
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CCISP 2019

Journal of Physics: Conference Series 1438 (2020) 012024

IOP Publishing

doi:10.1088/1742-6596/1438/1/012024

1

 

 

 

 

 

 

A Non-local Rank-Constraint Hyperspectral Images 

Denoising Method with 3-D Anisotropic Total Variation 

Tao Gong1,2,  Desheng Wen1 and Tianbin He1      

1Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 
2University of Chinese Academy of Sciences 

gongtao2017@opt.cn 

Abstract. Hyperspectral Images (HSIs) are usually degraded by many kinds of noise called 

mixed noise, which greatly limits the subsequent applications of HSIs. Many researches have 

proved the patch-based low-rank methods and the total variation (TV) based approaches have a 

good effect on reducing noise in HSIs. Here, we propose a non-local patch based rank-

constraint HSIs noise suppression methods with a global 3-D anisotropic total variation 

(NLRATV). Differing from previous patch-based methods which usually ignore spatial 

structural information, we add more structural constraints with the non-local similarity across 

patches for suppressing the structural noise that exists at the same location of many bands. 

Besides, we utilize the global 3-D anisotropic total variation to ensure its smoothness in spatial 

and spectral dimensionalities while reconstructing the image. The augmented Lagrange 

multiplier method is adopted to optimize the proposed algorithm. The real data experiments 

have proved the superiority of NLRATV in decreasing mixed and dense noise. 

1. Introduction 

HSIs use tens or hundreds of spectral bands to capture the same ground objects by the high spectral 

resolution sensors. Compared with classical imaging methods, HSIs contain more spectral information 

which is greatly useful for substances identification. Therefore, they have been widely applied in 

biomedicine, agriculture, geology, etc. However, during HSIs acquisition, it’s inevitable to suffer a 

blend of image details and many kinds of noise called mixed noise, containing addition noise, like 

Gaussian noise, and sparse noise, like stripes and dead lines, etc., which greatly limits HSIs’ 

subsequent applications, like classification [1], unmixing [2], target recognition [3], etc. So HSIs 

denoising is important for most of their applications.  

HSIs contain two spatial dimensions and one spectral dimension. The reflectivity of the same 

spatial pixel of HSIs in different bands is different, which can be regarded as a spectral characteristic 

curve of ground objects. The causes of HSIs mixed noise include atmospheric interference, dark 

current, the non-uniformity of detector response, photon effect, etc. Generally, the noise contaminates 

the three dimensions of HSIs, resulting in blurry images and distorted spectral curves.  

Some excellent gray-level images denoising methods have been directly applied or extended to 

denoising HSIs band by band, including K-SVD [4], BM3D [5], NCSR [6], etc. But these methods 

ignore the strong spectral correlation between bands of the HIS. Principal component analysis (PCA) 

[7] is a typical method for denoising. But it’s sensitive to outliers and can just work while images are 

corrupted by small amount of Gaussian noise. It can’t perform well in HSIs denoising because HSIs 

often suffer mixed noise and dense noise that makes some bands almost overlapped by noise [8-9]. 
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Robust PCA (RPCA) is proposed by Candès et al. in [10], which is more steady to outliers, and is 

proved highly useful for recovering the low-rank component and removing the sparse noise of HSIs 

[11-15]. The HSIs are divided into overlapping patches in Low-rank matrix recovery (LRMR) [11], 

and the authors use the Go Decomposition algorithm [16] to iteratively solve the clean HSI. In [12], 

authors introduce a new HSIs denoising method, i.e., NAILRMA, which explores different noise 

intensity in different HSIs bands. To improve the denoising effects, some researchers consider spatio-

spectral characteristics. Othman et al. [17] perform the wavelet shrinkage operator in spectral 

derivative-domain. Group low-rank representation (GLRR) [18] is an efficient denoising method that 

divides patches into some groups and adds spatial constraint using non-local similarity across patches. 

