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Abstract
In this paper, we present an approximate analytical description of the solutions
dynamics of nonlinear  -symmetric coupled-mode equations which can be
used to realize the nonlinear  -symmetric optical configuration. By the
multiple-scale analysis, we construct the asymptotic solutions of the coupled-
mode equations. In the  -symmetry unbroken region, there is a good
agreement between the asymptotic solutions and exact numerical solutions,
and the higher-order asymptotic series can yield a higher accuracy. However,
in the  -symmetry broken region, the asymptotic solutions become invalid
quickly as z increases. Instead, we neglect one linear coupling term and obtain
the approximate analytical solutions which, to some extent, describe the
dynamics in the  -symmetry broken region when z?1. This paper may be
helpful for undergraduate and graduate students in physics to understand the
nonlinear dynamics of  -symmetric systems.

Keywords:  -symmetric coupled-mode equations, asymptotic solutions,
 -symmetry breaking, multiple-scale analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

In quantum mechanics, the normalized linear Schrödinger equation (ÿ=m=1) is written as
iψt=Hψ with the Hamiltonian = - +¶

¶
H V x

x

1

2

2

2 ( ), where V(x) is the static potential.
Traditionally, it was believed that the Hamiltonian with a real-valued potential V(x) must be
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Hermitian (i.e., =H H†) in order to ensure the measurement of real eigenenergy and unitary
time evolution [1]. However, in 1998 Bender and Boettcher discovered that a wide class of
complex non-Hermitian Hamiltonians can still show entirely real spectra provided that the
Hamiltonian H respects the parity-time ( ) symmetry, that is, H commutes with the
combined parity operator ( ) and time-reversal operator ( ) [2]. Here, the operators
and are defined by [1]

 -  -
  -  -





x x p p

x x p p

: , ,
: , , i i, 1

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ( )

where p̂ and x̂ are the momentum and position operators, respectively. The communication
relation between H and  suggests that a necessary condition for a non-Hermitian
Hamiltonian to be  symmetric is = -V x V x*( ) ( ), which implies that the real part of V(x)
must be an even function while the imaginary part should be an odd one. But unlike the
Hermiticity, the requirement of  symmetry is not sufficient for H to possess the entirely
real spectrum. In fact, the  -symmetric Hamiltonians admit two parametric regions [2–6]:
(i) In the  -symmetry unbroken region, every eigenfunction of H is also an eigenfunction
of the  operator and all the eigenvalues are real; (ii) In the  -symmetry broken region,
some of the eigenfunctions of H are not simultaneously the eigenfunctions of the
 operator and there are a finite number of real and infinite number of complex conjugate
pairs of eigenvalues. Therefore,  -symmetric systems often exhibit a spontaneous
 symmetry-breaking (namely, a phase transition from the unbroken to broken  phase)
when the non-Hermiticity parameter exceeds a certain critical value.

Since the pioneering work of Bender and Boettcher [2], many efforts have been made to
extend the framework of quantum theory into the complex domain by revisiting the standard
axiom of Hermiticity [3–8]. Meanwhile, the concept of  symmetry has also spread to optics
[9, 10], classical mechanics [11], complex crystals [12], quantum chromodynamics [13], elec-
tronic circuits [14], mathematical physics [15, 16] and so on. Especially, optics provides a fertile
ground for testing and realizing the  -related concepts [9, 10] owing to the mathematical
similarity between the Schrödinger equation in quantum mechanics and the paraxial equation of
diffraction in optics [17–19]. In fact, given that the complex refractive-index distribution

= +n x n x in xR I( ) ( ) ( ) (where nR(x) is the refractive index profile while nI(x) represents the
gain/loss distribution) plays the role of an optical potential, one can design a  -symmetric
system by requiring = -n x n xR R( ) ( ) and = - -n x n xI I( ) ( ) [9, 10, 17–19]. Over the past
decade, the  -symmetry breaking within the realm of optics was observed in experiment
[9, 10], and the dynamics of linear and nonlinear  -symmetric systems was also studied
extensively in theory (see review in [20, 21]).

The simplest  -symmetric optical configuration can be realized in a pair of coupled
waveguides (i.e. optical coupler) with balanced gain and loss [9, 19]. Based on the coupled-
mode approximation, the leading order of the paraxial diffraction equation can yield the linear
 -symmetric coupled-mode equations [9, 19]

g
k- + =

E z

z
E z E z ai

d

d
i
2

0, 21
1 2

( ) ( ) ( ) ( )

g
k+ + =

E z

z
E z E z bi

d

d
i
2

0, 22
2 1

( ) ( ) ( ) ( )

which are referred to as the linear  -symmetric coupler, where z is the propagation distance,
E1,2(z) are the mode amplitudes in the two waveguides, γ represents the rate of gain in the first
waveguide and loss in the second waveguide, κ is the coupling coefficient. System(2) is
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exactly solvable and undergoes the phase transition from unbroken to broken  symmetry
at the point γ=2κ [9, 10].

