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Abstract
In this work, we proposed to study the dynamics of a bi-recessed micro-beam coupled
magnetically to two Josephson junctions. After building a model of micro electro mechanical
systems (MEMS), the equations of their dynamics are determined. The fixed points of system are
analytically checked and their stability is analyzed by using the Routh–Hurwitz criterion. For
this purpose, a numerical study utilizing the bifurcation diagram, Lyapunov exponents, phase
portraits and time histories is made to analyze the different dyanamic modes of micro-beam
coupled to two Josephson junctions. The effect of Josephson junctions on the behavior of the
micro-beam is seriously analyzed. It is obtained for each part of the MEMS the various dynamics
influenced by certain parameters of the system.
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1. Introduction

The miniaturization of technological objects has been one of
the major goals of electrical engineering in recent decades.
The development of tiny electrodynamic components has
become an asset for achieving this goal of miniaturization.
Micro electro mechanical systems (MEMS) are therefore very
popular in the industrial electronics market because of their
very interesting size and electrodynamic characteristics [1, 2].
The one we will study in this paper consists of two Josephson
junctions as an electrical part and a bi-recessed micro-beam as
its mechanical part. Roukes, Cross, Ekinci, Matheny,
Kozinsky, Bullard, Vilanueva, Etaki, Herrera-May... with
their collaborators have in several works [3–9] analyzed from
various angles the characteristics, the properties, the dynamic,
utilities and rich applications offered by these miniaturized
devices. Their different and very interesting results obtained,
give a great motivation for the study that we propose here by
coupling a micro-beam and two Josephson junctions. On the

other hand, there are several theories of beams. Here, that
used is that of Euler–Bernoulli which gives the general
equation of flexural vibration of the beams. This equation as
used in [10, 11] will be written for a micro-beam subjected to
the action of a magnetic force created by a uniform magnetic
field B


in the vicinity of this one. The Josephson effect since

its prediction in 1962 by Brian Josephson has been the subject
of an exhaustive list of scientific research. The dynamic
behaviors and interesting features of the Josephson junction
have been studied as in [12–17]. Being the main constituent
element of the SQUID (finer magnetic field detector and
RSFQ where Josephson junctions act as transistor and would
allow to obtain frequencies in hundreds of GHz), the
Josephson junction by its physical properties, is a device of
choice for several fields of application and is therefore the
subject of several studies and scientific research. For example,
recently, in January 2018, Nuznetsov et al studied in [18] the
dynamics of three and four non-identical Josephson junctions
connected in series and coupled with an RLC dipole. Our
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motivations for this study are also justified by the recently
research on the electromechanical systems. For example, the
electromechanical coupling to obtain a MEMS was done by
Domguia et al in [10] where electrodynamic equations, sta-
bility analysis and dynamic behaviors were studied for a
MEMS consisting of a micro-beam coupled to an Hind-
marsh–Rose electric oscillator. Yamapi, in [19] study the
harmonic dynamics and transition to chaos in a nonlinear
electromechanical system with parametric coupling. They
showed that the dynamics of their electromechanical system
has described by an electrical Duffing oscillator coupled
gyroscopically and parametrically to a linear mechanical
oscillator. Recently, Yamapi and Filatrella in [20] studied the
noise effect on birhythmic Josephson junction coupled to a
resonator. They have found that the stability analysis of the
Josephson junction coupled to a resonator shows a striking
change in the birhythmic region. The attractor characterized
by a frequency locked to the resonator is most stable for low
bias current, when the power dissipated in the cavity is small.
Ekinci and Roukes in [4] have studied the internal deforma-
tion of a nano-beam bi-embedded around its frequency of
resonance and under the effect of an electromagnetic force
generated by a continuous current along the length of the
beam bathed in a uniform magnetic field B


. Other interesting

parameters as the quality factor of the resonance of this
miniaturized device have also been studied. For this work, we
subjected the micro-beam to the same effect but with an
alternating current. Inspired by all this literature we propose
in this work to couple two Josephson junctions to a micro-
beam immersed in an uniform magnetic field B


. At first, we

will establish the electrodynamic equations of the MEMS;
secondly, we will study the fixed points and their stabilities
using the Routh–Hurwitz criterion [21] and thirdly we will
evaluate the influence of each control parameter on the
oscillatory dynamics of the MEMS. Considering that
depending on the field of study and their applications, it is
sometimes useful or undesirable many researchers are inter-
ested in the prediction of chaos and/or its control [22–27] .
For this issue, we will determine the chaotic domains of our
MEMS for each control parameter and will also analyze the
influence of Josephson junctions on the vibratory dynamics of
the micro-beam. The paper is structured as follows: section 2
gives the model and dynamics equations of the MEMS while
section 3 deals with the determination of equilibrium points
and their stability analysis. In section 4, the bifurcations
sequences and route to chaos using the numerical simulations
are analyzed and the effect of each parameter of the system is
found. We provide a conclusion in the last section.

