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Abstract

In the Hamburg cold atom experiment with orbital states in an optical lattice, s- and p-orbital atomic
states hybridize between neighboring sites. In this work we show how this alternation of sites hosting
s- and p-orbital states gives rise to a plethora of different magnetic phases, quantum and classical. We
focus on phases whose properties derive from frustration originating from a competition between
nearest and next nearest neighboring exchange interactions. The physics of the Mott insulating phase
with unit filling is described by an effective spin-1,/2 Hamiltonian showing great similarities with the
J1—J> model. Based on the knowledge of the J;—J, model, supported by numerical simulations, we
discuss the possibility of a quantum spin liquid phase in the present optical lattice system. In the
superfluid regime we consider the parameter regime where the s-orbital states can be adiabatically
eliminated to give an effective model for the p-orbital atoms. At the mean-field level we derive a
generalized classical XY model, and show that it may support maximum frustration. When quantum
fluctuations can be disregarded, the ground state should be a spin glass.

1. Introduction

Ultracold atoms trapped in optical lattices has within the last two decades evolved into a efficient tool for
studying strongly interacting quantum many-body systems [1]. The systems allow for explorations of a variety of
lattice models, in terms of changing lattice geometries, varying parameter strengths and initialize desired states.
Put together with the possibility to perform high fidelity state measurements, they are the perfect candidates for
quantum simulators [2]. Real physical systems that can solve quantum mechanical problems intractable on
classical computers.

From a condensed matter physics viewpoint, the Hubbard models [3] are known to be prime candidates to
be simulated. Theoretically proposed in [4], and followed by the experimental realization of the Bose-Hubbard
Mott-superfluid phase transition (PT) by Greiner et al [5], an avalanche of activity started. Due to the
importance in other branches of condensed matter physics, it did not take long until orbital physics was
discussed in terms of cold atoms in optical lattices [6, 7].

It was suggested that internal atomic hyperfine levels could be used to mimic models of quantum magnetism
[8]. Another way to mimic quantum magnetism is to make use of internal orbital states instead [9]. Internal
orbital states was first studied, in the context of ultra cold atoms, by Isacsson and Girvin [6]. They showed that
the superfluid (SF) state of a p-orbital Bose—Hubbard model on a square optical lattice arranges in a vortex
lattice, which breaks time-reversal symmetry and have a complex order parameter [6]. The life-time of these
excited states is long, which was later confirmed experimentally [10]. For bosonic atoms, the main loss
mechanism is the scattering of two p-orbital atoms into one s and one d orbital atom. To avoid this, superlattices
can be employed where such scattering processes are far off-resonant. A few years latter came the first
experiment that studied different magnetic phases [11], and thereby also the corresponding quantum PTs.

Quantum magnetism becomes especially interesting in the case of frustration. Here spin liquids and
glasses are phases which can emerge from strong frustration. The classical counterparts typically implies a
large number of classically degenerate ground states [12], and at sufficiently low temperatures quantum spin
liquids (QSLs) [13] can be formed. These phases are expected to host many novel properties like topological
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fractional excitations [14]. They are experimentally very elusive and only indirect measurements that suggest
the presence of QSL have been found [13] so far. In cold atoms in optical lattices, ‘lattice shaking’ techniques
can be used to adjust the tunneling terms, and this led to observation of magnetic frustration [15]. The
experiment only demonstrates classical frustration, but it predicts the existence of QSL stes in the same type of
system set-up [16].

One cold atomic system which may host frustration in its groundstates, is the Hamburg experiment of
Hemmerich [17, 18]; degenerate s- and p-orbital atoms hybridize on neighboring sites in a superlattice. Also for
this configuration the SF phase consists of vortices leading to a complex order parameter [19], and it was further
argued that thermal fluctuations will induce a new phase, a chiral Bose liquid, in this model [20]. Nevertheless,
much of the phase diagram of both the insulating and superfluid phase of the Hamburg set-up remains
unexplored.

In the insulating phase, the sites hosting s-orbitals effectively mediate the coupling between sites with p-
orbital atoms. An effective model emerges consisting only of p-orbital atoms where the strength of the coupling
between nearest neighbors (NN) is of the same order as the coupling strength between next-nearest neighbors
(NNN). This can make it possible to achieve strong frustration [13] and hence hope of realizing a QSL phases.
The resulting model resembles the J;—J, model that has served as a work horse in the study of QSL’s. Using
mean-field methods and exact diagonalization we see evidence for a novel phase that agrees with earlier
predictions of a QSL in the J;—J, model.

In the SF phase, the s-orbital atoms cannot be eliminated with the same argument due to onsite particle
fluctuations. Instead, when the s- and p-orbitals are far detuned in energy the s-atoms can be adiabatically
eliminated and an effective model for the p-atoms is derived. As for the insulating phase, the resulting model has
both NN and NNN interactions, where the sign of the detuning determines the sign of the tunneling strengths.
For negative tunneling strengths the SF arrange in a phase with alternating vortices and anti-vortices on
neighboring sites, i.e. again breaking time-reversal symmetry and with a complex order parameter. For positive
tunneling strengths the system shows frustrations, and at the mean-field level we derive a generalization of a
classical XY model that has been a prototype model for exploring classical frustration and spin liquid phases. We
find support for a frustration-driven phase also in our model which presumably is a spin liquid.

