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Abstract
This article presents the theoretical study of the physiological phenomenon brought up by filtration of a
non-Newtonian Casson fluid between two parallel permeable membranes. This situation corresponds
to blood filtration process in a flat plate hemodialyzer (FPH). Seepage of fluid across the membrane is
considered in accordance with the Darcy’s law and the equations of motion governing the flow are
modeled. Using the low Reynolds number and long membrane length assumption, equations of motion
are solved exactly. Equations describing velocity and pressure filed and various flow variables are
derived and effects of wall slip parameter, wall filtration coefficient and the yield stress are presented
graphically. A strong influence of these parameters is observed on the flow in an FPH. Theoretical
values of the membrane filtration coefficient and mean pressure drop in an FPH are calculated and they
are found to be in close agreement with the corresponding available empirical and experimental values
in the literature. For certain limiting range of physical parameters, derived solutions reveal that the axial
flow rate of Casson fluid in an FPH decays at an exponential rate. This is a physically valid and widely
admitted result, used by several researchers in studying the blood filtration process in renal tubules of
mammalian kidneys. Since the presented solutions in this article are reduced to their corresponding
Newtonian fluid flow solutions between permeable membrane, therefore, it is concluded that a wide
range of applications in physiology and engineering can be covered up by the present investigation.

Keywords: Casson fluid, permeable channel, non-Newtonian fluid, flat plate dialyzer,
ultrafiltration rate

(Some figures may appear in colour only in the online journal)

1. Introduction This is encountered in biological and industrial processes of
osmosis and ultra filtration For example, in reverse osmotic
The study of fluid flow between parallel permeable mem- desalination, transpiration cooling, glomerular tubular ultra
branes has scope in a wide area of science and engineering. filtration, proximal tubular re-absorption, and in the process
of blood filtration in an artificial kidney [1-5]. In these pro-
7 Authors to whom any correspondence should be address. cesses, the filtering fluid is normally pumped at an elevated
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pressure through porous-walled channels and tubes. For
example, in the human body, the renal tubules of kidneys can
be approximated by long narrow permeable tubes [2, 3, 5]. In
the blood purification process in extra-corporeal circuits, the
fluid commonly flows between flat parallel membranes
composed of permeable materials [5, 6].

In studying hydrodynamics of flows in these processes,
one must take into account normal and tangential components
of the fluid velocity, in contrast to the flow in a confined
region with impermeable boundaries. This is due to the fact
that usual law proposed by Poiseuille [7] fails to be applicable
in these flow phenomena. Berman’s well known studies of
laminar flows in permeable channels and tubes provide a
starting point in the understanding of such flows [8, 9]. In
these studies, he obtained approximate analytical solutions for
velocity and pressure distribution for the steady motion of a
linearly viscous and incompressible (Newtonian) fluid
between permeable ducts having constant suction/injection
velocity at their boundaries. A regular perturbation series
approach was employed in obtaining solutions. Yuan et al
investigated in detail the effect of constant suction and
injection velocity on the steady flow of a Newtonian fluid in a
permeable tube [10]. They considered a two-dimensional flow
of incompressible Newtonian fluid in a porous-walled tube
and presented approximate solution of equations of motion
using the perturbation technique.

Macey [2, 3] investigated the hydrodynamics of flow of
blood in the renal tubule of kidneys. In his investigations,
Macey assumed the blood to be an incompressible Newtonian
fluid and the renal tubule as a long narrow porous-walled
tube. The flow rate of fluid was assumed to decay at a linear
and exponential rates. Assuming the flow in renal tubule to be
creeping, he obtained exact solutions for the velocity field and
pressure distribution. Kozinski et al [6] extended the work of
Macey for porous-walled channels and tubes composed of
walls, reabsorbing the fluid at an exponentially decaying rate.
In recent years, Haroon et al [11] proposed a mathematical
model of fluid flow in renal tubules of kidneys. A two-
dimensional model of creeping flow of Newtonian fluid in a
permeable channel was proposed, where the fluid was
assumed to be absorbed at a uniform rate. Siddiqui er al [12]
presented the creeping flow of an incompressible Newtonian
fluid in a permeable channel with linear seepage velocity at
the wall. An application to renal tubular flow was also
furnished.

Tu et al [13] developed a theoretical model for a two-
dimensional flow of filtrate in a flat-plate dialyzer with the
operation of ultra filtration In their study, they used the Crank—
Nicolson technique to numerically solve the governing theor-
etical model. They also derived the fluid velocity profile and the
concentration distribution in the dialysis system’s membrane
with the ultra filtration operation. The influences of channel
thickness ratio, flow rates of retentate phase, dialysate phase and
ultra filtration on the mass transfer rate and concentration dis-
tribution were studied. A considerable improvement in mass-
transfer efficiency was gained with the employment of ultra
filtration operation on the flat-plate dialyzer in comparison to the
flat plate dialyzer without ultra filtration operation. They also

performed an experiment that confirmed the accuracy of their
proposed mathematical model. Zeng et al [14] studied the effect
of permeability of membrane on the hydrodynamics in a par-
allel-plate co culture flow chamber (PPCFC). They demon-
strated the membrane permeability as a function of membrane
porosity, thickness, membrane shape and the membrane pore
size. The commercial software Fluent was used to analyze the
effect of membrane permeability on the hydrodynamics of flow
in the PPCFC. Membrane permeability was found to be directly
proportional to its thickness, porosity and the pore size whereas,
it was found to be inversely proportional to the membrane
surface shape factor. In the study of cells adhesion to a porous
biomaterial, a new flow chamber was presented by Ghodsnia
et al [15]. They studied the effect of trans-mural pressure
and shear stress on cells adhesion to a porous biomaterial.
Biochemical responses and morphology of cells that adhere to
different biomaterials used in biochemical devices was also
discussed due to the influence of induced forces.

