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‘… upon looking at prime numbers one has the feeling 
of being in the presence of one of the inexplicable 
secrets of creation’.

Don Zagier in [1]

1.  Introduction

There are many links between mathematics and physics. Many 
branches of mathematics arose from the need to formalize and 
clarify the calculations carried out by physicists, e.g. Hilbert 
spaces, distribution theory, differential geometry etc. In this 
article we are going to describe the opposite situation when 
the famous open mathematical problem can be perhaps solved 
by physical methods. We mean the Riemann hypothesis (RH), 
the over 160 years old problem whose solution is of central 
importance in many branches of mathematics: there are prob-
ably thousands of theorems beginning with: ‘Assume that the 

Riemann hypothesis is true, then …’. The RH appeared on the 
Hilbert’s famous list of problems for the XX century as the 
first part of the eighth problem [2] (second part concerned the 
Goldbach’s conjecture; recently Helfgott [3] have solved so 
called ternary case of Goldbach conjecture). In the year 2000 
RH appeared on the list of the Clay Mathematics Institute 
problems for the third millennium, this time with 1000 000 US 
dollars reward for the solution, see official problem descrip-
tion by Bombieri [4].

After the announcement of the prize by the Clay 
Mathematics Institute for solving RH there has been a rash of 
popular books devoted to this problem: [5–9]. The classical 
monographs on RH are: [10–13], while [14] is a collection of 
original papers devoted to RH preceded by extensive intro-
duction to the subject. We also strongly recommend the web 
site Number Theory and Physics at the address [15] contain-
ing a lot of information about links between number theory (in 
particular about RH) and physics.
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In 2011 there appeared the paper ‘Physics of the Riemann 
hypothesis’ written by Schumayer and Hutchinson [16]. Here 
we aim to provide complementary description of the problem 
which can serve as a starting point for the interested reader.

This review consists of seven sections  and the conclud-
ing remarks. In the next section we present the historical path 
leading to the formulation of the RH. Next we briefly discuss 
possible ways of proving the RH. Next two sections concern 
connections between RH and quantum mechanics and statisti-
cal mechanics. In section 6 a few other links between physi-
cal problems and RH are presented. In the last section fractal 
structure of the Riemann ζ(s) function is discussed. Because 
we intend this article to be a guide we enclose rather exhaus-
tive bibliography containing over 150 references, a lot of these 
papers can be downloaded freely from the author’s web pages.

2.  A short history of the prime number theorem

There are infinitely many prime numbers 2, 3, 5, 7, 11, . . . , pn, . . .  
and the first proof of this fact was given by Euclid in his 
Elements around 330 years b.C. His proof was by con-
tradiction: assume there is a finite set of primes P =  
{2, 3, 5, . . . , pn}. Form the number 2 × 3 × 5 . . .× pn + 1, 
then this number divided by primes from P  gives the remain-
der 1, thus it has to be a new prime or it has to factorize into 
primes not contained in the set P , hence there must be more 
primes than n. For example if P = {2, 3, 5, 7, 11, 13}, then 
2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509 and 59, 509 /∈ P . The 
first direct proof of infinity of primes was presented by Euler 
around 1740 who has shown that the harmonic sum of prime 
numbers p n diverges (we use mathematicians notation log(x) 
for the natural logarithm instead of ln(x) used in physics):

∑
pn<x

1
pn

∼ log log(x).

Next, the problem of determining the function π(x) =∑
n Θ(x − pn) (Θ(x) is the Heaviside step function), giving 

the number of primes up to a given threshold x, has arisen. 
It is one of the greatest surprises in the whole mathematics 
that such an erratic function as π(x) can be approximated by a 
simple expression. Namely Carl Friedrich Gauss as a teenager 
(different sources put his age between fifteen and seventeen 
years) has made in the end of eighteen century the conjec-
ture that π(x) is very well approximated by the logarithmic  
integral Li(x):

π(x) ∼ Li(x) :=
∫ x

2

du
log(u)

≈ x
log(x)

.� (1)

The symbol f (x) ∼ g(x) here means here that 
limx→∞ f (x)/g(x) = 1. Integration by parts gives the 
asymptotic expansion which should be cut off at the term 
n0 = �log(x)�, after which terms begin to increase:

∫
dx
log x

=
x

log(x)
+

x
log2(x)

+
2x

log3(x)
+

6x
log4(x)

+ · · ·

+
n!x

logn+1(x)
+ (n + 1)!

∫
dx

logn+2 x
.

�

(2)

There is a series giving Li(x) for all x  >  2 and quickly conv
ergent which has n! in denominator and logn(x) in nominator 
instead of opposite order in (2) (see [17, section 5.1])

Li(x) = γ + log log(x) +
∞∑

n=1

logn(x)
n · n!

for x > 1 ,� (3)

where γ  is the Euler–Mascheroni constant γ = limn→∞  (∑n
k=1

1
k − log(n)

)
≈ 0.577 216 . . .. The above expansion 

was known to Gauss and Bessel, see remarks by Dedekind 
after the paper [18] in [19, p 168].

The way of proving (1) was outlined by Bernhard Riemann 
in a seminal 8-pages long paper published in [18]. English 
translation is available at [20]; it was also included as an 
appendix in [11]. The manuscript written by Riemann was 
saved by his wife and is kept in the Manuscript Department 
of the Niedersöchsische Staats und Universitätsbibliothek 
Göttingen. The scanned pages are available at www.claymath.
org/sites/default/files/riemann1859.pdf. For the history of this 
manuscripts see the paper [21] or the Clay Math site [22]. 
In fact in this paper Riemann has given an exact formula for 
π(x). The starting point of the Riemann’s reasoning was the 
mysterious formula discovered by Euler linking the sum of 1

ns  
with the product over all primes p :

ζ(s) :=
∞∑

n=1

1
ns =

∏
p=2,3,5,7,...

1(
1 − 1

ps

) , s = σ + it, Re[s] = σ > 1.

� (4)
To see that this equality really holds one needs first to recog-

nize in the terms 1/
(

1 − 1
ps

)
 the sums of the geometric series ∑∞

k=0
1

pks. The geometrical series converges absolutely so the 
interchange of summation and the product is justified. Finally 
the fundamental theorem of arithmetic stating that each posi-
tive integer n  >  1 can be represented in exactly one way (up to 
the order of the factors) as a product of prime powers:

n = pα1
1 pα2

2 · · · pαk
k =

k∏
i=1

pαi
i� (5)

has to be invoked to obtain the series on the lhs of (4). Note 
that on the rhs (4) the product cannot start from p   =  1 and 
it explains why the first prime is 2 and not 1—physicists 
often think that 1 is a prime number (before 19th century 
1 was indeed considered to be a prime). Euler was the first 
who calculated the particular values of the zeta function 
ζ(2) =

∑∞
n=1

1
n2 = π2/6, ζ(2) =

∑∞
n=1

1
n4 = π4/90 and in 

general ζ(2n). In fact Euler has considered the above formula 
only for real exponents s  =  x and it was Riemann who con-
sidered it as a function of complex argument s = σ + it  and 
thus the function ζ(s) is called the Riemann’s zeta function. In 
the context of RH instead of z = x + iy for the complex vari-
able the notation s = σ + it  is traditionally used. The form
ula (4) is valid only for Re[s] = σ > 1 and it follows from 
the product of non-zero terms on r.h.s. of (4) that ζ(s) �= 0 
on the right of the line Re[s] = 1. Riemann has generalized 
ζ(s) to the whole complex plane without s  =  1 where zeta is 
divergent as an usual harmonic series—the fact established in 
14th century by Nicole Oresme. Riemann did it by analytical 
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continuation (for the proof see the original Riemann’s paper 
or e.g. [11, section 1.4]):

ζ(s) =
Γ(1 − s)

2πi

∫ +∞

+∞

(−z)s

ez − 1
dz
z

,� (6)

where 
∫ +∞
+∞  denotes the integral over the contour

Appearing in (6) the gamma function Γ(z) has many repre-
sentations, we present the Weierstrass product:

Γ(z) =
e−γz

z

∞∏
k=1

(
1 +

z
k

)−1
ez/k.� (7)

From (7), it is seen that Γ(z) is defined for all complex numbers 
z, except z  =  −n for integers n  >  0, where are the simple poles 
of Γ(z). The most popular definition of gamma function given by 
the integral Γ(z) =

∫∞
0 e−ttz−1dt is valid only for Re[z] > 0.

The integral (6) is well defined on the whole complex plane 
without s  =  1, where ζ(s) has the simple pole, and is equal to 
(4) on the right of the line Re[s] = 1. Recently many represen-
tations of ζ(s) are known, for review of the integral represen-
tations see [23].

The exact formula for π(x) obtained by Riemann involves 
the function J(x) defined as

J(x) = π(x) +
1
2
π(x1/2) +

1
3
π(x1/3) + · · · .� (8)

In other words J(x) increases by 1 at each prime number p , by 
1/2 at each x being the square of the prime, in general it jumps 
by 1/n at argument equal to nth power of some prime p n. J(x) 
is discontinuous at x  =  p n thus at such arguments is defined 
as a halfway between its old value and its new value. Let us 
mention that J(x) = 0 for 0 � x < 2. Then π(x) is given (via 
so called Möbius inversion formula) by the series:

π(x) =
∑
n�1

µ(n)
n

J(x1/n),� (9)

where the sum is in fact finite because it stops at such N that 
x1/N > 2 > x1/(N+1) and µ(n) is the Möbius function:

µ(n) =




1 for n = 1
0 when n is divisible by the square

of some prime p : p2|n
(−1)r when n = p1p2 . . . pr.

