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Abstract.  Alignment of images from multiple modalities is a very important procedure for
many medical and industrial applications. Often times it is not possible to utilize a supervised
method due to the lack of labeled data for any specific sensor architecture. In this study, a new
unsupervised approach is proposed for a sensor-camera system aligned in one axis, that warps
the image-like frames onto each other with a second-degree polynomial sampled from the cross-
correlation maximizing segment shifts. This methodology will allow the registration process
to adjust for focal differences and varying image modalities between the sensors. Thus, novel
architectures utilizing seldom-used sensors will more easily adapt to industrial and medical work
environments.

1. Introduction
For many multiple-sensor architectures employed in industrial or medical environments, the initial task is
to align and fuse the frames from varying modalities. Medical diagnosis often requires the combination
of the information from different sources, such in the cases of brain function analysis or radiotherapy
planning, that is decided upon the aggregation of CT, MR and/or PET images [1]. For the industrial
purposes, use of thermal and RGB cameras have been one of the main applications of image registration
research, as complete and accurate fusion is necessary to acquire valid information from these sensors.
A registration example for a thermal-RGB monitoring system can be seen at Figure 1.

Image registration has also been well-studied in the area of computer vision as a stand-alone problem.
The standard methods for this task [2] can be exemplified by the methods of Scale-Invariant Feature-
Transform (SIFT) [3] and ORB [4]. However, as in these methods and their many other counterparts

(a) RGB image (b) Thermal data (c) Overlay

Figure 1. Example of thermal and RGB output from a monitoring system, along with a possible overlay.
Created by the proposed method. Notice the slight curve of thermal image in the overlay, sourced from
registration by a quadratic transformation.
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in the field, the results are not very successful in images from different sources that have varying
modalities [5]. Furthermore, the focal differences of the sensors are often overlooked, by applying
projective or perspective transformations to register the images that require polynomial warps. In this
study, we are proposing a novel method to counteract these issues for a sensor-sensor architecture that
satisfies the following assumptions:

e The position of these two sources are known (whether they are vertically or horizontally aligned)
and their locations are sufficiently close to ensure focal overlap,

e The edge profiles of the sensors are sufficiently informative, i.e. there exist features that correspond
to the edge profiles of the image-like data provided by both sensors.

For a system described above, we first extract the edge features from the image-like data of the
sensors using a proposed variation of Canny edge detector [6] whose hysteresis thresholds are optimized
by Powell’s method [7]. Then, assuming an underlying second-degree polynomial that maps one edge
to the other, we sample the shifts of fixed-height image regions iteratively by calculating the FFT-
upsampled cross-correlation maximizing vectors [8]. Finally, we estimate the second-degree polynomial
by a weighted linear regression with weights proportional to the size of each sampled region. This
pipeline will provide a general solution for many variety of sensor architectures, and also allow easier
modification of the currently utilized systems.

This study is conducted to solve a registration problem in an RGB-thermal sensor system, therefore
the chosen examples will mostly cover such cases. However, the pipeline itself is suitable to any
multimodal architecture by nature.

2. Previous Work
Image registration for monomodal and multimodal sources have been studied extensively in the fields
of computer vision, medical imaging, and remote sensing. The current array of techniques can be
divided into two categories of supervised and unsupervised methods, for which the former frequently
employs deep learning based approaches [9] while the latter can be divided into different classes. These
classes of algorithms either use pixel values directly by estimating the correlation [10] [11] or mutual
information [12], use low-level features like edges and corners to acquire the ideal registration [13], apply
fast Fourier transform to work on frequency domain [8], or key-points and invariant descriptors [3] [4].
Despite their successes, deep learning based methods are not applicable to many systems with varying
sensors due to the lack of labeled data. Also, a large part of the approaches have inherent problems
and/or assumptions that make them not viable for many industrial applications: inability to handle
multimodality, registering images with solely affine, similarity-based or projection based transformations
that are unable to take the focal perturbations into account, or failing to register the images with
insufficient overlaps, are examples for the inadequacies of these techniques. Our purpose in this study is
to find a method that is able to address the above-mentioned problems while providing a new approach
to the concept of unsupervised edge detection.

3. Edge Extraction by Optimization

Images from different modalities may have varying edge profiles that do not overlap for small variations.
In order to reduce such irregularities from the outputs of both sensors, we regard them as noisy values and
apply edge-preserving noise reduction methods to remove such perturbations from the images. Next, we
extract the edges of both images by posing the process as an optimization problem that results in edge
profiles that cover approximately the same areas for both sensors, thus preventing the need of hyper-
parameter tuning for different contrast and lighting conditions.

