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1.  Introduction

Experimentation and theoretical modeling with the solidi-
fication of nickel and nickel-based alloys revealed a lot of 
information about the structure of melts and crystals forming 
under different driving forces and influences of various fields 
[1–3]. One of the first experimental estimations of solidifi-
cation kinetics was conducted using melt flux and levitation 
techniques [4–8] on the basis of which some estimations of 
speed limited growth of crystals were made [9]. The roles of 
solute trapping and solute drag in rapidly solidifying diluted 
nickel-based alloys were investigated by Eckler et al [10, 11]. 
The effect of convective flow on growth kinetics was also 
quantitative for Ni-dendrites [12]. Using an original technique 
for experimental measurements, Schwarz et  al formulated 

the mechanism of grain refinement [13] as well as presented 
measurements of diffusive speed and diffusion coefficients 
[14, 15]. The effect of microgravity on crystal growth [16] 
and microstructure of undercooled melts [17, 18] was mea-
sured in an electro-magnetic facility. These experiments used 
the containerless methods for sample processing [1, 2] and 
provide a deep undercooling in melts, in which forced convec-
tion may drastically influence the growth kinetics when the 
growth velocity is comparable to the flow speed [12, 19, 20]. 
A comparative analysis of crystallization kinetics and crystal 
microstructure was given to clarify the role of external fields, 
such as gravitational [16], alternating electromagnetic [19] 
and static magnetic fields [21, 22].

Theoretical modeling and predictions were made for crys-
tals of nickel and nickel-based alloys using the atomistic and 
mesoscopic models. In molecular dynamics (MD) simulations, 
one of the central tasks was to obtain the thermodynamic and 
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Abstract
The dendritic growth of pure materials in undercooled melts is critical to understanding 
the fundamentals of solidification. This work investigates two new insights, the first is an 
advanced definition for the two-dimensional stability criterion of dendritic growth and the 
second is the viability of the enthalpy method as a numerical model. In both cases, the aim 
is to accurately predict dendritic growth behavior over a wide range of undercooling. An 
adaptive cell size method is introduced into the enthalpy method to mitigate against ‘narrow-
band features’ that can introduce significant error. By using this technique an excellent 
agreement is found between the enthalpy method and the analytic theory for solidification of 
pure nickel.
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kinetic properties of solid-liquid interfaces (see [23] and ref-
erences therein). In some cases, the interface energy (tension) 
can be well found from the laboratory experiments using, for 
instance, the method of nucleation statistics [24]. However, 
for nickel, a kinetic phenomenon at the interface such as the 
‘attachment-detachment of particles’ cannot be reproduced 
due to its opaqueness. Therefore, MD simulations are an 
important source of kinetic data, in particular, for the growth 
coefficients of different crystallographic faces of nickel [25, 
26]. Such data provides the phase-field models with the nec-
essary material properties to allow the growth and analysis 
of the structure of nickel dendrites [27, 28]. The linear and 
non-linear behaviors of the interface velocity for a different 
interface undercooling in MD simulations [25, 26] were also 
obtained as a benchmark for the kinetic equations of growth 
that follow, in particular, from the phase-field models [29].

In addition to this, transformations in multi-component 
melts based on nickel under the influence of buoyancy-driven 
melt convection were modeled using the phase-field method 
by Apel and Steinbach [30]. Special attention has been paid 
to the comparison of the sharp interface model and the phase-
field methods [31, 32]. The sharp interface model possesses the 
zero thickness of the solid-liquid interface and it is based on 
the Stefan-type theoretical approach. This model determines 
the first condition connecting the dendrite tip velocity, the 
dendrite tip diameter, and the melt undercooling. The second 
condition is defined by the selection theory, which enables to 
find a stable solution of heat and mass transfer equations  in 
the vicinity of dendritic tip region (see, for details, [33–37]). A 
less commonly known enthalpy method has been successfully 
used to model the dendritic growth in undercooled melts [38]. 
The method has been used to allow not only the prediction of 
kinetics but also some microstructural details of crystalline (in 
particular, dendritic) patterns [22, 39].

