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Abstract

In this work, we investigate soliton solutions for the conformable nonlinear differential equation
governing wave-propagation in low-pass electrical transmission lines. Adopting two integration
techniques, we construct dark and bright solitary waves, jacobian elliptic function solutions and
trigonometric solutions. The obtained results are relevant and will probably help to carry data

and codify them in telecommunication.
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1. Introduction

Nowadays, investigation of exact solutions of the nonlinear
differential equation advance beyond measure. Moreover, a
conformable derivative nonlinear ordinary differential
equation have become very important do to their application
in communication system. So, the problem of obtaining an
exact solution of the conformable nonlinear equation attracts
a lot of attentions. However, several works have been done
in optical fibers, fluid mechanics, biology, economy just to
name a few [1-5]. Thus, various mathematical methods have
been developed to solve them such as F-expansion method,
the generalize Kudryashov method, exp(—1(&))-expansion
method, the (G'/G?)-expansion method, the trial expansion
method and so on [6—19]. We aim, in this work to apply the
auxiliary equation method and Sinh—Gordon method to ease
the investigation of the exact solutions to the conformable
derivative nonlinear differential equation governing slowly
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modulated wave propagating in low-pass electrical trans-
mission line, which consist of a number of LC (inductance-
capacitance) connected and the dissipative effect is neglec-
ted [5]. The rest of details of the derivation of (1) are given

by [5].
Dt%“u(x, 1) — le%auz(x, n + ﬂDgo‘lﬁ(x, 1)

4
— DX u(x, 1) — %Df,;;xu(x, H=0,0<a<l (1)

However, u(x, 1) is the voltage in transmission lines and v, §
and ( are constants, while the variable x is the propagation
distance and ¢ represents the slow time.

The rest, of our work is organized a follows: section 2
summarize the conformable derivative theorem. The glimpse
of the methods apply are given in sections 3 and 4 applies the
methods for obtaining soliton solutions to the proposed
model, follows by some graphical representation. The last
section concludes the work.

© 2020 IOP Publishing Ltd  Printed in the UK
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2. The conformable derivative

Let us gives the short definition of the conformable derivative
of order ae(0, 1) as follows:

« 1—ay _
SO _ g PO Z RO e o) SR
dr ¢—+o00 S
(2)
Theorem 1. Let «e(0,1] and f=f(@), h=h({) be

a-conformable differentiable at t < 0. Hence,

« DO (af + bh) = aD{ f + bD{h,
o D,“(tﬁ) = pth and BeR.
* Df(fh) = hD*(f) + D (h) .
v oL\ _ HPr) =i

D ( h) = OB

2

g?

a, beR.

and

3. Glimpse of the methods

3.1. The auxiliary equation method

We surmise the general conformable derivative nonlinear
PDE as follows

P(u, D*u, D{u, D{'u, D}*u, DD u, ...)

=0, 0<a,fB<1, 3

and u(x, £) is an unknown function, while P is a polynomial of
u and its partial fractional derivatives. The next following
steps describe the traveling wave solution obtained by aux-
iliary equation method.

Step 1: We first used the following fractional complex
transformation, and suppose u(x, 1) = U (£),

__k
ra+

«

2 1o @)

¢ +F(1+a)x’

where k;, k, are constants to be determined later, and
ki, ko = 0. By using the above transformation, it is obtained
the ordinary differential equation of the form

Gw,u,u",u” .)=0, 5)

Step 2: Surmise that the exact solutions of ODE (5) can be
expressed [20].

U©) = Ao + ) Ailg (9T, (6)
i=1

and g(&) satisfies the following auxiliary equation.

g =2(Co+ Gg + Crg* + Gg’ + Cugh), (N

8¢ = G+ 2Cog + 3Gg? + 4Cyg°, ®)
with g = %, Gi(i = (1,2, 3, ), A, A i = (1, 2, oo N),
are constants to be determined later, and A; = 0.

Step 3: Under the terms of the method, it is suppose that
solution of (6) can be written in the following form

U =A + Aig(§) + A g’

+A38(6 + ... Ang &V, ©)

where A, A;, A3, A4, and Ay are constant to be determined
later.

