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Nonlinear evolution of multiple toroidal Alfvén eigenmodes (TAEs) driven by fast ions is self-consistently investigated
by kinetic simulations in toroidal plasmas. To clearly identify the effect of nonlinear coupling on the beam ion loss,
simulations over single-n modes are also carried out and compared with those over multiple-n modes, and the wave-particle
resonance and particle trajectory of lost ions in phase space are analyzed in detail. It is found that in the multiple-n case, the
resonance overlap occurs so that the fast ion loss level is rather higher than the sum loss level that represents the summation
of loss over all single-n modes in the single-n case. Moreover, increasing fast ion beta f;, can not only significantly
increase the loss level in the multiple-n case but also significantly increase the loss level increment between the single-n
and multiple-n cases. For example, the loss level in the multiple-n case for B, = 6.0% can even reach 13% of the beam ions
and is 44% higher than the sum loss level calculated from all individual single-n modes in the single-n case. On the other
hand, when the closely spaced resonance overlap occurs in the multiple-n case, the release of mode energy is increased so
that the widely spaced resonances can also take place. In addition, phase space characterization is obtained in both single-n

and multiple-n cases.
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1. Introduction

Alfvén instability, as a type of magnetohydrodynamic
(MHD) instabilities, is very common in both space and lab-
oratory plasmas.!'=3 In present-day fusion and future burn-
ing plasmas, Alfvén instability is easily driven to be unsta-
ble by the wave-particle interaction, including alpha particles
from fusion and fast ions produced by neutral beam injection
and other auxiliary heating methods. It can not only affect
the plasma confinement and transport but also induce exces-
sive fast ion loss and redistribution. On the other hand, the
successful realization of the magnetically confined fusion de-
pends on the satisfactory confinement of the fast ions. In fact,
if the fast ion losses are sufficiently localized and intense, they
could bring about an unplanned heat load and damage to the
first wall, leading to the termination of discharges in tokamaks.
Ideally, fast ions and fusion products could be well confined
until their energy is transferred to the bulk plasmas. Fully
understanding the wave—particle interaction between Alfvén
waves and fast ions, the mechanism of fast ion loss, and then
developing some methods to control fast ion loss, therefore,
are of critical importance for design of plasma-facing materi-
als and reliable predication!¥! for the International Thermonu-
clear Experimental Reactor (ITER) and the China Fusion En-
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gineering Test Reactor (CFETR).D!

A well-known discrete Alfvén mode is toroidicity-
induced Alfvén eigenmode (TAE). The resonant interaction
between fast ions and TAE, especially multiple toroidal har-
monic mode (multiple-n) TAE, is believed to represent one
of the main mechanisms for fast ion loss in ITER.[! Also,
there have been extensive experimental and theoretical inves-
tigations on the fast ion losses induced by TAE, including sin-
gle toroidal harmonic mode (single-#) and multiple-n TAEs, in
present-day tokamaks and helical devices. It was observed that
a single TAE with fluctuation amplitude above a certain thresh-
old can induce diffusive fast ion loss, and an overlapping of
TAE and Alfvén cascades of spatial structures leads to a large
fast ion diffusion and loss.!”! The experimental results on the
NSTX device showed that up to 40% of the fast-ion population
can be expelled from confined plasmas after a TAE avalanche,
thus the cumulative effect of a repetitive cycle of avalanches
on the plasmas performance is dramatic.®! In JET advanced
tokamak scenario, the core-localized TAE was observed to
have a significant impact both on internal redistribution and
on the loss of fast ions.[°! Strong TAE activity can induce up
to 70% of the fast ion loss.['%1 On the DIII-D tokamak, multi-
ple simultaneous small-amplitude Alfvén eigenmodes (AEs)

can result in overlapping wave-particle resonances, leading
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to a critical gradient transport phenomenon.!!:!?1 The criti-
cal energetic particle density gradient in an AE stiff trans-
port model has been verified against nonlinear GYRO sim-
ulations for a representative DIII-D discharge, and a simple
and computationally inexpensive way to estimate the time-
averaged steady-state energetic-particle (EP) density in a sys-
tem with AE-induced EP transport was put forward by Bass
and Waltz.['3! It should be noted that the simulation by Bass
and Waltz was a local nonlinear simulation. We perform the
global and self-consistent nonlinear simulations and assess the
TAE-induced EP transport level self-consistently. In addition,
HAGIS-LIGKA simulations by Schneller er al. showed that
the global nonlinear effects are crucial for evolution of the
multi-mode scenario, which not only grow amplitudes of mul-
tiple modes to higher values compared to the single mode case
but also trigger strong redistribution."*! Furthermore, Chen et
al. theoretically showed that in future the presence of nega-
tive neutral beam injection induced energetic particle tail will
make the system more unstable and prone to losses.!'>! These
results present a fairly complex pattern, only part of which
is understood at present. Fast ions can be lost through vari-

