10OP Publishing

Physica Scripta

Phys. Scr. 95 (2020) 044001 (11pp)

https://doi.org/10.1088/1402-4896 /ab5735

Structural inpainting techniques using

equations of engineering physics

Tudor Barbu

Institute of Computer Science, Romanian Academy—Iasi Branch, Iasi, Romania
E-mail: tudor.barbu@iit.academiaromana-is.ro

Received 29 July 2019, revised 23 October 2019
Accepted for publication 13 November 2019
Published 11 February 2020

®

CrossMark

Abstract

A comprehensive survey on structure-based inpainting methods based on equations of
engineering physics is provided in this work. Diffusion equations, describing the random motion
of the micro-particles in physics, have been successfully applied in the image processing areas in
the last decades. Nonlinear anisotropic diffusion-based structural inpainting techniques, using
variational and non-variational PDE models, are discussed first. Influential variational
interpolation approaches, such as those using the Mumford—Shah functional, total variation
inpainting and its versions, and Euler’s Elastica inpainting, are addressed here. Second and
fourth-order anisotropic diffusion-based interpolation schemes, some of them not following
variational principles, are then presented. Our own contributions in this field are also discussed.
The applications of the reaction-diffusion equations, like Ginzburg—Landau equation, describing
a large variety of physics phenomena, in the inpainting domain, are described next. Structural
reconstructions methods using partial differential equations for fluid dynamics, such as the
Navier—Stokes equations describing the motion of the viscous fluids, are then considered here.
Other state of the art third-order PDE-based structural inpainting algorithms surveyed here are
based on the curvature-driven diffusion equations that use the thermal diffusion principle in
physics. Fourth-order PDE-based interpolation solutions, such as Cahn—Hilliard inpainting that
uses a modified mathematical physics equation describing the phase separation process, are also

described.

Keywords: image interpolation, anisotropic diffusion models, reaction-diffusion equations,
curvature driven diffusion-based inpainting, equations of fluid dynamics for inpainting, Cahn—

Hilliard inpainting
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1. Introduction

Partial differential equations (PDE) have long been used to
construct mathematical models in the physics of continuous
media [1]. Because these differential equations express con-
tinuous change, they have been used to model dynamical
phenomena in heat conduction, fluid mechanics, elasticity,
vibrating strings, electromagnetism and many other physics
and engineering areas.

Also, the equations of engineering physics have been
successfully applied in the image processing domain in the
last 35 years. The origin of the PDEs is physics, since these
equations are closely related to the world governed by

0031-8949,/20,/044001+-11$33.00

physical laws, but they have been intensively applied to
various sub-domains of image processing and analysis,
too [1].

Since the equations that describe the natural phenomena
hold for a continuum and the images can be analyzed in
continuous spaces, these PDEs have been successfully used to
develop some effective image restoration, interpolation, seg-
mentation, compression, registration, decomposition and
motion estimation solutions in the last decades, which solve
properly the challenges that still exist in these fields. They
offer some important advantages to these domains, such as
their rigorous mathematical foundation, their modeling flex-
ibility and their fast and accurate numerical approximation
methods.

© 2020 IOP Publishing Ltd  Printed in the UK
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In this paper we focus on the PDEs of physics applied in
the image interpolation domain. The aim of the image inter-
polation, known also as inpainting or completion, is to
recover the missing or highly damaged image regions using
the information of the known surrounding areas of the
image [2].

The inpainting domain has some important application
areas, such as digital artwork reconstruction, undesired object
and text removal, image compression and image zooming and
super-resolution. The inpainting approaches may have a tex-
ture-based, structure-based or combined character. The tex-
tural inpainting techniques, which can be based on texture
synthesis [3] or represent exemplar-based techniques [4], do
not represent the focus of our research. Only the structural
inpainting is considered here.

The structural inpainting techniques employ information
around the missing regions to estimate the isophotes from
coarse to fine, and diffuse that information by a diffusion
mechanism. The main motivation of choosing the PDEs for
image reconstruction is that the PDE-based interpolation
models perform automatically an effective inpainting of the
missing regions while not altering the known part. They avoid
the unintended effects, like blurring, thus preserving properly
the essential image features, such as the edges and corners.
The state of the art structure-based interpolation methods
using PDEs of engineering physics is surveyed here.

So, the inpainting techniques based on nonlinear diffu-
sion equations are described in the next section. While some
of them follow variational principles, other have a non-var-
iational character.

Then, the image interpolation based on the reaction-dif-
fusion equations is addressed in the third section. Structural
inpainting solutions using third-order PDEs for fluid
dynamics are presented in the fourth section, while the cur-
vature-driven diffusion (CDD)-based inpainting is described
in the fifth section. The sixth section is dedicated to the image
reconstruction approaches based on nonlinear fourth-order
PDE:s for physics. The article ends with a section of conclu-
sions and a list of references.

2. Nonlinear diffusion-based image interpolation

The diffusion represents the process in physics that is related
to moving from an area of high concentration to a zone of low
concentration. This physical process equilibrates the con-
centration differences and conserves the mass, since it does
only transports it, without creating or destroying the mass.
Diffusion equations represent PDEs that describe this
behavior of the collective motion of micro-particles in a
material that results from the random movement of each
particle, in physics [5]. These equations are obtained from the
Fick’s laws of diffusion, which describe the diffusion process
[5]. Thus, they have the general form % = div(D - Vu),
where D represents the diffusivity and u is the concentration.
These equations are useful in numerous domains,

including image processing, where the concentration is

identified to the grayscale value at a given location and the
diffusion coefficient D may take various forms depending on
the image processing task. In this section we discuss the
application of the nonlinear diffusion equations to the image
interpolation field.