Step 3: The value of integer N, is obtained by using
the balance principle between the nonlinear terms and the
highest order derivative come in the obtained ordinary diff-
erential equation. More precisely, if the degree of U(§) is
deg[U(£)] = N, then the degree of the other terms will be
written as follows

deg[quff)] =N+gq,

1
ac (10a)

47U (§)

deg[w@)ﬁ( i@

] ] =Np+sN+gq).  (10b)

Step 4: Substituting (9), (8) and (7) into (5) provides a
polynomial g(€) of & Next, collecting all the coefficient g(&)’,
@=0,1, 2, ......N) yield a system of algebraic equation.
Solving this system, we describe the variable coefficients of
Ao, A, i=(1, 2, ....., N) then the solution to (3) can be
obtained in terms of g(&).

Step 5: To obtain the exact solutions to (3), the following
solutions of (7) and (8) are used.
case 1: for C; > 0and C;, < 0, Cy = C, = C3 = 0.

—C,
Cy

g = sech(y2(;), an

case 2: forC, < 0 and C; > 0, C1 = C3 = 0, Cy = CZ /4Cy.

—C
g = | - 2 tanh(y— G5 6), (12)
4
case 3: for C, >0 and C4 > 0, Cy = C; = 0.
G, sech?({—C
g(© = —2XNWZ0E (13)
2/C,Ca tanh( 2c25)
case 4: for C; > 0 and C,> — 4C,C4 > 0, Cy = G = 0.
2C, sech?({/2C
5(6) = 25ech(y2620) (14)

C? — 4G,Ch — G sech(\/2C2§)’
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Figure 1. Spatiotemporal plot of bright solitons u;(x, f) at « = 0.9 and a = 0.75 respectively.

case 5: for C, >0, Co = C; =0.

20, Gy sech? (,lzczg)
2,
C2C4(l - tanh(,lzczi))

where Cy, C;, C,, C; and C, are arbitrary constants. Therefore,
using (10-114) and (9), the exact solutions to (3) can be obtained.

gl = (15)

3.2. The Sinh—Gordon method

For the Sinh—Gordon equation, the following preliminaries
are adopted [3]

0%u
Ox0t

= asinhu, (16)

where « is a constant. By using the traveling-wave transfor-
mation (4) and then adopted u(x, r) = U(&), gives the ordinary

differential equation

U o«

—— = ———ssinh U
&> (ki + ko)

7)

ky, k, are constants to be determined. Integrating (17) once
gives

2
410 = Lsinhz(lu) T (18)
d¢ 2 (ki + k2) 2

with integration constant ¢. To surmise ¢ = 0, Tt = 1
and %U = w, S0, it is obtained
dw(© _ .

——== =sinhw(¢). 19

i © (19)

Thereafter, with (19), it can be obtained soliton solutions to
the nonlinear partial differential equation (3), and we note that
(19) is a special case of (17) or (18).
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Figure 2. Spatiotemporal plot of bright u;(x, #) at o = 1 and o = 0.58 respectively.

To build relevant jacobian elliptic function solution to
(3), the following form of (19) can be adopted

dAw(E) 1.
e =3 sinh 2w ().

(20)

Considering ¢ = 2w, it is obtained from (20) the following
expression.

[dw(@ e

2
0 ) = sinh®>w(§) + c.

where c is an integration constant. However, from (21), it is
recovered the following solutions

sinh[w(§)] = ¢s(&; m), (22a)

cosh[w(&)] = ns(&; m), (22b)

Here m is the modulus of Jacobian elliptic function solutions
[4]. Substitute (22a) and (22b) into (20), the integration
constant ¢ satisfies

c=1—m? (23)

and will be used in the following results. To apply the
method, the following steps will be follows

Step 1: We suppose that (5) admits the following solu-
tions

U =UWw(©) = Ao

N
+ > cosh’ 'w[A; sinhw + B;coshw],

i=1

(24)
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Figure 3. Spatiotemporal plot and the corresponding profile of W-shaped bright solitons u;(x, ) at « = 0.75 and a = 0.6 respectively.

where w = w(§) satisfies (20) or 21) and A;i = 1, 2, 3, ....N),
B(i=1,2,3,....., N) are constants to be determined later.