2.Model Hamiltonian

2.1. Physical system and its Hamiltonian

The optical potential of the Hamburg experiment [17, 18] forms two sublattices, S and P with the P-sites
deeper, see figure 1(a). By tuning the lattice parameters, the relative depth is chosen such that the two p,- and
py-orbitals are quasi resonant with the s-orbitals (figure 1(c)). The atoms are assumed to only populate these
three bands. We neglect any losses to other bands, and consider the tight-binding approximation, consisting in
only taking NN tunneling and onsite s-wave scattering into account.

The p,- and p,-orbital states have, respectively, a node in the x- and y-direction—as shown in figure 1(b),
while the s-orbitals are polar symmetric. In the bipartite lattice, the tunneling is between S- and P-sites and is
such that the tunneling in the a-direction (o = x, y) is possible only for a p,,-orbital atom due to the parity of the
orbital states together with the shape of the potential. There are two ways for the p,- and p,-orbital atoms to
couple; a p,-orbital atom can tunnel to an s-orbital atom which then tunnels to a p-orbital atom, or two
Ppx-orbital atoms can scatter into two p,-orbital atoms or vice versa.

We use the notation d,; (o = s, x, y) for the bosonic annihilation operators. The subscripti = (i, 1) refers
to the site, in general we use the subscriptiand j for the S- and P-sites respectively. When restricting the model
to these three bands, an atomic operator annihilating an atom atx = (x, y) is expanded as

Tx) = 3 w0 + D03 dajmwn;(x), (1)

ieS o jeP

where w; (x) and w,;(x) are the corresponding Wannier functions localized at siteiandj.

In the isotropic lattice, t, = , > 0, while for anisotropic lattices these equalities are not strict, and the two p-
orbital states are not degenerate. The onsite energy difference between the two orbitals is ¢ and with the zero
energy chosen exactly between the two states. The kinetic term in the Hamiltonian H = Ay, + Hyis

Hin = —£,> (@} + h.c)
(i)

AT A . 6 . .
— 1,y (Afdy; + he) + AY g + EZ(”X;’ — fyj), )
(ij)y i i
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Figure 1. Structure of the optical lattice potential. Visualized in (a), the superlattice produces alternating deep (P) and shallow (S)
potential wells. The unit cell is marked by the gray square and comprises one S- and one P-site. The relevant orbital states are shown
in (b); a p,-orbital has a node in the x-direction, while a p,-orbital has a node in the y-direction. Thus, the p-orbitals change sign across
the node, positive on one side and negative on the other. The s-orbital has no node and is polar symmetric. A cut of the two
dimensional lattice is pictured in (c) showing the alternating S- and P-sites. The horizontal lines represent the onsite energies of the
different orbitals; red— P-site s-orbital, blue— P-site p-orbital and green— S-site s-orbital By construction, three orbital states are
quasi resonant; p,and p, on the P-sites and s on the S-sites. The parameter A sets the energy difference between the average onsite
energies of the two p-orbital states and the s-orbital states. Not shown in the figure is any energy splitting between the p,- and p,-
orbitals.

while the interaction term Hyy, = H,,, + Hg is further decomposed into ‘density—density’ interactions
Uaa ~ U5

I:I"" = Z Z Naj (ﬁ(l'j -+ Z _Sﬁsi(ﬁsi -1+ Z Z Uaﬁﬁ&jﬁgj (3)
a jJEP 2 ieS 2 aB,a=pjeP
and ‘flavor-changing’ interactions
By = Uas at 4t aas 1 b
fe = Z Z _(aajaajaﬁjaﬂj + h.c). 4)

afb,a=3jeP 2

Here, (...), is the summation over NN in the a-direction. The operators 7i,; = ﬁ;jﬁa jand i = aASTi ag; give the
number of orbital atoms on the specific site. With p../p,-orbitals having an onsite energy 6,2, the onsite energy
for the s-orbitals is A. The interaction terms alone supports a Z,-parity symmetry that represents conservation
of orbital atoms modulo 2. This symmetry is broken as p-orbital atoms can tunnel into s-orbital atoms. In the
isotropic lattice with 6 = 0 there is Z, symmetry, corresponding to 90 degree rotations for the full many-body
Hamiltonian. This corresponds to swapping the p,- and p,-orbitals and rotate the axes. When the lattice is
anisotropic this symmetry breaks down into a Z, represented by a 180 degree rotation. The total particle number
is a preserved quantity, and it is this continuous U(1) symmetry that is broken across the Mott-SF PT [21]. The
onsite energies ¢ and A, the relative interaction strengths U, g and the tunneling amplitudes ¢,, are all determined
by the overlap integrals of the Wannier functions. For example, the interaction strengths are

Uss = Us [dx lmjPIwsi00F,  Us= Uy [dx hwgGolf, )

where Uy is a constant proportional to the s-wave scattering length. In the harmonic approximation, the
Wannier functions are replaced with harmonic functions, e.g. (in dimensionless units)

2
(x—x;)? =) ©
202 202 ’

1 1/2
wyj(X) = (F) (x — x; Jexp| —

where (x;, y; ) is the position of site j = (j j,), and we have assumed the width o to be the same in the x- and y-
* 7y

directions. The interaction strengths then obey U, = U,,, = 3U,, [22]. The U, is not simply related to the other
interaction parameters since it derives from the interaction in an S - and not a P-site, but it is of the same order as U,,,.
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Figure 2. Tunneling terms between NN and NNN sites (black dots) in the effective Hamiltonian (7). Between NN sites, tunneling is
accompanied with a flip in the orbital state, while along the diagonal, NNN, the orbital state is not changed upon tunneling. The
respective amplitudes for the two processes are denoted J; and ;.

