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Effect of system–reservoir correlations on temperature estimation*
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In many previous temperature estimation schemes, the temperature of a sample is directly read out from the final
steady state of a quantum probe, which is coupled to the sample. However, in these studies, information of correlations
between system (the probe) and reservoir (the sample) is usually eliminated, leading the steady state of the probe is a canon-
ical equilibrium state with respect solely to system’s Hamiltonian. To explore the influence of system–reservoir correlations
on the estimation precision, we investigate the equilibration dynamics of a spin interacting with a finite temperature bosonic
reservoir. By incorporating an intermediate harmonic oscillator or a collective coordinate into the spin, the system–reservoir
correlations can be correspondingly encoded in a Gibbs state of an effective Hamilton, which is size consistent with the
original bare spin. Extracting information of temperature from this corrected steady state, we find the effect of the system-
reservoir correlations on the estimation precision is highly sensitive to the details of the spectral density function of the
measured reservoir.
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1. Introduction

Temperature sensing lies at the heart of the thermody-
namics of quantum devices, which has many potential ap-
plications in microelectronics,[1] biochemistry,[2] and mate-
rial science.[3,4] How to achieve an accurate measurement of
unknown temperature of a heat reservoir has attracted much
attention over the last few years.[5–10] The most simple and
straightforward strategy is to contact the heat reservoir with
an individual quantum probe, which acts as a thermometry.
Due to the probe–reservoir coupling, the message of reser-
voir’s temperature is labeled in the quantum state of the probe
and can be extracted out directly. Commonly, the steady state
of the probe is utilized to draw out the information of tem-
perature. The above scheme has been extensively studied in
literature,[5–15] for example, quantum dot is used as the tem-
perature probe to accurately estimate the temperature of both
fermionic[12,13] and bosonic[14,15] reservoirs.

Physically speaking, the probe and the heat reservoir
comprise a so-called quantum dissipative system,[16] which is
a prominent physical model to simulate relaxation and deco-
herence in a noisy environment. In this sense, one can gain
additional insight into the problem of quantum thermometry
from a quantum dissipative system perspective. Unfortunately,
the exact expression of the final steady-state of the system
(probe), namely ρ̂ss = Trreservoir[ ρ̂tot(t → ∞)], is generally dif-
ficult to obtain. To derive a tractable result, a series of assump-

tions, for example, the weak system–reservoir coupling condi-
tion and the Markovian approximation, are employed in many
previous studies.[5,7,8] Under these restrictions, ρ̂ss can be ap-
proximated as a canonical equilibrium state with respect solely
to the system’s Hamiltonian, if the system–reservoir interac-
tion time is sufficiently long. The above process, i.e., ther-
malization from a given initial state to a canonical equilibrium
state, can be alternatively achieved by using the hypothesis of
ergodicity in statistical mechanics, suggesting ensemble and
time averages are equivalent. Consequently, many of previ-
ous temperature estimating schemes neglect the influence of
system–reservoir correlations, which shall modify the canon-
ical equilibrium state. Several studies[17–21] have pointed out
that the system–reservoir correlations play a significant role in
strong system-reservoir coupling regimes, resulting in the oc-
currence of noncanonical distribution properties. Thus, a more
precise temperature measuring scheme should take system–
reservoir correlations into account.

On the other hand, in quantum metrology theory, the fun-
damental limitation of an arbitrary parameter estimation is
bounded by the Cramér–Rao theorem: for a family of quantum
state ρ̂(θ), carrying a unknown parameters θ , the estimating
precision of θ from the quantum state ρ̂(θ) is theoretically
determined by[22]

var(θ)≥ 1
υℱ(θ)

, (1)
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where var(θ) is the variance of parameter θ , parameter υ rep-
resents the number of repeated measurements, and ℱ(θ) de-
notes the quantum Fisher information (QFI) of θ with respect
to the quantum state ρ̂(θ). By diagonalizing the quantum state
ρ̂(θ) as ρ̂(θ) = ∑i εi|ψi⟩⟨ψi|, the QFI with arbitrary ranks can
be computed as[23,24]

ℱ(θ) = ∑
i

(∂θ εi)
2

εi
+∑

i
4εi⟨∂θ ψi|∂θ ψi⟩

−∑
i, j

8εiε j

εi + ε j
|⟨ψi|∂θ ψ j⟩|2, (2)

where ∂θ ≡ ∂/∂θ denotes partial derivative. From Eq. (1),
one can find that, with a fixed number of measurements, the
ultimate precision of a parameter sensing is completely de-
cided by the QFI: more larger the value of QFI, more higher
estimation precision is. How to improve the value of QFI is
the crucial problem in quantum metrology.[24]

