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Abstract – In general, multilayer networks are often a significantly more apt description of real-
life systems than isolated or single networks. In this paper, we explore the effect of memory on the
evolution of prisoner’s dilemma (PD) game by constructing different kinds of two-layer networks.
The results show that the heterogeneous network structure is conducive to promoting individuals
to adopt cooperative behaviors. However, as the lure income T increases, the individuals who
take cooperative behavior in the entire system gradually decrease. Further research shows that if
no more than one layer of network presents large heterogeneity, then the less the individuals are
affected by historical gains, the better the cooperation will be among individuals. By contrast,
if both layers of networks are less heterogeneous, the greater the impact of historical returns
on individuals, the easier it is for cooperation between individuals. Furthermore, if individuals
change their strategies mainly by imitating the strategies of their neighbors, then it is beneficial
to promote cooperation among individuals in the entire system. However, it is not conducive to
cooperation among individuals if individuals change their own strategy mainly through strategies
of their counterparts. The final result indicates that, if at least one layer is a heterogeneous
network structure, the cooperation between individuals in the entire system will be blocked when
the length of the individual’s historical memory is too long.

Copyright c© EPLA, 2020

Introduction. – Understanding of human behavior
has always been the focus of sociology, psychology and
economics, and how to analyze human behavior quantita-
tively is a very important research topic in science today.
We can not only improve human understanding of their
own behavior, but also improve their understanding of the
evolution of social systems through the study of human
behavior [1–4]. Although it is still a huge challenge to un-
derstand the cooperative phenomenon of complex systems
in different disciplines for individuals [5,6], the game the-
ory and complex network methods provide some effective
ways to effectively study the phenomenon of individual
cooperation [7–14].

The study of complex networks is part of the study
of complexity theory. As a powerful tool for study-
ing complex science and complex systems, complex net-
works provide a new perspective for studying evolutionary
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games [15–17]. Abramson et al. firstly studied the pris-
oner’s dilemma game model in a small-world network, the
individual in the model adopts a deterministic strategy to
update the rules. After each round, the individual adopts
the strategy of the most profitable individual among
his neighbors [18]. Afterwards, models based on pair-
wise interactions such as prisoner’s dilemma games and
snowdrift game models in complex networks, and models
based on group interactions such as public goods games,
have received widespread attention as emergence of re-
search collaborations and evolutionary paradigm [19–22].
Moreover, scholars have studied the effects of changes
in link weights between individuals, individual visibility,
limited resources, and other factors on the evolution of
cooperation among individuals [23–26]. Overall, how-
ever, the study of game evolution on complex networks
mainly focuses on the influence of factors such as network
topology, individual selection mechanisms, and external
environment interference on game evolution dynamics.
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For example, Kleinebergd studied the impact of metric
clusters on the evolutionary game dynamics in scale-free
networks [27]. The results of the research by Wu et al.
show that if more profit is given to those nodes with large
degrees, it can effectively promote cooperation among in-
dividuals in the entire network [28].

In the study of information diffusion and contact dis-
semination, many scholars have proposed different net-
work studies for its inherent characteristics [29–33]. These
different network topologies can better characterize the
complexity of human activities. The complex inter-
individual communication network is not only varying, but
also multi-layered, with clustering and community phe-
nomena [34–39]. However, most of the current researches
on evolutionary games focus on single-layer networks [40].
In addition, individuals’ strategies change are affected by
not only neighboring nodes directly connected to them,
but also their historical gains. Based on the discussion
above, we construct different two-layer networks to study
the impact of memory on the evolution of the PD game.
The results demonstrate that the heterogeneous network
structure is conducive to promoting individuals to adopt
cooperative behavior. As the lure income T increases, the
individuals’ density who take cooperative behavior in the
entire system gradually decreases. In addition, if there is
a layer of network that is more heterogeneous under the
two-layer network structure, then the less the individual is
affected by historical gains, the better the cooperation will
be among individuals. However, if both layers of networks
are less heterogeneous, the greater the impact of historical
returns on individuals is, the more beneficial it is for co-
operation among individuals. Furthermore, if individuals
change their strategies mainly by imitating the strategies
of their neighbors, then it is beneficial to promote coop-
eration among individuals in the entire system. However,
it is a disadvantage for cooperation among individuals if
individuals change their own strategy mainly through by
strategies of their counterparts. The final result indicates
that, if at least one layer in the double-layer network struc-
ture is a heterogeneous network structure when the length
of the individual’s historical memory is too long, the co-
operation between individuals in the entire system will be
blocked.

