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We present a theoretical investigation of the multiphoton resonance dynamics in the high-order-harmonic generation
(HHG) process driven by a strong driving continuous wave (CW) field along with a weak control harmonic field. The
Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system
and the combined laser field. Multiple multiphoton-transition paths for the harmonic emission are coherently summed. The
phase information about paths can be extracted via the Fourier transform analysis of the harmonic signals which oscillate
as a function of the relative phase between driving and control fields. Phase jumps are observed when sweeping across the
resonance by varying the frequency or intensity of the driving field. The phase variation as a function of driving frequency
at a fixed intensity and as a function of the intensity at a fixed driving frequency allows us to determine the intensity
dependence of the transition energy of quantum systems.
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1. Introduction

The interaction between matter and strong laser field has

been a subject of intensive studies for decades, owing to

both fundamental and applied interest. High-order harmonic

generation (HHG) driven by strong laser fields provides a

source of coherent ultrashort pulses in the extreme ultraviolet

(XUV).[1–4] It allows the investigation of atomic or molecu-

lar dynamics driven by external fields with femtosecond even

attosecond resolution,[5–15] such as, the light-induced states

of atoms driven by laser pulses,[8,9] Autler–Townes splitting

effects,[10] polarization in the continuum,[11] and Auger de-

cay and tunneling ionization processes.[12] The process of the

high-order-harmonic generation from atoms or molecules can

be understood by the semiclassical three-step model:[16] an

electron is ionized, and accelerated in the laser field, then

returns to its parent ion, giving rise to the emission of har-

monic photons. The effect of resonance on the HHG process

has been employed in several approaches for the enhance-

ment of HHG spectral efficiency.[17–28] It is shown that, the

bound-bound resonances can influence the ionization step in

high-order-harmonic generation,[27,28] while the resonance in

continuum can enhance the harmonic emission via autoioniza-

tion states.[25,29] Beaulieu et al. investigate the roles of two

different resonances in high-order-harmonic generation and

demonstrate the temporal properties of these two XUV emis-

sion mechanisms.[30]

Besides the enhancement of the high-order-harmonic
generation, resonances also can induce spectral phase
jumps in the harmonic emission when sweeping across the
resonance.[31,32] The significant distortions of the phase of
near-resonant harmonic can be employed to extract struc-
tural and dynamic information about the generating sys-
tem. Haessler et al. showed that the resonance considerably
changes the relative phase of neighboring harmonics emit-
ted from a tin plasma.[31] Ferré et al. demonstrated a method
for the identification and isolation of the different channels in
multi-channel high-order-harmonic generation in polyatomic
molecules via the phase jump across the resonant harmonic
emission.[32] The key to obtain the phase information of har-
monic emission is to measure the response of the system to
additional control parameters. The above two works both em-
ploy the ”reconstruction of attosecond bursts by interference
of two-photon transition” (RABBIT) technique,[33] in which a
target gas is photonionized by the harmonic radiation with a
weak controllable fundamental infrared laser field. The side-
band in photonelectron spectrum oscillates as a function of
delay between harmonic and fundamental fields, due to the
interference between two quantum paths those corresponding
to absorption of one harmonic and absorption or emission of
an infrared photon. Thus the oscillation of sideband in photo-
nionization spectrum driven by the combination of harmonics
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allows us to obtain the phase information of the harmonic radi-
ation, unfolding the structural and dynamic information about
the target. Besides the photonionization spectrum, HHG spec-
trum also carries the phase information, and it would be bet-
ter if the phase information can be directly extracted from the
HHG spectrum.

In this paper, we theoretically present an alternative phase
measurement of resonant harmonic emission driven by the
combination of strong driving fundamental and weak control
harmonic fields. The HHG process is calculated by employ-
ing the Floquet theory[34] for the nonperturbative treatment
of the interaction between intense laser fields and atomic sys-
tems. The control harmonic field opens multiple multiphoton-
transition paths that connect the same initial and final states.
And the relative phases between paths can be extracted via
Fourier Transform analysis of the HHG spectra as a function of
the relative phase between the driving and control fields. Our
numerical calculation shows that, phase jumps occur when
sweeping across the resonance by varying the frequency or
intensity of the driving field. The phase variation as a function
of the frequency and intensity of the driving field allows us to
determine the intensity dependence of the transition energy.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the Floquet Theory for the treatment of the

quantum systems driven by strong driving fundamental and

weak control harmonic fields. In Section 3, we study the phase

jump of harmonic emission as varying the frequency and in-

tensity of the driving field. This is followed by the conclusion

in Section 4.