While some PDE-based inpainting models follow varia-
tional principles, being derived from minimization problems,
other diffusion schemes cannot be expressed as variational
models, being directly provided as evolutionary differential
equations. Some state of the art variational image interpola-
tion techniques are surveyed in the next subsection, while
some nonlinear diffusion-based inpainting solutions are
described in PDE form in the second subsection.

2.1. Variational models for structure-based inpainting

The energy-based structural inpainting algorithms recover the
image affected by missing regions by minimizing energy cost
functionals of the form:

min (J(u) =R(u) + %j; Ar(u — u0)2dQ), (1)

where the image domain 0 C R?, T is the inpainting region,
the inpainting mask is given by Ar = A - 1g\p, A > 0, the
regularizing term R (#) containing a-priori information from
the image u is responsible for the filling process, and the

fidelity term % fg Ar(u — ug)*dQ) makes the minimizer to

remain close enough to the observed image u, outside of the
inpainting domain [6]. The corresponding diffusion equation-
based model is achieved from (1) by using the Euler—
Lagrange equation and the gradient descent method [7].

Many variational inpainting solutions have been obtained
by considering various versions of the regularizer term. Thus,
the harmonic inpainting model is characterized by
R(u) = L/;Z||Vu||2dxdy [2]. It represents a quite simple
interpolation approach that does not satisfy properly the
connectivity principle.

Other early variational reconstruction approaches are
based on the Mumford—Shah image segmentation model. One
of them uses the I'-convergence approximation of the
Mumford-Shah functional [8], being given by the next
minimization:

min(lf Ar(u — up)*dQ + lf 22 |VuPdQ
u 2 Ja 2 Jao\r

a- Ze)2
+ afﬂ (e|Vze|2 + T)dQ], (2)

where z. denotes the signature function of the edge set [8].
This inpainting technique is characterized by a low com-
plexity and a fast numerical convergence, and preserves the
image details very well.

Total variation (TV) inpainting developed by Chan and
Shen [9], which constitutes a very influential variational
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interpolation model, is described by the minimization:

. Ar
E = Vull dxd — — 2dxdy |.
g (P10 = [ o o+ 5[ o o)
3

It inpaints successfully the missing regions by minimiz-
ing the first-order TV while keeping close to the initial image
in the known part. Also, it achieves a good connectivity, but
not for very large image gaps, and may generate the undesired
staircase effect. The following nonlinear second-order aniso-
tropic diffusion model is obtained from TV inpainting
scheme, by applying the Euler-Lagrange equation and then
the steepest gradient descent method [7]:

((?9_[; =aV - (lzzl) — Ar(u — Mo).

u(0, x, y) = ug

Many TV-based reconstruction approaches of higher
orders that improve the TV inpainting technique have been
developed. So, the TV? inpainting model is obtained by
considering the second-order TV as regularizer function:

R(u) = f |V2u| dxdy [2]. It outperforms TV inpainting,
0

obtaining a better interpolation and more natural recon-
structed images, and overcomes better the staircasing. TV?
inpainting represents also a better connectivity solution,
providing a proper interpolation along large gaps.

Some variational techniques combine the first and the
second order TV regularizations to achieve improved
inpainting results. Such a TV + TV? inpainting model [10] is
based on the following minimization:

u* = arg min (ﬁf (4 — up)*dxdy
2 Jor

u

+j;) a(x)|vu|dxdy+£zﬁ(x)|v2u|dxdy), @)

where «(x) and ((x) represent two properly modeled spa-
tially varying functions.

This compound variational inpainting solution provides
effective completion results, outperforming both TV and TV?
inpainting schemes. It interpolates succesfully large missing
zones and avoids the unintended effects. It is numerically
solved by applying the Split Bregman algorithm [10].

Other improved TV-based inpainting frameworks are the
total generalized variation inpainting [11], Blind inpainting
using Iy and TV regularization [12] and TV inpainting with
primal-dual active set method [13].

Another influential higher-order variational inpainting
technique is Euler’s Elastica inpainting model, developed by
Chan and Shen [14]. It is derived from (1) by considering the

regularizer:
. vu Y
R(u)_j;w(u)[a+5(v IWI)

where the coefficients «, 3 > 0 control the behavior of this
scheme and w (u) is a weighting function depending on the
evolving image’s histogram. This approach is able to inpaint

|Vu| dxdy, (5

a) Harmonic Inpainting
(small gap)

d) TV-2 Inpainting

LL (large gap)
!
I H .

b) TV Inpainting U

(small gap)

e) Euler's Elastica Inpainting

U

T (arge o)

) largegap) I .

_—_ *
U

Figure 1. Reconstruction results achieved by various inpainting
models.

large missing regions and works properly in noisy conditions,
also. Euler’s Elastica inpainting provides a much better con-
nectivity than TV inpainting model, being able to interpolate
successfully along much larger gaps [14].

The connectivity power of the described variational
inpainting techniques is illustrated in figure 1.

