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Abstract. Recently, recurrent neural network (RNN) has demonstrated superior performance
for channel decoder, which motivates us to explore which RNN decoder can be more efficient.
In this paper, we propose three kinds of RNN decoders, which are built upon long short term
memory (LSTM), gated recurrent unit (GRU) and bidirectional gated recurrent units (Bi-GRU),
respectively. The performance of these three RNN decoders are evaluated through lots of
simulations, which indicate that the GRU decoder with simplest structure and least
computational time, has similar bit error rate (BER) performance as that of the LSTM decoder.
The Bi-GRU decoder has the best BER performance at the expenses of more computational
time. However, it is prone to overfitting. Furthermore, we find that the BER performance of
RNN decoders without dropout is better than that of the decoders with dropout when decoding
models are underfitting, while the RNN decoders are better to dropout when decoding models
are overfitting.

1. Introduction

With the improvement of fifth generation (5G) network technology, a new generation of
communication mode is coming soon. The theoretical transmission speed of 5G networks, which is
hundreds of times faster than 4G, can reach tens of Gbs per second. Obviously, higher transmission
rate requires lower decoding latency. Since most of the decoding algorithms involves large numbers of
iterative calculations, we need to design a decoder that should satisfy the demand of high-speed and
low-latency. It happens that deep learning can help us solve this problem.

Deep learning has shown great potential and advantage in some complex tasks. It has achieved
remarkable results in image processing [1], machine translation [2], speech recognition [3] and many
other areas. Inspired by powerful learning ability of deep learning, [4] provided some evidence that
structured codes were easier to learn than random codes, and pointed out that the neural networks
could learn a structure of decoding algorithm, rather than a simple classifier. [5] compared three types
of neural network decoder (NND) with the same parameter magnitude and drew a conclusion that
recurrent neural network (RNN) decoder had the best decoding BER performance but the highest
computational time. In recent years, RNN has derived many variants, which demonstrate better
performance in many tasks. According to the conclusion of [5], we want to explore the performance of
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the decoders built upon RNN variants. In the following works, when the decoders of these RNN
variants appear at the same time, we collectively refer to them as RNN decoders.

In this paper, we propose three kinds of RNN decoders, which are built upon long short-term
memory (LSTM), gated recurrent unit (GRU) and bidirectional gated recurrent unit (Bi-GRU). We
discuss them separately in the case of decoders with dropout and decoders without dropout. In this
work we focus on decoding polar codes, which are mathematically proven to achieve channel capacity.
Our goal for this paper is to find which RNN decoder can be more efficient, which is measured by two
indicators, decoding BER and computational time.

2. System design

2.1. Channel model
X u BPSK s y RNN

—  Encoder —> Channel —§—>
‘ncode e
Modulator Decoder

Figure 1. The architecture of channel model with RNN decoder.

The architecture of channel model with RNN decoder is illustrated in figure 1. The task of the
encoder at the transmitter is to encode information bits x of length K into a binary codeword u of
length N. We assume that through binary phase shift keying (BPSK) modulation, the codeword u can
be mapped to a symbol vector s. After transmitting the symbol vector s over a channel with the
additive white Gaussian noise (AWGN), a noisy version of the codeword y is received at the receiver.
The received vector y can be written as y = s +n, where n~N(0,c?%Iy) represents the N x 1
symbol vector. The task of the decoder is to recover the vector y to the corresponding information bits
X. Here, we denote the recovered bits X. We hope that after decoding by the RNN decoders, the BER
can be as close as possible to the maximum a posteriori (MAP) decoding. For details we refer to [5].

2.2. Training

The neural network model for supervised learning consists of two phases, training phase and testing
phase. Training samples for training phase are generated by the following rules: We first denote the
messages bits of length N including K information bits x and N — K frozen bits as x’, and then the
transmitted codeword u of length N can be obtained by following the encoding rules of polar codes

u=x'G, where G=F®™m, F®m jis the m-th Kronecker power where F = [1 (1)] and m =

log,N. Finally, the received symbol vector y can be obtained when u passes through BPSK
modulation and channel with AWGN.

