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Abstract. A new design of an elastohydrostatic bearing with a structurally elastic pad is 

theoretically analyzed. A single recess circular thrust bearing has the upper pad provided with a 

large cavity, covered with an elastic metallic membrane. The latter deflects under the pressure 

distribution in the bearing, creating a radial convergent gap. A simplified axi-symmetric 

analytical model based on two assumptions is proposed: (i) parabolic approximation for the 

elastic component of the film thickness and (ii) the maximum elastic deformation of the 

membrane is calculated analytically using a simplified linear pressure variation in radial 

direction on the land. Thus, the coupled equations for fluid film and elastic deformation can be 

solved successively and the bearing performance characteristics can be easily calculated. A 

parametric analysis, function of a complex elastic parameter and relative recess radius was 

performed, showing higher load capacity and lower friction similarly to what was previously 

obtained using rubber-based compliant bearings. A first stage of validation of the analytical 

model consisted in using a structural finite element model. For the sake of simplicity, the pressure 

distribution was written in an APDL code using the ANSYS program. The comparison showed 

small differences for typical values of the recess radius. 

1. Introduction 

Since the dawn of hydrostatic (HS) bearing applications, the elasticity of one of the mating pads was 

viewed as a feasible solution for heavy loaded bearings, providing better adaptability to misalignments. 

After the successful employment of water-lubricated hydrostatic rubber bearings at the Mile High 

Stadium in Denver, Dowson and Taylor [1], and Castelli et al. [2] published experimental and theoretical 

studies which proved an increased load carrying capacity and reduced friction when one of the pads was 

compliant. However, rubber pads inflate at high pressures and cannot be used for a long period of time, 

due to aging. Moreover, rubber - fluid compatibility may be a major concern. The present paper focuses 

on a new possible design solution of a HS bearing with a structurally elastic pad. Similar design solutions 

have been proposed for gas bearings by Hayashi and Hirasata [3] and Hao et al. [4]. Both papers included 

numerical solutions of the fluid - structure interaction, which showed an improved stiffness. However, 

the generality of the results was limited to studying only several practical cases. The present work 

proposes a simplified analytical solution for the coupled fluid film - elastic deformation mechanism, 

based on an approximate elastic deformation of the elastic pad. The proposed solution allows a quick 

and comprehensive parametric analysis which reveals the improved performance characteristics of this 

new design of a compliant HS thrust bearing. 
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2. The analytical model 

The model of the proposed compliant hydrostatic (HS) bearing is shown in figure 1. A classical, axi-

symmetric, single recess, hydrostatic thrust bearing has a modified, deformable upper pad. A thin shell 

plate is placed over the upper pad, provided with a large recess of reduced depth. Thus, the plate can be 

deflected inside the pad under the action of the pressure generated in the bearing. The plate is bent over 

the extremely thin, outer ridge of the pad, and glued on the outer diameter. The lower pad is assumed 

rigid and concentric with the upper pad. At rest, the undeformed flexible plate is parallel with the mating 

face of the lower pad. The lubricant is supplied with pressure ps into the centrally placed recess of radius 

rs, cut into the lower pad; thus, axi-symmetry prevails.  

For the fluid flow model, classical assumptions of HS lubrication theory are used: 

 the lubricant is Newtonian and incompressible; 

 the flow is laminar and isoviscous, with no slip; 

 pressure variation across the film thickness is neglected; 

 inertia, gravitational and external forces are neglected. 

Figure 1. Schematic of the compliant bearing, including pressure distribution and film 

thickness variation 

 

For the elastic model, classical assumptions of plane, plate theory are satisfied: 

 the circular plate is perfectly flat, with a uniform thickness much smaller than the bearing radius; 

 the material is homogenous and isotropic;   

 deformations in the normal plane with respect to the surface of the plate are considerably smaller 

than the thickness of the plate. 
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To compute the bearing performance characteristics, the coupled equations for fluid flow and elastic 

deformations must be solved simultaneously.  

According to the above-mentioned assumptions, the Reynolds equation takes the following 

simplified form for an axi-symmetric hydrostatic thrust bearing with a centrally placed recess: 

d

d𝑟
(𝑟ℎ3

d𝑝

d𝑟
) = 0 ( 1) 

Equation ( 1) can be solved in order to obtain the pressure distribution, only if the film thickness is 

defined. Thus, for the HS bearing, film thickness can be expressed as follows: 

ℎ(𝑟) = ℎ0 + ℎ𝑒𝑙(𝑟) ( 2) 

where h0 is the minimum film thickness (at the outer boundary of the bearing), and hel is the elastic 

deformation of the upper plate of the bearing, produced by the pressure distribution. The latter can be 

calculated from general equations of elasticity for the pressure distribution obtained after solving the 

Reynolds equation. 

A solution of this system of equations can be obtained only by using an iterative numerical procedure. 

Such a procedure does not facilitate parametric investigations; as consequence, a simplified approach is 

proposed, based on supplementary assumptions, which allow uncoupling the two mechanisms.  

