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Abstract. The massive multiple-input multiple-output (MIMO) systems is an important 

technology in the fifth generation of mobile communication. To get the result of a MIMO system 

require some algorithm to approximate the precise result as the computation complexity is too 

large. There are several methods that have been advanced in the fitting, like zero forcing (ZF) 

method or minimum mean-square error (MMSE) method. However, in massive MIMO system, 

these methods require further simplify because of the increasing complexity of matrix inversion. 

In the papers, many methods were presented to get the approximation matrix: like MMSE-SIC, 

ZF-MIC, Gauss-Seidel, Jacobi and Neumann series expansion. The Jacobi’s iterative method 

and Newton’s iterative method both use iteration to approach the MMSE estimation. Their BER 

performance can outperform current methods and require less computational complexity. Almost 

every method can get a nearly ideal fit when the number of users or antennas is large enough. 

But when the number is small, the approximation will not be very accurate. 

1.  Introduction 

The MIMO technology can multiply the wireless communication system’s several times without 

increasing the bandwidth and emitting frequency. The Massive MIMO system is a key technology in 

realizing the fifth generation of mobile communication and is now being researched and studied 

worldwide because of its potential in improving the speed of transmitting data and also the stability of 

it. The benefits of using the massive MIMO system is profitable both economically and environmentally. 

However, due to the greatly increase of the number of antennas at the BS (base station), the system 

model may need some change. Now, research of how to apply the traditional MIMO’s detection method 

to the new massive MIMO system is a focus. 

Many adapted methods are presented by researchers worldwide. In paper [1], the writers used 

MMSE-SIC and ZF-SIC algorithm, and they found out that these two methods’ results are very close to 

the ones from ZF and MMSE method. And they further conclude that even the basic MRC and ZF 

method can provide good result if the antennas at the base stations greatly outnumber the users. Paper 

[2] give a method based on relaxation iterative, it’s better than the methods using polynomial expansion 

like Neumann series expansion because it can reach more optimal result with same degree of 

computational complexity. Besides, the method is also better than the Richardson method which is also 

based on iteration. Paper [3] use Gauss-Seidel model, which is also an iterative method, the result is 

similar like the relaxation iterative method. Paper [4] use Jacobi iterative method. To get the MMSE 

estimation, in spite that the Jacobi method use iteration to simplify the matrix inversion, the result is 
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equivalent to that using the Neumann Series Expansion method. Compared with the Gauss-Seidel 

method, this method has slow convergence rate. However, by providing the initial estimation which is 

close to the exact MMSE solution, we can speed up the convergence. In paper [5], the authors use 

Newton’s iterative method to simulate and find approximate matrix inverse. The inverse they get has 

low latency. Besides, they find out that by making an approximate matrix inverse, the complexity can 

be saved twofold because of iterations. For the result part, the SD scheme they applied outperforms the 

conventional method while giving the same error performance. Paper [6] show us a method based on 

Neumann series expansion, the author admit that only with the diagonally dominant condition, the NS-

based matrix inversion approximation can achieve satisfying accuracy with quick convergence. Or else, 

it can’t guarantee quick convergence. 

By comparing all the methods above, we can find that most method use iteration to get the inverse 

matrix, and its performance is the best with a rather low complexity and quick convergence. There are 

several iterative methods, each have its specialty. Other method, such as MMSE-SIC and ZF-SIC, can 

also reach optimal result under some conditions; but the polynomial expansion method is not that good 

compare with the iterative method. 

2.  Iterative method 

For this part, we will mainly focus on some methods which primarily deal with the matrix multiplication 

and initialization for iterative methods. Here we will take Jacobi method [4] and Gauss-Seidel [3] 

method as two examples. For the Jacobi model, we consider a system of B base station antennas serving 

K users, and we assume B >> K for massive MIMO system. 