Total variation (TV) is also an effective method and has been used for HSI denoising. Yuan et al. 

propose a spectral–spatial adaptive total variation (SSAHTV), using spectral and spatial differences to 

improve denoising effect [19]. He et al. [8] combine the low-rank method and TV regularization 

(LRTV), where TV is calculated in spatial domain. Aggarwal et al. [20] propose a 3-D spatio-spectral 

total variation (SSTV) that uses the spatial and spectral smoothness. Liu et al. consider the spatio-

spectral smoothness and correlation between bands and propose low-rank constraint SSTV [21]. In [9], 

He at al. use the patch-based rank-constraint matrix factorization to remove the addition noise and 

adopt a 3-D anisotropic TV norm to ensure spatio-spectral smoothness. Reference [22] introduce a 

new TV norm that combines the non-local self-similarity with spatio-spatial correlation and gains a 

good denoising effect. 

Here, we propose a novel noise reduction method, NLRATV, exploiting non-local rank-constraint 

matrix factorization and 3-D anisotropic total variation. More structural constraints is adopted by 

adding the non-local similarity between across patches, which helps suppress structural noise existing 

the same location of many bands, like structural stripes. A 3-D anisotropic total variation is used to 

preserve the spatio-spectral smoothness. The real datasets experiment results have demonstrated the 

superiority of the proposed algorithm. 

2. Related Work 

2.1. Patch Based Rank-Constraint Method 

HSIs are usually degraded by mixed noise, including addition noise, like Gaussian noise, and sparse 

noise, like impulse noise, stripes, and dead lines, etc. The degradation of the HSI can be modeled as 

                                                     𝒴 = 𝒳 + 𝒮 + 𝒩                                                                    (1) 

where 𝒴 , 𝒳 , 𝒮 , 𝒩  ∈ ℝM × N × p  denote observed images, denoised HSI, sparse noise, and addition 

noise, respectively. The main purpose of HSIs denoising is to obtain a clean image 𝒳 while preserving 

the image details. 𝒴, 𝒳, 𝒮, and 𝒩 are reshaped into Casorati matrices Y, X, S and N ∈ ℝMN × p, where 

each band is converted into a column vector ∈ ℝMN × 1, and the column vectors are arranged column-

wise. The Casorati matrix form of model (1) is showed as follow: 

Y = X + S + N                                                                      (2) 

Many researchers exploit the strong correlations of adjacent bands in HSIs to improve rank-

constraint denoising methods based on RPCA [4-6], [10], which can be written as 

min
X, S

‖X‖* + λ‖S‖1 ,   s.t. ‖Y − X − S‖F
2  ≤ 𝜖,   rank(X) ≤ r                                   (3) 

where r is the upper bound of the rank value of 𝐗 and λ is a regularization parameter. ‖∙‖∗, ‖∙‖1 and 
‖∙‖𝐹 stands for nuclear norm, L1-norm and Frobenius norm of a matrix. 

Formula (3) can be adopted to denoise a variety of noise in HSIs. The spatial dimensionality of 

HSIs is much greater than the spectral one (MN ≫ p), which results in blurring while using model (3) 

[9]. So the patch based rank-constraint methods are studied and have been proved a good effect on 
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HSIs denoising [8-9], [23], which divide the HSI into subcubes centered at location (𝑖, 𝑗) of size 

m × m × p and optimize each patch. The degradation model and its Casorati matrix form is as follow: 

 𝒴(𝑖,𝑗) = 𝒳(𝑖,𝑗) + 𝒮(𝑖,𝑗) + 𝒩(𝑖,𝑗),    Y(𝑖,𝑗) = X(𝑖,𝑗) + S(𝑖,𝑗) + N(𝑖,𝑗)                                (4) 

The patch based rank-constraint denoising model is as follow: 

min
𝐗(𝑖,𝑗),𝐒(𝑖,𝑗)