However, in all articles enlisted in this literature review,
(1) the fluid flowing in the channel was assumed to be
Newtonian in nature, (2) the no-slip condition was assumed to
be held at the permeable wall and (3) a seepage velocity of a
constant, linear, or exponential type at the porous wall was
assumed in advance. Most of the industrial and biological
fluids are admitted to be non-Newtonian [16], and the clas-
sical Newton’s law of viscosity fails to describe the complex
rheological properties of these fluids. Among many existing
constitutive models representing non-Newtonian fluids, the
Casson fluid model is admitted to be a better and frequently-
used model for physiological and biological fluids [17, 18].
One of the frequently used boundary condition in fluid
mechanics problems is the no-slip condition. It states that the
tangential velocity of the fluid layer in the region adjacent to
boundaries has the same velocity as that of the boundary [7].
However, in many practical situations, this condition may fail
to be valid, particularly when there are naturally permeable
boundaries of the flow geometry [7, 19, 20]. A very thin layer
of the fluid in the region adjacent to the permeable boundary
slips, due to which a difference in the velocities of fluid layer
and boundaries is encountered. Boundary conditions for a
naturally-permeable wall, proposed by Beavers and Joseph
[19] and slightly modified by Saffman [20], provide a math-
ematical form of the fluid slip phenomenon. In practical
situations, seepage rates are normally determined by mem-
brane characteristics and concentration polarization at the
membrane surface and are not necessarily constant or known
in advance.

Having the importance of physical aspects described, this
article is aimed at studying the hydrodynamical aspects of the
Casson fluid [17] in a porous-walled channel whose walls
absorb the fluid at a variable rate in accordance with Darcy’s
law [21] and considering the wall slip effects. Thus, fluid
seepage at the permeable wall of the channel is taken as a
function of the difference of trans-mural pressure across the
wall. Approach of the present article seems better than that
adopted in [2, 3, 6, 11, 12] because: (1) the constitutive
equation of the Casson fluid model can be reduced to the
Newtonian fluid model as a special case when the yield stress
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Figure 1. Geometry of the problem.

parameter in Casson model approaches to zero. Thus a larger
class of biological and industrial fluids can be studied by
using results of current investigation; (2) the Beavers and
Josephs slip condition modified by Safffman [7, 19, 20] is
applied at the membrane walls. When the slip parameter
approaches to zero, results for the no-slip flow can be
obtained from presented solutions in this article; (3) the
obtained solution also reveals that for particular values of
parameters, a uniform, linear, and exponentially-decaying
flow rate can be deduced from the results of the current
article, which were assumed in advance in the previous
studies.

2. Mathematical model

A flat plat hemodialyzer (FPH) consists of several blood
compartments. Each compartment comprises a pair of rec-
tangular sheets made up of regenerated cellulose. The edges
of each sheet are fastened by a pair of rectangular grooved
plastic boards. The blood flows between the cellulose sheets,
whereas the dialyzing fluid passes in a counter-current or a
cross-current flow along the grooves in the hemodialyzer
board [5, 22, 23].

We assume a single blood compartment of FPH to be a
porous-walled channel of height 2a, length L and width w. A
cartesian coordinate system (¥, y) is chosen such that x-axis is
the channel of symmetry and y-axis is perpendicular to it as
shown in figure 1. A two-dimensional, steady and creeping
flow of an incompressible Casson fluid is considered in the
channel such that the tangential and normal components of
velocity are &#(%, y) and V(X, y), respectively. The only
deriving force for the fluid motion is assumed to be the fluids’
hydrostatic pressure j (X, y).

3. Nature of the fluid

Nature of the blood flowing in the FPH is assumed to be like
Casson fluid, whose constitutive model is defined by

— 2
SU:[\/H-F &] Ay, for § > S, (1

|A)| = 0 for § < S, )

where A, is the rate of strain tensor, |A;| = J%trAlz, S is the

magnitude of S, Sy is the yield stress and w is the Casson’s
viscosity.

4. Equations of motion

Basic equations that govern the flow of an isotropic and
incompressible fluid are momentum and the continuity equations
[16]. For the flow under consideration, the momentum equation
has the following component form

Qi . _Oi op 08z  OSx
— ===+ + , 3
p(“ax Vay-) ox | ox | &y ®
_ov  _0v op 08z 9S8y
—t V==t + —, 4
p(”ax Vay-] oy | ox | oy «@
and the continuity equation is given by
oia  Ov
— +—==0, 5
ox o0y ©)

where p is the fluid density and Sy, Siy. Syr and Sy are
components of the stress tensor.

Following boundary conditions are imposed to complete
the mathematical modeling of the described flow system:

slip boundary condition at the permeable
wall of the dialyzer membrane :

_ - 0, _
i(x, a) =—¢ ——(x, a), (6)
oy
seepage velocity at the membrane surface :

_ L, _ _ _
VX, a,f)=—[pE&, a) - p,l, Q)
s

absence of transverse velocity in the plug flow region:

v(x, hy) =0,

)]
symmetry condition:
o ,_ -
—- (& hp) =0, ©®
9y
mean inlet pressure and the inlet flow rate:
1 a
p=—— [ pO.0dr, (10)
a—h, Ji,
_ a
0v=2w [ a.5)d. (11)
P

In these equations ¢ is the membrane slip coefficient usually
measured in units of cm, L, is the mechanical filtration coeffi-
cient of the membrane usually measured in the units of cm?, 11 is
the fluid viscosity seeping through membrane, s is the membrane
thickness, /1,, is the height of the plug flow region, and p,, is the
difference of the hydrostatic and osmotic pressure outside
membrane. For further details of parameters and boundary
conditions, authors refer the reader to [5, 19, 20, 24].
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We now introduce the following variables to transform
the problem into dimensionless form:

- - 2 I
x-i, y:X, W:K, uza_—u,
L a a Qo
— i 3a
S N S A e Iy
0 L a 1Qo | (12)
- @S0 b a'lp—p,
pQo a pLOo
) ) L,L?
Q_g7R_p_Q07 K_ b ’
0 uL a’s J

where K is the dimensionless filtration coefficient of the
membrane, ¢ is the dimensionless slip coefficient of the
membrane, \ is the ratio of half channel height to its length,
So is the dimensionless yield stress and Re denotes the Rey-
nolds number.

