
Chin. Phys. B Vol. 29, No. 2 (2020) 026102

Composition effect on elastic properties of
model NiCo-based superalloys*

Weijie Li(李伟节)1,2 and Chongyu Wang(王崇愚)1,†

1Department of Physics, Tsinghua University, Beijing 100084, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

(Received 7 June 2019; revised manuscript received 13 December 2019; accepted manuscript online 16 December 2019)

NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys. Compositional
effects on elastic properties of the γ and γ ′ phases in newly-developed NiCo-based superalloys were investigated by first-
principles calculation combined with special quasi-random structures. The lattice constant, bulk modulus, and elastic
constants vary linearly with the Co concentration in the NiCo solution. In the selected (Ni, Co)3(Al, W) and (Ni, Co)3(Al,
Ti) model γ ′ phase, the lattice constant, and bulk modulus show a linear trend with alloying element concentrations. The
addition of Co, Ti, and W can regulate lattice mismatch and increase the bulk modulus, simultaneously. W-addition shows
excellent performance in strengthening the elastic properties in the γ ′ phase. Systems become unstable with higher W and
Ni contents, e.g., (Ni0.75Co0.25)3(Al0.25 W0.75), and become brittle with higher W and Co addition, e.g., Co3(Al0.25 W0.75).
Furthermore, Co, Ti, and W can increase the elastic constants on the whole, and such high elastic constants always corre-
spond to a high elastic modulus. The anisotropy index always corresponds to the nature of Young’s modulus in a specific
direction.
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1. Introduction
Hardness and ductility are two of the key parameters for

the design and characterization of materials and these quan-
tities largely depend on the elastic properties. New NiCo-
based superalloys[1–4] show superior mechanical properties
and creep properties: other researchers investigated the Ni–
Co–Al–X quaternary systems and their distribution coeffi-
cients, using experimental investigation and thermodynamic
modelling of Ni–Co–Al–W[5] and Ni–Al–Ti.[6] Experiments
on Ni–Co–Al–W–Cr quinary model superalloys[5,7] have also
been reported. An increase of Co-addition in Ni–Co–Al–W
systems decreases the γ ′ solvus temperature and leads to a
higher γ ′ volume fraction.[7] Ti-addition increases the anti-
phase boundary energy of the γ ′ phase while reducing the al-
loy density,[8] but an excessive amount of Ti can form a D024

Ni3Ti (η) phase. The disordered face-centred cubic (fcc) γ and
L12γ ′ phases formed with an fcc/L12 structure formed in the
Ni–Al–Co–Ti quaternary alloy at 750 ∘C to 1100 ∘C in tests.[9]

Atomic probe tomography shows that Co addition (> 19%)
decreases the solubility of Al and Ti in the γ ′ phase and caused
Ni3(Ti, Al) transformation in (Ni, Co)3(Al, Ti) systems.[10]

However, reports of concentration effect on mechanical prop-
erties of NiCo-based superalloys by first principles calculation
remain sparse.

In the γ ′-Co3(Al, W) phase[11] of Co-based superalloys,
Al and W randomly occupy the Al-sublattice. In NiCo-based

superalloys, the precipitation of Ni and Co is complicated,
they both randomly occupy sites in the γ phase and also exist
in caused γ ′ phases. The first problem when studying NiCo-
based superalloys is how to deal with the random problem
caused by first principles calculation: the presence of a con-
figurational substitutional disorder leads to a loss of transla-
tional periodicity. The prediction of the elastic properties of
low-symmetry systems, such as random alloys, is less straight-
forward.

The widely used techniques for modelling disordered al-
loys are special quasi-random structures (SQS),[12] coherent
potential approximation (CPA),[13] cluster expansion (CE),[14]

and virtual crystal approximation (VCA).[15] The random dis-
tribution of impurity atoms in the CPA is elucidated in the
framework of the mean-field approximation and ignore local
lattice relations. The CE is based on the assumption that the
energy (of any other scalar property) of the system can be
expanded in terms of a set of well-chosen structural motives
(figures) and the expansion parameters are typically obtained
by fitting the CE Hamiltonian from ab initio electronic struc-
ture calculations. In the SQS, the randomness is introduced by
mimicking as closely as possible the correlation functions of
an infinite random alloy within a finite supercell. The calcu-
lation of electronic structure in SQS also involves local relax-
ation effects.

