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1.  Introduction

Diamond cubic silicon (DC-Si, Fd3m) is a foundation of 
modern technology, but the strongly indirect nature of the 
fundamental band gap (Eg,i  =  1.1 eV versus Eg,d  =  3.4 eV) 
[1] places limitations on potential applications, for example, 
light absorption and emission processes [2–5]. New crystal-
line forms of silicon with novel properties are desirable for 
several reasons. As the second-most abundant element in the 
Earth’s crust (behind oxygen), silicon is readily available and 
inexpensive. As the current microelectronics and photovoltaic 

industry standard, a mature infrastructure is built around the 
utilization and processing of silicon, and it is environmentally 
stable/non-toxic.

A variety of silicon allotropes are known under high-pres
sure conditions, and several persist at ambient conditions, as 
reviewed previously [6, 7]. In brief, DC-Si undergoes a series 
of first-order phase transitions upon compression to form a 
series of metallic structures [8–14]. Upon release of pressure 
(and subsequent heating), Si transforms to additional meta-
stable structures depending on the specific processing path 
[15–22]. In addition, clathrate structures with multiple chem-
ical species can also be treated to remove guest atoms from a 
host silicon lattice, leaving behind silicon frameworks such as 
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Si136 [6, 23, 24]. Si136 possesses favorable optoelectronic prop-
erties with a direct (or nearly direct gap) near 1.9 eV [25–28],  
though some electronic dipole transitions are forbidden, which 
detracts from future possible applications [29]. Na diffusion 
is also extremely slow in Si136 because of the clathrate cage 
structure, making it difficult to obtain the necessary purity for 
semiconductor applications. Further barriers related to large-
scale/film growth have inhibited subsequent developments 
of silicon clathrates [23, 25, 30]. Nevertheless, many other 
allotropes with novel optical properties are predicted with 
only slightly higher energies than the DC-Si [5, 6, 31–33],  
suggesting potential to access novel, metastable forms of sil-
icon with favorable optoelectronic properties.

A novel open-framework allotrope of silicon, Si24, was 
recently formed by a high-pressure precursor synthesis 
method [34, 35]. Under this approach, the precursor phase 
(Na4Si24) is first prepared under high-temperature and high-
pressure conditions (T  ≈  1123 K, P  ≈  9 GPa). This Na4Si24 
precursor has the Eu4Ga8Ge16 (Cmcm) structure type [36], 
common for other alkaline- and rare-earth silicides, MSi6 
(M  =  Ca [37], Sr [38], Ba [39], Eu [40], Na [34, 35]). The 
structure (with topology of calcium aluminosilicate zeolite 
[41]) has a clathrate-like host lattice formed by sp3–bonded 
silicon with five, six and eight-membered rings. Opposed to 
clathrates with polyhedral cages, Na4Si24 contains channels 
along the crystallographic a-axis. The high-pressure Na4Si24 
precursor is next recovered to ambient conditions, and Na is 
removed to produce Si24. The open channels in the structure 
facilitate Na mobility and removal [34, 42]. Heating at 400 K 
under dynamic vacuum (10−5 mbar) was shown to reduce Na 
content to less than 0.1 at.% after eight days in multicrystal-
line samples with average grain sizes near 5 µm [34]. Thus, 
Si24 joins the short list of metastable Si allotropes that persist 
at ambient conditions.

Due to the nearly optimum band gap for a single p-n 
junction under the Shockley–Queisser limit (1.34 eV), Si24 
represents a promising candidate to convert solar photons 
into electrical energy [34, 43, 44]. The quasidirect (nearly 
degenerate direct and indirect) band gap also means that less 
thermal energy is released upon electron–hole recombina-
tion. Thus Si24 could act as an efficient emitter of light for 
improved LED performance and optical communication, and 
could also allow additional transistors per chip in the quest for 
miniaturization through improved heat management. Overall, 
Si24 and other direct-gap forms of silicon have potential to 
broadly transform silicon-based optoelectronics. However, a 
lack of sizeable, high-purity crystals has prevented the charac-
terization of intrinsic properties, which is the first step towards 
potential future applications.