2.2.Large detuning effective model
When the energy off-set A between p- and s-orbital states is small, the two types of atomic states hybridize to
build up the full system state [21]. When |A|is the large parameter, compared to the t,’s and to U,,, population
transfer between the S- and the P-sites is suppressed due to the large energy difference. The kinetics is still not
trivial, as the intermediate states can virtually mediate both NN and NNN tunneling in a two-step process.

The derivation of the effective model that results from the elimination of the s-orbitals is given in
appendix A. The resulting Hamiltonian reads

A = =35 hadlide—h S0 Y (@hds + he)

a {ij}a af,a=03 (ij)

- ZZ ]2aﬁa'j + EZ (ﬁx] ny]) +ZZ Ve ﬁa] (ﬁaj =1

+ Z Z Uﬂi’la]f’lgl + Z Z “ﬂ (aa] a]a/j)ajl + h. C)’ (7)

ab,a=0 j af,a=3 j

where J,, = [t,[*/Aand]; = tt,/A give the tunneling amplitudes along NN and NNN’s respectively, see
figure 2. The two tunneling strengths are of the same order, e.g. in an isotropic lattice, t, = t,, and

Jox = oy = J1 = J. Whatis appealing is that the signs of the tunneling is adjustable by changing the sign of A.
NN tunneling induces a flavor-changing of the orbital state, which can be seen as an effective spin—orbit coupling
[23]. The third sum represents ‘Stark shifts’ due to virtual couplings to the s-orbitals.

2.3.Large interaction effective model

In the insulating phases we expand in ¢/ U, and project on to the Mott insulating phase with one atom per lattice
site [24]. The flavor-changing interaction term (4) is non-diagonal in the Fock basis and causes the allowed
processes in the perturbation expansion to be much richer. Since p-orbital atoms are only allowed to tunnel in
the direction of its node, the second order terms are then trivial. Take a p,-orbital atom, it can tunnel to its
neighboring s-site with amplitude ¢, giving an interaction contribution ~1/ Uy, and then one s-orbital atom
tunnels back to the empty p-site as a p,-orbital atom and again with an amplitude ¢,. This is nothing but an onsite
energy shift. Thus, via second order processes it is not possible to generate effective interaction terms between
the orbitals, so to reach a non trivial effective Hamiltonian one must include fourth order terms as well. This
gives rise to NN and NNN couplings for the P-sites. As there is no internal degree-of-freedom in the S-sites,
these will effectively freeze out. There are essential two different types of tunneling processes, non-loops and
loops, in the non-loop process the atom tunnels out and back along the same path which is not the case in the
loop processes. The non-loop processes give rise to a density—density coupling, while the loop processes render
orbital swapping couplings. The NNN couplings consist only of non-loop processes, while the NN couplings
have both non-loop and loop contributions.
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Restricting to single particle occupancy on each site and defining the Schwinger spin bosons [24]

$F = §iX T i§,Y —a}a,,
§ =8 —i8 = ajay, (8)
the Hamiltonian is mapped onto one of spin-1/2 particles
eff—hzs + IS E S8 + Z J AR SR )
(i)

{ij} (ij)

The first sum is a field in the Z-direction with an amplitude /4 [9], the subscripts on the coupling amplitudes
indicate whether the sum is over NN (1) or NNN (2) sites. The explicit expressions for the coupling amplitudes
are presented in the appendix B, and here we only point out the relation J* = —J5 /2. Without the second term
over NNN the model comprises the two dimensional XYZ model [25].

3. Phase diagrams

For bosonic atoms in a bipartite s-p lattice, the Mott insulator-SF phase boundaries as well as general properties of the
SF phase were studied in [21] using the Gutzwiller mean-field method. However, the non-zero detuning A = 0
situation has been unnoticed, and furthermore for the insulating phases most of the physics is still unexplored.

3.1. Superfluid phase diagram

Deep in the SF phase quantum fluctuations play such a small role that they can be neglected, and we can apply
the simplest mean-field approximation where we assign a coherent state to every boson mode [26]. Thus, the full
state can be expressed as

= T lewi)i TT lowjs ayis (10)

ieS jeP

where dg| )i = i) and equivalently for the x- and y-modes. The full condensate order parameter
becomes

U(x) = Z Wi (X) + Z [lej Wi (x) + QyjWyj x)]. (11)
ies jeP
The complex coherent state amplitudes are determined from minimizing the energy functional
Elag, ayj ay] = (U|H|¥). The energy functional is found by replacing the boson operators with their
coherent state amplitudes, e.g. d;; — a;. The absolute value squared of the complex amplitudes give the onsite
atom numbers, e.g. n; = |c;|*, while the onsite phases (e.g. a; = /715 exp(i¢;)) determine the global
condensate coherence.

