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Abstract. The service life of contacting coated machine elements is ultimately determined by 

the distribution of stresses in the coating and in the substrate. By assuming the elastic bodies as 

elastic half-spaces, the contact stress computation entails the calculation of convolutions 

expressing the superposition of effects of unit point loads acting on the boundary. The 

fundamental solutions of stresses and displacements in multilayered materials have only been 

calculated in the frequency domain, and are known as the frequency response functions. An 

additional difficulty arises in the stress calculation, related to frequency response function 

valuation in the origin of the frequency domain, where a singularity is usually encountered. 

This case of un-determination is circumvented in this paper by substituting the required value 

with the mean value of the frequency response function over a vicinity centered in origin. The 

latter approach is endorsed by the fact that the frequency response function is singular, but 

numerically integrable in the aforementioned vicinity. The latter technique is validated by 

comparison with results obtained for the sliding contact, and then applied to derive the elastic 

stresses arising during a fretting loop in the coating and in the substrate. The stresses due to 

shear tractions are superimposed to those induced by contact pressure. The calculation is 

performed in layers of constant depth, and the algorithmic complexity is optimized by using 

state-of-the-art techniques for discrete convolution computation. The equivalent stress is 

discontinuous across interface between the two layers, and the location and intensity of the 

maximum von Mises stress is determined by the frictional coefficient and by the mismatch 

between the Young moduli of the coating and the substrate. The results obtained with the 

newly proposed numerical technique may extend the understanding of the fretting contact of 

coated materials and assist the design of improved coating configurations. 

1.  Introduction 

The contact mechanics modelling of functionally graded materials and coatings, whose elastic 

properties vary in the depth direction, involves multi-layered systems consisting in perfectly bonded 

layers of different elastic constants, allowing for the half-space assumption valid for small contact 

region compared to the bulk body dimensions. The study of these materials pioneered with the stress 

and displacements analytical solutions given by Burminster [1] for a single layered material and 

axisymmetric normal loading.  Chen [2], and Chen and Engel [3], extended these solutions to arbitrary 
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normal loadings. The case of multilayered transversely isotropic half-spaces was addressed by Kuo 

and Keer [4] using the boundary integral method together with the Hankel transform. The frequency 

response functions (FRF) of bilayered materials, relating in the Fourier transform domain unit surface 

tractions to displacements and stresses, were derived by O’Sullivan and King [5] with the aid of the 

Papkovich–Neuber potentials and the double Fourier transform. Their procedure was further employed 

to analyse various dry [6-12] or lubricated [13] contact scenarios, in which the elastic response of the 

layered material is assessed based on the FRFs.  

From a computational point of view, an important breakthrough in the calculation of stresses 

arising in multi-layered systems due to general loadings, has been achieved with the development of 

the spectral techniques for the calculation of convolution products in the Fourier transform domain. 

Nogi and Kato [6] first employed the aforementioned FRFs in the derivation of the solution for the 

coated contact of rough surfaces with the aid of the fast Fourier transform (FFT). The source of the 

periodicity error linked to the application of the FFT to non-periodic problems such as the 

concentrated contact was discussed [14-16], and different correcting procedures were advanced. The 

extension of the physical computational domain coupled with the zero-padding of the excitation are 

now generally applied in evaluation of the discrete cyclic convolutions expressing stresses and 

displacements in contact problems. 

Considering the complexity of the arising mathematical models, the derivation of the FRFs is an 

important prerequisite in stress calculation. Liu and Wang [16] obtained the FRFs for both normal and 

shear tractions in a closed-form that is well adapted to numerical implementations. In the same 

manner, the FRFs of tri-layer materials were derived [10], as well as the recurrence relation for the 

FRFs of multilayered materials [17].  

In this paper, the stress fields in the fretting contact are obtained following the general procedure 

for stress calculation established in the literature of layered materials. The numerical implementation 

uses the FRFs derived by Liu and Wang [16], whereas the aliasing in the frequency domain is 

controlled by an extension of the computational target domain. The computer program is validated by 

comparison with results obtained for the sliding spherical contact of bilayered materials.      