Further potential applications for Si24 are indicated by 
doping studies using first-principles calculations. Formation 
energies for Si24 doped by group III and group V elements 
were found to be low, suggesting that p - and n-type Si24 and 
their junction are readily achievable. The dopants have low 
ionization energies and therefore can be easily ionized [43]. 
Calculations also indicate that the power factor of Si24 for 
n-type doping is always better than that for p -type samples 
for thermoelectric applications [45]. The electrochemical 

performance of NaxSi24 was also investigated using density 
functional theory calculations, and the material was suggested 
as a potential anode for Na- or Li-ion batteries [42, 46–48]. 
We note also that Arietta et al predicted a metastable interme-
diate phase with composition Na0.5Si24 that could potentially 
hinder further Na removal [42].

Initial Na4Si24 synthesis used powder Si mixed with ele-
mental Na for a nearly homogeneous 1Na:6Si molar blend, 
then compressed and heated within a high-pressure multi-
anvil apparatus [34, 35]. This approach typically produces 
dense multi-crystalline/powder Na4Si24 pellets with DC-Si 
impurities. Recently, we used high-resolution transmission 
electron microscopy to demonstrate that an epitaxial rela-
tionship exists between the DC-Si{1 1 1} and Na4Si24 {1 1 3} 
planes, and large single crystals (mm scale) of Na4Si24 can 
be grown by starting from large DC-Si crystals [49, 50]. The 
single crystals of Na4Si24 show high Na mobility, evident in 
electronic property measurements, suggesting that Na may be 
effectively removed from the Na4Si24 structure on bulk length 
scales [50].

In this work, we demonstrate effective Na removal from 
the Na4Si24 network on bulk length scales, leaving behind 
high-purity single crystals of Si24 up to 99.9985 at% Si. 
The resulting crystals represent doped semiconductors with 
approximately 1019–1020 free carriers cm−3. The availability 
of large single crystals allows us to characterize the semi-
conducting nature including the sharp direct-gap absorption 
edge with large absorption coefficient and electrical transport 
properties.

2.  Methods

2.1.  Synthesis and processing

As reported previously, single-crystalline NaSi24 was syn-
thesized near 1123 K at 9  ±  0.5 GPa at the Geophysical 
Laboratory in a multi-anvil press via direct transformation 
of large pieces of intrinsic DC-Si (University Wafer) and Na 
metal pieces (Alfa 99.95%) [49, 50]. Roughly 10–15 mg of 
Na and Si in approximate 1:6 molar ratio was prepared under 
an argon environment within a boron nitride (BN) capsule, 
which was then transferred into the multi-anvil assembly for 
synthesis. After a ~10 h dwell time at the synthesis conditions, 
the temperature was reduced at 1–3 K min−1, and the pres
sure was decompressed at a rate of 0.7 GPa h−1. The recovered 
crystals were extracted from the BN capsule and sonicated in 
water. Typical runs resulted in a mixture of Na4Si24 crystals 
(greater than 500 µm in maximal dimension) and DC-Si crys-
tals, which were easily separated under a microscope based on 
morphology and color.

Na was removed from recovered crystals via the thermal 
degassing process, which is summarized as follows [34, 35]. 
Washed Na4Si24 crystals were placed within a pouch made of 
5 µm stainless steel mesh and either sealed in a quartz tube 
at 10−3 mbar or placed under dynamic vacuum at 10−5 mbar. 
Quartz tubes were then placed within a furnace operating 
between 398–573 K for 1–5 weeks. Additional Na removal 
was achieved through successive reactions with iodine. Iodine 
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etching was previously used to remove Na from NaxSi136 to 
produce Si136, a much more difficult structure from which to 
remove sodium due to the cage enclosure of Si around Na 
requiring temperatures of 573 K–673 K [24]. Here, Na4Si24 
single crystals were sealed with iodine crystals in quartz 
tubes. The quartz tube was immersed in liquid nitrogen 
to prevent iodine sublimation, placed under vacuum of  
4  ×  10−3 mbar, and flame sealed with a H2/O2 torch. Sealed 
tubes were then heated at 398 K or 573 K for 1–5 weeks.

2.2.  X-ray diffraction

Powder/multi-crystalline x-ray diffraction was used to mon-
itor relative phase fractions in response to Na removal over 
time (see supporting information (stacks.iop.org/JPhysCM/ 
32/194001/mmedia)). Data were acquired on a Bruker D8 
Discover diffractometer with a Cu Kα (λ  =  1.5406 Å) micro-
focus source and Vantec 500 area detector. Phase identifica-
tion and phase weight fraction refinements were conducted 
with the JADE software [51].

