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Abstract. Recently, recurrent neural network (RNN) has demonstrated superior performance 

for channel decoder, which motivates us to explore which RNN decoder can be more efficient. 

In this paper, we propose three kinds of RNN decoders, which are built upon long short term 

memory (LSTM), gated recurrent unit (GRU) and bidirectional gated recurrent units (Bi-GRU), 

respectively. The performance of these three RNN decoders are evaluated through lots of 

simulations, which indicate that the GRU decoder with simplest structure and least 

computational time, has similar bit error rate (BER) performance as that of the LSTM decoder. 

The Bi-GRU decoder has the best BER performance at the expenses of more computational 

time. However, it is prone to overfitting. Furthermore, we find that the BER performance of 

RNN decoders without dropout is better than that of the decoders with dropout when decoding 

models are underfitting, while the RNN decoders are better to dropout when decoding models 

are overfitting.  

1. Introduction 

With the improvement of fifth generation (5G) network technology, a new generation of 

communication mode is coming soon. The theoretical transmission speed of 5G networks, which is 

hundreds of times faster than 4G, can reach tens of Gbs per second. Obviously, higher transmission 

rate requires lower decoding latency. Since most of the decoding algorithms involves large numbers of 

iterative calculations, we need to design a decoder that should satisfy the demand of high-speed and 

low-latency. It happens that deep learning can help us solve this problem.  

Deep learning has shown great potential and advantage in some complex tasks. It has achieved 

remarkable results in image processing [1], machine translation [2], speech recognition [3] and many 

other areas. Inspired by powerful learning ability of deep learning, [4] provided some evidence that 

structured codes were easier to learn than random codes, and pointed out that the neural networks 

could learn a structure of decoding algorithm, rather than a simple classifier. [5] compared three types 

of neural network decoder (NND) with the same parameter magnitude and drew a conclusion that 

recurrent neural network (RNN) decoder had the best decoding BER performance but the highest 

computational time. In recent years, RNN has derived many variants, which demonstrate better 

performance in many tasks. According to the conclusion of [5], we want to explore the performance of 
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the decoders built upon RNN variants. In the following works, when the decoders of these RNN 

variants appear at the same time, we collectively refer to them as RNN decoders.  

In this paper, we propose three kinds of RNN decoders, which are built upon long short-term 

memory (LSTM), gated recurrent unit (GRU) and bidirectional gated recurrent unit (Bi-GRU). We 

discuss them separately in the case of decoders with dropout and decoders without dropout. In this 

work we focus on decoding polar codes, which are mathematically proven to achieve channel capacity. 

Our goal for this paper is to find which RNN decoder can be more efficient, which is measured by two 

indicators, decoding BER and computational time.   

2. System design 

2.1. Channel model 

 
Figure 1. The architecture of channel model with RNN decoder. 

The architecture of channel model with RNN decoder is illustrated in figure 1. The task of the 

encoder at the transmitter is to encode information bits   of length K into a binary codeword   of 

length N. We assume that through binary phase shift keying (BPSK) modulation, the codeword   can 

be mapped to a symbol vector s. After transmitting the symbol vector s over a channel with the 

additive white Gaussian noise (AWGN), a noisy version of the codeword y is received at the receiver. 

The received vector y can be written as      , where             represents the N × 1 

symbol vector. The task of the decoder is to recover the vector y to the corresponding information bits 

x. Here, we denote the recovered bits  ̂. We hope that after decoding by the RNN decoders, the BER 

can be as close as possible to the maximum a posteriori (MAP) decoding. For details we refer to [5]. 

2.2. Training  

The neural network model for supervised learning consists of two phases, training phase and testing 

phase. Training samples for training phase are generated by the following rules: We first denote the 

messages bits of length N including K information bits x and N − K frozen bits as x′, and then the 

transmitted codeword u of length N can be obtained by following the encoding rules of polar codes 

     , where      .     is the  -th Kronecker power where     [
  
  

]  and    

      . Finally, the received symbol vector y can be obtained when u passes through BPSK 

modulation and channel with AWGN.  

Let                    ̂      ̂      ̂     and                   We define all possible   

and  ̂ by the set A and that of all possible y by the set B. Randomly picked a training sample y from 

B, there will be a corresponding label   in A. During training phase, we consider four factors that 

affect the performance of the RNN decoders.  

 Signal to noise ratio of training samples: In the actual channel, the signal to noise ratio (SNR) 

is uncertain and time-varying, we simulate the noise in channel decoding phase to set different 

SNR of training samples and adopt the normalized validation error (NVE) in [4] to measure 

the performance of RNN decoders. The NVE defines as  

                                                  
 

 
∑

             

          
 
                                                    (1) 

where    and    denote the SNR of training data sets and validation data sets, respectively. 