We denote the base station’s received signal as:  Y = Hx + z, hereH =  [h0, h1, ⋯ , hK−1] is the 

channel matrix which denotes the channel response between the k-th user and the base station. The noise 

vector: Z = [z0, z1, ⋯ , zB−1]T . The typical MMSE estimation can be expressed as x̂ = (HHH +
σZ

2IK)−1HHy = W−1yMF, in which yMF = HHy is the matched filter output. For W =  G + σZ
2IK ,G =

HHH denotes the Gram matrix. For simplicity, we can rewrite  x̂ = (HHH + σZ
2IK)−1HHy = W−1yMF 

as  Wx̂ = yMF. Then we can use the Jacobi iteration method:  

 x̂(i+1) = D−1((D − W)x̂(i) + yMF)                       (1) 

In the equation above, D = diag{W}. To converge, the equation must satisfy: 

 lim
i→∞

(Ik − D−1W)i = 0.                            (2) 

In addition, if the initial estimation is given as:  X(0) = D−1yMF, than we have: 

x(i+1) = (∑ (−D−1(W − D)lD−1)i+1
l=0 )yMF                       (3) 

From x̂(i+1) = D−1((D − W)x̂(i) + yMF) and W =  HHH + σZ
2IK we can get  

WX(i) = HHHx(i) + σZ
2x(i)                              (4) 

And we can alternatively express the iteration as: x̂(i+1) = x̂(i) + D−1(yMF − HHHx(i) + σZ
2x(i)). 

If X(0) = D−1yMF, the initial estimation will be  x(1) = x(0) + μr(0). Where μ =
(r(0))

H
r(0)

(Wr(0))Hr(0) and 

r(0) = yMF − Wx(0). Then use the Jacobi iteration, we get: 

            x(2) = x(1) + D−1(yMF − Wx(1)) 

= x(0) + μr(0) + D−1(r(0) − μWr(0))                (5) 

The computation complexity can be reduced from 𝑂(𝐵 × 𝐾2) to 𝑂(𝐵 × 𝐾) in this method. The 

computational complexity including the initialization computation is far less than the existing method 

with the increase of user’s number. Besides, for the BER performance when B=128 and K=16 (Figure 
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1), the proposed approximation leads to closer result of the exact MMSE estimation than existing work. 

So if a better estimation is used, the number of iterations for Jacobi method is reduced. 

 

Figure 1. BER performance of Jacobi method [4] 

That’s a brief description of the Jacobi’s method; we will next introduce a similar method, the Gauss-

Seidel method [5]. The N × 1 receive signal can be represent as: Y = Hx + z, where z represent the 

noise vector. By the MMSE method, we can get the transmitted signal vector x as:   x̂ =
(HHH + σZ

2IK)−1HHy = W−1ŷ. Where   ŷ = HHy and the filtering matrix is W can be represented 

as W =  G + σZ
2IU. In the expression of W, we have the gram matrix as G = HHH. Let E = W−1G 

represent the equivalent channel matrix, and we can get U = W−1HH(W−1HH)H = W−1GW−1 . 

Analyzing Y = Hx + z and x̂ = (HHH + σZ
2IK)−1HHy = W−1ŷtogether, we can represent the MMSE 

approximated signal vector x  as  x̂ = Ex + W−1HHn.  So for the kth user, the approximated 

transmitting signal is  x̂k = μksk + vk. Besides, the channel gain is μk = Ekk, and the NPI variance is 

vk
2 = ∑ |Emk|2 + Ukkσ2K

m≠k , where Emk and Umk symbol for matrix element in the mth row and kth 

column. 

However, since K is always a relatively large number in the uplink large-scale MIMO systems, the 

computational complexity for matrix inversion, which is 𝑂(𝐾3) will be large, so we need further 

operation. W, the MMSE filtering matrix, is Hermitian positive definite, so W can be decomposed as 

W = D + L + LH. In the expression above, D represents the diagonal component of W. L represents the 

strictly lower triangular component of W. And LH represents the strictly upper triangular component of 

W. Then by applying the GS method, the transmitted signal vector can be written as: 

x(i) = (D + L)−1(y̅ − LHx(i−1)), i = 1,2, …                   (6) 

Where i is the number of iterations. We then use Diagonal-Approximate method to get the initial 

solution. Also, with this method, we can achieve a faster convergence rate of GS-method based 

algorithm. 