Since for the flow in FPH, the parameter A and the
Reynolds number are small [5, 25, 26], therefore, it is rea-
sonable to ignore terms of the order A* and Re. Smallness of
and Re will also be shown in the coming section. Thus, using
the low Reynold number and small A\ assumptions,
equations (3)—(5)) reduce to the following form:

9p - % (13)
Ox Qy
dp
P _y, 14
D (14)
Oou  Ov
Z4+Z o 15
Ox Oy (13)

The constitutive equations (1) and (2) of the Casson fluid
result in:

IS = /S0 + / for § > S, (16)
M _ 0 for § < So. (17)
ay

The boundary conditions (6)—(11) are transformed into the
following dimensionless form:

ux, 1) =—¢ @(x, 1), (18)
dy

vix, 1) = Kp(x, 1), (19)

v(x, hy) =0, (20

@(x, hy) =0, 21

) d 22

pi = 17hfp(0y)y, (22)
1=2 . 2

Wj;p u(0, y)dy (23)

The height h, of plug flow region can be computed from
equations (13), (14) and (16) as:

Op
et 24
En (24)

5. Solution

Integrating equation (13) once with respect to y along with
equation (14), we get

d
Sxy = _py +fi(x)s

™ (25)

where fi(x) is a function of x.
Using equation (25) in (13) along with the boundary
condition (21) we obtain

u

2
. (26)

dp
=L (y -2 h,y + hy).
(y pY b)

Finally, integrating equation (26) with respect to y from y to

h,,, and using the slip condition (21) we obtain the tangential
component of the velocity field as follows:

For b, <y<1:
u(x, y) = g—[3(y —20) — 4Jh, 2\y* — 2~ 3¢)

+ 6h,(y — 1 — ¢)].
@n

By substituting y = h, in equation (27), the plug flow
velocity u,(x) can be readily obtained as follows:

For 0 <y <hy:

) == LB~ 1= 20) 4Ty @l — 2 30

+ 6h,,(h,, -1 -9l
(28)

Solving equation of continuity and employing the boundary
condition (20), the transverse component of the velocity field
can be obtained as follows:

For h, <y<1:

1 d%
5{(* -3y -6
30dx2[{(y y — 6¢y)

= () = 3hy — 60h,)} — 4, {(4y> — 10y = 15¢y)

- (4J/7,§ — 10k, — 15¢hy)} + 158, {(y> — 2y — 2¢y)
— (hy — 2h, — 2¢h,)}].

vix,y) =

(29)

Note that the transverse velocity in the plug flow region is
zero as can be sen from equation (20).
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Evaluating v(x, y) at the wall and employing the
boundary condition (19) we obtain the following differential
equation for the pressure distribution of fluid in the channel:

d*p 6 K
£ - =p=0, 30
N (30)

where

A =2 +2¢) + (h) — 3h, — 2h,¢)

- %hp{(6 +15¢) + (4 ) — 10k, — 150h,))
+ 3h,{(1 + 2¢) + (hy — 2h, — 2¢hy)}.
(€29

Exact solution of equation (30) along with the inlet conditions
(22) and (23) is given as follows:

p(x) = p;cosh(x — 5 V{Cl e sinh (x, (32)

6K
A
Equation for dimensionless mean pressure P (x) can be
computed by the following relation

where ¢ =

h, 1
PM()c):f0 p(x,y)dy+fh p(x, y)dy,

= p(),

¢ .
= p, cosh (x — sinh (x. 33
pycoshGx = g Sinh ¢ &9

The mean pressure difference of the Casson fluid between the
channel entrance region and arbitrary point x; is given by the
expression

Ap(xi) = Py (0) — Pyr(xp),

= p,(1 — cosh( xp) +

sinhCxe.  (34)

2WK
The local wall shear stress can be readily computed from
equations (26) and (32) as follows

Tw = _Sxylyzlv
_ Ou

- __ly:l,

dy
=—(—-2Jn, + hp)(pi ¢ sinh Cx

2

¢ e cosh (x).

(35)

Using equation (32) in (24), yield stress for the casson fluid
can be obtained as

So = h, p, ¢ sinh ¢ hy C
= hy, p; ¢ sinh ( x —
0= P QWK

cosh (x. (36)

The volume flow rate for the Casson fluid is defined as

hy 1
Q(x)ZZW(j; u,(¥)dy + j; u(x,y>dy), (37)

which, in view of equations (27) and (28) becomes

_ ¢ o
Ox)=p, W )\Z(ZPi WK cosh(x —sinh (x|, (38)
where
ho= 2+ 9) = 5@+ 50Ty + (1 + 200k,
— (1 +3¢)h2 — 25—211;. (39)

Stream function (x, y) can be evaluated by the following
equation

dip = u dx — v dy. (40)
Using equations (27) and (29) in conjunction with (32), we
obtain the following expression for the stream function
Y, y) =[5> = 3y — 6¢y) — 4l 4y’
— 10y — 15¢y) + 15h,(y* — 2y — 2¢y)]
CZ
x|p; ¢ sinh(x — ———
p; ¢ sinh ¢ WK

i

cosh ¢ x|. 41

In the limiting case, when ¢ — 0, solutions presented in
equations (27), (29), (32), (35), (38) and (41) correspond to
the no-slip flow of a Casson fluid in a permeable channel.
When ¢ — 0 and h, — 0 the obtained solutions correspond
to the Newtonian fluid flow solutions in a permeable channel
as a special case. For example, a result relating mean pressure
and the flow rate can be obtained from equations (33) and
(38), namely

dPy

= L0, (42)

where

1
W
The corresponding analogous law that relates the volumetric
flow rate and the pressure gradient resulting for the flow of

laminar flow of incompressible Newtonian fluid between non-
porous parallel flat plates. However, in that case

(43)

c

4Py

O Iy 0(), (44)
where
3p
Iy = ——. 45
NS (45)

Equation (44) can be deduced from (42) as a special case by
substituting dimensionless parameters defined in (12) and
(¢, hy) — (0, 0) in (44) along with (43) and (39).

