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Abstract

We present a fine grid of solar metallicity models of massive stars (320 in the range 12�M(M)�27.95),
extending from the main sequence up to the onset of the collapse, in order to quantitatively determine how
their compactness ξ2.5, defined by O’Connor & Ott, scales with the carbon–oxygen core mass at the beginning of
core collapse. We find a well defined, nonmonotonic (but not scattered) trend of the compactness with the carbon–
oxygen core mass that is strictly (and mainly) correlated to the behavior, i.e., birth, growth, and disappearance, of the
various carbon convective episodes that follow one another during the advanced evolutionary phases. Though both the
mass size of the carbon–oxygen core and the amount of 12C left by the central He burning play a major role in sculpting
the final mass–radius relation, it is the abundance of 12C that is ultimately responsible for the final degree of compactness
of a star, because it controls the ability of the carbon-burning shell to advance in mass before the final collapse.

Unified Astronomy Thesaurus concepts: Massive stars (732); Stellar evolution (1599); Stellar interiors (1606);
Core-collapse supernovae (304)

Supporting material: machine-readable table

1. Introduction

A proper understanding of the final fate of a massive star is
mandatory to estimate some of the outcomes of its explosion,
like, e.g., the mass of the remnant and the chemical
composition of the ejecta. In order to reach such a goal, both
the presupernova evolution and the following explosion must
be properly simulated.

In the last decade, the large body of theoretical works
devoted to the explosion of massive stars was mainly focused
on the progressively more sophisticated treatment of the
neutrino transport in multidimensional hydrodynamic simula-
tions of core collapse. Given the enormous amount of literature
on the subject, we refer the reader to the leading groups that
currently explore the explosion of massive stars in 3D
(Janka 2017; Müller et al. 2017; Burrows et al. 2019), and
the references therein.

On the other hand, the presupernova evolution is also crucial
because it determines some of the properties of a star at the
onset of core collapse that drive the following explosion, like,
e.g., the density profile (or, equivalently, the mass–radius
(M–R) relation), the mass of the iron core, and its electron
fraction (Ye) profile (Cooperstein et al. 1984; Baron et al. 1985;
Bethe 1990; O’Connor & Ott 2011, 2013). Such a final
configuration is the result of the complex interplay between
the nuclear burning and the number, timing, and overlap of
the various convective zones. In this context, one of the key
uncertainties connected with this complex behavior is the
treatment of the various instabilities (thermal, rotation induced,
etc.) that, in most cases, are still simulated very crudely by
means of the Schwarzchild/Ledoux criterion, the mixing
length theory, the presence/absence of convective overshoot-
ing, the parameterized efficiency of semiconvection, and so on.
Given the large variety of different possible choices it is clear

that the final structure of a star may depend, even significantly
depend, on the choices adopted by each author/group.
Moreover, most of the computations presently available usually
present results with a step in mass of at least half a solar mass
or more (our typical step is of the order of a few solar masses).
However, in recent years the situation changed substantially
because Sukhbold & Woosley (2014) and Sukhbold et al.
(2018) started a detailed study of the evolution of massive stars
and their associated explosions by adopting a very fine step in
mass (ΔM=0.01 M). Among the various results presented in
these papers, an interesting outcome highlighted by the authors
is that even minor changes in the initial mass of a star may lead
to very different structures at the beginning of the collapse.
Such strong variations in the density profile are readily visible
by taking advantage of a parameter, first introduced by
O’Connor & Ott (2011), that summarizes the compactness of
a star by means of a single parameter ξ, which is just the ratio
between the mass M and its corresponding radius R at the mass
location M=2.5 M, i.e., ξ2.5=2.5 M/R2.5 (1000 km).
Figure 8 in Sukhbold et al. (2018) shows exactly such a result.
In particular between 14–20 Mand between 22–24 Ma
large scatter in the compactness of the models is evident.
Since our first paper on the subject (Chieffi et al. 1998) we

have addressed many aspects of the evolution of the massive
stars in a wide mass range (typically in the range 11–120 M)
and metallicity (0 to solar) (Limongi & Chieffi 2012) and also
various initial rotation velocities (Limongi & Chieffi 2018).
Our typical step in mass has always been of the order of 1 solar
mass or more. Given the relevant implications of the results
obtained by Sukhbold and coauthors, we consider of great
interest that we compute, show, and discuss the trend we obtain
for the ξ parameter as a function of the initial mass with a mass
step much smaller than used in our previous computations.
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We will not attempt any connection between compactness
and explodability because it is both beyond the purposes of the
present study and also because it has often been criticized. Ertl
et al. (2016), for example, proposed the adoption of two
parameters to infer the possible explodability of a stellar model:
the mass location, and its derivative, with respect to the radius
evaluated at the coordinate where the entropy per nucleon
reaches a value of 4 (which basically corresponds to the base of
the O-burning shell). We refer the reader to that paper for more
details. Also, Burrows et al. (2019) regard the use of the
compactness ξ to infer the explodability of a model as
unreliable.

