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Abstract. Hyperspectral Images (HSIs) are usually degraded by many kinds of noise called
mixed noise, which greatly limits the subsequent applications of HSIs. Many researches have
proved the patch-based low-rank methods and the total variation (TV) based approaches have a
good effect on reducing noise in HSIs. Here, we propose a non-local patch based rank-
constraint HSIs noise suppression methods with a global 3-D anisotropic total variation
(NLRATYV). Differing from previous patch-based methods which usually ignore spatial
structural information, we add more structural constraints with the non-local similarity across
patches for suppressing the structural noise that exists at the same location of many bands.
Besides, we utilize the global 3-D anisotropic total variation to ensure its smoothness in spatial
and spectral dimensionalities while reconstructing the image. The augmented Lagrange
multiplier method is adopted to optimize the proposed algorithm. The real data experiments
have proved the superiority of NLRATYV in decreasing mixed and dense noise.

1. Introduction

HSIs use tens or hundreds of spectral bands to capture the same ground objects by the high spectral
resolution sensors. Compared with classical imaging methods, HSIs contain more spectral information
which is greatly useful for substances identification. Therefore, they have been widely applied in
biomedicine, agriculture, geology, etc. However, during HSIs acquisition, it’s inevitable to suffer a
blend of image details and many kinds of noise called mixed noise, containing addition noise, like
Gaussian noise, and sparse noise, like stripes and dead lines, etc., which greatly limits HSIs’
subsequent applications, like classification [1], unmixing [2], target recognition [3], etc. So HSIs
denoising is important for most of their applications.

HSIs contain two spatial dimensions and one spectral dimension. The reflectivity of the same
spatial pixel of HSIs in different bands is different, which can be regarded as a spectral characteristic
curve of ground objects. The causes of HSIs mixed noise include atmospheric interference, dark
current, the non-uniformity of detector response, photon effect, etc. Generally, the noise contaminates
the three dimensions of HSIs, resulting in blurry images and distorted spectral curves.

Some excellent gray-level images denoising methods have been directly applied or extended to
denoising HSIs band by band, including K-SVD [4], BM3D [5], NCSR [6], etc. But these methods
ignore the strong spectral correlation between bands of the HIS. Principal component analysis (PCA)
[7] is a typical method for denoising. But it’s sensitive to outliers and can just work while images are
corrupted by small amount of Gaussian noise. It can’t perform well in HSIs denoising because HSIs
often suffer mixed noise and dense noise that makes some bands almost overlapped by noise [8-9].
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Robust PCA (RPCA) is proposed by Candes et al. in [10], which is more steady to outliers, and is
proved highly useful for recovering the low-rank component and removing the sparse noise of HSIs
[11-15]. The HSIs are divided into overlapping patches in Low-rank matrix recovery (LRMR) [11],
and the authors use the Go Decomposition algorithm [16] to iteratively solve the clean HSI. In [12],
authors introduce a new HSIs denoising method, i.e., NAILRMA, which explores different noise
intensity in different HSIs bands. To improve the denoising effects, some researchers consider spatio-
spectral characteristics. Othman et al. [17] perform the wavelet shrinkage operator in spectral
derivative-domain. Group low-rank representation (GLRR) [18] is an efficient denoising method that
divides patches into some groups and adds spatial constraint using non-local similarity across patches.

Total variation (TV) is also an effective method and has been used for HSI denoising. Yuan et al.
propose a spectral-spatial adaptive total variation (SSAHTV), using spectral and spatial differences to
improve denoising effect [19]. He et al. [8] combine the low-rank method and TV regularization
(LRTV), where TV is calculated in spatial domain. Aggarwal et al. [20] propose a 3-D spatio-spectral
total variation (SSTV) that uses the spatial and spectral smoothness. Liu et al. consider the spatio-
spectral smoothness and correlation between bands and propose low-rank constraint SSTV [21]. In [9],
He at al. use the patch-based rank-constraint matrix factorization to remove the addition noise and
adopt a 3-D anisotropic TV norm to ensure spatio-spectral smoothness. Reference [22] introduce a
new TV norm that combines the non-local self-similarity with spatio-spatial correlation and gains a
good denoising effect.

