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Abstract.  A system of granular particles with interactions at a distance is 
studied experimentally, and the corresponding dynamics is examined via the 
speed distributions. It is found to dier from that of hard granular systems, 
i.e. systems with no interactions other than dissipative collisions, and the 
discrepancy is shown to not be due solely to the eect of interactions on 
clustering. Finally, analytical expressions are derived and compared to the 
experimental results.
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1.  Introduction

Granular particles dissipate kinetic energy during collisions and exhibit negligible 
Brownian motion [1–6], and their dynamics is thus inherently out of thermodynamic 
equilibrium if they are not at rest. Thus, even in the absence of interactions other than 
collisions, their speeds generally do not follow the Maxwell–Boltzmann distribution [1, 
3, 5, 7], although there are exceptions [8, 9]. Dissipation favours clustering [4, 5], which 
is interrelated with the dynamics [3, 5, 10]; the latter can be studied via the speed 
distributions [3, 10].

The following 2D speed distribution, derived from a 1D speed distribution obtained 
for simulational granular systems [3], and that has been applied to the angular veloci-
ties of elongated externally driven particles [11], has been used for hard (i.e. interacting 
solely via collisions) granular systems [10–12]:

f2D(v) = Cv
M∑

m=1

exp

(
−(v/v0)

2mβ

2

)
exp(−αm),� (1)

where f2D(v) is the fraction of speeds (moduli of the 2D velocities) found between v and 
v + dv, M is the total number of particles in the system, v0 is a characteristic speed and 
C is a normalization constant. Particles are assumed to be in clusters of size m (with 
m  =  1 corresponding to lone particles) having speed distributions of the same form as 
those of quasi-2D non-dissipative hard particles in thermal equilibrium, i.e. the 2D 
Maxwell–Boltzmann form, but with a peak at v0m

−β/2 (and therefore explicitly depen-
dent on cluster size), where β is a dimensionless parameter, and on Nm, the number of 
particles in clusters of size m, being proportional to exp(−αm) [3, 10], where α is also 
dimensionless. The 2D Maxwell–Boltzmann form is recovered in the limit β → 0.

f2D(v) has been shown to apply to experimental granular systems of quasi-2D 
(defined as systems whose constituents cannot have the same 2D coordinates [4, 6, 
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13–15]) externally driven particles [10, 11] and binary mixtures [10], and to self-pro-
pelled particles [12]. Importantly, the 1D distribution from which it is derived is itself 
obtained from simulations explicitly considering viscous drag. Likewise, experimental 
validation of this distribution [11], and of the 2D distribution derived from it [10, 12], 
has been for systems in air, not in a vacuum, including gently agitated systems of light 
particles [12] for which air resistance is unlikely to be negligible.

The dynamics of granular systems with interactions other than collisions are not 
only of clear fundamental interest, but are also of practical interest. There is evidence, 
for example, that electrostatic repulsion due to triboelectric charge aects the dynam-
ics [16]. Furthermore, all experimental systems are to some extent soft (deformable), 
and there is evidence that soft granular particles can be modelled using interaction 
potentials [17, 18]. The eect of external potentials on granular dynamics, the most 
ubiquitous of which is gravity, is perhaps even more important. A 3D granular speed 
distribution must, in all conditions save microgravity, consider gravitational potential 
energy, as must speed distributions of quasi-2D and quasi-1D systems that are not on 
a level plane.

The literature on interacting granular particles has typically focused on systems 
subject to gravity and with repulsive contact forces as the only interparticle interac-
tions (such as the simulational work of Langston et al [19] or of Cleary and Sawley 
[20]). Typically net flows have been examined rather than speed distributions of indi-
vidual particles [19]. Only very rarely have such distributions been examined for par-
ticles with interactions at a distance, such as in the work of Kohlstedt et al [21], which 
involves an external field inducing interparticle interactions.

In the present work, we examine the experimental speed distributions of a system 
of circular granular particles with directional interactions at a distance on an air/water 
interface. In order to ensure that interactions have a distinct eect on clustering with-
out hindering it, directional interactions were chosen so that interaction energy is mini-
mised by a Kagome lattice (see figure 1), of interest in its own right [22–25] but which 
has been studied to the best of our knowledge only in systems with non-dissipative 
collisions, including in the simulational literature. Dissipative collisions, in the absence 
of interactions at a distance, tend to favour dense, glass-like structures or close-packed 
lattices [4, 5, 17, 26].