3.1.1. Large detuning phase diagram
The A = Osituation was explored experimentally in [17] and theoretically in [21]. Therefore, here we only
consider the large detuning case, with the Hamiltonian given by equation (7).

When minimizing the energy functional with respect to the mean-field parameters, provided that 6 = 0 one
finds that the densities of the two orbitals are equal, n,; = n,; = n. Thisis expected, but we may note thatin
higher dimensions this symmetry may be spontaneously broken [22]. In the polar representation,
oy = [y exp(igy;) and oy = /1,5 exp(i);), the energy depends on the angles and the global density n
which we set to unity. For now we assume the isotropic lattice,i.e. § = 0 and J,, = J,, = J5, and when omitting
constant terms the mean-field energy becomes

EMF[¢aj] = *2]222 cos(¢; — %, 2h Z ZCOS(%i - ¢ﬁj)

a {ij}a af,a=p3 (ij)

+ 20 o820y~ ) (12)
j

This is a two-flavor rotor model or classical XY model [27], i.e. on each site sit two classical rotors
Saj = (sin (baJ, cos ¢, ) which couple onsite to one another with Uy/3 and between sites with 2]; or 2J,. For the
isotropic lattice we have J1 = J», which is the point of frustration in our model'. It is convenient to introduce an

Recall that in our model the maximum frustration pointis J; = J,,and not], = 2J, as in the classical J;—J; model.
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Figure 3. Effective lattice structure of the large detuning model (7). Instead of double orbital occupancy on every single lattice site, we
construct alayered two dimensional lattice. Black dots represent p,-orbitals and red dots p,-orbitals, such that the two orbitals
alternate between neighboring sites. Thus, the solid black lines give the couplings J; which swap the orbital state upon tunneling. The
dashed blue lines are the diagonal tunnelings J, which keep the orbital state, and dashed red lines are the onsite interaction couplings
with strength Up/3. In each two dimensional layer there is a natural sublattice structure represented here by either p,- or p,-orbitals.

effective lattice for our model where every site hosts instead a single orbital (rotor). This is pictured in figure 3; we
get two layers and on each plane the onsite states alternate between p, and p,. The flavor-changing interaction
couples the two layers.

With vanishing interaction, Uy = 0 we regain two copies of classical XY models with NN and NNN
exchange interactions. In general, the competition between such terms may give rise to novel phases and
phenomena like charge density waves [28], supersolids [29] and frustration [30-32]. The study of frustration in
classical XY models on square lattices has along history [33—35]. It may emerge even for NN models on a square
lattice provided the tunneling coefficients 7/ on a single plaquette obey a gauge rule mimicking a magnetic flux
penetrating every plaquette. The unfrustrated regular XY model has zero flux, while the greatest frustration is
obtained for halfa flux quanta and has been termed fully frustrated XY or the Villain model [34]. When the two
anti-ferromagnetic NN and NNN exchange interactions compete, frustration also occurs [30-32, 36—38]. When
the NN coupling vanishes the model decouples into two square lattices and the ground state consists of two
independent Neel states in the two sublattices. When instead the NNN coupling is zero, the ground state is a Neel
state extended over the full lattice. When both couplings are non-zero there is no solution that simultaneously
fulfill anti-ferromagnetic order on both sublattices and the full lattice. While the structure of the finite
temperature phase diagram is still under debate [39], the T = 0 phase diagram is known [40]. For J; < 2J,,
quantum fluctuations lift the degeneracy of the ground state and cause long range order, the order-by-disorder
mechanism [41]. It was shown, using spin wave theory, that these fluctuations order the state such that the anti-
ferromagnets in the two sublattices become collinear—striped phase, i.e. the relative phase between two
neighboring sites is either 0 or 7 [30]. For J; > 2], anti-ferromagnetic order is established in the full lattice—
Néel phase. At the frustration point, a glass phase appears, and due to the chiral symmetry the ground state is
doubly degenerate. taking quantum fluctuations into account, a possible state is a spin liquid phase that survives
in the vicinity of the frustration point [38]. A large-N expansion indicated that such a spin liquid phase should,
however, only exist at exactly the symmetry point [37].

The fully frustrated XY model is especially interesting due to the spin glass phase existing despite lack of any
disorder that manifestly breaks translational symmetry [33, 35]. For the Villain model, the nature of the
transition from a disordered to a glass phase has been thoroughly discussed. The continuous symmetry cannot
be spontaneously broken according to the Mermin—Wagner theorem [24], and the corresponding transition
should instead be of the Kosterlitz—Thouless type. However, the discrete Z,-symmetry can indeed be
spontaneously broken and could give rise to an Ising type transition [42]. Three scenarios emerge; whether (i) it
is a Kosterlitz—Thouless transition followed by an Ising one, (ii) a mixture of the two occurring simultaneously
for the same critical temperature, or (iii) a transition belonging to a new universality class, see [35]. The
consensus seem to be alternative (i). It has been further argued that the state of the system in the narrow window
between the two transitions is a chiral spin liquid [43, 44].
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Figure 4. The mean-field correlator C{j; of equation (15) as a function of the coupling J, ranging from negative to positive values. The
lattice is considered isotropic and for the numerics we have useda4 x 4 lattice with periodic boundary conditions, and furthermore
we have set Uy = 1. For positive tunneling amplitudes ] the system order in an anti-ferromagnetic phase marked by C{jz = —1.
However, when we cross over to negative J the correlator starts to fluctuate greatly from one J-value to the next. Such fluctuations
signals that there are several mean-field solutions with roughly the same energy and the numerical algorithm randomly picks one of
them.

