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Abstract
In theHamburg cold atom experiment with orbital states in an optical lattice, s- and p-orbital atomic
states hybridize between neighboring sites. In this workwe showhow this alternation of sites hosting
s- and p-orbital states gives rise to a plethora of differentmagnetic phases, quantum and classical.We
focus on phases whose properties derive from frustration originating from a competition between
nearest and next nearest neighboring exchange interactions. The physics of theMott insulating phase
with unitfilling is described by an effective spin-1/2Hamiltonian showing great similarities with the
J1–J2model. Based on the knowledge of the J1–J2model, supported by numerical simulations, we
discuss the possibility of a quantum spin liquid phase in the present optical lattice system. In the
superfluid regimewe consider the parameter regimewhere the s-orbital states can be adiabatically
eliminated to give an effectivemodel for the p-orbital atoms. At themean-field level we derive a
generalized classicalXYmodel, and show that itmay supportmaximum frustration.When quantum
fluctuations can be disregarded, the ground state should be a spin glass.

1. Introduction

Ultracold atoms trapped in optical lattices has within the last two decades evolved into a efficient tool for
studying strongly interacting quantummany-body systems [1]. The systems allow for explorations of a variety of
latticemodels, in terms of changing lattice geometries, varying parameter strengths and initialize desired states.
Put together with the possibility to performhighfidelity statemeasurements, they are the perfect candidates for
quantum simulators [2]. Real physical systems that can solve quantummechanical problems intractable on
classical computers.

From a condensedmatter physics viewpoint, theHubbardmodels [3] are known to be prime candidates to
be simulated. Theoretically proposed in [4], and followed by the experimental realization of the Bose–Hubbard
Mott-superfluid phase transition (PT) byGreiner et al [5], an avalanche of activity started. Due to the
importance in other branches of condensedmatter physics, it did not take long until orbital physics was
discussed in terms of cold atoms in optical lattices [6, 7].

It was suggested that internal atomic hyperfine levels could be used tomimicmodels of quantummagnetism
[8]. Anotherway tomimic quantummagnetism is tomake use of internal orbital states instead [9]. Internal
orbital states was first studied, in the context of ultra cold atoms, by Isacsson andGirvin [6]. They showed that
the superfluid (SF) state of a p-orbital Bose–Hubbardmodel on a square optical lattice arranges in a vortex
lattice, which breaks time-reversal symmetry and have a complex order parameter [6]. The life-time of these
excited states is long, whichwas later confirmed experimentally [10]. For bosonic atoms, themain loss
mechanism is the scattering of two p-orbital atoms into one s and one d orbital atom. To avoid this, superlattices
can be employedwhere such scattering processes are far off-resonant. A few years latter came thefirst
experiment that studied differentmagnetic phases [11], and thereby also the corresponding quantumPTs.

Quantummagnetism becomes especially interesting in the case of frustration. Here spin liquids and
glasses are phases which can emerge from strong frustration. The classical counterparts typically implies a
large number of classically degenerate ground states [12], and at sufficiently low temperatures quantum spin
liquids (QSLs) [13] can be formed. These phases are expected to hostmany novel properties like topological
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fractional excitations [14]. They are experimentally very elusive and only indirectmeasurements that suggest
the presence of QSL have been found [13] so far. In cold atoms in optical lattices, ‘lattice shaking’ techniques
can be used to adjust the tunneling terms, and this led to observation ofmagnetic frustration [15]. The
experiment only demonstrates classical frustration, but it predicts the existence of QSL stes in the same type of
system set-up [16].

One cold atomic systemwhichmay host frustration in its groundstates, is theHamburg experiment of
Hemmerich [17, 18]; degenerate s- and p-orbital atoms hybridize on neighboring sites in a superlattice. Also for
this configuration the SF phase consists of vortices leading to a complex order parameter [19], and it was further
argued that thermal fluctuationswill induce a newphase, a chiral Bose liquid, in thismodel [20]. Nevertheless,
much of the phase diagramof both the insulating and superfluid phase of theHamburg set-up remains
unexplored.

In the insulating phase, the sites hosting s-orbitals effectivelymediate the coupling between sites with p-
orbital atoms. An effectivemodel emerges consisting only of p-orbital atomswhere the strength of the coupling
between nearest neighbors (NN) is of the same order as the coupling strength between next-nearest neighbors
(NNN). This canmake it possible to achieve strong frustration [13] and hence hope of realizing aQSL phases.
The resultingmodel resembles the J1–J2model that has served as awork horse in the study ofQSL’s. Using
mean-fieldmethods and exact diagonalizationwe see evidence for a novel phase that agrees with earlier
predictions of aQSL in the J1–J2model.

In the SF phase, the s-orbital atoms cannot be eliminatedwith the same argument due to onsite particle
fluctuations. Instead, when the s- and p-orbitals are far detuned in energy the s-atoms can be adiabatically
eliminated and an effectivemodel for the p-atoms is derived. As for the insulating phase, the resultingmodel has
bothNNandNNN interactions, where the sign of the detuning determines the sign of the tunneling strengths.
For negative tunneling strengths the SF arrange in a phase with alternating vortices and anti-vortices on
neighboring sites, i.e. again breaking time-reversal symmetry andwith a complex order parameter. For positive
tunneling strengths the system shows frustrations, and at themean-field level we derive a generalization of a
classicalXYmodel that has been a prototypemodel for exploring classical frustration and spin liquid phases.We
find support for a frustration-driven phase also in ourmodel which presumably is a spin liquid.