In many previous temperature sensing schemes,[5–10] the
temperature is read out from the Gibbs state of the system
(probe), namely ρ̂ = 𝒵−1 e−β Ĥ , where 𝒵 ≡ Tr(e−β Ĥ) de-
notes the partition function and β ≡ T−1 denotes inverse tem-
perature (we set the Boltzmann constant kB = 1 through this
paper). The QFI of temperature with respect to the above
Gibbs state can be exactly evaluated, and the result is given
by[5]

ℱ(T ) =
var(Ĥ)

T 4 , (3)

where var(Ĥ) ≡ ⟨Ĥ2⟩ − ⟨Ĥ⟩2 with ⟨Ĥ⟩ ≡ Tr(ρ̂Ĥ). Equa-
tion (3) indicates that the QFI is proportional to the thermal
fluctuation of the system’s energy. By introducing the def-
inition of heat capacity as C(T ) ≡ ∂T ⟨Ĥ⟩, one can find the
QFI is related to the heat capacity ℱ(T ) = C(T )/T 2. In this
sense, the QFI is closely associated with an experimentally
measurable quantity, suggesting a experimental scheme to re-
trieve QFI by detecting heat capacities in bulk systems.

In this paper, we investigate the effect of system–reservoir
correlations on the precision of temperature estimation in a
spin-boson (SB) model with arbitrary spin sizes, in which a
spin acts as the probe to measure the temperature of a bosonic
reservoir, by making use of the reaction coordinate mapping
method.[20,21,25–27] The reaction coordinate mapping, which
was originally proposed by Garg et al. in Ref. [25], can exactly
convert the conventional SB model into an equivalent model
without any approximations and has been widely applied in
studies of electron transfer in biomolecules[25] as well as heat
transport in a nonequilibrium environment.[28] As shown in
Fig. 1, in this equivalent model, instead of interacting with
the bosonic reservoir directly, the spin couples to an inter-
mediate harmonic oscillator (IHO), which is embedded into a

residual bosonic reservoir in turn. Compared with the conven-
tional SB model, the “system’s part” of the mapped spin-IHO-
boson (SIB) model includes system–environment correlations,
because parts of environmental information (reflected by the
spin-IHO coupling) are incorporated into the mapped system’s
Hamiltonian. In Ref. [21], the authors have demonstrated that
the robust system–reservoir correlations can be even persisted
into equilibrium state of the mapped system. Therefore, the
long-lived system–reservoir correlations lead to a clear depart-
ment from the canonical equilibration dynamics of a quantum
dissipative system.[20,21] By tracing out the degrees of free-
dom of the IHO, a corrected steady state of the spin can be
obtained. We use this corrected state to compute the QFI and
explore the influence of system-reservoir correlations on the
estimation precision.

spin reservoir

spin IHO reservoir

mapped system

(a)

(b)

Fig. 1. (a) Original scheme: a spin directly coupled to a bosonic reservoir.
(b) Our scheme: a spin interacting with an IHO, which is in turn embedded
in a residual bosonic reservoir.

2. Reaction coordinate mapping
The full SB model with arbitrary spin sizes considered in

our temperature estimation scheme is given by (we adopt the
unit h̄ = 1 throughout the paper)

Ĥsb = ε Ĵz +∑
k

ωkb̂†
k b̂k + Ĵx ∑

k
gk(b̂

†
k + b̂k), (4)

where Ĵx,z are components of an arbitrary spin vector 𝐽 with
size J, the parameter ε stands for the level splitting. Opera-
tor b̂†

k (b̂k) is the bosonic creation (annihilation) operator of
the k-th environmental mode with frequency ωk. Parameter gk

quantifies the coupling strength between the spin and the k-th
environmental mode. Commonly, the frequency dependence
of the system–reservoir interaction strengths are fully charac-
terized by the spectral density function, which is introduced
by 𝒥sb(ω)≡ ∑k g2

kδ (ω −ωk).
To take system–reservoir correlations into account, a

transformation is applied to the original Hamiltonian Ĥsb to
formulate an exactly equivalent SIB model. Following the
procedure outlined by Garg et al. in Ref. [25], one can ob-
tain the equivalent system, in which, the spin interacts with a
collective coordinate of reservoir, known as an IHO[26,27] or a
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reaction coordinate,[20,21] which is in turn coupled to the resid-
ual bosonic reservoir. The Hamiltonian of this equivalent SIB
model is given by[20,21,25–27]