The paper is organized as follows. The version of the code
adopted for this analysis is presented in Section 2, while the
properties of all our models are discussed in detail in Section 3.
Section 4 is devoted to a comparison between some of our
results and those presented by Sukhbold et al. (2018). A final
conclusion summarizes our results.

2. The Models

All the models discussed in this paper have been computed
with the FRANEC evolutionary code, release 6. This version is
the same used in Limongi & Chieffi (2018), with the exception
of the nuclear network and the number of mesh points. In this
set of computations we adopted a reduced network (shown in
Table 1) because we were basically interested in the physical
evolution of the models, and not in the detailed nucleosynth-
esis, but also because the calculation of this very large grid of
models with our full network would have required an
unfeasible amount of computer time. However, in order to
check the consequences of this choice, we computed four
models with the full network and found that the final
compactness ξ (the main property we are interested in this
study) closely resembles the one obtained with the small
network (see Section 4). The number of mesh points has been
slightly increased so that they now range between 2000 and
6000 (apart from the outermost 1% of the mass, i.e., the
envelope, which is described by a few hundred mesh points),
depending on the mass and the evolutionary phase. A great
effort was devoted to choosing a mesh distribution refined
enough to provide a very clean temporal evolution of the
central He burning, in order to avoid the spurious ingestion of

fresh He toward the end of the He burning and hence give a
random scatter in the final C abundance. To be more specific,
FRANEC adopts several strategies in the mesh distribution: in
addition to the classical requirements that the various variables,
radius, luminosity, pressure, temperature, mass, and the main
nuclear species do not vary by more than a specific amount that
depends on the initial mass, current mass, and evolutionary
phase, we also identify the regions where the difference
between the adiabatic and radiative gradients is smaller than a
given amount (usually 0.1). In these regions new meshes may
be inserted but not removed. Another important strategy that
we already included a long time ago is that FRANEC
automatically adds additional meshes before they are really
needed: for example when a low mass star climbs along the red
giant branch, strong gradients of both pressure and temperature
form within the H-burning shell so that a relatively large
number of meshes is required to properly describe the burning
shell. Similarly, above the H-burning shell all the variables
vary much more smoothly and the number of meshes reduces.
In this condition, FRANEC anticipates the arrival of the
burning shell by substantially increasing the number of meshes
in a region of the order of twice the mass of the burning shell.
Figure 1 (left) shows the run of the central C abundance left

by the core He burning as a function of the initial mass (red
dots). A scatter, even modest, in the C abundance would spoil
all of the following advanced burning (because of the
tremendous importance of the C abundance in driving all of
the advanced evolutionary phases) and therefore it would
eliminate all of the efforts to produce a clean starting point for
the advanced burning. Our grid of models consists of 320
evolutionary tracks in the range 12–27.95 Mwith a step in
mass of 0.05 M. We adopted the solar metallicity of Asplund
et al. (2009) (Z=1.345×10−2), a He abundance equal to
Y=0.265, and a mixing length parameter α=2.1. Table 2
shows some relevant data of the models presented here.
Columns 1–6 show, respectively, the initial mass, the final
values of the total mass, the He core mass, the CO core mass,
the Fe core mass, all in solar masses, and the fraction of C12
left by the central He burning. The last two columns show
the final compactness ξ evaluated for the CO core mass and
2.5 M. All models were evolved up to a central temperature of
∼8 GK. For the sake of clarity let us explicitly mention that we
define (a) the end of central He burning as the time at which the
central abundance of He drops to a mass fraction of 10−8, and
(b) the mass of the CO core as the mass coordinate where the
tail of the He profile drops below a mass fraction of 10−3. Let
us eventually note that the current value of the mixing length
parameter we adopt was fixed a few years ago when we turned
to the solar distribution of Asplund et al. (2009). Such a change
forced us to recalibrate the mixing length parameter. Our
calibration is obtained by requiring that a star of 1 M, after
4.57×109 yr of evolution, reaches the current solar luminosity
(Le=3.826×1033 erg s−1) and radius Re=6.951× 1010 cm.
Over the years our calibration of α changed from 1.6, to 2.25
and now 2.1, the value depending on the opacities and the solar
chemical composition adopted.