We verify the presence of frustration in our model by numerically extract the ground state fora4 x 4 lattice.
The anti-ferromagnetic order obtained when J > 0Oisreflected in the NN (i — j| = 1) correlator

G, i = (5 §). (13)
In the mean-field approximation we have
Ciie(, j) = sin (¢x,’ - ¢yj) sin(¢y; — ¢yi)’ (14)
which for the anti-ferromagnetic phase becomes C{J(i, j) = —1. We can go on and define the average
correlator
1 .
Clir = EZ Clie s ) (15)
(i)

where Nis the total number of sites, and the sum is over all NN bonds in the full lattice. Itis clear that

—1 < & < +1with CJj; = —1for the anti-ferromagnetic phase and C{J; = +1 for the ferromagnetic phase.
In figure 4 the numerical results for the correlator C}}; show how it depends on the coupling J (=]; = J,). At
positive couplings we verify the analytically predicted anti-ferromagnetic order which, apart from numerical
fluctuations, exists down to ] = 0. For negative ] the numerics show large fluctuations from one simulation to
the next meaning that the numerical minimization algorithm finds very different ground states. Thisisa
smoking gun of classical frustration.

In the experiments [17, 18], with A = 0, the order of the condensate were determined in a time-of-flight
measurement. The detection verified a complex order parameter and thereby a broken time-reversal symmetry.
In the model considered here with a large detuning A, the same type of measurement will give fingerprints of the
phases. The ferromagnetic case should produce similar time-of-flight images asin [17, 18], while in the
frustrated case the images will look very different due to the more irregular global phase order of the condensate.

3.2. Mott insulating phase diagram
In the insulating phase the Hamiltonian on the form of (9) is part of a larger group of Hamiltonians that can be
expressed as

I:I — ZZ has‘ja + ZZ L;)m,gi(lgja, (16)
j «a lijlo o

where the second sum includes the bonds of interest. One for us particularly relevant model of this kind is the

J1—J> model discussed in the previous subsection;

Hy, =138 -5+ 1>8-S;, (17)
) (i)
where §; = (§iX, §iy, §iZ).

For the classical system comprised of Ising spins s = =1, the frustration point separates the Néel and striped
phases. Itis an open debate whether quantum fluctuations can cause a QSL phase in the vicinity of J; = 2],
[45-48]. The consensus is that indeed an intermediate quantum fluctuation driven phase emerges, and the
estimated range for this quantum phaseis 0.42 < J,/J; < 0.62. Numerical simulations indicate that this is a
QSL, either a gaped [45, 46], or a gapless Z, QSL [47], while, a more recent work, using renormalization group
arguments, suggests instead that this phase is not a true QSL, but rather a so called plaquette valence-bond
phase [48].
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Figure 5. The energy of the ground state of the effective Hamiltonian for the Mott insulating phase (9). The energy is found for zero
fieldh = 0,and for JX = J' = 0.9JZ,and as a function of JZ /J. The plot shows that an energy plateau is formed around
J# /I¢ = 0.5 indicating the possibility that a there is an intermediate phase in between the Néel and striped phases.

Our model, equation (9), is not the full J;—J, model; the NNN couplings between both the X and Y terms are
absent, and J;¥, J, and J maybe different from one another. Nevertheless, the model still holds the promise of
yielding phases with novel quantum properties as it supports competing NN and NNN terms. To fully
characterize such phases is extremely hard even with state-of-the-art numerical methods. However, already
simple methods, like mean-field, can signal the presence of an intermediate phase. To demonstrate this we plot
in figure 5 the energy of the ground state of equation (9) as a function of the ratio between NN and NNN
coupling amplitudes for zero field h = 0. While the energy displays an expected constant slope in both the stripe
and Neel phase, in an interval around the frustration point the energy stays constant. The range of this interval
extends the one predicted for the intermediate quantum phase of the J;—J,-model, but we cannot expect
quantitative estimates from simple mean-field methods. However, it is a clear indication that there exists a third
phase.