‖X(𝑖,𝑗)‖
∗

+ λ‖ 𝐒(𝑖,𝑗)‖
1
 

s. t.   ‖Y(𝑖,𝑗) − X(𝑖,𝑗) − S(𝑖,𝑗)‖
F

2
≤ ϵ,   rank(X(𝑖,𝑗)) ≤ r                                 (5) 

2.2. SSTV Model 

The rank-constraint RPCA can’t efficiently remove the Gaussian noise and the structural sparse noise 

which is usually regarded as low-rank part [23]. Thus researchers resort to total variation (TV) norm 

[24] based regularization which is able to capture the piecewise smoothness structure and extend it to 

HSIs denoising [8], and [25-26]. There are isotropic and anisotropic TV norm [27]. The former usually 

blurs images, while the latter preserves the textures. So the latter is researched more [8], and [27-28]. 

The 2-D TV norm is calculated band by band, ignoring spectral information of HSIs. So researches 

focus on 3-D anisotropic TV (3DATV) norm or spatial-spectral TV (SSTV) [9], [19-24] and [26]. The 

representation of them is as follow: 

‖𝒳‖3𝐷𝐴𝑇𝑉 = 𝜏𝑖‖D𝑖𝒳‖1 + 𝜏𝑗‖D𝑗𝒳‖
1

+ 𝜏𝑏‖D𝑏 𝒳‖1, and [

D𝑖𝒳
D𝑗𝒳

D𝑏𝒳
] = [

𝒳(𝑖 + 1, 𝑗, 𝑏) − 𝒳(𝑖, 𝑗, 𝑏)
𝒳(𝑖, 𝑗 + 1, 𝑏) − 𝒳(𝑖, 𝑗, 𝑏)
𝒳(𝑖, 𝑗, 𝑏 + 1) − 𝒳(𝑖, 𝑗, 𝑏)

]   (6) 

where D𝑖, D𝑗, D𝑏 denotes finite-difference operators, and 𝜏𝑖 = 𝜏𝑗 = 1, 𝜏𝑏 = 0.5,  [28]. 

3. Proposed Method 

3.1. Non-local Rank-Constraint HSIs Denoising Method with 3-D Anisotropic Total Variation 

The strong correlations of adjacent bands is the most important characteristic of HSIs, which is greatly 

helpful to HSI denoising. We propose a non-local patch based rank-constraint HSIs noise suppression 

methods with a global 3-D anisotropic total variation (NLRATV). Differing previous algorithms, the 

local similarity in the patches, the non-local similarity across patches, and a global SSTV norm is 

collaborated to improve the HSIs denoising. 

First, we extract subcubes from original HSI and reshape them into Casorati matrices also named as 

patches. The step length and the spatial size and the number of subcubes are l and m, and K =

⌈
𝑀−𝑚

𝑙
⌉ × ⌈

𝑁−𝑚

𝑙
⌉ respectively, where ⌈∗⌉ rounds down to the nearest integer. We define an operator 

𝒯(𝑛)(∗) to extract a subcube ∈ ℝ𝑚×𝑚×𝑝 located at (𝑖, 𝑗) and reshape it into a patch Y(𝑛) ∈ ℝm2×p, i.e. 

    Y(𝑛) = 𝒯(𝑛)(𝒴),      n = 1, 2, ⋯, K                                                       (7) 

After these patches are extracted, we calculate the Euclidean distance across two patches, i.e. 

𝓓(𝑛𝑡) = ‖Y(𝑛) − Y(𝑡)‖
F

2
       n, t = 1, 2, ⋯, K                                             (8) 

For each patch, we find k similar patches which are the least Euclidean distance. The indices of 

similar patches for the patch n are stored in  ℊ𝑛 = {ℊ𝑛1, ℊ𝑛2, ⋯ , ℊ𝑛𝑘} to help image reconstruction. 

The similar patches of the patch n are reshaped into a group 𝒢(𝑛)(𝒴) ∈ ℝ𝑘m2×p, i.e.  