We have also developed numerous energy-based struc-
tural inpainting techniques and disseminated them in our past
works. While some of them are mainly based on various
forms of the regularizer component in (1) [15], other varia-
tional interpolation solutions proposed by us have a hybrid
character, combining some nonlinear second and fourth order
diffusions [16].

2.2. Nonlinear second-order PDE-based inpainting

In the previous subsection we have described nonlinear dif-
fusion-based inpainting models that follow the variational
principle and are expressed in energy-based form. Other
diffusion-based structural inpainting techniques are provided
in a second-order PDE-based form, many of them not fol-
lowing variational principles and directly given as evolu-
tionary PDEs.

Since image denoising and inpainting represent closely
related fields, the PDE-based interpolation models can be
derived from the PDE restoration schemes by applying some
inpainting masks to them. Besides the PDE form of TV
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inpainting described in the previous subsection, which can be
derived from TV Denoising, many other nonlinear diffusion-
based interpolation schemes can be obtained from the diffu-
sion-based filtering models [17].

The general form of a nonlinear second-order PDE
inpainting model derived from an energy-based scheme is:

% + VRu) + Ar(u — ug) = 0in Q, (6)
where VR(u) represents the Frechet derivative of the reg-
ularizer function. Depending on the selection of this reg-
ularizing component, various second-order PDE-based
inpainting techniques have been elaborated in the last dec-
ades. We have also developed some second-order anisotropic
diffusion-based image interpolation techniques [18].

Non-variational PDE inpainting solutions have been also
proposed by us. Their non-variational character is given by
the fact that their PDEs cannot be obtained from the mini-
mization of any energy functional [7]. Some of them are
based on nonlinear second-order hyperbolic PDE models
[19], like the following one:

(24 4 R2 _ div(e, (Vul) - Va)

+B — Iy)(u — ug) =0

u(0, x, y) = uo(x, y) ) (N
20, x, ¥) = m(x, )

(u(t, x, ) =0,V (x,y) € 0UN\M

A

where A, B € (0, 1] 5()_5¢1/3
Y A c Sl = S Tloge s+ K@t o ’

a,e€(0,1), ve,5], ke {l1,2,3,4} and the con-
ductance parameter K (u(x, y, t)) = |[pmedian(Vu) — 6t|,
where 7 € (1, 3) and 6 € (0, 1). So, the diffusivity function
has been constructed as positive, monotonic decreasing and
converging to 0, in order to provide a proper image diffusion.

This hyperbolic PDE model is solved numerically by
applying a consistent finite difference-based approximation
scheme that is proposed in [19]. After performing some
computations involving central differences [19], we finally
get the next explicit numerical approximation algorithm:

u/lfrl — ult 47 - 26(1 — lM) u~”»71 /\2 — 2’)/ _
LJ L] 2 i,j B
27+ X 27+ X
+ O &Vl - VPt w81~ 1y) =0

qgEN,

®)

where n =0, ..., N, V»iu(n) = u(q, n) — u(p, n) is the
gradient magnitude in a particular direction, N, is the four-
neighborhood of pixel p = (i, j) and ¢ € (0, 0.5).

It inpaints successfully the missing part, performing well
in both clean and noisy conditions, as one can see in figure 2,
which describes a noisy image inpainted by various techni-
ques. Method comparison have been also performed. The
proposed scheme produces better structural interpolation
results than some well-known PDE inpainting schemes, as
resulting from table 1, which registers the average PSNR
values.

Another non-variational PDE-based inpainting frame-
work developed by us is based on a complex nonlinear sec-
ond-order anisotropic diffusion model [20], having the next
form:

5= V(YUY - (o, (I Vul) V)

A1 — 1) —ug) =0,V (x,y) € Q i 9)
u(x, Yy, O) - MO(X’ )’), v (x’ )’) S Q
u(t,x,y) =0,V (x,y) € 00

where A € (0, 1], the positive and monotonic decreasing

n(u k+1
WM) , Where
6€(0,2), £€(1,5],ve 0, 1), ke {1,2,3,4} and the
conductance parameter 7 (u(x, y, 1)) = |eu(||Vul)) + (|,
where ¢ > 1 and ¢ € (0, 1).

The other function wused by this model is
¥: (0, 00) — (0, 00), ¥(s) = v(as" + B)ri1, where
a, v € (0,3], B€(0,3.5] and r € (0, 2]. The component
based on it, 1*(Vu), has been introduced to control the speed
of the diffusion process.

The following explicit iterative finite difference-based
numerical approximation algorithm has been constructed for
this anisotropic diffusion model [20]:

. . 1 — 21 - 1In)+
B TR A TS Y

diffusivity function ¢,(s) = 6(

n n n
=+ ui+l,j¢isj<pi+%,j + ui—l,jwi,j@i—%,j + ”i,j+1¢i,j‘:0i,j+%

+ Mif}—l@bi,j@i,j—% + ugA(l = 1p),
(10)

ie{0,1,..,1},je€{0,1,...,J},ne {0, 1,...,N}
Pitnj T Gij _ Pirnt Hy
T2 o ViRl T T

This algorithm has been successfully used in our
inpainting experiments that prove the effectiveness of our
nonlinear diffusion technique. It reconstructs properly the
damaged images by directing, and also controlling, the
speedy diffusion process to the inpainting domain while
preserving the details [20].