2. Materials and methods

2.1. Particles and cell

Circular, token-like (diameter σ = 29 mm and 5 mm thickness) particles were made via 
3D printing (poly(lactic acid) FDM20 3D printer, Proyectil) using an infill of 15 % to 
help ensure flotation. Each particle has two pairs of diametrically opposite slits (3 mm × 
1.5 mm × 2 mm each) on the top side, with the diameters joining each pair at 60° from 
each other, in an X-shaped arrangement, as shown in figure 2. Neodymium magnets 
(1 mm height, 2 mm diameter, N50 from HuoXing Appliance & Lighting Store) were 
glued in place in the slits with alternating poles facing outwards. Particle centres were 
marked with white paint to assist identification. Finished particles have a 2.19 g mass.

https://doi.org/10.1088/1742-5468/ab54b9
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For the magnets used, interactions become negligible beyond  ∼3 mm face-to-face 
distance. Their eective range, their interactions’ directionality and the particles’ 
dimensions ensure that a magnet on a given particle can only have a non-negligible 
interaction with one other magnet at a time and that these interactions become impor-
tant only at an edge-to-edge distance that is small on the scale of particle diameter. 
Capillary interactions are much weaker than magnetic interactions.

A 45.3 cm × 45.3 cm × 4.5 cm acrylic cell, painted black, was filled with 2000 ml of 
water and two opposing corners were then placed on inflated rubber bladders, in turn 
on two speakers (200 W subwoofers); the bladders maximize transmission of mechanical 
energy from the speakers to the cell and minimize loss as noise (see figure 2). Placing 
the speakers underneath the cell ensures there is no direct interaction between them 
and the particles, as the water lies between them. The speakers themselves are driven 
by a sinusoidal wave with a frequency of 4.5 Hz (Hewlett Packard 3314A signal genera-
tor and 500 W Kinter WA-150 amplifier). This frequency corresponds to the empiri-
cally determined full system’s resonant frequency, as determined by the water surface’s 
vibration’s amplitude, and therefore minimizes overall power loss. The cell’s character-
istic dimensionless acceleration Γ (= Aω2/g, where A is the water surface’s vibration’s 
amplitude, ω is the driving angular frequency and g is the acceleration due to gravity) 
is  ∼0.4. No flipping motion, nor any instances of multilayers, were observed during the 
experiments, confirming the system remains quasi-2D. Much larger amplitudes would 
likely lead to fully 3D behaviour, and much lower Γ would lead to a system entirely 
dominated by bonding.

After the onset of agitation, and in order to ensure reproducible initial conditions, 
a grid (square lattice) was placed at the centre of the cell, and the number of particles 
used for any given experiment were placed in the grid, forming a rectangle with no 
vacancies at the grid’s centre. The grid was then lifted vertically out of the water, and 
the system is then allowed to evolve freely. t  =  0 in the analysis corresponds to the first 
frame captured without the grid.

Particle numbers were chosen on the basis of being high enough to ensure good sta-
tistics, but low enough to allow significant time evolution in the system.

Figure 1.  The lattices relevant to our system are shown schematically. If all circles 
are considered, they form a close-packed lattice. The solid circles (black) form a 
Kagome lattice. The filled circles (red) constitute a small cluster compatible with 
both close-packed and Kagome lattices.

https://doi.org/10.1088/1742-5468/ab54b9
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2.2. Forces and interactions

There are only two forces in our system that are absent in experimental systems 
whose distributions have been successfully described by f2D(v) [10–12], and that are 
also not considered in the simulations of Puglisi et al [3]: magnetic interactions and 
capillary interactions arising from the particles being at an interface. Capillary forces 
between particles at an interface and moving along it can be modelled as interparticle 
interactions at a distance with an attractive potential proportional to r−4 [27, 28]; as 
magnetic and capillary interactions are independent phenomena, the net interaction 
is simply the sum of the magnetic and capillary interactions. This situation is distinct 
from that studied by Buck et al [29], in which granular particles move perpendicularly 
to the surface of a liquid, whereas in our experiments the particles remain at the air/
water interface and move along it. Two particles placed in contact with each other such 
that equal magnetic poles are facing each other move apart immediately, showing that 
magnetic interactions are much stronger than capillary forces. While capillary forces 
alone would introduce interactions at a distance, the addition of stronger magnetic 
interactions ensures interactions at a distance wholly dominate the behaviour, as is 