[16] [16]

ous processes, such as prompt loss,"' ! non-resonant loss,

mode-particle pumping,'” and ripple loss.!"®! Prompt losses
are losses of particles born on perturbed orbits that collide
with the first wall before they finish one or several poloidal
transits, which may result from local wave particle resonant
interaction.[!®!° The non-resonant ions can exchange energy
with the wave, but the net contributed energy may be nearly
zero, as the energy gained during one phase of wave is lost
during the next opposite phase for these confined non-resonant
ions. However, when a loss boundary exists, the case can
vary. If an ion interacts with the wave for less than a full cir-
cle, the net contributed energy will not be negligible. Mode-
particle pumping is a resonance phenomenon, which is an in-
teraction of large-scale (global) MHD modes with the particle
drift motion over many mode periods.!!”! Accordingly, under-
standing the underlying physics of loss induced by single-n
and multiple-n TAEs, especially in the loss mechanism and
phase-space characterization, is still rare and badly needed.

In this work, taking into account the beam ion distribution
function with the pitch angle scattering, we study the nonlinear
evolution of multiple TAEs by means of kinetic simulations
with the M3D-K code.
one is the single-n TAE case, the other is the multiple-n case.

Two kinds of cases are performed:

The focus is on the understanding of the principle physics be-
hind the loss induced by single-n and multiple-n TAEs and the
phase-space characterization of losses. The wave-particle res-
onance and particle trajectory of lost ions in phase space in

both the cases are obtained and compared. It is found that the

fast ion loss level induced by the relatively strong resonance-
overlapping multiple-n TAE is greatly enhanced. Finally, we
also compare the percentages of different lost particles in dif-
ferent cases.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly describes the global nonlinear kinetic-MHD hy-
brid simulation code M3D-K used in this work. The main pa-
rameters and equilibrium, the simulation results including the
single-n TAE and the multiple-n TAE are discussed and an-
alyzed in Section 3. Finally discussions and conclusions are
given in Section 4.

2. Equilibrium profiles and parameter setup

This work is performed by using the global nonlinear
kinetic-MHD hybrid initial value code M3D-K for toroidal
plasmas.?%2!1 In the code, the plasmas consist of two com-
ponents: the thermal component and the energetic compo-
nent. The thermal component including thermal ions and elec-
trons is described as a single fluid by resistive MHD equa-
tions solved via the finite element method. The energetic
component is treated by drift-kinetic equations calculated via
the Of particle-in-cell method. The energetic particle ef-
fect enters our model through coupling the energetic particle
pressure tensor P}, to the momentum equation. The M3D-K
code has been widely used to investigate the non-resonant

kink mode, 22! [23-25]

nonlinear dynamics of fishbone mode,
TAE, 26271 EPM, 128301 and effects of energetic particles on
tearing mode.?!!

In the simulation, the chosen safety factor g is g =
1.1+ y, where y is the normalized poloidal magnetic flux
in code units varying from O at the magnetic axis to 1 at the
edge. The main parameters are as follows: circular cross sec-
tion Ry/a = 3.11, Alfvén speed va, Alfvén time Tao = R/ Va,
the central beta of both thermal plasma and energetic par-
ticle Bioa10 = 3.43%, and the fraction of energetic particles
Boeam = 1.81%.

The injection speed of beam ions is v, = 2.55V, in the
simulation. The fast ion distribution is slowing down in en-
ergy, peaked in pitch angle parameter (A = uBy/E), where U
is the magnetic moment. The form is given by

c Py — (vl / .Qh
= e[ )

1—Ap 1
! f( )% 31
x( +er AN XAA

x(erf( )+erf AO))exp{ “@ AO) }, (1)
where

1/2
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Vg is the beam ion injection speed, c is the normalized factor,
U is the critical velocity, Py = y + v/ /Qy is the canonical
momentum, / = RBy, &, = ZeB/my, and (---) denotes or-
bit average. Ay = 0.6 is the central pitch angle, AA = 0.2,
Ay = 0.37(Wmax — Wmin)- The beam ion distribution func-
tion considers the pitch angle scattering. The maximum gyro-
radius of energetic particle is p, = 0.085a for v, = 2.55v4.
For simplicity, the energetic particle collision with thermal
ions and electrons are not considered in the model, and the
source and sink for energetic particles are also not included in

the simulations.

3. Simulation results
3.1. Nonlinear evolution of the single-n TAE mode

We first study the nonlinear evolution of the TAE mode
with single-n (ngingle = 1 or 2) as a reference case. Figure 1
shows the time evolution of the TAE mode kinetic energy (a)
and frequency [(b), (c)]. The mode frequency chirping is due
to the evolution of the phase space structure. The injection
speed range of beam ions v, = [2.19,3.29] v is used in the
Nsingle = 1 case. Figure 2 shows the locations of the single-n
TAE modes.