With the inclusion of the Kerr nonlinearity, one can also derive the nonlinear
 -symmetric coupled-mode equations [22, 23]:

g
k- + + =

E z

z
E z E z E E ai

d

d
i
2

0, 31
1 2 1

2
1

( ) ( ) ( ) ∣ ∣ ( )

g
k+ + + =

E z

z
E z E z E E bi

d

d
i
2

0, 32
2 1 2

2
2

( ) ( ) ( ) ∣ ∣ ( )

which are usually called the nonlinear  -symmetric coupler [20], where E E1
2

1∣ ∣ and E E2
2

2∣ ∣
represent the Kerr nonlinearities, and ò characterizes the nonlinear strength. Such a nonlinear
 -symmetric coupler has potential applications in all-optical signal manipulation with
ultralow-power and high-contrast switching [24]. In mathematics, system(3) is fully
integrable because of the existence of conserved quantities [25, 26]. Similarly to the linear
case, there also exists a threshold of symmetry breaking in the nonlinear  -symmetric
coupler. In fact, system(3) admits two classes of solutions [22, 23]: (i) periodic solutions with
the intensities and relative phases in two waveguides being exactly restored after each period,
and (ii) solutions with the intensity growing without bound due to the nonlinearity-induced
symmetry breaking. However, in spite that the existence of such two classes of solutions has
been identified [23, 26–28], it is very hard to derive them in the explicit form (except that
some particular cases were obtained explicitly, e.g. as seen in [28]).

In this paper, we aim to construct the asymptotic solutions of the nonlinear  -sym-
metric coupler(3), and understand the nonlinear dynamics in both the  -symmetry broken
and unbroken regions. We present this to undergraduate and graduate students majoring in
physics. This exploration could be used as an assignment project for students when they are
studying courses like Methods of Mathematical Physics. Prior knowledge mainly includes the
ordinary differential equations and quantum mechanics. The structure of this paper is
arranged as follows. In section 2, we review the exact analytical solutions of the linear
 -symmetric coupler(2), and draw the phase portraits around the equilibrium point. In
section 3, by employing the multiple-scale analysis, we obtain the asymptotic solutions of
system(3) in both the  -symmetry unbroken and broken regions. By comparison, we find
that the asymptotic solutions give a good agreement to the exact numerical solutions when
g k< 2 , but the asymptotic solutions become invalid quickly as z increases when g k> 2 .
Then, we derive the approximate analytical solutions of system(3) with g k> 2 by
neglecting one linear coupling term, so as to approximately describe the solution behavior
when z?1. In section 4, we address the conclusions of this paper.

2. Exact analytical solutions and phase portraits of linear  -symmetric
coupled-mode equations

First, we give a short review of the exact analytical solutions of system(2), which were earlier
obtained in [4, 5, 9, 10]. For convenience, we write system(2) in the matrix form

k

k
= =

-

- -

g

gz

E
E

H
E
E

Hi
d

d
,

i

i
, 41

2

1

2

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where H is the 2×2 Hamiltonian matrix. The eigenvalues β and eigenvectors f


for
system(4) can be obtained as follows:
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b

k g k

g k

k g k

=

 - <

=

 - >

g

g

2 ,

0 2 ,

i 2 ,

51,2

2
4

4
2

2

2

⎧

⎨
⎪⎪

⎩
⎪⎪

( )

and

f

g k

g k

g k

=

 <

=

>

-
w

w





1, 2 ,

1, i 2 ,

1, 2 ,

6

T

T

T
1,2

1
e

i
e

i

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )
( ) ( )



where the subscripts ‘1’ and ‘2’ respectively correspond to the signs ‘+’ and ‘-’, T denotes the
vector transpose, and ω is defined by

w

g
k

g k

g
k

g k
=

<

>

arcsin
2

2 ,

arccosh
2

2 .
7

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

It can be seen from equations (5) and(6) that the spectrum associated to system(4) is
either purely real or imaginary, depending on the ratio of γ and κ. When g k< 2 , the
 -symmetry is unbroken (both eigenvalues are real), the eigenfunctions are both periodi-
cally bounded for all Î +z and the total intensity in two fields is also periodically oscil-
lating (see figure 1(a)). For g k> 2 , the  -symmetry is broken (both eigenvalues are
imaginary), the eigenfunctions and the total intensity grow exponentially to¥ as  ¥z (see
figure 1(b)). At g k= 2 , the two eigenvalues collide and the eigenvectors become linearly
dependent. Thus, the  -symmetry breaking occurs at this point, which is called an
exceptional point or branch point [29].

