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Abstract
In this paper, we present an approximate analytical description of the solutions
dynamics of nonlinear P7 -symmetric coupled-mode equations which can be
used to realize the nonlinear 7 -symmetric optical configuration. By the
multiple-scale analysis, we construct the asymptotic solutions of the coupled-
mode equations. In the P7 -symmetry unbroken region, there is a good
agreement between the asymptotic solutions and exact numerical solutions,
and the higher-order asymptotic series can yield a higher accuracy. However,
in the P7 -symmetry broken region, the asymptotic solutions become invalid
quickly as z increases. Instead, we neglect one linear coupling term and obtain
the approximate analytical solutions which, to some extent, describe the
dynamics in the P7 -symmetry broken region when z > 1. This paper may be
helpful for undergraduate and graduate students in physics to understand the
nonlinear dynamics of P7 -symmetric systems.

Keywords: P7 -symmetric coupled-mode equations, asymptotic solutions,
PT -symmetry breaking, multiple-scale analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

In quantum mechanics, the normalized linear Schrodinger equation (A = m = 1) is written as
92

i, = Hy with the Hamiltonian H = —%% + V(x), where V(x) is the static potential.

Traditionally, it was believed that the Hamiltonian with a real-valued potential V(x) must be
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Hermitian (i.e., H = HT) in order to ensure the measurement of real eigenenergy and unitary
time evolution [1]. However, in 1998 Bender and Boettcher discovered that a wide class of
complex non-Hermitian Hamiltonians can still show entirely real spectra provided that the
Hamiltonian H respects the parity-time (P7) symmetry, that is, H commutes with the
combined parity operator (P ) and time-reversal operator (7)) [2]. Here, the operators P
and 7 are defined by [1]

P X=X, p = —p,
T. X—2X p——p,i——i, )

where p and & are the momentum and position operators, respectively. The communication
relation between H and P7 suggests that a necessary condition for a non-Hermitian
Hamiltonian to be P7" symmetric is V (x) = V*(—x), which implies that the real part of V(x)
must be an even function while the imaginary part should be an odd one. But unlike the
Hermiticity, the requirement of P7 symmetry is not sufficient for H to possess the entirely
real spectrum. In fact, the P7 -symmetric Hamiltonians admit two parametric regions [2-6]:
(i) In the PT -symmetry unbroken region, every eigenfunction of H is also an eigenfunction
of the P7 operator and all the eigenvalues are real; (i) In the P7 -symmetry broken region,
some of the eigenfunctions of H are not simultaneously the eigenfunctions of the
PT operator and there are a finite number of real and infinite number of complex conjugate
pairs of eigenvalues. Therefore, P7 -symmetric systems often exhibit a spontaneous
P7T symmetry-breaking (namely, a phase transition from the unbroken to broken P7 phase)
when the non-Hermiticity parameter exceeds a certain critical value.

Since the pioneering work of Bender and Boettcher [2], many efforts have been made to
extend the framework of quantum theory into the complex domain by revisiting the standard
axiom of Hermiticity [3-8]. Meanwhile, the concept of P7 symmetry has also spread to optics
[9, 10], classical mechanics [11], complex crystals [12], quantum chromodynamics [13], elec-
tronic circuits [14], mathematical physics [15, 16] and so on. Especially, optics provides a fertile
ground for testing and realizing the P7 -related concepts [9, 10] owing to the mathematical
similarity between the Schrodinger equation in quantum mechanics and the paraxial equation of
diffraction in optics [17-19]. In fact, given that the complex refractive-index distribution
n(x) = ng(x) + in;(x) (where ng(x) is the refractive index profile while n/(x) represents the
gain/loss distribution) plays the role of an optical potential, one can design a P7 -symmetric
system by requiring ng(x) = ng(—x) and n;(x) = —n;(—x) [9, 10, 17-19]. Over the past
decade, the P7 -symmetry breaking within the realm of optics was observed in experiment
[9, 10], and the dynamics of linear and nonlinear P7 -symmetric systems was also studied
extensively in theory (see review in [20, 21]).