Also, the proposed approach outperforms other PDE-
based interpolation algorithms, by achieving better inpainting
results and executing much faster [20]. As one can see in the
method comparison example displayed in figure 3, our ani-
sotropic diffusion-based algorithm inpaints completely the
deteriorated image in 45 iterations, while other techniques,
like TV inpainting, need much more steps for this task.

where

and cpii%’j =

3. Reaction diffusion-based inpainting solutions

The reaction-diffusion equations represent PDEs that are
widely used to describe the pattern formation phenomena in a
variety of biological, chemical and physical systems [21].
Since the most common physical phenomena is the change in
space and time of the concentration of one or more chemical
substances, are naturally applied in the chemistry domain, but
the reaction diffusion equations can also describe dynamical
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a) Original Image

b) Degraded image

Figure 2. Deteriorated Peppers image inpainted by various models.

Table 1. Average PSNR values of several inpainting approaches.

Inpainting algorithm Average PSNR

This hyperbolic PDE model 31.27 (dB)
TV inpainting 29.86 (dB)
Harmonic inpainting 28.42 (dB)

processes of non-chemical nature, such as the neutron diffu-
sion in physics.

A reaction-diffusion equation is composed of a diffusion
component and a reaction term, having the following general
form:

8—u:D-Al/t~|—R(u),

o (11)

where D represents the diffusion coefficient matrix and the
function R accounts for all local reactions.

The reaction-diffusion models have been used success-
fully in the image processing fields in the last years. Thus,
effective image restoration has been achieved by applying
reaction diffusion-based models that rely on learning [22].
Trained reaction-diffusion models, like those developed by
Yu et al [23] and based on structural similarity measure, have
been successfully used in image interpolation, too.

The solutions of the reaction—diffusion equations display
a wide range of behaviors, such as the traveling wave beha-
viour, which can be described by the complex Ginzburg—
Landau equation (CGLE) [24]. A reaction-diffusion system
can be described by CGLE when it is close to the onset of the
Hopf bifurcation.

The CGLE has been applied successfully in the
inpainting domain [24]. First, the interpolation algorithm,
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b) Image affected by missing parts

- |
\

Figure 3. Image inpainted by our AD method and other schemes.

which uses an inpainting mask of the degraded image, scales applying the following CGLE:
that image to be inpainted to the interval [—1, 1]. Next, that
image function u is evolved inside the inpainting domain, by u = Au + L(l — |l?hu (12)
2 b
K

ot

where k € (0, 1).
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a) Original image b) Inpainted image: t =1000

wl |

Figure 4. CGLE-based inpainting example.

Thus, the Ginzburg-Landau equation is iterated with its
explicit discretization until a maximum number of iterations is
reached. A finite-difference method-based iterative numerical
approximation scheme is constructed for the equation (12)
[24]. At each iteration of this discretization scheme only those
pixels defined by the inpainting mask are updated.

A successful CGLE-based inpainting example is dis-
played in figure 4. The maximum number of iterations used
by the inpainting algorithm is 1000 [24].

The CGLE-based inpainting algorithm provide very good
interpolation results and represents a better inpainting solution
than other PDE-based models [24], since it converges faster
and it is much easier to implement.

4. Fluid dynamics equation-based inpainting
schemes

Fluid dynamics represents the branch of physics concerned
with the flow of fluids, which are specifically liquids and
gases, in motion. It provides us the capability to understand
the transport of mass, momentum and energy, since the
foundational axioms of fluid dynamics are the conservation of
mass, conservation of momentum and conservation of energy
[25]. Also, fluid dynamics has a wide range of applications in
many engineering domains, including the image processing
areas.

Since the fluids are assumed to obey the continuum
assumption, being continuous, rather than discrete, their
motion can be described properly by using some PDEs for
physics engineering [26]. These equations of fluid dynamics
are best expressed via those conservation laws.

Thus, there exist various fluid dynamics PDEs for con-
servation of mass, momentum and energy. The Navier—Stokes
equations represent the momentum equations for the viscous
fluids [27]. Since these fluid dynamics equations describe
properly the physics of numerous phenomena related to var-
ious engineering fields, they have been successfully applied in
the aircraft and car design, power station design, blood flow
study, magnetohydrodynamics and other areas.

The inpainting domain represents another important
application area of these Navier—Stokes equations that have
the important advantage of some well-developed theoretical

and numerical results. Thus, an inpainting algorithm devel-
oped by Bertalmio et al [2, 28] uses the computational fluid
dynamics related methods to propagate the isophote lines
continuously into the inpanting region, from the surrounding
zones.

So, the image intensity becomes the stream function for a
two-dimension incompressible flow, while its Laplacian plays
the role of the vorticity of the fluid. The Navier—Stokes
equation-based inpainting model is characterized by the fol-
lowing form:

Ou

— 4+ v-Vw=vV - @(Vw|)Vw),

ot (13

where u is the image intensity, the fluid vorticity w = Au, the
fluid velocity, representing the isophote direction, v = V'u,
v represents the fluid viscosity and ) is the diffusivity
function. Also, ulsgr = ug, where I' is the inpainting region.