Let x = [Xq,.--Xg—-1), X = [Xg,.--Xx—1] and y =[yg,...yn—1]- We define all possible x
and R by the set A and that of all possible y by the set B. Randomly picked a training sample y from
B, there will be a corresponding label x in A. During training phase, we consider four factors that
affect the performance of the RNN decoders.

e Signal to noise ratio of training samples: In the actual channel, the signal to noise ratio (SNR)

is uncertain and time-varying, we simulate the noise in channel decoding phase to set different
SNR of training samples and adopt the normalized validation error (NVE) in [4] to measure
the performance of RNN decoders. The NVE defines as

1 BERR(Pt.Pv,s)
NVE(pe) = $X5=1Gzm, 00> W

where p; and p, denote the SNR of training data sets and validation data sets, respectively.
Let ps be the s-th SNR in different validation data sets of the number S. BERg(p¢, Py s)
denotes BER achieved by RNN decoder, which trained at p, on the data with p,, ;. Similarly,
BERy(py,s) is the BER achieved by MAP decoding at p,, . As such, our purpose of setting

up different p, is to find the optimal p, which results in the least NVE in training phase, and
then the optimal p, will be used for the testing phase.
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e Ratio of codebook set A: To evaluate the generalization ability of RNN decoders, we choose
the information bits x which covers only part of A, that is, the ratio p of codebook set A. In
the sequel, we set the ratio p = 40%, 60%, 80%, 100%, respectively.

e Loss function: Here, We choose the mean squared error (MSE) as the loss function, defined by

1 - -
Lvse = gZF:ol(Xi — %;)? (2)
where x; is the label and &; donates the i-th estimated information bit of RNN decoder.

o Dropout: There exists a saturation length for RNN decoder. When the saturation length
exceeds codeword length N and p < 100%, the RNN decoder will be overfitting. When the
saturation length is under the codeword length N, the RNN decoder will suffer from the
problem of underfitting no matter what the p is. Based on this, we compare the BER

performance of the decoders with dropout and without dropout, instead of adding only dropout
like [5].

3. Proposed RNN decoders
In this section, we describe three types of proposed RNN decoders, which are built upon LSTM, GRU
and Bi-GRU, respectively.

3.1. LSTM decoder

In LSTM, gating mechanism is used to control the information flow such that the gradient vanishing
problem in RNN is better handled, and the long range dependency is better captured. The flow
diagram of our proposed LSTM decoder is shown in figure 2, which mainly consists of two parts, a
LSTM cell and a fully connected layer with sigmoid activation function. Let M denote the Mini-batch
size. The input of the LSTM decoder is y = (¥, ¥1, ---»¥n-1), Where y, (t =0,1,...,N — 1) of
length M is the input of LSTM cell at time t. The memory cell vector ¢;_; and cell output h,_; at
time t — 1 will affect the memory cell vector c¢; and the cell output h, at time t.

hy
Co (V] N-1,0 Xp

—
LSTM cell [3] LSTMcell [ - | LSTM cell : e sigmoid K

T h, T hy T hyaL 'QK-'

Yo N ¥Na

Figure 2. The flow diagram of LSTM decoder.

The LSTM cell in figure 3 includes input gate, forget gate and output gate. The input gate (output
gate) uses inputs from other memory cell to decide whether to store (access) certain information in its
memory cell. The forget gate determines the importance of memory cell vector c;_4 to the memory
cell vector c,. The memory cell vector ¢, is updated by adding a new memory content vector ¢, and
partially forgetting the existing memory, where ¢, describes the state of current LSTM cell input. The
value of the i;, f; o €; c; and h, are computed by

