such
as (V2)25 and V2(42), in the set of operators does have an impact on the profile likelihood.
We leave a detailed investigation of the impact of higher-order bias terms to upcoming work.

The remaining Type-3 systematics are expected to be controlled by the ratio in
eq. (2.18); this turns out to be of order unity or larger for the halo samples considered
here, implying that higher-order stochastic corrections could be significant. At this point,
lacking an explicit expression for these terms, it is difficult to quantitatively evaluate their
impact however.

Additional investigations have pointed to a likely cause for the bias in the inferred value
of og which is related to a higher-order term that is enhanced on large scales. Specifically, the
auto-correlation of the quadratic bias operators Apos contains a contribution from the con-
nected matter four-point function (trispectrum), which, for the likelihood and second-order
bias expansion used here, corresponds to an error term Agy, (section 2.3). For small £, the

dominant term from the particular trispectrum configuration involved scales as <512x>2 Pr(k),
where Py, (k) is the linear matter power spectrum. While this contribution is suppressed com-
pared to the leading, disconnected term, the latter approaches a constant at small k, while
the trispectrum contribution grows toward small k (assuming k& > 0.02h Mpc™!) due to the
factor Pp(k). For this reason, it can bias the maximum-likelihood value for og even for very
small values of A which correspondingly push &k to small values (see the behavior of « for
A <0.1hMpc~! in figure 2). We leave a more detailed investigation, and possible remedies,
for future work.

6 Conclusions

We have presented the results of a first application of the effective-field-theory-based Fourier-
space likelihood derived in [54] to halo catalogs. More precisely, the test case is to obtain
an unbiased estimate of the amplitude of the linear power spectrum og (or equivalently
normalization of scalar perturbations Ag) purely based on the nonlinear information in the
halo density field that is protected by the equivalence principle. For this, we vary four bias
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parameters as well as two stochastic amplitudes. The reasoning for choosing og as parameter
is that it can only be inferred by using information in the nonlinear density field. An unbiased
inference — which we have not completely achieved yet — would thus mean that the robust,
protected nonlinear information content has been isolated. We expect that other parameters,
such as the BAO scale or the matter power spectrum shape, will then also be unbiased, as
they rely to a lesser degree on purely nonlinear information.

We further presented a method to analytically marginalize over bias parameters, which
we apply to three of the four bias parameters in our implementation. We expect that this
analytical marginalization will prove extremely powerful when going to higher order in the
bias expansion (both in orders of perturbations and derivatives): when using this technique,
the cost of finding the maximum-likelihood point, or more generally, sampling from the
likelihood, only increases quadratically with the number of bias terms (since the cost is
dominated by the evaluation of the matrix Apo/).2 On the other hand, the computational
cost would grow much more rapidly if one where to explicitly vary all bias parameters.

Our results indicate that og can be recovered with a systematic error under ~ 10% for
a range of halo samples at different redshifts when using a cutoff value A = 0.1 hMpc~!.
Our assessment is that the most likely explanation for the residual systematic bias in ggcan
be traced to a trispectrum contribution to the quadratic operator correlators. Precisely how
this contribution can be taken into account via higher-order terms in the bias expansion or
likelihood is left for future work. It would further be interesting to perform a joint inference
from the different halo samples that we have considered separately here, which however
requires a generalization of the likelihood to include the stochasticity cross-covariance between
different tracers. We leave these developments to future work.

Our approach has some resemblance to what was recently presented in [57]. Instead
of the sharp-k filter employed here (necessary for an unbiased inference following [54]), the
authors of [57] used a Gaussian filter. More importantly, they allowd for the bias coefficients
to be free functions of k, bp — bo(k), which removes the information on og, and instead
focused on the degree of cross-correlation of the field we call 0y, qet here with the actual halo
density field. It would be interesting to study the corresponding correlation coefficient for
our, sharp-k-filtered field dj ger given the best-fit bias parameters. We defer this to future
work as well.

A natural next question is: what is the expected statistical error for the inferred og
in the realistic case when the phases of the linear density field are unknown? In order to
determine this, one unfortunately has to marginalize over those phases, which requires an
implementation of the EFT likelihood into a sampling framework along the lines of, e.g. [28].
We thus have to defer this question to future work as well. It is clear however that this
uncertainty will be very sensitive to the value of the cutoff A. Regardless of the expected
statistical precision, it is worth emphasizing that, by fixing the phases to their ground-
truth values throughout, the test of unbiased cosmology inference presented here is the most
stringent test possible.