2.ModelHamiltonian

2.1. Physical system and itsHamiltonian
The optical potential of theHamburg experiment [17, 18] forms two sublattices,  and  with the -sites
deeper, see figure 1(a). By tuning the lattice parameters, the relative depth is chosen such that the two px- and
py-orbitals are quasi resonantwith the s-orbitals (figure 1(c)). The atoms are assumed to only populate these
three bands.We neglect any losses to other bands, and consider the tight-binding approximation, consisting in
only takingNN tunneling and onsite s-wave scattering into account.

The px- and py-orbital states have, respectively, a node in the x- and y-direction—as shown infigure 1(b),
while the s-orbitals are polar symmetric. In the bipartite lattice, the tunneling is between  - and -sites and is
such that the tunneling in theα-direction (α=x, y) is possible only for a pα-orbital atomdue to the parity of the
orbital states together with the shape of the potential. There are twoways for the px- and py-orbital atoms to
couple; a px-orbital atom can tunnel to an s-orbital atomwhich then tunnels to a py-orbital atom, or two
px-orbital atoms can scatter into two py-orbital atoms or vice versa.

We use the notation ˆaa i (α=s, x, y) for the bosonic annihilation operators. The subscript i=(ix, iy) refers
to the site, in general we use the subscript i and j for the  - and -sites respectively.When restricting themodel
to these three bands, an atomic operator annihilating an atomat x=(x, y) is expanded as
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where ( )w xsi and ( )aw xj are the correspondingWannier functions localized at site i and j.
In the isotropic lattice, tx=ty>0, while for anisotropic lattices these equalities are not strict, and the two p-

orbital states are not degenerate. The onsite energy difference between the two orbitals is δ andwith the zero
energy chosen exactly between the two states. The kinetic term in theHamiltonian ˆ ˆ ˆ= +H H Hkin int is
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while the interaction term ˆ ˆ ˆ= +H H Hnnint fc is further decomposed into ‘density–density’ interactions
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and ‘flavor-changing’ interactions
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Here, á ña... is the summation overNN in theα-direction. The operators ˆ ˆ ˆ†=a a an a aj j j and ˆ ˆ ˆ†=n a as s si i i give the
number of orbital atoms on the specific site.With px/py-orbitals having an onsite energy±δ/2, the onsite energy
for the s-orbitals isΔ. The interaction terms alone supports a 2-parity symmetry that represents conservation
of orbital atomsmodulo 2. This symmetry is broken as p-orbital atoms can tunnel into s-orbital atoms. In the
isotropic lattice with δ=0 there is 4 symmetry, corresponding to 90 degree rotations for the fullmany-body
Hamiltonian. This corresponds to swapping the px- and py-orbitals and rotate the axes.When the lattice is
anisotropic this symmetry breaks down into a 2 represented by a 180 degree rotation. The total particle number
is a preserved quantity, and it is this continuousU(1) symmetry that is broken across theMott-SF PT [21]. The
onsite energies δ andΔ, the relative interaction strengths abU and the tunneling amplitudes tα are all determined
by the overlap integrals of theWannier functions. For example, the interaction strengths are

∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ( )ò ò= =ab a bU U w w U U wx x x x xd , d , 5ss sj j j0
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0
4

whereU0 is a constant proportional to the s-wave scattering length. In the harmonic approximation, the
Wannier functions are replacedwith harmonic functions, e.g. (in dimensionless units)
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where ( )x y,j jx y
is thepositionof site j=( jx, jy), andwehave assumed thewidthσ tobe the same in thex- and y-

directions.The interaction strengths thenobeyUxx=Uyy=3Uxy [22]. TheUss is not simply related to theother
interactionparameters since it derives from the interaction in an  - andnot a -site, but it is of the sameorder asUαα.

Figure 1. Structure of the optical lattice potential. Visualized in (a), the superlattice produces alternating deep ( ) and shallow ( )
potential wells. The unit cell ismarked by the gray square and comprises one  - and one  -site. The relevant orbital states are shown
in (b); a px-orbital has a node in the x-direction, while a py-orbital has a node in the y-direction. Thus, the p-orbitals change sign across
the node, positive on one side and negative on the other. The s-orbital has no node and is polar symmetric. A cut of the two
dimensional lattice is pictured in (c) showing the alternating  - and -sites. The horizontal lines represent the onsite energies of the
different orbitals; red—-site s-orbital, blue— -site p-orbital and green— -site s-orbital By construction, three orbital states are
quasi resonant; px and py on the  -sites and s on the  -sites. The parameterΔ sets the energy difference between the average onsite
energies of the two p-orbital states and the s-orbital states. Not shown in thefigure is any energy splitting between the px- and py-
orbitals.
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2.2. Large detuning effectivemodel
When the energy off-setΔ between p- and s-orbital states is small, the two types of atomic states hybridize to
build up the full system state [21].When ∣ ∣D is the large parameter, compared to the tαʼs and toUss, population
transfer between the  - and the -sites is suppressed due to the large energy difference. The kinetics is still not
trivial, as the intermediate states can virtuallymediate bothNN andNNN tunneling in a two-step process.