Any anisotropy in the model will induce an effective field in the Z-direction. It appears already at zeroth
order in the perturbation, and hence the field strength / can to a good approximation be considered as a free
parameter [49]. The classical J;—], composed of Ising spins s = +1 has been analyzed in [50]. The phase diagram
is known to consist of four phases; the Néel and striped phases that both survive at zero field h = 0, the
ferromagnetic/polarized phase that appears for sufficiently strong fields h, and finally a disordered phase that
only exists for non-vanishing fields. The phase boundaries can be found analytically and when considering
classical Ising spins at zero temperature all transitions are first order. The phase diagram for the classical model is
depicted in figure 6(a). A most relevant question is how quantum fluctuations, appearing for non-zero J;* and
Ji, will affect the disordered phase. The quantum phase in the interval 0.42 < J,/J; < 0.62 for h = 0 will only
survive moderate fields, and instead some new ‘transverse disordered’ phases will possibly emerge [51-53]. Itis
by now established that for i = 4], a magnetization plateau (with constant magnetization m = 1/2 per
plaquette) establishes due to the order-by-disorder mechanism [51, 52]. This phase has been termed uuud (up—
up—up—down) to describe the spins for one plaquette. More recently, it has been suggested that a set of additional
novel phases may exist for non-zero h, intervened between the canted (the anti-ferromagnetic phases get canted
in the presence of a field) stripe and Neel phases [53]. The nature of such phases is not fully known, but they show
characteristics of supersolids.

As for figure 5, we explore the case with a non-zero field within the simplest mean-field approach. Adopting
the approach of the previous subsection the full system state is factorized between the neighbors, and single site
spins are parameterized as (§ix, §iY, §iZ) = (Ssin6; cos ¢;, Ssinb; sin ¢, S cos 6;), where S = 1/2is the spin.
This is analogous to assigning spin coherent states to every site. The energy E[6;, ¢,]is then numerically
minimized with respect to the polar and azimuthal angles ; and ¢; respectively. To distinguish between possible
phases we define

1 1 | ..
Cral = v S(SEY + EE " C=(, §) + EE C=(, j |, (18)
i (i,j) {i,j}

what we call the full correlator and where, analogous to equation (13),
C=(, j) = (57 S7). (19)

The full correlator is restricted by —1 < Cgyy < 1and it captures the four classical phases of figure 6(a); the
ferromagnetic phase is characterized by Cg; = 1, the Néel phase by Cgy; = 0, the striped phase by Cgyy = —1,
and finally the disordered phase by C,; = —1/2. The results of such a treatment are presented in figure 6. In (a)
we reproduce the classical result [50] up to numerical errors (seen as ‘scatters’ in the vicinities of the phase
boundaries). In particular, the four phases mentioned above are clearly visible. As the J;* (JI' ) becomes
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Figure 6. The mean-field phase diagram of the model of equation (9), here characterized by the full correlator Cyy defined in (18) and
with JX = J¥. Each plot represents a different coupling strength of JX = JY asindicated by the text in the figures. In the case of

JX = J¥ = 0 weseefour distinct phases, the ferromagnetic phase (green), the Néel phase (white), the striped phase (dark pink), and
the disordered phase (pink). In this (classical) limit all phase transitions are first first order. As we consider non-zero couplings

JX = J¥ afifth mean-field phase appears (light green /pink), this phase grows with increasing couplings J;¥ = J, and all PTs except
for the one between the Néel phase and the ferromagnet phase, and the Néel and the new phase, appear to be second order. The new
phase survives also for zero field, J* = 0, provided that J;X = J is large enough. At this mean-field level, the properties of the
intermediate fifth phase is unknown. The dispersed dots are numerical errors for which the simulations are not capable of finding the
true ground state.

non-zero the model is no longer integrable and quantum fluctuations set in. The transitions between the
disordered phase and the ferromagnetic and striped phases turn continuous. When /X and J' are increased, the
size of the classical disordered phase (pink in (a)) is reduced, for the price of a phase reaching down to zero field

h = 0 (light pinkin (f)). This is what is termed transverse disordered in [51]. Our analysis is not capable of
distinguishing further properties of this region, e.g. the appearance of the uuud phase or other exotic phases [53].

Exact diagonalization is limited to very small lattices which are not capable of extracting long-range
correlations. Nevertheless, in figure 7 we compare the mean-field results of Cg,; with those of an exact
diagonalization fora4 x 4lattice. As expected, the finite size effects cause the crossover region between the two
anti-ferromagnetic phase to be more extended. However, it still shows a plateau forming in the regime where the
mean-field results predicts a new phase, which is again an indicator of a fifth phase.

One last observation of figure 6 regards the extension of the intermediate regime. For afield h = 4, it seems
tosurvive down to J /JZ ~ —1when JX (J1 )is of the same order as J. As already mentioned, the nature of
this state is unknown, let alone its phase boundaries. The disorder-by-order mechanism will stabilize certain
states within this region like the uuud phase [51, 52]. To get a better estimate for the phase boundaries more
sophisticated methods are needed, but the fact that our mean-field results indicate that something is going on
also for negative ]2Z / ]12 leaves us with hope. Returning to the actual effective model of (9) that describes the
Mott insulating phase of our bipartite optical lattice model we note that identically ¥ /J;Z = —1/2,and thus we
sit on the corresponding vertical line in the phase diagram upon varying h.

4, Conclusion

We have discussed phases of a two dimensional bipartite optical lattices. The feature leading to these novel
phases is the alternation between s- and p-orbital sites. The sites hosting s-orbital atoms induces an effective
coupling between p-orbital atoms, resulting in competing NN and NNN interactions. For effective anti-
ferromagnetic coupling terms the system becomes frustrated.