�

(10)

For example µ(14) = 1,µ(25) = 0,µ(30) = −1. This definition  
of µ(n) stems from the formula (4) and the Dirichlet series for 
the reciprocal of the zeta function:

1
ζ(s)

=
∏

p=2,3,5,7,...

(
1 − 1

ps

)
=

∞∑
n=1

µ(n)
ns .� (11)

The above product over p  produces integers n which in the 
factorization does not contain square of a prime and those n 
which factorizes into odd number of primes contribute with 
sign  −1 while those n which factorizes into even number of 
primes contribute with sign  +1. We can notice at this point 
that the Möbius function has the physical interpretation: 
namely in [24] it was shown that µ(n) can be interpreted as 
the operator (−1)F giving the number of fermions in quantum 
field theory. In this approach the equality µ(n) = 0 for n divis-
ible by a square of some prime is the manifestation of the 
Pauli exclusion principle.

The crucial point of the Riemann’s reasoning was the alter-
native formula for J(x) not involving primes at all:

J(x) = Li(x)−
∑
ρ

Li(xρ),� (12)

where the sum runs over all zeros of ζ(s), i.e. over such ρ  
that ζ(ρ) = 0. Let us stress that the above (12) is an equality, 
which is remarkable because the left hand side is a step func-
tion, thus somehow at prime powers all of the zeros of zeta 
cooperate to deform smooth plot of the first term Li(x) into the 
stair-like graph with jumps. Then the number of primes up to 
x is obtained by combining (9) and (12)

π(x) =
N∑

n=1

µ(n)
n

(
Li(x1/n)−

∑
ρ

Li(xρ/n)

)
.� (13)

Some details how to interpret the above formula are given in 
appendix A.

In equations  (12) and (13) we meet the issue of deter-
mining zeros ρ  of the zeta function: ζ(ρ) = 0. Riemann has 
shown that ζ(s) fulfills the functional identity:

π− s
2 Γ

( s
2

)
ζ(s) = π− 1−s

2 Γ

(
1 − s

2

)
ζ(1 − s), for s ∈ C \ {0, 1}.

� (14)
The above form of the functional equation is explicitly sym-
metrical with respect to the line Re(s) = 1/2: the change 
s → 1 − s on both sides of (14) shows that the values of the 
combination of functions π− s

2 Γ
( s

2

)
ζ(s) are the same at points 

s and s  −  1.
Because Γ(z) is singular at all negative integers, thus to 

fulfill functional identity (14) ζ(s) has to be zero at all nega-
tive even integers:

ζ(−2n) = 0, n = 1, 2, 3, . . .

These zeros are called trivial zeros. The fact that ζ(s) �= 0 for 
Re(s) > 1 and the shape of the functional identity entails that 
nontrivial zeros ρn = βn + iγn are located in the critical strip:

0 � Re[ρn] = βn � 1.

From the complex conjugation of ζ(s) = 0 it follows that if 
ρn = βn + iγn is a zero, then ρn = βn − iγn also is a zero. 
From the symmetry of the functional equation  (14) with 
respect to the line Re[s] = 1

2 it follows, that if ρn = βn + iγn is 
a zero, then 1 − ρn and 1 − ρn  are also zeros: they are located 
symmetrically around the straight line Re[s] = 1

2 and the axis 
t  =  0, see figure 1.
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The sum over trivial zeros ρ = −2n in (12) can be calcu-
lated analytically giving the explicit (i.e. expressed directly by 
sum over zeros of ζ(s)) formula for J(x):

J(x) = Li(x)−
∑

Re(ρ)>0
0<Im(ρ)<1

(
Li(xρ) + Li(xρ)

)

+

∫ ∞

x

du
u(u2 − 1) log(t)

− log(2)

�

(15)

and therefore the explicit formula for π(x) follows:

π(x) =
N∑

n=1

µ(n)
n

(
Li(x

1
n )−

∑
Re(ρ)>0

0<Im(ρ)<1

(
Li(x

ρ
n ) + Li(x

ρ
n )
)

+

∫ ∞

x1/n

1
u (u2 − 1) log(u)

du − log(2)
)

.

�

(16)

The terms under the sum over non-trivial zeros are oscillating 
functions of x with the amplitude of the form 

√
x/(|ρ| log(x)), 

see [25, equation (13)]. Hence the rhs of (16) is dominated by 
the first term 

∑
n µ(n)Li(x

1
n )/n. Recalling that in (9) the sum 

can be extended to infinity and taking for J(x) the first term 
Li(x) we define the Riemann R-function

R(x) =
∞∑

n=1

µ(n)
n

Li(x1/n).� (17)

The relation π(x) ≈ R(x) is much better approximation 
for the number of prime up to x than the Gauss conjecture 
π(x) ≈ Li(x) at small and moderate values of x. For large x 

the function R(x) tends to Li(x): from (17) it follows using the 
first term from asymptotic expansion (2) that for large x the 
approximate relation R(x)/Li(x) ≈ 1 − 1/

√
x holds. The dif-

ference π(x)− R(x) changes the sign (i.e. it predicts the value 
of π(x) exactly) already at x as low as x ∈ [2, 100], see e.g. 
tables obtained by Nicely in [26] or tables compiled by Kulsha 
[27]. Up to 1014 there are over 50 millions sign changes of 
π(x)− R(x) while there is no one sign change of π(x)− Li(x) 
in this interval [28] (see section concluding remarks for the 
discussion of the Skewes number); however on average the 
behavior of both differences π(x)− Li(x) and π(x)− R(x) 
seems to be the same [29]. The above function R(x) can be 
obtained without the need to calculate the logarithmic integral 
from series very rapidly converging

R(x) = 1 +

∞∑
n=1

lnn(x)
nn!ζ(n + 1)

.� (18)

The last sum is called the Gram formula, see [30, p 51] for 
transformations leading from (17) to (18). Because ζ(n) → 1 
for n → ∞ (e.g. ζ(10) = 1.000 994 575 . . .) it follows that 
the nth summands in (3) and (18) coincide for large x and 
it explains heuristically that limx→∞ R(x)/Li(x) = 1. In the 
appendix B we present numerical comparison of (17) and (18).

The sum over all complex zeros is not absolutely conv
ergent hence its value depends on the order of summation. In 
fact famous (and curious) Riemann’s rearrangement theorem, 
see e.g. [31, theorem 3.54], asserts that terms of a condition-
ally convergent infinite series can be permuted such a way 
that the new series converges to any given value! For (16) 
Riemann in [18] says that ‘It may easily be shown, by means 

Figure 1.  The location of zeros of the Riemann ζ(s) function.
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of a more thorough discussion’ that the ‘natural order’, i.e. the 
process of pairing together zeros ρ  and ρ  in order of increas-
ing imaginary parts of ρ , is the correct one. At the end of [18]
Riemann states about the series in (16) that ‘when reordered it 
can take on any arbitrary real value’.

Again, let us point out the curiosity (mystery) of the above 
equation (16): π(x) on lhs jumps by 1 at each argument being 
a prime with constant values (horizontal sections) between 
two consecutive primes. Thus on the rhs the zeros of zeta have 
to conspire to deform smooth plot of the first term Li(x) into 
the stair-like graph with jumps. It resembles the Fourier series 
of smooth sinuses reproducing say the step function on inter-
val (−π,π). In figure 2 we have made plots illustrating these 
observations.

Formula (16) is less time consuming to obtain π(x) for 
large x than counting all primes up to x; the best non-ana-
lytical methods (like the combinatorial Meissel–Lehmer 
method, see [33]) of computing π(x) have complexity 
O(x2/3/ log2(x)), while involving some variants of the Riemann 
explicite formula are O(x1/2) in time, see [34, 35]. For exam-
ple, the value π(1024) = 18, 435, 599, 767, 349, 200, 867, 866 
was obtained by a variant of (16) using 59, 778, 732, 700 
nontrivial zeros of ζ(s) [36]. Also the value π(1027) =

16, 352, 460, 426, 841, 680, 446, 427, 399 was announced, see 
[37].

Amazingly, the horrible looking sum of the integrals in 
(16) stemming from the trivial zeros can be brought to the 
simple closed form:

N∑
n=1

µ(n)
n

(∫ ∞

x1/n

1
u (u2 − 1) log(u)

du − log(2)
)

=
1

2 log x

N∑
n=1

µ(n) +
1
π
arctan

π

log x
+ ε(x, N),

�

(19)

where ε(x, N) → 0 as N → ∞, for details see [25]. The 
special choice of N such that 

∑N
k=1 µ(k) = −2 (e.g. 

N = 5, 7, 8, 9, 11, 12, . . .) is favoured: the series for arc-tangent 
in the vicinity of u  =  0 has the form arctan(u) = u − u3/3+
u5/5 − u7/7 + . . . and for such a special N the first two terms 
in (19) behave together like (π/ log(x))3/3 + . . . thus the 
contribution from trivial zeros is negligible for large x and 
hence nontrivial zeros are prevailing.

So where are the complex zeros of zeta? Riemann has 
made the assumption, now called the Riemann hypothesis, 
that all nontrivial zeros lie on the critical line Re[s] = 1

2:

ρn =
1
2
+ iγn (i.e. βn =

1
2

for all n).� (20)

Contemporary the above requirement is augmented by the 
demand that all nontrivial zeros are simple. Despite many 
efforts the Riemann hypothesis remains unproved. In figure 1 
we illustrate the Riemann hypothesis and in the table  1 we 
give the approximate values of the first 10 non-trivial zeros 
of ζ(s).