The PDE in (13), which is a vorticity transport equation
for w, transports the information automatically into the
inpainting region. The fluid dynamics equation is then dis-
cretized by constructing an explicit iterative finite difference-
based numerical approximation scheme [29], which is applied
successfully in the inpainting experiments. The discretization
algorithm has the following form:

n+1_ . n nn0. . n nn0..n
Wi —WiJ+At[7MDxWiJ7VDyWiJ

+vD(V - (VW) Vw))], (14)

where D, Dy0 represent the centered approximation of the first
derivative and the discretization of the anisotropic diffusion
component, D(V - (¥ (|Vw|)Vw)), can be performed, by
applying the finite differences [29], as in the approximation
schemes of the previously described nonlinear diffusion-
based inpainting models (see the equations [8, 10]).

The inpainting algorithm based on these fluid dynamics
equations provides a very good reconstruction of the damaged
image [28, 30]. Thus, it produces sharp results and overcomes
the image blurring, the color artifacts and other unintended
effects.

An example of image interpolation performed using the
Navier—Stokes equations is provided in figure 5. A text
removal process is described in that figure. The text is
removed from the image in (a) (courtesy of Kon-
stantinos Papafitsoros [31]) by applying the described
inpainting solution and using the inpainting mask displayed in
(b), after 100 iterations of the numerical scheme (14), the
interpolation output being provided in (c).

5. CDD inpainting

Another important category of PDEs of engineering physics
that are very useful for the structural inpainting domain are
the CDD equations, which uses the thermal diffusion princi-
ple in physics. Thus, CDD inpainting proposed by Chan and
Shen [32], represents a nonlinear third-order PDE-based
structural image interpolation model that is constructed as a
solution to improve the TV inpainting scheme given by (3).
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a) Image with text

b) Inpainting mask

This is a pictura of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a pictura of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.
This is a pictura of sea turtle resting in the sea.
This is a picture of sea turtle resting in the sea.

c¢) Inpainted image: 100 iterations

Figure 5. Navier-Stokes equation-based inpainting example.

This CDD inpainting model is based on the curvature
information of the isophotes. It is characterized by the next
PDE:

ou _ o (80
ot [Vu|
u(0, x, y) = ug

Vu) — Ar(u — uyp) (15)

where the curvature of the isophote x = V - [I [gz] I]’ the
diffusivity function g(s) = s?, p > 1 and I is the inpainting
region [2, 32, 33].

The CDD-based equation in (15) diffuses the smoothness
perpendicularly to the level lines. It preserves the direction of
these isophotes and it is able to connect them across large
distances. This better connectivity makes CDD inpainting
model a better interpolation solution than TV inpainting and
other second-order PDE inpainting schemes.

The CDD inpainting model is solved numerically by
applying a numerical approximation algorithm constructed
using the finite difference method [32]. The flux of this CDD-
based model is computed from (15) as:

_ 8(r) Vu.

1
Yl (16)

Therefore, the CDD equation in (15) becomes % =-V.j

[2, 32]. So, it is then discretized by using the next iterative

a) Original image

alkel

b) Inpainting mask

ake

¢) Inpainted image

Figure 6. CDD inpainting-based text removal example.

explicit numerical approximation scheme:

utl =y — At[V - j1®, 17)
where t = nAt and [V - j1® represents the approximation of
the divergence V - j, which is determined by using the half-
point central differences for the divergence operator [32].

The iterative numerical approximation algorithm (17) is
converging stable to the image representing the final recon-
struction result [32]. It has been successfully applied in the
inpainting experiments. CDD inpainting provides very good
image interpolation results, performing properly a lot of
inpainting tasks, such as the disocclusions, recovery of the old
photos corrupted by scratches, text and object removal from
images [32, 33].

Such a CDD inpainting based text removal example is
displayed in the next figure [32, 33]. The text from the image
depicted in figure 6(a) is removed using the inpainting mask
described in (b), the text removal output being displayed
in (c).

However, the CDD-based inpainting framework has
some disadvantages. One of these drawbacks is its noise
sensitive character, since the CCD inpainting model is not
performing properly in noisy image conditions [2, 31].
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6. Cahn—Hilliard equation-based inpainting solutions

In physical sciences, in the process of phase separation, two
components of a binary fluid spontaneously separate and form
domains pure in each component. This process is described
by a PDE of mathematical physics, which is the Cahn—Hil-
liard equation [34].

This equation originating in material science for model-
ing phase separation and phase coarsening in binary alloys
has the following form:

% _ DV?(c? — ¢ — vAo),
ot
where ¢ represents the fluid’s concentration and D is the
diffusion coefficient.

This nonlinear fourth-order PDE from the material sci-
ence could be also used in the structure-based inpainting
domain, but in a modified version that contains a fidelity term
that is added to it [2, 35, 36]. Thus, the Cahn-Hilliard
inpainting model is based on the following modified Cahn—
Hilliard equation and some Neumann boundary conditions:

(18)

U = —A(sAu — lW’(”)) — Ax, ) — ug), in Q
€

s

8—” = OAu =0, on 92
Ov ov
19)
where the nonlinear double-well potential function
=1, @y e\l
W) = u?(u — 1)* and \(x, y) = ,
) = W@ — 1)? and A(x, y) {0, et

I" being the inpainting region. The observed image that is
affected by missing regions and needs to be inpainted
is ug € L2(9).

