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Abstract. The paper presents theoretical researches concerning the spherical bearings lubricated
with greases, in rheostatic conditions: high loads and low velocities. This type of bearing is very
appropriate for modelling the human joints (hip, knee), spherical joints from automotive industry
(pivots, connecting rods) or special joints from petroleum industry. Spherical bearings may be of
the “fitted” type or the “clearance” type. The fitted type of nonflat bearing pad surface is lapped-
in to fit the runner. When it is operating, the fitted pad will have a varying film thickness across
the pad sill, between the pad and the runner. Similarly, in the clearance type the film shape will
be non-uniform across the pad sill. The variation in film thickness across the bearing pad, for
nonflat pads, influences the resulting pressure distribution in the bearing pad and, hence, its load
carrying capacity. In this paper, the pressure distribution and the load capacity are determined for
,clearance” type bearings, for two different cases: complete spherical bearings and partial
spherical bearings. It has been found that the eccentricity ratio influences the angular position of
the maximum pressure, which becomes nearer to the minimum angle of the bearing, once with
the increasing of the eccentricity ratio.

NOMENCLATURE

Ce=Fy Load coefficient y Cartesian coordinate

D Spherical pad diameter € = 2e/]  Eccentricity ratio

F Load carrying capacity n Viscosity

_ F _ . . .

F=—e— Non (hmenswnal load carrying 0 Angular coordinate

nD2%t, capacity

J Clearance g Angle corresponding to the maximum
pressure

d Spherical ball diameter Orax Max'l mum angle of the spherical
bearing

B Eccentricity O M1n1.mum angle of the spherical
bearing

h Film thickness T Shear stress

p Pressure 7 Yield stress

o . . (t:1)/2 Second invariant of the tangential

P = P/Pmax Non-dimensional pressure stress tensor

u Velocity Y =J/D  Relative clearance
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1. Introduction

The classical hydrodynamic lubrication theory in its original form can be applied only if the lubricant
behaves as a linearly viscous fluid (Newtonian). Applications involving non-Newtonian fluids require
appropriate formulation [1]. A class of non-Newtonian fluid utilizes a so-called Bingham model in
some tribological applications to describe the flow characteristics of some lubricants, such as grease or
fine suspensions [2]. Two parameters, which characterize Bingham plastic models, are the yield stress
and the viscosity. When the magnitude of the stress tensor is less than the yield stress, the behaviour of
the fluid is akin to that of a rigid solid. When the yield stress is exceeded, an ideal Bingham plastic
fluid commences to flow as a linear viscous (Newtonian) liquid [3].

The purpose of this paper is to study the spherical bearings lubricated with greases, in rheostatic
conditions: high loads and low velocities. This type of bearing is very appropriate for modelling the
human joints, such as the synovial joint (Figure 1) [4 - 7] or the spherical joints used in the motor
vehicle industry, such as pivots and auxiliary connecting rods (Figure 2) [8 - 10].

Figure 1. Human synovial joint [4] Figure 2. Spherical joints from motor vehicle industry [8]

2. Theory
Special nonflat bearings pad can handle unusual load and motion requirements that flat thrust pads
cannot. For instance, spherical-pad bearings are free to rotate about the three major axes without
disrupting operation of the bearing. Spherical bearings may be of the “fitted” type or the “clearance”
type [11 — 12]. The fitted type of nonflat bearing pad surface is lapped-in to fit the runner. When in
operation, the fitted pad will have a varying film thickness across the pad sill between the pad and the
runner. Similarly, in the clearance type the film shape will be nonuniform across the pad sill. An
exception to this is when the combination of load and flow is such as to cause the bearing to operate in
the “concentric” position. The variation in film thickness across the bearing pad for nonflat pads
influences the resulting pressure distribution in the bearing pad and, hence, its load carrying capacity.
In this paper, only the clearance bearings are considered, for two different cases: complete spherical
bearings and partial spherical bearings. The geometry of these bearings is presented in Figure 3 and
Figure 4.