2. Model and dynamics equations of the MEMS

2.1. Presentation of the MEMS

In this work, we consider a model of MEMS as shown in
figure 1 which contains a micro-beam coupled magnetically
to two Josephson junctions. The presence of Josephson

junctions due to its properties of good voltage-frequency
converter. The study of the Josephson junction and its inter-
esting features are no longer to be dismantled. Indeed,
researchers such as Salem, Sastry, Abidi,K have in many of
their works demonstrated the very interesting properties and
characteristics of this junction [12–14, 28]. The mechanical
part is a silicon flexible micro-beam covered by a metal
through which the current travels and placed in a zone where
magnetic field B


is present.

In this paper, the symbols used are listed and defined in
the following table.

Table. List of symbols and corresponding definitions

Symbols Corresponding definitions

R1 Resistance of the first Josephson junction
R2 Resistance of the second Josephson junction
B


The magnetic field vector
f Field flow across the lateral surface S of the beam
C1 Self-capacitance of the first Josephson junction
C2 Self-capacitance of the second Josephson junction
IC1

Critical current of the first Josephson junction

IC2
Critical current of the second Josephson junction

IG Amplitude of the excitation current
u(z, t) Function characterizing transverse displacement
E Young module of the micro-beam material
Iy The moment of inertia of the micro-beam
ρ Volume density of the micro-beam material
f (t) The actuating force of the micro-beam
λ Damping coefficient of the micro-beam
A Cross-sectional area of the micro-beam
j1 Phase difference of first Josephson junction
j2 Phase difference of second Josephson junction

ep Electromotive force induced by the micro-beam

rp Electrical resistance of the micro-beam
L Length of the micro-beam
μ Resistivity of the micro-beam material
ÿ Reduced Planck constant
e Elementary electric charge
η1 Normalization coefficient

Figure 1. Electrical circuit of the MEMS where the Josephson
junction is represented by its RCSJ model.
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2.2. Mathematical modeling of the system

We consider the schematic diagram of MEMS (figure 1)
under consideration in this work and we apply the node law.
The exited current is written as

= +I wt i icos . 1G s1 ( )

The equations of the electrical part where the Josephson
junction is represented by its RCSJ model [14, 17] are
written:

j j

j

= +

+ = -
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Considering the mesh (R1 R2 R1) we can write

- - - =R i r i e R i 0,R p s p R1 21 2· ( · ) ·

which can be rewritten as follows
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with
e
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p( ) current induced by current flow through the

magnetic field. jI sinC 11
and jI sinC 22

designate the current
through the first intrinsic junction and the current through the
second intrinsic junction. Replacing is by its expression in

Figure 2. A0: phase space of the flexural vibration of the micro-beam; T0: time histories of the oscillations of the micro-beam; F1.0: phase
difference phase space of the first Josephson junction; F2.0: phase difference phase space of the second Josephson junction; a a= fA :0 ˙ ( );

a = f tT :0 ( ); b b= fF1.0: 1 1
˙ ( ) and b b= fF2.0: 2 2

˙ ( ); w = = =i1; 2; 1G0 10 ȷ ; j= = - = =3; 1.6; 2; 12 3 4 01
ȷ ȷ ȷ ; j = 0.5;02

s s= =1; 21 2 ; s s e= = =1; 2; 1.53 4 1 ; e e= =0.9; 0.52 3 .
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equations (2) and (3) we get:
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According to the differential equation of the dynamics of
micro beams [10, 11], the mechanical part equation is written:

r l
¶

¶
+

¶
¶

+
¶

¶
+ =E I

u z t

z
A

u z t

t

u z t

t
NLT f t.

, , ,
.

6

y

4

4

2

2

( ) ( ) ( ) ( )

( )

In this study it is assumed that NLT=0.