Finally, in parallel to the empirical studies on halo samples, a more rigorous theoretical
study of the EFT likelihood expansion should be performed [55]. This is essential in order
to obtain proper estimates of the relative size of the different expansion parameters, and to

2This scaling is based on the fact that the computational time of evaluating the likelihood is dominated
by the determination of the quantities Apos and Bo in the notation of section 2.2. The cost of the matrix
inversion is negligible for a realistic number of operators.
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consistently carry out the expansion to higher order. After all, one of the main advantages
of the EFT likelihood approach is that it is very simple to systematically go to higher orders.
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A Operator correlators and renormalization

As argued in [54] (see also [56, 57]), nonlinear operators constructed out of the matter density
field must be renormalized in order to suppress dependencies of their cross-correlations on
small-scale modes [72]. Specifically, using square brackets to denote renormalized operators
[0], we found using a tree-level (leading-order) calculation [54]

6)(k) = 6(k)
2] (k) = (6)(k) = 3_5(k)o(k) and  [8%](k =0) =0
(K2 (k) = (7)(k) — 224(0(k) and [K*)(k =0) =0, (A1)
where
£ 5(k) =14 [ Wa(p)Walk ~ p)Fa(-.p)PL(D). (A.2)
p

Here, the Wy (k) are sharp filter functions defined in Fourier space. Finally,

5 2(k1-ko)® ki-ky (ki ko
Fy(ky, ko) = = + = 22
2lkr k) = 7+ 7 j2k2 ks \k2 |

(A.3)

Since this calculation is only valid at leading order, we use a numerical renormalization
procedure in our likelihood implementation instead. Specifically, we measure

Pora (k) = (5(k)OP (k")) (A.4)

on a linear grid in k (we choose 100 bins between the fundamental and Nyquist frequencies).
The same is done for the density field itself, yielding Pss(k). Then, for each mode k, we
renormalize through

02)(k) = OFI(k) — 202 (R (k). (A5)

3https://aquila-consortium.org
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Figure 4. Left panel: measured operator correlator (8x(d5)%) (i.e. before renormalization) and

(0A[6A]%) (after renormalization) using a 2LPT density field at z = 0 with A = 0.1 hMpc~!. The line
shows the tree-level standard perturbation theory prediction. Right panel: same as left panel, but for

(0A(K3)) and (0.[Ka]?).

where a cubic-spline interpolation is used to obtain the power spectra at each value of k. Fig-
ure 4 shows the cross-correlation of § and the two quadratic operators 62 and K? before and
after renormalization. For the k values that matter most in the likelihood, & > 0.02 h Mpc ™!,
the cross-correlation is removed to high accuracy by the renormalization procedure. Also
shown is the tree-level perturbation-theory prediction for the correlator before renormaliza-
tion, which matches the measurement reasonably well, although not perfectly even at low k,
since modes near the cutoff A contribute to this cross-correlation.

Figure 5 shows the cross-correlation of the quadratic operators among each other. As
argued in [54], the renormalization also removes the dominant higher-order (trispectrum) con-
tribution to these correlators. Indeed, the leading perturbation-theory prediction matches the
cross-correlation of the quadratic operators well. We have verified that the good agreement
also holds for other values of redshift and A, and that the deviations from the perturbation-
theory prediction show the expected scaling, with agreement improving toward higher red-
shift and for smaller values of the cutoff A. We conclude that the operator cross-correlations,
which form the practical basis of the EFT likelihood as discussed in detail in [54], are well
understood.

B Interpreting the variance o2

In this appendix we derive the expectation for the variance parameter ag for Poisson noise.
Neglecting long-wavelength perturbations, let n; = n(x;) denote the number density of halos
in the grid cell centered around x;. Assuming this is Poisson distributed, we obtain

N,
A= (ng) = F}g and  (ninj) = Adjj, (B.1)
g

where IV}, is the total number of halos in the box. The noise in the fractional halo density
perturbation 4, is then given by ¢; = n;/\, where we neglect the subtraction of the mean
here since it is irrelevant for modes of finite k. The noise field obeys, under the Poisson
assumption,

(€igj) = %&‘j. (B.2)
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Figure 5. Measured renormalized operator correlators ([OP/][O'2]) for O,0" € {(64)?, (Ka)?}. All
operators are constructed from a 2LPT density field at z = 0 with A = 0.1 AMpc ™. The lines again
show the tree-level standard perturbation theory predictions.

