
High-order rational solutions and rogue
wave for the (2+1)-dimensional nonlinear
Schrödinger equation

Wenhao Liu and Yufeng Zhang

School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People’s
Republic of China

E-mail: zhangyfcumt@163.com

Received 2 August 2019, revised 19 September 2019
Accepted for publication 17 October 2019
Published 11 February 2020

Abstract
In this paper, some exact explicit rational solutions of the (2+1)-dimensional nonlinear
Schrödinger equation are presented in terms of the Gram determinants by using the bilinear
method. The expressions of the fundamental line rogue wave, second-order parallel line rogue
wave and third-order parallel line rogue wave all involve determinants whose matrix elements
are simple polynomials. These line rogue waves, which all generate from a constant background
with line contours and then disappear into the same background, are plotted in the (x, y)-plane.
Moreover, we also consider different structures of higher-order rogue waves, and their dynamical
behaviors are illustrated in the (x, t)-plane.

Keywords: (2 + 1)-dimensional nonlinear Schrödinger equation, bilinear transformation method,
parallel line rogue waves
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1. Introduction

The nonlinear Schrödinger equation (NLS) which was first
derived by Zakharov in his study of modulation stability of
deep water waves [1], a class of nonlinear systems that can
control weak nonlinearity and dispersion wave packet in one-
dimensional physical systems, is an important integrable
equation. In 1973, Hasegawa and Tappert found that the
propagation of optical pulses in optical fibers is controlled by
NLS equation [2]. Because of its practical significance,
researchers use Schrödinger equation to explain some non-
linear phenomena with high frequency in fields such as par-
ticle physics, condensed matter physics, fluids and optics
[3–9]. Under this background, it is especially important to
solve the soliton solution of NLS equations. It is worth
mentioning that analytical vector multipole and vortex soliton
solutions of a (2+1)-dimensional coupled NLS equation are
investigated by Dai [10]. In the same year, hierarchies of
Peregrine solution and breather solution are derived in a
(2+1)-dimensional variable-coefficient NLS equation [11].
Recently, rogue waves (RWs) of NLS equation, a novel type

of rational solitary waves, have attracted wide attention of
mathematics and physicists. RWs were first observed in deep
ocean [12, 13], then, in optical fibres [14] and several other
physical settings [15], RWs appeared. A thorough study of
RWs can give people a comprehensive understanding of some
abstract natural phenomena. A variety of NLS equations
including nonlocal systems satisfying parity-time (PT) sym-
metry have been verified possessing RW solutions [16–18].
For instance, variable-coefficient (2+1)-dimensional Hei-
senberg ferromagnetic spin chain equation [19] and coupled
2D NLS equations [20]. Hence finding the RW of NLS
equation is a topic of great significance. In the last decades, a
variety of construction methods for RW solution of NLS
equation have been established, such as the Hirota’s bilinear
method [21–23], the Darboux transformation method [24], the
inverse scattering method [25]. Generally, it is easy to derive
the RWs of (1+1)-dimensional NLS equations, but the
higher-dimensional ones are not simple. However, in 2012,
Yasuhiro Ohta proposed a new method to help us obtain the
RW of the high-dimensional Schrödinger equation [26].
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In this paper, we mainly focus on the following (2+1)-
dimensional NLS

+ + = = u u u ui 0, , 1.1t x y y x,
2∣ ∣ ( )

where  is a real function, and u is a complex-valued function,
which discussed by Svachan is shown to admit the painlevé

property. The bilinear form of the (2+1)-dimensional NLS
equation has been obtained by Radha and Lakshmanan [27].
The bifurcations and travelling wave solutions of the
equation (1.1) are also studied by Wang [28]. Moreover, the
general periodic solutions and RW solutions of the (2+1)-
dimensional NLS equation with the self-induced PT symmetric
potential are derived [29]. The main purpose of the present

Figure 1. The fundamental line rogue wave (3.3) of equation (1.1) with the parameter r1=0, which is plotted in the (x, y)-plane. (a) t=−4,
(b) t=−1, (c) = -t 1

2
, (d) = -t 1

6
, (e) t=0, (f) =t 1

2
, (g) t=1, (h) t=4.
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paper is to study the exact explicit rational solutions of
equation (1.1) in terms of the Gram determinants.

The rest of this paper is organised as follows. In
section 2, the bilinear form of the (2+1)-dimensional NLS is
proposed. The explicit rational solutions of the equation (1.1)
are also presented in the determinant form based on the results
of theorem 1. In section 3, the fundamental-, second-order
and third-order line RW are obtained. Especially, the specific
formulas of the maximum amplitude and the minimum
amplitude of fundamental line RW u∣ ∣ are given. Furthermore,

the dynamic characteristics of these solutions are displayed in
figures 1–6 by selecting some special parameters of coeffi-
cients. Section 4 contains a conclusion and discussion.