The actuating force f (t) of the beam is a Lorentz force
(magnetic) and is written:
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Inserting equation (7) into equation (6) we obtain:
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Let f the field flow across the lateral surface S of the
beam. Thus

f = BS,

Figure 3. A00″: phase space of the flexural vibration of the micro-beam; T00″: time histories of the oscillations of the micro-beam; P1: phase
difference phase space of the first Josephson junction; P2: phase difference phase space of the second Josephson junction; w = 0.6;0

= = =i 0.08; 0.25; 0.39G 1 20 ȷ ȷ ; j= = = p-0.26; 10 ;3 4
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with ò=S u z t z2 , d ,
o

L
( ) and we have
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The shape of the modes must satisfy the differential
geometries and boundary conditions [29]. The deflection u(z,
t) of the beam can then be written as follows:
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where n indicates the mode of vibration; Tn (t) represents the
generalized coordinate of the amplitudes and Z zn ( ) the set
eigenfunctions of the equation:
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In our case we have u(0, t)=u(L, t)=0 (boundary condi-
tions) and the set eigenfunctions Zn(z) are written:

x x x x= - + -Z z a z z b z zcos cosh sin sinh ,n n n n n n n( ) ( ) ( )

with xn the solution of the transcendental equation:
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As we focus on the study of the ground state we will take
it for the rest n=1.
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Figure 4. ACO: phase space of the flexural vibration of the micro-beam; TCO: time histories of the oscillations of the micro-beam; F1C:
phase difference phase space of the first Josephson junction; F2C: phase difference phase space of the second Josephson junction;
w = = = = =i0.6; 0.08; 0.25; 0.39; 0.26G0 1 2 30 ȷ ȷ ȷ ; j= = p-10 ;4
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By integrating the equation (12) with ò Z z zd
o

L
1( ) and

considering the normalization above we have:

l
r

h

mr
x

r

h
r

j j

+ + +

+ - =


T t
A

B
T t

E I

A
T t

B

e A r L

¨ 2 .

2
0 13

y

p

2
1
2 4

1
2 1

( ) ˙ ( ) ( )

( ˙ ˙ ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Let:

t w b
j
j

b
j
j

a= = = =t
T

T
; ; and .1 1

1

0
2

2

0 01 2

The dimensionless equations are then written:

a e a e a e j b j b= - - - -¨ , 141 2 3 0 2 0 12 1
˙ [ ˙ ˙ ] ( )

b b j b b a w t= - - + + + i¨ sin cos ,

15
G1 1 1 2 0 1 3 2 4 01 0ȷ ȷ ȷ ȷ˙ ( ) ˙ ˙ ( )

( )

b s b s j b s b s a= - - + -¨ sin , 162 1 2 2 0 2 3 1 42
˙ ( ) ˙ ˙ ( )

Figure 5. o: phase space of the flexural vibration of the micro-beam; p: time histories of the oscillations of the micro-beam; q: phase
difference phase space of the first Josephson junction; r: phase difference phase space of the second Josephson junction; w = =i0.6; G0 0
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with:
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The micro electromechanical system shown in figure 1 is
described by equations (14)–(16). In this work, σ3, ε3, and 1ȷ
are the damping coefficients of the phase difference f1 of the
first Josephson junction; σ1, ε1, and 3ȷ are the damping
coefficients of the phase difference f2 of the second
Josephson junction; σ4, ε1, and 4ȷ are the damping coefficients
of the micro-beam; ε2 the pulsation of the micro-beam; 2ȷ the
coefficient of intrinsic current through the first Josephson
junction; σ2 the coefficient of intrinsic current through second
Josephson junction; w0 the frequency of the excitation cur-
rent; iG0

the amplitude of the excitation current; j01
initial

phase of the first Josephson junctionf1; j02
initial phase of

the second Josephson junction

3. Fixed points and stability

In this section, we search the equilibrium points of the
autonomous system and we analyze their stability. For this
end, the autonomus system can been written as:
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The characteristic equation at E* is:
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Figure 6. BF2: bifurcation diagram; LF2: Lyapunov exponent; w =0
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Figure 7. A11: phase space of the flexural vibration of the micro-beam; T11: time histories of the oscillations of the micro-beam; F111: phase
difference phase space of the first Josephson junction; F211: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j= - = =1.6; 2; 13 4 01
ȷ ȷ ; j s s s= - = = =3.494; 1; 2; 10 1 2 32