Let    be the  -th SNR in different validation data sets of the number  .               

denotes BER achieved by RNN decoder, which trained at    on the data with     . Similarly, 

           is the BER achieved by MAP decoding at    . As such, our purpose of setting 

up different    is to find the optimal    which results in the least NVE in training phase, and 

then the optimal    will be used for the testing phase.  
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 Ratio of codebook set A: To evaluate the generalization ability of RNN decoders, we choose 

the information bits x which covers only part of A, that is, the ratio   of codebook set A. In 

the sequel, we set the ratio                    , respectively.  

 Loss function: Here, We choose the mean squared error (MSE) as the loss function, defined by  

                                        
 

 
∑      ̂  

    
                            (2) 

where    is the label and  ̂  donates the  -th estimated information bit of RNN decoder.  

 Dropout: There exists a saturation length for RNN decoder. When the saturation length 

exceeds codeword length N and         , the RNN decoder will be overfitting. When the 

saturation length is under the codeword length N, the RNN decoder will suffer from the 

problem of underfitting no matter what the   is. Based on this, we compare the BER 

performance of the decoders with dropout and without dropout, instead of adding only dropout 

like [5]. 

3. Proposed RNN decoders 

In this section, we describe three types of proposed RNN decoders, which are built upon LSTM, GRU 

and Bi-GRU, respectively.  

3.1. LSTM decoder 

In LSTM, gating mechanism is used to control the information flow such that the gradient vanishing 

problem in RNN is better handled, and the long range dependency is better captured. The flow 

diagram of our proposed LSTM decoder is shown in figure 2, which mainly consists of two parts, a 

LSTM cell and a fully connected layer with sigmoid activation function. Let M denote the Mini-batch 

size. The input of the LSTM decoder is                 , where                  of 

length M is the input of LSTM cell at time t. The memory cell vector      and cell output      at 

time t − 1 will affect the memory cell vector    and the cell output    at time t.  

 

Figure 2. The flow diagram of LSTM decoder. 

The LSTM cell in figure 3 includes input gate, forget gate and output gate. The input gate (output 

gate) uses inputs from other memory cell to decide whether to store (access) certain information in its 

memory cell. The forget gate determines the importance of memory cell vector      to the memory 

cell vector   . The memory cell vector    is updated by adding a new memory content vector  ̂  and 

partially forgetting the existing memory, where  ̂  describes the state of current LSTM cell input. The 

value of the   ,   ,   ,  ̂ ,    and    are computed by  

                            (                )                                (3)                    

                                                         (                )                             (4)     

                                                         (                )                             (5)  

                                                      ̂      (                )                           (6)  

                                                                             ̂                                 (7)            

                                                                                                                   (8) 

where      
 

      . The initial value             where the 0 represents zero vector of 

length L.   stands for the element-wise product of two matrices or vectors. The hidden state in 

LSTM cell is defined as the concatenation of (  ,   ), where the „slow‟ state    fights the vanishing 

gradient problem and the „fast‟ state    makes hard decision over short periods of time. Note that 
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final output of LSTM cell is   , which is determined by the output gate    and the memory cell 

vector     Finally, we add a layer of sigmoid activation function to get the decoded value  ̂ of 

length K by 
                                                                       ̂   (W                                                                                     (9) 

Our goal is to train a set of parameter {   ,    ,    ,    ,     ,     ,     ,     , 

W,   ,   ,      ,  } to achieve the output  ̂ which is as close as possible to the label x.  

 
Figure 3. The LSTM cell 

3.2. GRU decoder 

Compared to LSTM decoder, the structure of GRU decoder is much simpler. GRU decoder and LSTM 

decoder both have gating mechanism to make the flow of information inside the unit. There is no 

separate memory cells in the GRU, which is diverse from the LSTM. The flow diagram of the 

proposed GRU decoder is shown in figure 4, which mainly consists of two parts, a GRU cell and a 

fully connected layer with sigmoid activation function. The input of the GRU decoder is also 

                  The hidden state      at time       will affect the state of GRU cell at 

time t.  

 

Figure 4. The flow diagram of GRU decoder. 

The GRU cell in figure 5 includes two types of gates: update gate and reset gate. The hidden state 

   is define as a linear interpolation between previous hidden state      and the candidate hidden 

state  ̂  at time t. The formula is as follows:       

                                                                            ̂                    (10) 

where            , whose dimension is L. An update gate is used to control how much the unit 

updates its hidden state. We compute    and the candidate hidden state  ̂  by 

                                                                             )                           (11) 

                                                    ̂                                                  (12) 

where    decides how much the unit ignores its candidate hidden state  ̂ . The smaller the value of 

the    , the more ignored.     is computed similarly to the   :  

                                                                                                      (13) 

We also add a layer with full connection in the end, same with (9).  
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Figure 5. The GRU cell. 