Figure 3 shows the single-n (ngingle = 1, 2) TAE mode
structure at three different times: [(a), (d)] in the linear phase,
[(b), (e)] in the initial saturation phase, and [(c), (f)] in the
late saturation phase. Here U is the velocity stream function
of the incompressible part of the perturbed plasma velocity.
TAE is characterized with two dominant poloidal harmonics
(m and m + 1) localized between two mode rational surfaces.
It is observed that for the ngyge = 1 mode, the structure with

the dominant m/n = 1/1 component in the initial saturation

phase is similar to that in the linear phase.
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Fig. 1. Nonlinear evolution of TAE mode: (a) time evolution of single-n
(nsingle = 1,2) TAE mode kinetic energy, (b) and (c) fourier spectrogram
of single-n (ngingle = 1,2) TAE mode.
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Fig. 2. The safety factor equilibrium profile and the locations of the
single-n (ngingle = 1,2,3) TAE modes.

a) t=260 _ b) t=315 x1073 c) t=2000 -4
1o (a) %10—4 (b) ! (c) x%jo
5
0.5
o _ |-
s 0 = =
N -5 N . N 0
—0.5 \ - .
-1.0 -15 -1.8 -5
0 (d) t=80 %10~ (e) t=121 X103 (f) t=1500 X104
4 2 2
0.5
» N »
= 0o = . 0
g ‘ N N »
Y ™ - -
—0.5 B
—4
1. -3
1.05 3 3 4 3 4
R(a) R(a) R(a)

Fig. 3. The single-n (nsingle = 1,2) TAE mode structure of velocity stream function (U) at three time slices: [(a), (d)] in the linear
phase, [(b), (e)] in near initial saturation, [(c), (f)] in late nonlinear phase.
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In the late saturation phase of the evolution, however,
the mode structure changes significantly with the dominant
m/n =2/1 component, as shown in Figs. 3(a)-3(c). It coin-
cides with the fact that the ngjnge = 1 mode we investigate here
produces the pitch-fork phenomenon and has two branches:
down-chirping branch and up-chirping branch, as shown in
Fig. 1(b). It is known that frequency chirping is always accom-
panied by the redistribution of energetic ions. The gradient of
energetic ions near the resonant surface ¢ = 1.5 may change.
Thus the dominate mode is changed from m =1 to m = 2.
However, for the ngpnge = 2 case, the m/n = 3/2 mode is al-
ways dominant. This is due to the fact that the ngingle = 2 mode
has only one branch, i.e., down-chirping branch, as shown in
Fig. 1(c).

It is known that the fast ions can destabilize Alfvén waves
by passing and/or trapped particle resonance via tapping the
free energy associated with fast ion pressure nonuniformity.
The TAE modes can be excited by the free energy associated
with fast ion pressure gradient through wave particle resonant
interaction due to the fact that they are discrete in nature and
have weak continuum damping. The wave particle resonant in-
teraction mathematically can be described as the resonant con-
dition nox + pw, — @ = 0, where p is an integer, @ is the mode
frequency, o = A@ /At, @, = 27 /Ar are both bounce-average
frequency in the calculation and At is the time for each par-
ticle to complete one round poloidally. For passing particles,
ay is toroidal transit frequency and @, is poloidal transit fre-
quency. For trapped particles, @ = wq is toroidal precession
drift frequency and @, is poloidal bounce frequency. If the
right wave-particle phase is given, the linear momentum ex-
change may cause convective loss of fast ions. However, when
the trajectories of resonant fast ions overlap with mode spa-
tial structure, the fast ion stochastic diffusion is induced, thus
a global redistribution of fast ions may occur. In Fig. 4, the
beam ion perturbation distribution function 6 f for ngngle = 1
is plotted, and the resonant particle locations in Py—E phase
space around { = 5.225 (normalized by Ey/By) are traced.
The selected value of magnetic moment p is a typical one,
which contains the most regions of both passing and trapped
resonant particles, around which the perturbation distribution
function § f is relatively larger. Multiple kinds of fast ions and
resonances exist in the system since the TAE instability in this
work is studied with a beam ion distribution function includ-
ing the beam ion pitch angle scattering effect. It is shown in
Fig. 4 that the primary resonances are p = 1 and p = 2 for
trapped particles, p = 1 for co-passing particles, and p = 2 for
counter-passing particles.