Here, we propose a novel noise reduction method, NLRATYV, exploiting non-local rank-constraint
matrix factorization and 3-D anisotropic total variation. More structural constraints is adopted by
adding the non-local similarity between across patches, which helps suppress structural noise existing
the same location of many bands, like structural stripes. A 3-D anisotropic total variation is used to
preserve the spatio-spectral smoothness. The real datasets experiment results have demonstrated the
superiority of the proposed algorithm.

2. Related Work

2.1. Patch Based Rank-Constraint Method
HSIs are usually degraded by mixed noise, including addition noise, like Gaussian noise, and sparse
noise, like impulse noise, stripes, and dead lines, etc. The degradation of the HSI can be modeled as

Y=X+S+N (1

where Y, X, S, \V € RM*N*P denote observed images, denoised HSI, sparse noise, and addition
noise, respectively. The main purpose of HSIs denoising is to obtain a clean image X while preserving
the image details. Y, X, S, and V" are reshaped into Casorati matrices Y, X, S and N € RMN P where
each band is converted into a column vector € RMN*! and the column vectors are arranged column-
wise. The Casorati matrix form of model (1) is showed as follow:

Y=X+S+N )

Many researchers exploit the strong correlations of adjacent bands in HSIs to improve rank-
constraint denoising methods based on RPCA [4-6], [10], which can be written as

@@xm+MMh,muv—x—ﬂ@sarmuer 3)

where ris the upper bound of the rank value of X and A is a regularization parameter. ||-||,, ||-]l; and
||-]| = stands for nuclear norm, L1-norm and Frobenius norm of a matrix.

Formula (3) can be adopted to denoise a variety of noise in HSIs. The spatial dimensionality of
HSIs is much greater than the spectral one (MN > p), which results in blurring while using model (3)
[9]. So the patch based rank-constraint methods are studied and have been proved a good effect on
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HSIs denoising [8-9], [23], which divide the HSI into subcubes centered at location (i, j) of size
m x m X% p and optimize each patch. The degradation model and its Casorati matrix form is as follow:

Yap =Xap +tSap + Najp Yan = Xaj tSwpn + Naj 4

The patch based rank-constraint denoising model is as follow:

X (gfg(li,j)ux(i,j) A MSanll,
2
st [[Yep = Xap = Saplly s 6 rank(Xep) <7 )

2.2. SSTV Model

The rank-constraint RPCA can’t efficiently remove the Gaussian noise and the structural sparse noise
which is usually regarded as low-rank part [23]. Thus researchers resort to total variation (TV) norm
[24] based regularization which is able to capture the piecewise smoothness structure and extend it to
HSIs denoising [8], and [25-26]. There are isotropic and anisotropic TV norm [27]. The former usually
blurs images, while the latter preserves the textures. So the latter is researched more [8], and [27-28].
The 2-D TV norm is calculated band by band, ignoring spectral information of HSIs. So researches
focus on 3-D anisotropic TV (3DATV) norm or spatial-spectral TV (SSTV) [9], [19-24] and [26]. The
representation of them is as follow:

IXNzpary = TllDX|l; + Tj”Djxlll + 1pIDp X1, and | DX | = [X(0,j +1,b) — X(i,j,b)| (6)

where D;, D;, D,, denotes finite-difference operators, and 7; = 7; = 1, 7, = 0.5, [28].
3. Proposed Method

3.1. Non-local Rank-Constraint HSIs Denoising Method with 3-D Anisotropic Total Variation
The strong correlations of adjacent bands is the most important characteristic of HSIs, which is greatly
helpful to HSI denoising. We propose a non-local patch based rank-constraint HSIs noise suppression
methods with a global 3-D anisotropic total variation (NLRATYV). Differing previous algorithms, the
local similarity in the patches, the non-local similarity across patches, and a global SSTV norm is
collaborated to improve the HSIs denoising.

First, we extract subcubes from original HSI and reshape them into Casorati matrices also named as
patches. The step length and the spatial size and the number of subcubes are | and m, and K =

[M_Tm] X [N_Tm] respectively, where [] rounds down to the nearest integer. We define an operator

Tny (x) o extract a subcube € R™>™MXP ]ocated at (i, j) and reshape it into a patch Y € ]R"‘ZXP, i.e.
Yoy =Tm(Y), n=12,-,K (7)
After these patches are extracted, we calculate the Euclidean distance across two patches, i.e.
2
D(nt) = ”Y(n) - Y(t)”F n,t= 1, 2, “e K (8)

For each patch, we find k similar patches which are the least Euclidean distance. The indices of
similar patches for the patch n are stored in g, = {¢n1,%n2 "> Fni} t0 help image reconstruction.