Figure 1. (a) Evolution of periodic solutions for system(4) with κ=1.9 and γ=3. (b)
Evolution of exponentially-growing solutions for system(4) with κ=1.9 and γ=5.
The black and red solid lines are respectively plotted for the fields E1 and E2, whereas
the blue solid line represents the total intensity of two fields.
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Meanwhile, the general solutions of system(4) with g k¹ 2 can be given by

b f b f= - + -
E
E

C z C zexp i exp i , 81

2
1 1 1 2 2 2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( ) ( )

 

where C1 and C2 are arbitrary constants in . Equivalently, the general solutions can be
written as

= + = +E z C E C E E z C E C E, , 91 1 1
1

2 1
2

2 1 2
1

2 2
2( ) ( ) ( )( ) ( ) ( ) ( )

with E1
1,2( ) and E2

1,2( ) given by

k w g k
k w g k

k w g k
k w g k

=
- <

>
=

<
- >

E
z

z
E

z
z

exp i cos 2 ,
exp sinh 2 ,

exp i cos 2 ,
exp sinh 2 ,

101
1

1
2

⎧⎨⎩
⎧⎨⎩

( )
( )

( )
( )

( )( ) ( )

and

k w g k
k w g k

k w g k
k w g k

=
- - <

>
=

<
- >

w

w

w

w

-

-E
z

z
E

z
z

e exp i cos 2 ,
ie exp sinh 2 ,

e exp i cos 2 ,
ie exp sinh 2 ,

112
1

i

2
2

i⎧⎨⎩
⎧⎨⎩

( )
( )

( )
( )

( )( ) ( )

where ω has been defined in equation (7). Particularly for g k= 2 , the general solutions of
system(4) read

k k= + + = - +E C C z C E C C z Ci , i . 121 1 2 1 2 1 2 2( ) ( ) ( )
In the language of optics, the eigenvalues and eigenvectors of H respectively correspond

to the propagation constants and supermodes in the  -symmetric coupled waveguides. For
the g k< 2 case which corresponds to the real propagation constants, the fields E1 and E2

have the same intensities but there exists a relative phase difference, as shown in figure 1(a).
Meanwhile, their individual intensities as well as the total intensity exhibit the periodical
power oscillation. When g k> 2 associated with a pair of conjugate propagation constants,
both the intensities of E1 and E2 in general display the exponential growth behavior at z>0
(the exponential decay occurs only when C1=0), as seen in figure 1(b). But the former
grows faster than the latter with the factor

g
ke2arccosh 2( ), so that the supermodes are biased to the

gain waveguide. In both the  symmetry unbroken and broken regions, the light propa-
gation is non-reciprocal and this behavior is more obvious beyond the phase-transition point.
This signature may be used to develop new optical components, e.g. the optical isolator [30].
Particularly at the branch point γ=2κ, the two propagation constants collide and two
supermodes coalesce to a single eigenstate, featuring the non-Hermitian degeneracy. From a
practical point of view, the unidirectional invisibility can be achieved in some designed
 -symmetric periodic structures near the spontaneous  -symmetry breaking point [31, 32].

Next, we draw the phase portraits around the equilibrium point (0, 0) so as to qualita-
tively understand the stability of the solutions of system(4). Note that the Hamiltonian H of
system(4) is a complex matrix, so that the real and imaginary parts of E1 and E2 no longer
solve the same system. Hence, we cannot directly draw the phase portrait in the
(E1, E2)-plane, and cannot judge the type of the equilibrium point (0, 0) based on the
eigenvalues of H, either. To overcome this difficulty, we transform system(4) equivalently to
a system with the real coefficient matrix.

When γ<2κ, via the transformation

x k
g

h k
g

= - + = -E E Ei
2

,
4

, 131 2
2

2

2 ( )
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system(4) becomes

k h

k x

= -

= - -

x g

h g

,

.
14z

z

d

d
2

4

d

d
2

4

2

2

⎧
⎨⎪

⎩⎪
( )

Then, it becomes feasible to draw the phase portrait for system(14) in the (ξ, η)-plane.

Noticing that system(14) has two pure imaginary eigenvalues k - gi 2
4

2

, we know that
the equilibrium point (0, 0) is a centre and the solutions are neutrally stable (see figure 2(a)).
Therefore, we can say that (0, 0) is also a centre for system(4), which can be confirmed by
observing that the solutions of system(4) are bounded and periodically oscillating, as shown
in figure 1(a).

Similarly, when γ>2κ, through the transformation

x
g g

k k h
g g

k k= - - - - = - + - -E E E E
2 4

i ,
2 4

i , 15
2

2
1 2

2
2

1 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

system(4) becomes

k x

k h

= -

= - -

x g

h g

,

.
16z

z

d

d 4
2

d

d 4
2

2

2

⎧
⎨⎪

⎩⎪
( )

Here, system(16) has two real eigenvalues in which one is negative and the other is positive.
Accordingly, the equilibrium point (0, 0) is a saddle of system(4) (see figure 2(b)) and the
solutions are unstable, which can be confirmed from the solutions exhibiting the exponential
growth behavior as displayed in figure 1(b).