Ĥsib = Ĥsys + Ĥb + Ĥint, (5)

where

Ĥsys = ε Ĵz +Ω â†â+λ Ĵx(â† + â), (6)

Ĥb = ∑
k

ω̃kĉ†
k ĉk +(â† + â)2

∑
k

g̃2
k

ω̃k
, (7)

Ĥint = (â† + â)∑
k

g̃k(ĉ
†
k + ĉk). (8)

Here, operator â† (â) is the creation (annihilation) operator
of the IHO with frequency Ω , and λ accounts for the cou-
pling strength between the spin and the IHO. The k-th residual
environmental mode associated with frequency ω̃k, denoted
by creation (annihilation) operator ĉ†

k (ĉk), now only couples
to the IHO with coupling strength g̃k. The spectral density
function of the residual bosonic reservoir is characterized by
𝒥sib(ω) = ∑k g̃2

kδ (ω − ω̃k). Note that there is a counter term
in Eq. (7), which is related to the choice of the spectral density
function. When deriving a quantum master equation of the SIB
model, integral divergences caused by this counter term can be
eliminated by using the principal value integral method.[21]

As pointed out in Refs. [20,21,26], the map from Eq. (4)
to Eq. (5) does not involve the spin, i.e., the spin is unaffected
by the transformation. Thus, one can replace the spin with a
classical coordinate, which moves in a potential. By compar-
ing the Fourier transformed equations of motion for the clas-
sical coordinate before and after the reaction coordinate map-
ping, one can connect the spectral density function 𝒥sib(ω)

to the original spectrum 𝒥sb(ω), see Appendix A for more
details. If 𝒥sib(ω) has an Ohmic form, i.e., 𝒥sib(ω) = γω ,
the spectral density function of its equivalent SB model is de-
scribed by a Lorentzian structured spectrum, it reads[20,21]

𝒥sb(ω) =
2αωΩ 4

(Ω 2 −ω2)2 +(Γ ω)2 . (9)

The above spectral density function has a Lorentzian peak of
width Γ = 2πγΩ at the characteristic frequency ω = Ω , and
it behaves linearly in low frequency regime with a dimension-
less coupling strength α = 2γλ 2/Ω 2. The reduced dynam-
ics of the SB model with the structured Lorentzian spectral
density function given in Eq. (9) exhibits a rich set of relax-
ation and decoherence behaviors, at both zero[29] and finite
temperature.[26,27,30]

In Refs. [20,21], the authors have studied the reduced
dynamics (tracing out the degrees of freedom of the resid-
ual bosonic reservoir) of the SIB model by a numerically ex-
act hierarchical equations of motion[31,32] as well as a per-
turbative quantum master equation approach. Both methods

showed that the final steady state can be faithfully described
by the Gibbs state of the mapped spin-IHO Hamiltonian Ĥsys.
Therefore, eliminating the degrees of freedom of the IHO, a
corrected steady state of the spin can be extracted from the
canonical equilibrium state of Ĥsys, namely,

ρ̂ss = Tri

(
e−β Ĥsys

𝒵

)
, (10)

where 𝒵 = Trsi(e−β Ĥsys). We argue that the steady state given
by Eq. (10) contains system–reservoir correlations, compared
with the Gibbs state with respect to the bare spin’s Hamilto-
nian.

3. Effective Hamiltonian
The corrected steady state in Eq. (10) can be numerically

evaluated. However, to obtain a more clear physical picture,
we prefer an analytical approach. Motivated by Refs. [33–35],
we find ρ̂ss can be cast in a form of canonical equilibrium state
with respect to an effective Hamiltonian, which preserves the
same size with the original bare spin.