𝒢(𝑛)(𝒴) = [𝒀(ℊ𝑛1)
𝑇 , 𝒀(ℊ𝑛2)

𝑇 , ⋯ , 𝒀(ℊ𝑛3)
𝑇 ]

𝑇
      n = 1, 2, ⋯, K                                 (9) 

which utilizes the local similarity and non-local similarity, bringing extral structural information.  
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Based on above analysis, we propose a NLRATV model to denoise HSIs, i.e. 

min
𝒳,𝒮

∑ (‖𝒢(𝑛)(𝒳)‖
∗

+ 𝜆‖𝒢(𝑛)(𝒮)‖
1

)

𝐾

𝑛=1

+ 𝜏‖𝒳‖𝑆𝑆𝑇𝑉 

  (10) 

𝑠. 𝑡.
,
 ‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(𝒳) − 𝒢(𝑛)(𝒮)‖

𝐹

2
≤ 𝜖

,
   rank (𝒢(𝑛)(𝒳)) ≤ 𝑟                           

3.2. Optimization Procedure 

To be convenient for optimization operation, the function (10) can be reformulated as 

min
𝒳,𝒮

∑ (‖𝒢(𝑛)(ℒ)‖
∗

+ 𝜆‖𝒢(𝑛)(𝒮)‖
1

)

𝐾

𝑛=1

+ 𝜏‖𝒰‖1        𝑠. 𝑡., 𝒢(𝑛)(ℒ) = 𝒢(𝑛)(𝒥),  

(11) 

𝒥 = 𝒳, 𝒰 = 𝑫𝒳,   ‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮)‖
𝐹

2
≤ 𝜖,   rank (𝒢(𝑛)(ℒ)) ≤ 𝑟            

where 𝑫 = [𝜏𝑖𝑫𝑖, 𝜏𝑗𝑫𝑗, 𝜏𝑏𝑫𝑏]  denotes the SSTV, and ℒ, 𝒥 ∈ ℝ𝑀×𝑁×𝑝 , and 𝒰 ∈ ℝ𝑀×𝑁×𝑝×3  are 

auxiliary variables. Formula (11) is able to be efficiently optimized using the augmented Lagrange 

multiplier (ALM) [29] and can be translated into the following function: 

𝑚𝑖𝑛 𝐿(ℒ, 𝒮, 𝒥, 𝒳, 𝒰, 𝛬1, 𝛬2, 𝛬3, 𝛶) = min
ℒ, 𝒮, 𝒥, 𝒳, 𝒰,𝛬1,𝛬2,𝛬3,Υ  

∑ (‖𝒢(𝑛)(ℒ)‖
∗

+ 𝜆‖𝒢(𝑛)(𝒮)‖
1

𝐾
𝑛=1          

+ 〈𝛬1, 𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮)〉 +
𝜇

2
‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮)‖

𝐹

2
 

+ 〈𝛬2, 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥) 〉 +
𝜇

2
‖𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥)‖

𝐹

2
) +  𝜏‖𝒰‖1 + 〈𝛶, 𝒰 − 𝑫𝒳 〉   (12) 

+ 
𝜇

2
‖𝒰 − 𝑫𝒳‖𝐹

2 +  〈𝛬3, 𝒥 − 𝒳 〉 +
𝜇

2
‖𝒥 − 𝒳‖𝐹

2    s. t. , rank (𝒢(𝑛)(ℒ)) ≤ 𝑟. 

where 𝜇 is the penalty parameter, and 𝛬1, 𝛬2, 𝛬3, and 𝛶 are the Lagrange multipliers. 𝛶 = [𝛶1, 𝛶2, 𝛶3], 
and 𝒰 = [𝒰1, 𝒰2, 𝒰3]. We divide formula (12) into two subproblems and optimize them iteratively: 

updating (ℒ,𝒮) and updating (𝒥,𝒳,𝒰) with other parameters fixed respectively. 

