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Abstract. When the plane crash into the sea and the search and rescue team search the location 

black box, we need to detect a specific acoustic signal in the ocean. The underwater acoustic 

channel has several distinct features: multipath propagation, high attenuation, and sound 

velocity varying as a function of depth and temperature, which make the detection of 

underwater signals very difficult. This paper proposes a new method in the marine signal 

detection and discrimination based on adaptive line enhancer and support vector machine 

classifier, which can provide a new idea for marine black box search. The adaptive line 

enhancer of the least mean square algorithm can detect narrowband signals hidden in wideband 

noise, while the support vector machine classifier maps signals to high-dimensional space and 

screens out hyperplanes separating different signals from machine data through previous data. 

Experimental data show that this method can bring a very high recognition rate. 

1. Introduction 

Underwater acoustic channels are generally recognized as one of the most difficult communication 

media in use today.[1] So searching for specific signals in the ocean has always been a big challenge, 

especially for high-frequency sonar signals, because high-frequency signals attenuated greatly in the 

ocean. However, in the scene where the plane crashed into the ocean, the search and detection domain 

of the underwater black box target in deep-sea conditions became a crucial matter. Since the sound 

source emission level of the black box is low (only 160.5dB), the working frequency is high 

(37.5kHz), the absorption loss is large (10.9dB/km), and the underwater acoustic signal environment is 

complex,  it is necessary to solve the problem of extracting and discriminating the beacon signal under 

the condition of extremely low signal-to-noise ratio (SNR). 

After beamforming performed on a line array and pre-filter, the weak signal is enhanced and a 

reliable classifier needs to be utilized to discriminate the signal of interest. Since the frequency of the 

commonly used black box signal is extremely high, which is 37.5 kHz and is very rare in natural 

sound, we use the spectrum as the recognition feature. An adaptive line enhancer (ALE) of least mean 

square (LMS) is used to enhance the performance of this feature. ALE is widely used to mine 

narrowband signals buried in broadband noise, whose main advantage is that it does not require any 

reference signal to eliminate the noise signal.[2] After the feature of signal has been extracted, support 

vector machine (SVM) classifier is used for finally making the judgement if there is signal of interest. 

Figure1 is the block diagram of the whole processing. 
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In this paper, we use the short-time Fourier transform to obtain the time-frequency characteristics 

of the messured signal, and use ALE to spectrally enhance it and sum in time, taking the spectral value 

of the 35kHz~40kHz frequency as the feature input into the SVM classifier. Section II briefly 

introduces the basic theory of ALE of LMS algorithmn and SVM. Section III shows the experimental 

results. Section IV summarizes the paper. 

2. Theory and method 

2.1. Adaptive line enhancer 

The ALE structure for detecting periodic pulse signals is shown in Figure 2. [3] ( )x k is the primary 

input signal and is composed of signal of interest ( )s k , which is a periodic pulse signal, and 

broadband noise ( )n k  with a bandwidth of B . The reference input ( )z k  is ( )x k  delayed by some 

time, that is, ( ) ( - )z k x k  . ( )e k  is the error signal. The weight ( )w k  is adjusted using LMS 

algorithm. 

( ) ( ) ( )e k z k y k                                                               (1) 
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The main idea of line enhancer is that the autocorrelation function of the narrowband signal is 

shorter than the time-dependent radius of the autocorrelation function of wide-band noise. In the 

enhancement of the periodic pulse signal we set  

01/  B T   ,                                                               (3) 

where B  is the noise bandwidth,   is delay and also the time-dependent radius of signal of interest, 

and 
0T  is the width of each sub-pulse. [3] 

Since that the useful signal is sinusoidal, then
( )( ) ( ) ( ) ( )j wktx k s k n k a e n k     , where   is 

a random variable uniformly distributed in [0,2 ] , thus we can obtain the response formula to the 

signal of the system.[4] 
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Figure 1. block diagram of  the whole detection processing  

 
Figure 2. adaptive line enhancer 
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It can be seen that ( )x k  and ( )y k  are in phase. And when N  is large enough, the noise output 

power is reduced to 1/ ( 1)N   of the input while the signal power is unchanged, i.e. the SNR is 

increased by a factor of N after ALE processing. 

And we use the LMS algorithm for adaptively iteration, which was first developed by Widrow and 

Hoff in 1959.[2] Its basic iteration formulas are as follows: 
T( ) ( ) ( )

( ) ( ) ( )

( 1) ( ) ( ) ( )

y k w k x k

e k z k y k

w k w k e k x k



 

  

                                           (5) 

 

where ( )w k  and ( 1)w k   are weight values before and after iteration, respectively,  is the 

convergence factor.  

Among the three typical characteristics (frequency, pulse period and pulse width) of black box 

signal, the frequency is the most obvious and the easiest to extract, thus we choose to mainly 

discriminate signal with its frequency. After ALE processing the difference between the frequency of 

target signal and noise is widened, then the spectrogram is accumulated in time and the advanced 

power spectral density values on the target band (35~40kHz) is obtained. Compared with directly 

obtaining the power spectral density, the ALE processing method can bring a higher recognition rate. 

2.2 Support vector machine 

SVM is a data mining method widely used in classification problems in various fields. It can 

successfully deal with many problems such as regression problem and pattern recognition. Here we 

briefly introduce the working mechanism of SVM, for further details we refer to[6]-[8]. 