3. Discussion

The advanced burning phases of a massive star, i.e., those
going from central He exhaustion up to the onset of core
collapse, are determined once both the CO core mass (MCO)
and the mass fraction of 12C(X(12C)) left by the central He

Table 1
Network

Isotope Isotope

H1 Mg24

H2 Si28

He3 Na23

He4 P31

Li7 S32

Be7 Ar36

C12 Ca40

C13 Ca44

N13 Ti44

N14 Ti48

N15 Cr48

O15 Cr52

O16 Fe52

O17 Ni56

F17 Fe56

Ne20
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burning are known. This means that while the H- and the He-
burning phases may be considered as monoparametric, in the
sense that they are controlled by a single parameter (the current
mass or the He core mass), the advanced burning requires the
simultaneous knowledge of MCO and X( C12 ) in order to be
uniquely determined and may therefore be considered bipara-
metric. The CO core mass is fundamental because it plays the
role the total mass has in central H burning and the He core
mass has in He burning, while the 12C left by the He burning
determines the amount of fuel available to the C burning and
hence determines the number and the extension (in mass) of
the various C convective episodes. Both contribute to shaping
the M–R relation at the onset of core collapse and hence
controlling the development of all other burning and of the Fe
core mass. Figure 1 (right) shows the run of the CO core mass
(blue dots) as a function of the initial mass for all our 320
models. For the sake of completeness, the same panel also
shows the run of the total mass (black dots plus line), the He
core mass (red dots), the O-burning shell mass (green dots), and
the Si-burning shell mass (magenta dots) with the initial mass.
The vertical drop in the total mass occurring at M=16.25 M
marks the transition between the masses that experience vigorous
mass loss due to dust formation (van Loon et al. 2005), M�
16.25 M, and those that do not. Of course, this sharp transition
also separates the stars that explode as red supergiants from those
that turn blue before the final explosion. All four relations show a
very tight dependence on the initial mass with basically no scatter.

In order to understand the scaling of the compactness of stars
with the initial mass at the onset of core collapse, it is first
necessary to fix an operational definition of the compactness of
a star and then understand how it changes during its evolution.
The natural relation that fully describes the compactness of a
star in any evolutionary phase is the M–R relation (or,
equivalently, the density profile). Figure 2 shows, as an
example, the M–R relation of a 15 Mstar at various key
evolutionary phases: the black line refers to the end of the
central He burning, while the red, green, blue, magenta, and
cyan lines mark, the beginning and the end of the central
C burning, the end of the central Ne and O burning, and the last
model, respectively. The dark green dot marks the position of
the O-burning shell (which practically coincides with the
location where the entropy per baryon S is equal to 4 in units of
Boltzmann constant) while the dark red dot marks the position
of the C-burning shell. The black horizontal line marks the
mass coordinate of the CO core. Incidentally, the mass of the
CO core is fixed as soon as the He convective shell forms. The
reason is that from this moment on, the He-burning shell cannot
advance any more in mass because it is continuously fed fresh

fuel from the convective shell. The smooth, shallow, M–R
profile left by the He burning progressively steepens and a knee
begins to appear as soon as an efficient burning shell forms.
The main burning shell that controls the position and the
bending of the knee just before the collapse is the O-burning
shell, which is readily visible in Figure 2. This figure may be
considered a template since the M–R relation of any massive
star shows a similar shape at the onset of core collapse. Though
this relation fully describes the compactness of a star, it is clear
that it is not possible to compare the final M–R relations of all
of our 320 models in a single plot to determine their scaling
with the initial mass. Therefore, we decided to compare the
compactness of some selected layers. In analogy with the
strategy adopted by, e.g., O’Connor & Ott (2011), we chose to
define the compactness of any mass coordinate “Mi” by means
of the operational ratio x = M M R 1000 kmi i i( ) ( )( )  . The first
relevant mass location worth analyzing is the one corresp-
onding to the the CO core, for which the compactness is
defined as x = M M R 1000 kmCO CO CO( ) ( ) . The black dots in
Figure 3 show the run of ξCO with the initial mass soon after the
formation of the CO core. At this stage, a tight monotonic
relation between the compactness of the CO core and the initial
mass exists. The moderate increase of the M/R ratio with M is
what one would qualitatively expect on the basis of dimen-
sional arguments. In fact, a gas cloud in hydrostatic equilibrium
has an M/R roughly constant if the equation of state (EOS) is
dominated by the particles, while it scales as M1/2 if the EOS is
dominated by photons. In a mixed case in which both particles
and photons contribute significantly to the EOS, we expect a
direct scaling of M/R with M. Full integration of the stellar
equations confirms this qualitative expectation. This trend is
not qualitatively modified by the central C burning, the only
difference being an increase of the overall compactness of the
CO core mass as a consequence of the natural continuous
contraction of the core. Therefore, at the end of the central C
burning the scaling of ξCO with the mass is still tight and
(almost) monotonic (red dots in Figure 3).
The (almost) monotonic relation between ξCO and the initial

mass disappears in the passage from the end of the central C
burning to the beginning of the central Ne burning (green dots
in Figure 3). Though the correlation between the compactness
of ξCO and the initial mass is still very tight, some features
begin to appear. On average ξCO still increases with the initial
mass, but now a jump forms at Mini=15.75 M, a minimum
is present at Mini=22.8 M , and a turn over occurs above
25 M. The formation of these features reflects the different
evolution of the C convective shells as the initial mass
increases.