Assuming the RH, i.e. collecting together terms ρn =
1
2 + iγn and ρn = 1 − ρn = 1

2 − iγn, using the Euler iden-
tity eiα = cos(α) + i sin(α) we can represent π(x) as a main 
smooth trend plus superposition of waves sin(·) and cos(·):

π(x) = 1 +

∞∑
n=1

(log(x))n

nn!ζ(n + 1)�

−
∑

n

µ(n)
x

1
2n

log(x)

∑
i

{
cos

(
γi log(x)

n

)
+ 2γi sin

(
γi log(x)

n

)

1
4 + γ2

i
�

+
n

log(x)

( 1
4 − γ2

i )2 cos
(

γi log(x)
n

)
+ 2γi sin

(
γi log(x)

n

)

1
16 + 1

2γ
2
i + γ4

i

}
,

� (21)

where we have used two first terms of the expansion 
Li(x) ≈ x/ log(x) + x/ log2(x). Using the above equa-
tion  with 10 000 zeros and second sum over n up to 7 we 
obtained 25.002 67 for π(100), while the numbers of primes 
up to 100 (without counting 1 as a prime) is 25. Physicists 
well know that derivative of the step function is the Dirac 
delta function: Θ′(x) = δ(x), thus the derivative of π(x) 
with respect to x is the sum of Dirac deltas concentrated on 
primes: 

∑
pn
δ(x − pn). We have differentiated two first sums 

in (21), i.e. skipping terms O(1/γ4
k ), summed over first 15 000 

nontrivial zeros of zeta and the resulting plot is presented in 
figure 3. The animated plot of the delta-like spikes emerging 
with increasing number of nontrivial zeros taken into account 
is available at [15].

In 1896 Hadamard (1865–1963) and de la Vallée Poussin 
(1866–1962) independently proved that ζ(s) does not have 
zeros on the line 1 + it, thus |xρ| < x. It suffices to obtain from 
(16) the original Gauss’s guess (1), which thus became a theo-
rem called the prime number theorem (PNT). Indeed: for large 
x in (16) the first term R(x) wins over terms with Li(xρ) and 
then from (17) we have that R(x) ≈ Li(x).

Table 1.  First ten nontrivial  zeros of the ζ(s) function.

n 1
2 + iγn n 1

2 + iγn

1 1
2 + i14.134 725 142 . . .  6  1

2 + i37.586 178 159 . . . 
2  1

2 + i21.022 039 639 . . .  7  1
2 + i40.918 719 012 . . . 

3  1
2 + i25.010 857 580 . . .  8  1

2 + i43.327 073 281 . . . 
4  1

2 + i30.424 876 126 . . .  9  1
2 + i48.005 150 881 . . . 

5 1
2 + i32.935 061 588 . . . 10 1

2 + i49.773 832 478 . . .

Rep. Prog. Phys. 83 (2020) 036001
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Already, Riemann calculated numerically a few first 
nontrivial zeros of ζ(s) [11]. Next in Gram [38] calculated 
that first 15 zeros of ζ(s) are on the critical line; in June of 
1950 Turing has used the Mark 1 Electronic Computer at 
Manchester University to check that first 1104 zeros are on 
the critical line. He has done this calculations ‘in an opti-
mistic hope that a zero would be found off critical line’, see 
[39, p 99]. A few years ago Wedeniwski (2005) was leading 
the internet project Zetagrid [40] which during four years 
determined that 250 × 1012 zeros are on the critical line, 

i.e. on s = 1
2 + it up to t < 29 538 618 432.236. The present 

record belongs to Gourdon [41]: the first 1013 zeros are on 
the critical line. Odlyzko checked that RH is true in different 
intervals around 1020 [42], 1021 [43], 1022 [44], but his aim 
was not to verify the RH, but rather providing evidence for 
conjectures that relate nontrivial zeros of ζ(s) to eigenval-
ues of random matrices, see section 4. In fact Odlyzko has 
expressed the view that the hypothetical zeros off the critical 
line are unlikely to be encountered for t below 101010 000

, see 
[5, p 358].

Figure 3.  The plot of the derivative of two sums on rhs of (21) obtained by summing over first 15 000 nontrivial zeros showing delta-like 
pattern. In the inset fluctuations for 11.5  <  x  <  12.5 are shown—the high spikes at x  =  11 and 13 squeezed them on the original plot.

Figure 2.  The plot of π(x) and the r.h.s. of (16) obtained by summing over first 50 nontrivial zeros (blue line) and first 500 nontrivial zeros 
(red line). We have produced data for this plots using the equation (21). The animation showing the effect of adding consecutive zeros one 
by one in the formula (16) can be seen at [32].
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Let N(t) denote the function counting the nontrivial zeros 
up to T, i.e. N(T) =

∑
n Θ(T − Im[ρn]). In his seminal paper 

Riemann announced and in 1905 von Mangoldt proved that:

N(T) =
T
2π

log

(
T

2πe

)
+

7
8
+O(log(T)).� (22)

The figure  4 illustrates how well the above formula pre-
dicts N(T). Let us notice that as the y -axis in figure 4 spans 
from  −1 to 1 the number 7/8 in (22) is relevant. The term 7/8 
has the physical meaning: in [45, p 357] it has been inter-
preted a Maslov index.

In 1904 Hardy proved, by considering moments of cer-
tain functions related to the zeta function, that on the critical 
line there is infinity of zeros of ζ(s) [46]. Levinson (1974) 
proved that more than one-third of zeros of Riemann’s ζ(s) 
are on critical line by relating the zeros of the zeta function 
to those of its derivative, and Conrey (1989) improved this 
further to two-fifths (precisley 40.77% have Re(ρ) = 1

2). The 
present record seems to belong to Feng, who proved that at 
least 41.28% of the zeros of the Riemann zeta function are on 
the critical line [47].

At the end of this section  we mention, that ζ(s) admits 
besides the product (4) another product representation, called 
the Hadamard product:

ζ(s) =
π

(s − 1)Γ
( s

2 − 1
)e−1− γ

2

∞∏
k=1

e
s
ρk

(
1 − s

ρk

)
.� (23)

In contrast to (4) it is valid on the whole complex plane with-
out s  =  1. It is an example of the general Weierstrass factor-
ization theorem: points where function vanishes determine 
this function. We also add that the common opinion is that the 
imaginary parts γl  of the nontrivial zeros of ζ(s) are irrational 
and perhaps even transcendental [48, 49].

3.  How to prove the Riemann hypothesis?

Practically no one tries to prove RH directly; there are prob-
ably well over one hundred of different facts either equiva-
lent to RH or of whose truth RH will follow (i.e. sufficient 
conditions). Hence, proving one of these so called criteria for 
RH will entail the validity of RH. Recently there appeared a 
two-volume monograph ‘Equivalents of the Riemann hypoth-
esis’ written by Broughan [50]. Below we present a few such 
criteria for RH.

In 1901 von Koch proved [51] that the Riemann hypothesis 
is equivalent to the following error term for the approximation 
of the prime counting function by logarithmic integral:

π(x) = Li(x) +O(
√

x log(x)).� (24)

Later, the error term was specified explicitly by Schoenfeld 
[52, corollary 1] and RH is equivalent to

|π(x)− Li(x)| � 1
8π

√
x log(x) for all x � 2657.� (25)

The following facts show that the validity of the RH is very 
delicate and subtle: namely in some sense RH is valid with 
accuracy ε = 1.145 41 × 10−11 (or less, that is the present 
value of ε). Here is the reasoning leading to this conclusion: 
let us introduce the function (see [53, equation (7.1)])

Ξ(iz) =
1
2

(
z2 − 1

4

)
π− z

2 −
1
4 Γ

(
z
2
+

1
4

)
ζ

(
z +

1
2

)
.� (26)

We can see from the above formula that: RH is true ⇔ all 
zeros of ξ(iz) are real. The point is that ξ(z) can be expressed 
as the following Fourier transform (for derivation of this form
ula see e.g. [10, section 10.1]):

Figure 4.  The plot illustrating the formula (24) for number of nontrivial zeros up to T = 5 × 106.
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1
8
ξ
( z

2

)
=

∫ ∞

0
Φ(t) cos(zt)dt,� (27)

where

Φ(t) =
∞∑

n=1

(2π2n4e9t − 3πn2e5t)e−πn2e4t
.� (28)

The function Ξ(z) can be generalized to the family of func-
tions H(z,λ) parameterized by λ:

H(z,λ) =
∫ ∞

0
Φ(t)eλt2

cos(zt)dt.� (29)

Thus, we have H(z, 0) = 1
8Ξ(

1
2 z). De Bruijn proved in [53] 

that H(z,λ) has only real zeros for λ � 1
2 and if H(z,λ) has 

only real zeros for some λ′, then H(z,λ) has only real zeros 
for each λ > λ′ . In Newman [54] has proved that there exists 
parameter λ1 such that H(z,λ1) has at least one non-real zero. 
Thus, there exists such constant Λ in the interval −∞ < Λ < 1

2 
that H(z,λ) has real zeros ⇔ λ > Λ. The Riemann hypoth-
esis is equivalent to Λ � 0. This constant Λ is now called the 
de Bruijn–Newman constant. Newman believes that Λ � 0. 
The computer determination has provided the numerical esti-
mations of values of de Bruijn–Newman constant; the current 
record belongs to Saouter et al [55]: Λ > −1.145 41 × 10−11. 
Because the gap in which Λ catching the RH is so squeezed, 
Odlyzko noted in [56], that ‘… the Riemann hypothesis, if 
true, is just barely true’. In January 2018 Brad Rodgers and 
Terrence Tao proved that the de Bruijn–Newman constant is 
non-negative [57], shrinking the allowed for validity of RH 
interval to zero, what agrees with the Newman conjecture. At 
present the Polymath Project (collaborations of many people 
to solve mathematical problems) is led by Tao on the topic 
of obtaining new upper bounds on the de Bruijn–Newman 
constant Λ. They showed that Λ < 0.22, see [58], the present 
bounds on the de Bruijn–Newman constant are 0 � Λ < 0.22. 
Related to this problems is a recent paper [59].

