
January 2020

EPL, 129 (2020) 28001 www.epljournal.org

doi: 10.1209/0295-5075/129/28001
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Abstract – This paper investigates the return-volatility asymmetry of Bitcoin. We find that the
cross-correlations between return and volatility (squared return) are mostly insignificant on a daily
level. In the high-frequency region, we find that a power-law appears in negative cross-correlation
between returns and future volatilities, which suggests that the cross-correlation is long-ranged.
We also calculate a cross-correlation between returns and the power of absolute returns, and we
find that the strength of the cross-correlations depends on the value of the power.
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Introduction. – It has long been known that return
and volatility are negatively correlated, and early stud-
ies [1,2] attempted to explain the return-volatility asym-
metry as a leverage effect: a drop in the value of a
stock increases finance leverage or debt-to-equity ratio,
which makes the stock riskier and increases the volatility.
The other promising explanation for the return-volatility
asymmetry is the volatility feedback effect discussed
in [3,4]: if volatility is priced, an anticipated increase
in volatility raises the required return, leading to an im-
mediate stock price decline. Although the two effects
suggest the same negative correlations, the causality is
different [5].

Comparing the two effects empirically, Baekaert
et al. [5] and Wu [6] argue that the dominant determi-
nant is the volatility feedback effect. However, the studies
using GARCH-type models [7–9] suggest that volatility
increases more after negative returns than positive ones,
which favors the leverage effect.

To discuss the full temporal structure of return-
volatility asymmetry, using squared returns as a proxy
of volatility, Bouchaud et al. [10] calculate the return-
volatility correlation function and find that returns and
future volatilities are negatively correlated. On the other
hand, reverse correlations, i.e., correlations between fu-
ture returns and volatilities are found to be negligible.
The results are fitted to an exponential function, and it is
concluded that the correlations are short-ranged. In addi-
tion, the decay times1 are estimated to be about 10 (50)
days for stock indices (individual stocks).

1The correlations are fitted with an exponential function of
α exp(−t/τ), and the decay time is defined by τ .

While, for most developed markets, negative correla-
tions between returns and future volatilities are found,
an interesting phenomenon is observed in Chinese mar-
kets. Qiu et al. [11] calculate the return-volatility correla-
tion function for equities in the Chinese market and find
that returns and future volatilities are “positively” cor-
related, which is called the anti-leverage effect. Further
studies [12,13] also support the anti-leverage effect in the
Chinese market.

In this study, we focus on the return-volatility asym-
metry of the Bitcoin market. Since the first proposal of
cryptocurrency in 2008 [14], the Bitcoin system, based on
a peer-to-peer network and blockchain technology, devel-
oped quickly, and Bitcoin has become widely recognized
as a payment medium. In recent years, a large body
of literature has investigated various aspects of Bitcoin,
e.g., hedging capabilities [15], inefficiency [16–19], mul-
tifractality [20], extreme price fluctuations [21], liquidity
and efficiency [22,23], transaction activity [24], com-
plexity synchronization [25], long memory [26], and so
forth.

Although the return-volatility asymmetry of Bitcoin has
been investigated using various models, such as asym-
metric GARCH-type and stochastic volatility, it seems
that a consistent picture of the return-volatility asymme-
try of Bitcoin has not yet been obtained. For instance,
while Bouoiyour et al. [27] observe a volatility asymme-
try that reacts to negative news rather than positive,
Katsiampa [28] and Baur et al. [29] find an inverted volatil-
ity asymmetry that reacts to positive news rather than
negative. Moreover, several studies [20,30,31] find no evi-
dence of a leverage effect in Bitcoin prices.
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Bouri et al. [32] investigate return-volatility asymme-
try in two periods separated by the price crash of 2013.
They find that, while before the crash Bitcoin shows
inverted volatility asymmetry, after the crash, and for
the whole period, no significant volatility asymmetry is
observed. Using the stochastic volatility model, Philip
et al. [33] find that one day ahead volatility and returns
are negatively correlated.