The simplest P7 -symmetric optical configuration can be realized in a pair of coupled
waveguides (i.e. optical coupler) with balanced gain and loss [9, 19]. Based on the coupled-
mode approximation, the leading order of the paraxial diffraction equation can yield the linear
PT -symmetric coupled-mode equations [9, 19]

28 YR + kB = 0, =
dz 2

[ 4E2(2) T iLEy(2) + KE(2) = 0, <
dz 2

which are referred to as the linear P7 -symmetric coupler, where z is the propagation distance,
E »(z) are the mode amplitudes in the two waveguides, y represents the rate of gain in the first
waveguide and loss in the second waveguide, ~ is the coupling coefficient. System (2) is
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exactly solvable and undergoes the phase transition from unbroken to broken P7 symmetry
at the point v = 2« [9, 10].

With the inclusion of the Kerr nonlinearity, one can also derive the nonlinear
PT -symmetric coupled-mode equations [22, 23]:

dE .
1ﬂ — 11E1(z) + KkEy(2) + € |EIPE, = 0, (Ba)
dz 2
dE .
1$ +i2E:6) + KENQ) + € |EPE> = 0, (3b)
Z

which are usually called the nonlinear P7 -symmetric coupler [20], where |E|>E; and |E,|*E,
represent the Kerr nonlinearities, and € characterizes the nonlinear strength. Such a nonlinear
PT -symmetric coupler has potential applications in all-optical signal manipulation with
ultralow-power and high-contrast switching [24]. In mathematics, system (3) is fully
integrable because of the existence of conserved quantities [25, 26]. Similarly to the linear
case, there also exists a threshold of symmetry breaking in the nonlinear P7 -symmetric
coupler. In fact, system (3) admits two classes of solutions [22, 23]: (i) periodic solutions with
the intensities and relative phases in two waveguides being exactly restored after each period,
and (ii) solutions with the intensity growing without bound due to the nonlinearity-induced
symmetry breaking. However, in spite that the existence of such two classes of solutions has
been identified [23, 26-28], it is very hard to derive them in the explicit form (except that
some particular cases were obtained explicitly, e.g. as seen in [28]).

In this paper, we aim to construct the asymptotic solutions of the nonlinear P7 -sym-
metric coupler (3), and understand the nonlinear dynamics in both the P7 -symmetry broken
and unbroken regions. We present this to undergraduate and graduate students majoring in
physics. This exploration could be used as an assignment project for students when they are
studying courses like Methods of Mathematical Physics. Prior knowledge mainly includes the
ordinary differential equations and quantum mechanics. The structure of this paper is
arranged as follows. In section 2, we review the exact analytical solutions of the linear
PT -symmetric coupler (2), and draw the phase portraits around the equilibrium point. In
section 3, by employing the multiple-scale analysis, we obtain the asymptotic solutions of
system (3) in both the P7 -symmetry unbroken and broken regions. By comparison, we find
that the asymptotic solutions give a good agreement to the exact numerical solutions when
v < 2k, but the asymptotic solutions become invalid quickly as z increases when v > 2k.
Then, we derive the approximate analytical solutions of system (3) with v > 2k by
neglecting one linear coupling term, so as to approximately describe the solution behavior
when z > 1. In section 4, we address the conclusions of this paper.

2. Exact analytical solutions and phase portraits of linear P7-symmetric
coupled-mode equations

First, we give a short review of the exact analytical solutions of system (2), which were earlier
obtained in [4, 5, 9, 10]. For convenience, we write system (2) in the matrix form

d(E E, i% -k
i— =H , H= , 4)
dz(Ez) (Ez) —K —i% (
where H is the 2 x 2 Hamiltonian matrix. The eigenvalues (§ and eigenvectors 5 for
system (4) can be obtained as follows:
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Figure 1. (a) Evolution of periodic solutions for system (4) with x = 1.9 and v = 3. (b)
Evolution of exponentially-growing solutions for system (4) with k = 1.9 and v = 5.
The black and red solid lines are respectively plotted for the fields £, and E,, whereas
the blue solid line represents the total intensity of two fields.
+. /K> — % v < 2K,
Bra=140 Y = 2k, (%)
2
+i 77 — k2 vy > 2k,
and
I\T
(L+2t) v<2s,
(6)

where the subscripts ‘1’ and ‘2’ respectively correspond to the signs ‘+’ and ‘-’, T denotes the

vector transpose, and w is defined by

arcsin(l) v < 2K,
2K

arccosh(l) v > 2K.
2K

)