There are also criteria for RH involving integrals. Volchkov 
has proved [60] that following equality is equivalent to RH:

∫ ∞

0

1 − 12t2

(1 + 4t2)3

∫ ∞

1
2

log(|ζ(σ + it)|)dσdt = π
3 − γ

32
.� (30)

In the paper [61] the above integral was used to express the 
RH in terms of the Veneziano amplitude for strings as well as 
to find some generalizations of the Volchkov’s criterion; the 
new kind of string called the Riemann string was introduced 
in this paper.

In the paper [62] the equality to zero of the following int
egral was shown to be equivalent to RH:
∫

Re(s)= 1
2

log(|ζ(s)|)
|s|2

|ds| =
∫ ∞

−∞

log(|ζ( 1
2 + it)|)

1
4 + t2

dt = 0.

� (31)
Less known in the western community (not mentioned in 
[50]) is the criterion equivalent to RH proposed in Russian in 
[63]. In this paper it was proved that for 0 < σ < 1,σ �= 1

2 and 
|t| > 14 (s = σ + it ) the inequality of integrals

∫ ∞

1
{x}

(
x−s−1 − x−2+s)dx �=

∫ ∞

1

(
x−s−1 − x−2+s)dx� (32)

is sufficient and necessary condition for validity of RH. Here 
{x} denotes fractional part of x.

Let us introduce the function

ξ(s) =
1
2

s(s − 1)Γ
( s

2

)
ζ(s).� (33)

In 1997 Li proved [65], that Riemann hypothesis is true iff the 
sequence:

λn =
1

(n − 1)!
dn

dsn (s
n−1 ln ξ(s))|s=1� (34)

fulfills:

λn � 0 for n = 1, 2, . . .� (35)

The fact that from the RH inequality λn > 0 follows was 
notice earlier in [66], where it was checked that first four 
thousands of λn fulfill (35); presently it is known that λn for 
n < 100 000 fulfills (35). The Li’s criterion was intensively 
studied, see e.g. [61, 67].

Finally let us mention the elementary Lagarias criterion 
[68]: the Riemann hypothesis is equivalent to the inequalities:

σ(n) ≡
∑
d|n

d � Hn + eHn log(Hn)� (36)

for each n = 1, 2, . . ., where σ(n) is the sum of all divisors of n 
and Hn is the nth harmonic number Hn =

∑n
j=1

1
j . The figure 

5 illustrates the above inequality for 1 < n < 106. To disprove 
the RH it suffices to find one n violating the inequality (36). 
The Lagarias criterion is not well suited for computer verifica-
tion (it is not an easy task to calculate Hn for n ∼ 10100 000 with 
sufficient accuracy) and in [69] Briggs has undertaken instead 
the verification of the Robin [70] criterion for RH:

RH ⇔
∑
d|n

d < eγn log log(n) for n > 5040.
�

(37)

For some n Briggs obtained for the difference between 
r.h.s. and l.h.s. of the above inequality value as small as 
e−13 ≈ 2.2 × 10−6, hence again RH is in a danger to be vio-
lated. As Ivic has put it ‘The Riemann Hypothesis is a very 
delicate mechanism’, quoted in [7, p 123].

In the end of September’18 a big excitement was caused by 
the lecture delivered by Michael Atiyah in Heidelberg (video is 
available on youtube [71]; let us notice that comments are disa-
bled for this video), see also preprint [72]. The author claimed 
to prove the RH, but the common opinion is that his paper is 
flawed. Sir Atiyah won two most prestigious mathematical 
awards: the Fields Medal in 1966 and the Abel prize in 2004. He 
has been an advocate of connections between mathematics and 
physics for years. The original achievement of Atiyah seems to 
be the use of Todd function T(s) (named by him) in the context 
of RH. It is not clear at present moment whether the Todd func-
tion with properties needed to prove RH really does exist. He 
has introduced T(s) in another paper [73] trying to calculate a 
dimensionless quantity: the fine structure constant given in CGS 
system of units by (it value does not depend on units):
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α =
e2

�c
=

1
137.035 9991 . . .

,� (38)

where e is the unit of electric charge, � is the Planck constant 
and c is the velocity of light in vacuum. Apparently Atiyah is 
not aware of the papers e.g. [74, 75], claiming that α depends 
in fact on time, what resembles old ideas of Dirac that funda-
mental constants are changing with time.

Let us note that the belief in the validity of RH is not com-
mon: famous mathematicians Littlewood, Turan and Turing 
have, independently, believed that the RH is not true, see the 
paper ‘On some reasons for doubting the Riemann hypothe-
sis’ [76] (reprinted in [14, p 137]) written by Ivić, one of the 
present day leading expert on RH. New arguments against 
RH can be found in [77]. When Derbyshire asked Odlyzko 
about his opinion on the validity of RH he replied ‘Either it 
is true, or else it is not’ [5, p 357–8].

4.  Quantum mechanics and RH

The first physical method of proving RH was proposed by 
George Polya around 1914 during the conversation with 
Edmund Landau and now is known as the Hilbert–Polya con-
jecture. Landau asked Polya: ‘Do you know a physical reason 
that the Riemann hypothesis should be true?’ and his reply 
was: ‘This would be the case, I answered, if the nontrivial 
zeros of the Ξ-function were so connected with the physical 
problem that the Riemann hypothesis would be equivalent 
to the fact that all the eigenvalues of the physical problem 

are real’1, see the whole story at the web site [78]. Let us 
stress that this talk took place many years before the birth of 
quantum mechanics and the Schroedinger equation for energy 
levels. However in the period 1911–1914 Hermann Weyl pub-
lished a few papers on the asymptotic distribution of eigenval-
ues of the Laplacian in the compact domain (in particular the 
eigenfrequencies or natural vibrations of the drums), see e.g. 
[79, 80]. Thus, presumably Polya was inspired by the Weyl’s 
papers. If the RH is true nontrivial zeros lie on critical line and 
it makes sense to order them according to the imaginary part 
and eventually put them into the 1–1 correspondence with the 
eigenvalues of some hermitian operator. Therefore the prob-
lem is to find a connection between energy levels En of some 
quantum system and zeros of ζ(s).

In the autumn of 1971 [9, p 261] Montgomery, assuming 
the RH, proved theorem about statistical properties of the 
spacings between zeta zeros. The formulation of this theorem 
is rather complicated and we will not present it here, see his 
paper [81]. Next, Montgomery made the conjecture that cor-
relation function of the imaginary parts of nontrivial zeros has 
the form (here 0 < α < β < ∞ are fixed):

∑
0<γ,γ′�T

2πα
log T �γ−γ′� 2πβ

log T

1 →
∫ β

α

(
1 −

(
sinπu
πu

)2
)

du as T → ∞.

� (39)
In figure 6 we present a sketchy plot of the both sides of the equa-
tion (39). This result says that the zeros—unlike primes, where 

Figure 5.  The plot of σ(n) for 1  <  n  <  106. In red are plotted values of σ(n) which approach the threshold (green line) values closer than 
10%. The lower ‘support’ of the graph comes from n being primes, as prime p  is divisible only by 1 and itself, so σ( p) = p + 1. Data for 
this plot was obtained with the free package PARI/GP [64].

1 Appearing here the function Ξ is equal to the lhs of (14) multiplied by 
s(s − 1)/2, hence it has the same zeros as ζ(s).
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it is conjectured that there is infinity of twins primes, i.e. primes 
separated by 2, like (3, 5), (5, 7), (11, 13), . . . , (59, 61), . . .)—
would actually repel one another because in the integrand 
sin(πu)/πu → 1 for u → 0. Montgomery published this 
result in [81], but earlier in 1972 he spoke about it with Dyson 
in Princeton, see many accounts of this story in the popular 
books listed in the introduction, e.g. [9, p 133–4]. Dyson rec-
ognized in (39) the same dependence as in the behavior of the 
differences between pairs of eigenvalues of random Hermitian 
matrices. The random matrices were introduced into the phys-
ics by Eugene Wigner in the fifties of twenty century to model 
the energy levels in the nuclei of heavy atoms. Spectra of 
light atoms are regular and simple in contrast to the spectra 
of heavy atomic nuclei, like e.g. 238U, for which hundreds 
of spectral lines were measured. The hamiltonians of these 
nuclei are not known, besides that such many body systems 
are too complicated for analytical treatment. Hence the idea 
to model heavy nuclei by the matrix with random entries cho-
sen according to the gaussian ensemble and subjected to some 
symmetry condition (hermiticity etc).

