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Abstract. A fractional order chaos system is first designed. It is a linear-nonlinear hybrid using
fractional order logistic map. The fractional order chaos system is closer to the real nature
phenomena and has better cryptography features than the integer order chaotic systems in
dynamics, such as larger range of key space and almost no periodic windows in bifurcation
diagrams. Then, we propose an image encryption scheme employing the superior chaotic
features of the fractional order chaos system. Which chaotic sequences generated are used for
permutation and addition/subtraction operation of encryption depends on the plaintext image.
Security analysis and test results indicate that our encryption scheme has a high efficiency and
superior security.

1. Introduction

It is very necessary to protect the confidentiality and security of digital images on unsecured channels,
because digital image is usually spread through the Internet and stored in a variety of platforms.
Traditional encryption algorithms have been developed for encrypting text data, such as IDEA and
AES [1]. And it was claimed that they may not apply to encrypt the image in some cases [2, 3],
because the image is high redundant and its adjacent pixels are high correlative. However, chaotic
systems have many superior characteristics of meet the needs of the image encryption, such as pseudo-
randomness, sensitivity to initial conditions and ergodicity.

Plenty of encryption algorithms in recent years were based on the spatial chaotic systems [4-14],
because their high dimensional feature and lots of chaotic sequences can increase the security of
cryptosystems. Many encryption scheme using adjacent coupled map lattices (CML) [4-12] were
proposed and obtained good results. Zhang [13] designed an image encryption scheme using map
lattices coupled in a non-adjacent manner. Then, he developed an image encryption scheme by the use
of map lattices coupled in a mixed linear-nonlinear manner [14]. However, the above mentioned
chaotic systems all use the integer order logistic mappings. Fractional calculus is more general than
integer order calculus because it is an extension of integer order ones. Many fractional dimension
phenomena exist in technology and nature [15].

Fractional order chaotic systems have received intensive attentions [16-19] because they have more
complex dynamics and is closer to the real nature phenomena than integer order chaotic systems.
Some image encryption schemes have used fractional order chaos theory [20-25]. However, the
combination of fractional calculus and mixed linear-nonlinear chaotic systems which can describe the
real natural phenomena has not been researched. Furthermore, By using chosen plaintext attack,
Benyamin [23] cracks an image encryption scheme [24]. The encryption scheme in [24] used an
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improper fractional order chaos system and the key stream is independent of either plaintext images or
cipher images.

Through the discussions above, we design an encryption scheme employing a fractional order
linear-nonlinear chaotic system. Analysis of simulated results attest that our encryption scheme is
efficient. The main work are as follows.

e We construct a fractional order linear-nonlinear chaotic system. Its major advantages over

other chaotic systems are closer to the real natural phenomena and stronger ergodicity of time
series and wider range of key space. Moreover, the range of parameter x in the chaotic system

breaks its limit in the classic logistic map.

e For enhancing the sensitivity of the plaintext images, we use plaintext images to determine
which chaotic sequence is used for encrypting image, which can enhance the ability of the
resistance to choose plaintext attacks.

In this paper, the rest is organized as follows. The fractional order linear-nonlinear chaos system is
introduced in section 2, whose cryptography advantages are also described. The proposed encryption
scheme is explained in Section 3. Section 4 analyzes simulated results and security. Finally, Section 5
gives the concluding remarks.

2. The fractional order linear-nonlinear chaos system
Definition 1. The definition of the Caputo fractional derivative [26] is
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where I'() is the Euler’s Gamma-function, & is the order, f (t) is a continuous function, m is an integer
which is not less than o, and f"is the mth-order derivative of f(t).
The logistic differential equation of fractional order [27] is given
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where the initial condition x(0) = x,. After discretizing the equation (2) by using piecewise constant 7,
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By reasoning the solutions of the equation (3), the discretized logistic differential equation of
fractional order [28] is obtained

we can get the equation
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The fractional order linear-nonlinear chaotic system is presented as
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where n, j, k (1<n, j,k <L) denote the lattices, ¢ is the time index (¢ = 1, 2, 3, ...), n and gare the

r % The lattices n, j, k satisfy the Arnold cat map
a

iT1 p
M:{q pqﬂ}{n}(mdu ©

where ¢ and p are the Arnold cat map parameters.

