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Abstract
We study the excitation of axions by intense laser pulses propagating in a plasma. We assume that
the pulses propagate along the direction of a static magnetic field. We examine two different
configurations. One is that of a long pulse, with a duration Δt much longer than the electron
plasma period,Δt?1/ωp. In this case, the axion field couples with the electron plasma waves (or
plasmons) which are excited by the laser pulse, due to a modulational instability. The dispersion
relation of the coupled axion-plasmon modes, the unstable regimes and the instability growth rates
are established. The other configuration is that of a very short laser pulse, with a duration of the
order of (or shorter than) the electron plasma period. In this case, the modulational instability is
absent, but a laser wakefield can be excited. The latter consists of both electron density and axion
field perturbations. The amplitude of this wakefield is described with a simple one-dimensional
model. The two configurations (long and short pulse) can eventually be used to create axions in the
laboratory and we suggest that laser plasma experiments could shed some light on the existence of
these hypothetical dark matter particles.
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1. Introduction

Dark matter is a key ingredient in physical cosmology and one
of the mysteries of modern science [1–3]. Among several pro-
posed candidates (generically referred as WIMPs and WISPs,
standing for weakly interaction massive and slim particles,
respectively), axions or axion-like particles (ALPs) are the most
plausible constituents of dark matter [4]. The axion was pro-
posed as a hypothetical particle that could solve the fundamental
problem of charge-parity (CP) invariance in QCD [5–11]. The
proof of existence of this particle has been actively searched for
more than one decade, so far without success, using laboratory
experiments and astrophysical observations [12]. This research
activity relies on the existence of a weak axion-photon coupling,
and has led to solar observation campaigns [13, 14], light
shining through a wall (LSW) schemes [15, 16] and other
experimental arrangements [17–19].

All these experiments use static magnetic fields, in order
to excite the axion-photon coupling. The axions could then
decay into photons, providing a signature of their existence.
In recent years, it became clear that static magnetic fields
could be replaced by varying fields as those of a laser, and
that intense laser pulses could be used to excite or detect
axions [20–24]. Another approach uses static magnetic fields,
but in a plasma medium. The signature of axions could then
be found in the dispersion relation of plasma waves [25],
which shows a distortion due to the excitation of the axion-
polariton mode in the region of high phase velocities. The
case of axion excitation by laser wakefields in unmagnetised
plasmas was also considered in [26].

Here we discuss the possible excitation of axion-polar-
itons, using intense laser pulses in a magnetised plasma. We
study two different configurations. First, we consider long
laser pulses, with a duration much longer than the plasma
period Δt?1/ωp, where ωp is the electron plasma fre-
quency. These long pulses excite large amplitude electrostatic
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oscillations as a result of a modulational instability which,
subsequently, induce large amplitude perturbations of the
axion field. The dispersion relations of the resulting axion-
polariton modes, the unstable regimes and the instability
growth rates will be established. Second, short laser pulses,
with a duration of the order of (or shorter than) the plasma
period will be considered. Here, despite the absence of a
modulational instability, a laser wakefield is excited, which
acquires a finite axionic component. The amplitude of the two
coupled plasma and axion wakefields will be described by a
one-dimensional model.

Our work shows that resonant regimes of axion excita-
tion by intense laser pulses can take place in a magnetised
plasma. Given the large uncertainty associated with the axion
mass and its coupling constant, the mechanisms described
here could help clarify the dark matter problem by providing a
new experimental approach based on intense laser-plasma
interactions. In particular, axions are expected to couple to
plasmon oscillations excited by intense laser pulses. The
ultimate goal is the discovery of this hypothetical dark matter
particle. Furthermore, in the astrophysical context, the phy-
sical mechanisms discussed here could eventually imply that
local sources of dark matter exist in the Universe, specially in
the vicinity of dense astronomical objects, where intense
beams of electromagnetic radiation, dense plasmas and strong
magnetic fields can simultaneously be present.

2. Basic equations

We consider an axion field j in the presence of an intense
laser pulse which propagates in a plasma along the direction
of a static magnetic field B0. This magnetic geometry differs
considerably from that used in the current axion detection
experiments and LSW schemes, as illustrated in figure 1. The
axion helioscope, first proposed by Sikivie [27], was aimed to
detect the axion flux originated from the Sun, using a static
magnetic field perpendicular to the direction of propagation of
the incoming axions, by converting them into x-ray photons
via the inverse Primakov effect. The usual LSW configura-
tions use a cw laser beam propagating perpendicularly to a
static magnetic field in vacuum.