For the single-n case, the moment of a particle in phase
space can be described mathematically as

dp 9  ndE

- 3
dr o dr )

In axisymmetric time-independent fields, energy E and
toroidal angular momentum Py are conserved along the parti-
cle orbit. In the presence of a wave with angular frequency @
and toroidal mode number 7, neither energy nor toroidal mo-
mentum is conserved. However, a combination of energy and
toroidal momentum E’ = E — @P; /n is a conserved.!¥? Ac-
cordingly, equation (3) can be obtained. Equation (3) means
that the change of particle toroidal angular momentum is pro-
portional to the change of particle energy in the presence of a
perturbation with the frequency @ and toroidal mode number
n. Since Py can be considered as a radial variable, this means
that a particle moves outside radially with decreasing energy
or moves inside radially with increasing energy.
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Fig. 4. For ngjnge = 1 the perturbed distribution function & f around the
magnetic moment g = 5.225 in phase space of canonical momentum and
energy, i.e., Py—E. For a fixed E, small Py corresponds to the plasma core
and large Py corresponds to the plasma edge.
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Fig. 5. The evolution of Py (a), E (b) and the trajectory (c) of a typical
initially resonant particle in the ngjngle = 1 simulation. Note that the red
dot “lost” in the figure denotes the position at the lost moment and that
the black triangle “initial” in subplot (c) denotes the position at initial
moment.

To analyze the loss mechanism in the ngj,ge = 1 case, a
typical lost particle is taken to represent the lost particle res-
onant with the ngjnee = 1 mode. Figures 5(a) and 5(b) show
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the time evolution of Py and energy E, respectively, and Fig-
ure 5(c) shows the position of the lost particle in the Py—E
phase space. Py can be regarded as a radial variable, and the
change of Py can represent the size and motion of saturated
island, since Py conservation is broken in the presence of the
perturbation. The mode’s growth and chirping induce island
broadening and drift. When the saturated island moves out-
wards and intersects with the loss boundary, the fast ion may
pass the last closed flux surface. It is found from Fig. 5 that
with the TAE mode growth (see Fig. 1(a)), the saturated is-
land becomes broad, first moves inwards radially and then out-

wards.
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Fig. 6. (a) The time evolution of the loss level fioss and (b) the time evo-
lution of the mode energy in the ngngie = 1 case for vy = [2.19,3.29] va
with the fast ion beta f, = 1.81%.

To study the effect of the beam ion injection speed on the
beam ion loss, the time evolution of the beam ion loss induced
by the ngngle = 1 TAE mode is given in Fig. 6. Here fioss,
representing the beam ion loss level, is defined as
~ Moss (t )

ﬁOSS (t) - n (0) I

“4)

where njo(f) is the overall amount of lost particles at time ¢
(running outside of the plasma during the evolution of the TAE
mode), n(0) is the total loaded particles. It is clearly shown in
Fig. 6(a) that the overall loss level increases with the beam ion
injection speed. This is mainly due to the fact that the large
beam ion injection speed leads to a long slowing-down time
and a high energy gained from the resonant beam ions. On
the other hand, the larger beam ion injection speed results in a
larger orbit width, leading to the higher level anomalous trans-
port and higher level beam ion losses. Moreover, it is seen
in Fig. 6(b) that the linear growth rate and nonlinear amplitude
also increase with the injection speed. Since no particle source
is available in the simulation model and the saturated mode
amplitude is relatively low (107°) in the late nonlinear phase,
the beam ion loss mainly appears in the linear and early non-
linear phase but become very weak the later nonlinear phase,
at least for the parameters studied here.

3.2. Interaction between modes and resonance overlap in
multiple-n simulation

In this section, the results of simulations simultaneously
including n (or nyuiple) = 1-4 modes (multiple-n case) are
presented. The parameters used in the multiple-n simulation
are the same as those in the ng,ge = 1 simulation (see Sec-
tion 2). Comparisons are also made with the results of sim-
ulations including only one individual mode (single-n cases).
The evolutions of the n =1, n =2, n = 3, and n = 4 mode am-
plitudes in multiple-n and single-n simulations are compared
in Fig. 7. In the multiple-n simulation, the n > 4 fluctuations
are filtered out, soonly n =1, n =2, n = 3, n = 4 modes are
kept. It is clearly observed that due to the nonlinear interac-
tion between different » modes, the evolution of » = 1 mode
is significantly different after t/74 > 300. The n = 1 mode
amplitude in the multiple-n simulation is clearly reduced by
such nonlinear interactions after /75 > 300. Moreover, the
n = 4 mode in the single-n case is stable, while it is unsta-
ble in the multiple-n case. The mode frequency evolution of
n=1,n=2,n=3, n =4 modes are shown in Fig. 8. Since
two possible free energy channels, wave-wave coupling and
wave-particle interaction, exist for Alfvén wave instabilities,
there are two possible explanations for the n = 4 mode ex-
citation. However, we have examined the frequency matching
condition betweenn =4 and n =2, betweenn =4 and n = 13,
and it is found that the frequency matching condition is not
satisfied very well. One possible mechanism for n = 4 mode
excitation is due to the wave-particle interaction. Since the re-
distribution and loss of energetic ions inducedbyn=1,n =2,
n = 3 modes lead to the modification of energetic ion density
gradient, the n = 4 mode can be excited.