2.  Elastic response of coated bodies 

The half-space approximation employed in the framework of contact mechanics, together with the 

Linear Elasticity fundamental solutions, also referred to as the Green's functions, allow for the 

calculation of the response of an elastic half-space to arbitrary, yet known, loadings. In particular, 

displacements and stresses induced by surface general loadings result as integrals superimposing the 

individual contributions of concentrated forces applied on the boundary. Mathematically, the latter 

integrals are convolution products of the relevant Green’s function with the contact tractions. The 

Fourier transform of a Green’s function is also known as the frequency response function (FRF). 

Explicit expressions were derived in the literature for both the Green’s functions and the related FRFs 

of homogenous semi-infinites, but in case of layered materials, the Green’s functions still lack explicit 

expressions. The derivation of the FRFs suggests the numerical calculation of the layered half-space 

response in the frequency domain, assisted by the discrete convolution theorem, which brings 

additional advantages regarding the algorithmic efficiency: the convolution product of series with N  

terms is reduced in the frequency domain to an improved ( log )O N N  order of operations, which is a 

substantial saving from the 2( )O N  specific to the time/space domain. This decrease stems from the 

conversion of the convolution product in an element-wise product in the Fourier transform domain. 

 The main disadvantage of model digitization in the frequency domain is the problem periodization:  

the discrete Fourier transform of a discrete series, calculated with the fast Fourier transform (FFT), 

tacitly assumes the series as periodical. The physical meaning of the periodization is that a bogus 

periodical surface load is assumed instead of the actual one. The fake neighbouring periods of contact 

tractions are likely to perturb the half-space response to the non-periodical load. Important research 

efforts aimed to reduce or control this periodicity error. Nogi and Kato [6] protected the displacement 

solution of both homogenous and bilayered bodies by a grid refinement with a factor of two along 
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each direction, whereas Liu et al. [15] addressed the issue of the conversion of a linear convolution 

into its discrete cyclic counterpart, concluding in the Discrete Convolution FFT method (DCFFT) that 

allegedly brings no additional error beside the discretisation error in convolution computation. The 

aliasing and the Gibbs phenomena were identified [16] as the main sources of perturbation when the 

half-space response is calculated based on the FRFs directly in the Fourier transform domain. Based 

on their findings, the algorithm accuracy is assured in this paper by extending the target computational 

domain, resulting in a refinement of the mesh in the spectral domain that reduces aliasing, and by the 

zero-padding of the excitation (i.e., the contact tractions, pressure or shear), aiming to move away 

from the target domain the spurious neighbouring periods, thus limiting their contribution.  

An algorithm for a more general problem is thus advanced, allowing the convolution computation 

when the convolution members are arbitrary, yet known functions, and one of the convolution 

members is only known in the frequency domain. In particular, the latter algorithm can be applied to 

derive numerically the elastic response (i.e., displacement and stresses) of a coated half-space to a 

general surface excitation in the form of pressure or shear tractions. It should be noted that, although 

the method implies digitization of the excitation, the employed fundamental solution (i.e., the FRF), is 

derived in closed-form. Therefore, similar methods are known in the literature of contact mechanics as 

semi-analytical [18].  

For clarity and simplicity, but without losing generality, the method presentation is restricted to the 

line contact of infinitely long cylinders (i.e., the two-dimensional problem). Extension to the three-

dimensional case is achieved by adding a new dimension, matching the second tangential direction 

from the contact 3D problem. The algorithm needs the following input: (a) the target domain L , (b) 

the digitised surface loading 
ip , 1i N , (c) the FRF closed-form for the needed response, f , and 

(d) the extended domain L , defined with the aid of an extension ratio  . It should be noted that the 

algorithm output should only be considered for the target domain L , whereas results at the edge of the 

extended domain may be of a questionable precision. For the Fourier transform domain, the tilde (~) 

symbol is employed to denote continuous functions, as opposed to the hat (^) mark for discrete series. 

