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Abstract. In this paper, we propose the method to optimize the iteration number of the Lucy-

Richardson algorithm for image deblurring. This technique based on the modified Tikhonov 

regularization which composed of 2 parts which are designed for measuring the image 

similarity and noise enhancement due to the deblurring process. The regularization parameter 

will be used to control the desired deblurred image. Several sizes of the Gaussian blur kernel 

are applied for generating the degraded image in the simulation experiment. The Peak Signal to 

Noise Ratio (PSNR) metric is used to measure the deblurring performance. The results show 

that this method can be used to estimate the optimal iteration number and it also gives the 

PSNR value higher than the default Lucy-Richardson method and regularized filter all sizes of 

the experimental blur kernel. Moreover, it also tolerance to the deviated blur kernel especially 

it smaller than exact blur kernel. 

1. Introduction 

When the imaging system captured a scene, the acquired image will always be degraded due to both 

intrinsic and extrinsic physical properties such as detector, optic instruments, electronic system, 

camera motion, including the environmental atmosphere. Generally, the image formation model can 

be expressed as the following equation. 

       yxnyxfyxpyxg ,,,,      (1) 

where  yxg ,  is the degraded image,  yxp , is the blur kernel which also known as the point spread 

function (PSF),  yxf ,  is the original image (scene) ,  yxn , is an additive noise and   denotes the 

convolution operator. Lucy-Richardson (LR) iterative algorithm is one popular technique in the image 

deblurring community. It was developed by Richardson [1] and Lucy [2]. It was derived from a 

statistical point of view as it converges to the maximum-likelihood solution under the condition that 

the image data corresponding a Poisson distribution [3]. The restored image can be defined as 
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where 1)(kˆ f  is a restored image in the present step, )k(f̂  is a restored image in the previous step and *p

is a reversal of p along each of its dimensions[4]. The main disadvantages of this algorithm are image 

boundary artifacts and lack of information about the optimal number of the algorithm iterations [5]. To 

overcome this problem, the technique to estimate the optimal iteration number of the LR method is 

proposed. This technique is based on the modified Tikhonov regularization. The paper is organized as 

follows. The related works are summarized in section 2. The proposed algorithm is described in 

section 3 and the experimental results are demonstrated in section 4. Finally, the conclusion is given. 

2. Related works 

2.1. Lucy-Richardson algorithm 

The LR method has become popular in the fields of astronomy. After that, several researchers 

developed and modified the method that based on LR method to restore the degraded image in many 

fields such as remote sensing [6,7,8], medical [9,10], computer vision [4,11], etc. 

2.2. Tikhonov regularization  

In the optimization framework, the Tikhonov regularization is one of the most common ways to deal 

with ill-conditioned problems [12]. The general form of this technique can be expressed as 

   xxy
x

 ,min      (3) 

where  yx,  is a function that measures how much a given candidate estimate x deviates from 

explaining the data y,  x  is a regularization function [13] and   is the regularization parameter. 

Many researchers applied this regularization for deblurring the degraded image [14,15]. 

3. Proposed method 

3.1. Modified Tikhonov regularization 

The Tikhonov regularization in (3) is modified to control the iteration convergence which can be 

written as the following equation. 

   gfgf
f

,ˆ,ˆmin
ˆ

     (4) 

The first term is employed to measure the similarity of the deblurred image compared with the 

original image in the degradation viewpoint. That is  
2

2
2

1 ˆˆ fpgfg,   . The second term, we 

design it to measure the noise enhancement due to the restoration process [16]. The noise enhancement 

is inversely proportional to the Signal to Noise Ratio (SNR). If we let g  be the signal and gf ˆ  be 

the noise, we can formulate the second term as    
2

2

ˆˆ /ggffg,  . Therefore, the modified Tikhonov 

regularization can be formulated as follows. 
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3.2. Image deblurring algorithm  

In this section, the algorithm for image deblurring is described as followed. 

 Step 1: Input the degraded image and the associated blur kernel. 
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 Step 2: Initialization  

 Set the value of the regularization parameter and initial deblurred image as the degraded 

image. 