It can be seen from equations (5) and (6) that the spectrum associated to system (4) is
either purely real or imaginary, depending on the ratio of v and x. When v < 2k, the
PT -symmetry is unbroken (both eigenvalues are real), the eigenfunctions are both periodi-
cally bounded for all z € R" and the total intensity in two fields is also periodically oscil-
lating (see figure 1(a)). For v > 2k, the P7 -symmetry is broken (both eigenvalues are
imaginary), the eigenfunctions and the total intensity grow exponentially to co as z — oo (see
figure 1(b)). At v = 2k, the two eigenvalues collide and the eigenvectors become linearly
dependent. Thus, the P7 -symmetry breaking occurs at this point, which is called an

exceptional point or branch point [29].



Eur. J. Phys. 41 (2020) 025305 B Li et al

Meanwhile, the general solutions of system (4) with v = 2« can be given by
E . - . -
(é)zcﬁﬂwﬂm@@+fbﬂﬂ—ﬁﬂWp ®)

where C, and C, are arbitrary constants in C. Equivalently, the general solutions can be
written as

Ei(z) = GEN + CGEP, Eyz) = CE" + GEP, )
with E(1'? and E{""? given by

O _ {exp(—i/ﬁz cosw) v < 2k, EO _ {exp(inz cosw) v < 2k, (10)

exp(kzsinhw) v > 2k, ! exp(—~zsinhw) v > 2k,

and

ED —e Wexp(—ikzcosw) 7 < 2k, £O _ eWexp(ikzcosw) v < 2k, (11
2 ie~“exp(kz sinhw) v > 2k, 2 ieYexp(—rzsinhw) v > 2k,

where w has been defined in equation (7). Particularly for v = 2k, the general solutions of
system (4) read

El = (C1 + iCQ)IiZ + Cl, Ez = (1C1 — CQ)KZ + C2. (12)

In the language of optics, the eigenvalues and eigenvectors of H respectively correspond
to the propagation constants and supermodes in the P7 -symmetric coupled waveguides. For
the v < 2k case which corresponds to the real propagation constants, the fields £, and E,
have the same intensities but there exists a relative phase difference, as shown in figure 1(a).
Meanwhile, their individual intensities as well as the total intensity exhibit the periodical
power oscillation. When v > 2k associated with a pair of conjugate propagation constants,
both the intensities of £ and E, in general display the exponential growth behavior at z > 0
(the exponential decay occurs only when C; = 0), as seen in figure 1(b). But the former
grows faster than the latter with the factor ¢2¢cosh(;), 5o that the supermodes are biased to the
gain waveguide. In both the P7 symmetry unbroken and broken regions, the light propa-
gation is non-reciprocal and this behavior is more obvious beyond the phase-transition point.
This signature may be used to develop new optical components, e.g. the optical isolator [30].
Particularly at the branch point v = 2k, the two propagation constants collide and two
supermodes coalesce to a single eigenstate, featuring the non-Hermitian degeneracy. From a
practical point of view, the unidirectional invisibility can be achieved in some designed
‘PT -symmetric periodic structures near the spontaneous P7 -symmetry breaking point [31, 32].

Next, we draw the phase portraits around the equilibrium point (0, 0) so as to qualita-
tively understand the stability of the solutions of system (4). Note that the Hamiltonian H of
system (4) is a complex matrix, so that the real and imaginary parts of E, and E, no longer
solve the same system. Hence, we cannot directly draw the phase portrait in the
(E,, Ey)-plane, and cannot judge the type of the equilibrium point (0, 0) based on the
eigenvalues of H, either. To overcome this difficulty, we transform system (4) equivalently to
a system with the real coefficient matrix.

When v < 2k, via the transformation

2
£ = —irE) + %Ez, n= K- %Ez, (13)
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Figure 2. (a) Phase portrait around the centre (0, 0) for system (14) with x = 1.9 and
v = 3. (b) Phase portrait around the saddle (0, 0) for system (14) with x = 1.9
and v = 5.

system (4) becomes

2
£=Je 7
: 2 (14)
d _ |2 _ 2
dz k 4 §

Then, it becomes feasible to draw the phase portrait for system (14) in the (&, n)-plane.