Here, we approach the return-volatility asymmetry of
Bitcoin through return-volatility cross-correlations. We
calculate a cross-correlation between returns and a power
of absolute returns. This is in part motivated by the exis-
tence of the Taylor effect [34,35], which suggests that the
strength of autocorrelations of a power of absolute returns,
|r|d, is dependent on the value of power d, and, typically,
the maximum autocorrelations are obtained at d ≈ 1 for
stocks [35] and at d ≈ 0.5 for exchange rates [36]. The
Taylor effect is also present for Bitcoin [37]. Thus, we in-
vestigate how the cross-correlation of Bitcoin is dependent
on the value of power.

This paper is organized as follows. The next section
describes the data and methodology. The third section
presents the empirical results. Finally, we conclude in the
fourth section.

Data and methodology. – We use Bitcoin tick data
(in dollars) traded on Bitstamp from January 10, 2015 to
January 23, 2019 and downloaded from Bitcoincharts2.
Let pti

; ti = iΔt; i = 1, 2, . . . , N be the time se-
ries of Bitcoin prices with sampling period Δt. We de-
fine the return, Ri, by the logarithmic price difference,
namely,

Ri+1 = log pti+1 − log pti
. (1)

In this study, we consider high-frequency returns with
Δt = 2 min, and we also consider daily returns. We fur-
ther calculate the normalized returns by ri = (Ri−R̄)/σR,
where R̄ and σR are the average and standard deviation
of Ri, respectively. We calculate the cross-correlation,
CCd(j), between returns and the d-th power of absolute
returns at lag j as

CCd(j) =
E[(rt − μr)(|rt+j |d − μ|r|d)]

σrσ|r|d
, (2)

where μr and μ|r|d are the averages of ri and |ri|d, and
σr and σ|r|d are the standard deviations of ri and |ri|d,
respectively. E[Oj ] in eq. (2) stands for the average over
N − j values of Oj . For d = 2, eq. (2) reduces to the usual
definition of the return-volatility correlation that uses
squared returns as a proxy of volatility [12,13] except the
normalization.

We calculate CCd(j) for d = 0.1 to 3.0 every 0.1 step.
For positive j’s, CCd(j) at d = 2 evaluates the relation-
ships between returns and future volatilities. The reverse

2http://api.bitcoincharts.com/v1/csv/.
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Fig. 1: Cross-correlation CCd(j) for daily returns as a function
of lag j at d = 2.0. Error bars of data points represent one-
sigma errors calculated by the jackknife method.
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Fig. 2: Cross-correlation CCd(j) for high-frequency returns as
a function of lag j at d = 2.0. Error bars of data points repre-
sent one-sigma errors calculated by the jackknife method.

correlations, i.e., relationships between future returns and
volatilities, are obtained for negative j’s.

Empirical results. – First, in fig. 1, we show the cross-
correlation, CCd(j), of the daily returns for d = 2.0. The
cross-correlations are mostly consistent with zero for both
positive and negative lags, j, except for j = 0 and 1,
at which negative correlations are observed. For other
d’s, similar results are obtained. Thus, at the daily level,
the cross-correlations are mostly insignificant, except for
contemporaneous and small, positive lags.

Next, in fig. 2, we show the cross-correlation, CCd(j),
calculated with 2min, high-frequency returns for d = 2.0.
For positive j’s, we find negative cross-correlations last-
ing from small to large lags, which is consistent with the
results observed for developed markets [10,38]. For nega-
tive j’s, we observe positive, but smaller, cross-correlations
at several small lags. For larger (negative) lags, the
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Fig. 3: Cross-correlation CCd(j) at d = 1 and 2 in log-log
scale. (a) d = 1 and (b) d = 2. Error bars of data points
represent one-sigma errors calculated by the jackknife method.
For better visibility, noisy data that are consistent with zero
within 1.5 sigma errors are omitted from the pictures. The
red (green) solid curve represents the power-law (exponential)
fitting to the data. The reduced chi square: (a) 0.796 (power
law) and 1.09 (exponential), (b) 1.13 (power law) and 1.33
(exponential).

cross-correlations are consistent with zero. For the con-
temporaneous correlations, i.e., j = 0, we observe negative
cross-correlations.

To examine the scaling properties of the cross-
correlations at positive lags3, we plot negative values of
the results, i.e., −CCd(j) in fig. 3 in log-log scale.