3.2.1. Updating (ℒ, 𝒮). The function for each group 𝒢(n)(ℒ) and 𝒢(n)(𝒮) can be simplified as 

arg  min
𝒢(𝑛)(ℒ), 𝒢(𝑛)(𝒮) 

 ‖𝒢(𝑛)(ℒ)‖
∗

+ 𝜆‖𝒢(𝑛)(𝒮)‖
1

+  〈𝛬1, 𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮) 〉 

+ 
𝜇

2
‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮)‖

𝐹

2
+  〈𝛬2, 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥) 〉                (13) 

+ 
𝜇

2
‖𝒢(𝑛)(ℒ) − 𝒢(𝑛) (𝒥)‖

𝐹

2

       s. t. , rank (𝒢(𝑛)(ℒ)) ≤ 𝑟.   

The subproblems for variables (𝒢(𝑛)(ℒ), 𝒢(𝑛)(𝒮)) are shown as follow: 

𝒢(𝑛)(ℒ): arg  min
rank(𝒢(𝑛)(ℒ))≤𝑟 

 ‖𝒢(𝑛)(ℒ)‖
∗

+
𝜇

2
‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮) +

𝛬1

𝜇
‖

𝐹

2

 

+ 
𝜇

2
‖𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥) +

𝛬2

𝜇
‖

𝐹

2
= arg  min

rank(𝒢(𝑛)(ℒ))≤𝑟 

 ‖𝒢(𝑛)(ℒ)‖
∗
                  (14) 

+ 𝜇 ‖𝒢(𝑛) (ℒ) − (𝒢(𝑛)(𝒴) − 𝒢(𝑛) (𝒮) + 𝒢(𝑛)(𝒥)) 2⁄ − (𝛬1 − 𝛬2) (2𝜇)⁄ ‖
𝐹

2
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𝒢(𝑛)(𝒮): arg  min 
𝒢(𝑛)(𝒮) 

 𝜆‖𝒢(𝑛)(𝒮)‖
1

+
𝜇

2
‖𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮) +

𝛬1

𝜇
‖

𝐹

2 

                          (15) 

The function (14) can be solved by the singular value shrinkage operator [30-31], i.e. 

𝒢(𝑛)(ℒ) = 𝔇1
2𝜇⁄

((𝒢(𝑛)(𝒴) − 𝒢(𝑛)(𝒮) + 𝒢(𝑛)(𝒥)) 2⁄ + (𝛬1 − 𝛬2) (2𝜇)⁄ )                            (16) 

where  𝔇1
2𝜇⁄

(∗) = diag {max (𝜎𝑖-
1

2𝜇
, 0)}, and 𝜎𝑖 denotes the singular value of the matrix ∗. Function 

(15) is able to be optimized by the soft-thresholding (shrinkage) operator [9], [29]: 

ℜ𝜆/𝜇(𝑥) = {
𝑥 − 𝜆/𝜇,     if 𝑥 > 𝜆/𝜇   
𝑥 + 𝜆/𝜇,      if 𝑥 < −𝜆/𝜇

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                            (17) 

that is, 𝒢(𝑛)(𝒮) can be formulated as 

𝒢(𝑛)(𝒮) = ℜ𝜆/𝜇(𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) + 𝛬1 𝜇⁄ )                                           (18) 

3.2.2. Updating (𝒥, 𝒳, 𝒰): The formula for (𝒥, 𝒳, 𝒰) is simplified as 

arg min (𝒥, 𝒳, 𝒰) = min
 𝒥, 𝒳, 𝒰 

∑ (〈𝛬2, 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥) 〉 +
𝜇

2
‖𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥)‖

𝐹

2
)𝐾

𝑛=1     

            (19) 

+ 𝜏‖𝒰‖1 + 〈𝛶, 𝒰 −D𝒳 〉 +
𝜇

2
‖𝒰 − D𝒳‖𝐹

2 + 〈𝛬3 , 𝒥 − 𝒳 〉 +  
𝜇

2
‖𝒥 − 𝒳‖𝐹

2                   

The subproblems for variables (𝒥, 𝒳, 𝒰) is as follow: 