6. Graphs and discussion
In this section, we present graphical behavior of velocity field,

streamline pattern ad the mean pressure drop with the varia-
tions of yield stress parameter £, (or the height of the plug
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Figure 2. Streamline pattern for p; = 0.02, K = 0.004, ¢ = 0.2, h, = 0.005, W = 1288.
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Figure 3. Streamline pattern for p; = 0.02, K = 0.004, ¢ = 0.2, h, = 0.3, W = 1288.

flow region), wall slip parameter ¢ and the membrane filtra-
tion coefficient K. All graphs are plotted in the region where
h, <y < 1,and (U, V, P) = 103(u, v, A p).

Streamlines of the flow are plotted in figures 2-4.
Figure 2 shows that for certain values of parameters, the flow
is forward and positive along the membrane length. No
reverse flow and leakage is observed in this figure due to the
moderate values of all parameters. Figure 3 is plotted to study
effect of yield stress parameter on the flow field. The fluid
seepage through membrane surface is seen to be increased for
a higher magnitude of the yield stress parameter. This is due
to the fact that higher magnitudes of 4, produce high pressure

gradients in the flow (it can be observed in figure 11) and
consequently the seepage is seen to be increased. Effect of
membrane filtration coefficient on the flow pattern is shown in
figure 4. It is observed that by increasing the membrane
permeability, fluid absorption rate is increased. For higher
values of membrane permeability, a stagnation point flow can
also be seen in this figure. This phenomenon also strengthens
the validity of presented solutions because for membranes
with higher permeability, the pore size/membrane structure
allows more fluid to pass through it and hence the fluid
absorption is expected to increase. These figures also help us
understanding the mechanism of membrane filtration process,



Phys. Scr. 95 (2020) 045202

M Kahshan et al

1.0
0.8;
0.7
0.6;
vos-
0.4 7
0.3 |
0.2;
01

0 0.2 0.4

0.6 0.8 1
x

Figure 4. Streamline pattern for p; = 0.02, K = 0.025, ¢ = 0.3, 1, = 0.005, W = 1288.

0451

0.40

0.35 1

U 030

T T T T 1
0.6 0.8 1
y

0.25
0.20
0.15
" T " T
0 0.2 0.4
h =0
P

h =0.005=-=h =0.009 — h =0.013 —h =0.017
p P p p

Figure 5. Variation of axial velocity with yield stress, p; = 0.02, K = 0.025, ¢ = 0.2, W = 1288.

and it can be sought that for physiological and biological
flows in which the reverse flow is not admissible, one should
chose a membrane within a specified permeability range. And
also for filtration of fluids with higher yield stresses, one
should take the high seepage into account in advance.
Variations in the axial and normal velocity profiles with
the yield stress parameter are plotted in figures 5 and 6 at the
cross section x = 0.3 of the channel. In these figures, the
black dotted lines correspond to the Newtonian fluid flow
profiles. A deviation in the axial and normal velocity com-
ponents from that of Newtonian fluid can be seen in these
figures due to the different constitutive relations of both fluid
models and physical properties. These figures reveal that the

magnitudes of both velocity components are decreased with
the increase in height of the plug flow region. Another aspect
of increasing A, is the fluid tendency from Newtonian to non-
Newtonian behavior. Thus we observe a damping in both
velocity components due to non-Newtonian nature of the
Casson fluid. Variations of velocity components with
increasing the membrane permeability are drawn in figures 7
and 8. Magnitude of the axial velocity component is seen to
decrease with the increasing values of K. It happened because
of the fact that an increase in membrane permeability causes
higher amount of fluid to be filtered through membrane sur-
face in the normal direction, and consequently the magnitude
of axial velocity is seen to decrease. Effect of membrane
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Figure 7. Variation of tangential velocity with membrane filtration coefficient, p; = 0.02, ¢ = 0.2, h, = 0.001, W = 1288.

permeability coefficient on the normal component of the
velocity field is opposite to that on the axial component. It is
happening since the flow field has both non zero tangential
and normal velocity components. An increase in the magni-
tude of normal component with K weakens the axial velocity
U and vice versa. From figure 8 it is noted that the magnitude
of the transverse velocity component increases rapidly as the
membrane filtration coefficient is increased. This effect is
similar to that observed in the streamline pattern in figure 4
where fluid filtration through membrane was observed higher
for higher magnitude of K and was explained in the preceding
paragraph.

Impact of the dimensionless membrane slip coefficient ¢
on velocity components is plotted in figures 9 and 10. In these
figures, the black dotted lines correspond to the velocity
components for no slip flow of the Casson fluid in a perme-
able channel. Effect of wall slip parameter is clearly visible in
these two figures. The tangential velocity initially decreases in
the region near inlet by increasing the wall slip parameter,
then a point y = y, can be seen where the axial velocity is
invariant of the magnitude of ¢. After the point y = y,, axial
velocity starts increasing with the increasing values of
membrane slip coefficient. The slip boundary condition states
that a thin fluid layer adjacent to membrane surface exists that
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Figure 9. Variation of tangential velocity with wall slip coefficient, p; = 0.02, K = 0.004, h, = 0.001, W = 1288.

has a slip velocity u; whose magnitude is proportional to the
velocity gradient at the membrane surface (with constant of
proportionality ¢), in contrast to the usual no slip flow where
the fluid at the membrane wall has zero velocity [7]. This
effect is noticed in figure 9 where the tangential velocity has a
non-zero value at the membrane wall, and for higher slip
coefficient it has higher magnitude. In the region away from
the membrane surface and closer to the center line, this impact
is reversed due to the regularity condition (9). This impact of

slip parameter on the axial velocity is qualitatively same as
observed by Hayat ef al [27] and Tripathi [28]. Figure 10
reveals that magnitude of the transverse component of velo-
city decreases as the membrane slip coefficient is increased.
However this increase in normal velocity is quantitatively
very smaller than the impact of slip parameter on the axial
velocity component.