The derivation of the effectivemodel that results from the elimination of the s-orbitals is given in
appendix A. The resultingHamiltonian reads
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where ∣ ∣= Da aJ t2
2 and J1=txty/Δ give the tunneling amplitudes alongNN andNNN’s respectively, see

figure 2. The two tunneling strengths are of the same order, e.g. in an isotropic lattice, tx=ty, and
J2x=J2y=J1≡J.What is appealing is that the signs of the tunneling is adjustable by changing the sign ofΔ.
NN tunneling induces aflavor-changing of the orbital state, which can be seen as an effective spin–orbit coupling
[23]. The third sum represents ‘Stark shifts’ due to virtual couplings to the s-orbitals.

2.3. Large interaction effectivemodel
In the insulating phases we expand in t/U, and project on to theMott insulating phasewith one atomper lattice
site [24]. Theflavor-changing interaction term(4) is non-diagonal in the Fock basis and causes the allowed
processes in the perturbation expansion to bemuch richer. Since p-orbital atoms are only allowed to tunnel in
the direction of its node, the second order terms are then trivial. Take a px-orbital atom, it can tunnel to its
neighboring s-site with amplitude tx giving an interaction contribution∼1/Uss, and then one s-orbital atom
tunnels back to the empty p-site as a px-orbital atom and againwith an amplitude tx. This is nothing but an onsite
energy shift. Thus, via second order processes it is not possible to generate effective interaction terms between
the orbitals, so to reach a non trivial effectiveHamiltonian onemust include fourth order terms as well. This
gives rise toNNandNNNcouplings for the -sites. As there is no internal degree-of-freedom in the  -sites,
thesewill effectively freeze out. There are essential two different types of tunneling processes, non-loops and
loops, in the non-loop process the atom tunnels out and back along the same pathwhich is not the case in the
loop processes. The non-loop processes give rise to a density–density coupling, while the loop processes render
orbital swapping couplings. TheNNNcouplings consist only of non-loop processes, while theNNcouplings
have both non-loop and loop contributions.

Figure 2.Tunneling terms betweenNNandNNNsites (black dots) in the effectiveHamiltonian(7). BetweenNN sites, tunneling is
accompaniedwith aflip in the orbital state, while along the diagonal, NNN, the orbital state is not changed upon tunneling. The
respective amplitudes for the two processes are denoted J1 and J2α.
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Restricting to single particle occupancy on each site and defining the Schwinger spin bosons [24]
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theHamiltonian ismapped onto one of spin-1/2 particles
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Thefirst sum is afield in theZ-directionwith an amplitude h [9], the subscripts on the coupling amplitudes
indicate whether the sum is overNN (1) orNNN (2) sites. The explicit expressions for the coupling amplitudes
are presented in the appendix B, and herewe only point out the relation = -J J 2Z Z

1 2 .Without the second term
overNNN themodel comprises the two dimensional XYZ model [25].

3. Phase diagrams

For bosonic atoms in abipartite s-p lattice, theMott insulator-SFphase boundaries aswell as general properties of the
SFphasewere studied in [21]using theGutzwillermean-fieldmethod.However, thenon-zerodetuningD ¹ 0
situationhas beenunnoticed, and furthermore for the insulatingphasesmost of the physics is still unexplored.

3.1. Superfluid phase diagram
Deep in the SF phase quantumfluctuations play such a small role that they can be neglected, andwe can apply
the simplestmean-field approximationwherewe assign a coherent state to every bosonmode [26]. Thus, the full
state can be expressed as
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where ˆ ∣ ∣a a añ = ñas s s si i i i i i and equivalently for the x- and y-modes. The full condensate order parameter
becomes
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The complex coherent state amplitudes are determined fromminimizing the energy functional
[ ] ∣ ˆ ∣a a a = áY YñE H, ,s x yi j j . The energy functional is found by replacing the boson operators with their

coherent state amplitudes, e.g. ˆ aas si i. The absolute value squared of the complex amplitudes give the onsite
atomnumbers, e.g. ∣ ∣a=ns si i

2, while the onsite phases (e.g. ( )a f= n exp is s si i i )determine the global
condensate coherence.

3.1.1. Large detuning phase diagram
TheΔ=0 situationwas explored experimentally in [17] and theoretically in [21]. Therefore, herewe only
consider the large detuning case, with theHamiltonian given by equation (7).

Whenminimizing the energy functional with respect to themean-field parameters, provided that δ=0 one
finds that the densities of the two orbitals are equal, = ºn n nx yj j . This is expected, butwemay note that in
higher dimensions this symmetrymay be spontaneously broken [22]. In the polar representation,

( )a f= n exp ix x xj j j and ( )a f= n exp iy y yj j j , the energy depends on the angles and the global density n
whichwe set to unity. For nowwe assume the isotropic lattice, i.e. δ=0 and J2x=J2y≡J2, andwhen omitting
constant terms themean-field energy becomes
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This is a two-flavor rotormodel or classicalXYmodel [27], i.e. on each site sit two classical rotors
( )f f=a a as sin , cosj j j which couple onsite to one another withU0/3 and between sites with 2J1 or 2J2. For the

isotropic lattice we have J1=J2, which is the point of frustration in ourmodel1. It is convenient to introduce an

1
Recall that in ourmodel themaximum frustration point is J1=J2, and not J1=2J2 as in the classical J1–J1model.
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effective lattice for ourmodel where every site hosts instead a single orbital (rotor). This is pictured infigure 3; we
get two layers and on each plane the onsite states alternate between px and py. Theflavor-changing interaction
couples the two layers.