For uplink large-scale MIMO systems, the channel matrix H will be close to orthogonal when N >

> 𝐾 . Therefore we can get:  
hm

H hk

N
→ 0, m ≠ k,   m, k = 1,2, … , K, in which hm  represents the mth 

column of H. The matrix W−1 is also diagonally dominant, so when the ratio of N/K increases, the 

non-diagonal matrix W−1 and the diagonal one D−1 become increasingly similar. We can set the 

initial solution of x(i) = (D + L)−1(y̅ − LHx(i−1)), i = 1,2, …  as: 

  x(0) = D−1ŷ.                                (7) 

By this estimation, we are able to get a faster convergence rate. By comparing, we find that for any 

number of iterations, the proposed GS-based algorithm can simplify the computational complexity from 

the level of 𝑂(𝐾3) to 𝑂(𝐾2). There is a series of conclusion we can get from simulation. First, if the 

number of iterations is relatively large (i>=3), the performance is satisfying. Besides, the convergence 

rate can be accelerated by using the approximation. Figure 2 is the BER performance comparison 

between the proposed GS-based algorithm and the conventional Neumann Series-based algorithm, 
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When B is128, and K is 16. As the Figure 2 shows, the Gauss-Seidel based algorithm is clearly better if 

the number of iterations are the same. 

 

Figure 2. BER performance of GS method [3] 

In addition, when considering about the BER performance relationship with the number of antennas 

at base station (B) with users K = 16 is considered. The proposed GS-based method is near optimal 

compared with the ML algorithm if B>>K, while the Neumann-based algorithm suffers non-negligible 

performance loss.  

By comparing the two similar methods, we find that both the two methods use diagonal matrix D of 

the MMSE filtering matrix W to simplify the computation complexity. The main difference is that GS 

method further simplify W as D because W is diagonal dominant if N is relatively large, and the paper 

prove that this replacement has little effect to the result. And the Jacobi method use D in iteration part 

to simplify the computation work, and it is equivalent to Neumann series expansion. Both algorithms 

can reach a better result than existing work. They are more close to the exact MMSE BER performance. 

The GS method can reduce the computational complexity from 𝑂(𝐾3) to 𝑂(𝐾2), and the Jacobi 

method can reduce the complexity from 𝑂(𝐵 × 𝐾2) to 𝑂(𝐵 × 𝐾). From Figure 1 and Figure 2, we can 

clearly see that the steepest descent and Jacobi method with proposed approximation: 2nd iteration and 

Gauss-Seidel method with proposed approximation: 2nd iteration can get near optimal result as exact 

MMSE get. 

3.  Decomposing method 

The Neumann series method [6] is based on the Zero-Forcing method. However, in massive MIMO 

systems, to support a large number of users, the Zero-Forcing method requires much larger dimensions 

of matrix inversion. Hence the Neumann Series was applied to the approximation of matrix inversion. 

It’s more suitable to massive MIMO system and it also has unique advantages in hardware 

implementation. Zero-Forcing’s precoding and detection is able to reach wonderful performance very 

close to both the downlink’s and the uplink’s channel capacity. So for massive MIMO systems, the ZF 

method has always been regarded as one of most the practical method. We take M for the number of 

antennas, and B for the number of users. In the article, the authors stressed to solve three main problems 

in the NS method for computing the matrix inversion. First, they gave a M/K ratio requirement that 

gives high convergence rate. Besides, because the K × K matrix should be diagonally dominant, they 

derived another high probability M/K ratio. Finally, they give the specific approximation error analysis 

for the Neumann Series based matrix inversion approximation in hardware implementation. 

