
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Conference on Tribology (ROTRIB’19)

IOP Conf. Series: Materials Science and Engineering 724 (2020) 012007

IOP Publishing

doi:10.1088/1757-899X/724/1/012007

1

 

 

 

 

 

 

On thermal calculation for helical gear transmission system 

I S Gabroveanu1, S Cananau2,3,, R F Mirica2 and A A Ilies1 

1 National Research and Development for Gas Turbines SC COMOTI SA, 220 D Iuliu Maniu 

Bd., 061126, Bucharest, Romania  
2 Politehnica University of Bucharest, Machine Elements and Tribology Department, 313 

Spl.Independentei, 060042, Bucharest, Romania 

 

 

 

Abstract. The purpose of the study in the paper is to evaluate the thermal comportment of the 

transmission systems with helical gears. Also, the influences of heat on characteristics of gear 

transmission system, based on the meshing thermal stiffness of gears are analyzed. An 

experimental testing stand of the system will be used to obtain data. The respond of the 

transmission under different working conditions is also analyzed. The study concerns the 

comparison of theoretical results obtained using calculation methods (from literature) and the 

experimental results, in order to obtain an evaluation of the friction in the meshing gears. The 

heat (temperature) affects the dynamic characteristics of the system by the meshing stiffness of 

the gear. The experimental results are used to verify the correctness of the theoretical model. 

1. Introduction 

In the last years, the design of modern gear transmissions is concerning to improve energy-dense 

property of the new product. As consequence the development of new mechanical systems with gears 

require much detailed knowledge and experiments. One of interesting area of the gears transmissions 

research is to evaluate all kind of energy losses in the all detailed components in function in the system 

for a better running performance. Energy losses in a gearbox are converted into heat which must be 

dissipated. Thus, this heat is the main responsible for the temperature increase while the system is 

running. In this paper we are going to investigate, within a thermal model who evaluates each kind of 

power loss, the thermal calculation for gears. 

Many authors were concern of this area of research: Durand de Gevigney et alt. are concern to 

study thermal modelling of a back-to-back gearbox test machine with an experimental FZG test rig [1], 

Hlebanja and Kulovec focusses on the differences in thermal load of cylindrical, spur, plastic involute 

and S-gears [2], Kanatnikov et alt. presents a model for predicting the thermal processes arising during 

shaping gears with internal non-involute teeth [3]. The variations of the temperature in the function 

time are also a subject of research interest. Luo and Fei focus on some common mechanical parts in 

precision technology and propose mathematical models for hollow piece, gear and cube. The 

experimental results also make it clear that these models are more logical than traditional models [4]. 

Other authors are involved in the study of comportment of the lubricants in these mechanical systems. 

Badrinarayanan et alt. said that fluid transmission losses and inherent friction, heat energy is generated 

in the system which rises the fluid temperature. This heat has to be dissipated by proper means to 
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maintain the system temperature within safe limits. In their paper the authors attempt to study the 

thermal aspects of hydraulic system, heat generation and dissipation to estimate temperature rise 

profile and steady state temperature [5]. Other authors are interested to establish the dynamic 

behaviour of the gear pairs under different operating conditions, as Radu et alt. [6]  

2. Thermal balance and heat dissipation 

By hypothesis the gearbox at a thermal balance, heat evacuated by conduction, convection and 

radiation through the all mechanical elements of the transmission is a result of a power loss generated 

inside the system. So, the balance will be expressed as: 

 lossdiss PQ   (1) 

Each part of this equation has the following explanation:  

2.1. The heat dissipation 

2.1.1. The heat dissipation by radiation. The heat dissipation Qdiss is a sum of evacuated heat by 

conduction, convection and radiation for all elements of the system that in time are supposed to be in 

the process of dissipation 
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According to other works, example [1], the internal heat transfer is not taken into account for the 

stationary gearboxes. The dissipation by radiation is due to the heat flow from the surfaces of the 

gearboxes housing.  

2.1.2. The heat dissipation by convection. The convection is due to the contact between the oil and the 

mechanical parts interaction, at various temperatures 
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where cconv is the oil convection coefficient, Aj is the area of a surface j involved in heat dissipation by 

convection, Twall is gearbox housing temperature, Toil is the fluid (oil) temperature. 