𝒥:        arg min
𝒥

 
𝜇

2
‖𝒥 − 𝒳 +

𝛬3

𝜇
‖

𝐹

2

+ ∑ (
𝜇

2
‖𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥) +

𝛬2

𝜇
‖

𝐹

2 

)

𝐾

𝑛=1

                 (20) 

𝒳:        arg min
𝒳

 
𝜇

2
‖𝒰 − 𝑫𝒳 +

𝛶

𝜇
‖

𝐹

2

+
𝜇

2
‖𝒥 − 𝒳 +

𝛬3 

𝜇
‖

𝐹

2

                                            (21) 

𝒰:        arg min
𝒳

 𝜏‖𝒰‖1 +
𝜇

2
‖𝒰 − 𝑫𝒳 +

𝛶

𝜇
‖

𝐹

2 

                                                                (22) 

According to function (20), we can get the approximate solution of  𝒥 [9], i.e. 

𝒥 = ((𝒳 − 𝛬3 𝜇⁄ ) + ∑ 𝒢(𝑛)
𝑇 (𝒢(𝑛)(ℒ) + 𝛬2 𝜇⁄ )

𝐾

𝑛=1

) (1 + ∑ 𝒢(𝑛)
𝑇 𝒢(𝑛)

𝐾

𝑛=1

)

−1

                     (23) 

where, 𝒢(𝑛)
𝑇 is the inverse transform of 𝒢(𝑛) defined in formula (9). 𝒢(𝑛)

𝑇  contains two operators. First, 

we translate groups into patches by calculating the weighted sum of patches which have the same 

index, based on the stored indices in ℊ𝑛. Second, we reshape the patches into the form of HSI. 

The fast Fourier transform (FFT) is able to approximate 𝒳 in function (21), i.e.  

𝒳 = ℱ−1 [ℱ ((𝒥 +
𝛬3

𝜇
) + 𝑫𝑇 (𝒰 +

𝛶

𝜇
)) (1 + (ℱ(𝜏𝑖𝑫𝑖))

2
+ (ℱ(𝜏𝑗𝑫𝑗))

2
+ (ℱ(𝜏𝑏𝑫𝑏))

2
)

−1

] (24) 

Function (22) is also optimized using soft-thresholding (shrinkage) operator, i.e. 

𝒰1 = ℜ𝜏
𝜇

(𝜏𝑖𝑫𝑖𝒳 −
𝛶1

𝜇
) ,   𝒰2 = ℜ𝜏

𝜇
(𝜏𝑗𝑫𝑗𝒳 −

𝛶2

𝜇
) ,  𝒰3 = ℜ𝜏

𝜇
(𝜏𝑏𝑫𝑏𝒳 −

𝛶3

𝜇
)              (25) 
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After the variables (ℒ, 𝒮, 𝒥, 𝒳, 𝒰) are all be solved, the Lagrange multipliers 𝛬1, 𝛬2, 𝛬3, and 𝛶 

will be updated: 
𝛬1 = 𝛬1 + 𝜇 (𝒢(𝑛)(𝒴) − 𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒮)), 𝛬3 = 𝛬3 + 𝜇(𝒥 − 𝒳) 

(26) 
𝛬2 = 𝛬2 +  𝜇 (𝒢(𝑛)(ℒ) − 𝒢(𝑛)(𝒥)) , 𝛶  =   𝛶 +  𝜇(𝒰 − 𝑫𝒳)                                     

The implementation steps of NLRATV is showed in Algorithm 1. 

 Algorithm 1 Algorithm for NLRATV 

 

Input: 𝒴 ∈ ℝ𝑀×𝑁×𝑝, rank r, patch size 𝑚, patch number k in a group, 𝜖, 𝜆, 𝜇, 𝜏 

Output: 𝒳 ∈ ℝ𝑀×𝑁×𝑝 

Initialization: ℒ(0) , 𝒳(0) , 𝒮(0) , 𝒥(0) , 𝒰(0) = 0 , 𝛬1
(0)

, 𝛬2
(0)

, 𝛬3
(0)

, 𝛶(0) = 0 , 𝜇(0) = 10−2, 𝜇max =

106, 𝜌 = 1.5, maxiter = 50, 𝜖 = 10−6, 𝑖𝑡𝑒𝑟 = 1. 