10-10} R
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10-12F o’
—13 L Lf/
10 3
10714 L
10155
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Fig. 7. Nonlinear evolution of kinetic energy E; for multiple-n and
single-n cases with B, = 1.81% and beam ion injection speed v, =
2.55va. Multiple-n (nmuiiple = 1,2,3,4) stands for n = 1,2,3,4 in
the multiple-n cases, respectively. Single-n (ngingle = 1,2,3,4) stands
for n = 1,2,3,4 in the single-n cases, respectively. The growth rates
of nmuitipe = 1,2, 3,4 modes are ¥,—; = 0.0167w4, =2 = 0.05250,,
Yo=3 = 0.0656Wp, ¥—4 = 0.0937 w4, respectively.

In general, multiple modes can interact with each other
indirectly via mutual scattering effect on their individual res-
onant particles. Such indirect interaction may occur in two
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ways. On the one hand, the modes have to share the energy
delivered by the particles. On the other hand, the energy can
also be transferred when a particle is scattered from one mode
into the other mode instead of escaping from the wave. Such
a particle recycling, as well as multiple resonances covering a
large region of phase space, can also increase the total energy
transferred to the fluctuating fields in the multiple-n simula-
tion. This can be easily seen in Fig. 7 by comparing the mode
energies between the single-n and multiple-n cases.

1.0

—H—n=1

0.8

200 400 600 800 1000 1200 1400 1600
t/Ta

Fig. 8. The mode frequency evolutionsof n =1, n =2, n=3,n=4
modes with the observation of mode frequencies chirping down or up
in the multiple-n simulation.

Moreover, the wave-particle resonance and particle tra-
jectory in the phase space are analyzed. The orbits of beam
ions are usually defined by three invariants of the motions: the
energy E, the magnetic moment U, and the toroidal canonical
momentum FPy. When a resonant interaction between a mode
and a beam ion takes place, the magnetic moment u of the
ion is conserved, whereas both the energy E and the toroidal
canonical momentum Py change during the process. In Fig. 9,
the particle trajectories in Py—E space are followed in the pres-
ence of time-dependent multiple-n TAE perturbation, and the
position in Py—E phase space is recorded when each particle
passes through the mid-plane. The different components of
the multiple-n mode are represented by different colors: n =1
(red), n =2 (green), n = 3 (black), n = 4 (blue). The initially
resonant particles are with a fixed value of magnetic moment
1 = 9.933 (normalized by Ey/By). Of particular concern in
the multiple-n case is whether the mode amplitudes become
large enough to cause resonances overlap, which can deter-
mine the global fast ion loss. It is found that the resonance
overlap is greatly facilitated by the simultaneous excitation of

133] Moreover, when the

multiple modes, as studied previously.
closely spaced resonances overlap, there is an enhanced re-
lease of mode energy, which in turn can cause nearby but more
widely spaced resonances to overlap. This thereby rapidly ex-
pands the phase space region over which particles are redis-

tributed to the plasma edge or lost. Figure 10 indicates that the

radial mode structures overlap in the radial direction, in partic-
ular for the nyyiple = 1,2 modes in the multiple-n case. As a
result, the resonances in the Py—E phase space are neighboring
and thus easily overlap for the multiple-n case, especially at
higher amplitudes. This resonance overlap in the phase space
is evidently observed for the multiple-n case in Fig. 9(a). Al-
though the modes discussed here come from the components
of multiple-n TAE, one can clearly see the overlap, especially
in the region of the low energetic particles.
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Fig. 9. The weak resonance-overlapping multiple-n TAE (f, =

1.81%) (a) and the relatively strong resonance-overlapping multiple-n
TAE (B, =6%) (b). Fast ion trajectories in the phase space of canonical
momentum Py and energy E in the presence of multiple-n TAE modes
at t = 0-200074. Only the initially resonant particles are plotted in the
figure. The particles which initially resonate with the different com-
ponents of the multiple-n mode are represented by colors: n =1 (red),
n =2 (green), n =3 (black), n =4 (blue). Since the particles are trapped
by the n = 1,2,3,4 modes, the positions of resonant particles in phase
space can be regarded as the eigenmodes. Namely, the eigenmodes are
represented by colors: n =1 (red), n = 2 (green), n = 3 (black), n =4
(blue). The frequencies of @y, @y, @3, w4 stand for the mode frequen-
cies of n = 1,2, 3,4, respectively, in the multiple-n case.
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Fig. 10. Comparison of velocity stream function at the midplane with
t = 2517, in the multiple-n (nmyiipte = 1,2,3,4) and single-n (nsingle =
1,2,3,4) simulations.
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Note that although a particle can be lost in the ngipge = 1
or 2 mode, or other TAE mode, it is only recorded as one lost
particle in the sum loss of all individual single-n modes. That
is, this sum loss is not the simple addition of all individual
single-n losses. Therefore, it is shown in Fig. 11 and Table 1
that in the single-n case, the sum loss level is certainly higher
than the loss level from any single-n mode, though less than
the loss level from the simple addition of all individual single-
n losses. Even more important, it is interestingly found that
the loss level in the multiple-n case is rather higher than the
sum loss level in the single-n case because of the resonance
overlap. Such a loss level increase in the multiple-n case is
enhanced by 16% for B, = 1.81%. Further simulations indi-
cate that increasing f, can significantly rise the loss level in
the multiple-n case.