Suppose that there are two categories in the training sample set {( ), 1,2,..., }i l
i i

x ,y   of size l , 

and if 
N

ix    belongs to the first category, it is marked as positive ( 1iy  ), Marked as negative if it 

belongs to second category ( 1iy    ).  We use the following equation to describe a m-dimensional 

hyperplane. 

0, ,Nb b    ω x ω                                             (6) 

By finding the minimum value of  
2|| || /2ω , the optimal hyperplane with the largest classification 

interval can be obtained. The constraint here is: 

[ ] 1 0 1,...,i i b i N    y ω x                                            (7) 

When the training sample set is linearly inseparable, a non-negative relaxation variable 

, 1,2,...,i i l  is introduced, and the optimization problem of the classification hyperplane is 
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where c  is the penalty parameter. The constrained optimization problem is solved through a 

Lagrangian function: 

1
( , , ) || || ( [ ] 1)

2
i i iL b a a b    ω ω y ω x                                    (9) 

where 0ia   is the Lagrangian coefficient. And the solution of the optimization problem satisfies  

0 0
L L

b

 
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，                                                    (10) 
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Translates the original problem into the corresponding dual problem: 
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and obtain 
* * * *

1 2( , ,..., )T

la a aa  . 

In the optimization solution, ia
 may be one of the following: ①

0ia 
 ②

0 ia c 
 ③ ia c

. 

The ix  corresponding to the latter two occasions is the support vector (SV), and only the support 

vector contributes to ω . The ix  corresponding to ③ is actually the mismatched training sample point, 

and the ix  corresponding to ② called Normal Support Vector (NSV), according to which we obtain 

the wanted solution.  

For NSV, we can obtain 

*
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j j j

j
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Therefore, the optimal classification hyperplane and thus the optimal classification function can be 

obtained 

*

1

( ) sgn[( ) ] sgn[( ( )) ],
l

N

j j j i

j

f b a y x x b


      * * *
x ω x x              (14) 

For the linear indivisible case, the the input vector is mapped to a high-dimensional eigenvector 

space, and construct the optimal classification surface in the feature space. 

Convert x  from the input space 
N

 to the feature space  : 

1 2( ) ( ( ), ( ),..., ( ))T

l    x Φ x x x x                                   (15) 

So the optimal classification function can be obtained as: 

1

( ) sgn[( ( )) ] sgn[ ( ) ( ) ]
l

j j i

j

f b a y b


      *
x ω Φ x Φ x Φ x                  (16) 

In the above problem, it is actually only necessary to calculate the inner product, which can be 

implemented by the function in the original space without necessity to know the form of the 

transformation. As long as the kernel function ( , )kx x satisfies the Mercer condition, it corresponds 

to the inner product in a variable space. 

Therefore, the nonlinear case can be realized by using the appropriate kernel function ( , )kx x  in 

the optimal classification plane, but the computational complexity is not increased. Commonly used 4 

kernel are as follows: 

(1) Linear kernel: ( , ) T

k kx x x x   

(2) Polynomial kernel of degree d: ( , ) ( 1)T d

k kx x x x    

(3) RBF kernel: 
2 2

2( , ) exp{ || || / }k kx x x x     

(4) Two layer neural kernel: ( , ) tanh[ ]T

k kx x x x     

where  ,  and   are constants. 
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3. Experiment result 

A marine experiment was conducted in the shallow sea around Zhoushan, and the receiving array is 

shown in Figure 3 and the experimental arrangement is shown in Figure 4.  In the experiment, a 

hydrophone uniform line array was utilized which keeped stationary, while the transmitting transducer 

moved slowly at a distance from the receiving array. Three sets of signals of different emission 

intensities are emitted, and since the transducer moves slowly the SNR of messured signal was varying 

during receiving. We use the signals received by each channel of the receiving array to construct data 

sets. 

After the line spectrum of the signal is enhanced, we intercept the spectral of 35 kHz~40 kHz as the 

extracted feature and input it into SVM classifier for training and testing. Figure 5 shows a case of 

extracted feature vector. 

In the training and testing set, each sample is a received signal with a length of 2s, the sampling 

frequency is 200 kHz, the FFT points of the STFT are 1024, and the window length is 1024. The 

training set contains 634 sets of positive samples with SNR ranging from -5 to 10 dB. The negative 

samples are composed of 642 sets of pure noise at sea. The recognition rate of this frame is tested 

under different SNR. The results are listed in table1. And the receiver operating characteristic (ROC) 

curve of three test sets are shown in Figure 6. 

From the reorganization results it can be seen that, the recognition rate of the high-SNR group is 

above 95%; in the group of -5~5dB, the recognition rate still maintains as high as 90%; and in the 

group of SNR less than -5dB (in which case it is difficult to calculate the actual SNR), the recognition 

rate is about 68.2%. 

 

  

Figure 3. line array with 16 elements Figure 4. Experimental arrangement 
 

 

Figure 5. the feature vector of signal extracted (26 points) 
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Table 1. Test results of the framework. 

 

4. Conclusion 

In the detection of the black box signal under the sea, the ALE of LMS algorithm is used to enhance 

the time-frequency diagram of the received signal, according to which the feature of signal is extracted 

and input into SVM classifier. This framework of signal detection is proved effective by the 

experiment results, which shows great performance in the identification of acoustic beacon signal at a 

very low SNR (-5 dB). In the scene of search in ocean, the target signal can be transmitted artificially 

and collected in the target sea area to train the SVM classifier, which then can be used in the following 

detection.  
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