In all of these studies with the enthalpy method only spe-
cific undercoolings have been investigated and the method has 
not been tested as an accurate predictor across a wide range 
of undercoolings. One advantage of the enthalpy method is 
that the interface thickness is not explicitly required as part 
of the formulation, however for implementation purposes an 
interface consisting of a single computational cell is required. 
This introduces the so called ‘narrow-band feature’ error in 
curvature calculation, which is related to the amount of local 
information about the morphology and cannot be mitigated 
through mesh refinement [38]. Using smoothed differentials 
can somewhat alleviate the problem, however additional tech-
niques to minimise this error are required. This work presents 
a novel technique that exploits the self-symmetry of dendrite 
tips, where a dimensionless form of the curvature and an adap-
tive cell size method is used to show that the enthalpy method 
can be used across a wide range of undercoolings. Therefore, 
the main goal of the present article is to investigate consist-
ency between the well established sharp interface model and 
the enthalpy method. A sharp interface model that includes 
the selection mode for arbitrary growth Péclet numbers [40] 
is compared with the numerical enthalpy method for the two-
dimensional tip velocity and radius of dendrites.

2.  Sharp interface model

2.1.  Undercooling balance

The dendrite tip diameter ρ  and its growth velocity V  repre-
sent the main parameters of crystal growth. The total under-
cooling balance connects the melting temperature Tm of a 
single-component liquid and the far-field temperature T∞ 
as ∆T = Tm − T∞ and introduces the first model equation, 
which consists of several contributions:

∆T = ∆TT +∆TR +∆TK .� (1)

Here ∆TT  is the thermal contribution, ∆TR = 2d0TQ/R is the 
two-dimensional undercooling due to the Gibbs–Thomson 
effect, TQ is the adiabatic temperature, d0 is the capillary con-
stant, and ∆TK = V/µk is the kinetic undercooling, where µk  
stands for the kinetic coefficient.

The thermal contribution ∆TT  can be written out using the 
Ivantsov function IvT , which describes the temperature field 
around the the growing steady-state dendrite of a parabolic 
form:

∆TT = TQIvT(Pg),� (2)

where the Ivantsov function IvT

IvT(Pg) = Pg exp(Pg)

∫ ∞

1

exp (−Pgη
′)√

η′
dη′� (3)

depends on the growth Péclet number Pg = ρV/(2DT) (DT 
stands for the thermal diffusivity).

Finally, the total undercooling balance (1) can be reform
ulated in a parametric form of Pg as [41]:

∆T = ∆TT(Pg) +
4d0TQ

ρ(Pg)
+

2DTPg

µkρ(Pg)
.� (4)

Equation (4) represents the undercooling balance, the solution 
of which determines only the product ρV  as a function of the 
undercooling ∆T , and does not give the information about 
the dependencies ρ(∆T) and V(∆T) in a separate form. For 
this reason, a second equation providing a selection criterion 
is needed. This criterion is found from the solvability theory 
[42–45].

2.2.  Solvability criterion

Consider a two-dimensional parabolic dendrite growing in 
a single-component undercooled liquid. In the case of low 
anisotropy of kinetics and surface energy, the temperature 
distribution is in close proximity to the parabolic Ivantsov 
solution, which describes a steady-state dendritic growth. 
Pelcé and Bensimon [42] (see also [43, 44]) showed that this 
statement leads to the microscopic solvability condition rep-
resenting an approximate analytical solution of the linearized 
heat transfer equation at the parabolic surface of an Ivantsov 
dendrite. This leads to the solvability condition:

∫ ∞

−∞
G [X0(l)] Ym(l)dl = 0, Ym(l) = exp

[
i
∫ l

0
km(l1)dl1

]
,

�
(5)
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where G designates the curvature operator, X0(l) is a con-
tinuum of solutions from which the dependence of the mar-
ginal wavenumber mode km(l) can be derived, and i is the 
imaginary unit. Note that the solution G [X0(l)] is orthogonal 
to the imposed perturbation Ym(l) that provides a stable mode.

To obtain the marginal wavenumber km entering in the solv-
ability integral (5), a linear stability analysis should be carried 
out [41]. In this case, the marginal mode of the wavenumber 
km (see [44] for details), is determined by the cubic equation:

k3
m =

V exp(iθ)
2d(θ)DT

km − iV sin θ

2DT
k2

m +
V2 cos θ exp(iθ)

4d(θ)D2
T

+
iVβ̃(θ) sin θ

d(θ)TQ
k2

m,

� (6)
where θ is the angle between the normal to the dendrite 
interface and its growth direction. The capillary length d in 
the case of n-fold symmetry of the crystal is expressed as 
d(θ) = d0 [1 − β cos(nθ)].