Figure 1. (Left) C mass fraction left by the He burning; (right) total mass (black), He core mass (red), CO core mass (blue), O-burning shell mass (green), and Si-
burning shell mass (magenta). The O- and Si-burning shells have been shifted by +0.03 Mand −0.03 M, respectively, to improve readability.
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For the sake of clarity let us remember that the advances in
mass of the C-burning shell are characterized by the formation
of a few (usually two/three in this mass interval) convective
shell episodes. The growth of these thermal instabilities has
two major effects: on one hand they halt (or at least slow down)
the advancing of the burning shell because they continuously
feed it with fresh fuel (until the convective region is rich in
fuel) and, on the other hand, they determine a more or less
effective expansion of part of the overlying layers, softening
therefore their compactness, i.e., their ξ, until they are active.

Figure 4(a) shows the Kippenhahn diagram and the run of
both ξCO and the central temperature (red and blue lines in (d))
of 12 M. A comparison between these two panels clearly
shows that the formation of the convective core slows down the
contraction of the core as well as its heating. The formation of
the first convective shell initially leads to an expansion of the
CO core (ξCO decreases). The same holds for the second C
convective shell. Only after the exhaustion of the second
convective shell is the inner core massive enough to be able to
contract and heat up to the temperature necessary for the Ne
photodisintegration. In fact, the Ne convective core (located at

- ~t tlog 0.810 fin( ) ) forms some time after the disappearance

of the second C convective shell (Figure 4). This behavior
remains qualitatively unaltered up to 15.70 M: Figures 4(b)
and (e) show the same quantities as plotted for 12 M, but for
15.70 M. Above this threshold mass the evolution between the
end of the central C burning and the Ne ignition changes
drastically, because the C-exhausted core at the time of the
disappearance of the first C convective shell is massive enough
to contract and heat up, independently of the behavior of the
second C-burning shell. The faster contraction of the inner core
forces the second C convective shell to ignite more violently
than in the less massive stars, and such a large injection of
energy forces the outer layers to expand, including the border
of the CO core: this is the reason for the sharp decrease of ξCO
at M=15.75 M. Figures 4(c) and (f) show such a change of
behavior for 15.75 M. Figure 5 shows, even more clearly, how
the contraction timescale of the CO core changes with the
initial mass. Stars in the range 12–15.70 Mshow a temporary
temperature decrease (a hook) during the activity of the second
C convective shell while the more massive stars contract and
heat without experiencing any delay in the heating of the
inner core.
Stars in a range from 15.75 Mto roughly 17 Mreach Ne

ignition with ξCO smaller (i.e., a more expanded CO core) than
the one they had at the end of the central C burning because of
the power of the second convective shell. But, as the initial

Table 2
Main Data

Mini Mfin MHe MCO MFe C12 xCO x2.5

M M M M M Mass Fraction M/R(10
3 km) M/R(10

3 km)

12.00 10.7738 3.7111 2.1955 1.5001 0.3581 0.0721 0.0290
12.05 10.8002 3.7455 2.2161 1.5159 0.3619 0.0741 0.0309
12.10 10.8379 3.7689 2.2358 1.4475 0.3555 0.0709 0.0321
12.15 10.8922 3.7818 2.2412 1.5131 0.3611 0.0642 0.0310
12.20 10.9366 3.8001 2.2530 1.4402 0.3623 0.0595 0.0307
12.25 10.9767 3.8226 2.2685 1.4892 0.3625 0.0636 0.0330
12.30 11.0095 3.8510 2.2878 1.4419 0.3550 0.0615 0.0341
12.35 11.0641 3.8600 2.2942 1.4434 0.3608 0.0642 0.0354
12.40 11.1107 3.8818 2.3052 1.5078 0.3603 0.0572 0.0341
12.45 11.1369 3.9135 2.3272 1.4216 0.3590 0.0658 0.0392

(This table is available in its entirety in machine-readable form.)

Figure 2. M–R relation of a 15 Mstar of solar metallicity at different phases:
He ignition (black), C ignition (red), C exhaustion (green), Ne exhaustion
(blue), O exhaustion (magenta), and last model (cyan). The dark green and dark
red dots mark the bases of the O- and the C-burning shells in the last model,
respectively. The thin black horizontal line shows the CO mass.