Here, we use first-principles calculation combined with
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SQS to investigate the strengthening mechanisms related to al-
loying elements and concentration on the elastic properties of
NiCo-based superalloys, including the γ -NiCo phase and γ ′-
(Ni, Co)3(Al, W/Ti) phase. The paper is organised as follows:
Section 2 contains an introduction to the methods used, includ-
ing SQS, the calculation of elastic constants using a strain-
energy method, and elastic moduli derived from the elastic
constants. Section 3 covers detailed information related to the
calculations. Section 4 covers the result of first principles cal-
culations, including lattice constant, bulk modulus, and elastic
constants for all such the selected systems. Section 5 contains
a discussion of the relationship between the lattice constant
and bulk properties, and an analysis including stability, duc-
tility, and electronic structure effects, inter alia, followed by
salient conclusions.

2. Methods
2.1. SQS

Special quasi-random structure SQS[12,16] is a “special”
N-atom periodic quasi-random structure S whose correla-
tion function Π k,m(S) best matches the ensemble averages〈
Π k,m(S)

〉
R of disorder systems. The degree of short-range or-

der (SRO) is usually measured by the Warren–Cowley parame-
ter α .[17] For binary A1−xBx alloy and pseudo-binary A1−xBxN
alloy, it is defined as α = 1−PB(R)/xB, where PB(R) is the
probability of finding a B atom at distance R from an A atom
and xB denotes the concentration of B. A perfectly random al-
loy is characterized by a vanishing α , while α > 0 and α < 0
correspond clustering and ordering, respectively.

⟨P⟩= ∑
σ

P(σ)ρ(σ), (1)

⟨P⟩= ∑
f

p f D f
〈
Π f
〉
, (2)

where the configurational averages ⟨P⟩ can be accessed by
identifying the leading terms in Eq. (2) and then construct-
ing a single special configuration σs whose

〈
Π f (σs)

〉
is im-

portant. Then P(σs) can be calculated for the single, special
configuration σs without using any cluster expansion. ⟨P⟩ is

thus approximated by P(σs). For the random binary alloy
A1−xBx the correlation functions

〈
Π f
〉

are known trivially,
i.e.,

〈
Π f
〉
= (2×−1)k f , where k f is the number of vertices

in figure f . The basic advantage of this approach lies in its
ability to describe disordered alloys with terms equivalent to
those with which state-of-the-art methods address simple pe-
riodic crystals.

2.2. Elastic constants

The elastic constants can be calculated from the stress–
strain, or strain–energy, methods. Since the total energy de-
pends on the volume much more strongly than that on the
strain,[18] we calculated elastic constants from the energy ex-
pansion using volume conserving deformations, i.e., mono-
clinic (C44) and orthorhombic distortions (C11–C12).

B = (C11 +2C12)/3, (3)

Dmono =

 1 δm 0
δm 1 0
0 0 1/(1−δ 2

m)

 ,

∆E (δ ) = 2VC44δ
2 +O

(
δ

4) , (4)

Dortho =

 1+δo 0 0
0 1−δo 0
0 0 1/(1−δ 2

o )

 ,

∆E (δ ) =V (C11 −C12)δ
2 +O

(
δ

4) . (5)

Considering the symmetry breaking, three crystallographic di-
rections [001], [010], and [100] become inequivalent. We ap-
plied a symmetry-based projection technique[19,20] to predict
the cubic elastic tensor of NiCo-based superalloys with the
SQS approach.

The 21 inequivalent elastic constants of a triclinic system
can be given as a vector with 21 components. In general, pro-
jector Psym gives the closest elastic tensor with higher point
group symmetry X sym as

X sym = PsymX . (6)

Then the closest cubic elastic tensor is given by

Xcub =
(

C11,C11,C11,
√

2C12,
√

2C12,
√

2C12,2C44,2C44,2C44,0,0,0,0,0,0,0,0,0,0,0,0
)
, (7)

where the projected cubic elastic constants C11, C12, and C44

are calculated by simple averaging, an approach used by von
Pezold,[21]

C11 =
C11 +C22 +C33

3
,

C12 =
C12 +C13 +C23

3
,

C44 =
C44 +C55 +C66

3
. (8)

We may also call them cubic-averaged elastic constants, as
equation (8) is equivalent to averaging over the three crystallo-
graphic directions [100], [010], and [001]. According to this,
nine independent tensor elements C11, C22, C33, C12, C13, C23,
C44, C55, and C66 are needed to obtain the closest cubic pro-
jection of an elastic tensor with arbitrary symmetry. In the

026102-2



Chin. Phys. B Vol. 29, No. 2 (2020) 026102

following article, the averaged elastic constants C11, C12, and
C44 are simply expressed as C11, C12, and C44.