Substituting the analytical solution of the cubic equa-
tion  (6) into the solvability integral (5), yields the stability 
criterion [40] in the form:

σ∗ =
2d0DT

ρ2V
=

d0

ρPg
=

σ0β
7/4

(
1 + a1

√
βPg

)2 ,� (7)

where σ0  and a1 are the constants. This criterion describes 
the broad range of possible Péclet numbers. Note that expres-
sion (7) transforms to the low Péclet number stability criterion 
previously discussed in many studies (see, among others, [42, 
43, 46–48]).

Equation (7) represents the unified selection criterion 
which gives a combination of ρ  and V  for the thermal den-
dritic growth in single-component systems without con-
vection6. Considering the undercooling balance (4) and the 
selection criterion (7), a pair of the most important parameters 
of primary solidification, ρ  and V , at a given undercooling ∆T  
can be obtained.

3.  Numerical modelling using an enthalpy based 
method

The transient numerical model uses an enthalpy method for 
dendritic growth, based on the work of Voller [38]. Building 
from the initial work of Tacke and co-workers [49, 50], Voller 
took the classical sharp interface model and through the 
introduction of the order parameter, f , formulated a diffuse 
interface method based on enthalpy. f  represents the liquid 
fraction, where f   =  1 is fully liquid and f   =  0 is fully solid. 
Intermediate values of f  represent the interface where com-
putational cells are solidifying. One of the key differences 
between this formulation and more traditional phase-field 
methods is that the interface thickness is not explicitly defined 
nor is a key parameter in the governing equations [51, 52]. To 
relate f  to enthalpy, the volumetric enthalpy H is defined as the 
sum of latent heats:

H = cpT + fL.� (8)
The conservation of enthalpy is given by

∂H
∂t

= ∇ · (K∇T) .
�

(9)

The thermal conductivity K is assumed to be constant. The 
interface is undercooled to the temperature Ti:

Ti = Tm − Γ (θ)

L
Tmκ,

� (10)
where the surface energy anisotropy takes the form 
γ = d0 (1 + ε4 cos 4θ) and therefore the surface stiffness is 
given by

Γ (θ) = γ +
∂2γ

∂θ2 = d0 (1 − 15ε4 cos 4θ) .� (11)

Curvature is taken as the divergence of the normal, which in 
terms of liquid fraction is

κ = ∇ · ∇f
|∇f |

.� (12)

Voller converted this equation  set into a dimensionless 
system and then discretized it onto a Cartesian grid. The 
same approach is used here and so for brevity, this approach 
is not repeated, however, there are two important aspects of 
the numerical approach that are necessary for the improve-
ments in this presented work. The first is a calculation of cur-
vature, where for a cubic mesh i.e. the cell lengths are equal, 
∆x = ∆y, equation (12) can be written as

κ =
1
∆x

fyyf 2
x + fxxf 2

y − 2fxfyfxy
(

f 2
x + f 2

y

) 3
2

,� (13)

where

fx = ∆x
∂f
∂x

= ( fi+1,j − fi−1,j) /2,� (14)

fxx = ∆x2 ∂
2f

∂x2 = ( fi+1,j − 2fi,j + fi−1,j)� (15)

and similarily f y  and f yy are the first and second derivatives in 
the y  direction multiplied by ∆x and ∆x2 respectively. The 
second aspect of the computational method is that liquid cells 
only become ‘seeded’ when neighboring cells fully solidify. 
This has the effect of creating a region where 0  >  f   <  1, that 
is on the order of one computational cell. Therefore, while no 
explicit thickness is required by the formulation, in practice 
this creates an interface thickness that is proportional to the 
grid size. Consequently, this leads to the so-called narrow-
band feature, which causes problems in calculating interfacial 
properties, namely curvature.

Therefore mesh refinement can actually increase errors, for 
example, the curvature is calculated locally and so if a large 
number of cells represent the tip radius then locally there may 
not be enough information to distinguish the curvature accu-
rately. The narrow-band error leads to two effects, the curva-
ture drives to zero if the interface locally appears flat or to a 
very large value if the interface has a ‘corner’. This can cause 

6 The criterion (7) was also derived for the dendrite growth with convection 
in the work [40]. The tests of the criterion with convection were made in 
the works [21, 22], in which again dendritic crystallization was analyzed at 
arbitrary Péclet numbers.
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the dendrite morphology to take on an unrealistic faceted ‘dia-
mond’ like structures.