Figure 3. Compactness of the CO core mass at various evolutionary phases:
central He exhaustion (black), central C exhaustion (red), central Ne ignition
(green), central Si exhaustion (cyan), and last model (blue).
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mass increases, the second C convective shell weakens
progressively and even vanishes before Ne ignites, so the CO
core has time to contract further by the time the center reaches
the Ne-burning condition. The net consequence is a progressive
increase of ξCO. This effect is readily visible in Figure 6, where
the Kippenhahn diagrams of the 18, 20, and 22 Mmodels are
shown together with the temporal evolution of both ξCO and
central temperature: the size of the second C convective shell
progressively reduces when moving from the 18 to the 22 M
models, while the Ne ignition shifts toward later times with
respect to the end of the second C convective shell. Above ∼22
M,ξCO inverts its trend with the initial mass: the early
formation of the third C convective shell is responsible for this
turn down. Up to now we have not mentioned the third
convective shell because it forms after the Ne burning in masses

smaller than ∼22 M. The systematic decrease of the power of
the second C convective shell as the initial mass increases speeds
up the contraction and heating of the CO core so that the
formation of the third convective shell progressively occurs
earlier and earlier in time, and around 22 Mits formation
almost coincides with Ne ignition. Similarly to what happens
around 15.7 M, the growth of this convective shell forces the
overlying layers to expand and hence ξCO to decrease. The right
panels in Figure 6 show that at the beginning of the Ne burning
( - ~ -t tlog 0.02end( ) ), ξCO begins to drop because of the
growth of the third convective shell. In the mass range 22–22.9
M,the third C convective shell systematically forms before the
central Ne ignition and this occurrence leads to a progressive
decrease of ξCO in this mass interval. As the initial mass
continues to increase (above ∼22.9 M), the strength of the third
C convective shell also progressively weakens and, accordingly,
ξCO increases again. The behavior of the third C convective shell
is well summarized in Figure 7 where the same quantities plotted
for the less massive stars are now shown for the 23, 24, 25, and
26 M models.
The cyan dots in Figure 3 show the trend of ξCO at the central

Si exhaustion. It is worth noting that the main features already
present at the Ne ignition are still there, i.e., the discontinuity at
15.75 Mand the minimum at 22.8 M. In addition to this, it is
worth noting that while the CO cores of stars in the intervals
12–20 Mand 25–27.95 Mshow a more compact structure
with respect to the ones they have at the central Ne ignition
(because they tend on average to contract as the center
evolves), stars in the range 20–25 Mshow the opposite
behavior, reaching the end of the central Si burning with a CO
core more expanded than at the central Ne ignition: the reason
is that this is the mass interval in which the third C convective
shell reaches its maximum strength and extension, and we have
already seen before that a very strong burning shell forces the
overlying layers to expand and hence to reduce their
compactness. The lower panels in Figures 4, 6, and 7 clearly
show that the compactness of the CO core does not increase

Figure 4. (a)–(c) Kippenhahn diagrams of the 12, 15.70, and 15.75 M models. The red, cyan, and green areas mark the convective core, the convective envelope, and
the convective shells, respectively. The blue line, when present, refers to the current mass of the star. Time is counted from the collapse time. (d)–(f) Temporal run of
the central temperature (blue) and of the compactness of the CO core mass (red). Each lower panel refers to the same mass shown in its corresponding upper panel.

Figure 5. Temporal evolution of the central temperature for a subset of models.
Time starts from the end of the central He burning. The various lines refer to
the 12 M (black), 13 M (red), 14 M (light green), 15 M (blue), 15.7 M
(magenta), 15.75 M (cyan), 16 M (dark green), 17 M (dark red), 18 M
(yellow), 20 M (purple), and 27 M (gray) models, respectively.
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any more (but it can decrease) after the formation of the last C
convective shell. The small drop (and scatter) in ξCO that is
present at ∼26 Min Figure 3 is due to the formation of a
small He convective shell (in the tail of the He profile) that
merges with the main one. The sudden shift of the base of the
new wider He convective shell to a more internal mass
coordinate obviously forces also a jump of ξCO. The blue dots
in Figure 3 show the final compactness of the CO cores of our
models at the onset of the core collapse. With respect to the end
of the central Si burning, there is now only a modest or even
negligible variation of the compactness of the CO core mass. A
final thing worth noting is that even if the trend of ξCO with the
initial mass is not monotonic, the correlation is extremely tight,
and there is basically no scatter of the points (no chaotic
behavior) around the average trend line.