Noticing that system (14) has two pure imaginary eigenvalues =i,/ x> — %2, we know that
the equilibrium point (0, 0) is a centre and the solutions are neutrally stable (see figure 2(a)).
Therefore, we can say that (0, 0) is also a centre for system (4), which can be confirmed by
observing that the solutions of system (4) are bounded and periodically oscillating, as shown
in figure 1(a).

Similarly, when v > 2k, through the transformation

2 2
_ B Y 2 . B Y 2 .
—L | — g2 |E| — iKkE,, =|-= + .|+ — & |E| — ikE,, 15
& (2 4 )1 2 n (2 4 )1 2 (15)

system (4) becomes

d¢ 7’ 2
(LS e
dz 4 f,

dn 7? 2
=L — Kk’n.
dz 4 n

Here, system (16) has two real eigenvalues in which one is negative and the other is positive.
Accordingly, the equilibrium point (0, 0) is a saddle of system (4) (see figure 2(b)) and the
solutions are unstable, which can be confirmed from the solutions exhibiting the exponential
growth behavior as displayed in figure 1(b).

(16)

3. Approximate analytical solutions of nonlinear P7-symmetric coupled-mode
equations

In this section, we construct the approximate analytical solutions of the nonlinear
PT -symmetric coupler (3). As we know, the multiple-scale analysis is very effective in
obtaining a uniformly valid approximation to the solutions of perturbation problems [33].

6
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Generally, this can be done by introducing the time- or spatial-scale variables and regarding
them to be independent of one another. Meanwhile, the original ordinary differential
equations need be treated as partial differential equations.

To begin with, we regard the nonlinearity coefficient € in system (3) as a small parameter,
and introduce a new variable 7 = ez, where 7 defines a long spatial scale since it is not
negligible when z is of the order 1/¢ or larger. Then, we expand the solutions of system (3) in
the following form:

El(Z) = ELQ(Z, T) + EEl’l(Z, T) + 0(62), (1761)

Ez(Z) = Ez,o(Z, ’7') + EEz’l(Z, ’7') + 0(62). (17b)

Via the chain rule, we compute the derivatives of E; »(2):

+
dz 0z

dE, OE, OE OE,
— = + €
or 0z

)+0@a (184)

+
dz 0z

dE, OE, OE, ¢ OE;
— = + €
or 0z

)+0@a (18b)

Substituting equations (17) and (18) into system (3) and collecting the coefficients for the
same powers of e gives

OE1y .y
eV i—= =ilE - kEyy, 19a
oz S Eo 2,0 (19a)
OE
O 1220 = TR, — kEp, (19b)
0z 2
OE . .OE
61 N 1 L1 — llELl —|— /€E2’1 = —1 1.0 — |E1’0|2E1’0, (19())
0z 2 or
OE OE
et i i E, 4 KE L = —i=2 — By oPEa. (19d)
0z 2 or

In what follows, we solve the above equations in the P7 -symmetry unbroken (v < 2x) and
broken (y > 2k) regions, respectively.

3.1. Case I: v <2k

Since equations (19a) and (19b) have the same form as that of equations (2a) and (2b), we
first obtain the general solutions for E; o and E, as follows:

El,O — A(T)eiﬁzcosw + B(T)e—iﬁzcosw7 (20&)

E20 — A(T)ei(w+nzcosw) _ B(T)e—i(w-&-r{zcosw), (20[9)

where cosw = /1 — 47—:2 , A(T) and B(7) are two complex-valued functions of 7.

Then, plugging equations (20a) and (20b) into the right-hand sides of equations (19c¢)
and (19d) yields
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OE .
i L llEl |+ KEy, = (1% + |A|2A + 2A|B|2)emzcosw

0z 2 7 ' dr

_ A2B>ke3ii<,zcosw _ (lj_f + |B|ZB + 2|A|23)emz cosw __ A*Bzeﬁmz cosw, (2161)
.OE,

1

LBy, + KE = —(1— +APA + 2A|B|2)e1(“+““°w)
0z 2 dr

+AZB*e3i(w+/izcosu) _ (lj_B + |B|2B + 2|A|ZB)efi(w+)<czcosw) _ A*BZe73i(w+Hzcosw)’ (21b)
T

where the asterisk denotes complex conjugate. Note that (el2osw, ellwtrzcoswhl' apd
(einzcosw  _gilwtnzcoswhI' are two elementary solutions of the homogeneous counterparts
of equations (21a) and (21b). In order to avoid the appearance of the secular terms, we must
require the functions A(7) and B(7) satisfy

i;ﬂ + APA + 24BP = 0, (22a)
.