On the other hand, if the cell size is too large, errors associ-
ated with a coarse mesh are introduced, and in general, leads to 
an under prediction of curvature. For example, in the extreme 
case where the tip radius is less than a single cell then due to 
lack of resolution, the radius would be calculated as a single 
cell with an error on the order of ∆x. This under-prediction of 
curvature should in principle lead to an over prediction of tip 
radius, but in practice, as the error essentially manifests in the 
Gibbs–Thompson condition, it has an analogous effect of arti-
ficially lowering the anisotropy. This reduces the bias toward 
preferential growth orientations and allows the dendrite to 
grow secondary arms or for the tip to split, ultimately leading 
to competition between these new ‘primaries’ and therefore 
not an accurate representation of the system.

The coarse mesh and the narrow-band errors essentially 
introduce an upper and lower limit on the cell size for a given 
undercooling. However, due to the large disparity in charac-
teristic length scales between low and high undercooled solid-
ification, a criterion is required for selecting an appropriate 
value of ∆x. This could be based on analytic theory, however, 
in the context of this investigation where testing and compar-
ison to the analytic theory is a key aim, then the numerical 
solutions should not be dependent on it. Furthermore, the 
error in curvature will have a dependency on undercooling 
and subsequently, there will be undercooling dependent errors 
in both tip radius and velocity that are not straightforward to 
quantify. Instead, an approach has been developed that pro-
vides a similar relative error for all cases across the entire 
undercooling range.

The process begins by simply multiplying (13) through by 
∆x, such that the right-hand side is no longer dependent on 
∆x and the left-hand side becomes κ∆x. The morphological 
feature of interest is the tip radius, therefore by letting ∆x be 
chosen such that ∆x = (N + ε) r0, where N is the number of 
cells representing the tip radius and ε is the error from both 
the narrow-band and coarse mesh described previously, ∆x no 
longer appears. Given that r0 = 1/κ equation (13) reduces to

N + ε =
fyyf 2

x + fxxf 2
y − 2fxfyfxy

(
f 2
x + f 2

y

) 3
2

.� (16)

This scaled curvature approach essentially removes phys-
ical length scales from the curvature calculation and for a 
given choice of N only the local distribution of f  determines 
the curvature with a relative error. By assuming the dendrite 
tip morphology exhibits self-similarity across the entire 
undercooling range, the local distribution of f  should be some-
what similar irrespective of undercooling. However, as r0 is 
unknown, ∆x also becomes an unknown. Therefore, an itera-
tive approach is taken where ∆x adaptively changes based 
on the curvature (hence tip radius) calculations. If N∆x  is 
smaller than r0 then ∆x is increased and similarly if N∆x  is 
larger than r0 then ∆x is decreased. While this represents the 
physical size of the domain and the dendrite changing with 
time, at steady-state conditions r0, V  and ∆x become constant.

The selection of N depends on the behaviour of the coarse 
grid and narrow-band feature errors. If N is too small insta-
bilities from the coarse grid error lead to unsteady solutions 
from oscillations of tip splitting and secondary branching. 
The narrow-band feature error, increases with N, however, 
due to the faceting-like nature this error introduces into the 
morphology, this error always under-predicts the tip radius. 
Therefore in this work, the optimal value of N is assumed to 
be the smallest value that yields stable steady state solutions. 
It is worthwhile to note that this optimal of value of N is not 
necessarily problem specific, but implementation specific 
and would depend on the stencil size and any other approx
imations to the differentials in the curvature calculation.

3.1.  Problem setup and parametric study

The discretized enthalpy formulation is solved on a square 
computational domain comprising 1200 × 1200 cells. 
Solidification occurs in the southwest corner of the domain. 
The far-field boundaries at the north and east are fixed to the 
bulk undercooled temperature. The south boundary is a sym-
metry boundary and the west boundary is of a Neumann type 
for both T and f  with ∂T/∂x = ∂f/∂x = 0.