The second mass location that is worth discussing is the one
corresponding to 2.5 M. The reason being that this mass
location has been used (O’Connor & Ott 2011, 2013; Sukhbold
& Woosley 2014; Sukhbold et al. 2018) as a proxy for the
explodability of a model. Though we do not discuss the
connection between compactness and explodability in this
paper, we think it would be interesting to show and discuss the
compactness of this layer that, in a large fraction of the models
in the present grid (  M M14.00 24.25( ) ), is located
within the last, most extended, C convective shell. Figure 8
shows the run of ξ2.5 at some selected phases: the end of the
central C burning (red dots), the beginning of the Ne
photodisintegration (green dots), the end of the central Si
burning (cyan dots), and the last model (blue dots). All the
trends plotted in this figure show features that are strongly
related to the ones already discussed for ξCO (Figure 3) and
therefore they are also tied to the behavior of the C-burning
shell. The scaling with the initial mass is still clean up to the
end of the central C burning, while the various features begin to
appear in the passage from the end of the central C burning to
the Ne ignition. The evolution beyond the Ne burning amplifies
the features already present at the central Ne ignition. The
discontinuity present at ∼20 Mat the onset of the collapse

marks the minimum mass in which a powerful third C
convective shell forms (Figures 6(b) and (e)).
The third mass location worth presenting is the compactness

of the knee present in the final M–R relation. Such a knee is
sculpted by the O-burning shell that is located roughly at 1.7
M(±0.2 M) in the mass interval discussed in this paper. We
therefore chose this mass location to determine the compact-
ness of the knee. Figure 9 shows the run of ξknee (green dots)
together with the ξ2.5 (black dots). Once again the main features
shown by ξknee are the same as discussed above, and this
reinforces the idea that the general trend of the compactness of
a star as a function of the initial mass is dictated by the ability
of the C burning to form powerful convective shells and to
advance in mass.
There is, however, a third set of points in Figure 9. The blue

dots show the trend of ξ1.5, i.e., the compactness of layers that
fairly well represent the average location of the Fe core of the
present set of models. In this case, there is practically no trend
with the initial mass and this is due to the fact that toward the
end of their hydrostatic evolution, massive stars tend to share a
similar M–R relation behind the Si shell.

4. Comparison with Similar Computations

The scaling of the compactness of massive stars with the
initial mass has been discussed in several papers (see
Section 1); one of the most extensive studies on this subject
published to date is the one by Sukhbold et al. (2018;
hereafter SWH18). One of the key results of that paper (already
found in previous ones of the same series) is that the final
compactness of the stars shows a significant scatter around the
main trend in at least some mass intervals. The authors interpret
this result as an intrinsic property of these stellar models
because their evolution is “statistical in nature.” Given the
relevance of the final compactness of a star at the onset of the
core collapse because of its intimate connection to the possible
success/failure of the explosion, it is useful to compare their
results to ours and to briefly comment on them.

Figure 6. Same as in Figure 4, but for the 18, 20, and 22 M models.
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Figure 10 shows the comparison between some key
properties of our models and those published by SWH18.
Panel (a) shows the run of the 12C mass fraction left by He
burning with the initial mass, the red and blue dots referring to
our and SWH18’s models, respectively. It is evident that a
quite large offset exists between the two sets of models. Since
the evolution of a star in central He burning (and beyond) is
largely controlled by its He core mass, and not the total mass,
Figure 10(c) shows the same comparison as a function of the
He core mass. This panel is particularly robust because the
conversion of C in O occurs toward the end of the He burning,

and since the final abundance of O scales directly with the
central temperature (and hence with the He core mass), the final
C/O ratio is largely fixed by the current value of the He core
mass toward the end of the He burning, and not by the previous
history of the star. For example, stars computed with or without
mass loss are expected to lie basically on the same line in this
kind of graph. The parameters that really control the final
abundance of 12C (for any fixed value of the He core mass) are
the nuclear reaction rates of 3αand C12 (α,γ) O16 , i.e., their
nuclear cross sections times the behavior of the convective core
toward the end of the He burning (Imbriani et al. 2001). The

Figure 7. Same as in Figure 4, but for the 23, 24, 25, and 26 M models.
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offset between the two sets of computations visible in
Figure 10(a) remains basically unaltered in panel (c). Though
both sets of models adopt the same (NACRE; Angulo et al.
1999) nuclear cross section for 3α, the nuclear cross section
adopted for C12 (α,γ) O16 is slightly different (we adopt Kunz
et al. 2002, while SWH18 adopt 1.2 times Buchmann 1996,
1997, hereafter BU961p2). In order to check the role played by
the two different nuclear cross sections on the ashes of the He
burning, we have recomputed three models (15, 20, and 27 M)
by adopting the BU961p2 nuclear cross section. The magenta
dots in Figure 10(c) refer to these test models: it is quite evident
that at most one third of the offset may be due to the adoption
of the two different nuclear cross sections. In our opinion,
the large offset is probably due to a substantial difference in
the treatment of the border of the convective core in central
He burning. A hint toward this explanation comes from
Figure 10(b) where the final masses of the stars are shown as
black (present models) and gray (SWH18) dots. Since most of
the mass is lost during the H and He burning phases, the scatter
present in the SWH18 models cannot depend on the advanced