Like the analysis above, we consider a massive MIMO system with M antennas serving K users at 

the base station. Then, the M × K uplink channel matrix is represented by H =  [hmk], and hmk 

represents coefficient in the mth row and the kth column, where the range is m =  1, . . . , M, and k =
 1, . . . , K.  The channel matrix H is also the same for downlink as the uplink, due to the channel 

reciprocity under the situation we considered. For the ZF method, we also need to calculate the pseudo-

inverse of matrix H: 

H†  = (HHH)−1(HH)                          (8) 
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If we take G = HHH, in massive MIMO systems, the major computational complexity lies in the 

matrix inversion of G, which is a the K ×  K matrix. Though K is smaller than M, it is also many times 

larger than the number of users in  conventional MIMO systems. So, it is too costly to compute G−1 . 

The NS method is used to realize the matrix inversion approximation: 

GN
−1 ≈ ∑ (IK − ΘG)nΘN−1

n=0                         (9) 

N denotes the total terms’ number in Neumann series, and Θ represent a K × K diagonal matrix. 

lim
𝑛→∞

(IK − ΘG)n → 0𝐾 has to be satisfied in order to let the formula above work,. The matrix G is a 

complex central Wishart matrix. We take α =  M/K, we can get that when K and M grows, the largest 

eigenvalue of G converge to: 

λmax(G) → M(1 +
1

√𝑎
)2                        (10) 

And correspondingly, for the smallest eigenvalue of G: 

λmin(G) → M(1 −
1

√𝑎
)2                        (11) 

Therefore, if we choose Θ as: 

Θ =
𝛼

M (1 + α)
𝐼𝐾 =

1

𝑀+𝐾
𝐼𝐾                       (12) 

We can get: 

λmax(ΘG) → 1 +
2√𝑎

1+√𝑎
                         (13) 

λmin(ΘG) → 1 −
2√𝑎

1+√𝑎
                         (14) 

when 𝑎 ≥ 1, 
2√𝑎

1+√𝑎
≤ 1, which means lim

𝑛→∞
(IK − ΘG)n → 0𝐾can surely be satisfied. 

Figure 3 shows the performance comparison when M=128 and different K. 

 

Figure 3. BER performance of NS method [6] 

Usually, in massive MIMO systems, 𝑎 is very large, like 𝑎 > 10 can satisfied the convergence 

condition. So, the convergence of NS-based matrix inversion approximation can be ensured. Therefore 

for massive MIMO systems, the NS-method is still practical. Besides by increasing the value of N, its 

accuracy can be improved. Although Neumann-Series is usable in matrix inversion approximation, there 

are many constaints and condition for the method. In other words, there are clearly some shortcomings 

in this method, we’ll discuss them later. 

There are some other decomposing method than the NS method, such as MMSE-MIC and ZF-MIC. 

The model is the same as above. First, by analyzing the model of the system, the author proved that we 

can neglect the small signal decay and only need to consider the large-scale decay. The base station 

receive M × 1 vector,y = √𝑝𝑛𝐺𝑥 + 𝑛, where pn is every user’s average transmitting power. X symbols 
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for a vector of K users’ transmitting signals at the same time. And n symbols for the white Gaussian 

noise. We have n ∈ CN( 0, 𝐼M ), and G is the M × N channel matrix vector:  G = H𝐷1/2. We use gmk 

to represent the element of G, which means the transmitting coefficient between the kth user and the 

mth antenna. H is a M × N matrix, hmk stands for the Small-scale fading coefficient. D is an K × K 

diagonal matrix, the element in it is bk  and √b𝑘  is the Large-scale fading coefficient. Their 

relationship is: 𝑔𝑚𝑘 = ℎ𝑚𝑘√𝛽𝑘. When K>>M, we have: 
𝐺𝐻𝐺

𝑀
= 𝐷1/2 𝐻𝐻𝐻

𝑀
𝐷1/2 ≈ 𝐷. in this case, we 

can ignore the Small-scale fading coefficient, only consider the Large-scale fading coefficient. 