To mitigate against influence from the boundary condi-
tions, a moving mesh technique is used where the dendrite tip 
stays in the same relative position in the domain. In this work, 
this position is 100 cells in the x direction. When the solidifi-
cation front reaches this position all field variables are moved 
by one cell, for example fi,j = fi+1,j . On the west boundary 
information is lost, while on the east boundary far-field condi-
tions are introduced into the last layer of cells.

A single simulation is used to conduct a parametric study 
across a wide range of undercooling starting at the highest 
undercooling. Using the previous steady-state values for f  and 
T the next undercooling solution is preconditioned by modi-
fying the temperature in all liquid cell values by the relative 
change in undercooling. This allows for the system to converge 
to a steady-state solution in a smaller number of time steps. 
Only the first undercooling solution is different, as initial con-
ditions, including initial cell size, need to be specified. In this 
case, the entire domain is set to the bulk undercooled temper
ature and a small nucleus is placed in the southwest corner 
of the domain. As solidification advances, the tip reaches the 
x position for the moving mesh. Then every time the mesh 
moves, the cell size and time interval are used to calculate 
the tip velocity, averaged curvature values over the solidifi-
cation time of the cell are used to calculate tip radius. ∆x is 
then increased or decreased based on the tip radius, where the 
change is limited to 5% of its current value to ensure stability. 
If ∆x is within 1% of the current value of r0/N then ∆x is 
unchanged. ∆t = 0.1∆x2 is updated from ∆x and the process 
repeats until another cell solidifies and the mesh moves again. 
To further relax the convergence of the system the update of 
∆x is carried out every time the mesh has moved twice. This 
also allows more time for the morphology of the tip to adapt 
to the new spacial scales as there is a temporal delay due to 
the release of latent heat and the subsequent thermal transport.

J. Phys.: Condens. Matter 32 (2020) 194002



A Kao et al

5

As the system approaches steady state, values for ∆x, κ 
and V  become constant, a solution is considered converged 
when the current values for ∆x, κ and V  vary by less than 
0.1% to the previous 8 calculations of their respective values. 
The system is then preconditioned for the next undercooling 
and ∆x will increase to find a new equilibrium.

4.  Discussion

A parametric study calculating steady-state tip velocity and 
radius for pure nickel was conducted over the range of 304 K 
down to 28 K undercooling. Figure 1 shows spot values nor
malized to the steady-state values, highlighting how the solu-
tion procedure progresses from one undercooling to the next, 
indicated by the discontinuities in the normalized variables.

Figure 2 shows the tip morphologies for 304, 189, 117, 73, 
45 and 28 K undercooling. The circle in the figure represents 
the tip radius based on N  =  8. This result highlights how this 
adaptive cell size approach conforms to the self-similarity of 
the dendrite, where the real length scales between the highest 
and lowest undercooling results vary by almost two orders of 
magnitude.

Temperature contours are given in figures 3 and 4 for the 
highest and the lowest undercooling respectively with the 
insets focused on the tip undercooling. The bulk undercooling 
temperature has been blanked out in the figures, highlighting 
the furthest extent to which the thermal field expands into the 
domain. In the case of high undercooling, this is to around 150 
cells of the dendrite, while in the low undercooled case the 
thermal field extends over 400 cells from the dendrite. With a 

Figure 1.  Typical normalised spot values for parametric study.

Figure 2.  Dendrite morphology for various undercoolings.
Figure 3.  Thermal field for high, 304 K, undercooling.

J. Phys.: Condens. Matter 32 (2020) 194002
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domain of 1200 × 1200 cells, the far-field boundaries do not 
influence the solution. The inset of the figures shows that this 
method can also handle large disparities in tip undercooling, 
shown here by two orders of magnitude difference ranging 
from  −10 K to  −0.1 K. This is a direct consequence of the 
disparity in length scale, hence curvature which feeds into 
the Gibbs–Thompson condition. The influence of the growth 
Péclet number can be clearly seen in both the main figure and 
the inset through the isotherms. In the high undercooled case, 
the isotherms take on an oblate shape, while in the low under-
cooled case they are more circular. Similarly in the insets, 
the isotherms in the high undercooled case are oblate and 
extended along the tip, while the low undercooled case they 
are again more circular.

