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Abstract. A fractional order chaos system is first designed. It is a linear-nonlinear hybrid using 

fractional order logistic map. The fractional order chaos system is closer to the real nature 

phenomena and has better cryptography features than the integer order chaotic systems in 

dynamics, such as larger range of key space and almost no periodic windows in bifurcation 

diagrams. Then, we propose an image encryption scheme employing the superior chaotic 

features of the fractional order chaos system. Which chaotic sequences generated are used for 

permutation and addition/subtraction operation of encryption depends on the plaintext image. 

Security analysis and test results indicate that our encryption scheme has a high efficiency and 

superior security. 

1. Introduction 

It is very necessary to protect the confidentiality and security of digital images on unsecured channels, 

because digital image is usually spread through the Internet and stored in a variety of platforms. 

Traditional encryption algorithms have been developed for encrypting text data, such as IDEA and 

AES [1]. And it was claimed that they may not apply to encrypt the image in some cases [2, 3], 

because the image is high redundant and its adjacent pixels are high correlative. However, chaotic 

systems have many superior characteristics of meet the needs of the image encryption, such as pseudo-

randomness, sensitivity to initial conditions and ergodicity.  

Plenty of encryption algorithms in recent years were based on the spatial chaotic systems [4-14], 

because their high dimensional feature and lots of chaotic sequences can increase the security of 

cryptosystems. Many encryption scheme using adjacent coupled map lattices (CML) [4-12] were 

proposed and obtained good results. Zhang [13] designed an image encryption scheme using map 

lattices coupled in a non-adjacent manner. Then, he developed an image encryption scheme by the use 

of map lattices coupled in a mixed linear-nonlinear manner [14]. However, the above mentioned 

chaotic systems all use the integer order logistic mappings. Fractional calculus is more general than 

integer order calculus because it is an extension of integer order ones. Many fractional dimension 

phenomena exist in technology and nature [15].  

Fractional order chaotic systems have received intensive attentions [16-19] because they have more 

complex dynamics and is closer to the real nature phenomena than integer order chaotic systems. 

Some image encryption schemes have used fractional order chaos theory [20-25]. However, the 

combination of fractional calculus and mixed linear-nonlinear chaotic systems which can describe the 

real natural phenomena has not been researched. Furthermore, By using chosen plaintext attack, 

Benyamin [23] cracks an image encryption scheme [24]. The encryption scheme in [24] used an 
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improper fractional order chaos system and the key stream is independent of either plaintext images or 

cipher images. 

Through the discussions above, we design an encryption scheme employing a fractional order 

linear-nonlinear chaotic system. Analysis of simulated results attest that our encryption scheme is 

efficient. The main work are as follows. 

• We construct a fractional order linear-nonlinear chaotic system. Its major advantages over 

other chaotic systems are closer to the real natural phenomena and stronger ergodicity of time 

series and wider range of key space. Moreover, the range of parameter  in the chaotic system 

breaks its limit in the classic logistic map.  

• For enhancing the sensitivity of the plaintext images, we use plaintext images to determine 

which chaotic sequence is used for encrypting image, which can enhance the ability of the 

resistance to choose plaintext attacks. 

In this paper, the rest is organized as follows. The fractional order linear-nonlinear chaos system is 

introduced in section 2, whose cryptography advantages are also described. The proposed encryption 

scheme is explained in Section 3. Section 4 analyzes simulated results and security. Finally, Section 5 

gives the concluding remarks. 

2. The fractional order linear-nonlinear chaos system 

Definition 1. The definition of the Caputo fractional derivative [26] is  
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where )( is the Euler’s Gamma-function,  is the order, ( )f t is a continuous function, m is an integer 

which is not less than  ,  and
 

mf is the mth-order derivative of ( )f t . 

The logistic differential equation of fractional order  [27] is given  

( ) ( )(1 ( ))D x t x t x t = −                                               (2) 

where the initial condition 0(0)x x= . After discretizing the equation (2) by using piecewise constant r, 

we can get the equation 
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By reasoning the solutions of the equation (3), the discretized logistic differential equation of 

fractional order [28] is obtained 
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where n, j, k (1 , , n j k L ) denote the lattices, t is the time index (t = 1, 2, 3, ...),   and  are the 

coupling parameter ( 0 , 1   ) and 
(1 )

r



=
 +

. The lattices n, j, k satisfy the Arnold cat map 
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where q and p are the Arnold cat map parameters.  