Finally, its power spectrum is given by

S e &

Z’Mj
where 1, = Nh/L%OX is the number density of halos. Notice that the value depends on
the grid resolution adopted, which in our implementation is N, = 384. The values of o?

given in table 2 are divided by this Poisson expectation. Values greater (less) than one thus
correspond to super- (sub-)Poisson stochasticity.

References
[1] H. Totsuji and T. Kihara, The correlation function for the distribution of galazies, Publ.
Astron. Soc. Japan 21 (1969) 221.

[2] P.J.E. Peebles and M.G. Hauser, Statistical analysis of catalogs of extragalactic objects. III.
The Shane-Wirtanen and Zwicky catalogs, Astrophys. J. Suppl. 28 (1974) 19.

[3] S.M. Fall and S. Tremaine, On estimating correlations in the spatial distribution of galazies,
Astrophys. J. 216 (1977) 682.

[4] S. Phillipps, R. Fong, R.S.E.S.M. Fall and H. T. MacGillivray, Correlation analysis deep galazy
samples — 1. Techniques with applications to a two-colour sample, Mon. Not. Roy. Astron.
Soc. 182 (1978) 673.

[6] W. L. Sebok, The angular correlation function of galazies as a function of magnitude,
Astrophys. J. Suppl. 62 (1986) 301.

[6] S. Hermit et al., The two-point correlation function and morphological segregation in the optical
redshift survey, Mon. Not. Roy. Astron. Soc. 283 (1996) 709 [astro-ph/9608001] [INSPIRE].

[7] G. Giuricin et al., The redshift-space two-point correlation functions of galazies and groups in
the nearby optical galaxy sample, Astrophys. J. 554 (2001) 857 [astro-ph/0102470] [INSPIRE].

[8] SDSS collaboration, The angular correlation function of galazies from early SDSS data,
Astrophys. J. 579 (2002) 42 [astro-ph/0107417] [INSPIRE].

~ 18 —


https://doi.org/10.1086/190308
https://doi.org/10.1086/155509
https://doi.org/10.1093/mnras/182.4.673
https://doi.org/10.1093/mnras/182.4.673
https://doi.org/10.1086/191142
https://doi.org/10.1093/mnras/283.2.709
https://arxiv.org/abs/astro-ph/9608001
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9608001
https://doi.org/10.1086/321390
https://arxiv.org/abs/astro-ph/0102470
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0102470
https://doi.org/10.1086/342787
https://arxiv.org/abs/astro-ph/0107417
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0107417

[9] SDSS collaboration, Angular clustering with photometric redshifts in the Sloan Digital Sky
Survey: bimodality in the clustering properties of galazies, Astrophys. J. 595 (2003) 59
[astro-ph/0305603] INSPIRE].

[10] K.L. Adelberger et al., The spatial clustering of star-forming galazies at redshifts 1.4 < z < 3.5,
Astrophys. J. 619 (2005) 697 [astro-ph/0410165] [INSPIRE].

[11] SDSS collaboration, Detection of the baryon acoustic peak in the large-scale correlation
function of SDSS luminous red galaxies, Astrophys. J. 633 (2005) 560 [astro-ph/0501171]
[INSPIRE].

[12] A.D. Myers et al., Clustering analyses of 300,000 photometrically classified quasars — I.
Luminosity and redshift evolution in quasar bias, Astrophys. J. 658 (2007) 85
[astro-ph/0612190] INSPIRE].

[13] SDSS collaboration, Galazy clustering in the completed SDSS redshift survey: the dependence
on color and luminosity, Astrophys. J. 736 (2011) 59 [arXiv:1005.2413] [INSPIRE].

[14] DES collaboration, Dark energy survey year 1 results: cosmological constraints from galaxy
clustering and weak lensing, Phys. Rev. D 98 (2018) 043526 [arXiv:1708.01530] [NSPIRE].

[15] E. Hubble, The distribution of extra-galactic nebulae, Astrophys. J. 79 (1934) 8.

[16] P. Coles and B. Jones, A lognormal model for the cosmological mass distribution, Mon. Not.
Roy. Astron. Soc. 248 (1991) 1 [nSPIRE].

[17] J. Carron, On the incompleteness of the moment and correlation function hierarchy as probes
of the lognormal field, Astrophys. J. 738 (2011) 86 [arXiv:1105.4467] [InSPIRE].

