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Abstract. The massive multiple-input multiple-output (MIMO) systems is an important
technology in the fifth generation of mobile communication. To get the result of a MIMO system
require some algorithm to approximate the precise result as the computation complexity is too
large. There are several methods that have been advanced in the fitting, like zero forcing (ZF)
method or minimum mean-square error (MMSE) method. However, in massive MIMO system,
these methods require further simplify because of the increasing complexity of matrix inversion.
In the papers, many methods were presented to get the approximation matrix: like MMSE-SIC,
ZF-MIC, Gauss-Seidel, Jacobi and Neumann series expansion. The Jacobi’s iterative method
and Newton’s iterative method both use iteration to approach the MMSE estimation. Their BER
performance can outperform current methods and require less computational complexity. Almost
every method can get a nearly ideal fit when the number of users or antennas is large enough.
But when the number is small, the approximation will not be very accurate.

1. Introduction

The MIMO technology can multiply the wireless communication system’s several times without
increasing the bandwidth and emitting frequency. The Massive MIMO system is a key technology in
realizing the fifth generation of mobile communication and is now being researched and studied
worldwide because of its potential in improving the speed of transmitting data and also the stability of
it. The benefits of using the massive MIMO system is profitable both economically and environmentally.
However, due to the greatly increase of the number of antennas at the BS (base station), the system
model may need some change. Now, research of how to apply the traditional MIMO’s detection method
to the new massive MIMO system is a focus.

Many adapted methods are presented by researchers worldwide. In paper [1], the writers used
MMSE-SIC and ZF-SIC algorithm, and they found out that these two methods’ results are very close to
the ones from ZF and MMSE method. And they further conclude that even the basic MRC and ZF
method can provide good result if the antennas at the base stations greatly outnumber the users. Paper
[2] give a method based on relaxation iterative, it’s better than the methods using polynomial expansion
like Neumann series expansion because it can reach more optimal result with same degree of
computational complexity. Besides, the method is also better than the Richardson method which is also
based on iteration. Paper [3] use Gauss-Seidel model, which is also an iterative method, the result is
similar like the relaxation iterative method. Paper [4] use Jacobi iterative method. To get the MMSE
estimation, in spite that the Jacobi method use iteration to simplify the matrix inversion, the result is
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equivalent to that using the Neumann Series Expansion method. Compared with the Gauss-Seidel
method, this method has slow convergence rate. However, by providing the initial estimation which is
close to the exact MMSE solution, we can speed up the convergence. In paper [5], the authors use
Newton’s iterative method to simulate and find approximate matrix inverse. The inverse they get has
low latency. Besides, they find out that by making an approximate matrix inverse, the complexity can
be saved twofold because of iterations. For the result part, the SD scheme they applied outperforms the
conventional method while giving the same error performance. Paper [6] show us a method based on
Neumann series expansion, the author admit that only with the diagonally dominant condition, the NS-
based matrix inversion approximation can achieve satisfying accuracy with quick convergence. Or else,
it can’t guarantee quick convergence.

By comparing all the methods above, we can find that most method use iteration to get the inverse
matrix, and its performance is the best with a rather low complexity and quick convergence. There are
several iterative methods, each have its specialty. Other method, such as MMSE-SIC and ZF-SIC, can
also reach optimal result under some conditions; but the polynomial expansion method is not that good
compare with the iterative method.

2. Iterative method

For this part, we will mainly focus on some methods which primarily deal with the matrix multiplication
and initialization for iterative methods. Here we will take Jacobi method [4] and Gauss-Seidel [3]
method as two examples. For the Jacobi model, we consider a system of B base station antennas serving
K users, and we assume B >> K for massive MIMO system.

We denote the base station’s received signal as: Y = Hx + z, hereH = [hy, hy, -+, hg_4] is the
channel matrix which denotes the channel response between the k-th user and the base station. The noise
vector: Z = [zg,Z1,**,Zg—1] . The typical MMSE estimation can be expressed as & = (H"H +
o3l)"*Hy = W=1yMF 'inwhich yMF = HHy is the matched filter output. For W = G + 63Ix ,G =
HHH denotes the Gram matrix. For simplicity, we can rewrite & = (H"H + o%Ig) " *H"y = W—1yMF
as W% = yMF. Then we can use the Jacobi iteration method:

gG+1) — D—l((D _ W))'Z(l) + yMF) (1)
In the equation above, D = diag{W}. To converge, the equation must satisfy:
lim(ly — DW)! = 0. (2)
In addition, if the initial estimation is given as: X(®) = D~1yMF than we have:
x(+D) = (ZH5(-D7 (W~ D)'D~) )yMF (3)
From 80+D = D=1((D — W)W + yMF) and W = HMH + oZIx we can get
WX® = HHHx® + 52x® 4)
And we can alternatively express the iteration as: R0*D = g® 4+ p~1(yMF — HHHx® 4 52x D),
ONSNE)
It X(© = D=1y M, the initial estimation will be x() = x(® + ur(®. Where p = ULt and

r(® = yMF _ wx(© Then use the Jacobi iteration, we get:
x® = xM 4 D_l(yMF - Wx(l))

=x@ 4+ pur@® 4+ p=1(r® — pWr©®) (5)
The computation complexity can be reduced from O(B x K?)to O(B x K) in this method. The

computational complexity including the initialization computation is far less than the existing method
with the increase of user’s number. Besides, for the BER performance when B=128 and K=16 (Figure
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1), the proposed approximation leads to closer result of the exact MMSE estimation than existing work.
So if a better estimation is used, the number of iterations for Jacobi method is reduced.
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g

Figure 1. BER performance of Jacobi method [4]

That’s a brief description of the Jacobi’s method; we will next introduce a similar method, the Gauss-
Seidel method [5]. The N X 1 receive signal can be represent as: Y = Hx + z, where z represent the
noise vector. By the MMSE method, we can get the transmitted signal vector x as: X =
(HUH + oZ1x) " *H"y = W1, Where § = HHy and the filtering matrix is W can be represented
asW = G + oZly. In the expression of W, we have the gram matrix as G = H'H. Let E=W~1G
represent the equivalent channel matrix, and we can get U= W 'HH(W-IHHH = w-1gw1.
AnalyzingY = Hx + z and & = (H"H + o3Ix)~*Hfy = W~1§together, we can represent the MMSE
approximated signal vector x as & = Ex+ W™ 'HHn. So for the kth user, the approximated
transmitting signal is &y = pgSk + Vi. Besides, the channel gain is p, = Eyy, and the NPI variance is
vi =YK |Emkl? + Uxko?, where Emcand Uk symbol for matrix element in the mth row and kth
column.

However, since K is always a relatively large number in the uplink large-scale MIMO systems, the
computational complexity for matrix inversion, which is 0(K3) will be large, so we need further
operation. W, the MMSE filtering matrix, is Hermitian positive definite, so W can be decomposed as
W =D + L + LH. In the expression above, D represents the diagonal component of W. L represents the
strictly lower triangular component of W. And L represents the strictly upper triangular component of
W. Then by applying the GS method, the transmitted signal vector can be written as:

x® = (D+ L)1y - Ax0-D),i=12,.. (6)

Where i is the number of iterations. We then use Diagonal-Approximate method to get the initial
solution. Also, with this method, we can achieve a faster convergence rate of GS-method based
algorithm.

For uplink large-scale MIMO systems, the channel matrix H will be close to orthogonal when N >
hil hy

> K. Therefore we can get: - 0,m=#k mk=12,..,K, in which h,, represents the mth

column of H. The matrix W1 is also diagonally dominant, so when the ratio of N/K increases, the
non-diagonal matrix W~ and the diagonal one D~ become increasingly similar. We can set the
initial solution of x® = (D + L)~}(y — LAx(-V),i=1,2,... as:

x(© = p-1y. 7

By this estimation, we are able to get a faster convergence rate. By comparing, we find that for any
number of iterations, the proposed GS-based algorithm can simplify the computational complexity from
the level of O(K3)to O(K?). There is a series of conclusion we can get from simulation. First, if the
number of iterations is relatively large (i>=3), the performance is satisfying. Besides, the convergence
rate can be accelerated by using the approximation. Figure 2 is the BER performance comparison
between the proposed GS-based algorithm and the conventional Neumann Series-based algorithm,
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When B is128, and K is 16. As the Figure 2 shows, the Gauss-Seidel based algorithm is clearly better if
the number of iterations are the same.

BER

Figure 2. BER performance of GS method [3]

In addition, when considering about the BER performance relationship with the number of antennas
at base station (B) with users K = 16 is considered. The proposed GS-based method is near optimal
compared with the ML algorithm if B>>K, while the Neumann-based algorithm suffers non-negligible
performance loss.