3.1. Total Variation Denoising
The concept of minimizing total variation represents the reduction of a signal’s absolute gradient, thus
removing the variations due to noise [14]. Parametrization of this optimization problem allows us to
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target small perturbations caused by the inherent responses of the sensors, and preserve the edge features
that are shared between all components in a system.

Minimization of total variation in an image, as expressed in [15], involves an observed image
g = (8i,j)1<i,j<n as the addition of a piece-wise smooth image u = (u; ;)1<; j<n and a random Gaussian
noise. The minimization to recover the original, smooth image can be stated as

2
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where A > 0 is the weight of the denoising process, and J(u) is the total variation of u defined as

Jw)= Y, [(Vu))l )

1<ij<N

with V being the discrete gradient operator introduced also in [15]. Solving this equation with the
algorithm proposed by Chambolle in the aforementioned study, we can acquire the smooth sensor images
without modality-related irregularities. An exemplary application of this technique can be seen at Figure
2. The parameters of the denoising process for each sensor, A; and A, can be empirically set to match
with their comparative responses.

3.2. Canny Edge Detection as an Optimization Problem

After removing the exclusive edge-like features from the sensor outputs, we need the extract the edges
from the images. Edge detection algorithm proposed by Canny [6] is implemented in this study with two
variations from the original pipeline:

(i) The initial Gaussian smoothing is removed, as total variation denoising handles this step, and

(i) The hysteresis thresholds are chosen by an optimization process that ensures a predetermined
percentage of coverage on the binary output.

The full structure of the original algorithm will not be explained here and is left for the interested
reader. The hysteresis thresholding is done after the extraction of edges, and the expression to optimize
for the contour i’s pointwise gradient set v; = {g; | g € R, j € N}, low and high thresholds 7;, T, is

min
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representing the minimization of the absolute difference between cardinality of contours that have at least
one element that exceeds 7, and no element that is less than 7;, and the desired coverage of the binary

: |

(b) A =0.2 ©A=0.8

Figure 2. Different levels of smoothing by TV-deniosing. Unlike a Gaussian filter, the output of TV-
denoising is “cartoon-like”, i.e. the edges are very well-preserved.
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image. Here, parameter p is the percentage coverage of edges on the binary output, while L and N are
the fully-connected edge count and the total pixel count, respectively.

Since Equation 3 has no well-defined gradient with respect to 7; and 7}, we can minimize it by using
an approach that does not involve the calculation of derivatives. Powell’s method is preferred in this
study as it ensures efficient convergence from a bad approximation to a minimum [7]. Initial points for
T; and T}, are recommended to have a ratio between two and three, as advised by Canny [6].

4. Quadratic Approximation to Cross-Correlation Maximizing Samples

The extracted and processed edges can be used to create a transformation that registers the output of one
sensor to the other. However, such registrations are generally projective and therefore cannot account
for the focal differences between the sensors. To counteract, we will assume an underlying quadratic
polynomial P(x), and try to approximate to it by sampling the shifts that maximize the cross-correlation
between the edges.

4.1. Shift Sampling by FFT-upsampled Cross-Correlation

Let there be a quadratic polynomial P(x) for a system of two sensors which are aligned on the vertical
axis that maps the output of one sensor on top of the other. This polynomial can be sampled using
windows of fixed size over the images, by extracting the cross-correlation maximizing affine registration
vectors. These vectors register the necessary shift (i.e. required one-dimensional deviation of one region
onto the other) y; to align the regions with horizontal center x; in the Cartesian coordinates.

The calculation of the cross-correlation peaks between the edges inside the respective windows is
done in the frequency domain by applying fast Fourier transforms to both images and first estimating
an initial point for the peak location with an up-sampling factor of xy = 2. Then, using a method
referred as two-step DFT, the cross-correlation peak is calculated with a complexity of &(MNk'/?), x
representing the up-sampling factor and MN being the size of the region [8]. A Python implementation
of this algorithm from scikit-image library is utilized for the purposes of this study [16].

To determine the ideal sizes and locations of the windows, an iterative logic can be applied: Initial
full-sized (i.e. W x H, W and H representing the width and height of the sensor image, respectively)
window is capable of sampling the intercept ¢ of the polynomial at point xo = % The behavior of the
function before and after xyp can be sampled by two non-overlapping windows of size W;” , which can
effectively construct a quadratic equation in an ideal case. However, as the ideal case is often not possible
in different modalities, this iteration can be continued to sample as many shifts as possible to ensure the
acquisition of the correct quadratic equation, with windows of size wzan at nth iteration, for n € N.