ij—B + |BPB + 2|APB = 0. (22b)
T

By writing A(7) and B(7) in the polar form A(7) = R;(7)e" and B(7) = Ry(1)e2(D
and substituting them into equations (22a) and (22b), we obtain that

ARy do,

i— — R— + R} + 2R,R} = 0, (23a)
dr T

(9% _ de_ez + R5 + 2R?’R, = 0, (23b)
dr dr

where R (1) and 0, 5(7) are the real-valued functions to be determined. The imaginary parts
of equations (23a) and (23b) equating to zeros indicates that Ry = R; o, R, = R, with Ry
and R, o being two real constants, whereas the remaining real parts give the solutions for 6, ,:

01 = R + 2R3))T + 019, 0= (R7( + 2RZ)T + 020, (24)

where 0, o and 6, ¢ are two real constants. Therefore, we arrive at the zeroth-order asymptotic
solutions of system (3) with v < 2k as follows:

E =R, eile (RA+2RT0)z+01 0l +ikzcosw | R eile (RZg+2R%) 2+ 0201 —inz cosw | 0(e), (254q)

Ez — RI,O ei[fz(R1%0+2R§0)+91'0|+i(w+h¢zcosw) _ RZ,() eilfz(R22’0+2R]210)+92'0]—i(w+h',zcos;u) + 0(6) (25b)

Continually, we construct the first-order asymptotic solutions of system (3). With the
secular terms dropped, equations (21a) and (21b) can be written as

OE ' i

; az1,] _ i%El,l + HEZ,] — _AzB*e?)mzcosw _ A*32673mzcosw, (26(1)
OF _ w3

i 8;’1 + i%EZ,l + KE)) = A?B¥eliwtdinzcosw _ p¥ gle—diw-3inzcosw  (26h)

By employing the Laplace transformation and assuming that X; ;(s) = L[E; 1(2)], X5.1(s) =
L[E,(z)] equations (26a) and (26b) become
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A2B* A*B?

iSX11(8) — 12X 1(5) + KXp () = ——— — : : (27a)
2 s — 31Kk cosw s + 3ik cosw

. . AZB*GSiw A*32€73im

i5X0,1(5) + 12X01(s) + X; 1(5) = —— - : : (27b)
2 s — 3ik cosw s + 3ik cosw

which can be solved as

ke +i(s + 1) ke 3w — j(s + )
Xy = |2 g 2 280
s2 — Kk2costw s — 3ik cosw s + 3ik cosw
1 [ Kk +i(s — Dediw Kk —i(s — Dye 3w
X)) = —————|-AB*—— 2 A*p? 2 ) (28b)
52 — kZcostw s — 3ik cosw s + 3ik cosw

Then, taking the inverse Laplace transformations for X; ; and X, ;, we have

(1 + i)Jflef(1+3i)Kz

Ey = {A*BZ 1+ 202k — ind — 2JK)eC+ 3K
L 20K [(1 + 2D~ — i )
— (1 — )i + 6JK — 2K)eX + (1 — 20)(2JK — ~J — 2ik)ediKs]
+ A2BHJ[(2 + i) (iy + 2Tk + 2iK)e@ 30K
— (1 = D)@Jk + iy — 6K)e 700K — (1 + 2i)(2Jk + iy — 21K)e3iKZ]}, (29a)
N 7—1a—(1+3D)Kz ‘
Ey1= 1+ 1)10;2 {A*Bz[(l + 20)(iy + 2Jk — 2iK)e?+3Dk:

+ (1 4+ i)(y — 2iJk + 6iK)eXs — (2 + i)(iy + 2Jk + 2iK)e?K:]
+ A2B¥J[(1 + 2D)(2k — inJ — 2iJK)e3Ke

+ 21 — (W — 2JK + 2ik)e@+30K — (1 — i)(ind + 6JK — 2n)e<1+6i>KZ]},
(29b)

where J = 3% and K = x cosw. Hence, we arrive at the first-order asymptotic solutions of
system (3) with v < 2k as follows:

E; = E;g+ €E; 1 + O(e?), (30a)

Ey = Eyg + ¢Exp + O(€), (30b)

where E| o E, o, E11 and E, | are given by equations (25a), (25b), (29a) and (29b).