2.3. Elastic moduli

A series of elastic properties can be calculated by the elas-
tic constants, i.e., directional Young’s modulus, shear modulus
in a specific direction, and the elastic modulus of the polycrys-
talline materials.

2.3.1. Directional Young’s modulus

The Young’s modulus is the ratio of uniaxial stress to stain
measured along the same axis and can be expressed as[22,23]

E[hkl] = (S11 − (2S11 −2S12 −S44)J)−1,

J =
(h2k2 + k2l2 +h2l2)

(h2 + k2 + l2)2 , (9)

where subscripts h, k, and l represent the direction indices, 𝐶
is the elastic constant tensor, 𝑆 is the elastic compliance ten-
sor, and 𝐶𝑆 = 𝐼 . Si j is a component of elastic compliance
tensor 𝑆. If 2S11 − 2S12 − S44 > 0, the Young’s modulus is
maximised in the [111] direction and minimised in the [100]
direction.

2.3.2. Shear modulus

The shear modulus G along [110] and [112̄] in the
(111) plane can be determined by the calculated elastic
constants.[24–26] The formulation for G is as follows:

G[110] =
3C44(C11 −C12)

2(C44 +C11 −C12)
, (10)

G[112] =
3C44(C11 −C12)

4C44 +C11 +C12
. (11)

From its physical meaning, G along a specific direction cor-
responds to the slope of the stress–strain curve within the
small strain limit. Without considering the phase transfor-
mation, crystal slip, formation of stacking faults, or other
factors, G along a specific direction reflects the ideal shear
strength along this direction to a certain extent. Furthermore,
the Young’s modulus in a specific direction reflects the ideal
tensile strength along this direction to a certain extent.

2.3.3. Polycrystalline elastic modulus

For a polycrystalline aggregate, the principal crystallo-
graphic axes are mostly randomly oriented in space and the
material is statistically isotropic. The bulk modulus B, shear
modulus G, and anisotropy index AZ are determined from elas-
tic constants by Voigt–Reuss–Hill approximation.[22,27–29]

BH = BV = BR =
C11 +2C12

3
, (12)

GV =
C11 −C12 +3C44

5
,

GR =
5

4S11 −4S12 +3S44
=

5C44(C11 −C12)

4C44 +3(C11 −C12)
,

GH =
1
2
(GV +GR) , (13)

AZ =
2C44

C11 −C12
, (14)

where subscripts V, R, and H denote that the equations are
derived from Voigt,[27] Reuss,[28] and Hill approaches,[29] re-
spectively. AZ gives the anisotropic variation of the sound
velocity and of the angle between the displacement vector
𝑢 and the wave vector 𝑞 of the sound wave. The Pugh’s
approximation[30] can be adopted to characterise the mate-
rial properties, i.e., B/G > 1.75 implies ductile behavior, and
B/G < 1.75 implies brittle behavior.

3. Calculations
3.1. SQS generation

Here, we selected the possible systems in NiCo-based su-
peralloys, including: (i) NiCo solution (γ phase) both in the
paramagnetic state and ferromagnetic state; (ii) binary L12

systems (γ ′ phase), including Co3Al, Ni3Al, Co3 W, Ni3 W,
Co3Ti, and Ni3Ti; (iii) ternary L12 systems (γ ′ phase), includ-
ing (Ni, Co)3Al, Co3(Al, W), Ni3(Al, W), Co3(Al, Ti), and
Ni3(Al, Ti); and (iv) quaternary L12 systems (γ ′ phase), in-
cluding (Ni, Co)3(Al, W), and (Ni, Co)3(Al, Ti).

In a real alloy, the γ phase is an fcc random solution with
Ni and Co occupying sites randomly when the Co concen-
tration is below 65%. The shape of the (i) system supercell
is 2[001]× 2[010]× 2[100], including 32 atoms as shown in
Fig. 1(a). The Co concentration scale is 0%∼ 62.5% with a
step size of 12.5%. For the selected (ii) systems, a 64-atom
lattice is constructed for the calculation of elastic constants.
For the selected (iii) and (iv) systems with an L12 structure
(Ni3Al, Ni-sub-lattice, and Al-sub-lattice), Ni and Co atoms
randomly occupy the Ni-sub-lattice while Al and W/Ti atom
randomly occupy the Al-sub-lattice. The shapes of the super-
cells of (iii) and (iv) systems are 2[001]× 4[010]× 2[100], as
shown in Fig. 1(b). In the 64-atom SQSs, 48 atoms comprise
the Ni-sub-lattice and 16 comprise the Al-sub-lattice. The con-
centration scale in each type of site is 0%∼ 100% with a step
size of 12.5%.