Figure 2.  The experimental set-up is shown schematically (bottom). Two speakers 
under opposite corners of the cell drive the cell to oscillate along the vertical 
direction; the remaining corners are on fixed custom-made supports (not shown) 
with rubber spheres to ensure bouncing and thus minimise loss of kinetic energy; 
these supports also minimize lateral motion. The central inset shows the design 
used for 3D printing of the particles used; slits for the magnets are in an X-shaped 
arrangement, as depicted by the overlaid crosses. The top left inset shows a segment 
of a Kagome lattice held together by magnetic attractions between particles with 
magnets prior to marking their centres. The remaining inset (top right) shows the 
central region of a 144 particles experiment’s initial conditions.

https://doi.org/10.1088/1742-5468/ab54b9
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desirable since their eect, and how the resulting dynamics diers from that in non-
interacting systems, is the focus of the present work. Capillary attractions favour dense 
clusters, as does dissipation.

Aside from these interactions at a distance, our system is fundamentally similar 
to that reported by Cadillo–Martínez and Sánchez [10], for which single particles and 
small clusters are prevalent.

2.3.  Image capture and analysis

Videos were captured at a rate of 29 frames per second by a Canon VIXIA HF R70 (1920 
× 1080 pixels) camera placed above the cell centre. Taking a particle length divided by 
the root mean squared speed of a particle, for the time segments used to obtain speed 
distributions, a characteristic time ≈6 s is obtained, beyond which a particle could not 
be reliably distinguished from a neighbour based on two images captures at such an 
interval, i.e. beyond which trajectories cannot be reliable tracked. This characteristic 
time is long enough for over 100 frames to be captured, i.e. the time between frames 
is two orders of magnitude smaller. Thus the frame rate used is adequate for tracking 
particles and measuring speeds in these systems.

Trajectories were obtained by enhancing the images using ImageJ and tracking the 
particles using the plug-in Mosaic [30]. Further analysis was carried out using software 
written in-house.

2.4. Clustering, speed distributions and statistics

Two particles are identified as being in the same cluster if their centres are under 
(
√
3− 1/2)σ apart (see figure 3).
Various functions are compared with speed histograms normalised by the number 

of data points used to produce them, i.e. with fractional frequencies. From probabilistic 

Figure 3.  A cluster compatible with both Kagome and close-packed lattices (see 
figure 1) is shown. The particles labelled ‘1’ (blue), ‘2’ (red) and ‘3’ (green) are 
first, second and third-nearest neighbours, respectively, of the black particle on the 
left. Nearest neighbours are a distance r = σ away; for second-nearest neighbours 
r =

√
3σ ≈ 1.7321σ (solid (red) and dashed lines combined) [26, 31–33] and for 

third-nearest neighbours r = 2σ. Thus the shell of second-nearest neighbours’ 
inner edge is at r = (

√
3− 1/2)σ ≈ 1.2321σ, depicted by the solid (red) line; the 

shell of third-nearest neighbours’ inner edge is at r = 1.5σ. Using a cut-o of 
r = (

√
3− 1/2)σ ensures the inclusion of nearest neighbours while excluding 

second-nearest neighbours.

https://doi.org/10.1088/1742-5468/ab54b9
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considerations, the theoretical uncertainty of the normalised histograms shown is of √
ν(1− ν)/NT , where ν is the fractional frequency and NT is the total number of data 

points used for the histogram. Two types of systems are examined in greater detail (90 
and 144 particles). For 90 particles (the system with poorer statistics of the two), and 
since 500 frames are used for the intervals shown, NT ∼ 4.5× 104 · ν in practice remains 
below  ∼0.1, and thus this uncertainty has a maximum value of  ∼0.001, i.e. about 1% 
of the peak value. A similar analysis for histograms using longer time intervals for sys-
tems with 9 particles yields a maximum uncertainty of  ∼2% of the peak value. These 
histograms therefore have suciently good statistics to provide physically meaningful 
insights, while the time intervals used are brief enough to preclude significant time-
dependence in the histograms, as our focus is on behaviour once rapid changes from the 
initial conditions have taken place and not on the system’s long-term evolution.