3. Approximate analytical solutions of nonlinear  -symmetric coupled-mode
equations

In this section, we construct the approximate analytical solutions of the nonlinear
 -symmetric coupler(3). As we know, the multiple-scale analysis is very effective in
obtaining a uniformly valid approximation to the solutions of perturbation problems [33].

Figure 2. (a) Phase portrait around the centre (0, 0) for system(14) with κ=1.9 and
γ=3. (b) Phase portrait around the saddle (0, 0) for system(14) with κ=1.9
and γ=5.
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Generally, this can be done by introducing the time- or spatial-scale variables and regarding
them to be independent of one another. Meanwhile, the original ordinary differential
equations need be treated as partial differential equations.

To begin with, we regard the nonlinearity coefficient ò in system(3) as a small parameter,
and introduce a new variable τ=òz, where τ defines a long spatial scale since it is not
negligible when z is of the order 1/ò or larger. Then, we expand the solutions of system(3) in
the following form:

t t= + + E z E z E z O a, , , 171 1,0 1,1
2( ) ( ) ( ) ( ) ( )

t t= + + E z E z E z O b, , . 172 2,0 2,1
2( ) ( ) ( ) ( ) ( )

Via the chain rule, we compute the derivatives of E1,2(z):

t
=

¶
¶

+
¶
¶

+
¶
¶

+ 
E

z

E

z

E E

z
O a

d

d
, 181 1,0 1,0 1,1 2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

t
=

¶
¶

+
¶
¶

+
¶
¶

+ 
E

z

E

z

E E

z
O b

d

d
. 182 2,0 2,0 2,1 2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

Substituting equations (17) and (18) into system(3) and collecting the coefficients for the
same powers of ò gives

g
k

¶
¶

= -
E

z
E E a: i i

2
, 190 1,0

1,0 2,0 ( )

g
k

¶
¶

= - -
E

z
E E b: i i

2
, 190 2,0

2,0 1,0 ( )

g
k

t
¶
¶

- + = -
¶
¶

-
E

z
E E

E
E E c: i i

2
i , 191 1,1

1,1 2,1
1,0

1,0
2

1,0∣ ∣ ( )

g
k

t
¶
¶

+ + = -
¶
¶

-
E

z
E E

E
E E d: i i

2
i . 191 2,1

2,1 1,1
2,0

2,0
2

2,0∣ ∣ ( )

In what follows, we solve the above equations in the  -symmetry unbroken (γ<2κ) and
broken (γ>2κ) regions, respectively.

3.1. Case I: γ < 2κ

Since equations (19a) and(19b) have the same form as that of equations (2a) and(2b), we
first obtain the general solutions for E1,0 and E2,0 as follows:

t t= +k w k w-E A B ae e , 20z z
1,0

i cos i cos( ) ( ) ( )

t t= -w k w w k w+ - +E A B be e , 20z z
2,0

i cos i cos( ) ( ) ( )( ) ( )

where w t= - g Acos 1 ,
k4

2

2 ( ) and B(τ) are two complex-valued functions of τ.
Then, plugging equations (20a) and(20b) into the right-hand sides of equations (19c)

and(19d) yields
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2 e e ,
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where the asterisk denotes complex conjugate. Note that k w w k w+e , ez z Ti cos i cos( )( ) and
-k w w k w- - +e , ez z Ti cos i cos( )( ) are two elementary solutions of the homogeneous counterparts

of equations (21a) and (21b). In order to avoid the appearance of the secular terms, we must
require the functions tA( ) and B(τ) satisfy

t
+ + =

A
A A A B ai

d

d
2 0, 222 2∣ ∣ ∣ ∣ ( )

t
+ + =

B
B B A B bi

d

d
2 0. 222 2∣ ∣ ∣ ∣ ( )

By writing A(τ) and B(τ) in the polar form t t= q tA R e1
i 1( ) ( ) ( ) and t t= q tB R e2

i 2( ) ( ) ( )

and substituting them into equations (22a) and(22b), we obtain that

t
q
t

- + + =
R

R R R R ai
d

d

d

d
2 0, 231

1
1

1
3

1 2
2 ( )

t
q
t

- + + =
R

R R R R bi
d

d

d

d
2 0, 232

2
2

2
3

1
2

2 ( )

where R1,2(τ) and θ1,2(τ) are the real-valued functions to be determined. The imaginary parts
of equations (23a) and(23b) equating to zeros indicates that R1=R1,0, R2=R2,0 with R1,0

and R2,0 being two real constants, whereas the remaining real parts give the solutions for θ1,2:

q t q q t q= + + = + +R R R R2 , 2 , 241 1,0
2

2,0
2

1,0 2 2,0
2

1,0
2

2,0( ) ( ) ( )

where θ1,0 and θ2,0 are two real constants. Therefore, we arrive at the zeroth-order asymptotic
solutions of system(3) with γ<2κ as follows:

= + +q k w q k w+ + + + + -  E R R O ae e , 25R R z z R R z z
1 1,0

i 2 i cos
2,0

i 2 i cos1,0
2

2,0
2

1,0 2,0
2

1,0
2

2,0 ( ) ( )[ ( ) ] [ ( ) ]

= - +q w k w q w k w+ + + + + + - +   b25E R R Oe e .z R R z z R R z
2 1,0

i 2 i cos
2,0

i 2 i cos1,0
2

2,0
2

1,0 2,0
2

1,0
2

2,0 ( )( )[ ( ) ] ( ) [ ( ) ] ( )

Continually, we construct the first-order asymptotic solutions of system(3). With the
secular terms dropped, equations (21a) and (21b) can be written as

g
k

¶
¶

- + = - -k w k w-E

z
E E A B A B ai i

2
e e , 26z z1,1

1,1 2,1
2 3i cos 2 3i cos* * ( )

g
k

¶
¶

+ + = -w k w w k w+ - -E

z
E E A B A B bi i

2
e e . 26z z2,1

2,1 1,1
2 3i 3i cos 2 3i 3i cos* * ( )

By employing the Laplace transformation and assuming that = =X s E z X s,1,1 1,1 2,1( ) [ ( )] ( )
 E z2,1[ ( )] equations (26a) and(26b) become
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g
k

k w k w
- + =-

-
-

+
sX s X s X s

A B

s

A B

s
i i

2 3i cos 3i cos
, 27a1,1 1,1 2,1

2 2* *( ) ( ) ( ) ( )

g
k

k w k w
+ + =

-
-

+

w w-
sX s X s X s

A B

s

A B

s
i i

2

e

3i cos

e

3i cos
, 27b2,1 2,1 1,1

2 3i 2 3i* *( ) ( ) ( ) ( )

which can be solved as

k w

k

k w

k

k w
=

-

+ +

-
-

- +

+

w g w g-

X s
s

A B
e s

s
A B

e s

s

1

cos

i

3i cos

i

3i cos
, 28a1,1 2 2 2

2
3i

2 2
3i

2* *
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( )
( )

k w

k

k w

k

k w
=

-
-

+ -

-
-

- -

+

g w g w-

X s
s

A B
s e

s
A B

s e

s

1

cos

i

3i cos

i

3i cos
. 28b2,1 2 2 2

2 2
3i

2 2
3i

* *
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( )
( )

Then, taking the inverse Laplace transformations for X1,1 and X2,1, we have

k g

g k g k
g k

k g k g

=
+

+ - -

- - + - + - - -
+ + + +

- - + - - + + -

- - +
+

+

+

E
J

K
A B J JK

J JK JK J

A B J J K

J K J K a

1 i e

40
1 2i 2 i 2i e

1 i i 6 2 e 1 2i 2 2i e

2 i i 2 2i e

1 i 2 i 6 e 1 2i 2 i 2i e , 29

Kz
Kz

Kz Kz

Kz

Kz Kz

1,1

1 1 3i

2
2 2 3i

3i

2 2 3i

1 6i 3i

*

*

{

}

( ) [( )( )

( )( ) ( )( ) ]
[( )( )

( )( ) ( )( ) ] ( )

( )
( )

( )

( )

g k

g k g k
k g

g k g k

=
+

+ + -

+ + - + - + + +
+ + - -

+ - - + - - + -

- - +
+

+ +

E
J

K
A B J K

J K J K

A B J J JK

J JK J JK

b

1 i e

40
1 2i i 2 2i e

1 i 2i 6i e 2 i i 2 2i e

1 2i 2 i 2i e

2i 1 2 2i e 1 i i 6 2 e ,

29

Kz
Kz

Kz Kz

Kz

Kz Kz

2,1

1 1 3i

2
2 2 3i

3i

2 3i

2 3i 1 6i

*

*

{

}

( ) [( )( )

( )( ) ( )( ) ]
[( )( )

( )( ) ( )( ) ]
( )

( )
( )

( ) ( )

where = wJ e3i and k w=K cos . Hence, we arrive at the first-order asymptotic solutions of
system(3) with γ<2κ as follows:

= + + E E E O a, 301 1,0 1,1
2( ) ( )