The arrangement of this letter is as follows: firstly, we
construct a prisoner’s dilemma game model in a two-layer
network, analyze the dynamic behavior of game evolution,
and discuss several game dynamic behaviors with typical
parameters and networks. Then we use the ER random
network and the BA scale-free network, respectively, to
construct different two-layer game networks, and numeri-
cally analyze the effects of different parameters on evolu-
tionary games. Finally, the conclusions of this letter are
given.

The PD game in a two-layer network by con-
sidering individuals’ memory. – We consider the evo-
lutionary game model of the prisoner’s dilemma on a

Fig. 1: Schematic diagram of evolutionary games in a two-layer
network with 6 nodes in each layer. Each individual i in layer
A has a symmetric individual i in layer B. The behaviors of
individuals in the two-layer network will affect each other.

two-layer network containing layer A and layer B: each
individual i in layer A has a symmetric individual i in
layer B. Behaviors between individuals in layer A and
layer B will affect each other. For a pair of game nodes in
layer A or layer B, if both sides of the game players adopt
a cooperative strategy, then the returns of both sides are
R; if both sides of game players adopt a non-cooperator
strategy, then the returns of both sides are P ; if one side
adopts a cooperative strategy and the other side adopts
a non-cooperative strategy, then the benefit of the coun-
terpart is S, and the benefit of the non-counterpart is T
(lure income). For simplicity, this letter studies the weak
evolutionary game model, that is, S = P = 0, R = 1 (see
fig. 1).

We propose the following prisoner’s dilemma game with
individuals’ memory. After t game round, the gains of in-
dividual i in the layer A and layer B network is calculated
as follows:

g
A(B)
ij (t) =

1
4
(1 + s

A(B)
i )(1 + s

A(B)
j )R

+
1
4
(1 + s

A(B)
i )(1 − s

A(B)
j )S

+
1
4
(1 − s

A(B)
i )(1 + s

A(B)
j )T

+
1
4
(1 − s

A(B)
i )(1 − s

A(B)
j )P, (1)

s
A(B)
i is the state of individual i at layer A (layer B),

s
A(B)
i = 1 means cooperation, s

A(B)
i = −1 means non-

cooperation. Then, the total returns of individual i from
all his neighbors in the layer A (layer B) network is given
as follows:

g
A(B)
i (t) =

∑
j∈∂i

g
A(B)
ij (t), (2)

where ∂i is the set of neighbors of player i in the layer A
(layer B) network.

Note that for the individual with the memory, the fit-
ness of the individual i in the layer A (layer B) can be
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calculated as follows:

f
A(B)
i (t) =

1
H + 1

t∑
τ=t−H

e−α(t−τ)g
A(B)
i (τ), (3)

where H ∈ N is the memory length of historical return,
and α ≥ 0 is the memory decay factor of historical return.
In the case of α = 0, it means that the historical income
has a great influence on individual’s behavior change. On
the contrary, if α � 0, it means that historical gains have
a small impact on individual’s behavior change.

For individual i in layer A (layer B), there are the fol-
lowing two ways to change his own strategy after each
round of game.

1) The probability that node i selects a neighbor node
j in the same layer and imitates its strategy is β. In layer
A (layer B), individual i will randomly select a neighbor
node j to compare the returns after a round of game, the
probability of strategy to be changed for individual i is as
follows:

P (sA(B)
i → s

A(B)
j ) =

1

1 + exp
(
− f

A(B)
j −f

A(B)
i

κ

) , (4)

fA
i (fB

i ) is the fitness of the individual i in the layer A
(layer B) and an optional neighbor node j in layer A (layer
B), κ is the impact of environmental noise.