In figures 3(a) and (b), we plot the zeroth-order and first-order asymptotic solutions (25)
and (30), and compare them with the exact numerical solutions. It can be clearly seen that
there is a good agreement between the asymptotic solutions and exact numerical solutions.
Meanwhile, we calculate the absolute errors between the asymptotic solutions and exact
numerical solutions, as shown in figures 4(a) and (b). One can find that the errors for
solutions (30) are much smaller than those for solutions (25), which implies that the high-
order asymptotic expansion in (17) can yield a higher accuracy for system (3) in the
PT -symmetry unbroken region (y < 2k). In addition, we note that the nonlinear P7 -sym-
metric coupler (3) with v < 2k also exhibits the periodical oscillation behavior of the total
intensity, but there is a change for the oscillating frequency.

9
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Figure 3. (a) Comparison between the exact numerical solutions (black dotted) and the
zeroth-order asymptotic solutions (25) with Ry = 0.4, Ry =04, 0, = —uw,
bro=w, k=19, y=3, e =0.1. (b) Comparison between the exact numerical
solutions (black dotted) and the first-order asymptotic solutions (30) with the same
values of parameters. The black and red solid lines are respectively plotted for the fields
E; and E,, whereas the blue solid line represents the total intensity of two fields.

Errors
Errors
0.06
6x1073F
0.04 4x10-3}
0.021 2%x1073F
0 2 4 6 8 10 2 4 6 8 10

(@ (b)

Figure 4. (a) Absolute errors between the zeroth-order asymptotic solutions (25) and
exact numerical solutions. (b) Absolute errors between the first-order asymptotic
solutions (30) and exact numerical solutions. The black and red solid lines are
respectively associated to the fields E; and E,, and the parameters for asymptotic
solutions are chosen the same as those in figures 3(a) and (b).

3.2. Case Il: v> 2k

Similarly, we try to use the multiple-scale analysis to construct the asymptotic solutions of
system (3) with v > 2k. In this case, the general solutions to equations (19a) and (19b) can
be given as follows:

El,O — A(T)ef;zsinhw + B(T)e—»czsinhw’ (3la)
EZ,O — M(T)67W+HZ sinh w + iB(T)eW*HZ sinhw’ (31b)
where sinhw = 4"—:2 — 1,A(r) and B(7) are two complex-valued functions of 7.

Substituting equations (31a) and (315) into the right-hand sides of equations (19¢) and
(19d) yields
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OE ,
i L1 .lEl,l + /iEZ,l _ (1% + 2|A|ZB + AZB*)ei{zsmhw

0z 2 dr

2 A @3kzsinhw .dB 2 * P2 | a—kKz sinhw 2 —3kz sinhw
— |A|7Ae"? — 1d— + 2A|B]* + A*B*|e "¢ — |B|*Be "¢ , (32a)
T

OE A
i 2,1 4 ilEz,l + HE],I — _(1% + 2|A|2B + AZB*)ie—w-!—stmhw

07 2 dr

_ i|A|2Ae—3w+3rzzsinhw _ (lj‘B + 2A|B|2 + A*Bz)ie”‘”“inhw _ i|B|zBe3‘°"3”“i“h“’.
T
(32b)

To eliminate the secular terms in the right-hands of equations (32a) and (32b), the functions A
(7) and B(7) should satisfy

i—j“ + 2JAPB + A2B* = 0, (33a)

T

ij—B + 2A|BP + A*B? = 0. (33b)
T

We write A(7) = Ri(1)e!"@ and B(7) = Ry(7)el»™ (R, and 6, are all the real-
valued functions of 7) and substitute them into equations (33a) and (33b), giving

L Rld—el + 2R Ryl 2= 1 RZR)ei®1—02) = 0, (34a)
dr dr
i& — de_92 4 2R1R2261(91*92) 4 RIRZZei(ﬁr(?l) =0, (34b)
dr dr
which, by separating the real and imaginary parts, give rise to
IR _ _R2R, sin(6, — 0y), (350)
dr
d—ol = 3R1R2 008(02 — 91), (35]9)
dr
R _ RR}sin(h, — 6)), (35¢)
dr
% = 3R1R2 COS(92 - 91) (35d)
dr
By observation, one can find the following relations among 6, 6,, R; and R;:
M =0, Rzﬂ + Rlﬂ =0. (36)
dr dr dr
Combining equations (35) with (36), we get the solutions:
R = Ryge Rosin@ior, Ry — FL0 R psinaior, (37a)
’ R
01 = 3R1’0 COS(QL())T -+ 02’0, 02 = SRI,O COS(GI’O)’T -+ 91’0 -+ 02,0, (37b)

where 0, o, 020, Ri 0, Ry are four real constants.