Variations of mean trans-mural pressure difference
between membranes are sketched in figures 11 and 12. It is
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Figure 10. Variation of normal velocity with wall slip coefficient, p; = 0.02, K = 0.004, i, = 0.001, W = 1288.
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Figure 11. Variation of mean pressure drop with yield stress, p; = 0.02, K = 0.025, ¢ = 0.2, W = 1288.

observed from figure 11 that the magnitude of mean pressure
drop is higher for Casson fluid than that of Newtonian fluid in
permeable channel. By increasing the height of plug flow
region h,, mean pressure difference is observed to increase
rapidly and vice versa. For an increased yield stress, the
domain of flow regime 0 < &, <y < 1 is reduced, that
causes the increased mean pressure drop. Here we also note
that increasing the magnitude of 4, shows the fluid tendency
towards non-Newtonian behavior. Thus, an increased mean
pressure drop is faced for non-Newtonian fluid flow in
comparison to the Newtonian fluid. This observation was also
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pointed out by study of Pandey er al [29] for the flow of
concentrated fluid in esophagus. Impact of dimensionless
membrane filtration coefficient K on P is plotted in figure 12.
It is found that mean pressure drop decays with the higher
values of filtration coefficient. This effect is qualitatively
opposite to that due to increase in h,. Since for a given
volume of fluid, higher membrane permeability implies more
fluid absorption through membrane surface, which in turns
reduces the mean pressure drop.

Behavior of local wall shear stress with the variations of
yield stress and the filtration coefficient is presented in
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figures 13 and 14. It is observed from both of these figures
that wall shear stress decreases as the magnitude of yield
stress and filtration coefficient of membrane are increased
and vice versa. Since by having increase in the yield
stress, width of the core region widens and more fluid moves
with a constant velocity u,, therefore the local wall shear
stress is found to be decreased. Similarly, when the mem-
brane permeability increases, the fluid leakage enhances
which results in the reduced local wall shear stress. A similar
behavior in the profile of wall shear stress was also observed
by Bigyani et al in the study of blood flow in arterio-
sclerosis [30].
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7. Application to FPH

This section is devoted to theoretical expressions and num-
erical calculations for the ultrafiltration rate and mean pres-
sure drop in the axial direction in and FPH. As described in
section 2, an FPH comprises of a number of blood com-
partments. Each of these compartment contains a pair of
rectangular sheets which are made up of regenerated cellu-
lose. Sheets are inserted in a pair of rectangular grooved
plastic boards at their edges.The filtering blood is passed to
flow between the cellulose sheets. Meanwhile, a dialyzing
fluid is passed to flow in the grooves in the hemodialyzer
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Figure 14. Variation of wall shear stress with membrane filtration coefficient, p; = 0.02, ¢ = 0.2, h, = 0.001, W = 1288.

board in a counter-current or a cross-current way [5, 22, 23].
In a given time, the amount of blood volume lost by leakage
through the cellulose from a known recirculating volume, is
called the ultrafiltration rate.

If L is the length of cellulose, then the ultrafiltration rate
for the presented model is given as:

Ov =00 — 01, (46)
where O and O; denote the dimensional flow rates at he inlet
and exit of the FPH, respectively. Expression for the
dimensionless ultrafiltration rate can be obtained using para-
meters defined in (12). This yields

Qu=0(0) — 9(D),

2. WK
—3 )\3[1 — cosh ¢ + %sinh g], 47)

A

1
The expression for mean pressure drop in the axial direction

between x =0 and x = L can also be obtained in a similar
manner. By using equation (34), we have the following expres-
sion for the mean pressure drop in a FPH:

Ap(1) = p(0) — p(1),

where \; =

¢

=p.|1 — cosh ( + —=——sinh (. 48
p,[ ¢ P WK C] (48)

In order to check the accuracy of the presented formulas,
exact values of the involved parameters corresponding to the
FPH are needed. For this purpose, we have used the exper-
imental data provided in [5, 23] corresponding to a flat-plate
disposable artificial kidney, referred to as RP kidney. This
data is given in table 1. For yield stress and slip parameter
values, we have utilized results of [25, 31]. From the data in
table 1, we found that the parameter A is of order 1078,
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Table 1. Physiological data related to the RP kidney [4, 23].

Parameter Abbreviation Numerical value
Number of blood 8
compartments

Membrane length L 42 cm
Membrane width w 11.6 cm
Membrane thickness t 2.59 x 103 cm
Blood half channel a 9 x 10 3cm
height

Fluid viscosity I 6.9 x 107 dynes s cm >
Transmembrane

pressure difference p; — Pr 150 mm Hg
at the entrance

Total ultrafiltration 80, 200mlh™!
rate

Total entrance 800 160 ml min~"

volume flow rate

Therefore, ignoring terms of the order \* is justified for the
flow in a flat plate dialyzer. By making use of these para-
meters along with ¢ = 0.1 and 4, = 0.001 in equation (47),
an algebraic equation in one variable K is obtained. By
expanding terms in the power series of K up to O(K>) and
solving the resulting equation, we obtain a real root of this

equation as K = 0.0005. The magnitude of the ultrafiltration

L,L?

resulted in L, = 5.35 x 107 '®cm® In a similara vtvay and
adopting the same steps, equation (48) results in the value of
mean pressure drop in a FPH as 10.39 mm Hg.