2. RW solutions via determinants of N×N matrices

In the section, we discuss the general RWs for the (2+1)-
dimensional NLS. The bilinear forms of equation (1.1)

+ =

+ =

D D D g f

D f f gg

i 0,

1 , 2.1

t x y

y
2 *

( ) ·
( ) · ( )

which are given in [27], can be obtained by the following
variable transformation

= =u
g

f
f, 2 log , 2.2xy( ) ( )

where f and g are the functions with respect to x, y and t, and

the operator D is the Hirota’s bilinear differential operator
defined in [30].

Theorem 1. The equation (2.2) is the rational solutions of the
(2+1)-dimensional NLS equation (1.1), where f and g are
expressed by the determinants of the N×N matrices

t t= == =f g, , 2.3l l l l0 1∣ ∣ ( )

with the matrix τl can be given by t l= - - detl i j N i j
l

1 , 2 1,2 1( )( ) ,

Here i, j are arbitrary positive integers, rm and rn are arbitrary
complex constants.

Lemma 1. The bilinear equation (2.1) has the Gram
determinant solutions t l=  detl i j N i j

l
1 , ,( )( ) in the KP hier-

archy

t t
t t t t

+ =
- =-

+

+-

D D

D D

0,

2 2 . 2.5
x x l l

x x l l l l

2
1

1

1 2

1 1

( ) ·
( ) · · ( )

Here the matrix element as follows

å

å

l m

n

¢ =
-

¶ + ¢ +

´
-

¶ + ¢ -
+

=

-

=

-

r

i m
p l

h

j n
q l

p q

1
, 2.6

i j
l

m

i
m

p
i m

n

j
n

q
j n

,
0

0

( )!
( )

( )!
( ) ( )

( )

Figure 2. The fundamental rogue wave  of equation (1.1) with the parameter r1=0 and y=0, which is plotted in the (x, t)-plane. (a) three
dimensional plot, (b) the density plot.
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where

m

n

¢ = + -

¢ = - -

-

-

px p x
p

x

qx q x
q

x

2
1

,

2
1

, 2.7

1
2

2 1

1
2

2 1 ( )

p, q, rm, hn are arbitrary complex constants, and i, j, N are
arbitrary positive integers.

The proof of lemma 1 has been given by [26]. Using the
lemma 1, we can get the results of theorem 1 [26]. Especially,
the bilinear equation (2.1) can be transformed into the bilinear
equation (2.5) by selecting the corresponding independent

Figure 3. The second-order parallel line rogue wave u∣ ∣ of equation (1.1) with the parameter r1=0 and = -r3
1

12
, which is plotted in the

(x, y)-plane. (a) t=−4, (b) t=−1, (c) = -t 1
2
, (d) = -t 1

20
, (e) t=0, (f) =t 1

2
, (g) t=1, (h) t=4.
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variables x−1=−y, = + - +x x y11
2

2
( ) , =x ti2

2

2
. Thus

it can be seen that we can obtain the rational solutions of the
(2+1)-dimensional NLS (1.1) from the solutions of
equation (2.5) by utilizing the gauge freedom of τl. The
similar proof of the theorem 1 has been provided in [31], so
we omit it here. Next we will discuss several explicit formulas
of RW solutions of equation (2.5) from theorem 1. But before
that, we take r0=1, r2=r4=r6=L=0 without loss of
generality, and retain only r3, r5, r7, L. This facilitates our
next calculations.

3. Dynamics of RWs of the (2+1)-dimensional NLS
equation

In the section, we examine the dynamics of the (2+1)-
dimensional NLS

3.1. Fundamental RW solutions

By observing the results in the theorem 1, the rational solu-
tions can be written when we take N=1
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Figure 4. The second-order rogue wave  of equation (1.1) with the parameter r1=0 and y=0, which is plotted in the (x, t)-plane. (a), (c)
= -r3

1
12
, (b), (d) r3=10.

5

Phys. Scr. 95 (2020) 045204 W Liu and Y Zhang



m n=
+

¢ -
+

+ ¢ -
+

+

+
+

p q

p

p q
r

q

p q
h

pq

p q

1

,

1 1

2

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

å

å

l m

n

m n

m n

=
-

¶ + ¢ +

´
-

¶ + ¢ -
+

= ¶ + ¢ + + ¶ + ¢ + -
+

=
+

¢ -
+

+ + ¢ -
+

+ -

+
+

=

-

=

-

3.2

r

m
p

h

n
q

p q

p r q h
p q

p q

p

p q
r

q

p q
h

pq

p q

1
1

1
1

1

1 1
1

1
1 1

,

m

m
p

m

n

n
q

n

p q

11
1

0

1
1

0

1
1

1 1

1 1

2

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

( )!
( )

( )!
( )

( )( )

( )

( )

in which p=q=1 and r1, h1 are all freely complex con-
stant. Therefore, the exact expression of fundamental RW can
be given as

= -
+

+ - + +
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It is not hard to analyse that the modulus u∣ ∣ of
equation (3.1) has three extreme lines as follows
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Based on this, the maximum amplitude and the minimum
amplitude of u∣ ∣ can be derived, respectively, by solving
values of special significance, read

