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Abstract
In this work, we have performed a new approach based on a combination of coordinate
transformation and the finite difference method in order to investigate the electronic, linear and
nonlinear optical properties of GaN/AlxGa1−xN quantum wire. The real and the imaginary parts
of first-order linear and third-order nonlinear susceptibilities are investigated as a function of the
quantum wire height and Aluminum mole fraction. Our calculations revealed that as the height
increases, the transition energy decreases monotonically. In addition, the peaks of susceptibility
decreased and shifted to the red as the height augments. Our findings can serve the experimental
studies linked to practical exploitation of the quantum confinement effect in optoelectronic
devices based on quantum wire nanostructures.
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1. Introduction

Over the last two decades, physical properties of quantum
wells, quantum wires and quantum dots have attracted the
interest of theoretical and experimental investigations [1–8].
These nanostructures exhibit new electronic and optical
properties offering a wide range of potential applications in
optoelectronic devices, photodetectors [9, 10], far-infrared
laser amplifiers [11, 12], light emitting diodes [13, 14] and
solar cells [15]. Thanks to the molecular beam epitaxy tech-
nique [16–18], it has become possible to synthesize a certain
type of cross-sections such as dome, lens shaped, T-shaped
[19], elliptical [20] and V-groove quantum wires [21–24].
The accessibility of controlled manipulation of single-electron
energie in quantum wire through effective radius, electric/
magnetic fields and spin–orbit interactions has stimulated an
excessive activity in the study of both electronic and optical
properties [25, 26]. Recently, many works have been reported
on quantum wires [27–33]. Authors of [27] studied the effect
of electric and magnetic field on the linear, the third-order
nonlinear and the total optical absorption coefficient (OAC)

for GaAs/AlGaAs quantum wire and they found that the
magnitude of OAC is ameliorated in presence of electric field.
Tshipa et al [29] discussed the donor impurity binding
energies of GaAs/AlxGa1−xAs cylindrical quantum wires.
Their results depicted that the binding energy augments with
the increase of the parallel external magnetic field. In [30]
authors have reported a theoretical study of the optical
properties for InAs/In0.5Al0.48As quantum wire subjected to
an inclined transverse electric field. They have demonstrated
that the optical properties are strongly affected by the direc-
tion and the strength of the applied electric field. In 2013,
Sonawane et al [33] investigated the electron confinement in
GaN/AlxGa1−xN quantum wire for different wire widths and
aluminum mole fraction. Their analysis showed that spread of
electron confinement is reduced with an increase in aluminum
composition in the barrier.

In this work, we present a detailed study of electronic and
optical properties for GaN/AlxGa1−xN quantum wire. The
linear and the third order nonlinear optical susceptibilities are
discussed. The two dimensional Schrödinger equation is
resolved in order to determine wave functions and state
energies of charge carriers. Theoretical analyses are presented
on the base of these numerical calculations as follows. In
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section 2, we give some details of the coordinate transfor-
mation steps and the theoretical model. The results and a
conclusion will be presented in sections 3 and 4 respectively.

2. Theoretical model and coordinate transformation

The model of the coordinate transformation have been used in
our latest works for modelling quantum wires and dots
[34, 35] and gives a good results, compared with exper-
imental data. We present in this part, a bref detail of the
mathematical method and we start with the 2D Schrödinger
equation:
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where m* is the electron or hole effective mass, Up(x, y) is the
2D potential profile determined by the conduction band
offset.

The general coordinate transformations used in this work
are x=x(u, v) and y=y(u, v) and the Schrödinger equation,
given by equation (1) in the old coordinate space ε=ε(x, y),
can be mapped into the new space β=β(u, v) as:
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In equation (2), [ ( ) ( )] ( )y y=x u v y u v u v, , , , ,
[ ( ) ( )] ( )=U x u v y u v U u v, , , ,p p while ux, uy, vx and vy are the

elements of the Jacobian matrix Jx,y representing partial
derivatives of the inverse functions u=u(x,y) and v=v(x,y)
with respect to x and y. The calculations are detailed in [30].

The linear and nonlinear susceptibilities can be calculated
using the quantum density matrix formalism [36].