These examples from the parametric study demonstrate 
two key points, the first is that as the enthalpy formulation 

does not explicitly require the interface thickness, a large 
disparity in cell size can be used, however, the trade-off is 
that coarse mesh and narrow-band errors can be introduced 
and are difficult to quantify. However, by exploiting the self- 
similarity of dendrite tip morphology and using an adaptive 
cell size that is proportional to a key morphological feature, 
in this case, tip radius, steady-state solutions for tip evolution 
can be obtained, where the relative error across a large under-
cooling range should be approximately the same.

A test of theoretical predictions obtained accordingly to the 
sharp interface model (section 2) and numerical simulations 
carried out using the enthalpy method (section 3) are illus-
trated in figures 5 and 6. The theoretical curves for the den-
drite tip velocity V  and its tip radius ρ/2 as functions of the 
total undercooling ∆T  are calculated from the undercooling 
balance (4) and the stability criterion (7) for pure nickel with 
the crystal symmetry n  =  4. Comparing the theory with com-
putational simulations we see that both approaches are in good 
agreement in a broad range of melt undercooling (growth 
Péclet number). For example, a moderately low undercooling 
∆T ≈ 65 K gives the growth Péclet number Pg ≈ 0.008 
whereas the larger undercooling ∆T ≈ 334 K leads to an 
increased Péclet number Pg ≈ 0.66. The last estimate means 

Figure 4.  Thermal field for low, 28 K, undercooling.

Figure 5.  Dendrite tip velocity versus the melt undercooling for 
pure Nickel (physical parameters are listed in table 1).

Figure 6.  Dendrite tip radius versus the melt undercooling for pure 
Nickel (physical parameters are listed in table 1).

Table 1.  Physical and numerical parameters used in the present 
analytical calculations and numerical simulations for the pure 
Nickel. Here: ShIM means the sharp interface model and EnthM 
means the enthalpy method.

Parameter Symbol ShIM EnthM

Melting temperature (K) Tm 1728 1728
Adiabatic temperature (K) TQ 435 435
Thermal diffusivity 
(·10−5 m2 s−1)

DT 1 1

Density (·103 kg m−3) ρNi 7, 9 7, 9

Anisotropy strength β 0.018 0.018

Capillary length (·10−10 m) d0 4 4

Selection parameter σ0 0.05 —
Selection parameter a1 1.9 —

J. Phys.: Condens. Matter 32 (2020) 194002



A Kao et al

7

that the contribution a1
√
βPg in (7) becomes of the order of 

0.1. It gives a 20 percent correction to the denominator of the 
stability criterion (7) as compared with unity (with the low-
velocity stability criterion when the right-hand side of expres-
sion (7) is just σ0β

7/4). More specifically, this definition of 
the stability criterion (7) describes the whole range of under-
cooling (all computationally achieved Péclet numbers) for the 
crystallization of single-component melts.

5.  Conclusion

In summary, the sharp interface model based on the selection 
of stable mode for dendritic growth at the arbitrary Péclet 
numbers is compared with the computational modeling car-
ried out using the enthalpy method. The comparison made for 
the dendrite tip velocity and dendrite tip radius for arbitrary 
Péclet numbers shows that the two-dimensional theory under 
consideration works well in the whole range of melt under-
cooling (Péclet numbers) and is consistent with the numerical 
enthalpy method. An excellent match between the numerical 
model and analytical solution was achieved. Our results 
highlight that the advanced stability criteria are necessary to 
accurately predict the behavior of governing dependencies 
within a broad range of melt undercooling. On the computa-
tional side, this work also shows that the enthalpy method is 
viable for these fundamental studies, provided approaches are 
taken to mitigate against narrow-band feature errors, in this 
case by using an adaptive cell size method. As the enthalpy 
formulation has no explicit dependence on the interface thick-
ness, it may have many advantages over traditional phase-field 
methods especially in a very low undercooled region where 
length scale disparities between the interface thickness, den-
drite size, and thermal boundary layer become large.

Concluding this section, let us underline the main theor
etical assumptions and future directions of the present study. 
In this work, it has been assumed that the dendrites are two-
dimensional and they grow in single-component melts in 
the absence of convection. Therefore an important task is to 
extend the theory and simulations to dendritic growth in three 
dimensions, as well as to investigate the effects of impurities 
and melt convection. This will allow for a direct comparison 
of the numerical model and analytic solution to experimental 
results. An extension to the case of a rapid crystallization sce-
nario is also of fundamental significance. This will require 
using the generalized stability (solvability) criterion recently 
derived in [53].
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