  Calculate the initial error from optimization function (5) as 
2

22

1)0( gpge   

 Step 3: Iteration 

 Update the deblurred image using the LR method (2) and calculate the error from 

optimization function (5) as  
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 Step 4: Optimization condition 

 The iteration process will be stopped when the error in (6) is more than the previous iteration. 

 Step 5: Stop the iteration and output the resulting image which is the deblurred image before 

the last deblurred image. 

For the best benefit, the degraded image and the deblurred image in (6) should be considered only 

the image area that has not the image boundary artifact. 

4. Simulation results and discussions 

In this section, the experiments are divided into 2 parts. The first part, the blur kernel used in the 

deblurring process is same as the blur kernel in the degradation process. The second part, the blur 

kernel used in the deblurring process will be deviated by the scaling factor to test the tolerance 

performance from non-exact blur kernel estimation. The regularization parameter was defined as 4 in 

all experiments. 

4.1. Exact blur kernel 

The original image will be convolved with several isotropic Gaussian blur kernel. After that, the same 

blur kernel will be employed in the deblurring process. The visual results will be demonstrated in 

Figure 1. The graph results of PSNR value versus the sigma of Gaussian blur ( ) when to compare 

with the default LR method and the regularized filter are shown in Figure 2. Due to the edge artifact of 

all method, the PSNR will be determined from the area that not including the image boundary artifact. 

We can see in Figure 1, the PSNR results of our proposed method are better than both the default LR 

method (iteration number is 10 for the default LR method) and regularized filter. The iteration number 

will be changeable although the regularization parameter is a fixed value. The visual results in Figure 

2 show that the high detail in the deblurred image of our proposed method. However, the image 

boundary artifact is always presented. 

4.2. Non-exact blur kernel 

The blur kernel in the deblurring process will be deviated by the scaling factor before applying to each 

deblurring method. The comparison results of the PSNR value versus the scaling factor where the 

sigma of the blur kernel in the degradation process as 1.5 are demonstrated in Figure 3. We can see, 

our proposed method gives the PSNR value higher than others when the scaling factor is less than 

about 1.1. The maximum PSNR value is located on the scaling factor as 1. That is, the proposed 

method will provide the best efficiency if the estimated blur kernel is close to the exact blur kernel.  
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Figure 1. Visual results of the tested image when the sigma of Gaussian blur kernel is 1.3, (a) 

original image, (b) degraded image, (c) proposed method, (d) default LR algorithm and (e) 

regularized filter 
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Figure 2. Comparison of the PSNR value versus the sigma of the 

Gaussian blur kernel for Lena tested image (196×196)  with default 

LR algorithm, regularize filter and proposed method (Opt. LR)  

However, the PSNR value of our proposed method is rapidly decreasing when the scaling factor is 

greater than 1.2. and its PSNR value is lower than the PSNR of the degraded image when the scaling 

factor is more than 1.3. From this experiment results, we can summarize as followed. Our method can 

be applied to restore both the degraded image in case of the soft blur and hard blur. The estimated blur 

kernel that uses in the deblurring process must be estimated close to the real blur kernel in the 

degraded process for the best of the deblurred image. If the estimated blur kernel is not exact, the size 

of the tuned blur kernel should be reduced. 

 

 

Figure 3. Comparison of the PSNR value versus the scaling factor for the 

Lena tested image (196×196) with default LR algorithm, regularize filter 

and proposed method (Opt. LR) 



CCISP 2019

Journal of Physics: Conference Series 1438 (2020) 012014

IOP Publishing

doi:10.1088/1742-6596/1438/1/012014

6

 

 

 

 

 

 

5. Conclusions 

The Tikhonov regularization was modified to control the iteration number of the Lucy-Richardson 

method. This regularization is composed of 2 terms as the similarity in the degradation viewpoint and 

noise enhancement. The proposed method is performance tested by comparing with the default Lucy-

Richardson method and the regularized filter in 2 cases as exact blur kernel and non-exact blur kernel. 

The results show that the proposed method can be given the PSNR value higher than others all sizes of 

blur kernel and can tolerate the deviated blur kernel especially it has smaller than exact blur kernel.  
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