—A— multicple-n

-y SUM
0 Ningle =1

- g =3
—Hh— Ngingle = 4

floss/lo;2

[y
T

0 200 400 600 800
t/Ta

Fig. 11. Evolutions of the level of beam ion losses fioss in nsingle = 1,
Nsingle = 2, Nsingle = 3, Nsingle = 4 simulations and multiple-n simulation
with the same parameter f, = 1.81%, v, = 2.55v4. Note that sum de-
notes the sum of loss over ngjngle = 1-4 modes, where every lost particle
is calculated for one time.

1000

Table 1. Comparison of the linear growth rate and fast ion losses in the
single-n and multiple-n cases. Note that every lost particle is calculated for
one time.

Simulation type Growth rate Loss fraction/%

for Nmultiple = 1,2,3,4

multiple-n TAE 2.45
0.0167, 0.0525, 0.0656, 0.0937

Ngingle = 1 TAE 0.0167 0.98

Ngingle = 2 TAE 0.0511 1.93

Nsingle = 3 TAE 0.0178 0.84

Nsingle = 4 TAE stable 0.09

Sum 2.12

Figure 12 shows that for B, = 6.0%, the loss level is
greatly enhanced and even reaches ~ 13% of beam ions, ap-
proximately 5 times higher than that for f, = 1.81%. This
significant increment may result from the strong resonance
overlap, as shown in Fig. 9(b). Once the overlap of closely
spaced resonances occurs in the multiple-n case, the release
of mode energy is increased so that the widely spaced reso-
nances can also take place. As a result, such a process can
effectively enlarge the phase space region and then particles

are redistributed or lost. It is also demonstrated that the tra-

jectory of the same lost ions in the presence of the multiple-
n TAE is significantly different from that in the presence of
the single-n TAE. Additionally, the loss level increment be-
tween the multiple-n and single-n cases is enhanced to 44%
for B, = 6.0%. This high loss level is indeed of critical impor-
tance for the fast ion confinement in high parameter plasmas
like in ITER and CFETR.

12

floss/lo;2

. —h— Mingle
—A— multicple-n —@— ng,
-y SUM —- N

e e

Y T

0 500 1000 1500 2000 2500 3000
t/7a

Fig. 12. Evolutions of the level of beam ion losses fioss in Asingle = 1,
Nsingle = 2, Msingle = 3, NMsingle = 4 simulations and multiple-n simulation
with high fast ion beat iy, = 6%, v, = 2.55vs. Every lost particle is
calculated for one time.

The evolution of Py is given in Fig. 13(a), which can be
regarded as a radial variable used to describe the radial po-
sition of a particle. The particle we plot here is a typical
resonant trapped particle which is initially in resonance with
the multiple-n TAE mode. The oscillation of Py shown by
the green triangles indicates that the particle is trapped in the
multiple-n TAE mode. In comparison with the single-n cases,
the amplitude of oscillation of Py in the multiple-n simulation
is much larger, especially in the later nonlinear phase. Fig-
ure 13(b) indicates that the energy change in the multiple-n
simulation (shown by green triangles) is significantly larger
than that in the single-n simulation. This is due to the fact
that the particles can have multiple resonances and the over-
lap even occurs in the multiple-n simulation, increasing the
total energy transferred to the background plasmas. For the
Nsingle = 1 case, the oscillation of Py indicates that the particle
is also trapped by the mode. At each resonance, the wave-
particle momentum exchange, proportional to the mode per-
turbation amplitude, corresponds to a radial drift. It is found
by comparison that in spite of the same particles in the sim-
ulations, the trajectories and the energy changes in the pres-
ence of different n modes are quite different from each other.
For example, the trajectories of the particle studied here in
the multiple-n and ngpgle = 1 simulations all exhibit diffusive
characteristic, since such random walk (oscillation of Ppy) is
the typical character of diffusive fast ion transport. However,

in the ngjngle = 2 and 3 simulations, a convective characteristic
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is exhibited since direct walk is the typical character of con-
vective fast ion transport. Finally, according to Eq. (3) and the
change of Py, it is revealed that the particles in the ngingle = 1
and 3 simulations gain energy, while those in the multiple-n

and ngingle = 2 simulations lose energy.