Bifurcation diagrams are analyzed theoretically. Lyapunov exponents are further researched by the
Kolmogorov-Sinai entropy universality [20]. All simulations are conducted assuming that L = 100,
pe(2r@+a)/r*,3r+a)/r*), r=0.25, £ € (0,1 and 7 €[0,1].

coupling parameter (0<7,6<1l)and &=

2.1. Bifurcation Behavior
Figure 1(b)-(f) show the bifurcation diagrams of the proposed chaotic system, and the range of

parameter u is(2F(1+a)/ r“,3r1+a)/ r“). We can find that the range of parameter x in the CML
system [29] (Figure 1(a)) is smaller than those in Figure 1(b)-(f). Moreover, in Figure 1(b)-(f), with
the increase of the value of parameterj;, the bifurcation point is becoming more and more clear, and

the periodic windows have become less and less. Thus, for the proposed chaos system, when the
parameter 5 is assigned a suitable value, there is almost no periodic windows in its bifurcation

diagrams. Therefore, in comparison with the CML system, our chaos system is more appropriate for
cryptography due to almost no periodic windows.
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Figure 1. Bifurcation diagrams. (a) the CML system, (b) our chaotic system («=0.8,7=0.4), (c) our
chaotic system (o =0.8,7=05), (d) our chaotic system (a=0.8,7=0.7), (¢) our chaotic system
(a=087=08), (f) our chaotic system («=0.8,7=0.9).

2.2. Kolmogorov-Sinai entropy universality

At the fewest any chaotic system has one positive Lyapunov exponent. The sum of positive Lyapunov
exponents is expressed as the Kolmogorov-Sinai entropy [30]. However, the percentage of the chaotic
lattices is expressed as the Kolmogorov-Sinai entropy universality Au [19].
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From Figure 2, we can find that the spatial chaotic behaviors are different between the proposed
chaos system and the CML chaos system. In the proposed chaos system (Figure 2(a)-(e)), its flat area
in chaotic behaviors is in x < (7.2,9] and ¢ € (0,1) . However, for the CML chaos system (Figure 2(f)),

its flat area is only in e (3.75,4] and £ €(0,1) . In comparison with the CML chaos system, the
proposed chaos system has more parameter pairs of & and x, which can cause widespread chaos
behaviors. Therefore, the proposed chaos system has a larger range of parameter 4 that leads to
spatial chaos behaviors than the CML chaos system.

Figure 2. Kolmogorov-Sinai entropy universality. (a) our chaos system (;=0.4), (b) our chaos system
(n=05), (c) our chaos system (5 =0.7), (d) our chaos system (;=0.8), (¢) our chaos system (=0.9), (f)
the CML system.

Our chaos system has a new feature that the range of its parameter x is wider compared with that
of the CML chaos system. The parameter u is often as a secret key in image encryption, therefore,

our chaos system has a larger key space compared with the CML system. Therefore, our chaos system
is very appropriate for encrypting image.

3. The proposed image encryption scheme
We design a scheme for encrypting an M xN gray image. The new chaotic features of our chaos
system are used in the permutation, diffusion and nonlinear addition/subtraction phase. For increasing
the sensitivity to the plaintext images, we use the sum of plaintext image pixel values to decide which
chaotic sequence is used for permutation and addition/subtraction operation.

Input: L=100 and the original image (plaintext image) /. The secret keys iz, &,7,% (1) and « .

Output: The cipher image C.
Stepl. Obtain L chaotic sequences by iterating Equation (5) M x N times.
Step2. Perform diffusion operation and obtain an M x N matrix D, which is described as

D(s) = moc{[mod(| X,q,,, (Mod(D(s 1), L) +1) 10 |, 256)+mod(1(s) + D(s 1), 256)], 256} (7

where the initial value D(0) = 0. Suppose / is a pixel sequence, I(s) is the sth pixel of 1.
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Step3. Update each value of the ith chaotic sequence
% =mod( x x10* |, 256) (8)

MxN
where i = mod(z I(1),L)+1. Transform the matrix D and the sequence x into M x (N x4) quaternary
1=1

matrices D1 and D2, respectively.
Step4. Create a new sequence y = [ X, X,; , X5 , X,; | and perform the permutation operation

DI, j) <> D1(;,| mod(y(j), N x4— j) |+ i), j €[L N x4], o)
D1(k,?) <> D1 mod(y(k),M —k) |+ j,:).k €[L M].