The extension of the target domain L  into L  aims at the refinement of the mesh in the Fourier 

transform domain. This can only be achieved by preserving the original sampling interval in the spatial 

domain, L N  , and leads to a decrease of the sampling interval in the frequency domain from 2 L  

to 2 ( )L  . Thus, the number of samples in the spatial domain needs also to be increased from N  to 

N . The value of the extension ratio   thus has a negative impact on the needed computational 

resources, and should be chosen as a compromise. Values between 2 and 8 make good candidates.  

The spectral coordinates i  of the refined spectral mesh result as: 

 2 ( 2) ( ), 1i i N L i N       , (1) 

and represent discrete frequencies at which the FRF f  is evaluated. A discrete spectral series ˆ
if  

characterising the spectral response to a unit impulse response is achieved: 

 ˆ ( ), 1i if f i N   . (2) 

One additional difficulty arise, as the stresses and displacements FRFs for both homogenous and 

layered materials are singular at 0  , i.e. the origin of the frequency domain. This shortcoming can 

be overcome depending on whether the calculated elastic response is needed in absolute or in relative 

terms. It was stated in the companion paper that, due to a particularity of the contact solver in both 

normal and tangential direction, only relative displacements are needed to achieve the contact solution. 

Therefore, if  f  is a displacement FRF, (0)f  is not needed, as shown below, as it only introduces a 

constant to the calculated response field, and any value can be considered instead, e.g. (0) 0f  . The 

situation is similar to the 2D contact problem, in which the displacement field is known except for a 
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constant, but the contact pressure can be assessed in absolute terms. Relative calculation is not 

satisfactory in stresses computation, when absolute values are required to assess the propensity of 

plastic yielding via an equivalent stress tensor intensity such as the von Mises criterion. In the latter 

case, by taking advantage of the fact that the FRF is numerically integrable on a vicinity centred in 

origin, a mean value of the FRF can be considered as the best available indicator of the local function 

behaviour:  

 

( )

( )

(0) ( )
2

L

L

L
f f d

 

 


 




  . (3) 

Following the requirements of the discrete cyclic convolution theorem [15], the series ˆ
if  is 

subsequently rearranged in wrap-around order, with the terms corresponding to negative frequencies 

shifted at the end of the series. Consequently, the first position in the series ˆ
if  will be occupied by the 

term calculated in eq. (3). Symmetrical zero-padding of the excitation in the extended domain is also 

required [15], resulting in a series of vanishing terms, apart from: 

 ( 1)

2

, 1N i
i

p p i N


  , (4) 

series which is subsequently transferred to the frequency domain, ˆ FFT( )p p . The convolution result 

i  is first calculated as element-wise product in the frequency domain, then transferred to the space 

domain via inverse FFT, as shown in eq. (10). The middle N  terms match the target domain and are 

retained as output.  

 ˆˆ ˆ , 1i i if p i N    , ˆIFFT( )  . (5) 

One can verify that, when the first term of a series is perturbed with an arbitrary constant, all the 

terms in the FFT or the IFFT of the series are perturbed with a constant. Considering the way the 

convolution result is achieved in eq. (5), it can be seen that misevaluating the FRF in the origin of the 

frequency domain results in a constant added to the computed stress or displacement field.  

The proposed algorithm not only circumvents the computation of the Green’s functions for the 

coated half-space, but also reduces the computational complexity due to the convolution calculation in 

the frequency domain in ( )O N  operations, as opposed to 2( )O N  in the space domain. Considering 

that both FFT and IFFT are of order ( log )O N N , the latter is the overall order of operations for 

displacement or stress calculation in layers of constant depth. The decrease is of paramount 

importance as the displacement field needs to be calculated many times during the iterative search of 

the contact area and the stick region. More so, the stress tensor components evaluation implies six 

convolutions for each traction component and each considered depth. The gap between 2( )O N  and 

( log )O N N  becomes significant for 610N  , which is considered as a minimum threshold for the 

treatment of rough contact problems. Practically, a three-dimensional contact simulation with a surface 

grid of 2128N   points, multiplied 64 times in depth for stress calculation, and with a domain 

extension ratio 4  , is performed on a quad-core 3.2 GHz CPU in less than 30 minutes. 

