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Abstract. The technology of Image caption is developing rapidly. In order to review the recent
advancement in this field, this article briefly summarize several typical works in image caption
researching, in which they figured out new ways to improve the accuracy or efficiency. We
describe the methods, organize the results of experiments in one form, and then analyse the data.
Besides, a novel quantitative metric which can measure the quality of image caption more
objectively is also introduced.

1. Introduction

Recently, Image caption has become a major branch of computer vision and deep learning. It’s a
technology that uses algorithms to generate descriptive language to an image. The advancement of this
technology is aligned with the development of artificial intelligence. Due to its immaturity, this
technology has not been widely used at present stage. But its potential is limitless and waited to be
exploited. A reasonable inference is that it can free the person who interprets the image from work, and
it can also be used to help the blind to understand surrounding environment, or in many fields of
automation like baggage security check, auto-surveillance and unmanned vehicle. So this subject, along
with natural language processing and machine translation, is one of the most important products of
artificial intelligence and has highly research value.

The research towards image caption could be divided into two categories. One concentrates on the
problem itself. They improve the existing algorithms, using various mechanisms to train models and
creating a new joint model. And many of the articles have drawn their inspiration from further imitating
the human brain. For instance, Xu K, et al. [ 1] mimics the attention in human visual system and introduce
an attention-based model. Moreover, they presents two variants: a “hard” stochastic attention
mechanism and a “soft” deterministic attention mechanism. Vinyals O, et al. [2] presents a generative
model based on a deep recurrent architecture, it’s a joint model that compromises not only visual
understanding but also a language model that does the generation of caption. Chen X, et al. [3] proposes
a bi-directional representation that can generate both novel descriptions from images and visual
representations from descriptions, and it can also dynamically captures the visual aspects of the scene
that have already been described. Jin J, et al. [4] proposes an image caption system that exploits the
parallel structures between images and sentences. They hypothesis that visual perception and the order
of words generation in a sentence is highly correlated, so they encode what is semantically shared by
both the visual scene and the text description. Moreover, they have achieved identifying the environment
in the image and generate sentences that match the environment to improve the accuracy.

The other concentrates on analysing the demerits of the current metrics and propose a new, more
accurate metric. This branch is less studied, but is also vital. A typical example is the work presented by
Anderson P, et al.[5] In this article, the authors analyse the current metrics® demerits using specific
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examples and conclude that the current metrics that are primarily sensitive to n-gram overlap have
limitations regarding to score the captions that have similar sentence structure. Then they presents a new
metric called “SPICE”, it compares the semantic propositional content to generate scores, and this metric
better grasps the human judgment of the image caption.

The analysis in this article covers several state-of-the-art articles of Image Caption. This article
systematically analyses the core concept of each paper, points out the chronological order, logic order,
advantages and disadvantages of these articles, and presents the development course of study of image
captions. Moreover, experiments are conducted to verify the analysis.

The main contribution of this article is summarizing the current state and pointing out the future trends
of this field.

2. Methods

As a good example of getting inspiration from human brain, Xu K, et al. [1] studies the existence of
attention in human vision system, and introduces a image caption model based on “attention”. In this
model, the attention means the ability to dynamically emphasizes the salient object in an image.
Specifically, Xu K, et al. [1] show how the model can automatically adjust its gaze on the important
object when generating the corresponding words. To achieve this, they come up with two mechanisms:
a “hard” stochastic attention mechanism and a “soft” deterministic attention mechanism, and trains them
by standard back-propagation methods and maximizing an approximate variational lower bound or
equivalently. Moreover, this model has an advantage that it can approximately visualizing what the
model “sees” to gain insights. Yet a potential shortcoming is that the focus on the most salient object
will cause the loss of the other less important information, and may result in the less complete and less
abundant captions. As an example of understanding the principle, the attention mechanism is also been
widely used in machine translation, the diagram is shown below in Figure 1.