3. Results and discussion

As illustrated by the examples shown in figure 4, the experiments reach a steady state 
in which all or nearly all the particles have joined a single cluster, made up mainly of 
slightly arched rows, segments arranged in a Kagome formation and, particularly for 
the highest particle concentration, a few segments reminiscent of a close-packed crystal. 
This can be understood as the result of competition between interactions, which favour 
the formation of a single Kagome crystal, and dissipation and capillary attractions, 
which favour the formation of a dense cluster; the densest possible configuration is a 
close-packed crystal. Rows are compatible with both a Kagome and a close-packed crys-
tal (see figure 3), and slightly arched rows lead to a more compact cluster than purely 
straight ones. These rows resemble the structures formed by simulational disks with 
four interaction sites at low packing fractions, which at higher packing fractions form 

Figure 4.  The main picture shows the last frame from an experiment with 144 
particles. A dimer separate from the main cluster is highlighted by a red ellipse. 
The insets show the last frame for two separate experiments with nine particles.

https://doi.org/10.1088/1742-5468/ab54b9
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Kagome crystals [24], despite dierences in the nature of the interactions involved, and 
in the angles between the interaction sites.

The system’s behaviour is thus dominated neither by interactions nor by dissipa-
tion, but rather results from competition between them. This scenario is not only likely 
to arise in practice in many granular systems with interaction potentials, but is also 
of particular fundamental interest since the extremes -negligible potential energy, and 
systems governed entirely by potentials- can be understood as limiting cases of compe-
tition between dissipation and potentials.

The systems with nine particles result in dierent final configurations, typically 
consisting of either a single cluster (such as the one shown in the top right-hand cor-
ner of figure 4) or of two clusters (such as the ones shown in the top left-hand corner 
of figure 4); the larger systems typically have a main, stable cluster containing most, 
in some frames all, of the particles in the system and few (especially for the systems 
with 144 particles) medium-sized clusters (in the example shown in the main picture in 
figure 4, there is a large main cluster, and a dimer can be seen next to the bottom edge 
of the picture, but no medium-sized clusters are found). Beyond these qualitative simi-
larities, cluster size distributions vary substantially between individual experiments 
(data not shown) and do not collapse onto a single form, especially for systems with 
90 particles, which is unsurprising given that granular systems often exhibit non-linear 
dynamics [34–36] and chaotic behaviour [34, 35]. The system being highly sensitive 
to even minute variations in initial conditions, as is usual in systems with non-linear 
dynamics, likely accounts for the variations between speed distributions of similarly 
prepared individual experiments, which are comparable to those of other experimental 
systems [10].

As shown in figure 5, after ≈20 s the systems reach a stationary state and, except for 
the large fluctuations for one of the 9 particles systems, are remarkably similar. Thus 
for further analysis, we focus on the two larger system sizes (90 and 144 particles) and 
on the behaviour in the last 500 frames of each experiment, unless indicated otherwise.

As shown in figure 6, f2D(v), which describes the behaviour of hard granular par-
ticles, can be reasonably fitted to the experimental data at low speeds (below about 
0.1 σs−1), but not at high ones. The leading order term in the series expansion is linear 
in v for both the 2D Maxwell–Boltzmann distribution and for f2D(v), and the fitted 
β values are very small (typically in the 10−5–10−3 range) compared to those reported 
for other systems [3, 10–12]. More importantly, the fitted values of both α and β are 
within theoretical uncertainties of zero. Therefore, according to our results f2D(v) is not 
significantly better than the 2D Maxwell–Boltzmann distribution, and it fits the data 
well at low speeds.

This can be understood in terms of energetics; at low speeds, kinetic energies are 
feeble compared to the binding energies due to magnetic attractions, and therefore 
these particles can be plausibly assumed to move as a rigid body. Therefore, collisions 
between slow particles are infrequent, as they would require them to first separate from 
their neighbours. For the systems with 144 particles, the clusters’ centre of mass speeds 
in the same intervals as the data used for figure 6 are  ∼0.06 σs−1 (data not shown), 
which is well within the regime in which the speed distribution is well-described by 
f2D(v). Thus in this regime particle speeds are predominantly related to overall cluster 
motion, which is consistent with bonds neither forming nor breaking. If, as in other 

https://doi.org/10.1088/1742-5468/ab54b9
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granular systems [5, 37–39], slow-moving particles are mostly not at the clusters’ edges, 
as is plausible given that they would have more neighbours to bind with, then neither 
do they directly collide with free particles. Their dynamics is therefore governed by 
Brownian-like agitation and by viscous drag, i.e. it is qualitatively similar to that of 
thermal systems.