2. Theoretical method

We consider a quantum system driven by a strong cw laser

field and its high-order harmonic fields generated from a train

of ultrashort pulses in the time domain. The total electric field

can be expressed as

Et(t) = Ed e iωdt +
N

∑
k=−N

Ek e iωkt e iφ + c.c., (1)

where Ed and ωd are the amplitude and frequency of the driv-

ing laser field, respectively, Ek are the amplitudes of harmonic

fields with frequency components ωk = ω0 + kωr, and φ is

the relative phase between the driving and harmonic fields.

The repetition frequency ωr of the pulse train is ωr = 2ωd,

and the offset frequency is ωδ = ωd. In the numerical cal-

culation, N is chosen to ignore harmonics with amplitudes

less than 1× 10−10 a.u. (corresponding to an intensity of

3.51×10−4 W/cm2). Then the Hamiltonian is given by

Ĥ(𝑟, t) = Ĥ0(𝑟)−µ(𝑟) ·𝐸d cosωdt−
N

∑
k=−N

µ(𝑟) ·𝐸k cosωkt

= Ĥ0(𝑟)−
1
2

µzEd[e iωdt + e−iωdt ]−
N

∑
k=−N

1
2

µzEk[e i(ω0+kωr)t e iφ + e−i(ω0+kωr)t e−iφ ], (2)

where Ĥ0(𝑟) is the unperturbed Hamiltonian of the atomic or
molecular system, µ(𝑟) is the electric dipole moment operator
and µz is the component parallel to the polarization axis.

To investigate the interaction of an atomic system with
the pulse train, the many-mode Floquet theory (MMFT)[34–36]

and the generalized pseudospectral (GPS) method can be em-
ployed to solve the quasiperiodic time-dependent Schrödinger
equation with the Hamiltonian (2), which is converted into
an equivalent time-independent generalized Floquet matrix
eigenvalue problem. In our case, there are frequency com-
ponents ωd, ωδ , and ωr, while there is only one independent
frequency ωd. As a result, a one-mode Floquet matrix eigen-
value equation can be constructed as

∑
β

∑
l′
〈αl|HF |β l′〉〈β l′|λ 〉= λ 〈αl|λ 〉, (3)

where the basis vectors |αl〉 = |α〉 ⊗ |l〉 are employed, and
λ is the quasienergy eigenvalues and |λ 〉 is the correspond-

ing eigenvetor. The one-mode Floquet matrix HF can be con-
structed by

〈αl|HF|β l′〉= H [l−l′]
αβ

+ lωdδα,β δl,l′ , (4)

with

H [l−l′]
α,β = εα δα,β δl,l′ +Vα,β (δl+1,l′ +δl−1,l′)

+
N

∑
k=−N

U (k)
α,β (δl+k′,l′ e

iφ +δl−k′,l′ e
−iφ ), (5)

where

k′ = [(ωc−ωδ )/ωr]+1, εα = 〈α|Ĥ0|α〉,

Vα,β =−(1/2)Ed〈α|µz|β 〉, U (k)
α,β =−(1/2)Ek〈α|µz|β 〉,

and φ is the relative carrier phase between the driving and har-
monic fields. More details of the structure of HF can be found
in Refs. [37–39].

Solving the matrix eigenvalue problem (3) with the Flo-
quet matrix (4), we can obtain a set of quasienergies λγl
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and the corresponding eigenvectors |λγl〉 which satisfy the or-

thonormality condition. And the harmonic generation spectra

can be expressed by

S(ωl) =
4

6πc3ω4
l
|𝑑l |2 =

4
6πc3ω4

l
|∑

α,β
∑
l′
〈λα,l′−l |µz|λβ ,l′〉|2,

(6)

in which each harmonic element ωl = lωd.

3. Results and discussion

In this section, we investigate the phase jump of multi-

photon resonant in atomic Hydrogen driven by a strong CW

driving field and its harmonic control field corresponding to

a train of ultrashort pulses. A case study focusing 1s→2p

transition of atomic hydrogen is presented. The frequency

of the driving field ωd is changed between 2.035 eV and

2.1 eV, while its intensity is changed from 0.1 W · cm−2 to

7×1012 W · cm−2. The control field is generated from a train

of Gaussian pulses with carrier frequency ωc = 5ωd, repeti-

tion frequency ωr = 2ωd, peak intensity 1× 10−9 W · cm−2,

and 1.5-fs full width at half maximum (FWHM). In our cal-

culation, components with amplitudes less than 1×10−10 a.u.

are ignored, thus only components with ωk = 3ωd, 5ωd, and

7ωd are included. The 1s→2p transition energy corresponds

to the five-photon dominant resonance regime of the CW field

(5ωd ≈ ωres = λ2p− λ1s). According to the Floquet calcula-

tion, the quasienergy structure of the quasienergies can be rep-

resented by

λγm = λγ +mωd, (7)

where m is an integer and λγ are the energies of dressed states,

which can be calculated by Eq. (3). The same quasienergy

state can be populated via different dipole-transition paths,

owing to different combinations of driving and control fields.