With vanishing interaction,U0=0we regain two copies of classicalXYmodels withNNandNNN
exchange interactions. In general, the competition between such termsmay give rise to novel phases and
phenomena like charge density waves [28], supersolids [29] and frustration [30–32]. The study of frustration in
classicalXYmodels on square lattices has a long history [33–35]. Itmay emerge even forNNmodels on a square
lattice provided the tunneling coefficients ti

j on a single plaquette obey a gauge rulemimicking amagnetic flux
penetrating every plaquette. The unfrustrated regularXYmodel has zero flux, while the greatest frustration is
obtained for half aflux quanta and has been termed fully frustrated XY or theVillainmodel [34].When the two
anti-ferromagnetic NNandNNNexchange interactions compete, frustration also occurs [30–32, 36–38].When
theNNcoupling vanishes themodel decouples into two square lattices and the ground state consists of two
independentNèel states in the two sublattices.When instead theNNNcoupling is zero, the ground state is aNèel
state extended over the full lattice.When both couplings are non-zero there is no solution that simultaneously
fulfill anti-ferromagnetic order on both sublattices and the full lattice.While the structure of the finite
temperature phase diagram is still under debate [39], theT=0 phase diagram is known [40]. For J1<2J2,
quantumfluctuations lift the degeneracy of the ground state and cause long range order, the order-by-disorder
mechanism [41]. It was shown, using spinwave theory, that thesefluctuations order the state such that the anti-
ferromagnets in the two sublattices become collinear—striped phase, i.e. the relative phase between two
neighboring sites is either 0 orπ [30]. For J1>2J2, anti-ferromagnetic order is established in the full lattice—
Néel phase. At the frustration point, a glass phase appears, and due to the chiral symmetry the ground state is
doubly degenerate. taking quantumfluctuations into account, a possible state is a spin liquid phase that survives
in the vicinity of the frustration point [38]. A large-N expansion indicated that such a spin liquid phase should,
however, only exist at exactly the symmetry point [37].

The fully frustratedXYmodel is especially interesting due to the spin glass phase existing despite lack of any
disorder thatmanifestly breaks translational symmetry [33, 35]. For theVillainmodel, the nature of the
transition from a disordered to a glass phase has been thoroughly discussed. The continuous symmetry cannot
be spontaneously broken according to theMermin–Wagner theorem [24], and the corresponding transition
should instead be of theKosterlitz–Thouless type.However, the discrete 2-symmetry can indeed be
spontaneously broken and could give rise to an Ising type transition [42]. Three scenarios emerge; whether (i) it
is a Kosterlitz–Thouless transition followed by an Ising one, (ii) amixture of the two occurring simultaneously
for the same critical temperature, or (iii) a transition belonging to a newuniversality class, see [35]. The
consensus seem to be alternative (i). It has been further argued that the state of the system in the narrowwindow
between the two transitions is a chiral spin liquid [43, 44].

Figure 3.Effective lattice structure of the large detuningmodel(7). Instead of double orbital occupancy on every single lattice site, we
construct a layered two dimensional lattice. Black dots represent px-orbitals and red dots py-orbitals, such that the two orbitals
alternate between neighboring sites. Thus, the solid black lines give the couplings J1 which swap the orbital state upon tunneling. The
dashed blue lines are the diagonal tunnelings J2 which keep the orbital state, and dashed red lines are the onsite interaction couplings
with strengthU0/3. In each two dimensional layer there is a natural sublattice structure represented here by either px- or py-orbitals.
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Weverify the presence of frustration in ourmodel by numerically extract the ground state for a 4×4 lattice.
The anti-ferromagnetic order obtainedwhen J>0 is reflected in theNN (∣ ∣- =i j 1) correlator

( ) ˆ ˆ ( )= á ñC S Si j, . 13yy Y Y
i j

In themean-field approximationwe have

( ) ( ) ( ) ( )f f f f= - -C i j, sin sin , 14yy
x y x yj j i iMF

which for the anti-ferromagnetic phase becomes ( ) = -C i j, 1yy
MF .We can go on and define the average

correlator

( ) ( )å=
á ñ


N

C i j
1

2
, , 15yy yy

ij
MF MF

whereN is the total number of sites, and the sum is over all NNbonds in the full lattice. It is clear that
- + 1 1yy

MF with = - 1yy
MF for the anti-ferromagnetic phase and = + 1yy

MF for the ferromagnetic phase.
Infigure 4 the numerical results for the correlator  yy

MF showhow it depends on the coupling J (=J1=J2). At
positive couplings we verify the analytically predicted anti-ferromagnetic order which, apart fromnumerical
fluctuations, exists down to J=0. For negative J the numerics show largefluctuations fromone simulation to
the nextmeaning that the numericalminimization algorithm finds very different ground states. This is a
smoking gun of classical frustration.