To this aim, we first separate Ĥsys into two parts Ĥsys =

Ĥ0 + Ĥ1, where Ĥ0 = Ω â†â and Ĥ1 = ε Ĵz + λ Ĵx(â† + â).
The next key step is the employment of the following
identity[33–35]

e−β (Ĥ0+Ĥ1) = e−β (L̂0+Ĥ1) e−β Ĥ0 , (11)

where L̂0 is the Liouvillian operator associated with Ĥ0: for
an arbitrary operator Ô, the Liouvillian operator L̂0 is defined
though the commutator L̂0Ô = Ĥ0Ô− ÔĤ0. With the help of
the identity in Eq. (11), the partition function 𝒵 can be rewrit-
ten as

𝒵 = Trsi

[
e−β (L̂0+Ĥ1) e−β Ĥ0

]
= 𝒵0Trsi

[
e−β (L̂0+Ĥ1)

e−β Ĥ0

𝒵0

]
= 𝒵0Trs

[
⟨e−β (L̂0+Ĥ1)⟩0

]
= 𝒵0𝒵eff, (12)

where 𝒵0 ≡ Tri(e−β Ĥ0), and the symbol ⟨Ô⟩0 is defined as
the ensemble averaging with respect to the Gibbs state of Ĥ0,
namely,

⟨Ô⟩0 ≡
1
𝒵0

Tri

(
Ôe−β Ĥ0

)
.

Thus, we find the corrected steady state in Eq. (10) can be re-
expressed as

ρ̂ss = Tri

[
e−β (L̂0+Ĥ1) e−β Ĥ0

𝒵

]

=
1

𝒵eff
Tri

[
e−β (L̂0+Ĥ1)

e−β Ĥ0

𝒵0

]
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=
1

𝒵eff

〈
e−β (L̂0+Ĥ1)

〉
0

=
1

𝒵eff
e−β Ĥeff , (13)

here
Ĥeff ≡− 1

β
ln
〈

e−β (L̂0+Ĥ1)
〉

0 (14)

is introduced as an effective Hamilton of Ĥsys, which is size
consistent with the original bare spin.

The above effective Hamiltonian Ĥeff can be perturba-
tively computed as follows:[34,35]

Ĥeff = − 1
β

ln
〈

e−β (L̂0+Ĥ1)
〉

0

= − 1
β

〈
e−β (L̂0+Ĥ1)−1

〉C
0

= − 1
β

∞

∑
ℓ=1

(−β )ℓ

ℓ!
〈
(L̂0 + Ĥ1)

ℓ
〉C

0 , (15)

here the upper index C denotes the cumulant averaging, which
has been systematically discussed by Kubo in Ref. [36]. In
high temperature regimes, one can only retain the first and the
second cumulants in the series, then the effective Hamiltonian
is approximated as

Ĥeff ≃ ⟨L̂0 + Ĥ1⟩C0 − β

2
⟨(L̂0 + Ĥ1)

2⟩C0

= ⟨Ĥ1⟩0 −
β

2

(
⟨Ĥ2

1 ⟩0 −⟨Ĥ1⟩2
0

)
= ε Ĵz −

βλ 2

2
coth

(
βΩ

2

)
Ĵ2

x . (16)

A similar result is also reported in Refs. [35,37]. We find the
first term in Eq. (16) is just the original bare spin’s Hamil-
tonian, and the second term can be viewed as modifications
induced by the coupling between the spin and the IHO, which
reflects the influence of system-reservoir correlations on the
final steady state. We also notice that, for the spin-1/2 case,
Ĵ2

x reduces to (1/4)1̂2, which means var(Ĥeff) = var(ε Ĵz), in-
dicating the system–reservoir correlations have no influence
on the QFI up to the second order cumulants in this spin-1/2
case.

4. Result
The QFI from the corrected steady state given in Eq. (13)

can be analytically computed, and we express the result as

ℱ = ℱs +δℱ ,

where the first term ℱs is the QFI contributed by the Gibbs
state with respect solely to the bare spin, and the second term
δℱ can be regarded as a correction due to the system–reservoir
correlations. If δℱ > 0, the system–reservoir correlations
improve the estimation precision; on the contrary, δℱ < 0
means system–reservoir correlations play a negative role in

our scheme. As illustrative examples, we consider two dif-
ferent spin sizes: J = 1 and J = 3/2 in this paper. In the above
two cases, ℱs and δℱ can be exactly computed, but we only
list the expressions of ℱs here, because the explicit expressions
of δℱ are rather tedious. We find

ℱ (1)
s =

2ε2

T 4
2+ cosh(2ζ )

[1+2cosh(2ζ )]2
, (17)

ℱ (3/2)
s =

ε2

4T 4

[
sech2(ζ )+4sech2(2ζ )