[18] E. Bertschinger and A. Dekel, Recovering the full velocity and density fields from large-scale
redshift-distance samples, Astrophys. J. Lett. 336 (1989) L5.

[19] O. Lahav et al., Wiener reconstruction of galaxy surveys in spherical harmonics, Astrophys. J.
423 (1994) 193 [astro-ph/9311059] [INSPIRE].

[20] K. Fisher et al., Wiener reconstruction of density, velocity and potential fields from all-sky
galaxy redshift surveys, astro-ph/9406009 [INSPIRE].

[21] I.M. Schmoldt et al., On density and velocity fields and beta from the iras pscz survey, Astron.
J. 118 (1999) 1146 [astro-ph/9906035] [INSPIRE].

[22] P. Erdogdu et al., The 2dF galaxzy redshift survey: Wiener reconstruction of the cosmic web,
Mon. Not. Roy. Astron. Soc. 352 (2004) 939 [astro-ph/0312546] [INSPIRE].

[23] J. Jasche, F.S. Kitaura, B.D. Wandelt and T.A. Enfilin, Bayesian power-spectrum inference for
large-scale structure data, Mon. Not. Roy. Astron. Soc. 406 (2010) 60 [arXiv:0911.2493].

[24] J. Jasche and F.S. Kitaura, Fast Hamiltonian sampling for large-scale structure inference, Mon.
Not. Roy. Astron. Soc. 407 (2010) 29 [arXiv:0911.2496].

[25] J. Jasche, F.S. Kitaura, C. Li and T.A. EnBlin, Bayesian non-linear large-scale structure
inference of the Sloan Digital Sky Survey Data Release 7, Mon. Not. Roy. Astron. Soc. 409
(2010) 355 [arXiv:0911.2498|.

[26] F.S. Kitaura, J. Jasche and R.B. Metcalf, Recovering the non-linear density field from the
galazy distribution with a Poisson-lognormal filter, Mon. Not. Roy. Astron. Soc. 403 (2010)
589 [arXiv:0911.1407].

[27] F.S. Kitaura, S. Gallerani and A. Ferrara, Multiscale inference of matter fields and baryon
acoustic oscillations from the Ly-a forest, Mon. Not. Roy. Astron. Soc. 420 (2012) 61
[arXiv:1011.6233].

[28] J. Jasche and B.D. Wandelt, Bayesian physical reconstruction of initial conditions from large
scale structure surveys, Mon. Not. Roy. Astron. Soc. 432 (2013) 894 [arXiv:1203.3639]
[INSPIRE].

~19 —


https://doi.org/10.1086/377168
https://arxiv.org/abs/astro-ph/0305603
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0305603
https://doi.org/10.1086/426580
https://arxiv.org/abs/astro-ph/0410165
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0410165
https://doi.org/10.1086/466512
https://arxiv.org/abs/astro-ph/0501171
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0501171
https://doi.org/10.1086/511519
https://arxiv.org/abs/astro-ph/0612190
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0612190
https://doi.org/10.1088/0004-637X/736/1/59
https://arxiv.org/abs/1005.2413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2413
https://doi.org/10.1103/PhysRevD.98.043526
https://arxiv.org/abs/1708.01530
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01530
https://doi.org/10.1086/143517
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,248,1%22
https://doi.org/10.1088/0004-637X/738/1/86
https://arxiv.org/abs/1105.4467
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4467
https://doi.org/10.1086/185348
https://doi.org/10.1086/187244
https://doi.org/10.1086/187244
https://arxiv.org/abs/astro-ph/9311059
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9311059
https://arxiv.org/abs/astro-ph/9406009
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9406009
https://doi.org/10.1086/301001
https://doi.org/10.1086/301001
https://arxiv.org/abs/astro-ph/9906035
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9906035
https://doi.org/10.1111/j.1365-2966.2004.07984.x
https://arxiv.org/abs/astro-ph/0312546
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0312546
https://doi.org/10.1111/j.1365-2966.2010.16610.x
https://arxiv.org/abs/0911.2493
https://doi.org/10.1111/j.1365-2966.2010.16897.x
https://doi.org/10.1111/j.1365-2966.2010.16897.x
https://arxiv.org/abs/0911.2496
https://doi.org/10.1111/j.1365-2966.2010.17313.x
https://doi.org/10.1111/j.1365-2966.2010.17313.x
https://arxiv.org/abs/0911.2498
https://doi.org/10.1111/j.1365-2966.2009.16163.x
https://doi.org/10.1111/j.1365-2966.2009.16163.x
https://arxiv.org/abs/0911.1407
https://doi.org/10.1111/j.1365-2966.2011.19997.x
https://arxiv.org/abs/1011.6233
https://doi.org/10.1093/mnras/stt449
https://arxiv.org/abs/1203.3639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3639