In these cases, the spherical pad radius is slightly larger than the spherical ball radius and the film
thickness between the pad sill and the ball will vary with the angular coordinate such that:

h= é —ecosf )
The rheological model for the non-Newtonian fluid is ideal Bingham plastic model. The
constitutive equation for the fluid is:
T=To 405G @)
For the general case of Bingham fluid, Oldroyd propose a three-dimensional rheostatic equation,
based on the Mises plasticity criterion [13 - 14]:

E (r:r)| <13 3)
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Figure 3. Complete spherical bearing Figure 4. Partial spherical bearing

Due to the fact that the spherical bearings considered in Figures 3 and 4 are symmetrical, equation
(3) becomes simpler and can be treated analytically [15]. Taking account that the lubricant flow is
circumferential, the rheostatic equation for the spherical bearings will be:

dp Dtgy
w=""h @

The pressure distribution can be obtained integrating equation (4) and considering the film

thickness given by the equation (1):

p(6) = f(—, Dro )da (5)

5-ecosf
If the surface of the spherical bearing is noted with 2 and I' = Uj=, I; represent the curves
adjacent to the surface (2, the limit conditions for the pressure distribution (5) are:
P|(x,y)eu?=1ri =0 (6)
For this case, the load carrying capacity of the bearing is calculated by integrating the pressure
distribution obtained from equation (5):

F=[ pd 7

2.1 Complete spherical bearing
Considering the geometry of the complete spherical bearing (see Figure 3) and imposing the limit

condition:
p=0 for 6 =0ma (3),
the pressure distribution results by integrating the equation (5):
4D7, (1+2e)tgem% (]+29)tg§
p= N arctgﬁ - arctgﬁ 9)
In order to obtain the load carrying capacity (eq. 7), the pressure distribution must be integrated:
F= 7TTDZfoe’m“’cpsiné?cos@dt9 (10)

Unfortunately, no analytical solution can be obtained and a numerical solution is imposed.

Therefore, the following non-dimensional notations are necessary:

e=2 y=L p=2 F=—t_ g =Fy ()

9 - s
J Pmax D21,

2.2 Partial spherical bearing
The case of the partial spherical bearing (Figure 4) is treated similar to the case of the complete
spherical bearings, excepting the limit conditions for the pressure distribution. These conditions must
be imposed on two adjacent curves of the surface (2, corresponding to the maximum and minimum
angles of the spherical bearing:

p=0 for 6 =0,y and p=0 for 6 =0,;, (12)
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Integrating the equation (5), the pressure distribution is obtained for two different zones:

2] .
4DT, U+2 )g— J+2e)tg-210 N
j J/z—4e2[ N ar“g?uz] for 6 € [Omin; 07] -
b= >

| apr, U+2e)tg?mas U+ze)tgs
e |7 T T e
where 6*represents the angle corresponding to the maximum pressure. This value is obtained by
solving numerically the following equation and using the non- dimensional notations (11):
Omax min
arctg uf)ﬁ = ;[ rct g(Hf/)ti + arctg a ;)ti (14)
Finally, the load carrying capacity is numerically obtained by integrating the pressure distribution
(eq. 13) from minimum angle of the spherical bearing to the maximum angle:

F _T gm“"psmecosﬂdﬁ (15)

for 6 € (6%; 0ax]

3. Results

3.1 Complete spherical bearing

Figure 5 shows the spatial distribution of the non-dimensional pressure for four different maximum
angles of the complete spherical bearing, in the case when the eccentricity ratio is £=0.9.
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Figure 5. Spatial distribution of the non-dimensional pressure (¢ = 0.9)
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Also, Figure 6 presents a cross section through the spatial distribution of the non-dimensional
pressure, in order to study the influence of the eccentricity ratio on the pressure profile. Figure 7
presents the variation of the load coefficient versus eccentricity ratio for different values of the
maximum angle of the complete spherical bearing.

3.2 Partial spherical bearing

Figure 8 shows the spatial distribution of the non-dimensional pressure for the eccentricity ratio e=
0.9 and Figure 9 shows the same pressure distribution in the cross section for different values of
minimum and maximum angles of the partial spherical bearing. Also, Figure 10 presents the position of
the angle corresponding to the maximum pressure versus eccentricity ratio, for the same values of angles.

Omin = 150 Gmi., = 300 Gmm = 450

Figure 8. Spatial distribution of the non-dimensional pressure (¢ = 0.9)

The variation of the load coefficient versus the eccentricity ratio for different values of minimum
and maximum angle of the partial spherical bearing is presented in Figure 11.
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4. Conclusions

1. The influence of the eccentricity ratio on the profile of the pressure distribution is very important
for the complete spherical bearing.

2. The load carrying capacity for the complete spherical bearing increases with the increasing of the
eccentricity ratio and the maximum angle of the spherical bearing.

3. In the case of the partial spherical bearing, the influence of the eccentricity ratio on the pressure
distribution is practically negligible. It has been found that the eccentricity ratio influences
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especially the angular position of the maximum pressure, which becomes nearer to the minimum
angle of the bearing once with the increasing of the eccentricity ratio
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Figure 11. Variation of the load coefficient

4. For the partial spherical bearing, the load carrying capacity also increases with the increasing of
the eccentricity ratio and with the decreasing of the minimum angle of the spherical bearing.
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