2.1.3. The heat dissipation due to conduction is not taken into account in this paper. 

Concerning the second part of the Eq.(1) we will take into account: 2.2.1. teeth friction loss, 2.2.2. 

shaft-bearing power loss, 2.2.3. shaft seal power loss, 2.2.4. churning losses. 

2.2. The power losses 

2.2.1. Teeth friction losses. In the functioning conditions the pinion (driving) and the wheel (driven) 

teeth are in meshing. In this paper we assume the calculus for the teeth friction losses in conditions of 

mixed film lubrication, which means that the normal load for the teeth contact is not fully supported 

by EHD lubricant film. In the real case of functioning there are different stages of meshing with 

possible various film thickness, due to variation of the contact geometry, pressure and load value 

along the meshing line. For general purpose we consider the loss power in mesh as is considered in 

[1]: 

 vinfmesh HPP   (4) 

where Hv is the geometry parameter: 
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and Pin is the input power, µf friction coefficient. 

Regarding the friction coefficient µf there is a lot of discussions and researches done to agree with 

an expression to fit a sustainable value of this parameter. We take for reference the expression of Höhn 

at al. [7] and developed by Castro and Seabra [8]. In this paper we adopt the following expression: 
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where WL is specific normal load, VR is the rolling speed, R’eq(C) is the equivalent radius of curvature of 

the contact points of teeth (C), m is dynamic oil viscosity at oil temperature, d1 is the pinion pitch 

diameter, RaEq is the equivalent arithmetic average of the roughness of surfaces in contact, XL is 

lubricant correction factor (function of the nature of additives) and XC is a correction factor for gears 

with coated surfaces. (in our case, XC is equal to unit). 

2.2.2. Rolling bearing power loss. Taking into account the considerations due to Niemann et. all. [9] 

we will consider only the following causes for the friction in shaft-bearings system: 

- rolling at a contact area, having different radiuses with elastic deformations and material 

hysteresis, 

- sliding between guiding surfaces and rolling elements, 

- lubricant internal friction, drag losses, churning, splashing, 

- air resistance by high speed, 

- rolling resistance caused by various contaminations in contact area.  

In [9] a simplified calculation method is obtained. The frictional moment can be estimated with 

sufficient accuracy using a constant coefficient of friction, μbearing, the mean diameter of rolling 

bearing, dm, and the equivalent dynamic bearing load, Feq: According to SKF [10], the recommend 

following formula to estimate the frictional torque, Tfr, is: 

 eqmbearingfr FdT  5,0  (7) 

where μbearing = 0.002 (for spherical roller bearings that are used in experimental rig) is an 

approximated constant coefficient of friction for the bearing, Feq is the equivalent dynamic bearing 

load. SKF [10] recommend the same formula but using μbearing = 0.0018. 

The power loss is estimated using the angular velocity of shaft, ω: 

  frfr TP   (8) 

2.2.3. Shaft seal power losses. In many studies researchers evaluate the seal power loss with less 

influence compared to other losses in the period of functioning. Seal losses are the power losses due to 

friction between the shaft and its seal. We must pay attention to consider, in our study, both gearboxes 

with possible heat dissipation. We take into account in this paper the expression from Höhn et al. [7]: 

 ndP shseal  61069,7  (9) 

where dsh is the diameter of the seal. 

2.2.4. Churning losses. Churning losses is also a subject of various opinions from many researches. 

This is a consequence of the experimental set up of the test gear, for each research considered. For 

example, there are different designs for the case of the gears. By other hand, the expression of this 

calculation is in direct relation with the geometry of housing, the design and also the dimensions. In 

this paper we had as reference the work of Hai Xu and Kahraman [11], Changenet and Velex [12]. 

The expression we will use is obtained from [12]:   
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where  is the angular velocity,  is the oil density, A is the lateral and teeth immersed surface of 

contact between gear and lubricant, Cm is the dimensionless drag torque. In our case, for the calculus, 

we will consider that the gear is immersed in lubricant with a dimension of three times the gear 

module. 