The similar patches of the patch n are reshaped into a group G¢,)(Y) € RKM*XP j e,

_ [yT T T T _
g(n) Cy) - [Y(g’ru)’ Y(g‘nz)' T Y(g’n3)] n= 1’ 2’ I K (9)

which utilizes the local similarity and non-local similarity, bringing extral structural information.



CCISP 2019 IOP Publishing
Journal of Physics: Conference Series 1438 (2020) 012024  doi:10.1088/1742-6596/1438/1/012024

Based on above analysis, we propose a NLRATV model to denoise HSIs, i.e.
K

w3

n=1

)+ X llssry

(10)
st |Gy (Y) = Gy (X) — Q(n)(5)||12, < € rank (Q(n)(x)) <r

3.2. Optimization Procedure
To be convenientljor optimization operation, the function (10) can be reformulated as

min > ([IGen DUl st G0 = G (@),
et (11)
J=XU=DX, ||§6(¥) = G (L) = Gy < . rank (G (L)) <7

where D = [1;D;, 7;D;, 7, D] denotes the SSTV, and £, J € R™*N*P | and U € RM*N*P*3 gre

auxiliary variables. Formula (11) is able to be efficiently optimized using the augmented Lagrange
multiplier (ALM) [29] and can be translated into the following function:

minL(L s J XU, Ay, Az A3, Y) = LSJX’LLA Ay A3, Y (
1

+ (A1, G (Y) — Gy (L) — Gy (S)) +#||§(n)(y) Gy (L) — Q(n)(5)||
+ (10, (D) = Gy (D) +5 |50 () = G @) + =lUlly + (1, U = DX) (12)

u i
+ S IU = DX + (45,9 =2 ) + 2119 = XIIf 5.t rank (G (£) < -

where u is the penalty parameter, and A,, A,, A3, and Y are the Lagrange multipliers. Y = [V;,Y,, Y5],
and U = [U4,U,, Uz]. We divide formula (12) into two subproblems and optimize them iteratively:
updating (£,8) and updating (J,X,U) with other parameters fixed respectively.

3.2.1. Updating (L, §). The function for each group G,)(£) and G(,)(S) can be simplified as

n - n L) — n )
g(,il(% é?,f)“ G W) =Gy (L) — Gmy(S))
+ 2115 = G ) = GO, + (12,58 = G (@) 13)

U 2
+ 2 ||9(n)(£) -G ({])” s.t.,rank (g(n)(,c)) <r.
F

The subproblems for variables (G ) (£), Gn)(S)) are shown as follow:

Gmy(£): arg min
rank(g(n)(L))Sr

U A4
+= ”Q(n)('y) —Gm(L) —Gm(S) +—
2 pll,

2
= arg min
rank(g(n)(li))sr

+ 2|50 — G (@ + 2 (14)

+ 1[G 0 = (G W) = G O + G()/2 = (s — A0/ |
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2

. U A
G (S): arg%n)gsl;n NG, +3 ”g(n)(y) — G = Gm(S) + 71 ) (15)
The function (14) can be solved by the singular value shrinkage operator [30-31], i.e.
G @ =Dy, (G0 (Y = G () + Gy @))/2 + (41 ~ 43)/ (20)) (16)

where 3)1/2 (x) = diag {max (Ji_i’ 0)}, and g; denotes the singular value of the matrix *. Function
n
(15) is able to be optimized by the soft-thresholding (shrinkage) operator [9], [29]:
x—=AMu, ifx>2A/u
Raux) =x+4/u, ifx <-2/u a7
0, otherwise

that is, G, (S) can be formulated as
G = Rayu(Gy(Y) = Gy (D) + A1 /1) (18)

3.2.2. Updating (J, X, U): The formula for (J, X, U) is simplified as
. . 2
argmin (J, X, W) = min Yn-s (42, G0 () = G0 @) + £ 10 (D) = G @)