Linear algorithm cannot reach test accuracy requirement in traditional MIMO system, but for large 

scale MIMO system, the algorithm like MMSE and ZF can improve their performance with the increase 

in antennas. For non-linear iteration algorithms, like MMSE-MIC and ZF-MIC, are also suitable. The 

author gives the computation expression of MRC, ZF, MMSE, ZF-MIC and MMSE-MIC. For a M ◊K 

linear detecting matrix A, the recipient signal is:  

r = 𝐴𝐻𝑦 = √𝑝𝑢𝐴𝐻𝐺𝑥 + 𝐴𝐻𝑛                     (15) 

Let r kand xk be the kth element of the vector r and x: 

             r = √𝑝𝑢𝐴𝐻𝐺𝑥 + 𝐴𝐻𝑛 

 = √𝑝𝑢𝑎𝑘
𝐻𝑔𝑘𝑥𝑘 + √𝑝𝑢 ∑ 𝑎𝑘

𝐻𝑔𝑖𝑥𝑖
𝑘
𝑖=1,𝑖≠𝑘 + 𝑎𝑘

𝐻𝑛        (16) 

In the equation above, the first term represent the expected signal, and the second one represent the 

interfere with other users, the last term represent noise.  

For the traditional linear signal detection methods like MRC, ZF, and MMSE, the linear detecting matrix 

are: 

(1) MRC:  A =  G 

(2) ZF:  A =  G(GHG)
−1

 

(3) MMSE:  A =  G(GHG + (1 𝑝𝑀⁄ )Ik)
−1

 

For non-linear iteration algorithms, we denote W as the linear weight matrix: 

(1) MMSE: W = 𝐴𝐻 = (𝐺𝐻𝐺 +
1

𝑝𝑢
𝐼)−1𝐺𝐻 

(2) ZF: W = 𝐴𝐻 = 𝐺 

Denote wk as the kth vector of W, the noise-signal ratio, then: 

(1) MMSE: 𝑆𝑁𝑅𝑘 =
𝑝𝑢|𝑤𝑖𝑔𝑖|2

𝑝𝑢 ∑ |𝑤𝑖𝑔𝑖|𝑖≠𝑘 +𝜎𝑘
2||𝑤𝑘||2 ~

1

||𝑤𝑘||2 

(2) ZF: 𝑆𝑁𝑅𝑘 =
𝑝𝑢

𝜎𝑘
2||𝑤𝑘||2 ~

1

||𝑤𝑘||2 

The BER performance when the number of antennas M is a variable and the number of users K=10 is 

shown in Figure 4. We can see that in large scale MIMO system, there are no great difference between 

ZF, MMSE, ZF-SIC, MMSE-MIC. These four algorithms can have its error rate lower than 10-4 at M>60. 

Also, the MRC can reach it when M> 200. Besides, if the number of antennas is far great than users, 

then MMSE-SIC and ZF-SIC methods don’t outperformance the traditional MMSE and ZF method. But 

when the number of antennas and users are close, the MMSE-SIC and ZF-SIC methods can have much 

development. 
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The number of antennas M 

Figure 4. BER performance of MMSE-SIC and ZF-SIC [5] 

The two methods discussed in the decompose method part both have some obvious drawbacks. The 

NS method requires many conditions to make sure it can converge quickly. If the requirements are not 

met, it may not convergent at all, which means the method is infeasible. As for the MMSE-SIC and ZF-

MIC methods, they didn’t show many advantages in massive MIMO systems comparing with the 

traditional MMSE and ZF methods. Compared with the iterative methods which can both reduce the 

computational complexity and reach better performance, no wonder more scholars favor the iterative 

methods and the papers of iterative method is far more. 

4.  Conclusion 

In conclusion, both the iterative methods and the decomposing methods can simplify the progress of 

matrix inversion approximation. However, by comparison, we can acknowledge that the iterative 

methods generally outperform the decomposing methods. They can be applied to more situations 

because they suffer less restraints. Besides, the simulation results of the iterative methods are better than 

the ones of the decomposing method under same level of computational complexity. Hence, the 

researchers around the globe mainly focus on developing the iterative methods. 
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