[29]

[34]

[35]
[36]

[37]

[38]

[43]
[44]
[45]
[46]
[47]

[48]

M. Ata, F.-S. Kitaura and V. Miiller, Bayesian inference of cosmic density fields from
non-linear, scale-dependent and stochastic biased tracers, Mon. Not. Roy. Astron. Soc. 446
(2015) 4250 [arXiv:1408.2566] [INSPIRE].

BOSS collaboration, The clustering of galazies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies, Mon. Not. Roy.
Astron. Soc. 467 (2017) 3993 [arXiv:1605.09745] INSPIRE].

WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175
[astro-ph/0302209] [INSPIRE].

WMAP collaboration, Wilkinson Microwave Anisotropy Probe (WMAP) three year results:
implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [INSPIRE].

WMAP collaboration, Five-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330
[arXiv:0803.0547] [INSPIRE].

WDMAP collaboration, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18
[arXiv:1001.4538] [INSPIRE].

PLANCK collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.
571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

PLANCK collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.
594 (2016) A13 [arXiv:1502.01589] INSPIRE].

PLANCK collaboration, Planck intermediate results. XLVI. Reduction of large-scale systematic
effects in HFI polarization maps and estimation of the reionization optical depth, Astron.
Astrophys. 596 (2016) A107 [arXiv:1605.02985] INSPIRE].

D.K. Ramanah, G. Lavaux, J. Jasche and B.D. Wandelt, Cosmological inference from Bayesian
forward modelling of deep galaxy redshift surveys, Astron. Astrophys. 621 (2019) A69
[arXiv:1808.07496] [INSPIRE].

S. Duane, A. D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B
195 (1987) 216.

F. Elsner and B.D. Wandelt, Local non-Gaussianity in the cosmic microwave background the
Bayesian way, Astrophys. J. 724 (2010) 1262 [arXiv:1010.1254] [NSPIRE].

N. Kaiser, On the spatial correlations of Abell clusters, Astrophys. J. 284 (1984) L9 [INnSPIRE].

J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, The statistics of peaks of Gaussian
random fields, Astrophys. J. 304 (1986) 15.

S. Cole and N. Kaiser, Biased clustering in the cold dark matter cosmogony, Mon. Not. Roy.
Astron. Soc. 237 (1989) 1127 [INSPIRE].

J.N. Fry and E. Gaztanaga, Biasing and hierarchical statistics in large scale structure,
Astrophys. J. 413 (1993) 447 [astro-ph/9302009] [INSPIRE].

H.J. Mo and S.D.M. White, An analytic model for the spatial clustering of dark matter halos,
Mon. Not. Roy. Astron. Soc. 282 (1996) 347 [astro-ph/9512127] [INSPIRE].

R.K. Sheth and G. Tormen, Large scale bias and the peak background split, Mon. Not. Roy.
Astron. Soc. 308 (1999) 119 [astro-ph/9901122] [INSPIRE].