2) For a node i, the probability of adopting the strategy
from his counterpart is 1−β. Based on the mean-field the-
ory, the density ρC

A of the collaborators in layer A changes
in a homogeneous network is as follows:

ρC
A(t+1) = ρC

A(t)+β[ρD→C
A −ρC→D

A ]+(1−β)πB→A, (5)

ρC
A(t) is the density of cooperator at time t in layer A,

ρD→C
A is the density transfer from non-cooperative indi-

vidual (D) to cooperative individual (C) in layer A; πB→A

denotes how the individuals in layer A are influenced from
their symmetrical individuals in layer B. Note that the
formula of πB→A represents the general form of individ-
ual behavior’s interaction between two layer networks. For
different impact modes, specific impact forms can be set.

Based on the returns of cooperative and non-cooperative
individuals, the expressions for the conversion rate
ρD→C

A between non-cooperatives and cooperatives and
the conversion rate ρC→D

A between cooperatives and non-
cooperatives are as follows:

ρD→C
A = (1 − ρC

A)ρC
AP (D → C)

= (1 − ρC
A)ρC

A
1

1+e− fC−fD
κ

(6)

and

ρC→D
A = ρC

A(1 − ρC
A)P (C → D)

= ρC
A(1 − ρC

A) 1

1+e− fD−fC
κ

.
(7)

If we consider layer A (layer B) as the homogeneous
network, and the average degree of the network is 〈k〉, we
can get the average returns of collaborator C and non-
collaborator D in layer A (layer B) as fC = 〈k〉ρC and
fD = 〈k〉ρCT , respectively. Then we can obtain

ρD→C
A − ρC→D

A = (1 − ρC
A)ρC

Atanh
(1 − T )〈k〉ρC

A

2κ
. (8)

In addition, we can analyze the changes of the collabo-
rator density in layer B in the same way.

Numerical simulation and results. – For different
kinds of complex network structures and general param-
eters, numerical simulation methods are used to analyze
the evolutionary dynamic behaviors of the PD game. We
mainly focus on three different types of two-layer networks
to study the PD game. 1) Both layer A and layer B are the
ER random network with n = 1000 nodes in each layer,
the average degree of each network is 〈k〉 = 6; 2) Both
layer A and layer B are the BA scale-free network with
n = 1000 nodes in each layer, the degree distribution is
P (a) ∼ a−γ , γ = 2.1, and the average degree of each
network is 〈k〉 = 6; 3) Layer A is the ER random net-
work with n = 1000 nodes, layer B is the BA scale-free
network with n = 1000 nodes, the degree distribution is
P (a) ∼ a−γ , γ = 2.1, and the average degree of each
network is 〈k〉 = 6. At the beginning of the game, the
probability that each individual in the game layer is co-
operator C or non-cooperator D is the same. In order
to eliminate the influence of random factors on the re-
sults, each of the following simulation results is the av-
erage of 100 independent experiments. For convenience,
we let ρC

A(t) and ρC
B(t) denote the density of collabora-

tors in layer A and layer B at t game round, respectively,
ρC

A(∞) and ρC
B(∞) denote the density of collaborators in

A and B layers at steady state, respectively. In addition,
we let ρC(t) = 1

2n [
∑n

i=1 δ(sA
i (t), 1)+

∑n
i=1 δ(sB

i (t), 1)] and
ρC(∞) = 1

2n [
∑n

i=1 δ(sA
i (∞), 1) +

∑n
i=1 δ(sB

i (∞), 1)] de-
note the density of collaborators of the whole system at
t game round and at steady state, respectively, where
δ(x, y) is the δ-function, when x = y, δ(x, y) = 1, oth-
erwise δ(x, y) = 0.

Figure 2 plots the evolution of collaborators density
ρC(t) as a function of the number of games in the whole
system. Comparing and analyzing fig. 2(a) and fig. 2(b),
we can find that, when both layer networks are ER random
networks, the individual density of cooperative behavior in
the entire system gradually decreases with the increasing
number of games. However, when both layer networks
are BA scale-free networks, the individuals who take co-
operative behavior reach the highest level in the entire
system. The results demonstrate that the heterogeneous
network structure is beneficial to promoting individuals to
adopt the cooperative behaviors. In addition, fig. 2 illus-
trates that the individual density of cooperative behavior
in the entire system gradually decreases as the lure in-
come T increases. The practice of individual cooperative
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Fig. 2: The evolution diagram of collaborators density ρC(t)
against the number of games in the whole system, with the two-
layer network structure under different circumstances. The
parameter settings are as follows: α = 0.5, β = 0.5, H = 1.
(a) The collaborators density ρC(t) varies with lure income
T = 1.2. (b) The collaborators density ρC(t) varies with the
lure income T = 1.4.