A parabolic variation of the elastic component of the film thickness is assumed along the radial 

direction of the bearing, with a maximum value, 𝛿𝑚𝑎𝑥, in the centre axis of the bearing: 

ℎ𝑒𝑙 = 𝛿𝑚𝑎𝑥 [1 − (
𝑟

𝑟𝑜
)
2

] ( 3) 

Further, the maximum deflection of the thin plate is calculated analytically, using a simplified 

pressure distribution in the bearing. Because the depth of the recess is much greater than the film 

thickness, the pressure distribution is assumed constant in the recess and drops down to a value 

corresponding to the outer atmospheric pressure (null relative pressure) following an inflated curve. A 

schematic of this pressure variation is shown in figure 1. The two model components will be further 

described in detail.  

 

2.1 Elastic plate model 

Due to the complex shape of the compliant upper plate, the deformation produced by the real pressure 

distribution cannot be calculated analytically. The proposed model follows a simplified approach based 

on the well-known plane plate theory, which considers a flat plate of uniform thickness, made of a 

homogeneous and isotropic material. The elastic deformation of the upper plate is analytically calculated 

for a simplified pressure distribution in the bearing, with linear variation on the land. Analytical 

solutions of the elastic deformation in plane circular plates, simply supported on the outer edge and axi-

symmetrically loaded with either constant pressure or linearly variable pressure, can be found in [5]. 

The elastic component of the film thickness defined as a function of the maximum deflection is briefly 

reproduced herein, in dimensionless form. 

 
                     (a)                      (b)                     (c) 

Figure 2. Simplified load cases for the elastic model   

 

(a): constant pressure distribution on the entire plate (figure 2a) 

t t t 

ro 
rs 

ro 
rs 

ro 

ps ps 
ps 



International Conference on Tribology (ROTRIB’19)

IOP Conf. Series: Materials Science and Engineering 724 (2020) 012041

IOP Publishing

doi:10.1088/1757-899X/724/1/012041

4

 
 
 
 
 
 

𝛿max⁡_1 = 𝐾𝑒
3

16
(5 + 𝜐)(1 − 𝜐) ( 4) 

(b): linear pressure distribution on an annular surface (figure 2b) 

𝛿max⁡_2 = 6𝐾𝑒[(1 − 𝜐)𝐿1 − 2(1 − 𝜐2)𝐿2] ( 5) 

where  𝛿𝑚̅𝑎𝑥 =
𝛿𝑚𝑎𝑥

ℎ0
   and 

𝐿1 =
1

720(1 − 𝑅)
[(20𝑅3 + 16)(4 + 𝜐) − 45𝑅(3 + 𝜐) − 9𝑅5(1 − 𝜐) − 60𝑅3(1 + 𝜐)ln𝑅] ( 6) 

𝐿2 =
1

14400(1 − 𝑅)
[64 − 225𝑅 − 100𝑅3 + 261𝑅5 − 60𝑅3(3𝑅2 + 10)ln𝑅] ( 7) 

From equations (4) – (7) one can remark that the dimensionless form of the maximum deformation 

is expressed in terms of two important parameters: 𝐾𝑒 =
𝑝𝑠𝑟𝑜

4

𝐸𝑡3ℎ0
⁡⁡ is a complex elastic parameter (which 

depends on the geometry and material properties of the elastic membrane), and 𝑅 =
𝑟𝑠

𝑟0
⁡⁡ is the relative 

recess radius.  

Finally, for the simplified pressure distribution in the bearing (figure 2c), one can obtain the maximum 

deflection in dimensionless form, based on superposition of effects: 

𝛿max⁡= 𝛿max⁡_1 − 𝛿max⁡_2 = 𝐾𝑒 [
3

16
(1 − 𝜐)(5 + 𝜐) − 6(1 − 𝜐)𝐿1 + 12(1 − 𝜐2)𝐿2] ( 8) 

 

2.2 Fluid flow model 

Using dimensionless notations, the Reynolds equation ( 1) becomes  
d

d𝑟̅
(𝑟̅ℎ̅3

d𝑝̅

d𝑟̅
) = 0 ( 9) 

and film thickness can be written as: 

ℎ(𝑟̅) = 1 + 𝛿𝑚̅𝑎𝑥(1 − 𝑟̅2) ( 10) 

Considering the classical boundary conditions for pressure in single recess circular bearings (𝑝̅ = 1 

at 𝑟̅ = 𝑅 and 𝑝̅ = 0 at 𝑟̅ = 1), after integration and several algebraic manipulations, one can obtain the 

pressure distribution on the land: 

𝑝(𝑟) =

[
3∆2 − 2∆𝑟

2

(∆ − 𝑟
2
)2

−
∆(3∆ − 2)
(∆ − 1)2

+ 2𝑙𝑛 (𝑟
2 ∆ − 1

∆ − 𝑟
2)]

[
3∆2 − 2∆𝑅2

(∆ − 𝑅2)2
−
∆(3∆ − 2)
(∆ − 1)2

+ 2𝑙𝑛 (𝑅2 ∆ − 1
∆ − 𝑅2)]

 ( 11) 

where 𝑝 =
𝑝

𝑝𝑠
 , and  𝛥 = 1 +

1

𝛿𝑚𝑎𝑥
 is a dimensionless elastic parameter used to compact the equation. 

