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Abstract. In case of a mismatch between the elastic properties of the contacting bodies, the 

solution of the fretting contact can only be achieved numerically due to the connection between 

the contact pressure and the shear tractions. The numerical treatment of the contact processes 

employs an iterative strategy, and therefore requires the computation of the displacement 

response of the elastic body, assumed as an elastic half-space, subjected to general loadings. 

Unlike the case of homogeneous bodies with known Green’s functions, a closed-form 

expression of the response of layered semi-infinite solids to unit point loads has only been 

attained in the frequency domain. The latter formulas are used in this paper to assess the 

displacement due to arbitrary normal and shear surface tractions, thus empowering the 

application of a trial-and-error approach in finding the parameters of a fretting contact: the 

contact area, the slip and the stick regions, and the distributions of pressure and shear tractions. 

The contact parameters are assessed in a nested loop strategy, involving three levels of 

iterations. The inner level, based on the conjugate gradient method for linear systems of 

equations, finds the pressure when solving the contact problem along the normal direction, 

disconnected from any tangential effects, or the shear tractions when considering the contact 

equations in the tangential direction, disconnected from the pressure influence. The middle 

level stabilizes the pressure with respect to the shear tractions, thus assuring that the global 

instantaneous contact solution is achieved. The outer level manages the reproduction of the 

loading history in a fretting loop, by load incrementation. The proposed strategy proves itself 

as a robust tool for the prediction of the fretting contact process involving coatings. 

1.  Introduction 

Modern engineering applications, including bearings, gears, dental crowns, hip prostheses, hard disks 

or electronic parts, involve functionally graded materials and/or coatings that prolong the service life 

of critical components by preventing surface damage. In many contact scenarios, the service 

conditions involve oscillatory relative movement of small amplitudes, also known as fretting. The 

contact stresses developed in the layered body under contact load are of chief importance for 

predicting the service life of the contacting element. Giving the complexity of the fretting 

phenomenon, closed-form solutions are available for very selective cases, and numerical techniques 

such as the finite element analysis (FEM) or the semi-analytical methods (SAM) present themselves as 
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attractive alternatives for calculating the fretting contact stresses. Whereas the advantage of FEM 

resides in its generality, SAM brings excellent computational efficiency, allowing [1] the calculation 

of a 3D contact scenario with the computational resources needed for a 2D FEM simulation.      

 Gallego, Nélias and Jacq [2] first used a fully grown SAM capable of repeated resolution of the 

contact problem in the normal direction, while accounting for the change in conformity due to wear. 

The model was later refined by Gallego and  Nélias [3], who advanced a numerical model for the 

fretting wear either under partial or gross slip conditions, assisted by efficient three-dimensional 

algorithms for both the normal and the tangential contact problem. Chen and Wang [4] presented a 

three-dimensional numerical model for the simulation of the contacts of elastically dissimilar materials 

based on the Boussinesq–Cerruti integral equations. An elastic contact model for three-dimensional 

layered or coated materials under coupled normal and tangential loads, with consideration of partial 

slip effects, was further developed by these authors [5]. Gallego, Nélias and Deyber [6] advanced a 

general algorithm for fretting contact problems with application to fretting modes I, II and II, in which 

the coupling between the normal and the tangential contact problems can or not be taken into account. 

A numerical analysis of the partial slip contact under a tangential force and a twisting moment was 

also performed [7]. 

 The load path dependence is a distinctive feature of the fretting contact, which was addressed in 

more detail by Spinu and Glovnea [8], and by Spinu and Frunza [9], who studied the hysteretic 

behaviour of partial slip elastic contacts undergoing a fretting loop. 

The fretting contact of layered materials is less covered in the literature giving the additional 

difficulty in expressing the elastic response of the contacting bodies. In this paper, a technique for the 

computation of displacement and stresses in bilayered half-spaces is combined with an iterative solver 

for the fretting contact. The resulting numerical analysis technique is both fast and accurate, and can 

be used with various contact configurations. The relation between the contact processes in the normal 

and in the tangential directions, often neglected, are accounted for in this contact study.    