For visualization purposes, the starting point for each sampled registration vector is chosen to be the
center of their respective region, as seen in Figure 3. The quadratic polynomial is estimated from the end
points of the vectors.

Figure 3. Estimation of the second-degree
| transformation polynomial. Left to right, top to
T T . T bottom: Edges of the first sensor, edges of the

A A | . second sensor, first iteration of the estimation
T —J— Q] T _I_ T ;' _J_ (1 region), second iteration of the estimation
AN A (2 regions), third iteration of the estimation (4
regions), and the estimated polynomial.
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It is important to note that P(x) need not be quadratic for this algorithm to approximate it over the
calculated shifts: If the modalities of the sensors are sufficiently close, higher degree polynomials can
be used instead of the current model. However, this is in many cases not necessary, as focal differences
tend to cause only quadratic warps on the edges of the images.

4.2. Constructing a Quadratic Polynomial via Weighted Linear Regression
The set of sampled points that represents the shifts

S={(xy)|yi €[4, 4],x €[0.W]} 4)

can be regressed over to estimate the quadratic equation P(x). It must be noted that the amount of
information used to calculate each shift is different, the size of the window for each calculation is
negatively correlated with the variance of each shift y; from their true values P(x;). Therefore, each
point can be weighted for the linear regression by the ratio of the size of the windows that they are
calculated from to the total frame, thus creating the weight vector V and allowing the analytic solution
of the weighted linear regression. This approach also makes the iteration count N a trivial parameter, as
the weights of each shift decreases rapidly by each iteration.

For further robustness, the outliers can be filtered according to their distances from the median value,
i.e. values of ideal shifts for each region can be ordered and the ones that are above or below the
predetermined region can be removed.

This filtering can be conducted by calculating the first quartile Oy, third quartile Q3 and interquartile
range R of all shifts from the original set S, and then applying standard statistical procedure to remove
outliers

S ={(xi,y1) | Q1 —aR <y; < Q3+ R, (xi,y;) € S} (5)

for o denoting the strictness of the filter. Parameter « is taken as 1.5 according to the guidelines of
statistical analysis [17].

Using the appropriate regularizations described above, the weighted linear regression for quadratic
features can be analytically solved as

p=x"vx)'xTvy 6)

where X,y and ﬁ denote the quadratic features matrix of input points x;, matrix of polynomial predictions
i, and OLS-minimizing coefficients matrix for (x;,y;) € §', respectively.

5. Demonstration and Results
The results of this study are investigated in two sections. First, the results of the variations made on
Canny edge detector are quantitatively analyzed. Then, the main body of the algorithm is compared with
its counterparts in the literature.

5.1. Analysis of the Novel Edge Detector

Starting from the second proposed change, the conversion of hysteresis thresholding into an optimization
problem is tested on its convergence capabilities with the Powell’s minimizer. The final output of the
error defined in Equation 3 is plotted against the exhaustive searches for the parameters of Gaussian
smoothing and Total-Variation denoising, proposed in this study. The results are acquired using the
OSU Color-Thermal Database [18] which includes 1054 registered thermal and RGB images with sizes
(240,320), averaging over a subset (n = 50) of shuffled image pairs.

The results have shown that the convergence is highly likely for both methods when the smoothing is
applied in a conservative manner: Even with low levels of smoothing, the algorithm is able to converge to
the desired level of coverage. The patterns of increase in Figure 4 should also be noted, as the divergence
from the optima is resulted from the lack of the necessary amount of edges to attain desired percentage
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that ensures convergence. Percentage coverage for the MSE} higher is better for the SSIM [19]
parameter p = 3. (Structural Similarity).

coverage. Consequently, the Powell’s method can be said to ensure the convergence to the minimum on
the Equation 3.

The strength of Powell’s minimizer provides another advantage to the pipeline, as the smoothing
parameters A, A, and coverage parameter p appears to be stabilizing each other against a possible
choice of an inappropriate value. The designated coverage, as seen in Figure 4, can be attained by a wide
set of filter weights, thus alleviating the need of parameter fine-tuning for the pipeline. A value between
2 to 4 appears to be the best choice for p in any case, and 3 is used throughout this study.