Because the hamiltonian describing interaction inside 
heavy nuclei is unknown Wigner proposed to use some 
matrix of large dimension with random entries selected 
with the appropriate distribution probability and subject for 
example to the hermiticity requirement. It means that if M 
is a square matrix N × N  with elements Mij, then probability 
P(Mij ∈ (a, b)) that a given matrix element Mij will take value 
in the interval (a, b) is given by the integral:

P(Mij ∈ (a, b)) =
∫ b

a
fij(x)dx,

where f ij is the density of the probability distribution and 
matrix elements Mij are mutually statistically independent, 
what means that the probability for the whole matrix is the 
product of above factors for single elements Mij. The require-
ment of hermiticity (M† = M) and independence with respect 
to the choice of the base determine the following form, see 
[82, theorem 2.6.3, p 47]:

P(M) = e−atrM2+btrM+c,� (40)

where a is a positive real number, b and c are real and tr 
denotes trace of the matrix: tr M =

∑N
i=1 Mii. The value of 

c is determined by normalization of the probability. For self-
adjoint matrix H† = H we have  tr H2 =

∑N
i=1

∑N
k=1 HikHki = ∑N

i=1
∑N

k=1 HikH�
ik =

∑N
i=1

∑N
k=1 |Hik|2 and all terms in (40) 

have a Gaussian form. Because the exponent of the sum of 
terms is the product of the exponents of each factors sepa-
rately, the right side of the equation (40) indeed has the form 
of the product of the density of the normal Gaussian distribu-
tions and such a set of random, Gaussian unitary matrices is 
called Gaussian Unitary Ensemble, in short GUE. Eigenvalues 
of such matrices are not completely random: ‘unfolded’ gaps 
s between them are not described by the Poisson distribution 
e−s, but for example for GUE by the formula

P(s) =
32
π2 s2e−4s2/π .� (41)

The above distribution is normalized:
∫ ∞

0
P(s)ds = −π

8

∫ ∞

0
s
(

e−4s2/π
)′

ds =
π

8

∫ ∞

0
e−4s2/πds = 1.

Unfolding means getting rid of constant trend in the spec-
trum E1, E2, . . ., i.e. dividing dn = En+1 − En by mean gaps 

Figure 6.  The plot of lhs of (39) calculated from the first 107 zeros 
compared with the prediction of Montgomery. Points representing 
correlation function were calculated from equation on lhs of (39) 
for 5000 000 first zeros of ζ(s) and ∆u = 0.05.

Figure 7.  Histogram of normalized gaps between consecutive 
zeros of zeta obtained for 5000 000 zeros. Points are spaced with 
∆s = 0.05.
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between levels d(E) : sn = (En+1 − En)/d(E). For zeros of 
ζ(s) from equation (22) the differences γn+1 − γn are changed 
into sn = (γn+1 − γn) log(γn)/2π . In the figure  7 we show 
the comparison of (41) with real gaps for zeros of ζ(s). We 
can point out the analogy between (41) and the Maxwell–
Boltzmann distribution of velocities, which in three-dimen-
sions is given by

f (v) =

√( m
2πkT

)3
4πv2e−

mv2
2kBT .� (42)

It gives the probability that the particle of mass m in the gas 
which has reached the thermodynamic equilibrium at the 
absolute temperature T has the value of the velocity in the 
vicinity of dv around v. Here, kB = 1.380 6488 . . .× 10−23  
(J K−1) is the Boltzmann constant. After the identification

m
2kBT

=
4
π

� (43)

the prefactor in (42) goes exactly into 32
π2 . Thus we can say 

that P(s) is the distribution of velocities of molecules with 
mass m in the gas at temperature T and Boltzmann constant k 

constrained by m
2kBT = 4

π
2.

Level-spacing distributions of quantum systems can be 
grouped into a few universality classes connected with the 
symmetry properties of the Hamiltonians: Poisson distribu-
tion for systems with underlying regular classical dynam-
ics, Gaussian orthogonal ensemble (GOE, also called the 
Wigner–Dyson distribution)—Hamiltonians invariant under 
time reversal, Gaussian unitary ensemble (GUE)—not invari-
ant under time reversal and Gaussian symplectic ensemble 
(GSE) for half-spin systems with time reversal symmetry. 
There are many reviews on these topics, we cite here [82–84], 
we strongly recommend the review [85]. Dyson and Mehta 
identified these three types of random matrices with different 
intensities of repulsion spacings between consecutive energy 
levels: GOE with weakest repulsion between neighboring 
levels, GUE with medium repulsion and GSE with strongest 
repulsion. For quantitative description see [86, appendix A].

For several years discovered during a brief conversation 
between Montgomery and Dyson relationship of nontrivial 
zeros ζ(s) with the eigenvalues of matrix from the GUE did 
not arouse much interest. In the 1980s Odlyzko performed 
over many years computation of zeta zeros in different inter-
vals and calculated their pair-correlation function numer
ically. In the first paper [87] he tested Montgomery pair 
correlation conjecture for first 100 000 zeros and for zeros 
number 1012 to 1012 + 100 000. Next he looked at 1020th zero 
of the Riemann zeta function and 70 millions of its neighbors, 
the 1020th zero of the Riemann zeta function and 175 mil-
lions of its neighbors, last searched interval was around zero 
1022 and involved 109 zeros, see [44]. The reason Odlyzko 
investigated zeros further and further is the very slow conv
ergence of various characteristics of ζ(s) to its asymptotic 
behavior. The results confirmed the GUE distribution: the 

gaps between imaginary parts of consecutive nontrivial zeros 
of ζ(s) display the same behavior as the differences between 
pairs of eigenvalues of random Hermitian matrices, see  
[87, figures 1 and 2]. In [88, p 146] Peter Sarnak wrote: ‘At 
the phenomenological level this is perhaps the most striking 
discovery about the zeta function since Riemann’. In this way 
vague hypothesis of Hilbert–Polya has gained credibility and 
now it is known that a physical system corresponding to ζ(s) 
has to break the symmetry with respect to time reversal. At 
the conference ‘Quantum chaos and statistical nuclear phys-
ics’ held in Cuernavaca, Mexico, in January 1986 Michael 
Berry delivered the lecture Riemann’s zeta function: a model 
for quantum chaos? [89] which became the manifesto of the 

approach to prove the RH which can be summarized sym-

bolically as ζ( 1
2 + iĤR) = 0 with ĤR a hermitian operator 

having as eigenvalues imaginary parts of nontrivial zeros γk: 
ĤR|Ψk〉 = γk|Ψk〉. The hypothetical quantum system (ficti-
tious element) described by such a hamiltonian was dubbed 
by Oriol Bohigas ‘Riemannium’, see [90, 91]. Additionally 
to the lack of time reversal invariance of ĤR Berry in [89] 
pointed out that ĤR should have a classical limit with clas-
sical orbits which are all chaotic (unstable and bounded tra-
jectories). In fact the departure of correlation function for 
zeta zeros from (39) for large spacings (argument larger than 
1 in [87, figures 1 and 2]) was a manifestation of quantum 
chaos, as Berry recognized. Later, Berry and Keating have 
argued [45] that ĤR = x̂p̂. The main argument for connec-
tion of ĤR = x̂p̂ with the RH was the fact, that the number 
of states of this hamiltonian with energy less than E is given 
by the formula:

N(E) =
E
2π

(
log

(
E
2π

)
− 1

)
+

7
8
+ . . .

what exactly coincides with (22). In the derivation of above 
result Berry and Keating ‘cheated’ using very special Planck 
cell regularization to avoid infinite phase-space volume. As a 
caution we mention here an example of a very special shape 
billiard for which the formula for a number of energy levels 
below E has a leading term exactly the same as for zeta func-
tion (22) but the next terms disagree, see [92, equations (34) 
and (35)]. We remind here that two drums can have different 
shapes but identical eigenvalues of vibrations, thus the same 
spectral staircase function. In 2011 Endres and Steiner [93] 
(see also [94, 95] showed that spectrum of ĤR = x̂p̂ on the 
positive x axis is purely continuous and thus ĤR = xp can-
not yield the hypothetical Hilbert–Polya operator possessing 
as eigenvalues the nontrivial zeros of the ζ(s) function. The 
choice ĤR = x̂p̂ for the operator of Riemannium possesses 
some additional drawbacks (e.g. it is integrable, and therefore 
not chaotic) and some modification of it were proposed, see 
series of papers by Sierra e.g. [94–97].

In August 1996, during a conference in Seattle devoted to 
100th anniversary of the PNT, Peter Sarnak offered a bottle 
of good wine for physicists who will be able to recover some 
information from the Montgomery–Odlyzko conjecture that is 
not formerly known to mathematicians. Just two years later he 
had to go to the store to buy promised wine. At the conference 

2 Życzkowski informed me that two-dimensional (2D) Maxwell–Boltzmann 
distribution of velocities corresponds exactly to spacings between eigenval-
ues for GOE.
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in Vienna in September 1998, Jon Keating delivered a lecture 
during which he announced solution (but no proof) of the so 
called problem of moments of zeta. These results were pub-
lished later in a joint work with his PhD student Snaith [98]. 
For nearly a hundred years mathematicians have tried to cal-
culate moments of the zeta function on the critical line

1
T

∫ T

0
|ζ(1

2
+ it)|2kdt, for T → ∞.� (44)

Hardy and Littlewood [99, theorem 2.41] calculated the sec-
ond moment:

1
T

∫ T

0
|ζ(1

2
+ it)|2dt ∼ log(T), for T → ∞.� (45)

The fourth moment calculated Ingham in 1926 [100, theorem 
B]

1
T

∫ T

0
|ζ(1

2
+ it)|4dt ∼ 1

2π
log4(T), for T → ∞.� (46)

Higher moments, despite many efforts, were not known, but it 
was supposed for k  =  3 [101] that:

∫ T

1
|ζ(1

2
+ it)|6 dt ∼ 42

9!

∏
p

{(
1 − 1

p

)4 (
1 +

4
p
+

1
p2

)}

T log9 T for large T ,
�

(47)

and even more complex expression for k  =  4 [102].

∫ T

0
|ζ(1/2 + it)|8 dt ∼ 24 024

16!

∏
p

((
1 − 1

p

)9

×
(

1 +
9
p
+

9
p2 +

1
p3

))
T log16 T .