The value of the filtration coefficient L, is usually not
given in the data for membranes of hemodialyzers. The result
of experiments performed by Kaufmann er al [32] show that
at the normal body temperature, regenerated cellulose has

. This

coefficient L, was then calculated from K =
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Figure 15. Variation of flow rate with M, A\; = 7.5.
hydraulic permeability as 2.41 x 10~'' cm® /dynes s for the the ultrafiltration rate is given by:
membrane having a thickness of 7.5 x 10> cm. When the B MAL
viscosity of fluid was taken as 6.9 x 107> dynes s cm 2 from Ov ~ 3=—L(p;, — P,)- (52)
table 1, this yielded the value of L, as 1.25 x 10 ~'> cm? The i

value of L, calculated by the empirical results of Marshall
et al [5] by using the experimental data of Kaufmann et al
revealed that Lp = 6.36 x 10 '®cm?®. The experiments also
showed that the mean axial pressure drop in the artificial
kidney was about 15 mm Hg [5, 23]. Thus, a good agreement
in the order of magnitudes of the ultrafiltration coefficient and
mean pressure drop can be observed between the presented
results and the earlier computed experimental and empirical
results. This builds confidence in stating that the presented
model can be used to obtain theoretical results in advance to
study the hydrodynamical aspects of the flow in a FPH.

Data presented in table 1 and the estimated value of L,
reveal the dimensionless wall permeability (or filtration)
parameter K < 1. Expanding (47) in power series of K, we
have:

Qu = 3>\3(% CH2p WK+ O(Kz)). (49)

Employing the dimensionless variables defined in equation (12),
we obtain

AAL 317 1 Qo

2MNA AP — p,)

~
~

Oy~ 3

where A = 2wL is used for membrane area. From this equation
it is revealed that for those hemodialyzers in which

3L 1 Qo

<1,
2MA (P — py)

&1y
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An inspection of equation (52) suggests that the ultrafiltration
rate is directly proportional to the the dimensionless yield stress
and wall slip parameter )3, mechanical filtration coefficient L,
and membrane area A, whereas, it is inversely proportional to the
membrane thickness s and channel half width a. The linear
dependence of Qy; on p;p, has been found experimentally by
Malino et al [33] and Mcdonald [34] and was suggested
empirically by Marshall ez al [5] and Lu et al [26]. A series of
experiments performed by Brown et al [35] also highlighted the
dependence of Qp on the mechanical filtration coefficient,
membrane thickness, and the membrane area.

Another important fact related to the renal tubular flow in
kidneys can be observed from the expressions describing the
mean pressure and flow rate, respectively in (38) and (33).
These equations can be rewritten as:

Py(x) = p,-(cosh Cx— % sinh ¢ x), 53)

o) = %&(cosh ¢ x — M sinh C x), 54)

2p, WK

where M = . A consideration of the right-hand

sides of these equations suggests that the parameter M may
influence the behavior of mean pressure and flow rate.
Figure 15 is drawn to explore this fact for some values of M.
This figure reveals that when M > 1, the flow rate started
decaying from its maximum value one (Qy in dimensional
form), became zero at certain point, and then became negative
as ( x — oco. Thus, a reverse flow situation arose when
M > 1. For M < 1, Q(x) decayed initially from Q(0) = 1,
attained its minimum value at a point, and then started
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increasing. This caused the reverse leakage phenomena for
¢ < 1. For M =1, the graph of flow rate behaved as an
exponentially-decaying function. An analogous discussion
can also be made for the variation of mean pressure P (x)
with the parameter M.

The above discussion together with figure 15 reveal that
for the creeping motion of a micropolar fluid in a porous-
walled channel, in order to have no reverse flow and no
reverse leakage, the value of parameter M must be approxi-
mately one. Substituting M =1 in equation (54) yields

o) = g)\s exp(—C x). (55)

This is a well-accepted result regarding the flow rate of filtrate
in the renal tubule of kidneys, which was empirically proven
by Kellman [36] and used by many researchers in the study of
fluid flow in a permeable tube with application to renal
tubules of kidneys [3, 25, 37, 38].

8. Conclusions

We have presented the flow of a Casson fluid between two
parallel permeable membranes with an application to the
blood flow in a FPH. Governing equations of motion are
exactly solved using the low Reynolds number and long
membrane length assumption. It is found that the maximum
values of axial and normal velocity components and the local
wall shear stress for the Casson fluid are lesser than that of the
Newtonian fluid, whereas the mean pressure drop for the
Casson fluid has higher magnitude than the Newtonian fluid.
Fluid seepage is seen to be enhanced, and hence the filtration
process can be accelerated, by increasing the membrane
permeability. In the application to flow in an FPH, theoretical
values of the membrane filtration coefficient and mean pres-
sure drop are computed as 5.35 x 107'°cm? and 10.39 mm
Hg, respectively. These values are found to be in a reasonable
agreement with the corresponding available empirical and
experimental values in the literature. For limiting values of
certain physical parameters, we note that that the axial flow
rate of Casson fluid in an FPH decays at an exponential rate.
This is a physically valid and widely admitted result, used by
several researchers in studying the blood filtration process in
renal tubules of mammalian kidneys. In the limiting case
when the Casson fluid and slip parameters approaches to zero,
the presented solutions reduced to the Newtonian fluid flow
solutions in permeable membranes. It is concluded that a wide
range of applications in physiology and engineering can be
covered up by the present investigation.

Conflict of interest

Authors declare that they have no potential conflicts of
interest.