—0.16 @
—A- multicple-n
o —0.20 0 Nygipgle = 1
A —0.24 - Ngipgle = 2
9 Ngingle = 3
—0.28
—0.32¢ , f . L f .
0 500 1000 1500 2000 2500 3000
t/T
~0.10 /m
(b A multicple-n
—0.15¢ ® nguge=1
B Ngingle = 2
o —0:20¢ TN ¢ nome=3
—0.25} 4
—0.30} - q‘
—0.35 L . L
0.30 0.32 0.34 0.36 0.38
E (Eo)

Fig. 13. Comparison of the evolution of Py (a) and the trajectory (b) of
a typical initially resonant particle in multiple-n simulation with that in
the ngingle = 1, Nsingle = 2 and ngipgle = 3 simulations. The black circle

3.3. Phase-space characterization of losses in the single-n
and multiple-n simulations

Figure 14 gives the distributions of lost beam ions in the
phase space of the beam ion energy E and the change of pitch
angle AA in the single-n and multiple-n simulations. It should
be noted that the loss discussed here is all associated with the
presence of TAE. As observed in Fig. 14, a slight shift of the
beam ion losses is towards the higher pitch angle A value in
the single-n and multiple-n simulations. Aside from the dom-
inant characteristic, there are some other lost beam ions for
which the pitch angles become lower. Since the definition of
pitch angle A in the M3D-K code depends on the energy (see
Section 2), it is changed to

_ WBo (Er—Ej)
EiEr

_ ,UB()AE
- EE

AA = 5)
where E; and Ef are the initial and the final energies of beam
ion, respectively, and AE is the change of energy. Thus, we
can conclude that most of the lost particles contribute energy
to the TAE mode while very few parts of lost particles gain

denotes initial position of the particle in phase space. energy from the TAE mode.
Nuipre SiMulation
1.0 g 10
3 8 10
8
S = 6 ~
= ?Zos 205 6
g 2 ‘o
4
1
2 2
0 0 0 0 o
~0.05 0 0.05 —0.05 0 0.05
ad AA
Ngnge = 2 simulation
1.0 1.0 1.0
N (©) 5 (0
’ 8
6
5 2§ = 6
205 205 LS os
&3] & 2 A
1 ) 2
0 0 0 0 0 .
—0.05 0 0.05 —0.05 0 0.05 —0.05 0 0.05
AA AA ad

Fig. 14. Comparison of distribution of lost beam ions in E-AA space for (a)-(c) multiple-n and (d)—(f)ngingle = 2 simulations with the
same parameter 3, = 1.81%, v, = 2.55v4, where E is referred to the energy of lost beam ion at the lost moment and AA is referred
to the difference between the pitch angle A;; at the lost moment and the pitch angle Ay at the initial moment when the particle has not
suffered from the perturbation. [(a), (d)] The lost passing particle distribution in each simulation. [(b), ()] The lost trapped particle
distribution in each simulation. [(c), (f)] The overall lost particle distribution in each simulation. The color coding is in arbitrary units.

Table 2 gives a summary of the loss fraction character-
ized by contributing energy to the wave and the loss fraction

of trapped ions in the single-n and multiple-n simulations. It

is found that in both the single-n and multiple-n simulations,
the main loss mechanism is through contributing energy to the

wave. This is due to the fact that when a beam ion drives the
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mode, its energy decreases (AE < 0) and then it moves radi-
ally outward in the minor radius (AFy > 0) and eventually may
be easily lost. However, a small fraction (~5%) of the fast ion
losses characterized by gaining energy from wave is observed
in both the single-n and multiple-n simulations. This may be
due to the fact that the particle is accelerated and its orbit is
influenced.*#

Table 2. A statistical analysis on the characteristics of fast ion losses

performed. The contributing energy is a ratio of the amount of losses

that contribute energy from wave to the total amount of losses. The

trapped fraction is a ratio of the number of lost trapped particles to the
total number of lost particles.

Simulation type  Contributing energy/%  Trapped fraction/%
multiple-n TAE 93 72

Ngingle = 1 TAE 95.48 78.93

Ngingle = 2 TAE 95.16 76.82

Nsingle = 3 TAE 96.90 81.60

Another characteristic in common, as shown in Table 2, is
that the lost fraction of trapped ions is two to four times larger
than that of passing ions. Particles traveling on banana orbits
are more easily lost, since the trapped orbits are wider. Espe-
cially for so-called ‘potato orbits’, they are more sensitive to
the perturbation near their turning points. For passing parti-
cles, in addition, the transformation from passing particles to
trapped particles during the nonlinear evolution of TAE mode
is a well-known loss mechanism for beam ions. Also, we can
find that the multiple-n simulation has a higher fraction of lost
fast ions coming from passing population. It can be attributed
to the fact that compared with the single-n case, more passing
particles can gain energy from the multiple-n TAE modes and
render their orbits to become unconfined.