Step 2: The degree N is obtained by balancing the
highest degree linear term and nonlinear term in (5).

Step 3: Substitute (24) along with (19) and (21) into (5)
and the hyperbolic polynomial for w is recovered.

Step 4: Thereafter, set to zero the coefficients of
sinh/w cosh/w (i = 0, 1;j =0, 1, 2, ..., N), to obtain a set
of algebraic equations with the parameters A;,(i = 1, 2, 3, ....
N),B(i=1,2,3,....,N).

Step 5: Solving the obtained algebraic equations, derived
the doubly periodic solutions of the ODE (5).

4. Application of the methods

4.1. On solving the conformable derivative nonlinear differential
equation governing wave propagation in low-pass electrical
transmission lines with auxiliary equations method

In this section we will apply the auxiliary equation method to
construct exact solutions of the conformable derivative non-
linear differential equation governing wave propagation in
low-pass electrical transmission lines [4].

To achieve the nonlinear ordinary differential equation of
(1), the traveling wave transformation (4) is used. Thereafter,
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Figure 4. Spatiotemporal plot dark solitons |uy(x, #)|* at & = 1 and at a = 0.9 respectively.

the nonlinear differential equation is obtained as follows

(ki = kU () — kPvU(©) + Gk U(E)
& 5
——k; U" (&) =0
7 ©
Using the balance principle between U3(¢) and U”, gives
N = 1. Hence, we surmise that (6) can take the following
expression.

(25)

U§) = Ao + Ai(g(&)), (26)

Substitute (26) and (8) into (25), it is obtained the polynomial
algebraic equation in terms of (g(£))/, (j =0, +1, £2,
+3,....) for each case.

Collect all the coefficient of the derive polynomials
and setting them to zero the set of algebraic equations is
obtained. Thereafter, by aid of the MAPLE, it is obtained the

3(k — k%)
1k2 aA _Al,

3( K+ kA
8%3 ’

following results for each case, R1: Ay =
k2 2
9 (ki — 6k3)’

k= ki, ky = ko, ﬂ— G, = Cy =

2 AN
3 6%3 (—kE + 6k3)

u(x, t) = Ag

-G ki ka
+A sech|/2C e+
"W ( 2(F(1+a) I +a)

x“)),
27

. 3 (k — k) 2
R2: Ay = —ET, A=A k= ki, ko = ky, 6: 9
1
k2v? 3(—kP + 6kF)A 2 AP ktv? Th
2T T o)A =221 Thus, for
K+ k2’ G = 02 cG=—3 U2 (—kE + 6k2) ’

C; <0 and C4 >0, and Cy = C; = C; = 0, dark solitary
waves

u(x, 1) = Ay

-G ky ka
+A tanh| /— 1%+
"W ( (I‘(l o Tt

)

(28)
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Figure 5. Spatiotemporal contour plot of |u, (x, £)[> at @ = 0.9 and o = 0.72.

64, (—2kE + kFvAg + 26k3)

_ k12

+ 6kF + kvAg

3(—kf + 6kF + kFvAg) AL

b}

k2AE

8%3

3(—kE + 6k + kPvAg) A}

uz(x, 1) = Ag + Ay

R4: Ay = Ag, Al = AL ki=hk, b=k, 8=
C, =

AZ5%3

, Gy =

4A2 (2kEvA — 3kE + 30k3) Cy —
Y =

Ag6%3

k]

Hence, for C; > 0 and C4 > 0, and Cy = C; = 0, it is
obtained soliton solutions

C, sech? (J——Cz(ﬁta + 1"(1122r a)xa))