Figure 5.  Mean squared speeds are shown as functions of time for the first minute 
of six independent experiments. The key indicates the number of particles in each 
experiment. Mean squared speeds decrease and then fluctuate around a stable 
value, and despite order-of-magnitude dierences in the number of particles the 
results are quantitatively comparable. After ≈20 s (final 40 s in the figure) mean 
squared speeds fluctuate but do not evolve in any discernible pattern, suggesting 
any long-term ageing takes place over times �40 s. Since the mean squared speed 
is proportional to the mean kinetic energy, this can be taken as a reasonable 
indicator that a stationary or metastable state has been reached. Since the data 
analysed for the speed distributions of the larger systems is taken over ≈17 s, these 
distribution correspond to ‘snapshot’ of the system’s dynamics unaected by long-
term ageing.

Figure 6.  The main figure shows the experimental speed distributions (symbols) 
for three independent experiments with 144 particles, as well as least squares 
fits to f2D(v). The fitted parameters (see main text) are, with v0 in units of σs−1: 
v0 = 0.103± 8.6, α = −0.0985± 7.79× 108 and β = 4.8210−6 ± 6505 for  +’s (green), 
v0 = 0.0642± 82.8, α = −0.0985± 7.90× 108 and β = 1.88× 10−4 ± 2.54× 104 
for empty circles (red), and v0 = 0.0589± 69.2, α = −0.0994± 9.26× 108 and 
β = 1.69× 10−4 ± 2.63× 104 for empty squares (orange). The inset likewise shows 
the data and fitted f2D(v) for an experiment with 90 particles (v0 = 0.0771± 2.09, 
α = −0.102± 1.26× 109 and β = 1.13× 10−5 ± 4641).

https://doi.org/10.1088/1742-5468/ab54b9
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On the other hand, the high kinetic energies corresponding to high speeds could, 
despite dissipation and despite interactions, break apart or structurally modify existing 
clusters, so the role of interactions becomes crucial. There are essentially two ways in 
which interactions can aect the speed distributions. They may aect cluster forma-
tion and breaking, and therefore the factor of exp(−αm) in f2D(v) may no longer hold. 
Separately, they may modify the dynamics separately from their eect on clustering. 
We first examine the former eect.

If interparticle interactions aect the speed distribution solely via the clustering, 
then the following speed distribution would be obeyed:

f
(1)
2D (v) = Cv

M∑
m=1

Nm exp

(
−(v/v0)

2mβ

2

)
,� (2)

where Nm is the experimentally measured number of particles in clusters of size m in 
the particular data set to be fitted, which eliminates one adjustable parameter, and 
the remaining parameters have the same physical interpretation as before. Since Nm is 
explicitly included, there is in principle no need to restrict analysis to stationary states 
or brief time intervals, since even if clustering is evolving, that will be included in the 
Nm values, and system agitation and other mechanical properties are kept constant. 
Experimentally, particles are overwhelmingly found in large clusters (of size ≈ M ) and 
a much smaller number is found in small clusters, while virtually no medium-sized clus-
ters are observed, which can be understood in terms of binding energies. Once a large 
cluster forms, small clusters or single particles breaking o require only a few bonds to 
break, so the energetic cost is low, but a medium-sized cluster breaking o would gener-
ally require breaking a larger number of bonds and is thus energetically less favourable.

Figure 7 shows that f
(1)
2D (v) fits the data well at modest speeds, but fails at large 

speeds. This shows that interactions have an eect on the dynamics beyond aecting 
clustering, and that this is greater for high kinetic energies. Since the first term of the 

series expansion of f
(1)
2D (v), of f2D(v) and of the 2D Maxwell–Boltzmann distribution 

are all of the same form (a linear term), it is unsurprising that f
(1)
2D (v) fits the data well 

at modest speeds. The fact that systems with few particles are better described overall 

by f
(1)
2D (v) than larger ones hints at collective eects being important in the high speeds 

regime.
In order to obtain a better analytical model for our data, we focus on the extremes 

of low and high speeds. As discussed earlier, slow particles likely have dynamics quali-
tatively similar to that of thermal systems, so we therefore assume:

flow(v) ≈ C ′v exp

(
−1

2

(
v

v′0

)2
)