By comparing the two similar methods, we find that both the two methods use diagonal matrix D of
the MMSE filtering matrix W to simplify the computation complexity. The main difference is that GS
method further simplify W as D because W is diagonal dominant if N is relatively large, and the paper
prove that this replacement has little effect to the result. And the Jacobi method use D in iteration part
to simplify the computation work, and it is equivalent to Neumann series expansion. Both algorithms
can reach a better result than existing work. They are more close to the exact MMSE BER performance.
The GS method can reduce the computational complexity from 0(K3)to 0(K?), and the Jacobi
method can reduce the complexity from O(B x K?)to O(B x K). From Figure 1 and Figure 2, we can
clearly see that the steepest descent and Jacobi method with proposed approximation: 2" iteration and
Gauss-Seidel method with proposed approximation: 2" iteration can get near optimal result as exact
MMSE get.

3. Decomposing method
The Neumann series method [6] is based on the Zero-Forcing method. However, in massive MIMO
systems, to support a large number of users, the Zero-Forcing method requires much larger dimensions
of matrix inversion. Hence the Neumann Series was applied to the approximation of matrix inversion.
It’s more suitable to massive MIMO system and it also has unique advantages in hardware
implementation. Zero-Forcing’s precoding and detection is able to reach wonderful performance very
close to both the downlink’s and the uplink’s channel capacity. So for massive MIMO systems, the ZF
method has always been regarded as one of most the practical method. We take M for the number of
antennas, and B for the number of users. In the article, the authors stressed to solve three main problems
in the NS method for computing the matrix inversion. First, they gave a M/K ratio requirement that
gives high convergence rate. Besides, because the K x K matrix should be diagonally dominant, they
derived another high probability M/K ratio. Finally, they give the specific approximation error analysis
for the Neumann Series based matrix inversion approximation in hardware implementation.

Like the analysis above, we consider a massive MIMO system with M antennas serving K users at
the base station. Then, the M > K uplink channel matrix is represented by H = [hyk], and hpx
represents coefficient in the mth row and the kth column, where the rangeis m = 1,...,M,and k =
1,...,K. The channel matrix H is also the same for downlink as the uplink, due to the channel
reciprocity under the situation we considered. For the ZF method, we also need to calculate the pseudo-
inverse of matrix H:

HT = (H'H)~™' (") @®)
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If we take G = H/H, in massive MIMO systems, the major computational complexity lies in the
matrix inversion of G, which isathe K x K matrix. Though K is smaller than M, it is also many times
larger than the number of users in  conventional MIMO systems. So, it is too costly to compute G™1 .
The NS method is used to realize the matrix inversion approximation;

Gy' = Zh=g(Ik — ©G)"0 9)

N denotes the total terms’ number in Neumann series, and ® represent a K x K diagonal matrix.

lim (Ix — ©G)™ — 0 has to be satisfied in order to let the formula above work,. The matrix G is a
n—-oo

complex central Wishart matrix. We take a = M/K, we can get that when K and M grows, the largest
eigenvalue of G converge to:

1
Amax(G) - M(1 + ﬁ)z (10)
And correspondingly, for the smallest eigenvalue of G:
1
Amin(G) » M(1 - ﬁ)z (11)
Therefore, if we choose O as:
_ a 1
G)_M(1+0()IK_M+KIK (12)
We can get:
2va
Amax(0G) > 1+ 2= (13)
2va
Amin(8G) — 1 — 7= (14)
2va

when a > 1, < 1, which means lim (Ix — @G)" — Ogcan surely be satisfied.
n—-oo

1+Va —
Figure 3 shows the performance comparison when M=128 and different K.
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Figure 3. BER performance of NS method [6]

Usually, in massive MIMO systems, a is very large, like a > 10 can satisfied the convergence
condition. So, the convergence of NS-based matrix inversion approximation can be ensured. Therefore
for massive MIMO systems, the NS-method is still practical. Besides by increasing the value of N, its
accuracy can be improved. Although Neumann-Series is usable in matrix inversion approximation, there
are many constaints and condition for the method. In other words, there are clearly some shortcomings
in this method, we’ll discuss them later.