The FRFs required in eq. (2) are given in the literature [5-7,16]. The closed-form expressions were 

obtained by taking the double Fourier transform of the Papkovich-Neuber potentials expressing the 

stress and displacement fields in layered materials, and by imposing the boundary conditions and the 

continuity conditions at the layers interface. From a computational point of view, the formulas 

obtained by Liu and Wang [16] are more convenient to use in a numerical implementation, as certain 

derivatives are not involved. The proposed algorithm can equally handle multilayared materials 

provided the required FRFs are made available, such as in [17]. 
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3.  Results and discussions 

The validation of the sequence for the computation of stresses is attained by benchmarking the 

distributions of the calculated 2J  stress tensor second invariant with the data obtained by O’Sullivian 

and King [5] with a different approach. In this simpler case, the contact is in a full sliding, and the 

tangential tractions are simply proportional to the contact pressure via the frictional coefficient  . 

Two typical cases are presented in figure 1, but it should be noted that all results presented in [5] were 

closely reproduced with the newly advanced computer program. The Hertz parameters Ha  and Hp , 

calculated for the indentation of a homogenous half-space having the same elastic modulus as the 

substrate, by a rigid sphere, are used as normalizers. The coating thickness is denoted by ch . The 

location of the maximum value in each distribution is depicted with an X mark, and its dimensionless 

magnitude is indicated on each plot. The comparison gives confidence in the sequence for the stress 

field computation in bilayered materials. The discontinuity in the equivalent stress at the interface 

between the coating and the substrate, i.e. at c Hz h a  , suggests that, although the zx , zy  and 

zz   stress tensor components are continuous across the interface, the remaining ones are not. 

 

(a) 

 

(b) 

Figure 1. 2 HJ p  contour plots in the plane 0y  , obtained for the sliding contact of coated bodies:  

(a) 1 2 2E E  , 0.25  ;  (b) 1 2 1 2E E  , 0.5  . 

 

 (a) 

 

 (b) 

Figure 2. 2 HJ p  contour plots in the plane 0y  , obtained for the fretting contact of coated bodies:  

(a) 1 2 1 2E E  ;  (b) 1 2 2E E  . 
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 The stress state in the fretting contact is then evaluated with the newly advanced computer 

program, corresponding to the contact tractions presented in the companion paper. The simulation 

parameters are: frictional coefficient 0.1  , the coating thickness c Hh a , the tangential force 

1 0.75T W , corresponding to the second pas of the increasing tangential force through zero (or the 

third zero value). Iso-contours of the dimensionless 2J  are depicted in figure 2, for different elastic 

moduli ratios between the coating and the substrate. 

The computational process can take advantage of the fact the values of the FRF for the 2q  shear 

stress are permutations of those calculated for 1q . The numerical integration of the FRF in the vicinity 

of origin in the frequency domain was performed with the Matlab function “quad2d” with the default 

absolute and relative precisions, and no convergence issues were encountered.  

4.  Conclusions 

The Green’s functions for the layered half-space are difficult to derive in closed-form expression, and 

therefore the method of influence coefficients cannot be directly applied as in the case of homogenous 

mediums. The stress and displacement elastic response of coated bodies is computed in this paper in 

the frequency domain, based on closed-form solutions for displacement and stresses induced in a 

coated half-space by unit point force, also known as the frequency response function. The evaluation 

of the latter leads to a series that is multiplied in the frequency domain with the transform of the 

excitation, thus substituting the convolution in the space domain. The rearrangement in wrap-around 

order and the zero-padding of the excitation are well-known techniques applied in discrete cyclic 

convolutions computations. The singularity in the origin is circumvented by replacing the missing 

sample with a mean value calculated around the vicinity of the singularity.  

The program validation is achieved against classic results for the sliding contact of coated bodies. 

The simulations show the location and intensity of the maximum stress tensor second invariant, which 

is an indicator of the plastic flow susceptibility in the elastic body according to the von Mises 

criterion. The strong point of the proposed method consists in its computational efficiency, allowing 

for increased resolution in stress calculation. A map of the possible yield positions in the coated body 

is proposed for a future study, leading to the quick estimation of the probable yield inception in the 

coated system subjected to fretting. 
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