In contrast, the present configuration assumes that the
laser pulse propagates along the direction of a static field B0,
not in vacuum but in a plasma. This means that the laser field
is always perpendicular to B0, and cannot directly be coupled
to the axion field, as explained below. Coupling is established
by the electrostatic field associated with the plasma oscilla-
tions, and not directly by the laser field itself. Experiments on
laser-plasma interactions show that these two electric fields
(the transverse field associated with the laser, and the elec-
trostatic field associated with the electron plasma waves
excited by the laser) can be of comparable magnitude [28].

The axion field is described by a Klein–Gordon equation,
which includes a photon-axion coupling term proportional to

(E·B0), namely

j
¶
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Here, W =j j m c2 2 4 2, mj is the axion mass, g the coupling
constant, and ò0 the vacuum permittivity. The electric and
magnetic fields, E and B respectively, are determined by
noting that we can define the fields ¢E and ¢B which obey
Maxwell equations in their usual form. In particular, [29]
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These new fields therefore satisfy the wave equation
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Here, the current density is J=−enev, where the electron
mean density, ne, and mean velocity, v, can be determined by
the electron fluid equations, or in alternative, by an electron
kinetic equation.

We assume that two distinct electric fields are present: the
electrostatic field Es associated with plasma oscillations, and the
transverse field Et of the laser pulse. Similarly, for the magnetic
field, we have the external static field B0 and the laser field
component Bt. This allows us to write: E=Es+Et, and
B=B0+Bt. According to the wave equation (3), the electro-
static field Es is described by a modified Gauss’s law of the form

j + = -


cg
e

nE B , 4s 0
0

· ( ) ˜ ( )

where n0 is the equilibrium plasma density and = -n n ne 0˜ ( )
represents the deviations from equilibrium. On the other hand,

Figure 1. Schematic representation of two different physical
configurations: (a)—the LSW scheme, where a cw laser beam
propagates in a magnetised vacuum. The laser electric field is
parallel to the static magnetic field; (b)—the present scheme, where
an intense laser pulse propagates in a magnetized plasma along
the direction of a static magnetic field B0. The laser field is
perpendicular to the magnetic field, but the secondary electric field
of an electrostatic character and parallel to B0 establishes a possible
coupling with the axion field.
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the transverse field Et is described by
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We assume that the laser pulse propagates along the static field
B0, leading to (Et·B0)=0 together with (Et·Bt)=0. It
should be noticed that the laser magnetic field Bt is always
orthogonal to the electrostatic field Es, and therefore cannot
couple to the axion field. In order to describe the intense laser
pulse, a dimensionless vector potential a can be used, defined as
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It is also known that, at relativistic intensities, the electron
momentum is approximately equal to γv/c=a, where γ is the
electron relativistic factor. This allows to rewrite the wave
equation (5) in terms of the dimensionless vector, as
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where w = e n mp e
2

0 0
1 2( ) is the electron plasma frequency.

This completes the discussion of the basic field equations per-
tinent to our model.

The spectrum of the laser pulse is not monochromatic,
and the total field a can be described as a superposition of
modes ak associated with different photon wavenumber ¢k .
Because the photon dispersion relation specifies the frequency
w¢k, we can use a single integral to represent the total field:

ò w p= - ¢ ¢ta a kexp i d 2k k
3( ) ( ) . It is sometimes useful to

write this integral in terms of the photon density Nk, as shown
in appendix A.

3. Modulational instability

We first consider the case of long laser pulses, with duration Δt
longer than the plasma period,Δt?1/ωp. We consider density
perturbations ñ evolving in space and time as w- tk rexp i i( · ),
where the wavevector k and the frequency ω should not be
confused with the wavevectors ¢k and the frequencies w¢ of the
laser pulse spectrum.

Using the procedure described in appendix B, we can
derive a dispersion relation for the combined axion-plasma
oscillations, in the presence of a laser pulse, namely

c c c
w

- - - =
W

j1 1 . 8e ph

4

4
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Here, χj, χe and χph represent the axion, electron and laser
field (or photon) susceptibilities. The axion coupling factor
is w wW = c g , where ωc is the electron cyclotron frequency
and ωg is the axion coupling frequency, as defined by (see
appendix B)

w w= =


eB

m
g c

n m
, 2 . 9c

e
g

e e0 2 2 5 0 ( )

In the absence of a laser beam, χph=0, equation (8)
simply describes the polariton modes already discussed in our
previous work [25]. They are nothing but axion-plasmon
coupled oscillations. The presence of a pulse, c ¹ 0ph ,
introduces an important qualitative change, as it leads to an
instability of the axion-plasmon field. In order to better
illustrate this, we explicitly separate the complex frequency ω

into its real and imaginary parts, ω=ωr+iΓ, with Γ>0
quantifying the instability growth rate. These two quantities
are plotted in figure 2. The Ω factor is responsible for the
excitation of axion oscillations by coupling the axion field to
the electrostatic perturbations that results from the modula-
tional instability determined by (1−χe−χph)=0.

