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Abstract. The standard numerical maximum entropy method (MEM) still uses the Yule-
Walker equation which contains rough approximation by Walker. The commonly used numerical
equation contains additional modifications to reduce calculation cost. Nowadays, we have
powerful computers and there is no reason to use the modified equation. We show that the
drawbacks of MEM such as false peaks and peak splittings are from the modifications. They
do not appear when using the exact numerical equation, even a given time series is fractional.

1. Introduction
The maximum entropy method (MEM) is a well-known and widely used method of time series
analysis. We can obtain characteristic frequencies with high resolution from a smaller number
of samples than Fourier analysis. However, it is known that an MEM power spectrum includes
false peaks and peak splittings.

We show that the peak structures are from the modifications of the equations for numerical
calculation, and that they do not appear without such modifications.

The numerical method for MEM that appears in textbooks was established about half a
century ago, and the method was tuned for the computers of that time. The modifications
reduce calculation cost, and they were practical at that time. Nowadays, we have more powerful
computers, and the modifications are not necessary. We can avoid false peaks with the exact
equation for numerical calculation.

In the following sections, we review the conventional MEM, present a method that does not
cause false peaks, compare our method with conventional MEM, and conclude the paper.

2. Conventional MEM
There are at least three types of modification of the equations for numerical calculation written
in textbooks. They are the periodic boundary condition by Walker [1], periodicity breaking
modification by Itakura [2], and boundary closing modification with a window function.

Let us consider the autocorrelation coefficients for numerical calculation.
The autocorrelation coefficients rj,k without modifications are

rj,k =
1

N −M

N−1−M∑
n=0

D−(n+j)SN−1D
−(n+k)SN−1, (1)
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where Sn is the time series for the analysis, M is the order of the analysis, N is the number of
samples, and D is the shift operator, such that

DmSn = Sn+m. (2)

The terms j and k run through 1 to M .
The modifications of Eq. 1 are as follows.
The periodic boundary condition

DNSn = Sn+N = Sn (3)

is introduced assuming an infinite number of samples N → ∞ [1]. Then, the autocorrelation
coefficients Rj for finite N become

Rj =
1

N

N−1∑
n=0

D−nSN−1D
−[(n+j)modN ]SN−1. (4)

The term j runs through 0 to M − 1. This modification was introduced as “a first
approximation” to obtain rough results [1], and the autocorrelation matrix became a Toeplitz
matrix. That is, being a Toeplitz matrix means that what we can obtain is a rough, approximated
result.

This equation does not appear in textbooks because all the poles are on the unit circle and
the situation is not suited for the Levinson-Durbin algorithm.

The numerical equation in textbooks is given by Itakura [2]. The periodicity breaking
modification is introduced into Eq. 4, and the autocorrelation coefficients become

R′
j =

1

N

N−1−j∑
n=0

D−nSN−1D
−(n+j)SN−1. (5)

This modification was introduced to obtain a stable filter for speech synthesis, and this
modification decreases the accuracies in frequency characteristics. As the autocorrelation matrix
is a Toeplitz matrix, a sinusoidal signal is replaced with a decay signal with this modification.
That is, false decay rates are introduced with this modification, and they make the Levinson-
Durbin algorithm applicable. This is the original aim of this modification, and zero suppression
of the non-diagonal terms is the reason for retrofitting. In fact, Walker’s equation Eq. 4 does
not use zero suppression.

This modification has several variations, and a widely used one is

R′′
j =

1

N − j

N−1−j∑
n=0

D−nSN−1D
−(n+j)SN−1, (6)

which is written in a book of recipes [3].
The boundary closing modification

w0S0 = wN−1SN−1 = 0 (7)

with a window function wn is commonly used to close both ends of a time series. This
modification accompanies the periodic boundary condition, and this brings continuity at the
boundaries.

We call the condition without these modifications the “open boundary condition.” We do
not close the boundaries nor assume periodicities.
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3. Our method
The equation for our method

argmin
a1,a2,···,aM

N−1−M∑
n=0

[
D−n

(
1−

M∑
m=1

amD−m

)
SN−1

]2
(8)

is the conventional autoregressive model with the method of least squares, and the difference is
in the process of numerical calculation [4, 5, 6]. We use Eq. 1 instead of Eqs. 5 or 6, and do not
use window functions. That is, we use the open boundary condition. We obtain the prediction
coefficients am by solving Eq. 8 with the appropriate process of numerical calculation.

Consequently, we factorize the equation

1−
M∑

m=1

amD−m =
M∏

m=1

(
1− xmD−1

)
(9)

with the obtained prediction coefficients am, and obtain the complex constants xm.
The complex constants xm correspond to the oscillation modes of the time series Sn. The

time series Sn is expanded with the oscillation modes xm, and the corresponding characteristic
frequencies fm and decay rates λm are obtained from the oscillation modes xm as follows.

Sn ≃
M∑

m=1

cmxnm

=
M∑

m=1

cmen(2πifm+λm)∆T (10)

The complex coefficients cm are the complex amplitudes of the oscillation modes xm, and ∆T
is the interval of sampling.

Note that the decay rates λm are not always negative [4, 5, 6]. That is, we also treat growing
modes, so the word “decay” is not quite appropriate. Nevertheless, we use the word “decay” for
simplicity.

We apply the method of least squares

argmin
c1,c2,···,cM

N−1∑
n=0

[
D−nSN−1 −

M∑
m=1

cmx
N−1

2
−n

m

]2
(11)

to obtain the values of the complex amplitudes cm. As the decay rates λm are not zeros in
general, we choose the amplitudes cm at the center of the time series Sn.