In the experiments [17, 18], withΔ=0, the order of the condensate were determined in a time-of-flight
measurement. The detection verified a complex order parameter and thereby a broken time-reversal symmetry.
In themodel considered herewith a large detuningΔ, the same type ofmeasurement will give fingerprints of the
phases. The ferromagnetic case should produce similar time-of-flight images as in [17, 18], while in the
frustrated case the images will look very different due to themore irregular global phase order of the condensate.

3.2.Mott insulating phase diagram
In the insulating phase theHamiltonian on the formof (9) is part of a larger group ofHamiltonians that can be
expressed as

ˆ ˆ ˆ ˆ ( )
[ ]

åå åå= +
a

a a

a
s
aa a a

s

H h S J S S , 16
j

j
ij

i j

where the second sum includes the bonds of interest. One for us particularly relevantmodel of this kind is the
J1–J2model discussed in the previous subsection;

ˆ ˆ · ˆ ˆ · ˆ ( )
{ }

å å= +
á ñ

H J S S J S S , 17J J
ij

i j
ij

i j1 21 2

where ˆ ( ˆ ˆ ˆ )=S S S S, ,
X Y Z

i i i i .
For the classical system comprised of Ising spins s=±1, the frustration point separates theNéel and striped

phases. It is an open debatewhether quantumfluctuations can cause aQSL phase in the vicinity of J1=2J2
[45–48]. The consensus is that indeed an intermediate quantum fluctuation driven phase emerges, and the
estimated range for this quantumphase is 0.42J2/J10.62.Numerical simulations indicate that this is a
QSL, either a gaped [45, 46], or a gapless 2 QSL [47], while, amore recent work, using renormalization group
arguments, suggests instead that this phase is not a trueQSL, but rather a so called plaquette valence-bond
phase [48].

Figure 4.Themean-field correlator  yy
MF of equation (15) as a function of the coupling J, ranging fromnegative to positive values. The

lattice is considered isotropic and for the numerics we have used a 4×4 latticewith periodic boundary conditions, and furthermore
we have setU0=1. For positive tunneling amplitudes J the system order in an anti-ferromagnetic phasemarked by = - 1yy

MF .
However, whenwe cross over to negative J the correlator starts to fluctuate greatly fromone J-value to the next. Suchfluctuations
signals that there are severalmean-field solutions with roughly the same energy and the numerical algorithm randomly picks one of
them.
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Ourmodel, equation (9), is not the full J1–J2model; theNNNcouplings between both theX andY terms are
absent, and J X

1 , JY
1 , and J Z

1 may be different fromone another. Nevertheless, themodel still holds the promise of
yielding phases with novel quantumproperties as it supports competingNNandNNN terms. To fully
characterize such phases is extremely hard evenwith state-of-the-art numericalmethods. However, already
simplemethods, likemean-field, can signal the presence of an intermediate phase. To demonstrate this we plot
infigure 5 the energy of the ground state of equation (9) as a function of the ratio betweenNNandNNN
coupling amplitudes for zerofield h=0.While the energy displays an expected constant slope in both the stripe
andNèel phase, in an interval around the frustration point the energy stays constant. The range of this interval
extends the one predicted for the intermediate quantumphase of the J1–J2-model, butwe cannot expect
quantitative estimates from simplemean-fieldmethods. However, it is a clear indication that there exists a third
phase.

Any anisotropy in themodel will induce an effective field in theZ-direction. It appears already at zeroth
order in the perturbation, and hence the field strength h can to a good approximation be considered as a free
parameter [49]. The classical J1–J2 composed of Ising spins s=±1 has been analyzed in [50]. The phase diagram
is known to consist of four phases; theNéel and striped phases that both survive at zero field h=0, the
ferromagnetic/polarized phase that appears for sufficiently strongfields h, andfinally a disordered phase that
only exists for non-vanishing fields. The phase boundaries can be found analytically andwhen considering
classical Ising spins at zero temperature all transitions arefirst order. The phase diagram for the classicalmodel is
depicted infigure 6(a). Amost relevant question is howquantum fluctuations, appearing for non-zero J X

1 and
JY
1 , will affect the disordered phase. The quantumphase in the interval 0.42J2/J1 0.62 for h=0will only
survivemoderate fields, and instead some new ‘transverse disordered’ phaseswill possibly emerge [51–53]. It is
by now established that for h=4J1 amagnetization plateau (with constantmagnetizationm=1/2 per
plaquette) establishes due to the order-by-disordermechanism [51, 52]. This phase has been termed uuud (up–
up–up–down) to describe the spins for one plaquette.More recently, it has been suggested that a set of additional
novel phasesmay exist for non-zero h, intervened between the canted (the anti-ferromagnetic phases get canted
in the presence of afield) stripe andNèel phases [53]. The nature of such phases is not fully known, but they show
characteristics of supersolids.