The first order linear and third order non linear suscept-
ibilities are given by [37]:
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where Mij is the transition dipole moment defined by:

∣ ∣y y= -M erij f i and ωfi=(Ef− Ei)/ÿ is the corresponding
transition angular frequency between two states. σ represents
the charge carrier density and γij is the damping rate and mif =

-M Mff ii is the geometrical factor.

3. Results and discussion

The shape of the quantum wire structure shown in figure 1
and the different material parameters used in our numerical
work are taken from [38]: Eg(GaN)=3.29 eV. The effective
mass of GaN and AlxGa1−xN are m*

GaN=0.19m0 and

-
mAl Ga Nx x1
* =(0.19(1−x)+0.33)m0. We have taken Vc

(GaN/AlxGa1−xN)=0.75(Eg(x)–Eg(0)) [39], σ=5×1016

cm−3, while x is taken equal to 0.4 in this part.
In figure 2 the transition energy ΔE is displayed as a

function of the quantum wire height H for a given mole

Figure 1. The cross-section profile of GaN/AlxGa1−xN quant-
um wire

Figure 2. The transition energy ΔE as a function of the quantum
wire height H for a given mole fraction of Aluminum x=40%.

2

Phys. Scr. 95 (2020) 045801 N Zeiri et al



fraction of Aluminum (x=0.4). One can easily remark that
ΔE decreases monotonically as H increases. For example if
H=7 nm, ΔE≈0.04 eV. For larger values of H, the
transition energy will further decrease and tend towards zero.
This can be related to quantum confinement effect when
enlarging H, interval distance between states becomes more
reduced. These findings have been reported in many
[33, 36, 40].

In figure 3, the Realχ (1) has been plotted as a function of
pump photon energy w (eV) for different values of height H
while x=40%. As can be seen from this figure, the effect of
increasing H gives a spectacular decrease of the magnitude
and a very rapid shift of the susceptibility peak toward the
longer wavelengths. According to figure 3, we can underline
the fact that the magnitude of Realχ (1)(ω) is around 10−6. For
bigger height (H=9.0 nm), the intensity of Realχ (1)

diminishes and switches from −0.9× 10−6 to +0.9× 10−6

near 0.035 eV. Our results are in a good agreement with those
of [36] where analysis revealed that Realχ (1)(ω) changes its
sign near the resonant frequency (80 meV).

In figure 4, the Imχ (1)(ω) has been displayed as a
function of pump photon energy w (eV) for different values
of height H while x=40%. From the plot one can confirm
that the imaginary part of first order linear susceptibility is
strongly influenced by H change. In addition, with the
increase of H, peaks of Imχ (1)(ω) are reduced and red shifted.
For example, if we select H=9.0 nm, the peak of Imχ (1)(ω)
has reached the value 0.88×10−6 and is approximately
located at 0.03 eV.

The impact of quantum wire height H on real
(Realχ(3)(ω)) part of third order nonlinear susceptibility has
been illustrated as a function of pump photon energy w (eV)
for a given Aluminum mole fraction x=40% in figure 5. As
can be seen from the figure, the augmentation of H is fol-
lowed on the one hand by a remarkable decrease in the
amplitude of susceptibility and in the other hand by a sig-
nificant shift of the peaks towards the low frequencies. The

magnitude of Realχ(3)(ω) is 10−12 m2 V−2. This can be
attributed to quantum confinement effect [41].

The result of the imaginary part of the third order non-
linear susceptibility (Imχ (3)) has been pictured in figure 6 as a
function of pump photon energy w (eV) for different values
of quantum wire height H while x=40%. From the plot, it is
obvious to observe that the Imχ (3) keeps always a negative
value and decreases when H augments. For H=3.0 nm, the
peak of Imχ (3) is equal to −1.52×10−12 m2 V−2 and situ-
ated at 0.07 eV. The same behavior is obtained in comparison
with figure 4 where peaks of Imχ (3)(ω) are witnessing a red
shift. The results of this study are necessary in designing
polarization-sensitive photo-detectors [42, 43] and tele-
communications [44, 45].

The susceptibility is related to the geometrical factor ∣ ∣mif

which is strongly affected by the height H. In fact, the
quantum confinement effect due to the decrease of H, inten-
sifies the peaks of susceptibilities.