14

ORCID iDs

Muhammad Kahshan
6324-3884
Dianchen Lu

https: //orcid.org/0000-0001-

https: //orcid.org/0000-0001-6896-172X

References

[1] Voutchkov N 2012 Desalination Engineering: Planning and
Design (New-York: McGraw Hill Professional)
0071777164, 9780071777162

Macey R I 1963 Pressure flow patterns in a cylinder with
reabsorbing walls Bull. Math. Biophys. 25 303—12

Macey R 11965 Hydrodynamics in the renal tubule Bull. Math.
Biophys. 27 117-24

Marshall E A and Trowbridge E A 1974 Flow of a newtonian
fluid through a permeable tube: the application to the
proximal renal tubule Bull. Math. Biol. 36 45776

Marshall E A, Trowbridge E A and Aplin A J 1975 Flow of a
newtonian fluid between parallel flat permeable plateshe
application to a flat-plate hemodialyzer Math. Biosci. 27 119-39

Kozinski A A, Schmidt F P and Lightfoot E N 1970 Velocity
profiles in porous-walled ducts Ind. Eng. Chem. Fundam. 9
502-5

Papanastasiou T C et al 1999 Viscous Fluid Flow (Florida:
CRC Press LLC)4409780849316067 - CAT# 1606

Berman S 1953 Laminar flow in channels with porous walls
J. Appl. Phys. 24 1232-5

Berman A S 1958 Laminar flow in an annulus with porous
walls J. Appl. Phys. 29 71-5

Yuan S W and Finkelstein A B 1956 Laminar pipe flow with
injection and suction through a porous wall Trans. ASME 78
719-24

Haroon T, Siddiqui A M and Shahzad A 2016 Creeping flow of
viscous fluid through a proximal tubule with uniform
reabsorption: a mathematical study Appl. Math. Sci. 10
795-807

Siddiqui A M, Haroon T and Shahzad A 2016 Hydrodynamics
of viscous fluid through porous slit with linear absorption
Appl. Math. Mech. 37 361-78

Tu J-W and Ho C-D 2010 Two-dimensional mass-transfer
model of a flat-plate dialyzer with ultrafiltration operation
Chem. Eng. Technol. 33 1358-68

Zeng Y, Yao X-H and Liu X-H 2014 Numerical simulation of
the effect of permeability on the hydrodynamics in a
parallel-plate coculture flow chamber Comput. Meth.
Biomech. Biomed. Eng. 17 875-87

Chotard-Ghodsnia R, Drochon A and Grebe R 2002 A new
flow chamber for the study of shear stress and transmural
pressure upon cells adhering to a porous biomaterial
J. Biomech. Eng. 124 258-61

Bird R B et al 1987 Dynamics of Polymeric Liquids Vol 1
(New York: Wiley) 672978-0-471-80245-7

Cason N 1959 Rheology of Disperse Systems ed C C Mills
(New York: Pergamon) pp 84-104

Hayat T and Ali N 2008 Peristaltic motion of a jeffrey fluid
under the effect of a magnetic field in a tube Commun.
Nonlinear Sci. Numer. Simul. 13 1343-52

Beavers G S and Joseph D D 1967 Boundary conditions at a
naturally permeable wall J. Fluid Mech. 30 197-207

Saffman P G 1971 On the boundary condition at the surface of
a porous medium Stud. Appl. Math. 50 93-101

Darcy H P G 1856 Determination des lois daécoulement de
lacau a travers le sable

Drukker W, Parsons F M and Maher J F 2012 Replacement of
Renal Function by Dialysis: A Textbook of Dialysis

(2]
(3]
(4]

(5]

(6]

(7]
(8]
(91
[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]
[20]
[21]

[22]


https://orcid.org/0000-0001-6324-3884
https://orcid.org/0000-0001-6324-3884
https://orcid.org/0000-0001-6324-3884
https://orcid.org/0000-0001-6324-3884
https://orcid.org/0000-0001-6324-3884
https://orcid.org/0000-0001-6896-172X
https://orcid.org/0000-0001-6896-172X
https://orcid.org/0000-0001-6896-172X
https://orcid.org/0000-0001-6896-172X
https://doi.org/10.1007/BF02477766
https://doi.org/10.1007/BF02477766
https://doi.org/10.1007/BF02477766
https://doi.org/10.1007/BF02498766
https://doi.org/10.1007/BF02498766
https://doi.org/10.1007/BF02498766
https://doi.org/10.1016/S0092-8240(74)80043-1
https://doi.org/10.1016/S0092-8240(74)80043-1
https://doi.org/10.1016/S0092-8240(74)80043-1
https://doi.org/10.1016/0025-5564(75)90029-2
https://doi.org/10.1016/0025-5564(75)90029-2
https://doi.org/10.1016/0025-5564(75)90029-2
https://doi.org/10.1021/i160035a033
https://doi.org/10.1021/i160035a033
https://doi.org/10.1021/i160035a033
https://doi.org/10.1021/i160035a033
https://doi.org/10.1063/1.1721476
https://doi.org/10.1063/1.1721476
https://doi.org/10.1063/1.1721476
https://doi.org/10.1063/1.1722948
https://doi.org/10.1063/1.1722948
https://doi.org/10.1063/1.1722948
https://doi.org/10.12988/ams.2016.512739
https://doi.org/10.12988/ams.2016.512739
https://doi.org/10.12988/ams.2016.512739
https://doi.org/10.12988/ams.2016.512739
https://doi.org/10.1007/s10483-016-2032-6
https://doi.org/10.1007/s10483-016-2032-6
https://doi.org/10.1007/s10483-016-2032-6
https://doi.org/10.1002/ceat.200900566
https://doi.org/10.1002/ceat.200900566
https://doi.org/10.1002/ceat.200900566
https://doi.org/10.1080/10255842.2012.723699
https://doi.org/10.1080/10255842.2012.723699
https://doi.org/10.1080/10255842.2012.723699
https://doi.org/10.1115/1.1448520
https://doi.org/10.1115/1.1448520
https://doi.org/10.1115/1.1448520
https://doi.org/10.1002/pol.1960.1204714975
https://doi.org/10.1016/j.cnsns.2006.12.009
https://doi.org/10.1016/j.cnsns.2006.12.009
https://doi.org/10.1016/j.cnsns.2006.12.009
https://doi.org/10.1017/S0022112067001375
https://doi.org/10.1017/S0022112067001375
https://doi.org/10.1017/S0022112067001375
https://doi.org/10.1002/sapm197150293
https://doi.org/10.1002/sapm197150293
https://doi.org/10.1002/sapm197150293

Phys.