As forfigure 5, we explore the case with a non-zero fieldwithin the simplestmean-field approach. Adopting
the approach of the previous subsection the full system state is factorized between the neighbors, and single site

spins are parameterized as ( ˆ ˆ ˆ ) ( )q f q f q=S S S S S S, , sin cos , sin sin , cos
X Y Z

i i i i i i i i , where S=1/2 is the spin.
This is analogous to assigning spin coherent states to every site. The energy [ ]q fE ,i i is then numerically
minimizedwith respect to the polar and azimuthal angles θi andfi respectively. To distinguish between possible
phaseswe define

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ( )

{ }
å å å= á ñ + +

á ñ


N

S C Ci j i j
1 1

2
,

1

2
, , 18Z zz zz

i
i

i j i j
full

, ,

whatwe call the full correlator andwhere, analogous to equation (13),

( ) ( )= á ñC S Si j, . 19zz Z Z
i j

The full correlator is restricted by-  1 1full and it captures the four classical phases offigure 6(a); the
ferromagnetic phase is characterized by = 1full , theNéel phase by = 0full , the striped phase by = - 1full ,
andfinally the disordered phase by = - 1 2full . The results of such a treatment are presented infigure 6. In (a)
we reproduce the classical result [50] up to numerical errors (seen as ‘scatters’ in the vicinities of the phase
boundaries). In particular, the four phasesmentioned above are clearly visible. As the J X

1 (JY
1 ) becomes

Figure 5.The energy of the ground state of the effectiveHamiltonian for theMott insulating phase (9). The energy is found for zero
field h=0, and for = =J J J0.9X Y Z

1 1 1 , and as a function of J JZ Z
2 1 . The plot shows that an energy plateau is formed around

=J J 0.5Z Z
2 1 indicating the possibility that a there is an intermediate phase in between theNéel and striped phases.
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non-zero themodel is no longer integrable and quantum fluctuations set in. The transitions between the
disordered phase and the ferromagnetic and striped phases turn continuous.When J X

1 and JY
1 are increased, the

size of the classical disordered phase (pink in (a)) is reduced, for the price of a phase reaching down to zerofield
h=0 (light pink in (f)). This is what is termed transverse disordered in [51]. Our analysis is not capable of
distinguishing further properties of this region, e.g. the appearance of the uuud phase or other exotic phases [53].

Exact diagonalization is limited to very small lattices which are not capable of extracting long-range
correlations. Nevertheless, infigure 7we compare themean-field results of full with those of an exact
diagonalization for a 4×4 lattice. As expected, thefinite size effects cause the crossover region between the two
anti-ferromagnetic phase to bemore extended.However, it still shows a plateau forming in the regimewhere the
mean-field results predicts a new phase, which is again an indicator of afifth phase.

One last observation offigure 6 regards the extension of the intermediate regime. For afield h=4, it seems
to survive down to » -J J 1Z Z

2 1 when J X
1 (JY

1 ) is of the same order as J Z
1 . As alreadymentioned, the nature of

this state is unknown, let alone its phase boundaries. The disorder-by-ordermechanismwill stabilize certain
states within this region like the uuud phase [51, 52]. To get a better estimate for the phase boundariesmore
sophisticatedmethods are needed, but the fact that ourmean-field results indicate that something is going on
also for negative J JZ Z

2 1 leaves uswith hope. Returning to the actual effectivemodel of(9) that describes the
Mott insulating phase of our bipartite optical latticemodel we note that identically = -J J 1 2Z Z

2 1 , and thuswe
sit on the corresponding vertical line in the phase diagramupon varying h.

4. Conclusion

Wehave discussed phases of a two dimensional bipartite optical lattices. The feature leading to these novel
phases is the alternation between s- and p-orbital sites. The sites hosting s-orbital atoms induces an effective
coupling between p-orbital atoms, resulting in competingNNandNNN interactions. For effective anti-
ferromagnetic coupling terms the systembecomes frustrated.

For theMott insulating phasewith a single atomper site, we derive an effective spin-1/2model for the p-
orbital atoms. The resultingHamiltonian is similar to thewell known J1–J2model that has been thoroughly
studied in the past. As a candidatemodel for the realization ofQSL phases, we discussed the possibilities tofind
also related frustration driven phases in our system. Themean-field analysis suggested the appearance of a phase
whose phase boundaries seemed to qualitatively agree with those of the predictedQSL for the zerofield J1–J2
model. For a non-vanishing field, whichwould automatically arise in an anisotropic lattice, a plethora of novel

Figure 6.Themean-field phase diagramof themodel of equation (9), here characterized by the full correlator full defined in(18) and
with =J JX Y

1 1 . Each plot represents a different coupling strength of =J JX Y
1 1 as indicated by the text in thefigures. In the case of

= =J J 0X Y
1 1 we see four distinct phases, the ferromagnetic phase (green), theNéel phase (white), the striped phase (dark pink), and
the disordered phase (pink). In this (classical) limit all phase transitions arefirstfirst order. Aswe consider non-zero couplings

=J JX Y
1 1 afifthmean-field phase appears (light green/pink), this phase growswith increasing couplings =J JX Y

1 1 , and all PTs except
for the one between theNéel phase and the ferromagnet phase, and theNéel and the newphase, appear to be second order. The new
phase survives also for zerofield, J Z=0, provided that =J JX Y

1 1 is large enough. At thismean-field level, the properties of the
intermediate fifth phase is unknown. The dispersed dots are numerical errors forwhich the simulations are not capable offinding the
true ground state.
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phases have been predicted [53], andwe argued that experimentally ifmight be favorable to actually consider
non-zerofields.