= + + E E E O b, 302 2,0 2,1
2( ) ( )

where E1,0 E2,0, E1,1 and E2,1 are given by equations (25a), (25b), (29a) and (29b).
In figures 3(a) and (b), we plot the zeroth-order and first-order asymptotic solutions(25)

and(30), and compare them with the exact numerical solutions. It can be clearly seen that
there is a good agreement between the asymptotic solutions and exact numerical solutions.
Meanwhile, we calculate the absolute errors between the asymptotic solutions and exact
numerical solutions, as shown in figures 4(a) and (b). One can find that the errors for
solutions(30) are much smaller than those for solutions(25), which implies that the high-
order asymptotic expansion in(17) can yield a higher accuracy for system(3) in the
 -symmetry unbroken region (γ<2κ). In addition, we note that the nonlinear  -sym-
metric coupler(3) with γ<2κ also exhibits the periodical oscillation behavior of the total
intensity, but there is a change for the oscillating frequency.
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3.2. Case II: γ > 2κ

Similarly, we try to use the multiple-scale analysis to construct the asymptotic solutions of
system(3) with g k> 2 . In this case, the general solutions to equations (19a) and(19b) can
be given as follows:

t t= +k w k w-E A B ae e , 31z z
1,0

sinh sinh( ) ( ) ( )

t t= +w k w w k w- + -E A B bi e i e , 31z z
2,0

sinh sinh( ) ( ) ( )

where w t= -g
k

Asinh 1 ,
4

2

2 ( ) and B(τ) are two complex-valued functions of τ.
Substituting equations (31a) and(31b) into the right-hand sides of equations (19c) and
(19d) yields

Figure 3. (a) Comparison between the exact numerical solutions (black dotted) and the
zeroth-order asymptotic solutions(25) with R1,0=0.4, R2,0=0.4, θ1,0=−ω,
θ2,0=ω, κ=1.9, γ=3, ò=0.1. (b) Comparison between the exact numerical
solutions (black dotted) and the first-order asymptotic solutions(30) with the same
values of parameters. The black and red solid lines are respectively plotted for the fields
E1 and E2, whereas the blue solid line represents the total intensity of two fields.

Figure 4. (a) Absolute errors between the zeroth-order asymptotic solutions(25) and
exact numerical solutions. (b) Absolute errors between the first-order asymptotic
solutions(30) and exact numerical solutions. The black and red solid lines are
respectively associated to the fields E1 and E2, and the parameters for asymptotic
solutions are chosen the same as those in figures 3(a) and (b).
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g
k

t

t

¶
¶

- + = - + +

- - + + -

k w

k w k w k w- -

E

z
E E

A
A B A B

A A
B

A B A B B B a

i i
2

i
d

d
2 e

e i
d

d
2 e e , 32

z

z z z

1,1
1,1 2,1

2 2 sinh

2 3 sinh 2 2 sinh 2 3 sinh

*

*

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ( )

g
k

t

t

¶
¶

+ + = - + +

- - + + -

w k w

w k w w k w w k w

- +

- + - -

E

z
E E

A
A B A B

A A
B

A B A B B B

b

i i
2

i
d

d
2 ie

i e i
d

d
2 ie i e .

32

z

z z z

2,1
2,1 1,1

2 2 sinh

2 3 3 sinh 2 2 sinh 2 3 3 sinh

*

*

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

To eliminate the secular terms in the right-hands of equations (32a) and(32b), the functions A
(τ) and B(τ) should satisfy

t
+ + =

A
A B A B ai

d

d
2 0, 332 2 *∣ ∣ ( )

t
+ + =

B
A B A B bi

d

d
2 0. 332 2*∣ ∣ ( )

We write t t= q tA R e1
i 1( ) ( ) ( ) and t t= q tB R e2

i 2( ) ( ) ( ) (R1,2 and θ1,2 are all the real-
valued functions of τ) and substitute them into equations (33a) and(33b), giving

t
q
t

- + + =q q q q- -R
R R R R R ai

d

d

d

d
2 e e 0, 341

1
1

1
2

2
i

1
2

2
i2 1 1 2 ( )( ) ( )

t
q
t

- + + =q q q q- -R
R R R R R bi

d

d

d

d
2 e e 0, 342

2
2

1 2
2 i

1 2
2 i1 2 2 1 ( )( ) ( )

which, by separating the real and imaginary parts, give rise to

t
q q= - -

R
R R a

d

d
sin , 351

1
2

2 2 1( ) ( )

q
t

q q= -R R b
d

d
3 cos , 351

1 2 2 1( ) ( )

t
q q= -

R
R R c

d

d
sin , 352

1 2
2

2 1( ) ( )

q
t

q q= -R R d
d

d
3 cos . 352

1 2 2 1( ) ( )

By observation, one can find the following relations among θ1, θ2, R1 and R2:

q q
t t t
-

= + =R
R

R
Rd

d
0,

d

d

d

d
0. 362 1

2
1

1
2( ) ( )

Combining equations (35) with (36), we get the solutions:

= =q t q t-R R R
R

R
ae , e , 37R R

1 2,0
sin

2
1,0

2,0

sin1,0 1,0 1,0 1,0 ( )( ) ( )

q q t q q q t q q= + = + +R R b3 cos , 3 cos , 371 1,0 1,0 2,0 2 1,0 1,0 1,0 2,0( ) ( ) ( )

where q q R R, , ,1,0 2,0 1,0 2,0 are four real constants.
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Collecting all the above results, we obtain the zeroth-order asymptotic solutions of
system(3) with g k> 2 as follows:

=

+ +

q q q k w

q q q q k w

+ - +

+ + + - 

 

 

E R
R

R
O a

e

e , 38

R z R z z

R z R z z

1 2,0
i 3 cos sin sinh

1,0

2,0

i 3 cos sin sinh

1,0 1,0 2,0 1,0 1,0

1,0 1,0 1,0 2,0 1,0 1,0 ( ) ( )

[ ( ) ] ( )

[ ( ) ] ( )

=

+ +

q q q k w w

q q q q k w w

+ - + -

+ + + - + 

 

 

E R
R

R
O b

i e

i e . 38

R z R z z

R z R z z

2 2,0
i 3 cos sin sinh

1,0

2,0

i 3 cos sin sinh

1,0 1,0 2,0 1,0 1,0

1,0 1,0 1,0 2,0 1,0 1,0 ( ) ( )

[ ( ) ] ( )

[ ( ) ] ( )

To check the validity of asymptotic solutions(38), we compare them with the exact
numerical solutions and calculate the absolute errors, as shown in figures 5(a) and (b). We
find that the absolute errors in both the fields E1 and E2 go beyond the order 10−1 when
z>4, which implies that the validity of asymptotic solutions(38) gets lost quickly with the
increase of z. In fact, the exact numerical solutions show that E1

2∣ ∣ always displays an
exponential growth without bound as z increases, whereas E2

2∣ ∣ grows at the initial stage and
then decreases periodically when z>z0. It is the unidirectional propagation characteristic that
system(3) exhibits in the  -symmetry broken region [22, 23]. Therefore, since the term
 E E1

2
1∣ ∣ becomes much greater than the other terms in system(3) when z?1, we cannot

regard it as a small term in a comparable large range of z.
Next, we look for the approximate analytical solutions of system(3) with g k> 2 when

z?1. Since the intensity of E2 becomes much smaller comparable to that of E1, thus we
neglect the term κE2(z) in equation (3a). Meanwhile, we replace ò in equations (3a) and(3b)
respectively with ò1 and ò2, where ò1 is regarded as a constant (because  E E1 1

2
1∣ ∣ is no longer

a small term) but ò2 still as a small parameter. Then, we solve the approximate equations to
system(3) when z?1:

g
- + =

E z

z
E z E E ai

d

d
i
2

0, 391
1 1 1

2
1

( ) ( ) ∣ ∣ ( )

Figure 5. (a) Comparison between the exact numerical solutions (black dotted) and the
zeroth-order asymptotic solutions(38) with R1,0=−0.01, R2,0=0.1, θ1,0=0,
θ2,0=0, κ=1.9, γ=4, ò=0.1. (b) Absolute errors between the asymptotic
solutions(38) and exact numerical solutions. The black and red solid lines are
respectively plotted for the fields E1 and E2, whereas the blue solid line represents the
total intensity of two fields.
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g
k+ + + =

E z

z
E z E z E E bi

d

d
i
2

0. 392
2 1 2 2

2
2

( ) ( ) ( ) ∣ ∣ ( )

By assuming that =E z S z e S z
1 1

i 2( ) ( ) ( ) (where S1,2(z) are two real-valued functions),
equation (39a) becomes

g¢ - ¢ = - S z S z S z S z S zi i
2

. 401 1 2 1 1 1
3( ) ( ) ( ) ( ) ( ) ( )

Separating the real and imaginary parts of equation (40) yields

g
= = +gg 

S z C S z
C

Ce , e , 41z z
1 1 2

1 1
2

22( ) ( ) ( )

where C1,2 are two arbitrary real constants. Then, we obtain the approximate analytical
solution for E1:

=
+ +g

g
g

E z C e . 42
z C

1 1
i e

C z
2

1 1
2

2
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Furthermore, substituting equation (42) into (39b), we have

g
k+ + + =

+ +g
g

g




E z

z
E z C E Ei

d

d
i
2

e 0. 43
z C2

2 1
i e

2 2
2

2

C z
2

1 1
2

2
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ∣ ∣ ( )

Again, by the multiple-scale analysis for equation (43), we expand E2 in the asymptotic series
form

t t= + + E z E z E z O, , . 442 2,0 2 2,1 2
2( ) ( ) ( ) ( ) ( )