6A (—2k? + kPvAg + 26k3)

a

b}

k

4A2 (2kEvA — 3k

2 @
+ I‘(1+a)x )

k1
2./ C,Cy tanh \/2C2(F(l+mt+

—ki + k2 + kZvAo

29

k)

k2AG
+36k3)
2 s C4 =

8%3

, Gy =

Ay 6%3

yYren: . Hence, for C, > 0 and C,2 — 4C,C, > 0,
0 2

and Cy = C, = 0, it is recovered soliton solutions
ug(x, 1) = Ao
2( 7/ k1 ko
B 2C2 sech ( 2C2 (mta + Ta +a)xa))
1
[r2 _ _ k1 a k2 @
JG 4G Cy C3SCCh(«[2C2,(F(1+a)t + F(Ha)x ))

(30)

+

>

2 2 2
RSZAO :Ao,Al:Al,klzkl,kzzkz,ﬁ:w

K2AZ K
6A[ (—2ki + kPvAg + 26k3) 4A% (kA — 3kE + 36k3)
G = @2 s G= 42 , Gy =
%3 Ao6%3
3(—kZ + 6k + kP vAg) AP

AR 5%3
Consequently, for C; >0, and Cy=C; =0, it is
obtained soliton solutions
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Figure 6. Spatiotemporal plot evolution and contour plot of |u,(x, £)|? at o = 0.65 and o = 0.55.

us(x, 1) = Ay

ki ko
2 (1"(1 + a)ta + ra+ a)xa)
20, Gy sech? [ 20,21 T2

1A - (D)

k1 14 k2 x@
C2C4 1 _ tanh \/2C2 (1"(1+a) 2F(l+a) )

4.2. On solving the conformable derivative nonlinear differential
equation governing wave propagation in low-pass electrical
transmission lines with Sinh—Gordon method

From (25) it is recovered N = 1, and (24) gives

U = Ay + A;sinhw + Bjcoshw. 32)
Substitute (32), (23), (21) and (19) into (25), it is obtained a
set of algebraic equations.

* (cosh(w(€))*: BKEA] — +6%3 Ay + 36KEBA = 0,

* (cosh(w (€))% 38k AgB + 3BkIAoAl = 0,

 sinh(w(£)) (cosh(w(£))* BB} — c6%3 B + 30k By
A12 == 0,

« cosh(w(€)): —kFA + 6%FA— L6%FAis + k2A +
3Bk Ag A — 30kIBEA = 0,

» sinh(w (€))cosh(w(€)): 66k>AgA B = 0,

o sinh(w(¢)):  k’B, — 6kiB; — %54k2231s + 30k2AE B,
—Bk? B} + 6%} B = 0,

+ Constant: kAg — kPvV? — kiAo — 30k AoBY +
Ok A =0,
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hence it is obtained from the above system of algebraic
equations with help of Maple, the following results after
setting to zero all the coefficients of sinh/w cosh/w (i = 0, 1;
j=0,1, 2, ..., N). Thus, by taking into account (22a)
and (22b), follows the Jacobian elliptic function solutions
to (1).

SET 1: A, = %\/ZmZ + 2B, A =0, B =B,

b — 6 ke ko oy = 32w 3=
2T NsEmrere T MY T S s e P

53

v 5=
(6%m? 4 6%+ 6)B2’

ulb(€) = %Bl J2m? + 2

+2kins

6
oy \I 5(8m> 4 8+ 6) o

1
r'd+ )

'+ o

bl

(33)
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SET 2: A() = O, Al = —Bl, Bl = Bla k2 =
6 _ _ _ -8
2| " sasm sk =kov=0, f=Gon
§=6.

u2b(§) = —Bik| cs

«

2|6
6Q8%m? —63-24)
xY m

(1 + a)

I+ )

\)
ra+ )

SET 3: A():\/Zmz—lBl,AlzBl, BIZBI, k2:
ﬁ:

2.6
1 5(26%m? — 63 — 24)
e+ " xY m

'+ «)

3 . 3 o i2
2 T8 — 81 12) ki ki =k, v= 20285m — 8+ 12)B,
1 5 .
2(8%m— 8+ 12)BE’ 6=¢.
u3b(€) = Bi[N2m? — 1
3
1 2 T SR8 — 8+ 12)
+ kics @
'+ o '+ o)
2 *%
¥ ks 1 o 5Q8%m? — 63+ 12)
I'(l + « I'a+ o