2.  Contact model review and solution 

In the absence of friction, a point contact under normal load has a contact area given by the Hertz 

theory. The mutual contact pressure established between the contacting surfaces yields normal 

compression but also shear displacements. However, if the contact interface can sustain friction, the 

shape and size of the contact area are affected only if the elastic constant of the contacting materials 

are different. The latter case is assumed in the present work, focused on the indentation of a coated flat 

by a rigid sphere. 

The different displacements of dissimilarly elastic materials, induced in each body by the equal (in 

magnitude) but opposite (in direction) shear tractions, lead to a relative peripheral velocity at the 

interface, i.e. local or micro-slip, if not opposed by friction. Practically, the contact area of the three-

dimensional point contact under normal load consists in a central region of stick enveloped by slip 

zones towards the edge of the contact. On the stick region the surfaces adhere in the tangential 

direction, meaning that mating points on the two surfaces stick together after the deformation, and 

therefore have vanishing relative displacement. As opposed to the slip peripheral zone, where mating 

points undergo different tangential displacements and consequently slips occurs. As the contact area 

grows with the normal load increase, points initially laying outside the adhesion region will 

progressively be enveloped in the stick region. 

A subsequently applied tangential force may generate a global sliding motion, if greater than the 

force of limiting friction (i.e. that for the case when sliding is about to occur), or a tendency to slide. In 

the latter case, although there is no nominal relative velocity between the bulks of the bodies, local slip 

occurs at specific regions of the interface. The tangential tractions induced by the tangential force 

affect the size and shape of the contact area, and also the pressure distribution, only if the two solids 

have different elastic constants. Otherwise, for similarly elastic materials, given that the normal 

displacements induced by the shear tractions will be equal, the contacting surfaces will warp 
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conformingly. Consequently, the pressure distribution and the contact area will be given by the initial 

contact geometry, and will be independent of the tangential force. 

Considering the aforementioned interdependencies, it can be concluded that the tangential tractions 

interact with pressure when the solids have different elastic properties. The practice of contact 

problems involving homogenous solids usually assumes that pressure and tangential tractions are 

independent of each other, as the influence of the latter on pressure is small, especially for low 

frictional regimes. For the contact of coated materials, the aforementioned assumption may be too 

strong, and therefore it is discarded in the present study. The interdependence between the normal and 

the tangential tractions is overcome by numerical analysis, in an iterative approach whose convergence 

is dictated by the stabilization of pressure with respect to the shear tractions. 

One distinctive feature of the contact process is that, although the contact is assumed quasi-static 

and in the frame of linear elasticity, due to the irreversibility of friction, the final stress state will 

depend upon the loading history rather than solely on the final magnitudes of the normal and 

tangential loads. Consequently, the surface tractions can only be found by following the complete 

loading history in incremental steps. 

Given the aforementioned contact process features, the model discretization has to be made in both 

spatial and temporal dimensions (although the latter does not imply that the time parameter is 

explicitly needed, as long as the loading history is reproduced). Two or three indexes, respectively, 

may be needed to substitute the continuous coordinates, allowing for positioning on the surface (e.g.,  

,i j  in equations (1)-(5)) or in the volume computational domain, respectively, whereas an additional 

index (e.g., k  in equations (1)-(5)) may be needed for the sequence of the loads application. In order 

to speed up the computation of convolutions resulting from the superposition of effects, techniques 

derived from the digital signal processing are applied, which require a uniform rectangular mesh and 

piecewise constant distributions. This state-of-the-art approach is sustained by the analytical solutions 

existed in the literature for the stress or displacement effect induced in a half-space by a pressure or 

shear stress excitation uniformly distributed on a rectangular patch located on the half-space boundary. 

Given the aforementioned solutions, an additional assumption is needed, commonly used in contact 

mechanics, i.e. the approximation of solids of general profiles with half-spaces. This assumption is 

reasonable in case of concentrated contacts, when the contact stresses are confined to a limited body 

domain, and not influenced by the proximity of its boundary. The latter assumption warrants the 

calculation of displacements using superposition of fundamental solutions derived for the elastic half-

space, and also forces contact pressure to act perpendicular to the interface regardless of the 

deformation it produces. Moreover, the strains developed in the contact process are assumed 

sufficiently small to fit the framework of the linear theory of elasticity.   

