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Abstract. This paper presents the results of the tribological investigations on polymeric 

composite materials reinforced with Cu, Zn, Sn, SiO2 and MoS2 microparticles, used for 

repairing metal parts made of brass and bronze. The tested material were: three composite 

materials (products of the company Diamant Metallplastic GmbH, Germany): Multimetall 

Messing (used for repair of brass parts), Multimetall Bronze (used for repair of bronze parts) and 

Moglice (for brass and bronze parts). The testing was conducted in dry conditions, in ball on flat 

configuration, by reciprocating method, on the CETR UMT-2 tribometer (Bruker Corporation) 

at normal loads 20, 30, 40 and 50N, over a sliding distance of 100m. The paper presents studies 

of the variations of the friction coefficient, linear wear, volumetric wear parameters, 

profilometric studies with SEM surface morphologies of the wear tracks. The researches allowed 

the classification of materials according to their tribological behaviour and the results 

recommend the tested reinforced composite materials as good candidates for repairing metal 

parts made of brass or bronzes. 

1. Introduction 

Due to their good mechanical properties (mechanical strength, stiffness, hardness, low density, etc.), 

polymer composites are successfully used in many industry sectors such as automotive industry, naval 

industry, aerospace, machine manufacturing and others [1, 2, 3]. The advantages of these materials 

recommend their use in the maintenance and repair activities of parts and equipment in various economic 

sectors. 

For the tribological characterization of these materials, they are tested in the laboratory in a ball-on-

flat test configuration in reciprocating sliding [4, 5, 6, 7]. In the cited papers, the authors studied the 

variation of the friction coefficient and the structure and topography of the used surfaces by modifying 

certain test parameters like loading forces, sliding distance and/or time, frequency.  

The paper describes the results obtained through comparative analysis of three polymeric composites, as 

they were discussed previously [8, 9, 10, 11]. 

2. Experimental procedure 

2.1. Materials characterization 

The materials used for research purpose are provided by Diamant Metallplastic GmbH, Germany [12]: 1. 

Multimetall Messing, code SAC, used for repairing brass parts; 2. Multimetall Bronze, code SBC, used 

for repairing bronze parts; 3. Moglice, code SMC, composite material used to repair brass and bronze 

parts. 

The composite materials SAC and SBC are epoxy matrix reinforced with Cu, Zn, Sn particles, and 

various allotropic forms of SiO2 and belongs to Multimetall category [12].  

https://www.researchgate.net/institution/University_of_Chemical_Technology_and_Metallurgy/department/Department_of_Applied_Mechanics
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The composite material SMC is an epoxy matrix reinforced with particles of cristobalite (αSiO2) and 

molybdenum disulfide (MoS2) [12].  

These composites are recommended for the repair of surface defects such as cracks, holes executed 

incorrectly, pinching or squeezing, etc. 

The counterpart was a steel ball (AISI 52100 GCr15, grade like SKF), Ф6, HV 946, surface 

roughness Ra ≈ 0.06 μm.  

The main mechanical characteristics of the composites materials [12] are shown in Table 1 and 2. 

Table 1. The main mechanical characteristics of the composites materials 

Material 

code 

E-Modulus 

DIN 53457 

[MPa] 

Tensile 

Strength 

[MPa] 

Compressiv

e Strength 

[MPa] 

Bending 

Strength 

[MPa] 

Shear 

Strength 

[MPa] 

Hardness 

[Shore D] 

SAC 5800 63 155 95 35 87-89 

SBC 5800 62 155 79.5 16.5 86 

SMC 10400 - 120 66 - 88 

 

Table 2. The main mechanical characteristics of the composites materials 

Material 

code 
Impact 

Strength 

[MPa] 

Surface 

Pressure 

[MPa] 

Specific 

Weight 

[g/cm3] 

Temperature 

Resistance 

permanent 

[˚C] 

Temperature 

Resistance 

temporary 

[˚C] 

SAC 4.8 - 1.6 -32 to +160 - 

SBC 5.4 - 2.2 -32 to +160 +350 

SMC  12.5 1.7 -20 to +60 -40 to +125 

For all tested samples, the following average values of roughness (Ra) were determined: SAC - 

Ra=1.42 μm, SBC – Ra=1.81 μm and SMC – Ra=0.97 μm. 

The composite is obtained by mixing two components. We obtain a putty that is applied on specially 

prepared metallic surfaces. After drying (4 ... 30 hours), the composite materials are machined. The test 

samples for composite materials were thus obtained. All samples for both composite materials had the 

final dimensions Φ76x7. 

2.2. Experimental setup and procedures 

The testing was conducted on the tribotester CETR UMT-2 (Bruker Corporation) at room temperature 

(20÷26°C) and relative humidity conditions of 50-60%. Dry sliding reciprocating tests were conducted in 

accordance with ASTM G133-05 standard. Testing parameters were: the stroke - 5mm, duration - 475 

min, the sliding distance – 100 m and normal loading forces: 20, 30, 40 and 50N. 