Je suis étudiant </s>

attention
vector

context
vector

I am a student <s> Je suis étudiant

Figure 1. The attention mechanism in machine translation [6]

As is known to us all, image caption requires two steps: to understand the image and to generate
words. And the latter needs a language model. Regarding to this problem, many researchers solve the
two procedures independently and then splice them. However, this is not efficient enough as the brain
compress large amount of vision information into descriptive language in a very short time. Impressed
by the latest progress in machine translation that recursive neural networks (RNN) can accomplish the
translation work that previously required a series of independent tasks, and even in a much simpler and
more accurate way, Vinyals O, et al. [2] proposes a generative model based on a deep recurrent
architecture. The deep convolutional neural network (CNN) is used instead of the encoder RNN, which
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is first pre-trained for an image classification task, and then the last hidden layer is used as the input to
the RNN decoder that generates the sentence. This is an end-to-end system, a fully trainable neural
network which can be optimized by stochastic gradient descent. The objective function of such model
is maximizing the conditional likelihood p(S|I), where I is the input image and S is the generated
sentence. They adopt a Long-Short Term Memory-based Sentence Generator, which is widely used in
translation and generation tasks, as their RNN option. Schematic diagram of memory block is shown in
Figure 2.

word prediction

input

Figure 2. The memory block contains a cell
which is controlled by 3 gates [2]

Beside these two achievements, Chen X, et al. [3]’s paper that based on the further imitation towards
human brain was published in the same year at 2015. This work was inspired by the facts that human
always create a mental image naturally when they understand sentences, and that the image in the brain
tends to stay longer than the precisely sentences. Applying this into models, Chen X, et al. [3] discussed
the study of images and their captions’ joint feature spaces. They project image features and sentence
features into a common space, and both the new descriptions could be generated from the images and
the vision representation could be generated from descriptions. The model can also dynamically captures
the vision scenes from the descripted images, i.e. when a word is generated or read, the vision
representation will be renewed to reflect the new information. This process resembles the long-term
memory of the concepts. The article uses RNNs to accomplish this. Moreover, the article also includes
comparisons between final models and RNN baseline, and the accuracy of bi-directional retrieval is
examined. Schematic diagram of hidden unit is shown in Figure 3.

In human visual perception, there is a thread of visual order when the attentional shift between parts
of an image, which is explained as the order that human brain understands a series of abstract meanings
implied by the image when observing it. Based on this hypothesis, Jin J, et al. [4] proposes a generation
model that utilizes the parallel structure between images and sentences. Specifically, the article assumes
that there is a close correspondence between visual concepts and textual realizations, and that the process
of generating the next word based on previously generated words is consistent with the human visual
perception experience. To achieve this, the article encodes the semantically shared content between
visual scenes and text description, and uses recursive neural RNNSs to build the model. The hidden state
of this network is used to predict where the next visual focus should be, and to determine what the next
word in the corresponding text should be. The article also introduces another model concerning the
scenario-specific contexts. The model captures high-level semantic information encoded in the image,
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such as the effect of the location at which the image was taken on the possible activity of the people in
the image. They trained the language model to generate words that agree with the specific scene types.
To achieve this, the scene context extracts visual feature vectors from the image, affecting the generation
of words by biasing the parameters in the RNNs. Schematic diagram is shown in Figure 4.
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Figure 3. The hidden units s and u activations through time (vertical
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Figure 4. The right part is the basic unit of LSTM. s is used to factor the
weight matrix in the 3 gates. [4]

The existing evaluation metrics of captions mainly judge the similarity of the descriptions of natural
language by testing their sensitivity towards n-gram overlap. However, these methods have a strong
limitation that they would give high scores to sentences that just have the same structure, and it deviates
from human perception of an image in many cases. Based on this fact, Anderson P, et al.[5] propose a
new caption evaluation metric called SPICE. This metric gives evaluations by analyzing the semantic
content of the description, better grasps the human judgement to images. Moreover, SPICE could
analyze the performance of any model more detailed than other automated evaluation indicators. For
instance, it can analyzes which model can best express color of the image and whether a model can
count. To achieve these functions, they use a dependency parser pre-trained on large dataset to establish
the syntactic dependencies between words, and then map from dependency trees to scene graphs using
arule-based system. For the provided candidate and reference scenes, SPICE computes an F-score which
defined over the conjunction of logical tuples representing semantic propositions in the scene graph.
Diagram of the efficiency of SPICE compared with other metrics is shown in Figure 5.
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Figure 5. Evaluation metrics vs. human judgments for the 15 entries. Each data
point represents a single model, and captions produced by human are marked in red.