; s e= =2; 1.54 1 ; e e= =0.9; 0.52 3 .
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In order to verify the stability of our fixed points, we
have chosen for the parameters of our junctions some values
already existing in the literature that we will exploit. Indeed,
the theoretical analysis of stability will be done with the
parameters defined as follows: = = =0.25; 0.39;1 2 3ȷ ȷ ȷ

= -0.26; 104
4ȷ ; j j= =p p;0

2

3 0 61 2
; s s= =0.26; 0.38;1 2

s s= = -0.24; 103 4
4; e e e= = =-10 ; 1; 0.221

2
2 3 (see

[10, 28, 30]). With these values, we have calculated for the
different possible values of pkcos 1( ) and pkcos 2( ), the coef-
ficients μi of the polynomial P(κ) and the determinants Rthi

of
Routh–Hurwitz matrices. The results are shown below:
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For these values of k1 and k2, one can easily see that Rth6
and

Rth5
have opposite signs because μ1<0 . The associated

fixed points are then unstable.
✓For = + = + Îk n k n n Z2 1, 2 1;1 2 we have:
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Figure 8. A12: phase space of the flexural vibration of the micro-beam; T12: time histories of the oscillations of the micro-beam; F112: phase
difference phase space of the first Josephson junction; F212: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j= - = =1.6; 2; 13 4 01
ȷ ȷ ; j s= =1.7; 10 12

; s s s= = =2; 1; 22 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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and

m
m
m
m
m
m
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=- ´
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The Routh–Hurwitz matrices determinants can be written:
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We then see also that the stability conditions of Routh–Hur-
witz are not verified. Indeed, <R 0th2

and <R 0th4
. The

corresponding fixed points are then unstable.
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and the Routh–Hurwitz matrices determinants are:

=
=

= ´

= ´

= ´

= ´

-

-

-

-

R

R

R

R

R

R

0.519 999 990 239 739 42;
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We find that for = = Îk k n n Z2 ;1 2 , all fixed points are
stable. Indeed, all the determinants of the matrices of Routh–
Hurwitz are strictly positive. For n=0, the origin point

=E 0, 0, 0, 0, 0, 0* ( ) is stable as shown in figures 2 and 3.
We thus arrive at the end of the analytical studies of the
dynamic system. We can retain from this analytical study that
for this dynamic system, we have an infinity of fixed points
whose stability depends on the conditions of Routh–Hurwitz
defined above. For a well-chosen example, we have shown

that fixed points = Îp
j

p
j

E n Z0, 0, , 0, , 0 ,n n2 2

01 02

* ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠ are

stable. These theoretical results will be checked in the section
of the numerical studies (4) where the electrical and dynamic
behaviors of the micro-system are simulated for the same
values of the parameters.

4. Numerical study and analysis of the effect of the
parameters

The aim of this section is to solve numerically, using the order
four Runge–Kutta the dynamics equations (14)–(16) to seek
the various dynamics of the MEMS. Thus, for the values of
the control parameters defined as above, we have plotted the
phase diagrams of the micro-beam and of each of the
Josephson junctions, then the time histories of the transversal
oscillations of the micro-beam; the pulse ω0 and the amplitude
iG0

of the excitation current of the system are chosen equal to
´ -6 10 1 and ´ -8 10 2 respectively as in [10, 28–30].

Figure 3 illustrates the electrodynamic behavior obtained for
the micro-system. We find that the phase spaces of the
Josephson junctions (figure 3 P1 and P2) show attractors that
reach their limit cycle more quickly while the phase spaces
(figure 3 A00″) of the micro-beam show that the oscillations
of the micro-beam take a little more time before becoming
periodic. The time histories diagram (figure 3 T00″) illustrates
this phenomenon. Nevertheless it should be noted that the

Figure 9. BF2: bifurcation diagram; LF2: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= = =2; 1; 0.54 0 01 2

ȷ ;
s s s= = =1; 2; 11 2 3 ; s e e= = =2; 1.5; 0.94 1 2 ; e = 0.53 .
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limit cycle is reached quickly and oscillations of the micro-
beam become periodic. When ignoring start noise, the dia-
grams in the figure 3 take the form of the figure 4. These
diagrams confirm the origin as the fixed point of the elec-
trodynamic system as provided by the analytical analyzes. We
can also hypothesize that Josephson junctions forced the
micro-beam to return to their oscillatory dynamic mode.