ir = o(Wyye + Wpihe_1 + b;) 3)
fe=0(Wyye +Wyshe_q + by) (4)
0 = J(Wyoyt + Whohe1 + bo) (5)
¢, = tanh(Wycyt + Whpehe_q + b,) (6)
¢=f[tOc 1+, OC (7)

h; = 0, © tanh(c;) (8)

where o(x) = o The initial value c¢g = 0, hy = 0, where the 0 represents zero vector of

length L. © stands for the element-wise product of two matrices or vectors. The hidden state in
LSTM cell is defined as the concatenation of (h;, c.), where the ‘slow’ state c¢; fights the vanishing
gradient problem and the ‘fast’ state h, makes hard decision over short periods of time. Note that
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final output of LSTM cell is hy, which is determined by the output gate o, and the memory cell
vector cy. Finally, we add a layer of sigmoid activation function to get the decoded value X of
length K by
X =d(Why + b) 9)
Our goal is to train a set of parameter {W,;, Wy, Wyr, Wye, Wy, Wiho, Wy, Wy,
W, b;, bs, b,, b, b} to achieve the output X which is as close as possible to the label x.
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Figure 3. The LSTM cell
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3.2. GRU decoder

Compared to LSTM decoder, the structure of GRU decoder is much simpler. GRU decoder and LSTM
decoder both have gating mechanism to make the flow of information inside the unit. There is no
separate memory cells in the GRU, which is diverse from the LSTM. The flow diagram of the
proposed GRU decoder is shown in figure 4, which mainly consists of two parts, a GRU cell and a
fully connected layer with sigmoid activation function. The input of the GRU decoder is also
y = Vo, Y1, --»YN—-1)- The hidden state h,_, at time t — 1 will affect the state of GRU cell at
time t.

hy h hy.io Xo

_—
GRUcell —» GRUcell —» .. GRU cell : S : sigmoid |
T T T hnan ;(K-l

Yo Y1 YNa

Figure 4. The flow diagram of GRU decoder.

The GRU cell in figure 5 includes two types of gates: update gate and reset gate. The hidden state
h; is define as a linear interpolation between previous hidden state h,_; and the candidate hidden
state h, attime t. The formula is as follows:

h, = —z,)Oh;_4 + ZtQEt (10)
whereI = (1,1, ...,1), whose dimension is L. An update gate is used to control how much the unit
updates its hidden state. We compute z, and the candidate hidden state h, by

2y = o(Wph,o1 + Wyzyt +b,) (11)
h, = tanh(W,y, + Wy, (r,®Oh,_1) + by) (12)
where 1, decides how much the unit ignores its candidate hidden state h,. The smaller the value of
the 7, , the more ignored. r; is computed similarly to the z,:
re=0Wpheq + Wyryt +b,) (13)
We also add a layer with full connection in the end, same with (9).
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Figure 5. The GRU cell.

3.3. Bi-GRU decoder
Bi-GRU decoder is proposed to be able to exceed the LSTM decoder in BER performance. Since the
GRU decoder only models the information flow in one direction, we use a Bi-GRU decoder to get
information by summarizing from both directions. More specifically, one GRU goes from 1 to N and
the other from N to 1 if given a sequence of length N.

As shown in figure 6, the structure of Bi-GRU is the combination of two different directional
GRUs. At each time t, we provide both directional GRU the same input, which is same the input of
GRU, and the output is determined by both two GRUs. Denote the hidden states of the forward and

backward GRUs as E and h_t at time t, respectively. The cell output is computed by concatenating

the two hidden states at each time. E and E are computed by (10)-(12), now we simply replace the
above complex calculation with the function f:

Ht) = f(let + tht—l + B) (14)
h, = f(W3Ytj Vl4ht_1 + b) (15)
o = (hg hy) (16)

where the representation in (16) means to concatenate the forward and backward outputs. As before,
we add a layer of with full connection as the last layer to obtain the decoded value of Bi-GRU decoder.
The decoded value X is computed by

X=c(W'oy+b") 17)
where N is also the total time and the dimension of Xis also K.