Fig. 3: The evolution diagram of the final collaborators density
ρC(∞) against the lure income T in the whole system, with the
two-layer network structure under different circumstances. The
parameter settings are as follows: α = 0.5, β = 0.5. (a) The
collaborator density ρC(∞) varies with memory length H = 1.
(b) The collaborator density ρC(∞) varies with memory length
H = 3.

behavior is not only related to the connection method be-
tween individuals and other individuals, but also related
to the attitude (reward) of the entire social environment
to collaborators and betrayers. Under the same network
structure, the lure income T affects how much the betrayer
individual gains. Therefore, it can be obtained from the
simulation results that if the betrayer obtains more ben-
efits, it is not conducive to the diffusion of individual co-
operative behavior.

Figure 3 presents the evolution diagram of the final col-
laborators density ρC(∞) against the lure income T in
the whole system under different kinds of two-layer net-
work structures. In general, a larger lure income T will
bring higher expected income to the non-cooperative in-
dividual D. As shown in fig. 3, as the lure income T
increases, the final cooperative density ρC(∞) gradually
decreases in three different types of two-layer networks.
Through comparison analysis, it can be found that, when
both the two-layer topologies are scale-free networks, the
cooperative density ρC(∞) will remain at a higher level
at the beginning as the lure income T increases. How-
ever, the value of ρC(∞) will decrease rapidly, once the

Fig. 4: The evolution of the final cooperators’ density ρA
C(∞)

and ρB
C(∞) as a function of α. The final cooperators’ density

in the two-layered network gradually decreases as α increases.
The parameters are set as: T = 1.1, β = 0.5, κ1 = κ2 = 0.1.
(a) The collaborator density ρC(∞) varies with α, while the
memory length H = 1. (b) The collaborator density ρC(ρ)
varies with α, while the memory length H = 3.

lure income T increases to a certain threshold. When
both the initial two-layer topologies are the ER random
network, the final cooperative density ρC(∞) decreases
faster as the lure income T increases. Moreover, there will
be no cooperative individual in the entire system when
the lure income T ≥ 1.6. However, cooperators and non-
cooperators will still coexist in the system if the initial
two-layer topologies are the BA networks when the lure
income T ≥ 1.6. Therefore, we can further conclude that
heterogeneous networks can effectively promote coopera-
tion among individuals.

Figure 4 shows the evolution diagram of the final col-
laborators density ρC(∞) as a function of the historical
return memory decay factor α in the whole system. The
results indicate that, once more than one layer of the net-
work structure is a BA scale-free network, the collaborator
density ρC(∞) gradually increases as the historical gain
memory decay factor α increases. However, it is interest-
ing to note that when both the initial two-layer network
topologies are ER random networks, the density of the
collaborator gradually decreases as the parameter α in-
creases. Historical return memory decay factor α reflects
the degree to which individuals are affected by historical
returns. The smaller the value of α, the more individuals
are affected by historical returns. In contrast, the larger
the value of α is, the less individuals are affected by his-
torical returns. Therefore, it can be concluded from the
simulation results that, if the network is more heteroge-
neous, the less the individuals are affected by historical
returns, the better the cooperation will be among individ-
uals. However, if both layers of the network are less het-
erogeneous, the more individuals are affected by historical
returns, the better the cooperation among individuals is.

Figure 5 illustrates the evolution diagram of the final
collaborators density ρC(∞) against the optional param-
eter β in the whole system under different two-layer net-
work structures. The results of the simulation indicate
that the final collaborators density ρC(∞) in the sys-
tem increases gradually with the optional parameter β.
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Fig. 5: The final collaborators density ρC(∞) against the op-
tional parameter β. The parameter settings are as follows:
T = 1.2, α = 1. (a) The collaborator density ρC(∞) varies
with β, while the memory length H = 1; (b) The collaborator
density ρC(∞) varies with β, while the memory length H = 3.