The contact model [10,11] for the dry, frictional contact, under normal and tangential load, the 

latter generating a partial slip regime, is restated here for clarity and completeness. The equations are 

reported to a Cartezian coordinate system with the origin in the initial point of contact, and with the 

1x -axis conveniently aligned with the direction of the tangential force, without losing generality. The 

contacting bodies are compressed by a steady normal load W , giving birth to a contact area ( )A k , 

while an oscillating tangential force 1 2( , 0)T T T  is subsequently applied, having an amplitude 

insufficient to cause the sliding of the two surfaces. The static force equilibrium equates the applied 

normal and tangential loads to the contact pressure p  and the shear tractions 1 2( , )q qq , respectively: 

 
( , ) ( ) ( , ) ( )

( ) ( , , ); ( ) ( , , ), 1,2n n

i j A k i j A k

W k p i j k T k q i j k n
 

      , (1) 

where   is the elementary cell area. On the computational domain P, the displacement equation in the 

normal direction results from comparison of contact geometry before and after the deformation, 

whereas that in the tangential direction from consideration of subsequent load increments: 

 3 3( , , ) ( , , ) ( , ) ( ), ( , )u i j k h i j k hi i j k i j P    ; (2) 
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( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)
,( , ) ( ).

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

u i j k u i j k s i j k s i j k k k
i j A k

u i j k u i j k s i j k s i j k k k

 

 

          
       

          
 (3) 

In equation (2), h  is the separation between the two surfaces, whereas hi  denotes the sum of initial 

(i.e., in unloaded state) digitized body profiles, 3u  the composite (i.e., relative) displacement in the 

normal direction, and 3  the rigid-body approach, measured as the approach of body points distant to 

the contact zone, measured along the normal direction. Equation (3) relates the increments of the 

tangential displacements iu  with the those of the tangential rigid displacements i  and with those of 

slip is , 1,2i  . As i  are position-independent, it follows from the latter equation that surface points 

with vanishing slip (i.e., in stick) undergo the same tangential displacement. 

The contact problem solution is difficult to achieve because: (1) the division of the computational 

domain into the contact and non-contact zones is not known in advance, such as that of the contact 

area into slip and stick regions, and (2) these separations keep changing during the loading history due 

to the interaction between pressure and the tangential traction. In the numerical model, these divisions 

are expressed by the boundary complementarity conditions, and are found by trial-and-error.  

The boundary conditions express the complementarity between the contact and the non-contact 

regions, as well as between the slips and stick zones: 

 
( , , ) 0 and ( , , ) 0, ( , ) ( );

( , , ) 0 and ( , , ) 0, ( , ) ( );

p i j k h i j k i j A k

p i j k h i j k i j P A k

  


   
 (4) 

 
( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( );

( , , ) ( , , ) and ( , , ) ( , , 1) 0,( , ) ( ) ( ).

i j k p i j k i j k i j k i j S k

i j k p i j k i j k i j k i j A k S k





     


     

q s s

q s s
 (5) 

Equation (4) implies that tensile normal tractions cannot be sustained, which is reasonable for 

contact process involving metallic solids with inherent microtopography that inhibit the contribution 

of the adhesion force in the normal direction. The relationship between pressure and the tangential 

tractions is assumed according to the Amontons’a law of sliding friction, as shown in equation (5). 

The frictional coefficient  , determined by the materials properties and by the physical state of the 

interface, is assumed uniform over the whole contact region and constant during the loading history, 

although this is not a limitation imposed by the numerical scheme, which can handle mapped friction 

data with no additional algorithm modifications. 

To solve the contact model, it is required to find the discrete distributions of surface tractions 

transmitted between the two solids at their surface of contact. To this end, the contact model (1)-(5) is 

first divided into two submodels for the normal and the tangential direction. Given the fact that 

calculation of displacement in any direction require knowledge of all contact tractions, the submodels 

will not be independent. However, an algorithm for the solution of each model with known, yet 

arbitrary output from the other, is readily available. The scheme was originally proposed for the 

frictionless contact or rough bodies by Polonsky and Keer [11], and was subsequently adapted [12] to 

the submodel in the tangential direction. An outer loop [8] is required to stabilize the inputs of the two 

submodels, i.e. the tangential tractions with respect to the contact pressure. The latter algorithm 

strategy applies in full to the contact of coated bodies under the assumption that the elastic 

displacements are accurately computed. An algorithm for the computation of the elastic response of 

coated bodies to general loading is detailed in the companion paper. From the point of view of the 

latter contact solver strategy, it is important to note that the method to solve each of the two submodels 

neither requires nor calculates the rigid-body displacements i , 1,2i  . In other words, only the 

relative values of displacements are needed for the contact process solution, which warrants a 

simplified approach in displacement calculation, as detailed in the companion paper.  
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3.  Results and discussions 