11
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Errors

Intensities

[ 30t
40 15 0.2
30f 0.75 20l 0.1
20 0.

0 1 0 1 2
10F
10F
“ z z
0 1 2 0 1 2 3

(b)

Figure 5. (a) Comparison between the exact numerical solutions (black dotted) and the
zeroth-order asymptotic solutions (38) with Ry o= —0.01, Rp=0.1, 6,5=0,
0,0=0, k=19, y=4, e=0.1. (b) Absolute errors between the asymptotic
solutions (38) and exact numerical solutions. The black and red solid lines are
respectively plotted for the fields £, and E,, whereas the blue solid line represents the
total intensity of two fields.

Collecting all the above results, we obtain the zeroth-order asymptotic solutions of
system (3) with v > 2k as follows:
E) = Ry eil3¢Rocos@10)z+ 0201 = Ry sin(0) )2+ k2 sinhw
Rio
Ry

4 eil3eRi g cos(0,0)z+01 00201+ € Ry g sin(f 9)z—kz sinhw + O(e), (38a)

E2 — iRz Oei[3eR1,0 cos(0;0)z+020]1—€Ry o sin(6; o) z+kz sinhw—w

n i1151,0ei[3fR1,Ucos(el_o)z+91_0+92,0]+5Rl,0 sin(fy0)z—kz sinhw+w 4 O (¢), (38h)
2.0

To check the validity of asymptotic solutions (38), we compare them with the exact
numerical solutions and calculate the absolute errors, as shown in figures 5(a) and (b). We
find that the absolute errors in both the fields £, and E, go beyond the order 10~ " when
z > 4, which implies that the validity of asymptotic solutions (38) gets lost quickly with the
increase of z. In fact, the exact numerical solutions show that |E|* always displays an
exponential growth without bound as z increases, whereas |E,|> grows at the initial stage and
then decreases periodically when z > z,. It is the unidirectional propagation characteristic that
system (3) exhibits in the P7 -symmetry broken region [22, 23]. Therefore, since the term
¢ |E|?E; becomes much greater than the other terms in system (3) when z > 1, we cannot
regard it as a small term in a comparable large range of z.

Next, we look for the approximate analytical solutions of system (3) with v > 2x when
z > 1. Since the intensity of E, becomes much smaller comparable to that of E;, thus we
neglect the term «E,(z) in equation (3a). Meanwhile, we replace ¢ in equations (3a) and (3b)
respectively with ¢; and e,, where ¢, is regarded as a constant (because ¢ |E |*E; is no longer
a small term) but ¢, still as a small parameter. Then, we solve the approximate equations to
system (3) when z > 1:

idEl(Z) .

iLE\ ) + elELE =0, (39a)
dz 2

12
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dE .
ld;@ +i2E0) + RENQ) + lBaPE = 0. (39b)
Z

By assuming that E(z) = Si(z)e'>@ (where S;,(z) are two real-valued functions),
equation (39a) becomes

i5/(2) — S1(2)S4@) = igsl @) — a8’ (). (40)

Separating the real and imaginary parts of equation (40) yields

6 CP
Si(z) = Ciex®,  853(z) = ——€* + Cy, 41
v

where C,, are two arbitrary real constants. Then, we obtain the approximate analytical
solution for E;:

22+1( er +C2)

Ei(2) = 42)
Furthermore, substituting equation (42) into (39b), we have
idEdz(Z) + %EQ(Z) + n-cle“*( =+ + elEsLE, = 0. (43)
Z

Again, by the multiple-scale analysis for equation (43), we expand E, in the asymptotic series
form

E>(2) = Eap(z, 7) + e2E21(z, 7) + O(€3). (44)

Inserting it into equation (43) and equating the terms with the same powers of ¢, we have