Step1: Get 𝒢(𝑛)for (n = 1, 2, ⋯, K) using (9). 

Step2: Repeat until convergence or 𝒊𝒕𝒆𝒓 > 𝐦𝐚𝐱𝐢𝐭𝐞𝐫 

Update all (𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)

(ℒ), 𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)

(𝒮)) groups using (16) and (18). 

Update (𝒥(𝑖𝑡𝑒𝑟+1), 𝒳(𝑖𝑡𝑒𝑟+1), 𝒰(𝑖𝑡𝑒𝑟+1)) using (23), (24) and (25). 

Update Lagrange multipliers 𝛬1
(𝑖𝑡𝑒𝑟+1)

, 𝛬2
(𝑖𝑡𝑒𝑟+1)

, 𝛬3
(𝑖𝑡𝑒𝑟+1)

, and 𝛶(𝑖𝑡𝑒𝑟+1) using (26). 

Check the convergence conditions: 

𝜇 = 𝜇 × 𝜌,    𝜇 ∈ (𝜌𝜇(0), 𝜇max), 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1. 

max {‖𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)(𝒴) − 𝒢(𝑛)

(𝑖𝑡𝑒𝑟+1)(ℒ) − 𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)(𝒮)‖

∞
, 

‖𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)

(ℒ) − 𝒢(𝑛)
(𝑖𝑡𝑒𝑟+1)

(𝒥)‖
∞

 , ‖𝒰(𝑖𝑡𝑒𝑟+1) − 𝑫𝒳(𝑖𝑡𝑒𝑟+1)‖} ≤ 𝜖. 

4. Experimental Results 

We conduct several real data experiments to compare NLRATV with other typical algorithm in HSI 

denoising. There are six HSI denoising algorithms for comparison, i.e., LRMR [11], GLRR [18], 

LRTV [8], SSTV [20] and LLRSSTV [9]. LRMR and LRTV are patch-based HSIs noise removal 

methods using RPCA. SSTV is an efficient denoising approach based on 3-D TV norm. GLRR utilize 

the non-local similarity in denoising model. LLRSSTV combine the patch-based rank-constraint 

method and SSTV norm. We get all the codes of these algorithms from the authors except GLRR, and 

the code of GLRR is implemented by us.  

We use two datasets, i.e., EO-1 Hyperion dataset and the AVIRIS Indian Pines dataset (figure 1), to 

test above algorithms and the proposed method. The used EO-1 dataset ∈ ℝ200×200×166 is a subcube of 

original image ∈ ℝ400×1000×242 after removing the water absorption bands and the Indian Pines dataset 

∈ ℝ145×145×200 was acquired by the NASA AVIRIS instrument over the Indian Pines test site in 1992 

[8]. During the experiments, the block scale and step length are set as 𝑚 = 20 and 𝑙 = 10. The rank of 

EO-1 Hyperion dataset and AVIRIS Indian Pines dataset is set as 𝑟 = 4 and 𝑟 = 10. The patch number 

in a group is 𝑘 = 4 [18]. 𝜖 = 10-6 , 𝜆 = 0.2, 𝜇 = 0.01, and 𝜏 = 0.005 are set according to previous 

experiment results [8-9], [11]. 

4.1. Results in EO-1 Hyperion Dataset 

This dataset is mainly degraded by stripes and deadlines and even some of them are structural. 