Bifurcation diagrams are analyzed theoretically. Lyapunov exponents are further researched by the 

Kolmogorov-Sinai entropy universality [20]. All simulations are conducted assuming that L = 100,

( )2 (1 ) ,3 (1 )r r     +  + , r=0.25, (0,1]  and [0,1] .  

2.1. Bifurcation Behavior 

Figure 1(b)-(f) show the bifurcation diagrams of the proposed chaotic system, and the range of 

parameter  is ( )2 (1 ) ,3 (1 )r r   +  + . We can find that the range of parameter   in the CML 

system [29] (Figure 1(a)) is smaller than those in Figure 1(b)-(f). Moreover, in Figure 1(b)-(f), with 

the increase of the value of parameter , the bifurcation point is becoming more and more clear, and 

the periodic windows have become less and less. Thus, for the proposed chaos system, when the 

parameter   is assigned a suitable value, there is almost no periodic windows in its bifurcation 

diagrams. Therefore, in comparison with the CML system, our chaos system is more appropriate for 

cryptography due to almost no periodic windows. 

        
 (a)                                                        (b)                                                   (c) 

        

      (d)                                                         (e)                                                    (f) 

Figure 1. Bifurcation diagrams. (a) the CML system, (b) our chaotic system ( 0.8, 0.4 = = ), (c) our 

chaotic system ( 0.8, 0.5 = = ), (d) our chaotic system ( 0.8, 0.7 = = ), (e) our chaotic system 

( 0.8, 0.8 = = ), (f) our chaotic system ( 0.8, 0.9 = = ).  

2.2. Kolmogorov-Sinai entropy universality 

At the fewest any chaotic system has one positive Lyapunov exponent. The sum of positive Lyapunov 

exponents is expressed as the Kolmogorov-Sinai entropy [30]. However, the percentage of the chaotic 

lattices is expressed as the Kolmogorov-Sinai entropy universality hu [19]. 

 

 



CCISP 2019

Journal of Physics: Conference Series 1438 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1438/1/012010

4

 

 

 

 

 

 

From Figure 2, we can find that the spatial chaotic behaviors are different between the proposed 

chaos system and the CML chaos system. In the proposed chaos system (Figure 2(a)-(e)), its flat area 

in chaotic behaviors is in (7.2,9]   and (0,1)  . However, for the CML chaos system (Figure 2(f)), 

its flat area is only in (3.75, 4]   and (0,1)  . In comparison with the CML chaos system, the 

proposed chaos system has more parameter pairs of   and  , which can cause widespread chaos 

behaviors. Therefore, the proposed chaos system has a larger range of parameter   that leads to 

spatial chaos behaviors than the CML chaos system. 

 

       

(a)                                                             (b)                                                          (c) 

       

(d)                                                              (e)                                                        (f) 

Figure 2. Kolmogorov-Sinai entropy universality. (a) our chaos system ( 0.4 = ), (b) our chaos system 

( 0.5 = ), (c) our chaos system ( 0.7 = ), (d) our chaos system ( 0.8 = ), (e) our chaos system ( 0.9 = ), (f) 

the CML system. 

Our chaos system has a new feature that the range of its parameter   is wider compared with that 

of the CML chaos system. The parameter   is often as a secret key in image encryption, therefore, 

our chaos system has a larger key space compared with the CML system. Therefore, our chaos system 

is very appropriate for encrypting image. 

3. The proposed image encryption scheme 

We design a scheme for encrypting an M N gray image. The new chaotic features of our chaos 

system are used in the permutation, diffusion and nonlinear addition/subtraction phase. For increasing 

the sensitivity to the plaintext images,  we use the sum of plaintext image pixel values to decide which 

chaotic sequence is used for permutation and  addition/subtraction operation.  

Input: L=100 and the original image (plaintext image) I. The secret keys  , , , 1(1)x and  .  

Output: The cipher image C. 

Step1. Obtain L chaotic sequences by iterating Equation (5) M N  times.  

Step2. Perform diffusion operation and obtain an M N matrix D, which is described as 

14

200( ) mod{[mod( (mod( ( 1), ) 1) 10 ,256) mod( ( ) ( 1),256)],256}sD s x D s L I s D s+
 = − +  + + −            (7) 

where the initial value D(0) = 0. Suppose I is a pixel sequence, I(s) is the sth pixel of I. 

hu 

   
   
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Step3. Update each value of the ith chaotic sequence 

14mod( 10 ,256)i ix x =                                                        (8) 

where 
1

mod( ( ), ) 1
M N

l

i I l L


=

= + . Transform the matrix D and the sequence 
ix  into ( 4)M N  quaternary 

matrices D1 and D2, respectively. 