,� (3)

where flow(v) is the speed distribution for low speeds and v′0 is analogous to v0.
We now turn to the regime of high speeds. We assume that the fastest-moving 

particles have escaped, either individually or in small clusters, from the main cluster’s 
edge. We furthermore assume that, right before escaping, they were relatively fast-
moving and loosely bound. Since more free particles mean more gaps and fewer bonds 
at the main cluster’s edge, we assume the probability of release is proportional to the 

https://doi.org/10.1088/1742-5468/ab54b9
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number of particles that are already free. Therefore, the number of particles in this 
regime that are released after travelling a distance dx is given by:

dNrel = P (release between x and x+ dx)Nrel,� (4)
where P(release between x and x+ dx) is the probability, per particle that is already 
free, of a loosely bound particle being released after travelling a distance dx, and x is 
the particle position. If we assume particles are released at random places along the 
main cluster’s edge, then we can write:

P (release between x and x+ dx) = ηdx,� (5)
where η is a positional density of events that release a particle. Therefore:

dNrel = ηNreldx.� (6)
Loose particles at the main cluster’s edge must move, between collisions and other 

interactions, comparatively rapidly, even if they do so more slowly than fully free par-
ticles. Plausibly, they move rapidly enough that the net force acting on them is pre-
dominantly viscous drag, and thus:

Fnet(vloose) ≈ −ξvloose,� (7)
where Fnet(vloose) is the net force and ξ is the drag coecient. Note that 
〈Fnet(vloose)〉 = −ξ 〈vloose〉, since the agitation force fluctuates around zero. In this 
regime, the speed decays exponentially and the speed and displacement dierentials 
can therefore be related by:

Figure 7.  Speed distributions of the final 500 frames of two independent 
experiments with 144 particles (main figure) and of all but the first 300 
frames (eliminating any transients from the onset of the experiment) of two 

experiments with nine particles (inset) are shown. Gray lines correspond to 

least squares fits to f
(1)
2D (v) and black lines to least squares fits to g2D(v) (see 

text). For the data sets in the main figure, the fitted parameters are (see main 

text), with v0 and v′0 in units of σs−1 and γ in units of sσ−1: v0 = 0.254± 0.0137, 
β = 0.573± 0.0221, v′0 = 0.637± 0.591 and γ = 23.7± 0.422 for filled circles (dark 
green) and v0 = 0.0786± 0.560, β = 0.0194± 2.87, v′0 = 318± 3.75× 107 and 
γ = 20.5± 0.251 for empty squares (blue). For the inset, the fitted parameters 
are: v0 = 0.238± 0.006 00, β = 0.980± 0.0455, v′0 = 0.175± 0.007 54 and 
γ = 6.71± 0.507 for empty circles (red), and v0 = 0.159± 0.001 94, β = 1.04± 0.0197, 
v′0 = 0.253± 0.0350 and γ = 18.7± 0.459 for empty triangles (magenta).
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dx = −dvloose
ξ

.� (8)

Putting this together with our earlier result for dNrel, we obtain:

dNrel = −ηNrel

ξ
dvloose.� (9)

Rearranging and integrating, this yields, if most of the time η varies slowly with Nrel 
(for suciently high Nrel it must become negative, as otherwise the main cluster would 
break down completely, but we assume at modest Nrel η varies little):

Nrel = Ni exp

(
−ηvloose

ξ

)
,� (10)

where Ni is an integration constant. This equation governs the relationship between 
the number of free particles and their speed immediately before being released. If the 
relationship between vloose and the actual speeds of the particles once they become free 
is at least approximately linear, then we have:

Nrel(v) ∼ N ′
i exp (−γv) ,� (11)

where γ is a constant and N ′
i  is a normalization constant. Once particles with a certain 

value of vloose are free, their speeds will vary due to agitation forces and viscous drag. 
By assumption, as these are free particles collisions will be much less frequent than 
for loosely bound particles. Thus we expect deviation from the above equation to be 
governed by a distribution of the 2D Maxwell–Boltzmann form. We can combine both 
this behaviour and the behaviour of Nrel as follows:

fhigh(v) ≈ C ′v exp

(
−1

2

(
v

v′0

)2
)
exp (−γv) ,� (12)

where C ′ is a normalization constant and v′0 is analogous to v0 in f2D(v).
We therefore seek a function that tends to flow(v) at low speeds and to fhigh(v) at 

high speeds, not only as matter of convenience but, more fundamentally, also because 
the regimes we have considered are not necessarily unambiguously distinct; for instance, 
the boundary between tightly bound particles deep within the main cluster and loosely 
bound particles near the edge might not be sharply defined.