Before performing the tests, the samples were degreased with organic solvent and then dried with hot 

air at 50°C. 

In order to study the intensity and type of the wear process, it is often used the profiometric analysis of 

the wear tracks. The acquisition of the digital profiles for all samples 

was done with a laser profilometer (μSCAN, ® NanoFocus) and they 

were processed with the software SPIP 6.2.6 (TM Image Metrology, 

Hørsholm 

For each wear track, three cross sections were obtained as shown 

in Figure 1: on the center of the track (profile “m“) and at the 2 mm 

distance on both side of the track (profile “i“ and profile “e“). 

For the wear evaluation by profilometry, the area of cross-

sections measured from the highest peaks adjacent to the track and 

the lower part of the profile was used. 

 

 
Figure 1. Graphical modeling 

of wear tracks [11] 
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3. Results and discussion 

Figure 2 shows friction coefficient variation graphs for all studied materials and for the four loading 

forces according to the sliding distance. The values for COF were acquired at a frequency of 10 values 

per second. 

   
a) b) c) 

Figure 2. Variation of the coefficient of friction for: a) composite (code SAC) [8]; b) composite 

(code SBC) [11]; c) Moglice (code SMC) [10]  

Relative to composite materials the following is noticed: 

- the friction coefficient  increases with increasing load force (Figure 1a, 1c, 1e); 

- there are three stages for all loading forces to composites SBC and SMC (Figure 1c, 1e):  in first 

stage (from 10 m to 55m for composite code SBC and 0 to 10m for moglice) COF increases slowly; 

in the second stage COF increases very rapidly, and in the third stage a slow increase can be 

detected ; 

- the length of the first stage (for SBC and SMC composite materials) decreases with the increase of the 

loading force; 

- in step 3 of the friction coefficient for SBC and SMC composite materials shows instability; 

- at SAC composite material, the friction coefficient features a steady and stable growth. 

Figure 3 illustrates the graphs of the average friction coefficient for all samples and all loading forces. 

The friction coefficient was calculated with the values acquired over the last 25 m of the sliding distance. 

   
a) b) c) 

Figure 3.Variation of the average coefficient of friction for:  

a) composite (code SAC) [8]; b) composite (code SBC) [10]; c) Moglice (code SMC) [11] 

It can be seen in Figure 3 that the smallest values of the average coefficient of friction are in the 

composite code SAC (Figure 3a); the other two composites have close values in terms of  the average 

friction coefficient. 

Figure 4 shows the variation graphs of the wear depth according to the distance for the four load 

forces. The following is noticed: 

- low values for linear wear on SAC composite compared to other materials; 

- small values for linear wear also occur in the SMC composite; 

- different behaviour: on the brass composite, in the initial phase there is a marked increase, followed by a 

linear increase with a very low slope; in the other two composites, the linear wear has a small increase at 

first, followed by a significant  increase; higher values are observed in the bronze composite. 

Volumetric wear parameters considered for characterizing the intensity of wear are: the wear volume 

(V), the wear intensity (Iv) and the specific wear rate (k):  

 - the volume of wear (V) [11]:  

sAV   (1) 
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a) b) c) 

Figure 4. Variation of linear wear depth (F=20, 30, 40 and 50N, Lf=100m):  

a) composite (code SAC) [8]; b) composite (code SBC) [11]; c) Moglice (code SMC) [10] 

- the volumetric wear intensity (Iv) [13, 14]: 

f

v
L

V
I   (2) 

- the specific rate of wear (k) [14]: 

fLF

V
k


  (3) 

where: 

A - average cross-sectional area of wear track, mm2; 

 s - length of the stroke, mm; 

Lf – sliding distance of friction, m; 

F – normal force load, N. 

The average cross-sectional area of the wear tracks was calculated with: 





3

1i

iAA  (4) 

The Evolution of volumetric wear parameters is shown in Fig. 5. From this figure we can see: 

- the composite material  code SAC has the lowest values of volumetric wear parameters; 

- all the volumetric parameters of the composite material for brass  have a linear growth trend; 

- the bronze composite has the highest values of the volumetric wear parameters; 

- the composite moglice, compared to metallic materials in terms of volume wear parameters, seems 

to be a good material for refurbishing both brass and bronze parts. 

   

a) b) c) 

Figure 5. Variation of volumetric wear parameters: 

 a) the wear volume (V); b) the wear intensity (Iv); c) the specific wear rate (k).  

Figure 6 presents the most representative 2D profiles of the cross-section of the wear traces for each 

material according to the normal load force values.  