= = +
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u u
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u u u
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It has been proved from the above equation that u max∣ ∣
=u 1min∣ ∣ when  ¥t , which tell us that the rational

solution (3.3) approaches a constant background with t∣ ∣
tending to infinity. Understanding in this background is what
we call the line RW. As shown in figure 1, with the value of
time t increasing, amplitude of the line RW increases until

reaches its maximum 3 at t=0. Taking t=0 as the
demarcation point, with the value of time t continues to
increases, amplitude of the line RW gradually decreases.
Ultimately, the wave approaches the constant background
when t 0 . Figure 2 presents the fundamental RW  of
equation (3.3) in the (x, t)-plane. It is not difficult to see these
RWs have different dynamics in different planes. In part-
icular, the Nth-order RWs consist of +N N 1

2

( ) localized waves,
which have the characteristics of (1+1) dimensional RWs.

3.2. High-order RW solutions

The results of theorem 1 tell us that we can consider the Nth-
order RWs for the (2+1)-dimensional NLS (1.1) by
selecting an arbitrary given value of N. Thus the explicit form
of the second-order RW solution can be written in the cir-
cumstances of N=2 as
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In section 2, we have pointed out that r0=1, r2=0, and r3
is arbitrary complex constants. Here we just letting r1=0 in
equation (3.6), the second-order RW solution admits the
expansion
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Figure 5. The third-order parallel line rogue wave u∣ ∣ of equation (1.1) with the parameter r1=0, = -r3
1

12
and = -r5

1
240

, which is plotted

in the (x, y)-plane. (a) t=−4, (b) t=−1, (c) = -t 1
2
, (d) = -t 1

40
, (e) t=0, (f) =t 1

2
, (g) t=1, (h) t=4.
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The corresponding second-order parallel line RW u∣ ∣ and
second-order RW  are shown in figures 3 and 4, respectively.
Figure 3 displays the changing dynamic of the second-order
parallel line RW over time t. It can be seen that when two
parallel traveling waves are generated by a constant background
in the (x, y)-plane, the intersection of their regions produces a
higher amplitude (As shown in figure 3(b)). And then when the
time t equals zero, the superposition of two parallel traveling
waves produces a maximum main peak with an amplitude of 5
and several lower peaks (see figure 3(e)). Ultimately, the
attenuation of two parallel RW returns to a constant back-
ground. Figure 4(a) depicts the fundamental pattern generated
by interaction of these three RWs, and figure 4(b) present the
triangular pattern.

This is what we will do: further discussion on the case of
N=3 in theorem 1. The third-order RW solution has the

following forms
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We no longer give the expression of the third-order RW solution
because they are too lengthy. With the selection of the parameters

= = = = -

= = -

r r r r

r r
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12
,

0,
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240
, 3.10
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the third-order parallel line RW u∣ ∣ is obtained and plotted in
figure 5. We get more complex three-dimensional plot than the
second-order parallel line RW (3.7). The third-order parallel
line RW consists of three independent fundamental RWs in the

Figure 6. The third-order rogue wave  of equation (1.1) with the parameter r1=0 and y=0, which is plotted in the (x, t)-plane. (a), (c)
= -r3

1
12

and = -r5
1

240
, (b), (d) r3=20 and r5=0, (c), (f) r3=0 and r5=120.
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(x, y)-plane. We noticed that the third-order parallel line RW and
the second-order parallel line RW have similar dynamic char-
acteristics as time t goes by. When t=0, the superposition of
three parallel traveling waves produces a maximum peak with an
amplitude of 7. For figure 6, the third-order RW of equation (1.1)
is composed by 6 fundamental localized waves the (x, t)-plane.
The third-order RW also has three basic patterns: the funda-
mental pattern, the triangular pattern and the ring pattern.

4. Conclusion and discussion

In this paper, we investigated the (2+1)-dimensional NLS by
utilizing the bilinear transformation method. The general form-
ula for the Nth-order RW solutions of the equation (1.1) are
constructed based on the results of theorem 1, in which these
solutions are expressed explicitly in terms of determinants. The
corresponding fundamental parallel line RW u∣ ∣ in the (x, y)-
plane and fundamental RW  in the (x, t)-plane are given in
equation (3.3). The dynamic characteristics of these solutions are
analyzed, and we can easy to know that, with the value of time t
increasing, amplitude of the line RW increases until reaches its
maximum at t=0. Finally, these waves approach the constant
background when t 0 . Furthermore, we observed that the
second-order RW and the third-order RW consist of two parallel
line RWs and three parallel line RWs, respectively (see figures 3
and 5). In addition, the dynamics of these line RWs in the (x, t)-
plane are shown in figures 2, 4, 6. It is worth noting that the Nth-
order RW consists of +N N 1

2

( ) localized waves, which have the
characteristics of (1+1) dimensional RWs. Our results reveal a
range of interesting and complicated dynamics, and we hope
they can help explain some special phenomena in the filed of
mathematical physics and engineering.
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