Step5. Perform nonlinear addition/subtraction operation and obtain an M x (N x 4) quaternary matrix
D3, which is described as

(10)

mod(D1(k, j)+ D2(m,n),4) (k+j)/2=1
{mod(Dl(k, i)-D2(m,n),4) (k+j)/2=0

where the relationship between m, n and £, j conforms to the Arnold cat map in Equation (6).
Step6. Alter the matrix D3 into a decimal matrix C with the size of M xN .
Step7. The value i is assigned to the (M, N)-pixel of C. C is the final cipher image.
We have finished the encryption process. The decryption operation is its inverse process.

4. Security analysis and simulation results

For next simulation experiments, we employ 3 testing images of USC-SIPI Image Database [31]:
Aerial (5.2.09), Airplane (7.1.02) and Elaine. The 3 standard test images are 8-bit monochrome images
and have the size of 512x512, as shown in Figure 3. Figure 4 shows encryption and decryption results
of Elaine.

4.1. Statistical analysis

4.1.1. Histogram analysis. We can find the distribution information of the image pixel values from the
histogram of the image. The histograms are performed on all original images in Figure 3 and their
cipher images. The histogram of the original image of Elaine is indicated in Figure 5(a), and the
histogram of the cipher image of Elaine is indicated in Figure 5(b). The results of other 2 test images
are similar to that of Elaine. Obviously, the cipher image has a fairly uniform histogram, which resists
statistical attacks.

(b) (c)
Figure 3. The 3 test images. (a) Elaine, (b)Aerial, (¢) Airplane.
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(a) (b)

Figure 4. The encryption and decryption results. (a) cipher image of Elaine, (b) decrypted image of
Elaine.
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Figure 5. Histograms for Elaine image. (a) the original image’s histogram of Elaine, (b) the cipher
image’s histogram of Elaine

4.1.2. Correlation coefficient analysis. A good encryption algorithm can decrease the correlation of
adjacent pixels, because the adjacent pixels of an ordinary image are highly correlative. For checking
the correlative feature of adjacent pixels, 2000 pairs of two adjacent pixels are randomly chosen from
the plaintext image and the corresponding cipher image. And we evaluate the correlation coefficients
of adjacent pixels in diagonal, vertical and horizontal directions using the equations

=) ()
SERBIONDIN)

E(i) =%§in (12)

D)=+, ~ Q)Y (13)

cov(i )= 20, ~ (I, ~E(D) (14)

where T denotes all the number of duplets (i, /), i and j are two adjacent pixels, D(7) is the variance and
E(7) is the expectation. For the 3 test images, their correlation coefficients results are shown in Table 1.
We can easily find that all the adjacent pixels of the cipher images are weakly correlative; by
comparison, the adjacent pixels of the original images are highly correlative. Thus, we can conclude
that uncovering some information about the plaintext image from its cipher image is very difficult.
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Table 1. The test result of correlation coefficients

Test images Directions Original images Cipher images
horizontal 0.977407 0.000893
Elaine vertical 0.976693 -0.000663
diagonal 0.972571 -0.000284
horizontal 0.907963 -0.000793
Aerial vertical 0.874697 -0.000429
diagonal 0.820951 -0.000857
horizontal 0.957875 -0.000107
Airplane vertical 0.957543 0.000540
diagonal 0.943487 -0.000358

4.1.3. Information entropy analysis. The entropy defined by Shannon [32] expresses the uncertainty of
an image information. The Shannon entropy is defined as

255

H(I) =—Z p(n)log, p(n) (15)

where / is an image, the entropy is represented in bits, 7 denotes a pixel value (0<n<255) and p(n) is

the probability of #. Table 2 shows the calculation results of the Shannon entropy of the 3 test images.
For an image, the ideal Shannon entropy is 8. From Table 2, we can find that the Shannon entropy
tends on the ideal value of 8. It proves that our encryption scheme can resist the entropy attack.