It is useful to give a simple analytical estimate of the
expected growth rates of this axion-plasmon instability in
the magnetised plasma. As such, we assume that the real
part of the frequency is much larger than the growth rate,
w w Gr p ∣ ∣  . We use the dispersion relation (8), and
assume a triple resonance identity

w w
g

w= = = +j kv k S
1

, 10r
a

p e0
2 2 2( ) ( )

where v0 is the laser group velocity, γa is the electron rela-
tivistic factor in the laser field, and Se the electron thermal

Figure 2. Dispersion relation for the modulation instability created
by an intense laser pulse in a magnetized plasma: (a) real part fo the
frequency ωr/ωp, and (b) instability growth rates Γ/ωp.
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velocity (see appendix B for definitions). We can then obtain
an equation for the growth rate Γ, of the form

w w

w

w n
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where n = kc a 4ph 0∣ ∣ is the photon density parameter, pro-
portional to the normalised laser field amplitude a0, as derived
in appendix B. Noting that the term containing wg

2 is very
small, the maximum instability growth rate will be given by

w
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Formally, this is a typical result for beam-type instabilities,
valid under the assumption of the triple identity condition
(10), corresponding to G µ a0

2 3. A similar result could be
obtained for the an electron beam with density nb, where we
would get G µ nb

1 3. Note, however, that not all the unstable
wavenumbers are equally relevant to the excitation of axions.
This can be shown by looking at the relative importance of ñ
and j inside the unstable domain. Using equation (B4), we
can write the dimensionless relation

j
w w
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This expression shows that the axion field is resonantly excited
in a very small frequency band, where ωr is nearly equal to the
characteristic axion frequency ωj. This is illustrated in figure 3,
where the absolute value of the normalised axion field

j w wY = g p g
2 2( ) is represented in the unstable range of

wavenumbers k, assuming that the instability saturates at
~n n0˜ . Note that, despite the increase of the axion field for

very large wavelengths, the limit of k 0 eventually becomes
irrelevant due to the finite size of any experimental system.

4. Axion wakefield

The above discussion is valid when the laser pulse duration is
much longer than the electron plasma wave period, ωpΔt?1.

We now consider the opposite case of short laser pulses, such
that ωpΔt�1. The perturbations created by these short pulses
form a kind of combined axion-plasmon wakefield, similar to
the wake created by a moving boat in the surface of a lake. We
will use a simple 1D model to describe the process, as
explained in appendix C. The transverse dimensions, that we
are ignoring, could be important to describe electron betatron
oscillations, but have little effect on the axion-plasmon cou-
pling, because of the radial symmetry of the wake.

We begin the analysis by considering the standard laser
wakefield problem, where the axions are ignored (see, for
instance, [30]). In terms of the co-moving variable
ξ=z−v0t, the plasma density perturbations associated with
the laser wake are determined by

òx
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0 2
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where we have used the laser pulse intensity =I a0 0
2∣ ∣ . The

plasmon wavenumber k is nearly equal to ωp/γac, and its
exact definition is given in appendix C. The coupling term
Ω is now responsible for the excitation of the axion wake
given by

òj x x= - ¢ ¢
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e

g B
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n x2 d . 150

2
( ) ˜( ) ( )

These wakefield solutions are illustrated in figure 4. They
show that, in addition to the usual electron plasma oscilla-
tions, a wake of axions is now present. Wakefield losses and
nonlinearities were neglected, but can easily be incorporated.
In the above solutions we have assumed that the relativistic
factor γa is constant. This is a good approximation in the
wakefield region, even for arbitrary intensities (see figure 4).
Note that, it is the electrostatic perturbations resulting from
the modulational instability that are responsible for the exci-
tation of the axion wake. The latter can, in principle, feedback
onto the plasmon modes in a self-consistent manner. How-
ever, this effect is very small [25] and we explicitly ignore it

Figure 3. Absolute value of the dimensionless axion field
j w wY = g p g

2 2( ) , as a function of the normalised wavenumber kc/
ωp, for ωc/ωp=1 and =n n 10˜ , for the same conditions of figure 1.