Denoised images of the 1st and 165th band are showed in figure 2 and figure 3 respectively. The 

experiments showed in figures 2 and 3 proved that the proposed NLRATV obviously has the best 

effect on mixed noised removal. LRMR can not remove some stripes which exists at the same location 

in many spectral bands. GLRR has a better effect on stripes because it exploits more spatial 

information while combining the local similarity and the non-local similarity, but it’s not able to 

remove noise completely. With using the spatial smoothness band by band, LRTV improves the 
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performance of HSI denoising method. But it usually destroys some image details. SSTV introduces a 

3-D spatio-spectral TV which can remove more Gaussian noise while significantly preserves image 

details, but it’s not very helpful for reducing stripes noise. LLRSSTV is an effective denoising method 

which combines the local similarity and SSTV and can remove mixed noise, including Gaussian noise, 

impulse noise, stripes, and dead lines, etc. The figures 2(g) and 3(g) show the proposed NLRATV can 

wipe off the mixed noise and protect the details simultaneously. Compared with LLRSSTV, NLRATV 

has a better performance in removing mixed noise and protecting details. 

 

Figure 1. Figure (a) is the EO-1 dataset, and (b) and (c) are the 1th and 165th band of it; (d) is the 

Indian Pines dataset, and (e) and (f) are the 105th and 149th band of it. 

 

Figure 2. The denoising results of band 1 for EO-1 Hyperion dataset. (a) Original. (b) LRMR. (c) 

GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV. 

 

Figure 3. The denoising results of band 165 for EO-1 Hyperion dataset. (a) Original. (b) LRMR. (c) 

GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV. 

4.2. Results in AVIRIS Indian Pines Dataset 

Some bands of this dataset are severely overlapped by dense noise, so that they are quite difficult to be 

restored, such as the band 105 and band 149, etc. As showed in figure 4 and 5, we can hardly see the 

details in the original images. Although facing extreme corruption, NLRATV still restore some details 

of the ground objects. Figures 4(b) and 5(b) prove that LRMR can’t remove the dense noise and 

preserve the image textures well so that the recovered results are still too blurring. After analysing 

figure 4(b)-4(d) and 5(b)-5(d), we can find that patch-based rank-constraint methods are indeed 

beneficial to HSI denoising. The restorations reconstructed from the original images with dense noise 

by SSTV in figure 4(e) and 5(e) are distorted, perhaps mainly because it ignores the strong 

correlations of adjacent bands without the help of rank-constraint methods. LLRSSTV and its 

improved counterpart, i.e., NLRATV, have a good effect on dense noise removal and protecting 

details. After comparing the figure 4(g) and 5(g) with 4(f) and 5(f) respectively, we find NLRATV is 

capable of reconstructing more image details and relatively stronger in the ability to remove the dense 

noise. 
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Figure 4. The denoising results of band 105 for Indian Pines dataset. (a) Original. (b) LRMR. (c) 

GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV. 

 

Figure 5. The denoising results of band 149 for Indian Pines dataset. (a) Original. (b) LRMR. (c) 

GLRR. (d) LRTV. (e) SSTV. (f) LLRSSTV. (g) NLRATV. 

5. Conclusion 

Hyperspectral images are contaminated by mixed noise, including addition noise and sparse noise, etc., 

which greatly limits their subsequent applications, like object detection, classification, unmixing, etc. 

Here, we have proposed a novel mixed and dense noise suppression method using rank constraint 

matrix factorization, non-local structural information, i.e., non-local similarity, and the global 3-D 

anisotropic total variation, which is efficient on suppressing the structural noise that exists at the same 

position in many bands. A global 3-D anisotropic TV norm is exploited to ensure the image 

smoothness in spatial and spectral domain and preserve image details. Several real data experiments 

have demonstrated NLRATV is more efficient on mixed and dense noise removal. 

Though the proposed method has gained a good effect on HSIs denoising, it is worth more 

researches to explore further improvement. We translate the patches into matrices and perform low-

rank operations on matrices. It can be extended to the tensor form to explore the 3-D rank-constraint 

methods for HSIs noise reduction. And the weight of three dimensions in 3-D total variation deserves 

more quantitative analysis. Besides, we can make a further study on the non-local similarity to 

discover its more powerful strength. 
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