The nonlinear fourth-order PDE-based model (19) is
well-posed, the global existence of a unique and weak solu-
tion of it being proved in [35]. The solution is numerically
computed by applying a consistent, fast converging and stable
numerical approximation algorithm, which is the convexity
splitting fast solver [35].

This convexity splitting technique divides the energy
functional of the PDE into two components: the convex
energy and the concave one. Next, the component of the
Euler—Lagrange equation obtained from the convex part is
treated implicitly, while the component derived from the
concave part is treated explicitly in the numerical approx-
imation [35, 36]. A time-stepping scheme results for these
splittings [36], which is finally translated to the following
numerical approximation scheme:

% + eAAuy1 — GAup gy + G AUy

— AW ) — Qo+ Ao — un) + o,
© (20)
where G > é and C; > \,.

Cahn—Hilliard inpainting provides an effective image
reconstruction that outperforms the state of the art nonlinear

a) Observed image

r b) Inpainting result: t=1000

Figure 7. Cahn—Hilliard inpainting example.

second and third order PDE-based approaches. It inpaints the
degraded image by producing a smooth continuation of the
level lines (isophotes) into the inpainting domain I'. There-
fore, while the Cahn—Hilliard inpainting technique is operat-
ing somewhat similarly to the curvature driven diffusion-
based algorithms, it converges faster than CDD inpaint-
ing [35].

A Cahn—Hilliard inpainting example is provided in
figure 7. One can see the observed image containing the
inpainting region in (a), while the interpolation result
achieved after 1000 iterations of the Cahn—Hilliard inpainting
scheme is displayed in (b).

Some image interpolation frameworks that improve this
Cahn-Hilliard inpainting model have been also developed in
the recent years. Thus, a grayscale image interpolation tech-
nique based on a generalized complex version of the Cahn—
Hilliard equation is proposed in [37]. A rigorous mathema-
tical treatment, studying the well-posedness of the model, is
also performed.

Other versions of Cahn-Hilliard inpainting can be
achieved by considering other forms for the potential function
W(u). Thus, it was developed a Cahn-Hilliard inpainting
model with a non-smooth logarithmic potential in [38].

Another improved version is the Cahn—Hilliard inpaint-
ing scheme with the non-smooth double obstacle potential
[39, 40], which is based on the following form of the potential
function:

Ws) = B(s) + %(1 _ o), 1)

where the 3 represents the indicator function of the interval
[—1, 1], taking zero value in this interval and the value +oo
otherwise.

Cahn—Hilliard inpainting model using the double obsta-
cle potential outperforms Cahn—Hilliard inpainting based on
classical smooth quartic double well potential function. A
method comparison example illustrating this fact is displayed
in figure 8.

One can see in the figure that Cahn—Hilliard inpainting
with non-smooth potential achieves better reconstruction
results (c) than Cahn—Hilliard inpainting scheme using the
double well potential (d). A mathematical analysis that
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a) Original image b) Damaged image

c) Double obstacle d) Double well

Figure 8. Method comparison: Cahn-Hilliard inpainting versions.

investigates the existence of Cahn—Hilliard equations’ solu-
tions is also performed in [39].

An extension of the Cahn-Hilliard inpainting scheme,
which represents a generalization of it for the gray-value
images of bounded variation, is the TV-H ~' inpainting
model [2, 35, 41]. Thus, the TV-H -1 inpainted image u of
ug € L*(Q) represents the stationary solution of the next
equation:

Ou
o Ap 4+ A(x, y)(up — u), p € 0TV(w),
0TV, (u) represents the
TV, () = |Du|(£2), if|u! < lae.in Q
+00, otherwise
TV of u [35].

The stationary solution of the PDE in (22), u € BV (f2),
is determined by applying a time-stepping numerical
approximation algorithm that is similar to the previous one,
described in (20). Like Cahn—Hilliard inpainting, this fourth-
order PDE interpolation approach derived from it provides
very good reconstruction results, outperforming the TV
inpainting, but after hundreds of iterations of the numerical
scheme.

(22)

sub-differential  of

and |Du|(2) is the

where

7. Conclusions

An overview of the most important PDEs that describe phy-
sical phenomena and are succesfully applied in the structure-
based inpainting domain has been provided in this work.
Thus, we have considered several classes of PDEs for engi-
neering physics and described the state of the art image
interpolation frameworks related to them.

So, structural inpainting models based on anisotropic
diffusion, reaction diffusion, CDD, fluid dynamics and phase
separation are disscused in this research paper. While the
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described nonlinear diffusion completion models are based on
second-order PDEs, the inpainting approaches related to the
other physical phenomena are based on PDEs of higher-order.
Thus, we have addressed some third-order PDE-based inter-
polation models, such as CDD inpainting or those using
Navier—Stokes equations, and fourth-order PDE reconstruc-
tion schemes, such as the inpainting solutions based on the
various versions of the modified Cahn-Hilliard equation.

The largest section of this survey is dedicated to the
nonlinear second-order diffusion-based structural inpainting
models, which can be expressed in variational or PDE form.
Besides the state of the art variational and non-variational
PDE-based interpolation techniques, we have described here
our own contributions in this inpainting field.

The other sections do not contains our contributions in
those areas, since we have not conducted much research in
those directions. The structural inpainting methods developed
by us provide effective reconstruction results, work succes-
fully in noisy conditions and also they overcome the unin-
tended effects.