Figure 4. Plasma and axion wakes, assuming high laser intensities,
such that a0;γa=10: The pulse shape, I0 (ξ)/I0 (0), is represented
in shaded red; the electron plasma density wake, xn n 0˜( ) ( ), is
represented in black; the same curve, but for a nonrelativistic pulse
with γa=1, is represented in dashed black; (4) the normalised axion
wake, j w wY = g p g

2 2( ), is represented in blue.
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here. This also means that indirect detection of axions via
their influence on the electrostatic oscillations is extremely
difficult. We propose instead the detection of these newly
created axions by a separate apparatus (similar to the shining
through wall detectors). We have previously proposed the use
of relativistic electron beams in a plasma shining through a
wall (PSW) experiment, with sensitivities that can compete
with the usual light shining through a wall (LSW) exper-
imental setup [31]. Here we have explored an alternative
plasma model, where the relativistic electron beams are
replaced by intense laser pulses. The resulting electric fields
are comparable. Therefore, the numerical estimates of [31]
remain valid in the present context. In recent years, laser-
plasma experiments have shown that we can create density
perturbations of ~ -n 10 cm18 3˜ , using gas jets together with
laser intensities of I0∼1018Watt cm–2 [28]. For axion stu-
dies, we should work at much lower densities, in order to be
at resonance with the expected axion mass, which seems
achievable.

5. Conclusions

We have studied the active production of axions in a plasma,
using intense laser pulses propagating in the direction of a
static magnetic field B0. Two laser pulse regimes were con-
sidered. The long pulse regime, where modulational
instabilities take place, and the short pulse regime, where
axion-plasmon wakefields can be excited. In particular, we
were able to show that axion-plasmon coupled oscillations,
first discussed in [25], can become unstable due to modula-
tions of the laser field amplitude and the resulting plasma
density perturbations. We have derived new dispersion rela-
tions, and established the respective growth rates. The usual
dispersion relations of laser-plasma systems are modified by
the axion field which inherits the typical modulational
instability that occurs in the former. The laser field itself
cannot directly couple to axions, because of the transverse
polarisation, but coupling is established through the long-
itudinal plasmon field.

Furthermore, in the short pulse regime, the electrostatic
wakes are slightly modified by the presence of axions. New
wakefield solutions were established, which show the exis-
tence of an axion wake produced by the laser pulse. Direct
detection methods, using electric probes or optical imaging
seem unrrealistic. The situation changes when we consider the
potential use of these laser-plasma interaction processes in the
frame of a shining through wall experiment. Here, plasma
configurations could be relevant to produce axions in the
laboratory. Local creation of axions by plasma instabilities
and wakes could considerably increase the chances to detect
axions with shining through wall detectors (see [31] for a
detailed numerical analysis). The design of new experiments
using intense lasers and electron beams in a plasma will be
examined in a future paper.

Finally, in the astrophysical context, we can easily ima-
gine that intense radiation bursts, emitted by magnetars and
active galactic nuclei along locally intense magnetic fields,

would allow for the local production of axions through the
two processes described here.

Appendix A. Photon number density

Each component ak of the vector potential ò=a ak

w p- ¢ ¢t kexp i d 2k
3( ) ( ) , can be represented in terms of the

photon number density Nk. This quantity is defined by
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2∣ ∣ is the spectral energy density. In geometric

optics, the evolution equation for Nk, takes the form of a
Vlasov equation of the form [30]
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Appendix B. Dispersion relation

The electron fluid equations, with a ponderomotive force due
to the laser field is
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2∣ ∣ the electron relativistic factor in the laser
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We linearize these equations with respect to the pertur-
bations = -n n ne 0˜ . Noting that òµ ¢ ¢a N k kd2∣ ∣ ( ) , and
assuming a quasi-1D model with an electrostatic field parallel
to the static magnetic field, we get
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where ω0 is the central laser pulse frequency. Here, the axion
field is determined by equation (1), with E=Es and the
photon density perturbations ¢N k˜ ( ) are described by the
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linearised kinetic equation (A2). which can be stated as [30]
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where ¢N k0 ( ) is the unperturbed photon density. Let us now
assume evolving as j w¢ µ -n N kz tk, , exp i i( ˜ ˜ ( ) ) ( ). From
equation (1), we obtain
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For convenience, we also use the electron cyclotron fre-
quency ωc, and the axion coupling frequency ωg, defined by
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A relation between the perturbed quantities ¢N k˜ ( ) and ñ, can
be established by using
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Replacing this in equation (B3), integrating by parts and
assuming d= ¢ - ¢N N k kk0 0 0( ), with w¢ =k c0 0 , we obtain
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where = ¢ ¢ = ¢v v k k0 0( ). We have also used the relative
photon density parameter νph, defined as
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From here, an effective electron beam density, =neff

nn K c0 ph
2 2 2/ , can be defined.

Appendix C. Wakefield equations

We replace equation (B2) by
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where we have g = + I1a 0 . For the axion field equation,
we can replace equation (1), by
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These equations describe the electron density and axion field,
ñ and j, produced by the short laser pulse.

We use a transformation from (z, t) to (ξ=z−v0t,
τ=t), and take the quasi-static limit, ∂/∂τ;0. Neglecting
thermal effects (Se

2=c2), we get
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From here, we can easily derive a wakefield equation in
closed form
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with the wavenumber
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The axion correction to the usual plasmon wavenumber is
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