Single-crystal x-ray diffraction (SXRD) of Si24 was 
conducted at 100 K using a Bruker APEX diffractom-
eter equipped with graphite-monochromatized Mo Kα 
(λ  =  0.710 73 Å) radiation. A blocky Si24 crystal with par-
allel faces and dimensions 174 µm  ×  100 µm  ×  52 µm was 
mounted for SXRD. The crystal-to-detector distance was 
set to 60 mm and data were collected with an exposure time 
of 10 s/frame. The APEX3 program was used for the collec-
tion and reduction of intensity data and for cell refinement. 
Data were collected as a series of 0.5° scans in θ and ω [52]. 
The program SADABS [53] was utilized for face-indexed 
absorption, incident beam, and decay corrections. The 
SHELX-14 suite of programs was used for structure solution 
and refinement [54, 55]. Atom position standardization was 
performed using the program STRUCTURE TIDY [56, 57].  
Crystallographic images were created using the program 
CRYSTALMAKER [58]. CSD 1965259 contains supple-
mentary crystallographic data for this paper. These data can 
be obtained free of charge from the joint CCDC’s and FIZ 
Karlsruhe’s service to view and retrieve structures via www.
ccdc.cam.ac.uk/structures/.

In situ temperature-dependent x-ray diffraction patterns of 
a Si24 single crystal were collected at the Advanced Photon 
Source, Sector 13, GeoSoilEnviroCARS using a monochro-
matic wavelength of 0.3344 Å. The x-ray beam was focused 
on the sample to a size of ~3 µm and scattered x-rays were 
detected using a PILATUS 1M detector, calibrated with a 
LaB6 standard and the program DIOPTAS [59]. The sample 
was held in a diamond anvil cell for convenience, with no 
applied pressure. Resistive heating was achieved by a ceramic 
heating element. Temperature was monitored with a Type K 
butt-welded thermocouple cemented against the diamond 
which supported the sample. Due to geometrical restrictions, 
only the (0 2 0), (0 2 3) and (2 0 0) reflections were monitored 
and fit with Gaussian peak shapes to determine the lattice 
parameters as a function of temperature (see supporting 
information).

2.3.  Electron microscopy/spectroscopy

Scanning electron microscopy (SEM) imaging was performed 
on a JEOL JSM-6500F SEM. Electron backscatter diffrac-
tion (EBSD) patterns were collected using an Nordlys Nano 
EBSD camera from Oxford. Samples were tilted so that the 
surface normal was 70° from the incident electron beam and 
the detector angle was at 90°. Energy-dispersive x-ray spectra 
(EDXS) were collected using an Oxford Instruments X-max 
detector with 80 mm2 area. All samples were plasma-coated 
with a thin film of Ir (approximately 10 Å) to minimize elec-
trical charging during EDXS and EBSD measurements. The 
Aztec software [60] was used for EBSD and EDXS data 
analysis.

Quantitative sodium concentration measurements within 
Si24 were performed by wavelength-dispersive spectroscopy 
(WDS) using the JEOL 8530F Hyperprobe at the Geophysical 
Laboratory. Analyses were performed at 10 kV and 60 nA on 
unmounted cleaved crystals placed on an Al stub and plasma-
coated with approximately 10 Å of Ir to match the standard. 
A basalt glass standard was used to determine Na and Si con-
centration by 30 s peak and background collection, giving a 
Na detection accuracy of  ±34 ppm.

2.4.  Optical and electrical measurements

Optical absorption measurements were made with a Bruker 
Vertex 70 FTIR system in conjunction with a Hyperion micro-
scope utilizing reflecting objectives. A single crystal of Si24 
with parallel faces (lateral dimensions  >50 µm) and likely 
orientation of [0 0 1] normal (based on cleavage described 
below) was supported by a ~50 µm pinhole for measurement 
in air. The thickness (t) was determined to be 11.8 µm, using 
interference fringes in the spectrum of transmitted light in the 
region of 0.8 eV (6450 cm−1) with the relation

t =
N

2 · n ·∆λ
,� (1)

where n is the refractive index and N is the number of fringes 
within spectral range Δλ (in cm−1). To estimate n, we used 
density functional theory (DFT) calculation to obtain the fre-
quency-dependent complex dielectric function. The real (ε1) 
and imaginary parts (ε2) of the dielectric function are related 
to the refractive index by

n =
1√
2

»
ε1 +

√
ε1 + ε2.� (2)