Step4. Create a new sequence y  = [ ix , 2ix , 3ix , 4ix ] and perform the permutation operation 

1(:, ) 1(:, mod( ( ), 4 ) ), [1, 4],

1( ,:) 1( mod( ( ), ) ,:), [1, ].

D j D y j N j j j N

D k D y k M k j k M

   − +     


 − +    

                             (9) 

Step5. Perform nonlinear addition/subtraction operation and obtain an ( 4)M N  quaternary matrix 

D3, which is described as 

mod( 1( , ) 2( , ),4) ( ) / 2 1
3

mod( 1( , ) 2( , ),4) ( ) / 2 0

D k j D m n k j
D

D k j D m n k j

+ + =
= 

− + =
                                   (10) 

where the relationship between m, n and k, j conforms to the Arnold cat map in Equation (6). 

Step6. Alter the matrix D3 into a decimal matrix C with the size of M N .  

Step7. The value i is assigned to the (M, N)-pixel of C. C is the final cipher image. 

We have finished the encryption process. The decryption operation is its inverse process.  

4. Security analysis and simulation results 
For next simulation experiments, we employ 3 testing images of USC-SIPI Image Database [31]:  

Aerial (5.2.09), Airplane (7.1.02) and Elaine. The 3 standard test images are 8-bit monochrome images 

and have the size of 512 512 , as shown in Figure 3. Figure 4 shows encryption and decryption results 

of Elaine.  

4.1. Statistical analysis 

4.1.1. Histogram analysis. We can find the distribution information of the image pixel values from the 

histogram of the image. The histograms are performed on all original images in Figure 3 and their 

cipher images. The histogram of the original image of Elaine is indicated in Figure 5(a), and the 

histogram of the cipher image of Elaine is indicated in Figure 5(b). The results of other 2 test images 

are similar to that of Elaine. Obviously, the cipher image has a fairly uniform histogram, which resists 

statistical attacks. 

 

               

(a)                                            (b)                                                (c) 

Figure 3.  The 3 test images. (a) Elaine, (b)Aerial, (c) Airplane. 
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(a)                                                (b) 

Figure 4.  The encryption and decryption results. (a) cipher image of Elaine, (b) decrypted image of 

Elaine. 

       
(a)                                                           (b) 

Figure 5.  Histograms for Elaine image. (a) the original image’s histogram of Elaine, (b) the cipher 

image’s histogram of Elaine  

4.1.2. Correlation coefficient analysis. A good encryption algorithm can decrease the correlation of 

adjacent pixels, because the adjacent pixels of an ordinary image are highly correlative. For checking 

the correlative feature of adjacent pixels, 2000 pairs of two adjacent pixels are randomly chosen from 

the plaintext image and the corresponding cipher image. And we evaluate the correlation coefficients 

of adjacent pixels in diagonal, vertical and horizontal directions using the equations 

cov( , )

( ) ( )
=ij

i j
r

D i D j
                                                          (11) 

1

1
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=

= − −
T

n n

n

i j i E i j E j
T

                                         (14) 

where T denotes all the number of duplets (i, j), i and j are two adjacent pixels, D(i) is the variance and 

E(i) is the expectation. For the 3 test images, their correlation coefficients results are shown in Table 1. 

We can easily find that all the adjacent pixels of the cipher images are weakly correlative; by 

comparison, the adjacent pixels of the original images are highly correlative. Thus, we can conclude 

that uncovering some information about the plaintext image from its cipher image is very difficult. 
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Table 1.  The test result of correlation coefficients 

Test images Directions Original images Cipher images 

Elaine 

horizontal 0.977407 0.000893 

vertical 0.976693 -0.000663 

diagonal 0.972571 -0.000284 

Aerial 

horizontal 0.907963 -0.000793 

vertical 0.874697 -0.000429 

diagonal 0.820951 -0.000857 

Airplane 

horizontal 0.957875 -0.000107 

vertical 0.957543 0.000540 

diagonal 0.943487 -0.000358 

4.1.3. Information entropy analysis. The entropy defined by Shannon [32] expresses the uncertainty of 

an image information. The Shannon entropy is defined as  

255

2

0

( ) ( ) log ( )
=

= −
n

H I p n p n                                                         (15) 

where I is an image, the entropy is represented in bits, n denotes a pixel value ( 0 255 n )
 
and

 ( )p n  is 

the probability of n. Table 2 shows the calculation results of the Shannon entropy of the 3 test images. 

For an image, the ideal Shannon entropy is 8. From Table 2, we can find that the Shannon entropy 

tends on the ideal value of 8. It proves that our encryption scheme can resist the entropy attack. 