Now, the goal is to prove the existence or the possibility
of having chaotic regimes with at least one of the control
parameters of the studied system. To achieve this, we chose to
use the iG0

excitation current for two basic reasons. The first
reason is that iG0

is the control parameter of the electro-
dynamic system whose modeling is the easiest. Yamapi and
Filatrella in [20] have shown for a system consisting of
Josephson junction and an electric resonator that the attractor
characterized by a frequency locked to the resonator is most
stable for low bias current, when the power dissipated in the
cavity is small. Indeed, to check if this results is in agreement
with the results of our researches is the second motivation of
this choice. Note that the limit cycle of the figure 4 was
actually obtained for a small value of the excitation current

( = ´ -i 8 10G
2

0
). By varying iG0

from ´ -8 10 2 to ´ -5 10 1,
we notice that the MEMS has a chaotic behavior (see
figure 5).

As expected, the increase in the amplitude of the exci-
tation current considerably changes the oscillatory dynamics
of the system. We go from periodic modes to chaotic modes
at all levels. This is well justified by the nature of the time
histories diagram (see figure 5(p)) which illustrates a com-
pletely aperiodic behavior of the mechanical resonator. From
before, it can be recalled that the system under study has
many chaotic behaviors that can be modulated by means of
the excitation current. This result is in perfect conformity with
that found by Yamapi and Filatrella in [20] for an electric
resonator. The next step in our work is to evaluate the
influence of each control parameter on our electro-dynamic
system and to bring out the relationship between this para-
meter and the constituents of our MEMS. Thus, in order to
check the rich dynamics of the MEMS, we plot the bifurca-
tion diagram and its corresponding Lyapunov exponents,
phase portraits and time histories. We analyze the effects of
each parameters of MEMS in the following subsections.

Figure 10. A2: phase space of the flexural vibration of the micro-beam; T2: time histories of the oscillations of the micro-beam; F12: phase
difference phase space of the first Josephson junction; F22: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= = = =0.34; 2; 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 2; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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4.1. Influence of the parameter j02

We find the effect of parameterj02
on the dynamic of system.

Figure 6 shows the bifurcation diagram and the Lyapunov
exponents for this parameter where the other parameters are
fixed. As it can been seen, the micro-beam can present the
periodic, quasi-periodic and chaotic behaviors when the initial
phase of second Josephson junction varied.

For appropriate values of j02
choice in each domain of

figure 6, we plot in figures 7 and 8 the phase portrait and time
histories of MEMS. It noted that for j = -3.49402

the MEMS
has the quasi-periodic oscillations (see figure 7) while the
chaotic behavior is observed for j = 102

(see figure 8). We can
conclude that dynamic of MEMS is influenced by the initial
phase of second Josephson junction and it is observed a simi-
larity between the two Josephson junctions and the micro-beam.

4.2. Influence of the parameter ȷ3

In this subsection, we use 3ȷ as a bifurcation parameter and we
plot in figure 9 the bifurcation diagram and its corresponding
Lyapunov exponents.

For - < < -4.5 0.33ȷ the micro-beam vibrates peri-
odically with period 1T and when > -0.33ȷ , we have the
chaotic vibrations generally. These different influences of 3ȷ
on the dynamics of the micro-beam once again show the
influence of a damping coefficient of second Josephson
junction on the latter. The figure 10 illustrates the chaotic
vibration of the MEMS for = 0.343ȷ . It can be seen from the
graphs in figure 10 that any chaotic behavior of the phase
difference of one of the Josephson junctions has the same
effect on the dynamics of the micro-beam. It is the same for
the regular behaviors (see figures 11 and 12). Thus, it can be
noted that the junction system confers or imposes its dynamic
on the micro-beam. Moreover, there is a degeneracy of the
limit cycle when 3ȷ believes. In fact, for < -0.33ȷ we have a
mono-periodic limit cycle but for = 0.483ȷ , a first degen-
eracy is shown and the period of the limit cycle goes from 1 to
3 (figure 11). For = 0.79733ȷ we notice a second degeneracy
and the period of the limit cycle goes from 3 to 5 (figure 12).
Note also that the origin is not the fixed point for these values
of the chosen parameters (see figure 11 F1.2A and figure 12
F1.2B). This confirms the plurality of fixed points of the
system.