Quantitative absorption coefficient (α) values were obtained 
by measuring reflection (R) and transmission (Tr) spectra of 
the crystal and by inverting the equation

Tr =
(1 − R)2

exp(−αt)
1 − R2 exp(−2αt)

.� (3)

The temperature dependence of the electrical resistivity, ρ(T), 
was measured using a Keithley 2400 sourcemeter in two-
probe geometry, in conjunction with an open-flow cryostat 
used to cool the sample to 77 K with measurements recorded 
every ~5 K upon warming. Electrical leads composed of 
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WxC1−x were deposited using a FEI Helios G4 PFIB, a dual 
beam Xe+ plasma focused ion beam (FIB)/SEM. The sample 
was first coated with Ir to prevent charging, and the Ir was 
removed with the Xe+ ions with an 8 kV acceleration voltage 
to prevent significant amorphization of the surface layer. 
Contacts were also deposited at 8 kV. For the dimensions of 
the sample contacts, the contributed resistivity is on the order 
of 2–3 Ω, which is negligible compared to the sample resist
ance. Generally non-Ohmic behavior was observed, though 
non-rectifying and linear (Ohmic) in the region near V  =  0. 
Similar behavior in this low-voltage region has been reported 
previously for other semiconductors with FIB-deposited con-
tacts [61, 62]. Resistivity with temperature, ρ(T), data were 
taken with 10 µA  source current in 2-point configuration, 
requiring 0.1 < V < 0.4. Within this range, the I–V curve can 
be approximated as linear which brings confidence to our rela-
tive measurements (approximating Ohmic contacts, see sup-
porting information).

2.5.  Computational methods

Ab initio structural relaxation was performed using den-
sity functional theory within the Perdew–Burke–Ernzerhof 
parametrization [63] of generalized gradient approximation 
[64] as implemented in the Vienna ab initio simulation 
package (VASP) code [65]. The Heyd–Scuseria–Ernzerhof 

hybrid functional (HSE06) [66, 67] was used to estimate the 
dielectric response with reference to conventional unit cell 
directions (supporting information). The projector augmented 
wave (PAW) method [68] was adopted with the PAW poten-
tials taken from the VASP library where 3s23p 2 was treated 
as valence electrons for Si atoms. The use of the plane-wave 
kinetic energy cutoff of 400 eV, adopted here, was shown to 
give excellent convergence of total energies. The frequency-
dependent dielectric tensor was calculated using the indepen-
dent-particle approximation [69] implemented in the VASP 
code [65].

3.  Results and discussion

After the thermal degassing of Na from Na4Si24 to obtain 
Si24, many flat and thin crystals are recovered after sonica-
tion in water (e.g. figure 1(A)). A significant change in lattice 
parameters by XRD serves as the preliminary diagnostic for 
Na removal. EBSD analysis (figure 1(C)) of several Si24 crys-
tals with the same general morphology (flat, thin, shiny, slight 
bluish hue) reveal a common orientation with the crystallo-
graphic c-axis perpendicular to the lateral plane, i.e. [0 0 1] 
normal (figure 1(D)). This observation indicates a preferential 
cleavage habit along the a-b plane. The cleavage produces flat 
crystals with near-parallel faces and allows for high-quality 
EBSD patterns without sample preparation. When consid-
ering the crystal structure, fracture along the a-b plane can be 
an expected means of stress relief because of the low energy 
associated with creating surfaces with this orientation (i.e. the 
plane with lowest bond density), as indicated by the dashed 

Figure 1.  (A) SEM image of Si24 single crystal with [0 0 1] normal 
to the imaged surface. WDS and SXRD were both conducted on 
this crystal. (B) A closer view of the crystal in (A) reveals micro-
cracking. (C) EBSD pattern of cleaved Si24 surface with [0 0 1] 
normal. (D) Orientation observed for multiple flat/thin Si24 crystals 
with common cleavage habit with c-axis normal (as pictured A). 
(E) Si24 crystal structure showing low-energy cleavage plane (red 
dashed line).

Figure 2.  Optical absorption of single-crystalline Si24. For 
comparison, arsenic-doped DC-Si with nAs = 4 × 1019 cm−3 is 
presented (dashed line) [71, 72]. Mid-infrared FCA from the  
Drude model (equation (4)) is also shown, with parameters: 
m*  =  0.23me, ne  =  7  ×  1019, τ  =  5  ×  10−15 s, and n  =  3.05. Inset: 
Tauc plot analysis for a direct-gap semiconductor with band gap of 
1.51(1) eV.