]
, (18)

where ζ ≡ ε/2T .
In Figs. 2(a) and 2(b), we plot ℱ versus temperature T

for spin-1 and spin-3/2 systems. In both cases, we find the
QFI vanishes as T → 0 and decays exponentially at high tem-
peratures. This result suggests there exists an optimal tem-
perature that maximizes the value of QFI. In Figs. 2(c) and
2(d), we display δℱ as the function of Ω with different spin
sizes. We find δℱ < 0 when Ω is small, which suggests the
system–reservoir correlations destroy the estimation precision;
as Ω increases, δℱ becomes positive, indicating the system-
reservoir correlations may improve the value of QFI. Our re-
sult implies that the system–reservoir correlations play a com-
plicated role in the estimation scheme, it effect (improving or
decreasing the estimation precision) depends strongly on the
details of the reservoir spectral density function. Due to the
fact that ℱ(T ) ∝ C(T ), our result is consistent with the result
reported in Ref. [38], in which the authors found the ratio of
Ccor/Cbare, Ccor is the heat capacity of a harmonic oscillator
strongly correlated with its surrounding environment, while
Cbare is the heat capacity of a bare harmonic oscillator with-
out system-reservoir coupling, is sensitive to parameters in the
spectral density: by adjusting the coupling strength, the ratio
of Ccor/Cbare can be larger or smaller than 1 at different tem-
peratures. Moreover, as demonstrated in Ref. [39], parameters
in the spectral density function are controllable by tuning ex-
perimental conditions, when simulating the dephasing process
of trapped ultracold atoms. Thus, our result suggests that one
can improve the estimation precision by employing the spec-
trum engineering technique.

At the end of this section, we would like to briefly dis-
cuss the experimental feasibility of measuring temperature of
a reservoir by making use of spins. Many previous studies[40]

have showed that a superconducting circuit based on the
Cooper-pair box behaves as a spin-1/2 system. Nuclear spins
and molecular nano-magnets,[41] which are small clusters of
a few atoms embedded into a crystal, can be used to simu-
late spins greater than one half in experiments. As pointed
out in Ref. [13], the level populations of a spin can be mea-
sured by recording resonance fluorescence signals, then via
fitting experimental data into a Fermi–Dirac distribution or a
Bose–Einstein distribution, which are the thermal distributions
of spins in steady state, one can extract the temperature of the
back contact (reservoir).

020501-4



Chin. Phys. B Vol. 29, No. 2 (2020) 020501

                                        

T

                                                                             

ΩΩ

0            10          20           30           40           50 

T













↩

↩

↩







↩

↩

↩















F
Τ






F
Τ





d
F

Τ





d
F

Τ





(a) (b)

(c)
(d)

Fig. 2. (a) The total QFI ℱ with J = 1 is plotted as the function of temperature T : Ω = 50 (red dashed line), Ω = 75 (purple dotdashed line), and Ω = 100
(blue solid line). Other parameters are chosen as λ = 0.1Ω and ε = Ω . (b) The total QFI ℱ with J = 3/2 is plotted as the function of temperature T : Ω = 10
(red dashed line), Ω = 12 (purple dotdashed line), and Ω = 15 (blue solid line). Other parameters are chosen as λ = 0.1Ω and ε = Ω . (c) The corrected
QFI δℱ at T = 50 is plotted as the function of Ω : J = 1 (blue solid line) and J = 3/2 (red dashed line). Other parameters are chosen as λ = 100 and ε = Ω .
(d) The corrected QFI δℱ at T = 5 is plotted as the function of Ω : J = 1 (blue solid line) and J = 3/2 (red dashed line). Other parameters are chosen as
λ = 30 and ε = Ω . In our calculation, temperature, the frequency of IHO, and QFI are expressed in arbitrary units.

5. Conclusion
In summary, we investigate the reduced equilibration dy-

namics of an SB model, which consists of an arbitrary size
spin interacting with a finite temperature bosonic reservoir. By
making use of the reaction coordinate mapping approach, an
exact equivalent SIB model is obtained, in which an IHO (a
collective coordinate) is partitioned into the mapped system’s
Hamiltonian, reflecting the influence of system–reservoir cor-
relations on the reduced equilibration dynamics. We find the
steady state of the spin can be expressed in a form of Gibbs
state with respect to an effective Hamilton, which is size con-
sistent with the original bare spin. Employing this corrected
steady state, we explore how the system–reservoir correlations
affect the estimation precision of reservoir’s temperature. It
is revealed that the effect of the system–reservoir correlations
on the estimation precision is highly sensitive to the details
of the spectral density function of the reservoir. Varying the
parameters of the spectrum, the system–reservoir correlations
play opposite roles in different parameter spaces. Technically
speaking, our treatment is acceptable only in high temperature
regimes, due to the the omission of the higher order cumulant
averaging terms. It would be very interesting to further extend
this study to the entire range of temperatures. Recently, in
Ref. [42], the authors have generalized the reaction coordinate
mapping to impurity systems coupled to fermionic reservoirs,

which suggests our method can be also exploited to measure
the temperature of a reservoir of free fermions. Finally, due to
the generality of the SB model, we expect our result to be of
interest for a wide range in quantum metrology tasks.