In the superfluid phase we also derived an effectivemodel for the p-orbital atoms, but this time by assuming
a large energy detuning between s- and p-orbital atomic states. In this regimewe can adiabatically eliminate the s-
orbital sites/states.Within this frameworkwe derive a semi-classicalmodel showing great resemblancewith a
classicalXYmodel. Our systembecomes fully frustrated in the anti-ferromagnetic regime, andwe discuss
whether this could give rise to glass or liquid phases.

To numerically distinguish a trueQSL phase fromother possible phases is very hard [13]. These are points
that would need further investigation, i.e. dowe have trueQSL phases, and if not what are these phases? And how
would they be experimentally probed? Asmentioned above, frustration in the SF phase shouldmanifest in time-
of-flightmeasurements. Tomeasure quantum correlations onewould needmore sophisticatedmethods like
single site detection [54].
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AppendixA. Adiabatic elimination of s-orbital degrees-of-freedom

Under the assumption that ∣ ∣D ismuch larger than the remaining parameters, the s-orbital atomswill be slaved
the p-orbital ones. It is then legitimate to adiabatically eliminate the s-orbital degrees-of-freedom. Following the
standard procedure [55], we start from theHeisenberg equations-of-motions as obtained from the full
Hamiltonian, equations (2)–(4), to derive

ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ˆ ˆ )
ˆ ( ˆ ˆ )
ˆ ( ˆ ˆ ) ( )

¶ = - D - + + +

¶ = + +
¶ = + +

+ - + -

+ -

+ -

a a U n a t a a t a a

a t a a

a t a a

i i i ,

i interaction terms,

i interaction terms. A.1

t s s ss s s x x x y y y

t x x s s

t y y s s

i i i i i 1 i 1 i 1 i 1

j j 1 j 1

j j 1 j 1

h x v y

x x

y y

Herewe have introduced the notation i 1x for the horizontal neighboring sites to site i, and i 1y the same
but in the vertical direction. The steady state solution for the s-orbitals is obtained from ˆ¶ =a 0t si , andwemake
the further assumption that the  -sites are initially empty, such that for all times ˆ á ñn 1si andwe neglect the
shift deriving fromonsite interaction on these sites. The steady state solution then becomes

ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )( ) =
D

+ +
D

++ - + -a
t

a a
t

a a . A.2s
x

x x
y

y yi i 1 i 1 i 1 i 1
ss

x x y y

When substituting this expression for the s-orbital operators in the equations-of-motion for âx j we obtain a
series of terms. Apart from the unaffected interaction terms, all of these represent different two-step processes

Figure 7.The full correlator(18) for zerofield h. The result obtained bymean-field is shown as the black line, while the result from
exact diagonalization of a 4×4 lattice is represented by the blue line. Remember that for theNéel phase = 0full and in the striped
phase = - 1full . The range in between these twophasesmarks the intermediate newphase. For such a small lattice as this, thefinite
size effects dominate and because of this the exact diagonalization over estimates the intermediate phase. The results of the exact
diagonalization indicates that in the intermediate phase a plateau is formed, which hints the presence of a new intermediate phase. The
parameters used for thisfigure are = =J J 0.9X Y

1 1 . The sudden jumps of the black line is again numerical artifacts when the code finds
a localminima and not the globalminimumof the energy functional.
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involving px and py orbital atoms, and hence only operators on the -sites.Wewrite

ˆ ˆ ˆ ( )¶ = +a f f , A.3t x j 2 1

wherewe have divided the terms into different categories. Thefirst

ˆ ( ˆ ˆ ˆ ) ( )= + ++ -f J a a ai 2 A.4x x x xj 2 j 2 j2 2 x x

with (as defined in themain text) the amplitude ∣ ∣= DJ tx x2
2 . Similarly, there are terms describingNN

tunneling in the -sublattice, i.e.

ˆ ( ˆ ˆ ˆ ˆ ) ( )= + + ++ + + - - + - -f J a a a ai , A.5y y y yj 1 1 j 1 1 j 1 1 j 1 11 1 x y x y x y x y

with the amplitude J1=txty/Δ. equivalently onefinds the corresponding equations for ˆ¶ at y j. From these
equations it is straightforward to derive an effectiveHamiltonian for the p-orbital atoms via

ˆ [ ˆ ˆ ] ( )¶ = -a aa a Hi , . A.6j j eff

Using theHamiltonian(7) in the above expression gives the desired equations-of-motion(A.3). The parameter
dependence of the coefficients J1 and J2α is understood from the types of two-boson processes; a p orbital atoms
tunnels with amplitude tα to an s orbital site, where it acquires an energy contribution 1/Δ, andfinally it tunnels
to a p orbital site with an amplitude tβ. This together gives the coefficient ( )b aD

t t1 .