�

(48)

Keating and Snaith proved the general theorem for moments 
of random matrices, which eigenvalues have GUE distribution 
and if the behavior of ζ(s) is modeled by the determinant of 
such a matrix, then their result applied to the zeta gives

1
T

∫ T

0

∣∣∣∣ζ(
1
2
+ it)

∣∣∣∣
2k

dt ∼ fka(k)(log T)k2
,� (49)

where

a(k) =
∏

p

(
1 − 1

p

)k2 ∞∑
m=0

(
Γ(m + k)
m! Γ(k)

)2

p−m,

� (50)
and numbers f k are given by

fk =
G2(k + 1)
G(2k + 1)

.

In the above formula G(·) is the Barnes function satisfy-
ing the recurrence G(z + 1) = Γ(z)G(z) with starting value 
G(1) = 1, thus for natural arguments this function is a ‘facto-
rial over factorials’: G(n) = 1! · 2! · 3! . . . (n − 2)!. Of course, 
the result of Keating and Snaith gives formulas (45)–(48), 
respectively for k = 1, 2, 3, 4. In [103] some statistical comp
uter tests of the correspondence between the eigenvalues of 

random unitary matrices and the zeros of Riemann’s zeta 
function are presented.

In [104] Crehan has shown that for any sequence of energy 
levels obeying a certain growth law (|En| < ean+b, for some 
a ∈ R+, b ∈ R), there are infinitely many classically inte-
grable Hamiltonians for which the corresponding quantum 
spectrum coincides with this sequence. Because from PNT it 
follows, that the nth prime p n grows like pn ∼ n log(n) the 
results of Crehan’s paper can be applied and there exist clas-
sically integrable hamiltonians whose spectrum coincides 
with prime numbers, see also [105, 106]. From (22) it fol-
lows that the imaginary part of the nth zero of ζ(s) grows like 
γn ∼ 2πn/ log(n), thus the theorem of Crehan can be applied 
and it follows that there exists an infinite family of classically 
integrable nonlinear oscillators whose quantum spectrum is 
given by the imaginary part of the sequence of zeros on the 
critical line of the Riemann zeta function, see [107].

In the end of XX century there were a lot of reports that 
Alain Connes has proved the RH using developed by him 
noncommutative geometry. Connes [108] constructed a 
quantum system that has energy levels corresponding to all 
the Riemann zeros that lie on the critical line. To prove RH 
it has to be shown that there are no zeros outside critical line, 
i.e. unaccounted for by his energy levels. The operator he con-
structed acts on a very sophisticated geometrical space called 
the noncommutative space of adele classes. His approach is 
very complicated and in fact zeros of the zeta are missing lines 
(absorption lines) in the continuous spectra. During the passed 
time excitement around Connes work has faded and much of 
the hope that his ideas might lead to the proof of RH has evap-
orated. The common opinion now is that he has shifted the 
problem of proving the RH to equally difficult problem of the 
validity of a certain trace formula.

We also discuss the paper written by Okubo [109] enti-
tled ‘Lorentz-Invariant Hamiltonian and Riemann hypoth-
esis’. It is not exactly the realization of the idea of Polya and 
Hilbert: introduced in this paper two dimensional differential 
operator (hamiltonian H) does not possess as eigenvalues 
imaginary parts of the nontrivial zeros of the ζ(s). Instead 
the special condition for zeros of zeta function is used as 
the boundary condition for solutions of the eigenvalue equa-
tion H|φ〉 = λ|φ〉. Unfortunately, the obtained eigenfunctions 
are not normalizable.

It seems that the most accurate realization of the Hilbert–
Polya conjecture appeared in [110]. The authors of this paper 
constructed the eigenvalue problem, where the nontrivial zeros 
of the ζ(s) are indeed the proper values of some operator. The 
construction is rather tricky, as the more general problem is 
formulated and only after imposing the appropriate Dirichlet 
boundary condition the particular case for the nontrivial zeros 
of the ζ(s) function is obtained. Namely the nonlocal operator

ĤBBM =
1

1− e−p̂ (x̂p̂ + p̂x̂)(1− e−p̂)� (51)

is introduced; here BBM stands for initials of the names of 
the authors of [110]. Thus this operator is a similarity trans-
formation of the symmetrized Berry–Keating Hamiltonian 
mentioned above. The eigenvectors are given by the Hurwitz 
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zeta function defined for Re(s) > 1 and q �= −1,−2,−3, . . . 
by

ζ(s, q) =
∞∑

n=1

1
(q + n)s ,� (52)

hence the Riemann zeta function is a special case: 
ζ(s) = ζ(s, 0); let us remark that the definition of Hurwitz zeta 
function used in [110] is different from the usual one where 
the summation starts at n  =  0 and consequently ζ(s) = ζ(s, 1). 
The function given by the series (52) has the analytic continu-
ation to the whole complex plane without s  =  1 by the integral 
(compare with (6))

ζ(s, q) = Γ(1 − s)
1

2πi

∫

C

ts−1eqt

1 − e−t dt,

where the contour C is a loop around the negative real axis 
and it is called the Hankel contour. The (complex in gen-
eral) parameter q is restricted to the real numbers x � 0 
and it is shown in [110] that ψs(x) = −ζ(s, x + 1) fulfills 
ĤBBMψs(x) = i(2s − 1)ψs(x). If the boundary condition 
ψs(0) = 0 = ζ(s, 0) = ζ(s) is imposed then s are zeros of the 
Riemann zeta function and if RH is satisfied then eigenval-
ues i(2s − 1) are just given by imaginary parts −2γn of the 
nontrivial zeros. To show that they are real it has to be proved 
that ĤBBM is hermitian. Unfortunately this operator is not 
hermitian with respect to usual scalar product. The authors of 
[110] introduce another inner product such that ĤBBM is her-
mitian with respect to it, but the eigenstates ψs(x) have infinite 
norm. More rigorous presentation of this approach was given 
in [111]; some critical remarks can be found in [112] and the 
author’s respond in [113].

In a similar spirit, several ideas were proposed in [114]. 
The hamiltonian obtained from the anti-commutator of another 
operators is proposed. It has eigenvectors of special form with 
eigenvalues expressed by products of zeta functions (and other 
factors which can not be zero). Demanding that the system pos-
sesses ground state of zero energy requires vanishing of zeta 
function. Imposing the normalizability of the ground states stip-
ulates zeros of zeta are on the critical line. Apparently it does 
not exclude possibility there are nontrivial zeros off critical line 
corresponding to non-normalizable wave functions. Authors of 
this paper remark: ‘If the derivation has no hidden subtleties, 
this may serve as a proof of the Riemann hypothesis’.

Let us remark that for trivial zeros  −2n of ζ(s) with a con-
stant gap 2 between them it is possible to construct hamil-
tonian reproducing these zeros as eigenvalues. Namely, the 
hamiltonian for trivial zeros of ζ(s) is

Ĥtriv =
d 2

dx2 − x2 + 1� (53)

and is obtained from the hamiltonian of the quantum har-
monic oscillator.

It is well known that function ζ(s) satisfies no algebraic 
differential equation, [2, p 468]; for recent treatment of this 
problem in more general setting see [115].

Since the advent of quantum computers and the discovery by 
Peter Shor of the quantum algorithm for integer factorization 

[116] there is an interest in applying these algorithms to 
diverse of problems. Is it possible to devise the quantum comp
uter verifying the RH? We mean here something more clever 
than, say, simply mixing the Shor’s algorithm with Lagarias 
criterion. In 2014 there appeared the paper [117], in which 
authors (assuming the RH) have built an unitary operator with 
eigenvalues equal to combination of nontrivial zeros ρj/ρj 
lying on the unit circle. Next the quantum circuit represent-
ing this unitary matrix is constructed. Recently in [118, p 4]  
the quantum computer verifying RH was proposed, but it 
seems to us to be artificial and not sufficiently sophisticated: it 
is based on the equation (25) and it counts in a quantum way 
actual number of prime numbers below x and looks for depar-
tures beyond the bound in (25).

We do not have space here to discuss the use of ζ(s) in 
the theory of Casimir effect—devoted to this subject is the 
extensive review by Kirsten in [119], or in string theory [120, 
121]. In the paper [122] it was shown how to find zeros of 
the Riemann zeta using the rate of expansion of a gas of cold 
atoms. This idea was realized in [123], where the lowest zero 
of ζ(s) and two lowest zeros Ξ(s) were successfully measured 
experimentally in the ytterbium ions confined in the some 
kind of a trap.

5.  Statistical mechanics and RH

The partition function Z(β) is the basic quantity used in sta-
tistical physics, here β = 1/kBT . All thermodynamical func-
tions can be expressed as derivatives of Z(β). The phase 
transitions appear at such temperatures that Z(β) = 0. For 
the system, which may be in micro-states with energy En and 
can exchange heat with environment and with fixed number 
of particles, volume and temperature, the partition function is 
given by the formula:

Z(β) =
∑

n

e−βEn .� (54)

It turns out that for certain systems Z(β) satisfies the relation 
similar to functional equation for ζ(s) and positions of zeros 
of the partition function analytically continued to the whole 
complex plane are highly restricted, for example to the circle. 
These two facts have become the starting point for attempts 
to prove HR.

It is very easy to construct the system with the ζ(s) as a 
partition function. The problem of construction of a simple 
one-dimensional (1D) Hamiltonian whose spectrum coin-
cides with the set of primes was considered in [106, 124, 
125], see also review [105]. Some modification should lead 
to the Hamiltonian H having eigenstates |p〉 labeled by the 
prime numbers p  with eigenvalues Ep = E log( p), where E 
is some constant with dimension of energy. The n particle 
state can be decomposed into the states |p〉 using the fac-
torization theorem (5). The energy of the state |n〉 is equal 
to E(n) = E

∑k
i=1 αi log( pi) = E log(n). Then the partition 

function Z is given by the Riemann zeta function:
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Z(T) =
∞∑

n=1

exp

(
−En

kBT

)
=

∞∑
n=1

exp

(
−E log n

kBT

)

=

∞∑
n=1

1
ns = ζ(s), s ≡ E/kBT .