The equation for the MEM power spectrum P (f) is written as

P (f) =
1∣∣∣1−∑M

m=1 ame−2πimf∆T
∣∣∣2

=
1∣∣∣∏M

m=1

(
1− e2πi(fm−f)∆T+λm∆T

)∣∣∣2 , (12)

where am are the prediction coefficients and fm and λm are the frequencies and the decay rates
that correspond to the poles.

Obviously, the equation does not contain the parameters that correspond to the real
intensities. Therefore, we introduce an equation for the power spectrum that reflects the real
intensities of the oscillation modes xm [6].
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We consider the amplitude spectrum

Fm(f) =

∣∣∣∣ cmλm

2πi(|fm| − f)− |λm|

∣∣∣∣ (13)

of each oscillation mode xm, which has the maximum value

Fm(|fm|) = |cm|. (14)

We use |fm| and |λm| to keep their values non-negative. Then, summing up the amplitude
spectrum Fm(f) of each oscillation mode xm, we obtain the equation for the power spectrum

P (f) =

(
M∑

m=1

Fm(f)

)2

, (15)

that reflects the intensities of the oscillation modes xm. Note that each peak includes some
contribution from other peaks, and the value of each peak becomes larger than |cm| [6].

4. Analysis of fractional time series
We applied our method and the conventional MEM to a fractional sinusoidal time series

Sn = sin 2πn∆T, (16)

with the number of samples N = 40, 43, 49 and 55, and interval of sampling ∆T = 1/20. We
used a small number of samples to emphasize the false peaks.

We show the time series and time widths for the analysis in figure 1, assuming t = n∆T . The
case N = 40 corresponds to the periodic case, and the others are the fractional cases.

We used Eqs. 6 and 12 for the conventional MEM, and Eqs. 1 and 15 for our method. We
used the order for the analysis M = 8 in common, and did not apply any window functions.
The results are shown in figure 2.

Figure 1. Time series for analysis. Various fractional time series were taken to evaluate
modifications on conventional MEM.

The conventional MEM (figure 2(a)) showed various false peaks depending on the number
of samples N . Even the periodic case N = 40 had false peaks. This is because the periodicity
breaking modification [2] replaces the sinusoidal signal with a decay signal. The decay rates of
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Figure 2. Power spectra obtained with (a) conventional MEM, and (b) our method for various
N . Conventional MEM showed various peak structures caused by modifications in numerical
calculation. We obtained exact frequency and intensity from all fractional time series with our
method.

the peaks for the case N = 40 were obtained from their prediction coefficients am by using Eqs.
9 and 10, and major ones were −4 · 10−3 s−1 for 0.95 Hz, and −7 · 10−4 s−1 for 0.99 Hz.

The intensities of the peaks on the spectra had extremely large values because of the small
values of the decay rates of the crowded peaks.

In contrast, the false peaks disappeared with our method for all fractional cases (figure 2(b)),
and the errors of the obtained frequencies were less than 10−8 Hz. The floor levels of the
spectra are given by the weak oscillation modes which correspond to the errors in the numerical
calculation. Their amplitudes were less than 10−9, and we recommend removing the modes for
further use.

We show the extrapolated time series obtained with the conventional MEM and our method
in figure 3. We used the periodic case N = 40, obtained the prediction coefficients am of the
two methods, applied Eqs. 9 and 11, and plotted Eq. 10 for −5 ≤ t ≤ 20.

Our method with its open boundary condition reproduced sinusoidal time series. In contrast,
the extrapolated time series obtained with the conventional MEM became a decay time series
with a beat structure corresponding to the peaks shown in figure 2 (a). The approximate period
of the beat was about 25 seconds, and the period corresponding to the beat was between 0.95
Hz and 0.99 Hz.
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Figure 3. Extrapolated time series for case N = 40 shown in figure 1. Time series for analysis
corresponds to 0 ≤ t < 2. Time series was extrapolated to −5 ≤ t < 0 and 2 ≤ t ≤ 20.
Periodicity breaking modification of conventional MEM replaced sinusoidal time series with
decay time series accompanying beating structure. Our method with its open boundary
condition, reproduced sinusoidal time series.

5. Conclusion
We pointed out that the drawbacks of the conventional MEM such as false peaks and peak
splittings are caused by the modifications of the equations for numerical calculation. The
modifications are the periodic boundary condition, periodicity breaking modification, and
boundary closing modification. The aims and the effects of the modifications are as follows.

The periodic boundary condition was introduced as “a first approximation” to simplify the
unmodified equation and to obtain rough results with the simplified equation.

The periodicity breaking modification was added to the above modification to obtain a
stable filter for speech synthesis, and this modification decreased the accuracies of frequency
characteristics.

The boundary closing modification with a window function is a common modification that
accompanies the periodic boundary condition to bring continuity at the boundaries.

These modifications are hidden behind the theoretical equations, and provide results
inconsistent with the theoretical expectation.

We applied the MEM without the above modifications, which we call open boundary
condition, to various fractional sinusoidal time series, and showed that we can obtain exact
power spectra from all the various fractional time series. All of them have no false peaks nor
peak splittings.

The standard numerical method of MEM still uses the Yule-Walker equation, Toeplitz matrix
and Levinson-Durbin algorithm to reduce calculation cost. However, computers today are
powerful enough to avoid the approximations, and it is the time to refresh the numerical method.
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