(19)
+ Tl Ully + (¥, U = DX ) + 511U = DX NI + (45,9 = X ) + S1lg - X112
The subproblems for variables (J, X, U) is as follow:
.M A3 2 C U Ay 2
g argmin £a 20+ 2|+ (L6000 - G (@ + 2 20)
d 2 Hllg =i 2 uilg
o Y|I?  u Az |
X: argm1n—|‘u—DX+— +—||[]—X+— (21)
X 2 iz F 2 u F
. u Y|
Uu: arg min 7||U|[; + = ||‘U — DX +— (22)
X 2 u F
According to function (20), we can get the approximate solution of 7 [9], i.e.
K K -1
J=| X =43/ + Z Gy (Gemy (D) + A/ 1) (1 + Z g(Tn)g(n)) (23)
n=1 n=1

where, g(Tn)is the inverse transform of G,y defined in formula (9). g(Tn) contains two operators. First,
we translate groups into patches by calculating the weighted sum of patches which have the same
index, based on the stored indices in g,,. Second, we reshape the patches into the form of HSI.

The fast Fourier transform (FFT) is able to approximate X in function (21), i.e.

A Y 2 -1
X =7F1 [T ((J + 73) +DT (u + ;)> (1 + (F@Dy) +(F(5D))) + (T(TbDb))z) ](24)
Function (22) is also optimized using soft-thresholding (shrinkage) operator, i.e.

r Y ¥
Uy = Re (ripix - —), U, = Rt (erjx - —), Uz = Re (rbDbX - —) (25)
u Hu U Hu m 2
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After the variables (£, S, J, X, U) are all be solved, the Lagrange multipliers A;, A5, A3, and Y’
will be updated:

Ay =83+ 1 (G W) = Gy (£) = Gy () ), A3 = Az + (I = X)

e =M+ 1 (Gy(L) = Gay(@), ¥ = ¥+ u(U - DX)
The implementation steps of NLRATYV is showed in Algorithm 1.

(26)

Algorithm 1 Algorithm for NLRATV

Input: Y € RM*NXP_rank r, patch size m, patch number k in a group, €, A, 4, T
Output: X € RMXNxp

Initialization: £©, X©, 5@ g© y© =0, 49 4P AP y©® =0, 4@ = 1072, 0 =
108, p = 1.5, maxiter = 50, e = 107, iter = 1.
Step1: Get Gyfor (n =1, 2, -+, K) using (9).
Step2: Repeat until convergence or iter > maxiter
Update all (g((,‘f)er“)(ﬁ), g((,"f)"’r“)(c?)) groups using (16) and (18).

Update (gUiter+D), xliter+1) q(iter+1)) ysing (23), (24) and (25).

Update Lagrange multipliers A, 67D g, @er+1) 4 (ter+1) anq yliter+1) yging (26).
Check the convergence conditions:

p=puxp, p€ (pp©®, pnay) iter = iter +1.
mas {6570 - 155 6 V0|
||g((ri5er+1)(£) _ g((rilt)er+1)((7)||oo , ”ru(iter+1) _ Dx(iter+1)”} <e.

4. Experimental Results

We conduct several real data experiments to compare NLRATYV with other typical algorithm in HSI
denoising. There are six HSI denoising algorithms for comparison, i.e., LRMR [11], GLRR [18],
LRTV [8], SSTV [20] and LLRSSTV [9]. LRMR and LRTV are patch-based HSIs noise removal
methods using RPCA. SSTV is an efficient denoising approach based on 3-D TV norm. GLRR utilize
the non-local similarity in denoising model. LLRSSTV combine the patch-based rank-constraint
method and SSTV norm. We get all the codes of these algorithms from the authors except GLRR, and
the code of GLRR is implemented by us.

We use two datasets, i.e., EO-1 Hyperion dataset and the AVIRIS Indian Pines dataset (figure 1), to
test above algorithms and the proposed method. The used EO-1 dataset € R290%200%x166 js 3 subcube of
original image € R*00%1000x242 after removing the water absorption bands and the Indian Pines dataset
€ R!45%145x200 \was acquired by the NASA AVIRIS instrument over the Indian Pines test site in 1992
[8]. During the experiments, the block scale and step length are set as m = 20 and [ = 10. The rank of
EO-1 Hyperion dataset and AVIRIS Indian Pines dataset is set as r = 4 and » = 10. The patch number
in a group isk =4[18]. e =10°, 1 =0.2, u = 0.01, and T = 0.005 are set according to previous
experiment results [8-9], [11].