�

(55)

Such a gas is termed ‘primon gas’ and was considered e.g. in 
[24, 126, 127] and found applications in the string theory.

The functional equation  (14) can be written in non-sym-
metrical form:

2Γ(s) cos
(π

2
s
)
ζ(s) = (2π)sζ(1 − s).

In this form it is analogous to the Kramers–Wannier [128] 
duality relation for the partition function Z(J) of the two 
dimensional Ising model with parameter J expressed in 
units of kBT  (i.e. equal to interaction constant multiplied by 
β = 1/kBT )

Z(J) = 2N(cosh(J))2N(tanh(J))NZ(J̃),� (56)

where N denotes the number of spins and J̃  is related to J via 

e−2̃J = tanh(J), see e.g. [129]. On the other hand there are 
so called ‘Circle theorems’ on the zeros of partition functions 
of some particular systems. To pursue this analogy one has 
to express the partition function by the ζ(s) function. Then 
one can hope to prove RH by invoking the Lee–Yang circle 
theorem on the zeros of the partition function. The Lee–Yang 
theorem concerns the phase transitions of some spin sys-
tems in external magnetic field and some other models (for 
a review see [130]). Let Z(β, z) denote the grand—canonical 
partition function, where z = eβH is the fugacity connected 
with the magnetic field H. Phase transitions are connected 
with the singularities of the derivatives of Z(β, z), and they 
appear when Z(β, z) is zero. The finite sum defining Z(β, z) 
can not be a zero for real β or z and the Lee–Yang theorem 
[131, 132] asserts that in the thermodynamical limit, when the 
sum for partition function involves infinite number of terms, 
all zeros of Z(β, z) for a class of spin models are imaginary 
and lie in the complex plane of the magnetic field z on the unit 
circle: |z| = 1. The study of zeros of the canonical ensemble 
in the complex plane of temperature β was initiated by Fisher 
[133]. He found in the thermodynamic limit for a special Ising 
model not immersed in the magnetic field, that the zeros of 
the canonical partition function also lie on an unit circles, 
this time in the plane of the complex variable v = sinh(2Jβ), 
where J  >  0 is the ferromagnetic coupling constant. The criti-
cal line s = 1

2 + it can be mapped into the unit circle via 
the transformation s → u = s/(1 − s) = ( 1

2 + it)/( 1
2 − it) 

because then |u| = 1. Thus, by devising appropriate spin sys-
tem with Z(β, z) expressed by the ζ(s) the Lee–Yang theorem 
can be used to locate the possible zeros of the latter function 
and lead to the proof of RH.

In the series of papers Knauf [134–136] has undertaken 
the above outlined plan to attack the RH. In these papers 
he introduced the spin system with the partition function 
in the thermodynamical limit expressed by zeta function: 
Z(s) = ζ(s − 1)/ζ(s) with s interpreted as the inverse of 

temperature. However the form of interaction between spins 
in his model does not belong to one of the cases for which the 
circle theorem was proved. This idea was further developed 
in paper [137]. The authors of the paper [138] have shown 
that RH is equivalent to an inequality satisfied by the Kubo–
Martin–Schwinger states of the Bost and Connes quantum 
statistical dynamical system in special range of temperatures. 
There are many other appearances of the ζ(s) in the statistics 
of bosons and fermions, theory of the Bose–Einstein conden-
sate, some special ‘number theoretical’ gases etc, for intro-
duction see [16, chapter III E].

6.  Random walks, billiards, experiments etc

The Möbius function defined in (10) takes only three val-
ues:  −1, 0 and 1. The values µ(n) = 1 and µ(n) = −1 are 
equiprobable with probabilities 3/π2 ≈ 0.3039, thus the 
probability of value µ(n) = 0 is 1 − 6/π2 ≈ 0.3921. Using 
values 1 and  −1 of the Möbius function instead of heads or 
tails of a coin should hence generate a symmetric 1D random 
walk. The total displacement during n steps of such a random 
walk will be given by the summatory function of the Möbius 
function: M(x) =

∑
n<x µ(n), which is called the Mertens 

function. It is well known that the ‘root mean square’ distance 
from the starting point of the symmetrical random walk dur-
ing N steps grows like 

√
N . The resemblance of M(n) to the 

symmetrical random walk led Mertens in the end of XIX cen-
tury to make the conjecture that M(n) grows not faster than 
the mean displacement of the symmetrical random walk, i.e. 
|M(n)| <

√
n. It is an easy calculation to show that Mertens 

conjecture implies the RH (vide (11)):

1
ζ(s)

=
∞∑

n=1

µ(n)
ns =

∞∑
n=1

M(n)− M(n − 1)
ns =

∞∑
n=1

M(n)
(

1
ns −

1
(n + 1)s

)

=

∞∑
n=1

M(n)
∫ n+1

n

sdx
xs+1 = s

∞∑
n=1

∫ n+1

n

M(x)dx
xs+1 = s

∫ ∞

1

M(x)dx
xs+1 .

If M(x) <
√

x then the last integral above gives 
∣∣∣ 1
ζ(s)

∣∣∣ < |s|
σ− 1

2
, 

thus to the right of the line Re[s] = 1
2 the inverse of zeta func-

tion is bounded hence there can not be zeros of ζ(s) in this 
region and the truth of RH follows. For many years mathe-
maticians hoped to prove the RH by showing the validity of 
|M(n)| <

√
n. However in 1985 Odlyzko and te Riele [139] 

disproved the Mertens conjecture; in the proof they have used 
values of first 2000 zeros of ζ(s) calculated with accuracy 
100–105 digits; these calculations took 40 h on CDC CYBER 
750 and 10 h on Cray-1 supercomputers. Using Mathematica 
these computations can be done on the modern laptop in a 
couple of minutes. Littlewood proved that the RH is equiva-
lent to slightly modified Mertens conjecture

M(n) = O(n1/2+ε) ⇔ RH is true.

The fact that M(n) behaves like a one dimensional random 
walk was also pointed out in [140] and used to show that RH 
is ‘true with probability 1’.
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In the paper [141] Shlesinger has investigated a very spe-
cial 1D random walk which can be linked with the RH. The 
probability of jumping to other sites with steps having a dis-
placement of ±l sites involves directly the Möbius function:

p(±l) =
1
2

C
(

1
l 1+β

± µ(l)
l 1+β−ε

)
, β > 0,

where C = 1
ζ(1+β)+ 1

ζ(1+β)

 is a normalization factor, β (to be 

not confused with β = 1/kBT ) is the fractal dimension of the 
set of points visited by random walker. He coined the name 
Riemann–Möbius for this random walk. Some general prop-
erties of the ‘structure function’ λ(k) being the Fourier of the 
probabilities p(l): λ(k) =

∑
l eiklp(l), enabled Shlesinger to 

locate the complex zeros inside the critical strip, however the 
result of Hadamard and de la Vallée–Poussin that ζ(1 + it) �= 0 
can not be recovered by this method. What is interesting the 
general properties of λ(k) following from the universal laws 
of probability are not in contradiction with existence of zeros 
of ζ(s) lying off critical line.

In [142] the stochastic interpretation of the Riemann 
zeta function was given. There are much more connections 
between ζ(s) and random walks as well as Brownian motions 
known to mathematicians. The extensive review of obtained 
results expressing expectation values of different random vari-
ables by ζ(s) or ξ(s) can be found in [143].

In [144] Bunimovich and Dettmann considered the point 
particle bouncing inside the circular billiard. There is a pos-
sibility that the small ball will escape through a small hole 
on the reflecting perimeter. Let P1(t) denote the probability of 
not escaping from a circular billiard with one hole till time t. 
Bunimovich and Dettmann obtained exact formula for P1(t) 
and surprisingly this probability was expressed by ζ(s). So 
here, again, the function of purely number theoretical origin 
meets the physical reality. Then they proved that RH is equiv-
alent to

lim
ε→0

lim
t→∞

εδ(tP1(t)− 2/ε) = 0� (57)

be true for every δ > −1/2. Here this value 1/2 is directly 
connected with the location of critical line in the formulation 
of RH. A little bit more complicated condition was obtained 
for biliard with two holes. In principle such conditions allow 
experimental verification of RH using microwave cavi-
ties simulating billiards or optical billiards constructed with 
microlasers. Experiments can refute RH if the behavior of 
tP1(t)− 2/ε in the limit ε → 0 will be slower than power like 
dependence ε1/2 in the limit of vanishing ε. To our knowledge 
up today no such experiments were performed. In the paper 
[145] generalization to the spherical billiard was considered. 
Again the survival probability in such a 3D biliard is related to 
the Riemann hypothesis.

In 1947, van der Pol had constructed the electro-mechan-
ical device verifying the RH [146]. He has built a machine  
plotting ζ(1/2 + it) from the following integral 
representation:

ζ( 1
2 + it)

1
2 + it

=

∫ ∞

−∞

(
e−x/2�ex� − ex/2

)
e−ixtdx.� (58)

Here, �x� denotes integer part of x. It has the form of Fourier 
transform of the function y(x) = e−x/2�ex� − ex/2. The plot 
of integrand is shown in figure 8. The shape of this function 
was cut precisely with scissors on the edge of a paper disc. 
The beam of light was passing between teeth on the perimeter 
of the disc and detected by the photocell. The resulting from 
photoelectric effect current was superimposed with current 
of varying frequency to perform analogue Fourier transform. 
After some additional operations van der Pol has obtained the 
plot of modulus |ζ( 1

2 + it)/ 1
2 + it| on which the first 29 non-

trivial zeta zeros were located with accuracy better than %1. 
The authors of [16] have summarized this experiment in the 
words: ‘This construction, despite its limited achievement, 
deserves to be treated as a gem in the history of the natural 
sciences’.