Ouput layer

W,
Backward layer W

Forward layer

Input layer

YN

Figure 6. The archltecture of Bi-GRU.
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4. Performance evaluation

We compare the performance of proposed three RNN decoders with LSTM, GRU and Bi-GRU of
code length N=8, 32, respectively. We focus on the polar code of rate 1/2 for performance evaluation.
In addition, in order to reduce the decoding complexity, we only use a single layer RNN as decoder.
For more parameter settings, we select hyperparameters set, which is shown in table 1, for RNN
decoders after many trials.

We first observe the computational time of these three decoders in figure 7. The backward
propagation time for one training sample of LSTM decoder is almost twice that of the GRU decoder,
and Bi-GRU decoder is about three times that of GRU decoder under the same N. For the forward
propagation time for one testing sample under the same N, the LSTM decoder is almost 21 times
longer than GRU decoder, and Bi-GRU decoder is twice as long as LSTM decoder. Therefore, the
GRU decoder is the most time saving in computing.

Table 1. Hyperparameters setting

Item Hyperparameters setting
Number of training samples ~ 10°
Number of testing samples 10°

Total training epoch 10°
Mini-batch size 128
Optimization method Adam optimization
SNRs for training (p;) {2,0,2,4,6,8,10,12,14,16,18,20}dB
SNRs for testing (p,) {0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6}dB
Training ratio of codebook p  40%,60%,80%,100%
Initialization method Xavier initialization
L 256
0.12 50
JLsST™ PLST™
—. o1 [HGRU =4/ HGRU
2 MBi-GRU g MBi-GRU
Eo0.08 E
T 30
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= E20
3004 g
[o] o
©0.02 I I M 20 I I
ci=l NNN HER .= N HH B
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Figure 7. The computational time of LSTM, GRU and Bi-GRU under different length of codeword N
with noise. (a) The time for one training sample through backward propagation. (b) The time for one
testing sample through forward propagation.

Figure 8. shows the case when N = 8 with noise. We can see that all three RNN decoders can
achieve MAP performance no matter dropout or not when p = 100%. When p < 100%, the BER
performance of Bi-GRU decoder is significantly better than LSTM decoder and GRU decoder
although they are all overfitting, and three RNN decoders with dropout are better than decoders
without dropout.
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Figure 9. shows the case when N = 32 with noise. We can see that as p increases, the overall trend
of BER for all RNN decoders increases, which can be interpreted as they are all underfitting. The
Bi-GRU decoder always has a slight advantage in BER performance than LSTM decoder and GRU
decoder under different p. The three RNN decoders without dropout are always better than the one
with dropout when p = 40%, 60%,80%. In figure (d), the LSTM decoder without dropout has
better BER performance than LSTM decoder with dropout and the GRU decoder without dropout has
better BER performance than GRU decoder with dropout. But the Bi-GRU decoder with dropout
makes a breakthrough in BER performance, which is even better that Bi-GRU without dropout, this

also shows that Bi-GRU is prone to overfitting.
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Figure 8. The BER performance achieved by LSTM, GRU and Bi-GRU when N = 8 under
different training ratio p = 40%, 60%, 80% and 100%.
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Figure 9. The BER performance achieved by LSTM, GRU and Bi-GRU when N = 32 under
different training ratio p = 40%, 60%, 80% and 100%.

5. Conclusion

In this paper, we proposed three types of RNN decoders, named LSTM decoder, GRU decoder and
Bi-GRU decoder, respectively. After extensive experiments, we found that the BER performance of
GRU decoder, which had a simpler structure and less computational time, was not worse than the
LSTM decoder. Although the Bi-GRU decoder always had the best BER performance, it was at the
expense of more computational time and was prone to overfitting. We confirmed that the performance
of RNN decoders with dropout was better than the decoders without dropout when decoding models
were overfitting, while the RNN decoders without dropout was better than decoders with dropout
when decoding models were underfitting.
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