Figure 11. A.2A: phase space of the flexural vibration of the micro-beam; T.2A: time histories of the oscillations of the micro-beam; F1.2A:
phase difference phase space of the first Josephson junction; F2.2A: phase difference phase space of the second Josephson junction;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= = = = -0.48; 2; 1; 3.4943 4 0 01 2

ȷ ȷ ; s s s s= = = =1; 2; 1; 21 2 3 4 ; e e= =1.5; 0.9;1 2 e = 0.53 .
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4.3. Influence of parameter ȷ4

Using 4ȷ as the bifurcation parameter, we search the route to
chaos of micro-beam and results are plotted in figure 13. It is
found that the beam has periodic oscillations for < <1 4.84ȷ
while the beam and the two Josephson junctions have each
chaotic oscillations when  4.8ȷ . For example, figure 14
shows the chaotic motions for = 5.544ȷ and confirm the
bifurcation and Lyapunov exponent predictions.

4.4. Influence of the parameter σ1

The parameter σ1 is a very important parameter for our sys-
tem (damping coefficient of the flexural vibration of the
micro-beam). Figure 15 represents the bifurcation diagram
and its corresponding Lyapunov exponent when σ1 is varied
and other parameters are fixed.

As can been seen, for 1�σ1�2.84, the oscillations are
periodic and the associated attractor is monocyclic. For
σ1; 2.68, we observe two distinct periods of oscillation with
a two periodic attractor. We were particularly interested in the

study of this point given the appearance of the bifurcation
diagram of the parameter σ1 at this point. This dynamic is
illustrated by figure 16 if σ1=2.68. When s Î 2.84; 2.941 ] [,
as predicted by the bifurcation diagram, we obtain a two limit
cycles which are shown in figure 17 for σ1=2.89. The
chaotic motions are observed σ1�2.94. We can conclude
that the damping coefficient of the flexural vibration of the
micro-beam affect the MEMS dynamics and the beam and the
two Josephson junctions are the same behaviors when σ1
varied. From what went before it can be concluded that the
dynamic of the micro-beam is in agreement with that of
Josephson junctions. The dynamics of the entire system can
be controlled through one of the elements of the electrical or
mechanical part. This shows the ability of this MEMS due to
its sensitivity at all levels in the field of physical applications.
Since the damping of the vibrating membrane of the micro-
beam is also proportional to the speed of the latter, it can be
concluded that the whole dynamics of the MEMS can
be modeled by the variation of the magnetic force

= ´ F i B Ls

  
. Indeed, according Newton’s second law we

Figure 12. A.2B: phase space of the flexural vibration of the micro-beam; T.2B: time histories of the oscillations of the micro-beam; F1.2B:
phase difference phase space of the first Josephson junction; F2.2B: phase difference phase space of the second Josephson junction;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= = = = -0.7973; 2; 1; 3.4943 4 0 01 2

ȷ ȷ ; s s s s= = = =1; 2; 1; 21 2 3 4 ; e e= =1.5;1 2 0.9;
e = 0.53 .
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have: å = aF m
text

d

d
˙ 
. Because the actuating force F


depends

strongly on the intensity of the magnetic field B

, we can

conclude that this MEMS according to its electrodynamic
modes can not only detect the magnetic fields but also provide
information on the characteristics of the magnetic field in
which it bathed.

4.5. Influence of the parameter σ2

The parameter σ2 coefficient of j bsin 0 22
( ) is also an impor-

tant control parameter of the dynamical system studied.
Should we recall, our main objective to study to examine the
influence of Josephson junctions on the vibrational modes of
a micro-beam. The various dynamics predicted by the bifur-
cation diagram of figure 18 above confirm the action of the
second Josephson junction on the vibratory modes of the
micro-beam. Figures 19 and 20 illustrate some of the periodic
dynamic behaviors of the MEMS for σ2=5.66 and

σ2=9.09 respectively. The chaotic mode is confirmed for
σ2=8.1 (see figure 21).