Scr. 95 (2020) 045202

M Kahshan et al

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(Netherlands: Springer Science & Business Media) (https://
doi.org/10.1007 /978-94-009-6768-7)

Funck-Brentano J L, Sausse A, Vantelon J, Granger A,
Zingraff J and Man N K 1969 A new disposable plate-
kidney Trans Am Soc Artif Intern Organs. 15 127-30

Palatt P J, Sackin H and Tanner R I 1974 A hydrodynamic
model of a permeable tubule J. Theor. Biol. 44 287-303

Siddiqui A M, Haroon T, Kahshan M and Igbal M Z 2015 Slip
effects on the flow of newtonian fluid in renal tubule
J. Comput. Theor. Nanosci. 12 4319-28

Lu D, Kahshan M and Siddiqui A M 2019 Hydrodynamical
study of micropolar fluid in a porous-walled channel:
application to flat plate dialyzer Symmetry 11 541

Hayat T, Saleem N and Hendi A A 2011 A mathematical
model for studying the slip effect on peristaltic motion with
heat and mass transfer Chin. Phys. Lett. 28 034702

Tripathi D 2012 Peristaltic hemodynamic flow of couple-stress
fluids through a porous medium with slip effect Transp.
Porous. Med. 92 559-72

Pandey S K and Tripathi D 2010 Peristaltic transport of a casson
fluid in a finite channel: application to flows of concentrated
fluids in oesophagus Int. J. Biomath. 03 453-72

Das B and Batra R L 1995 Non-newtonian flow of blood in an
arteriosclerotic blood vessel with rigid permeable walls
J. Theor. Biol. 175 1-11

15

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Pal D, Rudriah N and Devanathan R 1988 The effects of slip
velocity at a membrane surface on blood flow in the
microcirculation J. Math. Biol. 26 705—12

Kaufmann T G and Leonard E F 1968 Studies of
intramembrane transport: a phenomenological approach
AIChE J. 14 110-7

Malinow M R and Korzon W 1947 An experimental method
for obtaining an ultrafiltrate of the blood Transl. Res. 32
461-71

McDonald H P Jr 1966 An automatic peritoneal dialysis
machine: preliminary report Trans Am Soc Artif Intern
Organs. 11 83-5

Brown H W and Schreiner G E 1962 Prolonged hemodialysis
with bath refrigeration: the influence of dialyzer membrane
thickness, temperature and other variables on performance
Trans. Am. Soc. Artif. Intern. Organs. 8 187-94

Kelman R B 1962 A theoretical note on exponential flow in the
proximal part of the mammalian nephron Bull. Math.
Biophys. 24 303-17

Radhakrishnamacharya G, Chandra P and Kaimal M R 1981 A
hydrodynamical study of the flow in renal tubules Bull.
Math. Biol. 43 151-63

Siddiqui A M, Haroon T and Kahshan M 2015 Mhd flow of
newtonian fluid in a permeable tubule Magnetohydrodynamics
51 655-72


https://doi.org/10.1007/978-94-009-6768-7
https://doi.org/10.1007/978-94-009-6768-7
https://doi.org/10.1016/0022-5193(74)90161-1
https://doi.org/10.1016/0022-5193(74)90161-1
https://doi.org/10.1016/0022-5193(74)90161-1
https://doi.org/10.1166/jctn.2015.4358
https://doi.org/10.1166/jctn.2015.4358
https://doi.org/10.1166/jctn.2015.4358
https://doi.org/10.3390/sym11040541
https://doi.org/10.1088/0256-307X/28/3/034702
https://doi.org/10.1007/s11242-011-9920-9
https://doi.org/10.1007/s11242-011-9920-9
https://doi.org/10.1007/s11242-011-9920-9
https://doi.org/10.1142/S1793524510001100
https://doi.org/10.1142/S1793524510001100
https://doi.org/10.1142/S1793524510001100
https://doi.org/10.1006/jtbi.1995.0115
https://doi.org/10.1006/jtbi.1995.0115
https://doi.org/10.1006/jtbi.1995.0115
https://doi.org/10.1007/BF00276149
https://doi.org/10.1007/BF00276149
https://doi.org/10.1007/BF00276149
https://doi.org/10.1002/aic.690140120
https://doi.org/10.1002/aic.690140120
https://doi.org/10.1002/aic.690140120
https://doi.org/10.1097/00002480-196504000-00016
https://doi.org/10.1097/00002480-196504000-00016
https://doi.org/10.1097/00002480-196504000-00016
https://doi.org/10.1097/00002480-196204000-00042
https://doi.org/10.1097/00002480-196204000-00042
https://doi.org/10.1097/00002480-196204000-00042
https://doi.org/10.1007/BF02477961
https://doi.org/10.1007/BF02477961
https://doi.org/10.1007/BF02477961
https://doi.org/10.1016/S0092-8240(81)90013-6
https://doi.org/10.1016/S0092-8240(81)90013-6
https://doi.org/10.1016/S0092-8240(81)90013-6
https://doi.org/10.22364/mhd
https://doi.org/10.22364/mhd
https://doi.org/10.22364/mhd

	1. Introduction
	2. Mathematical model
	3. Nature of the fluid
	4. Equations of motion
	5. Solution
	6. Graphs and discussion
	7. Application to FPH
	8. Conclusions
	Conflict of interest
	References