For the Mott insulating phase with a single atom per site, we derive an effective spin-1,/2 model for the p-
orbital atoms. The resulting Hamiltonian is similar to the well known J;—], model that has been thoroughly
studied in the past. As a candidate model for the realization of QSL phases, we discussed the possibilities to find
also related frustration driven phases in our system. The mean-field analysis suggested the appearance of a phase
whose phase boundaries seemed to qualitatively agree with those of the predicted QSL for the zero field J;—],
model. For a non-vanishing field, which would automatically arise in an anisotropic lattice, a plethora of novel
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Figure 7. The full correlator (18) for zero field h. The result obtained by mean-field is shown as the black line, while the result from
exact diagonalization ofa4 x 4 lattice is represented by the blue line. Remember that for the Néel phase Cg; = 0 and in the striped
phase Cgyi = — 1. The range in between these two phases marks the intermediate new phase. For such a small lattice as this, the finite
size effects dominate and because of this the exact diagonalization over estimates the intermediate phase. The results of the exact
diagonalization indicates that in the intermediate phase a plateau is formed, which hints the presence of a new intermediate phase. The
parameters used for this figure are Ji¥ = J' = 0.9. The sudden jumps of the black line is again numerical artifacts when the code finds
alocal minima and not the global minimum of the energy functional.

phases have been predicted [53], and we argued that experimentally if might be favorable to actually consider
non-zero fields.

In the superfluid phase we also derived an effective model for the p-orbital atoms, but this time by assuming
alarge energy detuning between s- and p-orbital atomic states. In this regime we can adiabatically eliminate the s-
orbital sites/states. Within this framework we derive a semi-classical model showing great resemblance with a
classical XY model. Our system becomes fully frustrated in the anti-ferromagnetic regime, and we discuss
whether this could give rise to glass or liquid phases.

To numerically distinguish a true QSL phase from other possible phases is very hard [13]. These are points
that would need further investigation, i.e. do we have true QSL phases, and if not what are these phases? And how
would they be experimentally probed? As mentioned above, frustration in the SF phase should manifest in time-
of-flight measurements. To measure quantum correlations one would need more sophisticated methods like
single site detection [54].
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Appendix A. Adiabatic elimination of s-orbital degrees-of-freedom

Under the assumption that |A|is much larger than the remaining parameters, the s-orbital atoms will be slaved
the p-orbital ones. It is then legitimate to adiabatically eliminate the s-orbital degrees-of-freedom. Following the
standard procedure [55], we start from the Heisenberg equations-of-motions as obtained from the full
Hamiltonian, equations (2)—(4), to derive

J——1 q. — 1 0.1 . N A.*x q . , A.7
ataﬂ lAaSl 1(Jssn51a511tx(ax1+l + dxi—1 ) + ty(athl + Ayi ly))

Oylyj = ity (Asj41, + Ag—1,) + interaction terms,

Oidyj = ity(dsj1, + ds-1,) + interaction terms. (A1)
Here we have introduced the notation i & 1, for the horizontal neighboring sites to sitei,and i 4 1, the same
but in the vertical direction. The steady state solution for the s-orbitals is obtained from 0,4y = 0, and we make

the further assumption that the S-sites are initially empty, such that for all times (i;;) < 1and we neglect the
shift deriving from onsite interaction on these sites. The steady state solution then becomes

. ty A by A
asy = X @i, + dier) + Zy(aymy + dyio1). (A2)

When substituting this expression for the s-orbital operators in the equations-of-motion for d,; we obtain a
series of terms. Apart from the unaffected interaction terms, all of these represent different two-step processes
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involving p, and p, orbital atoms, and hence only operators on the P-sites. We write

O = f, + fi» (A.3)
where we have divided the terms into different categories. The first
fr = Uon(@sjia, + dyja, + 24y (A4)

with (as defined in the main text) the amplitude J,, = |t,|*/A. Similarly, there are terms describing NN
tunneling in the P-sublattice, i.e.

fi = 1@@yj41,+1, + dyjr1,-1, T dyj-1,4+1, + dyj—1,-1,)> (A.5)
with the amplitude J; = tt,/A. equivalently one finds the corresponding equations for 9,4, ;. From these
equations it is straightforward to derive an effective Hamiltonian for the p-orbital atoms via

Didoj = —ildaj, Hel- (A.6)

Using the Hamiltonian (7) in the above expression gives the desired equations-of-motion (A.3). The parameter
dependence of the coefficients J; and J,,, is understood from the types of two-boson processes; a p orbital atoms
tunnels with amplitude #,, to an s orbital site, where it acquires an energy contribution 1/A, and finally it tunnels
to a p orbital site with an amplitude ¢ 5. This together gives the coefficient 3 (%) to

Appendix B. Derivation of the effective Hamiltonian in the Mott phase

The Hamiltonian in the Mott phase is obtained by considering the tunneling part as a perturbation to the full
Hamiltonian. Here the fixed number of atoms per lattice site is effectively handled by dividing the Hilbert space
ofthe eigenvalue problem into two orthogonal subspaces using the projection operators PP=PandQ* =0
withP+ Q= 1P projects onto the subspace Hp where all lattice sites are occupied with one atom and Q
projects onto the complementary subspace H,. The eigenvalue problem may be written as

HQ + D)y = (Hx + AN(Q + P)y = Ey), (B.1)

where Hy is the kinetic part of the Hamiltonian, and Hy, is the interaction part of the Hamiltonian. This leads to
an effective Hamiltonian H; in the Mott phase with unit filling [49]