(5]

3. Experiments
Table 1. Scores

dataset Model BLE BLE BLE BLE METE CID
U-1 U-2 U-3 U-4 OR ER
Soft-Attention(Xu et al., 2015) 67 448 299 19.5 18.93
(1]
Hard-Attention(Xu et al., 2015) 67 457 314 213 20.3
Flickr8 [1]
k Neural Image Caption(Vinyals et 63
al., 2015) [2]
RNN model(Chen et al., 2015) 14.1
3] 17.97

Soft-Attention(Xu et al., 2015) 66.7 434 2838 19.1 18.49
[1]
Hard-Attention(Xu et al., 2015) 66.9 43.9 29.6 19.9 18.46
Flickr3 [1]
0k Neural Image Caption(Vinyals et 66
al., 2015) [2]
RNN model(Chen et al., 2015) 12.6 16.42
(3]
Soft-Attention(Xu et al., 2015) 70.7 49.2 344 24.3 23.9
(1]
Hard-Attention(Xu et al., 2015)  71.8 504  35.7 25 23.04
[1]
MS Neural Image Caption(Vinyals et 27.7 23.7 85.5
COCO al., 2015) [2]
RNN model(Chen et al., 2015) 18.35 20.04
(3]
RNN model + FT(Chen et al., 18.99 20.42
2015) [3]
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RNN-(RA+SF)-BEAM( Jin et 69.7 519 381 282 23.5 83.8
al., 2015) [4]
Neural Image Caption(Vinyals et 59
al., 2015) [2]

RNN model(Chen et al., 2015) 10.48 16.69
Pascal 3]
RNN model + FT(Chen et al., 10.77 16.87
2015) [3]

In the experiments, we induct the results of the 4 experiments conducted by 4 papers introduced above ,
list the most representative data into one sheet to compare and analyze the results. But at first, we would
look into the datasets and the metrics they choose.

As we can see from Table 1, among the four articles, 3 of them use Flickr8k and Flickr30k, all of
them use MS COCO, and 2 of them use Pascal. These datasets contain 8000, 31000, 123,000, and 9963
images respectively and sentences in English describing these images. Specifically, the Flickr dataset is
the benchmark for image captions. It was published by Yahoo, almost every image in it has been
annotated by labelers with 5 sentences that are relatively visual and unbiased. The MS COCO is released
by Microsoft, and it is a large-scale object detection, segmentation, and captioning dataset. And in order
to maintain the same number of references among the datasets, some articles state that they discard
caption in excess of 5. The PASCAL dataset is customary used for testing only after a system has been
trained on different dataset such as any of the other 3 datasets, two of its main folders are the Annotation
folder and the ImageSets folder. The former stores the xml file, which is an explanation of the image.
Each image is for an xml file with the same name; the latter holds txt files, which divide the images of
the dataset into various collections.

All articles use BLEU and METEOR as metrics. BLEU adopts an N-gram matching rule, and the
principle of it is to compare the similarity of n groups of words between the translation and the reference

translation. Unigram precision P = Wﬁ, where m is number of words from the candidate that are found
t

in the reference, and w; is the total number of words in the candidate[7]. The METEOR metric is based
on the harmonic mean of unigram precision and recall, with recall weighted higher than precision. It can

solve some of the defects inherent in the BLEU metric. Unigram precision P is computed as: P = Wﬁ
t

Unigram recall R is calculated as: R = Wﬁ, where w, is the number of unigrams in the reference
r

translation. In addition, the harmonic mean combines precision and recall, and the weight of recall is 9

. .. 10PR .
times that of precision: Fyeqn = m[S]. CIDEr treats each sentence as a "document”, expresses it as a

form of tf-idf vector, and then calculates the cosine similarity of the reference caption and the caption
generated by the model.

As is generalized above, all methods behave well in the listed datasets. And their scores are also
similar. This results illustrate the high efficiency of each model. Relatively, the Hard-Attention(Xu et
al., 2015) [1] behaves best in the dataset of Flickr8k and Flickr30k. RNN-(RA+SF)-BEAM( Jin et al.,
2015) [4] behaves best in the dataset of MS COCO and the metric of BLEU-2, BLEU-3, and BLEU-4.
Neural Image Caption (Vinyals et al., 2015) [2] behaves best in the dataset of MS COCO and the metric
of METEOR and CIDER. Most of the metrics have higher BLEU-1 and BLEU-2 value than BLEU-3
and BLEU-4, indicating that these metrics behaves better in short sentences than long sentences, which
is one of its limitation. But in general, all methods demonstrate the state-of-art performance in image
caption.

4. Conclusion

This paper reviews several high efficient image caption methods by introducing their principles,
algorithms and experimental performances. As we can see, improvements considering various aspects
of image caption are reached as listed above. Although image caption is not widely applied at present
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stage, it is developing at full speed. When the day comes that this technology is mature, it will be a huge
step in promoting computer’s intelligence. And as increasingly number of researches are conducted on
this topic, this future technology will become closer to reality.
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