And the relative phase φ between two fields allows us to co-

herently modulate the harmonic generation.[39]

Figures 1(a) and 1(b) present HHG spectra as a function

of the relative phase between fields for two different driving

frequencies ωd = 2.058 eV and 2.064 eV, respectively. The

intensity of the driving field is fixed at Id = 1×1012 W ·cm−2.

Only the harmonics up to 11th-order, i.e. the so-called below-

threshold harmonics, are presented. It is shown that, harmonic

peaks strongly oscillate with the relative phase φ , and the os-

cillations of all harmonics depend on the driving frequency

ωd. The harmonic radiation can be understood as the dipole

transition between quasienergy states, and the dependence of

the harmonic spectra on the relative phase φ can be understood

via the coherent superposition of multiphoton-transition paths.

The radiation signals can be expressed as

S(ωl) ∝ |∑
n
𝑑n

l |2 = |∑
n
|𝑑n

l |e iφd+iφc+iϕn
l |2, (8)

where 𝑑n
l are the multiphoton transition probability ampli-

tudes with n referring the photon number of the control field
involved in the multiphoton-transition paths, and the phases
of radiated harmonic fields consist of two parts: the phase
term ϕn

l involved in the multiphoton-transition path, and the
phases φd and φc of driving and control fields with relative
phase φ = φc−φd. In the following, the phase of the driving
field φd is set to be zero for convenient.

↩                                              

↩                                              
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Fig. 1. HHG spectra as a function of the relative phase for ωd = 2.058 eV
(a) and ωd = 2.064 eV (b). The positions of maximum intensities in 3rd,
5th, 7th, and 9th harmonics are labelled with red solid cycles.

In general, ϕn
l do not depend much on the photon ener-

gies, but change by π across the resonance if the multiphoton
transition occurs via the resonant 2p state. A Fourier trans-
form of the signals as a function of φ provides information
on the multiphoton transition process, e.g. the relative phases
between multiphoton transition paths which allows us to de-
termine the AC Stark shift of the resonant transition energy
between 1s and 2p states.

In the following, the radiated 5th- and 7th-harmonics are
taken as examples for discussion. The 5th-harmonic radiation
signal can be expressed as

S(ω5) ∝ ||𝑑0
5 |e iϕ0

5 + |𝑑1
5 |e iϕ1

5+iφ + |𝑑2
5 |e−iϕ2

5+i2φ |2

∝ |𝑑0
5 |2 + |𝑑1

5 |2 + |𝑑2
5 |2 +2|𝑑0

5𝑑
1
5 |cos(ϕ0

5 −ϕ
1
5 −φ)

+2|𝑑1
5𝑑

2
5 |cos(ϕ1

5 +ϕ
2
5 −φ)

+2|𝑑0
5𝑑

2
5 |cos

[
2
(

ϕ0
5 +ϕ2

5
2

−φ

)]
, (9)
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in which ϕn
5 are the phase terms involved in the paths 𝑑n

5 , re-
spectively. 𝑑0

5 represents the dipole transition path in which
five photons from the driving field absorbed and none from
the control field absorbed, 𝑑1

5 represents the paths in which
one 3rd-, 5th-harmonic or 7th-harmonic photon from the con-
trol field absorbed, and 𝑑2

5 represents the path in which two
3rd-harmonic photons from the control field are absorbed and
one photon is emitted with frequency being the same as those
from the driving field. The phase term ϕ2

5 is with opposite
symbol due to the emission of the driving photon. All paths
𝑑n

5 occur via the 2p state, so all ϕn
5 change by π across the res-

onance. The last term in Eq. (9) corresponds to the half-cycle
oscillation of 5th-harmonic signal in Fig. 1, and its phase, i.e.,
(ϕ0 +ϕ2)/2, changes across the resonance. After the Fourier-
transition analysis of the 5th-harmonic signal, the phase of
the second-order term is labelled as Φ2

5 = (ϕ0 +ϕ2)/2. Fig-
ure 2(a) shows Φ2

5 as a function of ωd. As expected, a phase
jump occurs around ωd = 2.064 eV, corresponding to the AC
Stark shifted transition energy between 1s and 2p states.
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Fig. 2. (a) The phase of the 2nd-order term from Fourier-transition analysis
of the 5th-harmonic as a function of φ , and (b) the phase of the 1st-order
term from the Fourier-transition analysis of the 7th-harmonic as a function
of φ , are plotted as varying the driving field frequency ωd. The driving CW
field intensity is Id = 1×1012 W · cm−2.