J. Phys.: Condens. Matter 32 (2020) 194001
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line in figure 1(E). Because most Si24 crystals have this frac-
ture habit, subsequent optical and electrical transport measure-
ments were performed on crystals with such an orientation.

The [0 0 1] orientation indicates that the channels along the 
a-axis, which host the Na ions in Na4Si24, are not aligned with 
the thinnest dimension of the crystal. Given that recovered Si24 
crystals contain minimal Na (as described in detail below), the 
observed orientation reveals that sodium ions remain mobile 
along the greatest lateral dimensions of the crystals and can 
diffuse over bulk length scales (i.e. mm scale). Previous dif-
fusion was observed on the scale of ca. 5 µm [34, 35]. First-
principles calculations indicate that Na diffusion and electrical 
transport are both greatest along the a-axis [42, 45, 70].

Careful inspection of the microstructure of Si24 crystals 
reveals pitting/micro-cracking on the cleaved surface (figure 
1(B)). Due to the observation of sharp SXRD spots with 
low mosaic spread (Δω ~ 0.5°), we do not believe that these 
defects propagate into the bulk of the particular crystal shown 
in figure 1(B). However, FIB cross sections on multiple recov-
ered crystals do indicate the tendency to form micro-cracks in 
the a-c/b-c planes, in addition to the natural cleavage along 
a-b. Na removal imparts significant anisotropic lattice strain 
upon conversion of Na4Si24 to Si24 [34]. After Na removal, the 
change in lattice parameters are: Δa  =  −0.265 Å (−6.5%,), 
Δb  =  +0.112 Å (+1.1%), and Δc  =  +0.349 Å (+2.8%).

Significant anisotropic strain likely facilitates the propa-
gation of cracks and is considered to be the primary cause 
for the observed micro-cracking. Temperature also exacer-
bates the micro-cracking, as much more significant cracking 
is observed for crystals treated at 573 K than those treated 
at 398 K (figure S3). In situ, high-temperature XRD results 
of a Si24 single crystal reveal that the a and c axes expand, 
while the b-axis contracts with increasing temperature (figure 
S2). Compared to the lattice distortions that accompany Na 
removal, these thermal changes are minor, but may also con-
tribute to cracking. Thus a balance exists between temperature 
conditions for Na removal and crystal quality. While increased 
T provides thermal energy for Na diffusion (and shorter degas-
sing times), lower-temperature conditions (⩽400 K) appear 
favorable for producing higher-quality Si24 crystals.

The quantitative residual sodium concentration within Si24 
crystals was determined by WDS. Typical crystals treated 
under vacuum at 398 K for  >  1 week exhibit Na concentra-
tions  <0.1 at%, similar to previous results on powder sam-
ples [34]. While WDS penetration depth is limited to few 
microns below the surface, higher acceleration voltages were 
avoided due to concern for converting the Si24 structure to 
DC-Si. Subsequent reaction with I2 significantly reduces the 

Na concentration, as shown previously for Si136 clathrate [24]. 
The lowest Na content observed was from a crystal treated in 
an iodine atmosphere at 398 K for ~5 weeks. In this case, WDS 
measurements revealed a maximum Si purity of 99.9985 at% 
(15 ppm Na, ca. Na0.0003Si24), which is at the detection limit of 
the instrument, as shown in table 1.

The structure of the low-Na Si24 crystal (from figure 1 and 
table 2) was determined by SXRD. As mentioned above, the 
diffraction quality of this crystal was high and it produced 
sharp, symmetric spots that did not typically extend beyond 
two frames with an ω step size of 0.5°. The structural refine-
ment at 100 K reproduces the experimental observations with 
exceptional agreement (R1  =  1.34%, table  2). Notably, no 
residual electron density from sodium was observed (max-
imum (Fobs  −  Fcalc)  =  0.27 e− Å−3). The lattice parameters 
of single-crystalline Si24 agree with previous powder observa-
tions after accounting for differences in measurement temper
ature [34]. The high-quality, single-crystal structure provides 
precise Si–Si bond distances and Si–Si–Si angles, which range 
from 2.3433(3)–2.3740(7) Å and 93.839(19)–135.828(19)°, 
respectively, at 100 K.