They outperform numerous state of the art structure-
based interpolation techniques, but, unfortunately, they do not
work properly for textured images. Developing some recon-
struction approaches that are able to inpaint both textured and
non-textured images will constitute the focus of our future
research in this image processing domain.

ORCID iDs

Tudor Barbu @ https: //orcid.org/0000-0002-9919-7776

References

[1] Stone M and Goldbart P 2009 Mathematics for Physics I
(London: Pimander-Casaubon)

Schonlieb C B 2015 Partial Differential Equation Methods for
Image Inpainting vol 29 (Cambridge: Cambridge University
Press)

Igehy H and Pereira L 1997 Image replacement through texture
synthesis Int. Conf. on Image Processing vol 3, pp 186-9

Criminisi A, Perez P and Toyama K 2004 Region filling and
object removal by exemplar-based image inpainting /EEE
Trans. Image Process. 13 1200-12

Mehrer H 2007 Diffusion in Solids—Fundamentals, Methods,
Materials, Diffusion controlled Processes (Berlin: Springer)

Song B 2003 Topics in Variational PDE Image Segmentation,
Inpainting and Denoising (Berkeley, CA: University of
California Press)

Hazawinkel M 2001 Variational Calculus (Encyclopedia of
Mathematics) (Berlin: Springer)

Ambrosio L and Tortorelli V 1990 Approximation of
functionals depending on jumps by elliptic functionals via I'-
convergence Commun. Pure Appl. Math. 43 999-1036

Chan T and Shen J 2001 Morphologically invariant PDE
inpaintings UCLA CAM Report University of Minnesota
Digital Conservancy 1-15 IMA Preprints Series

Papafitsoros K, Schonlieb C B and Sengul B 2013 Combined
first and second order total variation inpainting using split
Bregman Image Process. On Line 2013 112-36

(2]

(3]
(4]

(5]
(6]

(7]
(8]

(91

[10]


https://orcid.org/0000-0002-9919-7776
https://orcid.org/0000-0002-9919-7776
https://orcid.org/0000-0002-9919-7776
https://orcid.org/0000-0002-9919-7776
https://doi.org/10.1109/ICIP.1997.632049
https://doi.org/10.1109/ICIP.1997.632049
https://doi.org/10.1109/ICIP.1997.632049
https://doi.org/10.1109/TIP.2004.833105
https://doi.org/10.1109/TIP.2004.833105
https://doi.org/10.1109/TIP.2004.833105
https://doi.org/10.1002/cpa.3160430805
https://doi.org/10.1002/cpa.3160430805
https://doi.org/10.1002/cpa.3160430805
https://doi.org/10.5201/ipol.2013.40
https://doi.org/10.5201/ipol.2013.40
https://doi.org/10.5201/ipol.2013.40

Phys.

Scr. 95 (2020) 044001

T Barbu

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

Bredies K and Holler M 2015 A TGV-based framework for
variational image decompression, zooming, and
reconstruction: I. Analytics SIAM J. Imaging Sci. 8 2814-50

Afonso M V and Sanches J M R 2015 Blind Inpainting Using
lp and Total Variation Regularization IEEE Trans. Image
Process. 24 2239-53

Neri M and Zara E R 2014 Total variation-based image
inpainting and denoising using a primal-dual active set
method Philippine Sci. Lett. 7 97-103

Chan T F, Kang S H and Shen J 2002 Euler’s elastica and
curvature based inpaintings SIAM J. Appl. Math. 63 564-92

Barbu T 2016 Variational image inpainting technique based on
nonlinear second-order diffusions Comput. Electr. Eng. 54
345-53

Barbu T 2017 Hybrid image interpolation technique based on
nonlinear second and fourth-order diffusions /3th Int. Symp.
on Signals, Circuits and Systems, ISSCS’ 17 (IEEE) 1-5

Weickert J 1998 Anisotropic Diffusion in Image Processing
(European Consortium for Mathematics in Industry)
(Stuttgart: B. G. Teubner)

Barbu T and Munteanu I 2017 A well-posed second-order
anisotropic diffusion-based structural inpainting scheme
ROMALI J., ROMAI Soc. 13 1-9

Barbu T 2017 Structural image interpolation using a nonlinear
second-order hyperbolic pde-based model 6th IEEE Int.
Conf. on e-Health and Bioengineering, EHB 2017 (Sinaia,
Romania, June 22-24) (IEEE) 5-8

Barbu T 2018 Second-order anisotropic diffusion-based
framework for structural inpainting Proc. Rom. Acad. A 19
329-36

Kuttler C 2011 Reaction-Diffusion Equations with
Applications (Sommersemester)

Chen Y, Yu W and Pock T 2015 On learning optimized
reaction diffusion processes for effective image restoration
Proc. IEEE Conf. Comput. Vis. Pattern Recognit pp 5261-9

Yu W, Heber S and Pock T 2015 Learning reaction-diffusion
models for image inpainting Pattern Recognition. DAGM
2015 (Lecture Notes in Computer Science) (Ed.),) ed J Gall
et al vol 9358 (Cham: Springer)

Nakano S 2010 Image inpainting with the complex Ginzburg—
Landau Equation Dissertation Science: Department of
Mathematics

Acheson D J 1990 Elementary Fluid Dynamics (Oxford:
Clarendon)