Meanwhile, the 7th-harmonic radiation can be written as

S(ω7) ∝ ||𝑑0
7 |e iϕ0

7 + |𝑑1
7 |e iϕ1

7+iφ + |𝑑2
7 |e iϕ2

7+i2φ |2

∝ |𝑑0
7 |2 + |𝑑1

7 |2 + |𝑑2
7 |2 +2|𝑑0

7𝑑
2
7 |cos(ϕ0

7 −ϕ
2
7 −2φ)

+2|𝑑0
7𝑑

1
7 |cos(ϕ0

7 −ϕ
1
7 −φ)

+2|𝑑1
7𝑑

2
7 |cos(ϕ1

7 −ϕ
2
7 −φ), (10)

where 𝑑0
7 represents the dipole transition path in which seven

photons from the driving field absorbed, 𝑑1
7 represents the

paths in which one 3rd-, 5th- or 7th-harmonic photon from
the control field absorbed, and 𝑑2

7 represents the path in which
two 3rd-harmonic photons from the control field and one pho-
ton from the driving field absorbed. ϕn

7 are the phase terms
involved in the paths 𝑑n

7 , respectively. Since the multiphoton-
transition path 𝑑2

7 occurs not via the 2p state, the phase ϕ2
7

does not change as varying ωd. On the other hand, paths 𝑑0
7

and 𝑑1
7 occur via the 2p state, and ϕ0

7 and ϕ1
7 change as varying

ωd. So the relative phases ϕ1
7 −ϕ2

7 and ϕ0
7 −ϕ2

7 change by π

across the resonance, while ϕ0
7 −ϕ1

7 does not. The one-cycle
oscillation of 7th-harmonic signal in Fig. 1 corresponds to the
last term in Eq. (10). Figure 2(b) shows the phase of first-order
term after the Fourier-transition analysis of the 7th-harmonic
signal, Φ1

7 , as a function of ωd. Similar to Φ2
5 , a phase jump

occurs around ωd = 2.064 eV, corresponding to the AC Stark
shifted transition energy between 1s and 2p states. Note that,
the one-cycle oscillation corresponds to not the last term in
Eq. (10), but the sum of the last two terms. As a result, Φ1

7

does not equal ϕ1
7 −ϕ2

7 , although it shows similar phase-jump
behavior.
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Fig. 3. (a) The phase of the 2nd-order term from Fourier-transition analysis
of the 5th-harmonic as a function of φ , and (b) the phase of the 1st-order
term from Fourier-transition analysis of the 7th-harmonic as a function of
φ , are plotted as varying the driving CW field intensity Id. The driving field
frequency is fixed at 2.1 eV.
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We also investigate the dependence of the multiphoton
transition phase on the driving laser intensity. Figures 3(a) and
3(b) show the dependences of Φ2

5 and Φ1
7 on the driving laser

intensity while keeping the driving frequency ωd = 2.1 eV, re-
spectively. Phase jumps about π occurs around 4.2×1012 W ·
cm2, indicating the resonant multiphoton-transition between
1s and 2p states occurs.

Combining the above calculated phase Φ2
5 (or Φ1

7 ) as a
function of the driving frequency ωd for a fixed intensity and
as a function of intensity for a fixed driving frequency al-
low us to determine the intensity dependence of the 1s→2p
transition energy. The above procedure for the determination
of phase is practicable in experiments. So we consider the
numerical calculation as ‘experimental’ results. The ‘exper-
imental’ result is shown in Fig. 4 with black solid line. On
the other hand, the transition energy also can be theoretically
calculated from Eq. (3), in which the transition energy is one
of the quasienergy eigenvalues. The theoretical Floquet re-
sult of 1s→2p transition energy is shown in in Fig. 4 with
red dash line. The ’experimental’ and theoretical results agree
with each other quite well. The discrepancy is due to the finite
size of the Floquet matrix equation in the numerical calcula-
tion.
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Fig. 4. The 1s→2p transition energy via phase measurement of the HHG
spectra is plotted with black solid line. As a comparison, the result calcu-
lated within Floquet theory is presented with red dash line.