Thin Si24 crystals with near-parallel faces were selected 
for optical absorption measurements (presumably oriented 
along [0 0 1] as the optical axis). A representative absorp-
tion spectrum of Si24 is compared with arsenic-doped DC-Si 
with nAs  =  4  ×  1019 cm−3 [71] in figure 2. The spectrum is 
characterized by three distinct absorption phenomena in dif-
ferent photon energy regimes (discussed below), as is typical 
for doped semiconductors [72, 73]. At higher energy (near 
1.4–1.5 eV) a steep increase in the absorption coefficient rep-
resents the optical gap. Compared to DC-Si, Si24 exhibits a 
significantly enhanced absorption coefficient near the band 
edge (e.g.  >3  ×  at 1.65 eV), which allows for high absorption 
of visible light and the majority of solar spectral irradiation. 
The data indicate absorption coefficient above the band edge 
of ~5.0  ×  103 cm−1 at 1.65 eV. From the Beer Lambert law, a 

Table 1.  Na concentration from WDS (minimum, average 〈 〉, and 
standard deviation σ) after iodine reaction at 398 K for different 
times. The crystal shown in figure 1 was treated for 820 h.

Time 
(h) Measurements

Min. Na 
(at%)

〈Na〉 
(at%) σNa (at%)

182–210 23 0.0026 0.018 309 0.011 28
820 22 0.0015 0.013 964 0.008 739

Table 2.  Crystallographic data for Si24 at 100 K.

Crystal system Orthorhombic

Space group Cmcm
a/Å 3.815(1)
b/Å 10.684(1)
c/Å 12.628(1)
V/Å3 514.648(4)
Z (Si6) 4
Density, ρcalc (g cm−3) 2.175
T/K 100(2)
Absorption coefficient (mm−1) 1.446
Reflections collected 3044
Data/parameters/restraints 466/19/0
Data completeness 1.000
Rint 0.0206
R(F) [I  >  2σ(I)]a 0.0134

Rw(F2
o)b 0.0330

a R(F)  =  ∑||Fo|  −  |Fc ||/∑  |Fo| for F2
o  >  2σ(F2

o). 
b Rw(F2

o)  =  {∑[w(F2
o  −  F2

c)2]/∑  wF4
o}

½ for all data. 
w−1  =  σ2(F2

o)  +  (0.0121F2
o)2 for F2

o  ⩾  0; w−1  =  σ2(F2
o) for F2

o  <  0.
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film thickness of 10 µm should result in 95% light absorption 
at this energy. The observable magnitude of higher-energy 
absorption of figure 2 is limited by the transmission geometry, 
however, DFT calculations predict absorption values continue 
to rise dramatically with energy (figure S4).

The Tauc plot [74, 75] of (αhν)2 versus hν yields a straight 
line that extrapolates to 1.51(1) eV at α  =  0, thus representing 
the value of the direct band gap Eg,d (figure 2, inset). Previous 
measurement of powdered material revealed a direct transition 
at 1.39 eV [34]. The increased value of the band gap observed 
here may be the result of decreased dopant levels in the Si24 
structure [76, 77].

Similar to other desodiated clathrate materials [30, 78–80], 
the low-energy, mid-infrared region of the spectrum is domi-
nated by free carrier absorption (FCA), as shown in figure 2. 
This behavior indicates a sufficient number of free carriers 
(residual electrons from Na) that can undergo intraband trans
itions via absorption of infrared light. For doped DC-Si, FCA 
is observed at carrier concentrations as low as 1016 cm−3 in 
n-type silicon [72]. In order to estimate physical parameters of 
the Si24 sample, we applied the Drude model [81], where the 
absorption coefficient from free carriers is given by

α (E) =
nee2

4πεocnm∗τ
(E
�
)2 ,� (4)