3.3. Bi-GRU decoder 

Bi-GRU decoder is proposed to be able to exceed the LSTM decoder in BER performance. Since the 

GRU decoder only models the information flow in one direction, we use a Bi-GRU decoder to get 

information by summarizing from both directions. More specifically, one GRU goes from 1 to N and 

the other from N to 1 if given a sequence of length N.  

As shown in figure 6, the structure of Bi-GRU is the combination of two different directional 

GRUs. At each time t, we provide both directional GRU the same input, which is same the input of 

GRU, and the output is determined by both two GRUs. Denote the hidden states of the forward and 

backward GRUs as   
⃗⃗⃗⃗  and   

⃖⃗⃗⃗⃗ at time  , respectively. The cell output is computed by concatenating 

the two hidden states at each time.   
⃗⃗⃗⃗  and   

⃖⃗⃗⃗⃗ are computed by (10)-(12), now we simply replace the 

above complex calculation with the function  : 

                               
⃗⃗  ⃗   (           

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     )                             (14) 

                               
⃖⃗ ⃗⃗               

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃖)                             (15) 

                                                                            
⃗⃗  ⃗   

⃖⃗ ⃗⃗ )                                     (16) 

where the representation in (16) means to concatenate the forward and backward outputs. As before, 

we add a layer of with full connection as the last layer to obtain the decoded value of Bi-GRU decoder. 

The decoded value  ̂ is computed by  

                                        ̂                                            (17) 

where N is also the total time and the dimension of  ̂ is also K. 

 
Figure 6. The architecture of Bi-GRU. 
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4. Performance evaluation 

We compare the performance of proposed three RNN decoders with LSTM, GRU and Bi-GRU of 

code length N=8, 32, respectively. We focus on the polar code of rate 1/2 for performance evaluation. 

In addition, in order to reduce the decoding complexity, we only use a single layer RNN as decoder. 

For more parameter settings, we select hyperparameters set, which is shown in table 1, for RNN 

decoders after many trials.  

We first observe the computational time of these three decoders in figure 7. The backward 

propagation time for one training sample of LSTM decoder is almost twice that of the GRU decoder, 

and Bi-GRU decoder is about three times that of GRU decoder under the same N. For the forward 

propagation time for one testing sample under the same N, the LSTM decoder is almost 21 times 

longer than GRU decoder, and Bi-GRU decoder is twice as long as LSTM decoder. Therefore, the 

GRU decoder is the most time saving in computing.  

Table 1. Hyperparameters setting 

Item                         Hyperparameters setting 

Number of training samples     

Number of testing samples     

Total training epoch     

Mini-batch size 128 

Optimization method Adam optimization 

SNRs for training (  ) {2,0,2,4,6,8,10,12,14,16,18,20}dB 

SNRs for testing (  ) {0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6}dB 

Training ratio of codebook p     40%,60%,80%,100% 

Initialization method Xavier initialization 

L 256 

 

Figure 7. The computational time of LSTM, GRU and Bi-GRU under different length of codeword N 

with noise. (a) The time for one training sample through backward propagation. (b) The time for one 

testing sample through forward propagation. 

Figure 8. shows the case when       with noise. We can see that all three RNN decoders can 

achieve MAP performance no matter dropout or not when   = 100%. When   < 100%, the BER 

performance of Bi-GRU decoder is significantly better than LSTM decoder and GRU decoder 

although they are all overfitting, and three RNN decoders with dropout are better than decoders 

without dropout. 
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Figure 9. shows the case when N = 32 with noise. We can see that as   increases, the overall trend 

of BER for all RNN decoders increases, which can be interpreted as they are all underfitting. The 

Bi-GRU decoder always has a slight advantage in BER performance than LSTM decoder and GRU 

decoder under different    The three RNN decoders without dropout are always better than the one 

with dropout when                 . In figure (d), the LSTM decoder without dropout has 

better BER performance than LSTM decoder with dropout and the GRU decoder without dropout has 

better BER performance than GRU decoder with dropout. But the Bi-GRU decoder with dropout 

makes a breakthrough in BER performance, which is even better that Bi-GRU without dropout, this 

also shows that Bi-GRU is prone to overfitting.  

 

 
Figure 8. The BER performance achieved by LSTM, GRU and Bi-GRU when       under 

different training ratio                        . 
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Figure 9. The BER performance achieved by LSTM, GRU and Bi-GRU when        under 

different training ratio                        . 

5. Conclusion 

In this paper, we proposed three types of RNN decoders, named LSTM decoder, GRU decoder and 

Bi-GRU decoder, respectively. After extensive experiments, we found that the BER performance of 

GRU decoder, which had a simpler structure and less computational time, was not worse than the 

LSTM decoder. Although the Bi-GRU decoder always had the best BER performance, it was at the 

expense of more computational time and was prone to overfitting. We confirmed that the performance 

of RNN decoders with dropout was better than the decoders without dropout when decoding models 

were overfitting, while the RNN decoders without dropout was better than decoders with dropout 

when decoding models were underfitting.  
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