4. Conclusion
In the present study, we presented a theoretical investiga-

tion of the phase jump of the harmonic emission from a hydro-
gen atom driven by a strong CW laser field with a weak con-
trol harmonic field. The Floquet theory is used to accurately
solve the interaction between the hydrogen atom and the com-
bined laser field. The multiphoton-transition paths connecting
the same initial and final states are coherently summed in the
harmonic emission. The relative phases between paths are ob-
tained via the Fourier-transform analysis of the harmonic sig-

nals as a function of the relative phase between the driving
field and the control field. We observed the phase jumps when
the resonance is crossed by varying the frequency and inten-
sity of the driving field. Combining the phase variations as a
function of the driving frequency for a fixed intensity and as
a function of the intensity for a fixed driving frequency, the
intensity dependence of the 1s→2p transition energy is deter-
mined. And the comparison with the results from the Floquet
quasienergy calculation indicates that, the proposed method
for the phase measurement of the harmonic emission can be
employed to determine the intensity dependence of the tran-
sition energy of quantum systems. For experimental realiza-
tions, although the intensity 1012 W ·cm2 at frequency 2 eV is
hard to reach, the phase jumps in the vicinity of the resonance
can also be observed by employing the driving laser field with
long wavelength.

It is noted that, the HHG spectrum has been employed to
probing the structure and electronic dynamics of molecules,
in which the potential energy surface plays essential roles.
Our approach can be applied to symmetric molecules or polar
molecules to observe the potential energy surface of molecules
driven by the laser fields.
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Březinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett.
121 173005

[16] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[17] Watson J B, Sanpera A, Chen X and Burnett K 1996 Phys. Rev. A 53

R1962
[18] Sanpera A, Watson J B, Lewenstein M and Burnett K 1996 Phys. Rev.

A 54 4320
[19] Chen Jing, Zeng Bin, Liu X, Cheng Ya and Xu Zhizhan 2009 New J.

Phys. 11 113021
[20] Ivanov I A and Kheifets A S 2008 Phys. Rev. A 78 053406

023201-5

http://dx.doi.org/10.1103/PhysRevLett.70.774
http://dx.doi.org/10.1103/PhysRevLett.103.028104
http://dx.doi.org/10.1103/PhysRevLett.103.028104
http://dx.doi.org/10.1103/RevModPhys.80.117
http://dx.doi.org/10.1103/RevModPhys.80.117
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1103/PhysRevLett.106.143002
http://dx.doi.org/10.1103/PhysRevLett.105.143002
http://dx.doi.org/10.1103/PhysRevLett.105.143002
http://dx.doi.org/10.1038/srep01105
http://dx.doi.org/10.1103/PhysRevLett.109.073601
http://dx.doi.org/10.1103/PhysRevLett.109.073601
http://dx.doi.org/10.1103/PhysRevA.88.043416
http://dx.doi.org/10.1103/PhysRevA.88.043416
http://dx.doi.org/10.1103/PhysRevA.93.023401
http://dx.doi.org/10.1103/PhysRevA.93.023401
http://dx.doi.org/10.1103/PhysRevA.97.031407
http://dx.doi.org/10.1103/PhysRevA.88.033409
http://dx.doi.org/10.1103/PhysRevA.88.033409
http://dx.doi.org/10.1126/science.1234150
http://dx.doi.org/10.1103/PhysRevLett.121.173005
http://dx.doi.org/10.1103/PhysRevLett.121.173005
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevA.53.R1962
http://dx.doi.org/10.1103/PhysRevA.53.R1962
http://dx.doi.org/10.1103/PhysRevA.54.4320
http://dx.doi.org/10.1103/PhysRevA.54.4320
http://dx.doi.org/10.1088/1367-2630/11/11/113021
http://dx.doi.org/10.1088/1367-2630/11/11/113021
http://dx.doi.org/10.1103/PhysRevA.78.053406


Chin. Phys. B Vol. 29, No. 2 (2020) 023201

[21] Ivanov I A and Kheifets A S 2008 J. Phys. B: At. Mol. Opt. Phys. 41
115603
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[27] Taı̈eb R, Véniard V, Wassaf J and Maquet A 2003 Phys. Rev. A 68

033403
[28] Ngoko Djiokap J M and Starace A F 2013 Phys. Rev. A 88 053412
[29] Strelkov V 2010 Phys. Rev. Lett. 104 123901

[30] Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré
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