We fit the cross-correlations with the power-law func-
tion of κj−γ and the exponential function of α exp(−j/τ)
in a range of j = [1, 200], where κ, γ, α, and τ are fitting
parameters. The fitting results of the power-law (expo-
nential) function are depicted by the red (green) curve
in fig. 3. We find that the cross-correlations are better
described by the power-law function than by the expo-
nential function. In particular, we recognize that the ex-
ponential function does not adequately describe the data
points of cross-correlations at small lags. This finding is
different from the results of previous studies that observe

3Since the cross-correlations at negative lags quickly become con-
sistent with zero at very small lags, we only consider those at positive
lags.
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Fig. 4: Fitting results of γ as a function of d, where γ is a pa-
rameter of the power-law function of κj−γ . Error bars of the
results represent the asymptotic standard errors of the param-
eter. The solid curve represents the quadratic fitting to γ.

Table 1: Results of fitting to a quadratic function, γ(d) = αd2+
βd + ρ. The values in parentheses represent the asymptotic
standard errors of the fitting parameters.

α β ρ

Bitcoin 0.0184(13) 0.0470(35) 0.5630(18)

an exponential behavior in the cross-correlation [10,11,13].
The exponential behavior in the cross-correlation indicates
that the cross-correlation quickly disappears as the lag in-
creases, i.e., the correlation is short-ranged. On the other
hand, the power-law behavior4 that we observe indicates
that the cross-correlation decreases slowly with the lag,
i.e., the correlation is long-ranged.

In fig. 4, we plot the results of γ as a function of d
and find that γ increases with d. We fit the results to
a quadratic function, γ(d) = αd2 + βd + ρ, where α, β,
and ρ are fitting parameters; the fitting results are listed
in table 1. From the fitting results, we recognize that for
d → 0, the power γ seems to approach the value around
0.56. To investigate the strength of the cross-correlations,
we plot κ as a function of d in fig. 5. More precisely,
κ represents the strength of the cross-correlations at lag
j = 1. We find that κ is a convex function and that
the maximum strength is obtained around d ≈ 1.4.
Thus, the correlation CCd(1) at d ≈ 1.4 gives a stronger
correlation than the traditional cross-correlation defined
at d = 2.

Conclusion. – At the daily level, cross-correlations
are mostly insignificant for Bitcoin. By examining

4More precisely, the power-law exponent, γ, should be γ < 1 for
a long-range behavior (e.g., [39]). In addition, the summation of the
correlations diverges for γ < 1. As seen in fig. 4, the condition of
γ < 1 is satisfied, at least for d < 3.
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Fig. 5: Fitting results of κ as a function of d, where κ is a
parameter of the power-law function of κj−γ . κ corresponds
to the strength of a cross-correlation at lag j = 1. The error
bars of the results represent the asymptotic standard errors of
the parameter.

high-frequency Bitcoin returns, we find that returns and
future volatilities are negatively correlated and the cross-
correlations between returns and future volatilities show
a power-law behavior. We calculate cross-correlations be-
tween returns and the d-th power of absolute returns and
find that the maximum cross-correlation is obtained at
d ≈ 1.4. Thus, we were able to obtain clear evidence on
the cross-correlation by choosing other values of d, rather
than the traditional value of d = 2.

Our findings on cross-correlations suggest that, in mod-
eling asset time series, we should more seriously consider
models that produce power law behavior in the cross-
correlations.

For example, ref. [40] proposes a fractional random walk
model combined with a simple auto-regressive conditional
heteroskedastic model, denoted as FRWARCH, and finds
that the FRWARCH model exhibits a power law in the
cross-correlations.

There exist universal properties, such as volatility clus-
tering and no autocorrelations in returns, that appear
across various assets. These properties are called the
stylized facts (e.g., [41]). The existence of stylized facts
suggests that the price formation is governed by certain
common dynamics. If Bitcoin has a different property
in the cross-correlation from other assets, there could be
a different type of dynamics in Bitcoin. To come to a
definite conclusion about whether the power-law behavior
only appears in Bitcoin, it would be desirable to examine
other assets in detail.
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