Inserting it into equation (43) and equating the terms with the same powers of ò2, we have

g
k

¶
¶

+ = -
+ +g

g
g


E

z
E C a: i i

2
e , 45

z C
2
0 2,0

2,0 1
i e

C z
2

1 1
2

2
⎛
⎝⎜

⎞
⎠⎟ ( )

g
t

¶
¶

+ = -
¶
¶

-
E

z
E

E
E E b: i i

2
i . 452

1 2,1
2,1

2,0
2,0

2
2,0∣ ∣ ( )

For equation (45a), we immediately obtain its general solution as follows:

t
k

= +- - + +g
g

g
g





E A
C

e e , 46z z C
2,0

1 1

i e
C z

2
2

1 1
2

2
⎛
⎝⎜

⎞
⎠⎟( ) ( )

where A(τ) is a complex-valued function to be determined. Then, substitution of equation (46)
into equation (45b) gives

g
t

k k

k k k

¶
¶

+ =- ¢ - +

+
+

+ +

g- - + - +

+

g g
g

g
g

g
g

 



 

 



E

z
E A

A

C

A

C

A C

C

A

C
A A

i i
2

i e e e e

2
e 2 . 47

z z C C

C

2,1
2,1

2

1
2

1
2

2i e 2

1 1

i e

2
1
2

1
2 3

1
3

1
3

i e 2

1
2

1
2

2

C z C z

C z

2
3
2

1 1
2

2
1 1

2

2

1 1
2

2

*⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

∣ ∣
∣ ∣ ( )

To eliminate the secular term in the right-hand side of equation (47), we must let t¢ =A 0( ) ,
i.e. A(τ)=C3 with C3 being a constant in . Therefore, we obtain the zeroth-order
asymptotic solution for E2 as follows:

k
= +- - + +g

g
g

g





E C
C

e e . 48z z C
2 3

1 1

i e
C z

2
2

1 1
2

2
⎛
⎝⎜

⎞
⎠⎟ ( )
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Also, we compare the approximate analytical solutions(42) and(48) with the exact
numerical solutions. In theory, the solutions of system(39) approach those of system(3) with
g k> 2 as  ¥z . Thus, we match the approximate analytical solutions and numerical
solutions at z=32 in figures 6(a) and (b). It can be found that the behaviors of solutions(42)
and(48) are very similar to those of the exact numerical solutions when z ? 1, that is, E1

2∣ ∣
grows exponentially without bound while E2

2∣ ∣ decays periodically to 0. However, some
phase discrepancy still exists between the approximate analytical solutions and numerical
solutions because the linear term κE2(z) is dropped.

4. Conclusions

Recently, the  -symmetric systems have received intensive attention in quantum
mechanics, optics and many other branches of physics. The simplest  -symmetric optical
configuration with the Kerr nonlinearity can be modeled by the nonlinear  -symmetric
coupled-mode equations (3a) and(3b). In this paper, we have given an approximate analy-
tical description to the solutions dynamics of system(3). By using the multiple-scale analysis,
we have constructed the asymptotic solutions in both the  -symmetry unbroken (g k< 2 )
and broken (g k> 2 ) regions. When g k< 2 , there is a good agreement between the
asymptotic solutions and exact numerical solutions, and the higher-order asymptotic series
can yield a higher accuracy. However, for g k> 2 the asymptotic solutions lose their validity
quickly as z increases. Instead, by neglecting the term κE2(z) in system(3), we have obtained
the approximate analytical solutions which, to some extent, describe the dynamics in the
 -symmetry broken region when z?1.

In fact, it is not difficult to expect the failure in constructing the asymptotic solutions of
system(3) in the  -symmetry broken region. Note that the exact solutions (which are the
same as solutions (9)) of the linear part of system(3) have a leading contribution in the
asymptotic solutions(17), but their intensities with g k> 2 grow exponentially to ¥ as z
increases. As a result,  E E1

2
1∣ ∣ and  E E2

2
2∣ ∣ become the dominant terms in system(3) when

z exceeds a certain value. However, this violates that the nonlinear terms in system(3) should

Figure 6. (a) Comparison between the exact numerical solution (black dotted) and
approximate analytical solution(42) (red solid) for the field E1, where C1=−0.002,
C2=−346758, κ=0.4, γ=1, ò1=ò2=0.1. (b) Comparison between the exact
numerical solution (black dotted) and approximate analytical solution(48) (red solid)
for the field E2, where = -C 0.0021 , = -C 3467582 , = - -C 6072 41043i3 , κ=0.4,
γ=1, = =  0.11 2 .
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be always regarded as small ones in the multiple-scale analysis, so that the asymptotic
solutions(38) become invalid when z?1.

Students can see that without solving the nonlinear system(3) exactly, one can still
construct the approximate analytical solutions by some basic skills in ordinary differential
equations. Based on the obtained solutions, they can acquire an understanding on the
dynamics of nonlinear  -symmetric coupler. In addition, students can further study the
solutions dynamics of nonlinear  -symmetric trimer [34] in a similar way.
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