V. Desjacques, D. Jeong and F. Schmidt, Large-scale galaxy bias, Phys. Rept. 733 (2018) 1
[arXiv:1611.09787] [INSPIRE].

D. Layzer, A new model for the distribution of galaxies in space, Astron. J. 61 (1956) 383.

—90 —


https://doi.org/10.1093/mnras/stu2347
https://doi.org/10.1093/mnras/stu2347
https://arxiv.org/abs/1408.2566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2566
https://doi.org/10.1093/mnras/stx178
https://doi.org/10.1093/mnras/stx178
https://arxiv.org/abs/1605.09745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.09745
https://doi.org/10.1086/377226
https://arxiv.org/abs/astro-ph/0302209
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0302209
https://doi.org/10.1086/513700
https://arxiv.org/abs/astro-ph/0603449
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0603449
https://doi.org/10.1088/0067-0049/180/2/330
https://arxiv.org/abs/0803.0547
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0547
https://doi.org/10.1088/0067-0049/192/2/18
https://arxiv.org/abs/1001.4538
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.4538
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://arxiv.org/abs/1303.5076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5076
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
https://doi.org/10.1051/0004-6361/201628890
https://doi.org/10.1051/0004-6361/201628890
https://arxiv.org/abs/1605.02985
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02985
https://doi.org/10.1051/0004-6361/201834117
https://arxiv.org/abs/1808.07496
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.07496
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1088/0004-637X/724/2/1262
https://arxiv.org/abs/1010.1254
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1254
https://doi.org/10.1086/184341
https://inspirehep.net/search?p=find+J+%22Astrophys.J.Lett.,284,L9%22
https://doi.org/10.1086/164143
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,237,1127%22
https://doi.org/10.1086/173015
https://arxiv.org/abs/astro-ph/9302009
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9302009
https://doi.org/10.1093/mnras/282.2.347
https://arxiv.org/abs/astro-ph/9512127
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9512127
https://doi.org/10.1046/j.1365-8711.1999.02692.x
https://doi.org/10.1046/j.1365-8711.1999.02692.x
https://arxiv.org/abs/astro-ph/9901122
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9901122
https://doi.org/10.1016/j.physrep.2017.12.002
https://arxiv.org/abs/1611.09787
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09787
https://doi.org/10.1086/107366

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

W.C. Saslaw and A.J.S. Hamilton, Thermodynamics and galazy clustering — Nonlinear theory
of high order correlations, Astrophys. J. 276 (1984) 13.

L. Senatore, Bias in the effective field theory of large scale structures, JCAP 11 (2015) 007
[arXiv:1406.7843] [INSPIRE].

M. Mirbabayi, F. Schmidt and M. Zaldarriaga, Biased tracers and time evolution, JCAP 07
(2015) 030 [arXiv:1412.5169] [INSPIRE].

D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological non-linearities as an
effective fluid, JCAP 07 (2012) 051 [arXiv:1004.2488] [INSPIRE].

J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, The effective field theory of cosmological
large scale structures, JHEP 09 (2012) 082 [arXiv:1206.2926] [INSPIRE].

F. Schmidt et al., A rigorous EFT-based forward model for large-scale structure, JCAP 01
(2019) 042 [arXiv:1808.02002] [INSPIRE].

G. Cabass and F. Schmidt, The likelihood for large-scale structure, arXiv:1909.04022
[INSPIRE].

M.M. Abidi and T. Baldauf, Cubic Halo bias in Fulerian and Lagrangian space, JCAP 07
(2018) 029 [arXiv:1802.07622] [INSPIRE].

M. Schmittfull, M. Simonovié, V. Assassi and M. Zaldarriaga, Modeling biased tracers at the
field level, Phys. Rev. D 100 (2019) 043514 [arXiv:1811.10640] [INSPIRE].

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Annals Math. Statist. 9 (1938) 60 INSPIRE].

M. Biagetti et al., Verifying the consistency relation for the scale-dependent bias from local
primordial non-Gaussianity, Mon. Not. Roy. Astron. Soc. 468 (2017) 3277
[arXiv:1611.04901] INSPIRE].

V. Springel, The cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105 [astro-ph/0505010] [INSPIRE].

T. Buchert and J. Ehlers, Lagrangian theory of gravitational instability of Friedman-Lemaitre
cosmologies — Second-order approach: an improved model for non-linear clustering, Mon. Not.
Roy. Astron. Soc. 264 (1993) 375.

M. Crocce, S. Pueblas and R. Scoccimarro, Transients from initial conditions in cosmological
simulations, Mon. Not. Roy. Astron. Soc. 373 (2006) 369 [astro-ph/0606505] [INSPIRE].

R. Scoccimarro, L. Hui, M. Manera and K.C. Chan, Large-scale bias and efficient generation of
initial conditions for non-local primordial non-Gaussianity, Phys. Rev. D 85 (2012) 083002
[arXiv:1108.5512] [INSPIRE].

W.H. Press and P. Schechter, Formation of galazies and clusters of galaxies by selfsimilar
gravitational condensation, Astrophys. J. 187 (1974) 425 [INSPIRE].

M.S. Warren, P.J. Quinn, J.K. Salmon and W.H. Zurek, Dark halos formed via dissipationless
collapse: 1. Shapes and alignment of angular momentum, Astrophys. J. 399 (1992) 405
[INSPIRE].