3. Validation of presented method 

With a view to validate the previously presented method, some experiments have been effectuated. 

The used test rig is a testing machine with closed power circuit, ensuring the application of different 

torques, in the range 0 - 200 Nm and number of revolutions in the range of 1000 - 3000 rpm. The test 

rig was instrumented with: optical precision encoder, ROC 425 type, Heidenhain production, 

Germany, two pieces; torque converter without contact T10FS Hottinger Baldwin Messtechnik, 

precision class 0.05%; lines for measuring the oil temperature in the lubrication baths of the two 

gearboxes, test and return; AC electric motor speed measurement. In figure 1 is shown the test rig. The 

geometry of tested gears and other characteristics used in the calculation method are given in table 1.  

 

 

Figure 1. Test rig. 

 

Table 1. Geometry and other characteristics of the test rig. 

Characteristic Notation Data Characteristic Notation Data 

Centre distance [mm] aw 125  Pinion hardness HB 270-290 

Pinion teeth number z1 15 Wheel hardness HB 290-310 

Wheel teeth number z2 46 Flank roughness [μm] Ra 0.4 

Helix angle [º] β 10 
Type of the spherical roller 

bearings 
- 21310 E 

Profile shift coefficient at pinion x1 0.427 

Profile shift coefficient at wheel x2 -0.138 Distance between bearings [mm] - 200  

Face width [mm] b 72.37  Oil type - H46EP 

Transverse contact ratio εα 1.4532 Oil volume [l] Voil 6  

Overlap ratio εβ 0.871 Oil density [kg/m³] ρ 877 

Gear accuracy grade - 5 Mean of thermal capacity of oil 

[kJ/kg K] 
cp 2.121  

Gear material (case hardened) - 41MoCr11 
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At pinion torque values of 50 Nm, 100 Nm and 150 Nm are determined the heat quantity 

accumulated in oil sump at number of revolutions of 1000 rpm and 2000 rpm. The temperature 

increase is registered. The convectively dissipated heat through housing of test rig was neglected in 

this phase. 

Using the experimental thermal capacity of oil  

 1000/213.4826.1 medp tc   (11) 

the temperature variation, Δt and test duration (time), the power loss gets into oil sump is calculated: 

 timetcVtimeQP poil //    (12) 

The experimental data have been centralized in the table 2. In the figures 2 and 3 are shown the 

calculated power losses using the presented method. 

 

Table 2. Experimental power loss [kW] / at mean temperature [º C]. 

 

  

 

 

Figure 2. Calculated power loss at 1000 rpm.        Figure 3. Calculated power loss at 2000 rpm. 

 

Comparing the experimental results from table 2 with the calculated ones from figures 2 and 3, it 

can be observed that the experimental values are considerably lower than the calculated ones. The 

possible explanation is the use of simplified calculation methods (that must give sure results) and the 

influence of convective heat transfer from test rig housing. It is to observe, that at same torque and 

number of revolutions the experimental power loss (table 2) is lower than the calculated one (figures 

2,3) at higher mean temperature. The explanation is the difference of temperature between test rig and 

environment which is greater and, as consequence, also the convection is greater. 

Torque [Nm] 

 

Number of revolutions [rpm] / time [min] 

50 Nm 100 Nm 150 Nm 

1000 / 10 0.019 / 38.85 0.053 / 25.25 0.053 / 32.75 

1000 / 30 0.04 / 27.5 0.045 / 35.7 0.064 / 29.95 

2000 / 10 0.089 / 27.675 0.091 / 29.45 0.096 / 37.05 

2000 / 30 0.067 / 36.75 0.08 / 46.35 0.102 / 44.3 
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4. Conclusions 

1. The thermal calculation of gearboxes was analyzed.  

2. A test rig for experimental study of thermal behavior of gearboxes was realized. 

3. Preliminary results of experiments are compared with calculation method. The calculated results are 

greater than the experimental ones. An explanation is the convective dissipation, which was neglected. 

Therefore the experimental assessment of convective heat dissipation of test rig is necessary.  

4. An improvement of calculation especially of power losses in gears is needed. 
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