4.2. Differential attack analysis 

We usually employ UACI (unified average changing intensity) and NPCR (number of pixels change 

rate) to check the resistance of differential attack. NPCR and UACI are defined as  

1 21,  ( , ) ( , )
( , )

0,  otherwise         

( , )

NPCR 100%

 
= 




 = 




ij

c i j c i j
D i j

D i j

H W

                                                 (16) 

1 2( , ) ( , )1
UACI [ ] 100%

255

−
= 




ij

c i j c i j

H W
                                     (17) 

where H is the height of an image and W is the width of an image,
 1( , )c i j and 2 ( , )c i j are the two 

different cipher images in which their plaintext images have only one pixel difference from each other. 

In [33], the maximum expected UACI value is 33.463541%, and the maximum expected NPCR value 

is 99.609375%. Table 2 shows the calculation results of UACI and NPCR values for our encryption 

scheme. We can find that UACI and NPCR values very verge on the above values in [33]. It proves 

that our encryption scheme makes the differential attack difficult.  

Table 2. Entropy, UACI and NPCR values  

Ciphered 

images 

Entropy NPCR 

value 

UACI 

value Elaine 7.999246 99.620819 33.441856 

Aerial 7.999382 99.606705 33.466385 

Airplane 7.999314     99.612808 33.549496 
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4.3. Key sensitivity analysis 

To check the key sensitivity, we test 3 plaintext images in Figure 3 and all of the secret keys. For 

example, 1410−  is added in  and the other keys are not changed, and then we obtain the encrypted 

image of Elaine shown in Figure 6 (a). The difference between two encrypted images is indicated in 

Figure 6 (b). By analyzing all of the test results, we can conclude that our encryption scheme is 

sensitive to small change of the secret key.  

Furthermore, the decryption scheme has also the sensitivity to small change of the secret key. By 

using the secret key  with only 1410−  differences from its original value, we obtain the decrypted 

image of Elaine shown in Figure 6(c). We can find that Elaine’s decrypted image of is completely 

different with its plaintext image. It proves that the proposed decryption scheme is sensitive to small 

change of the secret key, too. 

 

               
(a)                                             (b)                                              (c) 

Figure 6. The analysis of key sensitivity. (a) Elaine’s encrypted image using changed  , (b) 

difference between (a) and Figure 3(a), (c) Elaine’s decrypted image using changed  . 

4.4. Key space analysis 

For resisting brute-force attacks, the key space of a good encryption system must be large enough. The 

fractional order linear-nonlinear chaos system has a strong sensitivity even to small change in the 

control parameters and initial condition, so we use a high precision real type data to implement our 

encryption system. There are five secret keys in our encryption system:  , , , and 1(1)x , and the 

real type data has the accuracy of 1410− . Therefore, the key space size of our encryption system would 

be at least 7010 . It means that our encryption system holds a wide enough key space against a brute-

force attack. 

4.5. Performance comparison 

The comparative results between our encryption system and other cryptosystems [3, 6, 13, 20, 25] are 

indicated in Table 3. We can find that our encryption system has an ideal safety and similar or better 

performances. 

Table 3.  Comparative results between our encryption system and other cryptosystems.  

Criteria 
Proposed 

scheme 

(averag

e) 

 

[3] after 

58 

rounds 

[6] 

(averag

e) 

[13] 

(average) 
[20] [25] 

Correlation 

coefficients 

H 0.000367 0.0139 0.0134 -0.0017 0.015134 0.012401 

V 0.000325 -0.0231 0.0096 -0.0031 0.056865 N/A 

D 0.000354 -0.0040 0.0122 0.000089 0.001875 N/A 

Entropy 7.999282 7.9966 N/A N/A N/A 7.995351 
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NPCR 99.6065% 99.67% 99.5659 99.6% 99.8268% N/A 

UACI 33.4526% 33.32% 33.3186 33.5% 10.9112% N/A 

5. Conclusions and future work 

By using the defined fractional order linear-nonlinear chaos system, we design a scheme for 

encrypting a gray image. The given dynamical features of the fractional order linear-nonlinear chaos 

system, such as almost no periodic windows and stronger ergodicity of time series, are applied to the 

encryption scheme. The plaintext images decide which chaotic sequence is used for permutation and 

addition/subtraction operation of encryption. The corresponding experimental results indicate that our 

encryption scheme holds a wide enough key space, good sensitivity and high secure performances. In 

future practical research work, we intend to apply the fractional order linear-nonlinear chaos system to 

the encryption in a parallel architecture. 
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