4.1. Results in EO-1 Hyperion Dataset

This dataset is mainly degraded by stripes and deadlines and even some of them are structural.
Denoised images of the 1st and 165th band are showed in figure 2 and figure 3 respectively. The
experiments showed in figures 2 and 3 proved that the proposed NLRATYV obviously has the best
effect on mixed noised removal. LRMR can not remove some stripes which exists at the same location
in many spectral bands. GLRR has a better effect on stripes because it exploits more spatial
information while combining the local similarity and the non-local similarity, but it’s not able to
remove noise completely. With using the spatial smoothness band by band, LRTV improves the
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performance of HSI denoising method. But it usually destroys some image details. SSTV introduces a
3-D spatio-spectral TV which can remove more Gaussian noise while significantly preserves image
details, but it’s not very helpful for reducing stripes noise. LLRSSTV is an effective denoising method
which combines the local similarity and SSTV and can remove mixed noise, including Gaussian noise,
impulse noise, stripes, and dead lines, etc. The figures 2(g) and 3(g) show the proposed NLRATYV can
wipe off the mixed noise and protect the details simultaneously. Compared with LLRSSTV, NLRATV
has a better performance in removing mixed noise and protecting details.
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Figure 1. Figure (a) is the EO-1 dataset, and (b) and (c) are the 1th and 165th band of it; (d) is the
Indian Pines dataset, and (e) and (f) are the 105th and 149th band of it.
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Figure 2. The denoising results of band 1 for EO-1 Hyperion dataset. (a) Original. (b) LRMR. (c)
GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV.
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Figure 3. The denoising results of band 165 for EO-1 Hyperion dataset. (a) Original. (b) LRMR. (c)
GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV.

4.2. Results in AVIRIS Indian Pines Dataset

Some bands of this dataset are severely overlapped by dense noise, so that they are quite difficult to be
restored, such as the band 105 and band 149, etc. As showed in figure 4 and 5, we can hardly see the
details in the original images. Although facing extreme corruption, NLRATYV still restore some details
of the ground objects. Figures 4(b) and 5(b) prove that LRMR can’t remove the dense noise and
preserve the image textures well so that the recovered results are still too blurring. After analysing
figure 4(b)-4(d) and 5(b)-5(d), we can find that patch-based rank-constraint methods are indeed
beneficial to HSI denoising. The restorations reconstructed from the original images with dense noise
by SSTV in figure 4(e) and 5(e) are distorted, perhaps mainly because it ignores the strong
correlations of adjacent bands without the help of rank-constraint methods. LLRSSTV and its
improved counterpart, i.e., NLRATV, have a good effect on dense noise removal and protecting
details. After comparing the figure 4(g) and 5(g) with 4(f) and 5(f) respectively, we find NLRATV is
capable of reconstructing more image details and relatively stronger in the ability to remove the dense
noise.
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Figure 4. The denoising results of band 105 for Indian Pines dataset. (a) Original. (b) LRMR. (c)
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Figure 5. The denoising results of band 149 for Indian Pines dataset. (a) Original. (b) LRMR. (c)
GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV.

5. Conclusion

Hyperspectral images are contaminated by mixed noise, including addition noise and sparse noise, etc.,
which greatly limits their subsequent applications, like object detection, classification, unmixing, etc.
Here, we have proposed a novel mixed and dense noise suppression method using rank constraint
matrix factorization, non-local structural information, i.e., non-local similarity, and the global 3-D
anisotropic total variation, which is efficient on suppressing the structural noise that exists at the same
position in many bands. A global 3-D anisotropic TV norm is exploited to ensure the image
smoothness in spatial and spectral domain and preserve image details. Several real data experiments
have demonstrated NLRATYV is more efficient on mixed and dense noise removal.

Though the proposed method has gained a good effect on HSIs denoising, it is worth more
researches to explore further improvement. We translate the patches into matrices and perform low-
rank operations on matrices. It can be extended to the tensor form to explore the 3-D rank-constraint
methods for HSIs noise reduction. And the weight of three dimensions in 3-D total variation deserves
more quantitative analysis. Besides, we can make a further study on the non-local similarity to
discover its more powerful strength.
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