The choice of the TV-denoising over Gaussian smoothing is investigated by comparing their
performances on the aforementioned dataset, OSU Color-Thermal Database. The parameters for the
both algorithms are chosen from the Figure 4, at the hand-picked elbow points of the curves which
represent the maximum values allowing the convergence of hysteresis optimization. The similarity
metrics between the already-registered edges of thermal and RGB images are recorded.

The metrics used in Figure 5 are taken from binary edge images, therefore even the slightest difference
on the medians is meaningful; the differences between MSE medians adds ~ 1% more overlap of the
thermal and RGB images’ edges on average, for the given coverage parameter. Therefore, the choice
of TV-denoising instead of Gaussian smoothing can be justified in the context of multimodal edge
extraction.

5.2. Comparative Performances of the Registration Algorithms

Two different datasets are used to test and compare the performance of the proposed algorithm. The first
is the OSU Color-Thermal Database, also used in Section 5.1, while the second one is a subset of Visible-
Infrared Database [20] with 1000 pair of images from various scenes, rescaled to the same shape with
the former. The datasets have been warped to simulate vertical shifts (P(x) = ¢), quadratic distortions
(P(x) = ax?) and their combinations (P(x) = ax® + ¢), and the resulting images have been tested over
the methods at hand. The warps are sampled from uniform distribution, where a € [—0.005,0.005] and
¢ € [—240,240]. 16 homogeneously distributed ground truth points have been used to estimate the root
mean squared deviation for each transform.

To compare with the proposed method, ORB, Harris corners and CENSURE [21] feature extraction
algorithms are chosen. The final two algorithms are combined with BRIEF descriptor [22] to match the
extracted features.

The results displayed at Table 1 indicates the superiority of the proposed method, especially in the
existence of quadratic warps. The focal distortions of multimodal images can be accounted for using
the given methodology. The quadratic distortions are best handled by CENSURE detector after our
approach, as it looks for local similarities that consequently allow better handling of slightly warped
features.
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Table 1. Average RMSE of 16 ground truth points for each method.

Vertical Quadratic  Shift and

Dataset Method Shift Distortion Distortion
Corr. Max. Shifts 15.55 3.41 17.67
(T)E;nfa‘ilor' ORB 38.50 10.94 36.39
Dataie Harris + BRIEF 54.64 6.49 119.20
CENSURE + BRIEF  37.96 4.72 94.92
Visible. Corr. Max. Shifts 16.90 6.91 24.47
Ifrared ORB 37.59 26.17 927.21
Database Harris + BRIEF 362.94  146.60 169.20
CENSURE + BRIEF ~ 38.71 8.52 35.15

e,

e,

Figure 6. Two exemplary usages of proposed algorithm. Left to right, top to bottom: Thermal frame,
RGB frame, thermal frame with polynomial approximation, and overlaid output. Green dots are end
points of the valid shift vectors and red dots represent the detected outliers.

Example usages of the proposed algorithm can be seen at the Figure 6. The images are taken from
a vertically aligned RGB-thermal monitoring system, featuring second-degree perturbations along the
horizontal axis.

To investigate the behavior of the method on different vertical shifts and distortions, the RMS errors
with respect to the given transform parameters can be observed in Figure 7. For the images with height
240, the proposed algorithm is able to successfully register the given images shifted up to =~ 90% of the
vertical length.

— w b .. Figure 7. Same datasets are
o Lo . used with the comparative ex-
3o . R . ; periments. As long as there
o EA LY <a ‘:.3' . e _ are sufficient amounts of over-

© B » B S lapped features, the proposed

. — - S method is able to handle the

e e e e R S shift-based registration. Be-
(a) Average RMSE (b) Average RMSE ware that error values below 10
w.r.t. a (quadratic distortion) w.r.t. ¢ (vertical shift) pixel is less than 4%.
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6. Conclusion

A method is proposed in this study to register images from different modalities. Although the utilized
techniques in this pipeline may appear dated, we believe that the presented approach was not fully
developed or tested in the literature despite the convenience of its implementation by common image
processing toolkits. Furthermore, as an improvement to previous work, this algorithm is able to take into
account the focal distortions of the source sensors, and register the provided images with a second-degree
polynomial transformation. The experiments have shown success on different datasets of thermal-RGB
architectures, while also showing great promise in terms of registering the images with a very small
overlap.

The current methodology, which is designed for stationary sensors with known positions, can be
extended to handle non-aligned sensors by iterative application of the algorithm over horizontal and
vertical axes. Then, the resulting set of second-degree polynomial transformation matrices can be
approximated by one second-or-higher degree transformation matrix to increase registration speed. This
will be regarded as a future work for the study.
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