It can be noticed : 

- The rough appearance of the 2D profile shapes for brass composite material (Figure 6a) can be 

caused by the reinforcement particles unused during the test; 

- The composite material moglice has 2D profiles (Figure 6c) as an order of magnitude of the width 

and depth of the wear parameter between the composite material cod SAC and the other materials. At 
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the moglice composite, for the 20 N test force, the same rough profile of the profile as the SAC 

composite is observed. 

   
a) b) c) 

Figure 6. Digital roughness profiles (2D) for the loading forces 20÷40N:  

a) composite (code SAC) [10]; b) composite (code SBC) [13]; c) Moglice (code SMC) [12]   

Figure 7 presents the 3D plots (scanning area: 0,5x0,5 mm) for the composite materials. Images were 

obtained with 3D profilometry module of the tribometer PRO-500 UMT-2. 

   
a) b) c) 

Figure 7. Details of the wear track for loading force 30N, by the profilometric module of the 

tribotester CETR-UMT-2: a) composite (code SAC) [11]; b) composite (code SBC); c) Moglice 

(code SMC) 

In Figure 7, it can be  seen a gouges on the worn surface as an effect of adhesive wear when the 

microparticles are pulled away and removed from the surface to be rubbed. No abrasion wear is observed. 

Evidence of wear phenomena results from the study of the wear traces with the Quanta 200 electronic 

microscope. The images are shown in Figure 8. The SEM images obtained at the 10000x magnification 

scale show cracks at the material grain boundary as well as bonding of the material onto the worn surface 

of the composites. 

   
a) b) c) 

Figure 8. SEM surface morphologies by the Quanta 200 electronic microscope (x10000): 

a) composite (code SAC), F=40N; b) composite (code SBC), F=50N; c) Moglice (code SMC), F=20N 
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4. Conclusions  

The purpose of this research was to make a comparison of the tribological behavior of three composite 

materials used in the repair of brass and bronze metal parts. 

The results of testing composite materials with microparticles in dry friction reciprocating ball-on-

flat conditions show the following: 

1. The composite brass material has the lowest values for wear parameters such as: friction 

coefficient, linear wear depth and volumetric wear parameters (the cross sectional area, the 

volumetric wear, the volumetric wear intensity and the specific wear rate); 

2. The moglice composite has good tribological characteristics and can be used successfully in 

reconditioning brass and bronze parts; 

3. Adhesive wear is the dominant wear process for all three composite materials; 

References 

[1] Brydson J A 1999 Plastics Materials, Seventh Ed. (Oxford: Butterworth-Heinemann) 

[2] Friedrich K 1993 Advances in Composites Tribology Composite Materials Series (Amsterdam: 

Elsevier) 

[3] Ashby M F and Jones D R H 1998 Engineering Materials 2: An Introduction to Microstructures, 

Processing and Design, Second Ed. (Oxford: Butterworth-Heinemann) 

[4] Li J and Xia Y C 2009 The Reinforcement Effect of Carbon Fiber on the Friction and Wear 

Properties of Carbon Fiber Reinforced PA6 Composites, Fiber. Polym. 10 519-25 

[5] Li J and Cheng X H 2007 Effect of rare earth solution on mechanical and tribological properties 

of carbon fiber reinforced thermoplastic polyimide composite Tribol. Lett. 25 207-14 

[6] Li J and Li X Z 2010 Evaluation of the Tribological Properties of Carbon Fiber Reinforced Poly 

(vinylidene fluoride) Composites, J. Mater. Eng. Perform. 19 1025-30 

[7] Nie W Z, Li J and Li X Z 2010 The addition of carbon fiber on the tribological properties of 

poly(vinylidene fluoride) composites, Fiber. Polym. 11 559-64 

[8] Iliuţă V, Preda A, Andrei G and Bîrsan I 2014 Wear Assessment of Polymer Composite Filled 

with Metal Particles Trough Ball-on-Flat Reciprocating Test Mater. Plast. 51 (4) 359-62 

[9] Iliuţă V, Rîpă M, Andrei G, Preda A, Suciu C and Javorova J 2014 Profilometric Evaluation of 

the Worn Surfaces under Dry Reciprocating Wear Conditions of a Composite Material to 

Repair Brass Made Parts Applied Mechanics and Materials  657 437-41 

[10] Iliuţă V, Rîpă M, Preda A and Andrei G 2015 Friction and Wear Behavior of Moglice Polymer 

Composite through Dry Sliding Ball-on-Flat Reciprocating Test Applied Mechanics and 

Materials  808  137-42 

[11] Iliuţă V, Rîpă M, Javorova J and Andrei G 2017 A comparative study on tribological behavior 

between metal and polymeric composites used to repair bronze made parts in dry reciprocating 

sliding tests IOP Conference Series-Materials Science and Engineering 174   

[12] *** Diamant Metallplastic GmbH, prospects available at http://diamant-polymer.de/dia-

downloads/02-TD-pm-GB.pdf (14.11.2013) 

[13] Rîpă M and Deleanu L 2008 Deteriorări în tribosisteme (Galaţi: Ed. Zigotto) 

[14] Stachowiak GW 2005 Wear - Materials, Mechanisms and Practice (Hoboken: John Wiley & 

Sons). 

 

 