burning phases, but on something occurring in the H/He
burning. The authors discuss this point and state that this
“noise” is due to the effect of semiconvection in the central He
burning that alters the surface properties of the stars and hence
the mass-loss rate. Note that such a “noise” leads to quite a
large scatter in the final total mass for stars more massive than
17 Mor so, and also to some scatter in the amount of 12C left
by the He burning. We cannot comment further on this point,
apart from noting that semiconvection in central He burning is
very effective in low mass horizontal branch stars, and that it
progressively becomes less important as the initial mass
increases. Above ∼10 Mor so, semiconvection should be
negligible because of the progressive reduction of the
dependence of the opacity on the C/He ratio (Castellani
et al. 1985). Instabilities that lead to the ingestion of fresh He in
the core (usually referred to as breathing pulses; Castellani
et al. 1985) may occur but are spurious phenomena, at least in
the massive stars regime, that may be easily cured by a proper
choice of rezoning and the time step. Very recently, Woosley
(2019), hereafter W19, published a large set of models of bare
He cores and his Figure 11 shows the amount of 12C left by the
He burning as a function of the He core mass. The setup of
these computations is the same adopted by SWH18. Since, as
we already discussed above, the final amount of C left by He
burning basically depends on just the He core mass during the
latest phases of the He burning, and not on the previous history
of the star, it is meaningful to plot the results from W19 in
Figure 10(c). The green dots represent the values obtained
by W19, and they are in excellent agreement with our three
models computed with the same C12 (α,γ) O16 cross section
adopted in the Kepler code.
In addition to the final total mass, Figure 10(b) also shows a

comparison between the He core masses, the CO core masses,
and the O-burning shell masses. The blue, red, and green dots
refer to our models while the cyan, magenta, and dark green
dots refer to the models from SWH18. Note that while the He
and CO core masses of SWH18 show almost straight trends,
our models bend slightly above 22 Mor so. The reason for
this is that stars more massive than 22 Mlose not only their
H-rich mantle but also part of their He core mass. Since He
burning depends on the He core mass, the final CO core mass
also shows an analogous bend. Our models have He core
masses systematically larger than the predicted SWH18 ones:
this result is very probably connected to different choices for
the determination of the border of the convective core in H/He
burning. The actual size of the convective core (and convective
shells) is still subject to serious uncertainties, so different
choices are equally plausible. The run of the CO core masses
versus the initial mass, and vice versa, are in quite good
agreement (apart from the more massive ones where the
erosion of the He core due to mass loss induces the bending
already discussed above), but this means that the He core
mass–CO core mass relation is quite different between the two
sets of models. To better highlight the differences between the
two M MCO He( ) relations, Figure 10(d) shows our relation as red
dots and the SWH18 one as blue dots.
Since the fractions of 12C left by He burning and MCO are

the key parameters that drive all of the advanced burning phase,
the differences highlighted in Figures 10(c) and (d) between the
two sets of computations clearly indicate how difficult it is to
compare the final compactness predicted by the two sets of
models. Therefore we simply show in Figures 10(e) and (f) a

Figure 8. Compactness of the mass coordinate 2.5 Mat various phases: end
of the central C burning (red), central Ne ignition (green), central Si exhaustion
(cyan), and the last model (blue).

Figure 9. Final compactness of the models for three different mass coordinates:
2.5 M(black), base of the O-burning shell (green), and the Fe core
mass (blue).
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global comparison between the final ξ2.5 values: (e) shows the
comparison as a function of the initial mass while (f) shows the
same comparison as a function of the CO core mass. The red
and black dots refer to our and SWH18’s models, respectively.
As expected, the differences are quite large. Since the
nonmonotonic average trend reflects the complex interplay
among the various convective episodes, different combinations
of CO core masses and 12C abundances at the beginning of the
advanced burning phases may easily lead to differences of the
order of those shown in Figure 10. However, it is worth noting
that our results do not show any significant scatter around the
main trend. This trend is very well defined and all the features
shown by our models are well understood and discussed in
Section 3. A closer look at Figure 10(f) shows that SWH18’s
and our models share some similarities. The compactness of the

stars of lower mass, i.e., those having CO core masses up to,
roughly, 3 Mis remarkably similar. The sharp discontinuity
present in our models (largely discussed in Section 3) at

~M 3.3CO M(Mini=15.75M) is not present in SWH18’s
models that, on the contrary, show a large scatter in this mass
interval. However, note that a group of their models with low
compactness clumps close to the position where our models
show the discontinuity in the compactness ξ2.5. We will not
attempt any further analysis because the large differences in the
initial conditions at the beginning of the advanced burning
phases prevent a reliable quantitative understanding of the
different predictions. Since the models computed by W19 also
provide their final compactness, we also show their models in
Figure 10(f). These models are particularly useful because they
present the carbon mass fraction as intermediate between those