For benchmarking purposes, two simpler scenarios with well-known solutions were replicated with the 

newly proposed computer program. Firstly, the pressure profiles in the spherical indentation of a 

coated flat by a rigid indenter were obtained for the frictionless contact. The Young modulus of the 

coating 
1

E  was varied with respect to that of the substrate, 
2

E , which was kept constant. The Hertz 

contact parameters Ha  and Hp , calculated with the substrate elastic parameters, were used as 

normalizers for the radial coordinate and the contact pressure, respectively. The coating thickness was 

fixed and equal to the Hertz radius. The semi-elliptical Hertz pressure profile was also added for 

reference. These results depicted in figure 1 match well the pressure distributions obtained by 

O’Sullivian and King [13] using a different method, and validate the contact scheme for the normal 

contact problem, as well as the procedure for the calculation of normal displacements in coated bodies.  

 Secondly, simulation of a fretting loop for homogenous materials allows validation of the contact 

solvers in the normal and in the tangential directions. The reference closed-form relations were 

deduced in [10], based on the solutions of the partial slip contact obtained independently by Cattaneo 

[14] and by Mindlin [15]. The corresponding curves are displayed with continuous grey lines in figure 

2, which shows the distributions of shear tractions at specific moments from the loading history, in a 

fretting loop of amplitude lim 0.9T W , in the time interval   between the first and the third null of 

the tangential force. In this case, the pressure is independent of the shear tractions and of the loading 

history, and obeys the Hertz theory.  

 

 

 

 

Figure 1. Influence of elastic moduli ratio on 

the pressure profiles. 

 Figure 2. Shear tractions 1 Hq p  in a fretting 

loop, 0.1  .  

 

The simulation of a fretting loop of amplitude lim 0.75T W , with 0.1  , is performed for 

different elastic moduli ratios between the coating and the substrate. The loading history is reproduced 

with 400 loading increments, from which the first 100 are reserved for the initial normal indentation. 

In this stage, although no tangential force is applied, self-equilibrating shear tractions arise due to the 

mismatch in the elastic properties between the contacting bodies. The indenter is assumed rigid, while 

the ratio of the elastic moduli ratio between the coating and the substrate is varied. Whereas the 

contact pressure is not greatly affected, the distributions of shear tractions vary significantly from the 

elastically similar case presented in figure 2. More so, the maximum tangential force that the contact 

can withstand before going into full sliding is significantly less than the theoretical one [14,15], 

limT W . The predicted profiles of dimensionless shear tractions are depicted in figure 3. 
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(a) 

 

(b) 

Figure 3. Shear tractions in the indentation of a coated half-space: (a) 1 2 1 2E E  ; (b) 1 2 2E E  . 

4.  Conclusions 

The lack of analytical solutions for the model of the fretting contact encourage the use of numerical 

methods that employ trial-and-error strategies to derive the contact area and the slip-stick boundary, as 

well as their evolution with the loading history. The accurate reproduction of the latter is an important 

prerequisite for the precise estimation of the contact normal and shear tractions. 

A fretting contact solver originally designed for elastic homogenous bodies was successfully 

adapted to the contact of layered bodies with the assistance of a numerical procedure for the 

calculation of displacement in multi-layered mediums. Only the relative displacement fields are 

required, which avoids the evaluation of the frequency response functions in the origin of the 

frequency domain.  

The three-level iterative strategy converged in all situations involving various elastic moduli ratios 

between the coating and the substrate. Well known literature results were faithfully reproduced, giving 

confidence in the method ability to advance the understanding of the fretting contact of coated bodies. 

The knowledge of contact tractions will allow the calculation of stress fields developing in the layered 

mediums. 
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