~ An oA 1 AN A
Hyyp = —PHy Q———5——QHgPy. (B.2)
QHQ — E
This expression is exact and serves as the starting point for treating the tunneling perturbatively, i.e. one expands
7 .Making the approximation ———— LI 1t follows that
(QHQ - QHQ-E H-—
1 1 1
e ~—1 =~ . (B.3)
QHQ — E HU (1 + Hy (Hx — E))
As the tunneling coefficient is much smaller than the interaction coefficient one may expand around
H; : (A — E).Including terms up to fourth order in the tunneling parameter yields
g=_ Y — E) |, (B.4)
H HU HU HU
such that the effective Hamiltonian may be expressed as
A~ —tKt. (B.5)

In any Mott phase only even terms in the expansion will be non-zero. For a bipartite lattice one needs to include
fourth order tunneling processes in order to couple two lattice sites of the same type. For a better understanding
of these processes, we consider two generic transitions, one starting in an S -site, which we label CS,and one
starting ina P-site denoted C”;

~P N
C —tatdta/tg/aﬂ,(askKk )(aa]Kl ad)(ale al )aa,,
&% =t tsta ityd] (aal/K, au,)(aSAKk a0)(aq,K; g)a (B.6)

For both processes there are two types of fourth order tunneling processes, those which tunnels out and back
along the same path (non-loop processes) and those which makes aloop. In the non-loop process three different
lattice sites are involved in the tunneling process, while for loop processes there are four different lattice sites
involved. In (B.6) the subscripts (i, k) refers to S-sites and (, ) refers to P-sites, hence when one is considering a
non-loop process two of these will coincide, while for loop processes they will all be different. The full expression
for the effective Hamiltonian coming from fourth order transitions is the sum over all possible contributions on
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the above form that returns the tunneling atom the original lattice site by the end of the process. The S -sites
supports only one type of orbital state, the s-orbital state, as opposed to the P-sites which support two orbital
states, the p.and p,, states. The one level nature of the S-site ensures that the contribution from these sites in the

Mott, phase willbe K§ = 4. @ = 1for the origin of tunneling process and K¢ = Uiflscﬂ = for an
intermediate S-site. This allow us to simplify (B.6) as

PA

2 03 pOu
CS= 0 [t 15, (@0, Kj a))1115 15 (@a K ajl,

SS

4 A1 & 03 4 Oy % > P
CP = —lto;tpa} o 1 (65157 (@0, K ajl. (B.7)

SS

The interaction between the p-orbitals K r depends only on the number of atoms in the lattice site, in the Mott,
phase there are two atoms in the intermediate lattice sites, and K ? can be written on matrix form

RS R” o
R7 =2 &7 o | (B.8)
0 0 K
where
. aa Uss  pap 1 A B3 ot At A
K(;(? = 2—2’ K:ﬂ = T Kaa =—4 X;/ ax;a;a(¥a1¥’ (B9)
U oy U

with U? = U, U, — Ufy [49]. More compactly one may define the contributing P-sites in terms of four
different processes depending on if the transition has a loop or non-loop structure, and depending if the P-site
is the origin (O) or an intermediate site (Z7) in the process;

o R 5P
To = Z t3 4 dgs ="t tla. K, a),
(Y(,\ o
’\(TO' AUJ’ ox,0 ~ PPt (B.10)
Z 17t a Fae, L7 =3"t7t7 awkK ay.

For non-loop (T) the tunneling takes place out and back along the same path, and there is only one superscript
0, while for loops the tunneling out and back into a lattice site are along two different bonds. In total we may
distinguish between four different tunneling processes. Two which starts in an P site, where one of them will be

loop (& 7;) and one will be anon-loop (@ 7;), and two which start in an S -site, with similar structure. Then (B.7)
may be expressed in terms of (B.10)

~S 2 a0 a0 ~S 4 o0~
Cr = FTI T, C = ?sz Ly,
5 B.11
C - 2 ,IA.,(TTU' CP_ 4 00 oo ( )
T — 7 O; L — T 5%0; I~
U T

Summing over neighboring pairs of P-sites connected via aloop or a non-loop transition then leads to an
effective Hamiltonian of the form (9). Using (B.9) the coupling constants may be evaluated. In the isotropic
latticeh = 0,and JZ, JX and J ¥ are given by

| Uz Uss
[ 2
]Y:4t4 V_*_ZFY+ (V+’Y) ,
| Us Uss
- 2
JZ =24t 4sz e (B.12)
| Us Us

with V = 120U, /U%, v = 1/Uand V, = 4U /U? + 1/(2U,), and where U, = U,, = Uand
U="U?- U,?y. In the harmonic approximation, where U, = Uy, = 3Uj,, the coupling coefficients
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52t | 1 13

]x: I >
nylJ;s (J;s ny
y_ 4.4t 41 f 56t |1 14
3UgUs| Us  3Uy | UgUgy|Us Uy |
16v2 +9 t* 4 1642 +9 16t | 1 1
je_16V2 + 4 1249 LN | (B.13)
9 Uxx Uyy Uvss 18ny Uvss ny Uvss ny
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