C.G. Lacey and S. Cole, Merger rates in hierarchical models of galaxy formation. 2.
Comparison with N body simulations, Mon. Not. Roy. Astron. Soc. 271 (1994) 676
[astro-ph/9402069)] [INSPIRE].

S.P.D. Gill, A. Knebe and B.K. Gibson, The evolution substructure 1: a new identification
method, Mon. Not. Roy. Astron. Soc. 351 (2004) 399 [astro-ph/0404258] [INSPIRE].

S.R. Knollmann and A. Knebe, Ahf: Amiga’s Halo Finder, Astrophys. J. Suppl. 182 (2009) 608
[arXiv:0904.3662] INSPIRE].

— 21 —


https://doi.org/10.1086/161589
https://doi.org/10.1088/1475-7516/2015/11/007
https://arxiv.org/abs/1406.7843
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.7843
https://doi.org/10.1088/1475-7516/2015/07/030
https://doi.org/10.1088/1475-7516/2015/07/030
https://arxiv.org/abs/1412.5169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5169
https://doi.org/10.1088/1475-7516/2012/07/051
https://arxiv.org/abs/1004.2488
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2488
https://doi.org/10.1007/JHEP09(2012)082
https://arxiv.org/abs/1206.2926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2926
https://doi.org/10.1088/1475-7516/2019/01/042
https://doi.org/10.1088/1475-7516/2019/01/042
https://arxiv.org/abs/1808.02002
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02002
https://arxiv.org/abs/1909.04022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.04022
https://doi.org/10.1088/1475-7516/2018/07/029
https://doi.org/10.1088/1475-7516/2018/07/029
https://arxiv.org/abs/1802.07622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.07622
https://doi.org/10.1103/PhysRevD.100.043514
https://arxiv.org/abs/1811.10640
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.10640
https://doi.org/10.1214/aoms/1177732360
https://inspirehep.net/search?p=find+J+%22Ann.Math.Statist.,9,60%22
https://doi.org/10.1093/mnras/stx714
https://arxiv.org/abs/1611.04901
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04901
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://arxiv.org/abs/astro-ph/0505010
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0505010
https://doi.org/10.1093/mnras/264.2.375
https://doi.org/10.1093/mnras/264.2.375
https://doi.org/10.1111/j.1365-2966.2006.11040.x
https://arxiv.org/abs/astro-ph/0606505
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0606505
https://doi.org/10.1103/PhysRevD.85.083002
https://arxiv.org/abs/1108.5512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5512
https://doi.org/10.1086/152650
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,187,425%22
https://doi.org/10.1086/171937
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,399,405%22
https://doi.org/10.1093/mnras/271.3.676
https://arxiv.org/abs/astro-ph/9402069
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9402069
https://doi.org/10.1111/j.1365-2966.2004.07786.x
https://arxiv.org/abs/astro-ph/0404258
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0404258
https://doi.org/10.1088/0067-0049/182/2/608
https://arxiv.org/abs/0904.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.3662

[69] F. James and M. Roos, Minuit: a system for function minimization and analysis of the
parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

[70] N. Hamaus et al., Minimizing the stochasticity of halos in large-scale structure surveys, Phys.
Rev. D 82 (2010) 043515 [arXiv:1004.5377] [iNSPIRE].

[71] T. Lazeyras and F. Schmidt, A robust measurement of the first higher-derivative bias of dark
matter halos, JCAP 11 (2019) 041 [arXiv:1904.11294] [InSPIRE].

[72] V. Assassi, D. Baumann, D. Green and M. Zaldarriaga, Renormalized halo bias, JCAP 08
(2014) 056 [arXiv:1402.5916] [INSPIRE].

~99 _


https://doi.org/10.1016/0010-4655(75)90039-9
https://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,10,343%22
https://doi.org/10.1103/PhysRevD.82.043515
https://doi.org/10.1103/PhysRevD.82.043515
https://arxiv.org/abs/1004.5377
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5377
https://doi.org/10.1088/1475-7516/2019/11/041
https://arxiv.org/abs/1904.11294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.11294
https://doi.org/10.1088/1475-7516/2014/08/056
https://doi.org/10.1088/1475-7516/2014/08/056
https://arxiv.org/abs/1402.5916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5916

	Introduction
	Method
	Recap: Fourier-space likelihood
	Marginalizing over bias parameters
	Estimating systematic errors
	The sigma8 profile likelihood

	Simulations
	Implementation
	Results
	Conclusions
	Operator correlators and renormalization
	Interpreting the variance sigma(eps)**2