4.6. Influence of the parameters σ3;σ4; ε1, and ε3

We then studied the influence of σ3, σ4, ε1, and ε3 on dynamic
of the MEMS. For this purpose, we plot the bifurcation and its
corresponding Lyapunov exponents in figures 22, 23, when
σ3 , σ4 are varied respectively. It noted that the chaotic
oscillations appear in small domain while the regular vibra-
tions exist on the rest domain. Figure 24 shows the chaotic
vibration for the micro-beam and for the two Josephson
junctions when σ4=3.34 chosen in chaotic domain predict
by bifurcation diagram. This confirm the bifurcation and
Lyapunov predictions. In figures 25, 26 we plot the bifurca-
tion and its corresponding Lyapunov exponents by using
ε1 and ε3 as bifurcation parameters. The same observations in
the cases of σ3, σ4 are made. Figure 27 represents the phase
portraits and time histories of the MEMS for ε1=1.7 and
confirm the bifurcation and Lyapunov exponents predictions.
Although these observations, we noticed that s,4 4ȷ , and

ε3 which depend of the magnetic field B

favor more regular

vibrations and therefore can be used to control the chaotic
vibrations of the MEMS. In the absence of the magnetic field
(B= 0), the micro-beam should have a static behavior that is
fixed in its equilibrium position. Assuming that the dynamics
of the micro-beam influence that of the Josephson junctions,
we should note a stability expressed by a periodic oscillation
at the junctions under the effect of the generator excitation.
This hypothesis has been verified as shown by the numerical
results of figure 28. The time histories (figure 28:f) of the
flexural vibration is linear. This justifies the absence of
oscillation of the vibrating membrane of the micro-beam and
its equilibrium state. Figures 28: g and h representing the
phase spaces of the junctions illustrate a periodic behavior.
We can then confirm that for this MEMS, the micro-beam
dynamics and electrical behaviors are in good agreement. It
should also be noted that this MEMS can serve as a magnetic
field detector and a good high precision actuator.

4.7. Influence of the parameter iG0

After studying the influence of the internal parameters of the
MEMS, it is important to analyze the effects of the external
excitation. For this end, we plot the bifurcation diagram and
its corresponding Lyapunov exponents when the amplitude
iG0

of external voltage varied and other parameter are fixed.
The results are presented in figure 29. It observed that the
beam has periodic, multi-periodic, quasi-periodic and chaotic
vibrations for Îi 0, 15G0 [ ]. It also obtained from this figure
the intermittency phenomenon. The chaotic vibration
obtained is illustrated in figure 30 for =i 5.45G0

. The exci-
tation voltage influence highly the MEMS dynamics and can
be used to vary the dynamics of the beam according to the
wishes of the user.

Figure 13. BF2: bifurcation diagram; LF2: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= - = =1.6; 1;3 0 01 2

ȷ
s =0.5; 11 ; s s s e= = = =2; 1; 2; 1.52 3 4 1 ; e e= =0.9; 0.52 3 .
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5. Conclusion

This study focused on a MEMS whose essential components
are the Josephson junction and the micro-beam. The main
objectives of this study are to analyze the influence of the
voltage-frequency converters that are the Josephson junctions
on the dynamics of the micro-beam and to evaluate the utility
of this type of MEMS. For this dynamic system, an infinite
number of fixed points is obtained. For a well chosen example,
on the one hand, we have shown that the fixed points are stable
when k=2n and unstable for k=2n+1. Through the phase
spaces on the other hand, we have shown that the dynamic
behaviors of the micro-beam are strongly related to those of the
two Josephson junctions. The chaotic behavior of one induces
that of the micro-beam. The influence of each control para-
meter has been studied and some dynamics have been

illustrated. It goes out of this study also that several chaotic
regimes are obtained. Given its proven importance since the
20th century, chaos serves in several scientific fields. The one
we have studied here can be used in the field of communication
and information on the one hand and in the field of the
determination of weak magnetic fields on the other hand. The
microscopic size and the convertibility voltage-frequency of
this MEMS confers several other interesting potentialities to it.
In another work, we intend to render energy autonomous this
MEMS in order to find applications in the field of space pro-
jects where the economy electrical energy remains an asset for
the devices. The main objectives of our next research will be to
first build this MEMS in order to find convincing applications
and in a second time, extend this study to the nanoscale given
the potential, progress and projections given by Roukes in [31]
on NEMS (nano-electro-mechanical-systems).