Fig. 6: The final collaborators density ρC(∞) with respect
to memory length H. The parameter settings are as follows:
T = 1.3, β = 0.5. (a) The collaborator density ρC(∞) varies
with memory length H, while α = 1. (b) The collaborator
density ρC(∞) varies with memory length H, while α = 0.5.

This result shows that if individuals change their own
strategies mainly by imitating the strategies of their neigh-
bors, it is beneficial to promote cooperation among in-
dividuals in the entire system. However, if individuals
change their own strategy mainly by the strategies of the
counterpart, then it is not conducive to cooperation among
individuals.

Figure 6 indicates the evolution diagram of the final col-
laborators density ρC(∞) as a function of memory length
H. Comparing and analyzing fig. 6(a) and fig. 6(b), it
can be found that, if both layers of the network structure
are BA scale-free network, or one layer is a BA scale-free
network and the other layer is an ER random network,
the collaborators density ρC(∞) in the final system gradu-
ally decreases with the increasing of the historical memory
length H. However, if both layers of the network struc-
ture are ER random networks, the collaborator density
ρC(∞) gradually increases in the final system at the be-
ginning, and then gradually decreases when the individual
memory decay factor α is large. Moreover, the collabora-
tor density ρC(∞) gradually increases in the final system,
when the individual memory decay factor α is small. Com-
paring fig. 6(a) and fig. 6(b), we can get that when the
length of the individual’s memory of historical returns is
too long, then the cooperation among individuals in the

Fig. 7: The evolution of the final collaborators density ρC(∞)
with memory length H and lure income T . The parameter
settings are as follows: α = 1. (a1)–(a3) With the different two-
layer network structure, the collaborator density ρC(∞) varies
with H and T , while β = 0.3. (b1)–(b2) With the different
two–layer network structure, the collaborator density ρC(∞)
varies with H and T , while β = 0.7.

entire system will be blocked if at least one layer network
is a heterogeneous structure.

Figure 7 shows the evolution diagram of the final col-
laborators density ρC(∞) against memory length H and
lure income T in the whole system. With the increase of
the lure income T , the final partner density ρC(∞) grad-
ually decreases in the three different types of two-layer
networks. Comparing fig. 7(a1) to fig. 7(b3), it can be
observed that when the length of the individual’s mem-
ory of historical returns is too long, then the cooperation
among individuals in the entire system will be blocked if
at least one layer in the two-layer network structure is
a heterogeneous network structure. If both layers of the
network structures are ER random networks, the collab-
orator density ρC(∞) gradually increases in the final sys-
tem at the beginning, and then gradually decreases when
the individual memory decay factor α is large. There-
fore, if both the two-layer network structures are the
ER random networks, there will be an optimal mem-
ory decay factor H, which maximizes the cooperation of
individuals.

Conclusions. – In general, the multilayer networks are
often a significantly more apt description of real-life sys-
tems than isolated or single networks. In this paper, we
analyze the evolution of the PD game in a two-layered
network, by considering the effect of memory. The results
of the research indicate that the heterogeneous network
structure is conducive to promoting individuals to adopt
cooperative behaviors. As the lure income T increases,
the individual density of cooperative behavior in the en-
tire system gradually decreases. In addition, if there is
a layer of network that is more heterogeneous, then the
less the individual is affected by historical gains, the bet-
ter the cooperation will be among individuals. However,
if both layers of the networks are less heterogeneous, the
greater the impact of historical returns on individuals is,
the more beneficial it is for cooperation among individuals.
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Furthermore, if individuals change their strategies mainly
by imitating the strategies of their neighbors, then it is
beneficial to promote cooperation among individuals in
the entire system. However, it is not conducive to coop-
eration among individuals if individuals change their own
strategy mainly through strategies of their counterparts.
The final result shows that, if at least one layer in the
two-layer network structure is heterogeneous, when the
length of the individual’s historical memory is too long,
the cooperation between individuals in the entire system
will be blocked. How to rationally quantify and study in-
dividual behavioral strategies has always been an unsolved
and important problem with the complex inter-individual
communication. Our research attempts to provide a fea-
sible and reasonable solution for game research in multi-
layer networks to reveal the interaction relationship among
individuals.
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