Figure 3. The real (Realχ (1)) part of the first linear susceptibility as a
function of pump photon energy w (eV) for different values of
height H while x=40%.

Figure 4. The imaginary (Imχ (1)) part of the first linear susceptibility
as a function of pump photon energy w (eV) for different values of
height H while x=40%.

Figure 5. The real (Realχ(3)) part of the third order nonlinear
susceptibility as a function of pump photon energy w (eV) for a
given aluminum mole fraction x=40%.
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In figure 7, Real χ(3)(ω), Imχ (3)(ω) and ∣ ( )∣( )c w3 have
been illustrated as a function of pump photon energy w (eV)
for a selected quantum wire height (H=3.0 nm). The plot
indicates that ∣ ( )∣( )c w3 =1.81×10−12 m2 V−2 while
Realχ(3)(ω) changes it signs from −1.15×10−12 m2 V−2 to
+1.15×10−12 m2 V−2 at 0.07 eV. These particular values of
the susceptibility obtained in our theoretical model opens the
access for the design of the optoelectronic devices which
requires weak transition energies. This conclusion has been
mentioned in [27].

In figure 8, we have depicted the maximum of imaginary
part of first order linear and third order nonlinear suscept-
ibility as a function of different values of height H while
x=40%. It is worthy to underline the influence of varying H
on the c .max In fact, increasing H has reduced dramatically the
maximum of both Imχ (1) and Im∣ ∣( )c .3 For H=8.0 nm, the
maximum of Imχ (1)=0.94×10−6 m2 V−2 while it is equal
to 0.96×10−12 m2 V−2 for Im∣ ∣( )c .3 Our findings can be at
the service of diverse fields of quantum wires such as
quantum electronics [46, 47] and nonlinear optics [48–50].

Figure 9 reflects the maximum of the first order linear
and modulus of third order nonlinear susceptibility for dif-
ferent Aluminum mole fraction x with a fixed height
H= 3.0 nm. A great enhancement in the amplitude of sus-
ceptibility is obtained when x is increased. It should be noted
here that for x=40% the magnitude of third order nonlinear
susceptibility (figure 9) is around 1.80×10−12 m2 V−2.
Several studies examining the the importance of nonlinear
susceptibility for optical switching device have been pub-
lished recently [51, 52].

In reference [52], Liua et al have studied, using the
effective mass approximation, the tuning of linear and non-
linear optical absorption in laterally coupled
AlxGa1−xAs/GaAs quantum wires. They found that, by
decreasing the gap, the linear and nonlinear absorption
coefficient displayed a blue shift. In [53], authors have eval-
uated the nonlinear optical rectification in laterally-coupled
quantum well wires with applied electric filed, using the

Figure 6. The imaginary (Imχ (3)) part of the third order nonlinear
susceptibility as a function of pump photon energy w (eV) for
different values of quantum wire height H while x=40%.

Figure 7. The Realχ(3), Imχ (3) and ∣ ∣( )c 3 as a function of pump
photon energy w (eV) for a fixed quantum wire height H=3.0 nm.

Figure 8. The maximum of the imaginary part of the first order linear
and third order nonlinear susceptibility as a function of different
values of height H while x=40%.

Figure 9. The maximum of the first order linear and modulus of third
order nonlinear susceptibility as a function of different values of
Aluminum mole fraction while H=3.0 nm.
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effective mass formalism. Their result showed that c0
2 is

strongly influenced by the external electric field.

4. Conclusions

In this work, a new numerical method based on a combination
of coordinate transformation has been presented in detail in
order to model GaN/AlxGa1−xN quantum wire. Our interest
has focused on the study of the real and the imaginary part of
first-order linear and third-order nonlinear optical suscept-
ibilities as a function of two major factors: height H and
aluminum composition x. Calculations depicted that the
transition energy ΔE diminishes rapidly as H rises. In addi-
tion, peaks of susceptibility are reduced and redshifted when
H is enlarged. Results depicted that by increasing Aluminum
mole fraction, amplitude of susceptibility is ameliorated for
both linear and nonlinear terms. The results of this work can
represent a great contribution in technological applications
where quantum wires are required.
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