6 . c
e L N *‘( < ) (45a)
0z 2
OFE OFE
1, 9% Y __.9E20 2
€r: 1I——+i=Ey;= -1 — |E20|"Exp. 45b
2 5z S E 5 |E20l"E2 0 (45b)
For equation (45a), we immediately obtain its general solution as follows:
R LI S
Esp = A(T)e ¥ + ——¢ pe{tera) (46)

Ell

where A(7) is a complex-valued function to be determined. Then, substitution of equation (46)
into equation (45b) gives

8E ' * .20 o 2, . ﬁ
C L 11E2,1 = —iA/(T)e 3F — e 2% A 2( - +C2] + A Pe 1( e +C2)
Bz 2 €1C] 51C1
20APefC? 3 (e
+[||613‘f+“ e(’”CZ]Jr 2A“ 1 JAPA (47)
€1 51C1

To eliminate the secular term in the right-hand side of equation (47), we must let A’(T) = 0,
ie. A(T) = C3 with C; being a constant in C. Therefore, we obtain the zeroth-order
asymptotic solution for E, as follows:

o [ac?
= Cye ¥ + 2”‘( i ] (48)

€1C1
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Figure 6. (a) Comparison between the exact numerical solution (black dotted) and
approximate analytical solution (42) (red solid) for the field E;, where C; = —0.002,
Cy = —346758, k =04, v =1, ¢, = ¢ = 0.1. (b) Comparison between the exact
numerical solution (black dotted) and approximate analytical solution (48) (red solid)
for the field E,, where G, = —0.002, C; = —346758, C; = —6072 — 410431, k = 0.4,
y=1,6 =6 =0.1.

25

Also, we compare the approximate analytical solutions (42) and (48) with the exact
numerical solutions. In theory, the solutions of system (39) approach those of system (3) with
v > 2k as z — oo. Thus, we match the approximate analytical solutions and numerical
solutions at z = 32 in figures 6(a) and (b). It can be found that the behaviors of solutions (42)
and (48) are very similar to those of the exact numerical solutions when z >> 1, that is, |E|?
grows exponentially without bound while |E,* decays periodically to 0. However, some
phase discrepancy still exists between the approximate analytical solutions and numerical
solutions because the linear term <E(z) is dropped.

4. Conclusions

Recently, the P7 -symmetric systems have received intensive attention in quantum
mechanics, optics and many other branches of physics. The simplest P7 -symmetric optical
configuration with the Kerr nonlinearity can be modeled by the nonlinear P7 -symmetric
coupled-mode equations (3a) and (3b). In this paper, we have given an approximate analy-
tical description to the solutions dynamics of system (3). By using the multiple-scale analysis,
we have constructed the asymptotic solutions in both the P7 -symmetry unbroken (y < 2k)
and broken (v > 2k) regions. When v < 2k, there is a good agreement between the
asymptotic solutions and exact numerical solutions, and the higher-order asymptotic series
can yield a higher accuracy. However, for v > 2k the asymptotic solutions lose their validity
quickly as z increases. Instead, by neglecting the term xE,(z) in system (3), we have obtained
the approximate analytical solutions which, to some extent, describe the dynamics in the
PT -symmetry broken region when z > 1.

In fact, it is not difficult to expect the failure in constructing the asymptotic solutions of
system (3) in the P7 -symmetry broken region. Note that the exact solutions (which are the
same as solutions (9)) of the linear part of system (3) have a leading contribution in the
asymptotic solutions (17), but their intensities with v > 2x grow exponentially to 0o as z
increases. As a result, ¢ |E|*E and € |E;[*E, become the dominant terms in system (3) when
z exceeds a certain value. However, this violates that the nonlinear terms in system (3) should

14



Eur. J. Phys. 41 (2020) 025305 B Li et al

be always regarded as small ones in the multiple-scale analysis, so that the asymptotic
solutions (38) become invalid when z > 1.

Students can see that without solving the nonlinear system (3) exactly, one can still
construct the approximate analytical solutions by some basic skills in ordinary differential
equations. Based on the obtained solutions, they can acquire an understanding on the
dynamics of nonlinear P7 -symmetric coupler. In addition, students can further study the
solutions dynamics of nonlinear P7 -symmetric trimer [34] in a similar way.
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