(a) (b)c

a

b

c

a

b

Fig. 1. SQSs in this calculation: (a) 32 atoms SQS for Ni0.5Co0.5 system,
and (b) 64 atoms SQS for (Ni0.75Co0.25)3(Al0.75W0.25) system. The green
balls represent Ni atoms, the blue balls represent Co atoms, the pink balls
represent Al atoms, and the yellow balls represent W atoms.

The MedeA software give access to the 32-atom SQS
in the whole concentration for the calculation of (i) systems
(Fig. 1(a)). By employing the ATAT package,[31–33] the SQSs
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were generated with shape restrictions over the entire concen-
tration range for L12 cells containing 64 atoms of (iii), and
(iv) systems. We generated SQSs using the following set of
figures: all two-body clusters with edge length up to the ninth
coordination shell, all three-body figures with edge length up
to the fifth shell, all four-body figures with edge length up to
the fourth shell, and all five-body figures with edge length up
to the second shell.

3.2. VASP

After relaxation of the SQSs, the equilibrium lattice con-
stants (a) and bulk modulus (B) were obtained by calculat-
ing the energy–volume dependence of the system and fitting
it to the Murnaghan equation of state.[34] In the calculations
of the elastic constants with cubic symmetry, a strain–energy
approach is applied. Six types of deformations were adopted
in the calculation of the elastic constants.

To obtain the total energies and extract the elastic con-
stants of the supercells, density functional theory (DFT)
calculations are conducted[35] by using the Vienna Ab ini-
tio Simulation Package (VASP),[36,37] a projector augmented
wave method,[38] and the generalized gradient approxima-
tion (GGA)[39] in the parameterization introduced by Perdew,
Burke, and Ernzerhop (PBE). The minimum cut-off of the
plane wave energy is 350 eV. The spacing between k-points
is 0.18 Å−1. The spin-polarized calculation is considered in
NiCo solution, in which the initial magnetic moment of Ni
and Co are 0.65 µB and 1.6 µB, respectively.

4. Results
The calculated results are in good agreement with previ-

ous reported results (see Table 1). It should be pointed out that
the type and concentration of the elements have an effective
effect on the elastic properties of the systems. Furthermore,
the calculation and experiment methods may also affect the
results. So, some of our calculation results may have a little
difference with the early reported experiment and calculation
results.

Table 1. The equilibrium lattice constant (a, in unit Å), bulk modulus
(B, in unit GPa), and elastic constants (Ci j , in unit GPa) of Ni, Ni3Al,
Co3Al, Co3W, and Co3(Al0.5W0.5).

System a/Å B/GPa C11/GPa C12/GPa C44/GPa

Ni (PM) 3.516 195.2 248.9 168.4 111.2
experimentsa 3.52 – 261.2 150.8 131.7

Ni3Al 3.57 178.8 229.1 153.6 126.7
Calculationsb 3.579 – 243.8 148.7 123.4
Experimentsc 3.57d 174.9 227 148 120

Co3(Al0.5W0.5) 3.564 236.3 331.8 188.6 180.8
Calculationse 3.571 247.7 363.4 189.9 211.6
Calculationsf 3.582 – 264 162 153
Experimentsg – 205 271 172 162

a Ref. [40], bRef. [41], cRef. [42], dRef. [43], eRef. [44], fRef. [45],
gRef. [46].

4.1. Lattice constant and bulk modulus

From Fig. 2, the lattice constants and bulk moduli of the
selected systems are linear functions of the alloy composi-
tion, which implies that the systems obey Vegard’s law.[47]

One has relationships such as aγ = a0
γ + ∑i Γ

γ

i xγ

i and aγ ′ =

a0
γ ′ +∑i Γ

γ ′

i xγ ′

i so that the lattice constants are linear with the
mole fractions of added solutes. The Vegard coefficients Γ

γ

i

and Γ
γ ′

i exhibit a strong dependence on the position of i in the
periodic table. For simplicity, the rule of mixture[27–29] repre-
senting a weighted mean of the parameters of pure constituents
is applied:

Mp =
N

∑
i

ciMi,
N

∑
i

ci = 1, (15)

where ci denotes the concentration of component i in the al-
loy and Mi is the physical parameter of pure metal i in an fcc
structure. For the NiCo systems, the values of ci are listed in
Table 2. It is clear that Co plays an important role in strength-
ening the γ phase.