Inspired by Padé approximants [40, 41], we postulate a speed distribution of the 
following form:

g2D(v) =
C ′fnum(v)

1 + fden(v)
,� (13)

and since both flow(v) and fhigh(v) involve a factor of v exp
(
−1

2
(v/v′0)

2
)
, we set 

fnum(v) = v exp
(
−1

2
(v/v′0)

2
)
. g2D(v) then tends to flow(v) at low speeds, provided 

fden(v) tends to a constant greater than  −1 in this limit. For g2D(v) to tend to fhigh(v) 
at high speeds, (1 + fden(v))

−1 must tend to exp (−γv). These requirements are satisfied 
by fden(v) = exp (γv), yielding:

https://doi.org/10.1088/1742-5468/ab54b9
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g2D(v) =
C ′v exp

(
−1

2
(v/v′0)

2
)

1 + exp (γv)
.� (14)

This has the same number of adjustable parameters as f
(1)
2D (v). The low and high 

speeds regimes correspond to v � γ−1 and to v � γ−1, respectively, and the thermody-
namic equilibrium form is recovered in the limit γ → 0.

As shown in figures 7 and 8, g2D(v) fits the data well for both large and small sys-
tems, and while there is a modest discrepancy at large speeds, it is much smaller than 

those of f2D(v) or f
(1)
2D (v) for large systems. In addition, it requires no explicit knowledge 

of cluster sizes or even of the total number of particles in the system. This is an impor-
tant advantage since, especially for systems in which the number of particles examined 
is not fixed or is not known a priori, determining the values of Nm for each individual 

experiment may be impractical, and the computational cost of fitting either f2D(v) or 

f
(1)
2D (v) increases rapidly with the number of particles.

f2D(v) has been shown to describe the speed distributions of spheres, permanent 
dimers of spheres [10], egg-shaped particles [11] and particles with straight edges [12]; 
f2D(v) has been shown to be applicable to a wide variety of hard granular systems. The 
derivation of g2D(v) makes no assumptions regarding particle geometry nor that of the 
interactions, so it is not unreasonable to propose that it may likewise be applicable to a 
wide range of interacting granular systems. At a minimum, it is likely to be applicable 
to related geometries with similar interactions, such as particles with interaction sites 
at other angles. Future work will focus on exploring the consequences of varying the 
interactions involved, including varying their geometry. This research may shed light 
on the physical aspects governing γ or, alternatively, on the relationship between the 
nature of the interactions and the type of functions that can accurately describe the 
speed distribution. It should be noted that the data of Kohlstedt et al [21], involving 

Figure 8.  Speed distributions are shown for two independent experiments with 144 
particles (filled symbols) and for two independent experiments with 90 particles 
(empty symbols). Lines correspond to least squares fits to g2D(v). The experiments 
with 144 particles are separate experiments from those whose data is shown in 
figure 7. The fitted parameters are, in units of σs−1 and of sσ−1: v′0 = 0.541± 0.106 and 
γ = 14.5± 0.194 for filled circles (green), v′0 = 573± 1.91× 108 and γ = 18.9± 0.237 
for empty squares (red), v′0 = 2.83± 31.8 and γ = 19.9± 0.31 for empty circles 
(blue), and v′0 = 302± 5.19× 107 and γ = 26.2± 0.317 for filled squares (orange).
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both an external field and interparticle interactions appears to be qualitatively of the 
same form as our distributions, and it is possible it could be well-described by g2D(v).

4. Conclusions

Experimental granular submonolayers with magnetic interactions were used to exam-
ine granular dynamics in the presence of strong interparticle interactions. The forma-
tion of a large, low density, main cluster is consistently observed. The particles’ speed 
distributions dier from those of hard granular particles and we analytically model the 
low and high speed limits separately.

Speed distributions in the system examined have been successfully described for a 
variety of particle numbers by an analytic expression combining physical models of the 
behaviour at high and low speeds. Future work will focus on extending these results to 
other granular systems with interactions.
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