Appendix A
In this appendix, we briefly outline how to relate the orig-

inal spectral density function 𝒥sb(ω) to the mapped spectrum
𝒥sib(ω) following the detailed exposition in Refs. [21,25–27,
43]. Due to the fact that both spectrums, i.e., 𝒥sb(ω) and
𝒥sib(ω), do not contain any information about the spin itself,
but rather just the coupling between the spin and reservoirs,
one can transform the spin into a continuous classical coordi-
nate q moving in a potential U(q). Then, the original Hamil-
tonian Ĥsb becomes

Ĥq =
p2

2
+U(q)+∑

k

(
P̂2

k
2

+
1
2

ω
2
k X̂2

k

)
+∑

k

√
2ωkgkqX̂k +q2

∑
k

g2
k

ωk
, (A1)

where X̂k and P̂k are defined as

X̂k =

√
1

2ωk
(b̂†

k + b̂k); P̂k = i
√

ωk

2
(b̂†

k − b̂k).

From the above Hamiltonian, the equation of motion of classi-
cal position q(t) can be exactly derived.[21,25–27] In the Fourier
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space, it reads

K(ϖ)q̌(ϖ) =−Ǔ ′(ϖ), (A2)

where

K(ϖ) =−ϖ
2
[

1+
∫

∞

0
dω

𝒥sb(ω)

ω(ω2 −ϖ2)

]
, (A3)

and f̌ (ϖ) is defined as the Fourier transform of an arbitrary
time-dependent function f (t), i.e.,

f̌ (ϖ)≡
∫ +∞

−∞

dt f (t)e−iϖt .

From Eq. (A3), the spectral density function 𝒥sb(ω) can be
obtained by making use of residue theorem

𝒥sb(ω) =
1
π

lim
ε→0+

Im [K(ω − iε)]. (A4)

Similarity, by swapping the spin as a classical position q,
the Hamiltonian of SIB model Ĥsib is then transformed to

ℋ̂q =
p2

2
+U(q)+

p̂2
0

2
+

1
2

Ω
2x̂2

0 +
√

2Ωλqx̂0

+∑
k

(
𝒫̂2

k
2

+
1
2

ω̃
2
k 𝒳 2

k

)
+∑

k

√
2ωkg̃kx̂0𝒳k

+
λ 2

Ω
q2 + x̂2

0 ∑
k

g̃2
k

ω̃k
, (A5)

where {x̂0, p̂0} and {𝒳k, 𝒫̂k} are position–momentum opera-
tors of the IHO and the residual bosonic reservoir, respectively.
From Eq. (A5), one can also attain the equation of motion
for q(t), moving into the Fourier space, it reads 𝒦(ϖ)q̌(ϖ) =

−Ǔ ′(ϖ), which has the same form with Eq. (A2). The expres-
sion of 𝒦(ϖ) in this case is given by

𝒦(ϖ) =−ϖ
2 − 2λ 2

Ω

ℒ(ϖ)

Ω 2 +ℒ(ϖ)
, (A6)

where

ℒ(ϖ)≡−ϖ
2
[

1+4Ω

∫
∞

0
dω

𝒥sib(ω)

ω(ω2 −ϖ2)

]
.

If one choose 𝒥sib(ω) = γω , then ℒ(ϖ) reduces to ℒ(ϖ) =

−ϖ2 +2iπΩγϖ . Plugging this expression into Eq. (A6), one
can obtain 𝒦(ϖ).

Finally, using the dynamical consistency condition,
namely, the equation of motion for q(t) derived from Ĥq

should be equivalent to that from ℋ̂q, we have

𝒦(ϖ) = K(ϖ).

Then, with the help of Eq. (A4), one can find

𝒥sb(ω) =
1
π

lim
ε→0+

Im [𝒦(ω − iε)]

=
2γλ 2ωΩ 2

(Ω 2 −ω2)2 +(2πγΩω)2 , (A7)

which recovers Eq. (9) in the main text.
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