Appendix B.Derivation of the effectiveHamiltonian in theMott phase

TheHamiltonian in theMott phase is obtained by considering the tunneling part as a perturbation to the full
Hamiltonian.Here the fixed number of atoms per lattice site is effectively handled by dividing theHilbert space

of the eigenvalue problem into two orthogonal subspaces using the projection operators ˆ ˆ=P P
2

and ˆ ˆ=Q Q
2

with ˆ ˆ+ =P Q 1. P̂ projects onto the subspaceP where all lattice sites are occupiedwith one atomand Q̂
projects onto the complementary subspaceQ. The eigenvalue problemmay bewritten as

ˆ ( ˆ ˆ) ( ˆ ˆ )( ˆ ˆ) ( )y y y+ = + + =H Q P H H Q P E , B.1K U

where ĤK is the kinetic part of theHamiltonian, and ĤU is the interaction part of theHamiltonian. This leads to
an effectiveHamiltonian Ĥ1 in theMott phase with unit filling [49]

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ( )y y= -
-

H PH Q
QHQ E

QH P
1

. B.2U K1

This expression is exact and serves as the starting point for treating the tunneling perturbatively, i.e. one expands

( ˆ ˆ ˆ )-QHQ E

1 .Making the approximation ˆ ˆ ˆ ˆ»
- -QHQ E H E

1 1
it follows that

ˆ ˆ ˆ ˆ ( ˆ ( ˆ ))
( )

-
»

+ -
-QHQ E H H H E

1 1 1

1
. B.3

U U K
1

As the tunneling coefficient ismuch smaller than the interaction coefficient onemay expand around
ˆ ( ˆ )-
-

H H EU K
1

. Including terms up to fourth order in the tunneling parameter yields

⎡
⎣⎢

⎤
⎦⎥ˆ

ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ( )º + - + - -K
H H

H E
H

H E
H

H E
1

1
1 1 1

, B.4
U U

K
U

K
U

K

such that the effectiveHamiltonianmay be expressed as

ˆ ˆ ( )~ -H tKt. B.5

In anyMott phase only even terms in the expansionwill be non-zero. For a bipartite lattice one needs to include
fourth order tunneling processes in order to couple two lattice sites of the same type. For a better understanding
of these processes, we consider two generic transitions, one starting in an  -site, whichwe label  , and one
starting in a -site denoted ;

ˆ ˆ ( ˆ ˆ ˆ )( ˆ ˆ ˆ )( ˆ ˆ ˆ ) ˆ

ˆ ˆ ( ˆ ˆ ˆ )( ˆ ˆ ˆ )( ˆ ˆ ˆ ) ˆ ( )

† † † †

† † † †

=

=

a b a b b a b a

a b a b a b a b

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢





   

   

t t t t a a K a a K a a K a a

t t t t a a K a a K a a K a a

,

. B.6

s k s l s i s

s l s k s j s

l k k j j i i l

i l l k k j j i

For both processes there are two types of fourth order tunneling processes, thosewhich tunnels out and back
along the same path (non-loop processes) and thosewhichmakes a loop. In the non-loop process three different
lattice sites are involved in the tunneling process, while for loop processes there are four different lattice sites
involved. In (B.6) the subscripts (i, k) refers to  -sites and ( j, l) refers to -sites, hence when one is considering a
non-loop process two of thesewill coincide, while for loop processes theywill all be different. The full expression
for the effectiveHamiltonian coming from fourth order transitions is the sumover all possible contributions on
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the above form that returns the tunneling atom the original lattice site by the end of the process. The  -sites
supports only one type of orbital state, the s-orbital state, as opposed to the -sites which support two orbital
states, the px and py states. The one level nature of the  -site ensures that the contribution from these sites in the
Mott1 phase will be ˆ ˆ†= =

K a a 1s s for the origin of tunneling process and ˆ ˆ†= =
K a a

U s s U

1 2

ss ss
for an

intermediate  -site. This allowus to simplify (B.6) as

[ ( )][ ( )]
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b
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3 4

3 4

^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^

The interaction between the p-orbitals ˆ K depends only on the number of atoms in the lattice site, in theMott1
phase there are two atoms in the intermediate lattice sites, and ˆ K can bewritten onmatrix form

⎡
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †= = = -aa
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1
, 4 , B.9
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2 2

with = -U U U Uxx yy xy
2 2 [49].More compactly onemay define the contributing -sites in terms of four

different processes depending on if the transition has a loop or non-loop structure, and depending if the -site
is the origin ( ) or an intermediate site ( ) in the process;
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For non-loop ( ˆ )T the tunneling takes place out and back along the same path, and there is only one superscript
σ, while for loops the tunneling out and back into a lattice site are along two different bonds. In total wemay
distinguish between four different tunneling processes. Twowhich starts in an  site, where one of themwill be

loop ( ˆ )

L and onewill be a non-loop ( ˆ )


T , and twowhich start in an  -site, with similar structure. Then (B.7)

may be expressed in terms of (B.10)
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Summing over neighboring pairs of -sites connected via a loop or a non-loop transition then leads to an
effectiveHamiltonian of the form(9). Using (B.9) the coupling constantsmay be evaluated. In the isotropic
lattice h=0, and J J,Z X and J Y are given by

⎡
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with =V U U120 xy
2, γ=1/U and ˜ ( )= +V U U U4 1 2z xy

2 , andwhereUxx=Uyy=U and
˜ = -U U Uxy

2 2 . In the harmonic approximation, whereUxx=Uxy=3Uxy, the coupling coefficients
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