Anderson J D 2009 Governing equations of fluid dynamics
Computational Fluid Dynamics 2 3rd edn (Heidelberg:
Springer)

11

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Temam R 1984 Navier—Stokes Equations: Theory and
Numerical Analysis (Providence, RI, US: ACM Chelsea
Publishing)

Bertalmio M, Bertozzi A L and Sapiro G 2001 Navier—Stokes,
fluid dynamics, and image and video inpainting [EEE
Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001 (Kauai, Hawaii, US,
December 8-14) (IEEE) pp 355-620-7695-1272-0

Johnson P 2008 Finite Difference for PDEs (School of
Mathematics, University of Manchester) Semester I

Au W and Takei R 2002 Image Inpainting with the Navier—
Stokes Equations Final Report, APMA 930

Papafitsoros K 2015 Novel higher order regularisation
methods for image reconstruction (Doctoral thesis)
University of Cambridge

Chan T F and Shen J 2001 Non-texture inpainting by
curvature-driven diffusions (CDD) J. Visual Commun.
Image Rep. 4 43649

Chan T F and Shen J 2005 Image Processing and Analysis:
Variational, PDE, Wavelet, and Stochastic Methods 94
(Philadelphia, PA: SIAM)

Cahn J W and Hilliard J E 1958 Free energy of a nonuniform
system: I. Interfacial free energy J. Chem. Phys. 28 258

Burger M and He L 2009 Cahn-Hilliard inpainting and a
generalization for grayvalue images SIAM J. Imaging Sci. 2
1129-67

Gillette 2006 A image inpainting using a modified Cahn—
Hilliard equation PhD Thesis University of California, Los
Angeles, CA

Cherfils L, Fakih H and Miranville A 2017 A complex version
of the Cahn—Hilliard equation for grayscale image inpainting
Multiscale Model. Simul. 15 575-605

Cherfils L, Miranville A and Zelik S 2011 The Cahn—Hilliard
equation with logarithmic potentials Milan J. Math. 79
561-96

Garcke H, Lam K F, Sitka E and Styles V 2018 Cahn—Hilliard
inpainting with the double obstacle potential SIAM J.
Imaging Sci. 11 2064-89

Bosch J, Kay D, Stoll M and Wathen A J 2014 Fast solvers for
Cahn-Hilliard inpainting SIAM J. Imaging Sci. 7 67-97

Osher S, Sole A and Vese L 2003 Image decomposition and
restoration using total variation minimization and the H ™!
norm Multiscale Model. Simul.: A SIAM Interdiscip. J. 1
349-70


https://doi.org/10.1137/15M1023865
https://doi.org/10.1137/15M1023865
https://doi.org/10.1137/15M1023865
https://doi.org/10.1109/TIP.2015.2417505
https://doi.org/10.1109/TIP.2015.2417505
https://doi.org/10.1109/TIP.2015.2417505
https://doi.org/10.1016/j.compeleceng.2016.04.012
https://doi.org/10.1016/j.compeleceng.2016.04.012
https://doi.org/10.1016/j.compeleceng.2016.04.012
https://doi.org/10.1016/j.compeleceng.2016.04.012
https://doi.org/10.1109/ISSCS.2017.8034863
https://doi.org/10.1109/ISSCS.2017.8034863
https://doi.org/10.1109/ISSCS.2017.8034863
https://doi.org/10.1109/EHB.2017.7995347
https://doi.org/10.1109/EHB.2017.7995347
https://doi.org/10.1109/EHB.2017.7995347
https://doi.org/10.1109/CVPR.2001.990497
https://doi.org/10.1109/CVPR.2001.990497
https://doi.org/10.1109/CVPR.2001.990497
https://doi.org/10.1006/jvci.2001.0487
https://doi.org/10.1006/jvci.2001.0487
https://doi.org/10.1006/jvci.2001.0487
https://doi.org/10.1063/1.1744102
https://doi.org/10.1137/080728548
https://doi.org/10.1137/080728548
https://doi.org/10.1137/080728548
https://doi.org/10.1137/080728548
https://doi.org/10.1137/15M1040177
https://doi.org/10.1137/15M1040177
https://doi.org/10.1137/15M1040177
https://doi.org/10.1007/s00032-011-0165-4
https://doi.org/10.1007/s00032-011-0165-4
https://doi.org/10.1007/s00032-011-0165-4
https://doi.org/10.1007/s00032-011-0165-4
https://doi.org/10.1137/18M1165633
https://doi.org/10.1137/18M1165633
https://doi.org/10.1137/18M1165633
https://doi.org/10.1137/130921842
https://doi.org/10.1137/130921842
https://doi.org/10.1137/130921842
https://doi.org/10.1137/S1540345902416247
https://doi.org/10.1137/S1540345902416247
https://doi.org/10.1137/S1540345902416247
https://doi.org/10.1137/S1540345902416247

	1. Introduction
	2. Nonlinear diffusion-based image interpolation
	2.1. Variational models for structure-based inpainting
	2.2. Nonlinear second-order PDE-based inpainting

	3. Reaction diffusion-based inpainting solutions
	4. Fluid dynamics equation-based inpainting schemes
	5. CDD inpainting
	6. Cahn–Hilliard equation-based inpainting solutions
	7. Conclusions
	References