4. Discussion and summary

In summary, nonlinear evolution of multiple TAEs driven
by fast ions is self-consistently investigated using kinetic sim-
ulations with the M3D-K code. A beam ion distribution func-
tion is considered, in which the pitch angle scattering is in-
cluded. Some typical characteristics of single-n (n = 1,2)
TAE, for example, mode frequency chirping and the dynamics
of resonant excitation, are obtained. Meanwhile, the increas-
ing tendency for overall loss level with increasing beam ion
injection speed is observed. This is mainly due to the fact that
the large beam ion injection speed leads to a long slowing-
down time and a high energy gained from the resonant beam
ions. On the other hand, the larger bean ion injection speed re-
sults in a larger orbit width, leading to the higher level anoma-
lous transport and higher level beam ion losses. In the self-
consistent simulation, the mode’s growth and chirping induce
island broadening and drift, which is the main reason of single-
n TAE mode induced ion losses.

Even more importantly, it is interestingly found that in
the multiple-n case, the fast ion loss level is rather higher than

the sum loss level from all individual single-n modes in the
single-n case. Moreover, increasing fast ion beta ff, can not
only significantly increase the loss level in the multiple-n case
but also significantly increase the loss level increment between
the single-n and multiple-n cases. For example, the loss level
in the multiple-n case for B, = 6.0% can even reach 13% of
the beam ions and is 44% higher than the sum loss level calcu-
lated from all individual single-n modes in the single-n case.
The high loss level is indeed of critical importance for the fast
ion confinement in high parameter plasmas like in ITER and
CFETR. This significant increment may result from the strong
resonance overlap. Once the closely spaced resonance overlap
occurs in the multiple-n case, the release of mode energy is
increased so that the widely spaced resonances can also take
place. As a result, such a process can effectively enlarge the
phase space region and then particles are redistributed or lost.
It is also demonstrated that the trajectory of the same lost ions
in the presence of multiple-n TAE is significantly different
from that in the presence of single-n TAE.

On the other hand, a slight shift of the beam ion losses
is towards the higher pitch angle A value in the single-n and
multiple-n simulations. The main loss mechanism is through
contributing energy to the wave, which is due to the fact
that when a beam ion drives the mode, its energy decreases
(AE < 0) and then it moves radially outward in the minor ra-
dius (AP > 0) and eventually may be easily lost. The lost frac-
tion of trapped particles is 2—4 times larger than that of passing
particles. Particles traveling on banana orbits are more easily
lost since the trapped orbits are wider. Especially for so-called
‘potato orbits’, they are more sensitive to the perturbation near
their turning points.

In fact, fast ion loss is a very complicated issue, because
it can be influenced by many elements such as the mode struc-
ture, the selected configuration, and the employed parameters.
Usually, only one mechanism cannot account for the compli-
cated physical process. Likewise, several kinds of fast ion
loss mechanisms, such as prompt loss, mode-particle pump-
ing and non-resonant loss mentioned in the introduction, co-
exist in our simulation. Prompt losses are the ones of particles
born on perturbed orbits that collide with the first wall. In our
simulation, a certain fraction of fast ions, passing through the
plasma domain after several bounce periods, is prompt losses.
The non-resonant losses are the ones of particles without reso-
nance with the mode. Usually, some fraction of fast ions must
become lost particles in the NBI-born fast ion simulation, re-
gardless of the presence of the perturbation or not. The mode-
particle pumping is actually a resonant phenomenon, where
the loss results from the wave-particle resonance. This loss
mechanism is also present because the TAE mode is mainly
excited by the wave-particle resonance in our model. There-
fore, fast ion loss is actually a very complicated important
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problem, and these several kinds of loss mechanisms men-
tioned above coexist in our simulation.

A major effort spent in the present work is aimed at un-
derstanding the general characteristic of beam ion loss in the
presence of the single-n and multiple-n TAEs. It is also inter-
esting to investigate and assess the beam ion loss in the co-
existence of multiple kinds of instabilities, such as fishbone
modes and TAEs under the realistic profiles observed exper-
imentally or the predicted profiles on the CFETR. A hybrid
gyro-kinetic linear simulation by Chen ez al. 3! indicated that
the most unstable modes in reactor, such as the ITER, lie in
the range of 10 < n < 20. The physics of 10 < n < 20 Alfvén
eigenmodes is significantly crucial for future reactor. Global
nonlinear simulations of beam ion loss considering beam ion
source and sink are also important to be studied. We leave
these subjects to the future works.
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