There are some other decomposing method than the NS method, such as MMSE-MIC and ZF-MIC.
The model is the same as above. First, by analyzing the model of the system, the author proved that we
can neglect the small signal decay and only need to consider the large-scale decay. The base station

receive M x1 vector,y = ./p,Gx + n, where p, isevery user’s average transmitting power. X symbols
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for a vector of K users’ transmitting signals at the same time. And n symbols for the white Gaussian
noise. We have n € CN( 0,y ), and G isthe M x N channel matrix vector: G = HD'/2, We use gnx
to represent the element of G, which means the transmitting coefficient between the kth user and the
mth antenna. H is a M X N matrix, hmk stands for the Small-scale fading coefficient. D is an K x K

diagonal matrix, the element in it is by and /b, is the Large-scale fading coefficient. Their

H H
relationship is: gmi = Rmi+/Br- When K>>M, we have: GM—G = Dl/z%Dl/2 ~ D. in this case, we

can ignore the Small-scale fading coefficient, only consider the Large-scale fading coefficient.

Linear algorithm cannot reach test accuracy requirement in traditional MIMO system, but for large
scale MIMO system, the algorithm like MMSE and ZF can improve their performance with the increase
in antennas. For non-linear iteration algorithms, like MMSE-MIC and ZF-MIC, are also suitable. The
author gives the computation expression of MRC, ZF, MMSE, ZF-MIC and MMSE-MIC. For a M 0K
linear detecting matrix A, the recipient signal is:

r=A%y = [p,A"Gx + Afln (15)
Let rand xy be the kth element of the vector r and x:

r = ,/p AGx + Afin
= /Puaf gXi + \Pu Tt ie Al gix; + afin (16)
In the equation above, the first term represent the expected signal, and the second one represent the
interfere with other users, the last term represent noise.
For the traditional linear signal detection methods like MRC, ZF, and MMSE, the linear detecting matrix

arec:
(1) MRC: A =G

2 zF: A = G(GHG) ™

(3) MMSE: A = G(GHG + (1/py)l)

For non-linear iteration algorithms, we denote W as the linear weight matrix:
(1) MMSE: W = AH = (GHG + pil)-ch

(2) ZF: W=A4" =G

Denote wy as the kth vector of W, the noise-signal ratio, then:

) — Pulwigil? __1
(1) MMSE: SNRj = Pu TixklWigil +oZ | Wiz [lwl[?
(2) ZF: SNR,, = 2% !

aillwiell?  llwgll?

The BER performance when the number of antennas M is a variable and the number of users K=10 is
shown in Figure 4. We can see that in large scale MIMO system, there are no great difference between
ZF, MMSE, ZF-SIC, MMSE-MIC. These four algorithms can have its error rate lower than 10 at M>60.
Also, the MRC can reach it when M> 200. Besides, if the number of antennas is far great than users,
then MMSE-SIC and ZF-SIC methods don’t outperformance the traditional MMSE and ZF method. But
when the number of antennas and users are close, the MMSE-SIC and ZF-SIC methods can have much
development.



CCISP 2019 IOP Publishing
Journal of Physics: Conference Series 1438 (2020) 012006  doi:10.1088/1742-6596/1438/1/012006

10"

= ZF

—&— MRC

—i— MMSE
—A— ZF-51C
—6— MMSE-SIC

BER

20 40 60 80 100 120 140 160 180 200

The number of antennas M

Figure 4. BER performance of MMSE-SIC and ZF-SIC [5]

The two methods discussed in the decompose method part both have some obvious drawbacks. The
NS method requires many conditions to make sure it can converge quickly. If the requirements are not
met, it may not convergent at all, which means the method is infeasible. As for the MMSE-SIC and ZF-
MIC methods, they didn’t show many advantages in massive MIMO systems comparing with the
traditional MMSE and ZF methods. Compared with the iterative methods which can both reduce the
computational complexity and reach better performance, no wonder more scholars favor the iterative
methods and the papers of iterative method is far more.

4. Conclusion

In conclusion, both the iterative methods and the decomposing methods can simplify the progress of
matrix inversion approximation. However, by comparison, we can acknowledge that the iterative
methods generally outperform the decomposing methods. They can be applied to more situations
because they suffer less restraints. Besides, the simulation results of the iterative methods are better than
the ones of the decomposing method under same level of computational complexity. Hence, the
researchers around the globe mainly focus on developing the iterative methods.
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