(34)

«
’

«
s

(35)

SET 4: AO = \/27’}12 — lBl, A] = —Bl, B] = B], k2 =

3 _ 3 BmP+2
2 T QM — 81 12) ki ki =k, v = 228%m — 8+ 12)B,”
1 53 _
2(8%m? — 8+ 12)B2” 6=4.
N2m? — 1
udb (&) = Byky| X2 —
ki
3
1 2 TS — 8+ 12)
—cS e s
r'd + ) ' + a)
3
) P R
5Q6m2 — 5
4 ns 1 oy @ +12)
'l + « 'l + @)

B =

(36)

From (33)-(36), when m — 1 it is obtained solitary waves

[ 6
oy 5283 + 6) Lo

solutions to (1),

ull(§) = %Bl 2(1 + kj)tanh

I'a+aa

I'(l + )

(37)

10

2

TS5 — 24
ul2(&) = —Biki| csch 1 a 5(°— 24)
rad+ « r'd + o)
6
- P )
I'a (1
d+a 1+ o 58
ul3(§) = Bi| 1 + kicsch a @12
I+ a) I + a)
2\/:
+ kj coth Tt )ta T F(léiﬂ)z) |,
’ “ (39)
1
ul4(&) = —Bik| ——
ki
p Iy p—
~+ csch 1 1 662 +12)
T +a) L1+ a)
2. |— 33
— coth T 11 1o s 15(6 +12) ’
I+ 1+ a) w0)

from (33)-(36), when m — 0 it is obtained jacobian elliptic
function solutions and trigonometric function solutions to (1),

«Q

ul5(&)
[ 6
3
= lB1 J2 + 2kicsc Y+ b2+ 6 x“
2 Il + «) (1 + «)
[ 6
565 24)
ul6(&) = —Bjk| cot
© N TA T T(l + a)
6
1 N e ey o
— CSC ]
ra+ o '+ @)

ul7(§) = By| 1 + kiesc

(41

[ 3
o -
oy 68 +12) o

r'da+ o

+ ki cot ! 4+

' + «)

'+ o)

r'da+ o

23
583+ 12) o

42)
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ul8() = —kiBy| ——
ki
[ 3
_ ese 1 o 6(°—12)
I'(1 + o I'(1 + «
3
1 2 TS - 12)
+ cot ¢
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Figures 1 and 2 are spatiotemporal plot evolution of
lu(x, )]> at ky = —k;, k = 100.67, § = 0.9, A = 0.05, v =
0.25 and figure 3 is plot evolution of |u(x, t)|* at ky = —k;,

11

k = 100.67, 6 = 0.8, A, = 0.05, v = 0.25. Figure 4-6 are
spatiotemporal plot evolution and contour plot evolution of
lur(x, D> at &k = —ky, k = 100.67, § = 0.8, A; = 0.0005,
v = 0.25. While figure 3 is W-shape bright soliton of
luy(x, ) at ky = —kj, k = 10.67, § = 1.9, A = 0.005, v =
0.25. Figures 5-7, show the spatiotemporal plot of dark
solitons |u5 (x, ¢) [>. The obtained results are more general than
those obtained by [3, 5]. We also observed that the fractional
parameter o has an impact on the width and on the amplitude
of the obtained above bright and dark solitons solutions (see
figures 1, 5-8). Without doubt, we can predict that the deri-
vative order changes the shape of the traveling-wave in the
electrical transmission lines. Furthermore, the memory effect
of fractional derivative can have application in electrical
transmission line.
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5. Conclusion and remarks

This paper studies the conformable derivative nonlinear
differential equation governing wave propagation in electrical
transmission lines. To obtain the ordinary differential
equation, the fraction complex temporal hypothesis is adop-
ted. By means of the auxiliary equation method and the Sinh—
Gordon method, it is obtained dark, bright solitons compare
to the results obtained by [1-3, 5]. Moreover, Some relevant
results have been obtained by using the Sinh—Gordon method.
As, it is well known that solitons have a great importance in
telecommunication system, the results obtained will probably
help to carry information and increase the bit-rate of data.
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