Figure 14. A3: phase space of the flexural vibration of the micro-beam; T3: time histories of the oscillations of the micro-beam; F1.3: phase
difference phase space of the first Josephson junction; F2.3: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j= - = =1.6; 5.54; 13 4 01
ȷ ȷ ; j s s s= = = =0.5; 1; 2; 10 1 2 32

; s e e e= = = =2; 1.5; 0.9; 0.54 1 2 3 .
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Figure 15. BS1: bifurcation diagram; LS1: Lyapunov exponent: w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= - = = =1.6; 2; 1; 0.53 4 0 01 2
ȷ ȷ ;

s s s s= = = =1; 2; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 16. A.13: phase space of the flexural vibration of the micro-beam; T.13: time histories of the oscillations of the micro-beam; F1.13:
phase difference phase space of the first Josephson junction; F2.13: phase difference phase space of the second Josephson junction: w = 1;0

= = = = -i 2; 1; 3; 1.6G 1 2 30 ȷ ȷ ȷ ; j j= = =2; 1; 0.54 0 01 2
ȷ ; s s s s= = = =2.68; 2; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 17. A9: phase space of the flexural vibration of the micro-beam; T9: time histories of the oscillations of the micro-beam; F19: phase
difference phase space of the first Josephson junction; F29: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =2.89; 2; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 18. BS2: bifurcation diagram; LS2: Lyapunov exponent; w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j j= - = = =1.6; 2; 1; 0.53 4 0 01 2
ȷ ȷ ;

s s s e= = = =1; 1; 2; 1.51 3 4 1 ; e e= =0.9; 0.52 3 .
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Figure 19. A6: phase space of the flexural vibration of the micro-beam; T6: time histories of the oscillations of the micro-beam; F16: phase
difference phase space of the first Josephson junction; F26: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 5.66; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 20. A10: phase space of the flexural vibration of the micro-beam; T10: time histories of the oscillations of the micro-beam; F110: phase
difference phase space of the first Josephson junction; F210: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 9.09; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 21. A4: phase space of the flexural vibration of the micro-beam; T4: time histories of the oscillations of the micro-beam; F14: phase
difference phase space of the first Josephson junction; F24: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 8.1; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 22. BS3: bifurcation diagram; LS3: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j= - = =1.6; 2; 13 4 01

ȷ ȷ ;
j s s s= = = =0.5; 1; 2; 20 1 2 42

; e e e= = =1.5; 0.9; 0.51 2 3 .

Figure 23. BS4: bifurcation diagram; LS4: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j= - = =1.6; 2; 13 4 01

ȷ ȷ ;
j s s s= = = =0.5; 1; 2; 10 1 2 32

; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 24. A7: phase space of the flexural vibration of the micro-beam; T7: time histories of the oscillations of the micro-beam; F17: phase
difference phase space of the first Josephson junction; F27: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 2; 1; 3.341 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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Figure 25. BE1: bifurcation diagram; LE1: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j= - = =1.6; 2; 13 4 01

ȷ ȷ ;
j s s s s= = = = =0.5; 1; 2; 1; 10 1 2 3 42

; e e= =0.9; 0.52 3 .

Figure 26. BE3: bifurcation diagram; LE3: Lyapunov exponent;
w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j= - = =1.6; 2; 1;3 4 01

ȷ ȷ
j = 0.502

; s s s s= = = =1; 2; 1; 11 2 3 4 ; e e= =1.5 0.91 2 .
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Figure 27. A1: phase space of the flexural vibration of the micro-beam; T1: time histories of the oscillations of the micro-beam; F11: phase
difference phase space of the first Josephson junction; F21: phase difference phase space of the second Josephson junction; w = 1;0

= = =i 2; 1; 3G 1 20 ȷ ȷ ; j j= - = = =1.6; 2 1; 0.53 4 0 01 2
ȷ ȷ ; s s s s= = = =1; 2; 1; 21 2 3 4 ; e e e= = =1.7; 0.9; 0.51 2 3 .

Figure 28. f: time histories of the oscillations of the micro-beam; g: phase difference phase space of the first Josephson junction; h: phase
difference phase space of the second Josephson junction; w = = = =i1; 2; 1; 3G0 1 20 ȷ ȷ ; j= - = =1.6; 0 13 4 01

ȷ ȷ ; j s= =0.5; 1;0 12

s = 22 ; s s e= = =1; 0; 1.73 4 1 ; e e= =0.9; 02 3 .
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Figure 29. BI0: bifurcation diagram; Li0: Lyapunov exponent; w = = =1; 1; 30 1 2ȷ ȷ ; j j= - = = =1.6; 2; 1; 0.53 4 0 01 2
ȷ ȷ ;

s s s s= = = =1; 2; 1; 21 2 3 4 ; e e e= = =1.5; 0.9; 0.51 2 3 .
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