4.2. Differential attack analysis
We usually employ UACI (unified average changing intensity) and NPCR (number of pixels change
rate) to check the resistance of differential attack. NPCR and UACI are defined as

D, j) :{1’ (i, 1) #c,(i )

0, otherwise

. 16
pII()) (16)

NPCR =1 — x100%

H xW

1 e, (i, 1) —c, (i, )|
UACI = 100% 17
H W [ZJ: 255 100% 17

where H is the height of an image and W is the width of an image, c,(i, j) and c,(i, j) are the two
different cipher images in which their plaintext images have only one pixel difference from each other.
In [33], the maximum expected UACI value is 33.463541%, and the maximum expected NPCR value
is 99.609375%. Table 2 shows the calculation results of UACI and NPCR values for our encryption
scheme. We can find that UACI and NPCR values very verge on the above values in [33]. It proves
that our encryption scheme makes the differential attack difficult.

Table 2. Entropy, UACI and NPCR values

Ciphered Entropy NPCR UACI

Elaine 7.999246  99.620819  33.441856
Aerial 7.999382  99.606705  33.466385
Airplane 7.999314  99.612808  33.549496
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4.3. Key sensitivity analysis

To check the key sensitivity, we test 3 plaintext images in Figure 3 and all of the secret keys. For
example, 10 is added in « and the other keys are not changed, and then we obtain the encrypted
image of Elaine shown in Figure 6 (a). The difference between two encrypted images is indicated in
Figure 6 (b). By analyzing all of the test results, we can conclude that our encryption scheme is
sensitive to small change of the secret key.

Furthermore, the decryption scheme has also the sensitivity to small change of the secret key. By
using the secret key « with only 10 differences from its original value, we obtain the decrypted
image of Elaine shown in Figure 6(c). We can find that Elaine’s decrypted image of is completely
different with its plaintext image. It proves that the proposed decryption scheme is sensitive to small
change of the secret key, too.

(a) (b) (©)

Figure 6. The analysis of key sensitivity. (a) Elaine’s encrypted image using changed « , (b)
difference between (a) and Figure 3(a), (c) Elaine’s decrypted image using changed « .

4.4. Key space analysis

For resisting brute-force attacks, the key space of a good encryption system must be large enough. The
fractional order linear-nonlinear chaos system has a strong sensitivity even to small change in the
control parameters and initial condition, so we use a high precision real type data to implement our
encryption system. There are five secret keys in our encryption system: uz,7,¢&, and x (1), and the

real type data has the accuracy of 10™. Therefore, the key space size of our encryption system would

be at least10”. It means that our encryption system holds a wide enough key space against a brute-
force attack.

4.5. Performance comparison

The comparative results between our encryption system and other cryptosystems [3, 6, 13, 20, 25] are
indicated in Table 3. We can find that our encryption system has an ideal safety and similar or better
performances.

Table 3. Comparative results between our encryption system and other cryptosystems.

o Proposed [3] after [6] [13]
Criteria scheme 58 (averag  (average) [20] [25]
. H 0.000367 0.0139  0.0134 -0.0017 0.015134 0.012401
Correlation
. vV 0.000325  -0.0231  0.0096 -0.0031 0.056865 N/A
coefficients
D 0.000354  -0.0040 0.0122  0.000089  0.001875 N/A
Entropy 7.999282 7.9966 N/A N/A N/A 7.995351
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NPCR 99.6065%  99.67%  99.5659 99.6% 99.8268% N/A
UACI 33.4526%  33.32% 33.3186 33.5% 10.9112% N/A

5. Conclusions and future work

By using the defined fractional order linear-nonlinear chaos system, we design a scheme for
encrypting a gray image. The given dynamical features of the fractional order linear-nonlinear chaos
system, such as almost no periodic windows and stronger ergodicity of time series, are applied to the
encryption scheme. The plaintext images decide which chaotic sequence is used for permutation and
addition/subtraction operation of encryption. The corresponding experimental results indicate that our
encryption scheme holds a wide enough key space, good sensitivity and high secure performances. In
future practical research work, we intend to apply the fractional order linear-nonlinear chaos system to
the encryption in a parallel architecture.
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