It is well known that 2D electrostatic fields can be found 
using the functions of complex variables. There arises a question 
to which electrostatic problem the zeta function can be linked? 
In the recent paper [147] LeClair has developed this analogy and 
he constructed a 2D vector field E from the real and imaginary 
parts of the zeta function. It allowed him to derive the formula 
for the nth zero on the critical line of ζ(s) for large n expressed 
as the solution of a simple transcendental equation.

In the written [148] version of his AMS Einstein Lecture 
‘Birds and frogs’ (which was to have been given in October 
2008 but which unfortunately had to be canceled) Freeman 
Dyson points to the possibility of proving the RH using the 
similarity in behavior between 1D quasi-crystals and the zeros 
of the ζ(s) function. If RH is true then locations of its nontriv-
ial zeros would define a 1D quasi-crystal but the classification 
of them is still missing.

7.  Zeta is a fractal

In 1975, Voronin [149] proved remarkable theorem on the uni-
versality of the Riemann ζ(s) function.

Figure 8.  Plot of the function appearing in the integral 
representation (58) of the zeta function.
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Voronin’s theorem: Let 0  <  r  <  1/4 and f (s) be a complex 
function continuous for |s| � r and analytical in the interior 
of the disk. If f (s) �= 0, then for every ε > 0 there exists real 
number T = T(ε, f ) such that:

max
|s|�r

∣∣∣∣f (s)− ζ

(
s +

(
3
4
+ i T

))∣∣∣∣ < ε.� (59)

Put simply in words it means that the zeta function approx-
imates locally any smooth function in a uniform way! By 
applying this theorem to itself, i.e. taking as f (s) = ζ(s), we 
obtain that ζ(s) is selfsimilar, see Woon [150] who has shown 
that the Riemann ζ(s) is a fractal. In the paper [151] the 
Voronin’s theorem was applied to the physical problem: to 
propose a new formulation of the Feynman’s path integral.

Another aspect of fractality of zeta was found in [107, 125], 
where the 1D quantum potential was numerically constructed 
from known zeta zeros which in turn are reproduced as eigen-
values of this potential. The fractal dimension of the graph of 
this potential was determined to be around 1.5. In [125] even 
the multifractal nature of this potential was revealed.

In the late seventies of XX century John Hubbard applied 
the Newton’s method for finding approximations to the roots 
of equation  f (x) = 0 to the case of polynomial z3  −  1 on the 
complex plane. In this method the root x� of f (x�) = 0 is 
obtained as a limit x� = limn→∞ xn of the sequence:

xn+1 = xn −
f (xn)

f ′(xn)
.

If the function f (x) has a few roots the limit depends on 
the choice of the initial x0. Hubbard was interested in the 

question which starting points z0 ∈ C tend to one of three 
roots 1, (−1 ±

√
3i)/2 of z3  =  1. He obtained one of the first 

fractal images full of interwoven corals. Kawahira has applied 
Newton’s method to the Riemann’s zeta function:

zn+1 = zn −
ζ(zn)

ζ ′(zn)
.� (60)

Because ζ(s) has infinitely many roots, instead of look-
ing for basin domains of different zeta zeros, he looked for 
the number of iterations of (60) for a given starting point z0 
needed to fall into the close vicinity of one of the zeros. Let us 
mention that such a modification was also applied to the origi-
nal problem z3  =  1. He obtained beautiful pictures represent-
ing the zeros of ζ(s). We present in figure 9 the plot obtained 
by Dukiewicz [152].

8.  Concluding remarks

We have given many examples of physical problems con-
nected to the RH. In XIX century all these problems were not 
known, but it seems that Riemann believed that the questions 
of mathematics could be answered with the help of physics 
and in fact he performed some physical experiments by him-
self to check some of his theorems, see [153]. The proof of 
the RH obtained by physical methods currently seems to be 
linked to the construction of the appropriate hamiltonian, i.e. 
realization of the Hilbert–Polya conjecture, analogy with the 
random matrices or application of the Lee–Yang theorem on 
the phase transitions in Ising models. Experiments can refute 
the RH, not prove it. For example, if the experiments per-
formed with the microwave cavities will show violation of 
the (57) it will be strong arguments against RH, perhaps not 
accepted widely by the mathematical community. Recently 
the experimental way of determining the de Bruijn–Newman 
constant was proposed in [122]. We add here, that there is a 
wide spread rumor among the people who are trying to solve 
the RH that Fields Medal Laureate Enrico Bombieri believes 
that RH will be proved by a physicist, see [9, p 4]. Possible 
physical proof of the RH will be an illustration of the thought 
contained in the motto for this article.

Some mathematicians enunciate the opinion that RH is not 
true because long open conjectures in analysis tend to be false. 
In other words nobody has proved RH because simply it is not 
true. There are examples from number theory when some con-
jectures confirmed by huge ‘experimental’ data finally turned 
out to be false and possible counterexamples are so large that 
never will be accessible to computers. One such common 
belief was the inequality Li(x) > π(x) remarked already by 
Gauss and confirmed by all available data, now it is about 
x  =  1018. However, in 1914 Littlewood has shown [154] that 
the difference between the number of primes smaller than x 
and the logarithmic integral up to x changes the sign infinitely 
many times, what was another rather complicated proof of the 
infinitude of primes. The smallest value xS such that for the first 
time π(xS) � Li(xS) holds is called Skewes number because in 
1933 Skewes [155], assuming the truth of the Riemann hypoth-

esis, argued that it is certain that π(x)− Li(x) changes sign for 

Figure 9.  The plot of initial values for (60) 
−9 < Re(z0) < 9,−25 < Im(z0) < 25 showing in 
colors the number n of iterations of (60) after which 
|ζ(zn)| < 0.000 001. In black are shown regions around zeros of 
zeta. Clearly are visible zeros:  −2, −4, −6, −8 and nontrivial 
1
2 ± i14.134 . . . , 1

2 ± i21.022 . . . . Reproduced with permission from  
[152].
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some xS < 10101034

. In 1955 Skewes [156] has found, without 
assuming the Riemann hypotheses, that π(x)− Li(x) changes 

sign at some xS < exp exp exp exp(7.705) < 1010101000

. This 

enormous bound for xS was several times lowered and the 

lowest present day known estimation of the Skewes number 
is around 10316, see [157] and [158]. The second example is 
provided by the Mertens conjecture discussed in section  6. 
The inequality |M(x)| < x

1
2 is confirmed by all available 

data but finally it is false. Like in the case of the inequality 
π(x) > Li(x) we can expect first x for which |M(x)| > x

1
2 at 

horribly heights. Namely, Pintz [159] has shown that the first 
counterexample appears below exp(3.21 × 1064). This upper 
bound was later lowered to exp(1.59 × 1040) [160]. Such 
examples show that confirmation of some facts up to say 1018 
is misleading and somewhere at t = 1010. .

.

 the nontrivial zero 
of ζ(s) with real part different from 12 can be lurking.
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Appendix A

To be precise at arguments x equal to prime numbers, when 
π(x) is not continuous and jumps by 1, one has to define lhs 
of (13) as limε→∞{π(x − ε) + π(x + ε)} (the same proce-
dure was mentioned above for the function J(x)). There is 
an ambiguity when using definition of logarithmic integral 
(1) for Li(xρ) connected with multivaluedness of logarithm 
of complex argument, in particular for complex numbers 
z1, z2 the equality log(z1z2) = log(z1) + log(z2) does not 
hold (here are calculations providing the counterexample: 
(−z)2 = z2, log((−z)2) = log(z2), log(−z) + log(−z) = log(z) + log(z) ,   
2 log(−z) = 2 log(z) ⇒ log(−z) = log(z); in particular log(−1) =  
log(1) = 0 what is not true as log(−1) = i(2k + 1)π �= 0). 
Hence, the above logarithmic integral for complex argument is 
defined as Li(xρ) = Li(eρ log(x)), where for z = u + iv, v �= 0:

Li(ez) =

∫ u+iv

−∞+iv

ew

w
dw,� (A.1)

thus Li is in fact defined via the exponential integral. Let us 
mention, that in Mathematica to obtain the value of Li(xρk) the 
command ExpIntegralEi[ZetaZero[k]*Log[x]]  
has to be used.

Appendix B

As a check we can compute the rhs of (17) and (18) on the 
computer for some value of x and compare these two results. 
Below is a coding of these two equations  in Mathematica, 
which has the function Li(x) build in as LogIntegral[x]:

x  =  100.0
R17  =  Sum[MoebiusMu [n]*LogIntegral[x^{(1.0/
n)}]/n, {n, 1, 100}]
output:  25.5863
R18  =  1.0  +  Sum[(Log[x])^n/
(n*n!*Zeta[n  +  1]), {n, 1, 100}]
output:  25.6616.

In the Pari system [64] the appropriate script looks like 
(intnum( ) is the function for numerical integration):

x  =  100.0;
R17  =  sum(n  =  1, 100,  moebius(n)*intnum
(t  =  2.0, x^(1.0/n), 1.0/log(t))/n)
output: 25.5863088809354456895444516069
80040906
R18  =  1.0  +  sum(n  =  1, 100, (log(x))^n/
(n*n!*zeta(n  +  1)))
output: 25.6616332669241825932267979403
55698147.

Both systems give the same outputs. Let us notice that 
1001/7  <  2 thus in the equation (9) for x  =  100 there should be 
only 7 terms: in the sum (17) the terms are alternating due to 
the µ(n) and some cancelations occur.
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