Figure 10. Comparison between some properties of our models and those of other similar computations available in the literature. Panel (a) shows the fraction of
carbon left by He burning in our models (red dots) and in those of SWH18 (blue dots). Panel (b) shows the total mass, the He core mass, the CO core mass, and the
O-burning shell mass. The respective color coding for our models is black, red, blue, and green, while the corresponding coding for the SWH18 models is gray,
magenta, cyan, and dark green. (c) Same as (a) but with the addition of models published by Woosley (2019) and a few test models (see the text). (d) Comparison
between the M MCO He( ) relations of the present models and those of SWH18. (e) Comparison between the final compactness (computed for the mass coordinate
M=2.5 M) of our (red dots) and SWH18’s (black dots) models. (f) Same as (e) but with the addition of the models by Woosley (2019; blue dots and line) and a few
test models (see the text).
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obtained by us and those obtained by SWH18 (see above). The
ξ values of the models from W19 are shown as blue dots
connected by a blue line to increase visibility. There are
obviously large differences because in any case the C mass
fractions at the beginning of the advanced burning phases are
significantly different, but there are also striking similarities. In
particular, ξ for both of the models in the low tail of the CO
core mass (between, say, 1.5 and 3 M) is remarkably similar
(among all three sets of models), and the well-shaped minimum
is around 5.5 M. Also, the maximum at 6/6.5 M is quite
similar, even if the peak present in the models from W19 is
higher. The formation of a higher peak agrees with the general
expectation that the lower the C mass fraction, the lower the
efficiency of the C convective shell (the third one), and the
more compact the star.

Before closing this section we want to mention a few tests
we made to check the role played by the adoption of a small
network instead of our usual very extended one (Limongi &
Chieffi 2018). Though the amount of computer time necessary
to run all these models with the full network is prohibitive for
us, we computed four models (13, 18, 20, and 26 M) with the
full network. Note that our network (whichever the size) is
always fully coupled to physical evolution and chemical
mixing so that just one system of equations is solved in each
time step. In particular, the system is formed by (4 + number of
isotopes) × (number of meshes), which means more that 1.5
million equations are solved simultaneously for a network of
300 nuclear species and 5000 meshes. The large green dots in
Figures 10(c) and (f) show the C mass fraction left by He
burning and the final compactness of these four refined models.
These tests quite convincingly show that the adoption of an
extended, refined network does not qualitatively change the
compactness obtained by means of a small network.

5. Conclusions

In this paper, we presented a very fine grid (in mass) of
models in the range 12–27.95 Min order to look at the fine
structure of the relation between initial mass and final
compactness of the models. The evolution beyond central He
burning is biparametric because it depends on two parameters,
the CO core mass and the fraction of C left by He burning. In
principle, these two parameters are fully coupled (in nonrotat-
ing stars) and not independent but in practice, given the
different prescriptions adopted by different groups in both
managing convection and in the choice of the nuclear reaction
rates, in the literature there are different pairings of CO core
masses and the amount of C left by He burning. Our models
show that the compactness of a star, ξ2.5, is strictly connected to
the behavior, birth, growth, overlap, and death of the various C
convective episodes. The relation x M2.5 CO( ) is not a monotonic
function of the CO core mass but shows features that are well
understood and discussed. Moving from the low to the massive
CO cores, a first drastic change in the behavior of ξ2.5 occurs at
MCO∼3 M; the reason being that stars having CO core
masses up to 3 Mor so must wait for the disappearance of the
second C convective shell before they can ignite Ne in the
center. CO core masses above 3 M are able to contract freely
toward the Ne ignition independently of the ignition of the
second C convective shell. As a consequence, the second C
convective shell ignites more violently that in the smaller
masses, causing the expansion of a large fraction of the mass

above it. As the CO core mass increases, the strength of the
second C convective shell progressively weakens (because of
the inverse scaling of the fraction of C left by He burning with
the CO core mass) and the compactness of the star
progressively increases again. However, as the CO core mass
increases further, a second jump appears at a CO core mass of
the order of 4.6 M. This second jump is due to the progressive
weakening of the efficiency of the second C convective shell
that favors the contraction of the overlying mass and hence an
early ignition of the third C convective shell. The net
consequence is that the layers above this newly born C
convective shell react by expanding and hence induce a
reduction of the compactness ξ2.5. As the CO core mass
continues to increase, the compactness starts rising again
because the strength of the third C convective shell
progressively weakens as a consequence of the progressive
lower C abundance left by the He burning.
Let us finally stress again that all the features of the

ξ2.5(MCO) relation discussed above depend on the 12C(MCO)
relation, and therefore they can vary, even significantly, from
one author to another. However, in spite of the complex
interplay among the various C convective episodes that sculpt
the dependence of the compactness of a star on the CO core
mass, our models do not show any evidence of a significant
scatter of the data: the relation is very tight and well defined.
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