Figure 3 shows the inflated pressure distribution for a bearing with the recess radius half the outer 

radius (R= 0.5), for different values of the elasticity parameter, Ke. 

It is worth noting that for a rigid bearing, Δ→ and equation (11) yields to the classical formula for 

rigid bearings:  

𝑝(𝑟) =
ln 𝑟

ln𝑅
 

( 12) 

 



International Conference on Tribology (ROTRIB’19)

IOP Conf. Series: Materials Science and Engineering 724 (2020) 012041

IOP Publishing

doi:10.1088/1757-899X/724/1/012041

5

 
 
 
 
 
 

  

Figure 3. Dimensionless pressure distribution Figure 4. Relative load carrying capacity 

 

The load carrying capacity can be obtained only by integrating numerically the pressure distribution: 

𝐹 =
𝐹

𝜋𝑟𝑜
2𝑝𝑠

= 𝑅2 + 2∫ 𝑟⁡𝑝⁡d
1

𝑅

𝑟 ( 13) 

The beneficial effect of elasticity, for various sizes of the recess, is clearly depicted in figure 4 in 

terms of the ratio between the actual load carrying capacity and that of the rigid bearing  

𝐹𝑟 =
1−𝑅2

2 ln
1

𝑅

. The greater the elasticity parameter, the greater the load capacity; however, the elasticity 

parameter is limited by the high stresses in the plate. 

 

The rate of flow results after differentiating the pressure distribution: 

𝑄 = 𝑄
𝜂

𝑝𝑠ℎ0
3 = −

2𝜋

3
∙

(
∆

∆ − 1)
3

3∆2 − 2∆𝑅2

(∆ − 𝑅2)2
−
∆(3∆ − 2)
(∆ − 1)2

+ 2𝑙𝑛 (𝑅2 ∆ − 1
∆ − 𝑅2)

 ( 14) 

The predicted values divided by the rate of flow of the rigid bearing(⁡𝑄𝑟 =
𝜋

6𝑙𝑛𝑅
), for different sizes 

of the recess, are shown in figure 5. 

 

The friction torque for rotational speed 𝜔 and lubricant dynamic viscosity 𝜂, yields: 

𝑀𝑓 = 𝑀𝑓

ℎ0
𝜂𝜔𝑟𝑜

4
= 2𝜋∫

𝑟
3

𝑎 − 𝑏𝑟
2

1

𝑅

d𝑟 = 𝜋(∆ − 1) [(𝑅2 − 1) + ∆𝑙𝑛 (
∆ − 𝑅2

∆ − 1
)] ( 15) 

Figure 6 presents the values of the friction torque divided by the friction torque of the rigid bearing 

𝑀𝑓𝑟 =
𝜋

2
(1 − 𝑅4). 
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Figure 5. Relative rate of flow Figure 6. Relative friction torque 

 

3. The FE model 

The accuracy of the proposed analytical model of the elastic plate was evaluated using structural FE 

simulation. This approach uses a particular design solution of the elastic membrane (ro=50mm, t=3mm), 

made of steel (E=210GPa and  =0.3) which is meshed with regular quadrilaterals (element type - 

PLANE183 axi-symmetric). A total number of 5217 nodes and 1600 elements was found sufficient for 

yielding a reasonable accuracy, due to the fact that the model did not include an intricate geometry. The 

boundary conditions were identical with the ones considered for the simplified analytical model, 

whereas the pressure distribution applied on the bottom side of the membrane was computed using the 

analytical model - equation (11). Two representative sizes of the recess radius were considered, and the 

results were compared with the analytically predicted values, calculated with the maximum plate 

deformation, obtained two load cases. For load case 1 (figure 2c) the maximum deformation is calculated 

with equation (8) and slightly underestimates the real load distribution, whilst for load case 2 (figure 2a) 

the deformation is calculated with equation (4), yielding to an overestimated solution. 

 

 
Figure 7. Analytical vs. FEA load capacity 
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Figure 7 represents the most valuable result of the present work. The graph depicts the load carrying 

capacity predicted theoretically using two models for the pressure distribution of the elastic plate 

(constant pressure and combined pressure, respectively), and results obtained used pseudo-numerical 

FE model. One can observe that, for values of Ke < 5, it is more accurate to use the combined load case 

1, whilst for values of Ke > 5, a constant pressure load case 2, approximates better the elastic behaviour. 

 

4. Conclusions  

An original design solution of a compliant hydrostatic bearing is theoretically analysed. Based on 

simplified pressure distribution and elastic deformation, analytical formulations for bearing performance 

characteristics are proposed. The predicted results are shown relatively to those obtained for the rigid 

bearing. The superior load capacity and lower friction torque of the elastic HS bearing are put in 

evidence with the proposed model. The accuracy of the elastic component of the model has been 

evaluated by finite element analysis (FEA) and a two-range analytical formulation was proposed. The 

limits of elasticity due to high stresses are also defined using FEA. A coupled numerical approach for 

more accurate solutions of bearing performances is foreseen for the next step of the analysis. 
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