where ne is the number of free electrons per unit volume, e is 
the electron unit charge, εo is the permittivity of free space, 
c is the speed of light, n is the refractive index, m* is the 
reduced electron mass, and τ is the electron relaxation time. 
We estimate that n = 3.05  from DFT calculations of optical 
constants (see supporting information), and that m*  =  0.23me 
from the slope of ρ(T) (see below). Assuming that all carriers 
originate from Na, we estimate the minimum carrier concen-
tration from WDS measurements. Given that the density of 
Si24 is 2.175 g cm−3 (at 100 K), this translates to a reduced 
atomic density of 4.66  ×  1022 Si atoms cm−3 compared with  
4.99  ×  1022 Si atoms cm−3 for DC-Si. Presuming a silicon 
purity of 99.9985 at%, a minimum carrier concentration of 
ne  =  7  ×  1019 Na atoms cm−3 is expected, neglecting atomic 
weight differences. Using these values for the measured sample 
we estimate a scattering relaxation time of τ  =  5  ×  10−15 s 
(figure 2(B)). This value is roughly an order of magnitude 
lower than for n-type DC-Si with somewhat lower doping of 
ne  =  3.6  ×  1018 [82], and may also have considerable direc-
tional dependence.

In the intermediate energy regime near 1 eV, another mech
anism gives rise to absorbance on the order of 1  ×  103 cm−1. 
This absorption regime can be clearly seen before the optical 
gap by subtracting the FCA contribution (figure 2). This addi-
tional absorption regime is commonly observed for n-type 
silicon and GaAs [72, 73, 76], and is similarly attributed to 
transitions within the conduction band [72].

Temperature-dependent electrical transport measurements 
were conducted with two of four linear probes (figure 3). The 
resistivity was calculated according to ρ = wt

s R, where w and 
s are defined in figure 3(A), t  =  10  ±  1 µm thickness, and R is 
the measured resistance. The electrical conductivity increases 

with temperature, reflecting the behavior of a doped semicon-
ductor rather than the metallic behavior of Na4Si24 [50], and is 
similar to doped DC-Si [83]. For DC-Si with 1018 donors cm−3, 
full donor ionization at 300 K is reduced by 50% at 100 K, so 
thermal ionization dependence can account for much of the 
conductivity behavior in our sample [83]. Treating Si24 as a 
semiconductor with impurity donors, the extrinsic electrical 
conductivity is proportional to temperature by

lnσ ∝ −(Eg − Ed)/2kBT� (5)

where Eg is the band gap energy, Ed is the donor level energy, 
and kB is Boltzmann’s constant. Here, the energy of impu-
rity ionization Ei  =  Eg  −  Ed  =  0.032 eV, reveals a donor level 
energy of Ed  =  1.48(1) eV. Linear, non-rectifying behavior 
in the I–V region used for these measurements assures confi-
dence in these relative measurements.

The energy of impurity ionization (Ei) also allows us to 
estimate the effective electron mass (m*) through the relation

Ei =
m∗e4

8ε2h2 ,� (6)

where ε  =  10ε0 represents the static dielectric constant for 
Si24 (estimated from figure S4), and h is Planck’s constant. 
By this treatment, m*  =  0.23me. This value is used to con-
strain the Drude model for free carrier optical measurement as 
described previously. By comparison, m*  =  0.27me for n-type 
DC-Si with ne  =  3.6  ×  1018 [82]. 

4.  Conclusion

In conclusion, large single crystals (>100 µm) of Si24 have been 
obtained by successful Na removal from large Na4Si24 single 
crystals. Desodiation of the parent phase results in Si24 crys-
tals with relatively low impurity content (Na  ⩽  0.0015 at%).  

Figure 3.  ρ(T) response in the extrinsic region where the slope 
reveals the impurity ionization energy. Linear leads were deposited 
on a Si24 sample for resistivity measurements (inset).

J. Phys.: Condens. Matter 32 (2020) 194001
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The strain associated with Na removal and thermal treat-
ment may result in cleavage along the a-b plane and degraded 
crystal quality, particularly at temperatures above ca. 400 K. 
Quantitative optical absorption measurements on low-Na 
single-crystalline Si24 show a direct transition at 1.51(1) eV, 
and a significantly increased absorption coefficient compared 
with DC-Si. The spectrum at low energy is dominated by 
absorption from free carriers. Electrical transport measure-
ments confirm the semiconducting nature of Si24 samples and 
reveal a substantial number of residual carriers, which help 
to constrain the donor ionization energy and effective mass. 
Successful Na removal on bulk length scales results in the 
production of bulk, single-crystalline n-type Si24. Additional 
doping strategies may result in the creation of p -type material, 
and the possibility for intrinsic material via inert atom doping 
[84] remains a future possibility. The prospect of large single 
crystals, combined with unique physical properties including a 
high absorption coefficient, justify further research endeavors 
on this material, which may enable future synthetic strategies 
under practical conditions.
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