From the definition of the lattice mismatch δ , we obtain,

δ = 2
aγ ′ −aγ

aγ ′ +aγ

×100%. (16)

Usually, the lattice mismatch of Ni-based superalloys is neg-
ative, i.e., 0.1% < |δ | < 0.5%,[48] while the lattice mismatch
of Co-based superalloys is positive, i.e., larger than 0.5%. The
addition of Co leads to the reduction of the lattice constants
in the selected systems, as shown in Figs. 2(a), 2(c), and 2(e),
across the whole concentration scale. The addition of W and
Ti into the Al-sub-lattice of γ ′ phases increases the lattice con-
stants. For NiCo solution in a paramagnetic state, the addition
of Co introduces −0.060-Å changes in the lattice constants
per unit concentration change. In Ni3Al, the addition of Co in-
stead of Ni-sub-lattice introduces −0.031-Å changes in the lat-
tice constants per unit concentration change and, the addition
of W instead of Al-sub-lattice introduces +0.081-Å changes
in the lattice constants per unit concentration change, the ad-
dition of Ti instead of Al-sub-lattice introduces +0.046-Å
changes in the lattice constants per unit concentration change.
Atom probe tomography experiments on NiCo-based superal-
loys show that, Co is preferentially distributed into the γ phase
while Ti is preferentially distributed into the γ ′ phase.[10] From
the perspective of regulating lattice mismatch, the addition of
Co can decrease the lattice constant of the γ phase while the
addition of Ti and W increases the lattice constant of γ ′ phase,
which thus leads to a lattice mismatch of NiCo-based superal-
loys as they change from negative to positive.

The addition of Co, Ti, and W all causes to an increase
in bulk modulus (Fig. 2): for NiCo solution in a paramag-
netic state, the addition of Co introduces +52.21-GPa change
in bulk modulus per unit concentration. In Ni3Al, the addition
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of Co instead of Ni-sub-lattice introduces +28.55-GPa change
in bulk modulus per unit concentration, the addition of W in-
stead of Al-sub-lattice introduces +52.48-GPa change in bulk
modulus per unit concentration, the addition of Ti instead of
Al-sub-lattice introduces +6.50-GPa change in bulk modulus
per unit concentration. The Co, Ti, and W all show a strength-
ening effect on the bulk modulus. The presence of Co element
in NiCo-based superalloys results in regulation of the lattice
mismatch and improvements in the mechanical properties. W
can strengthen the bulk modulus but also cause expansion of

the γ ′ phase, and the Ti effect is weaker than that of W.

Table 2. Linear coefficients of NiCo solution in paramagnetic (PM) and
ferromagnetic (FM) states, considering pure Ni as the benchmark.

NiCo (PM) NiCo (FM)

Intercept Slope Intercept Slope
a/Å 3.517 −0.060 3.523 −0.002

B/GPa 195.33 52.21 192.25 14.39
C11/GPa 241.90 146.30 268.66 19.17
C12/GPa 172.05 5.14 154.04 12.02
C44/GPa 105.87 89.78 134.40 16.83
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Fig. 2. Calculated lattice constant (in unit Å) and bulk modulus (in unit GPa) in NiCo solution, (Ni, Co)3(Al, Ti), and (Ni, Co)3(Al, W) systems:
[(a), (c), and (e)] lattice constants in NiCo solution, (Ni, Co)3(Al, W) and (Ni, Co)3(Al, Ti); [(b), (d), and (f)] lattice constants in NiCo solution,
(Ni, Co)3(Al, W), and (Ni, Co)3(Al, Ti).

4.2. Elastic constants

In Fig. 3(a), for NiCo solution in paramagnetic state, the
addition of Co introduces +146.3-GPa change in C11 per unit
concentration, +89.78-GPa change in C44 per unit concentra-
tion, and only +5.14-GPa change in C44 per unit concentra-
tion. The elastic constants of NiCo solution in ferromagnetic
state change little, and no further discussion is needed. The
relationship between elastic constants and Co concentration is

quasi-linear (Table 2). In Fig. 3(b), C44 and C11 of (Ni, Co)3X
systems increase with Co addition, but C12 for (Ni, Co)3W
systems decreases with Co addition. The value of C44 of (Ni,
Co)3W is lower than that for Ni3Al. In Fig. 3(b), the elastic
constants of X3(Al, W) increase with W addition, except for
C44 of Ni3(Al, W). The value of C11 of X3(Al, Ti) increases
with Ti addition, but C12 of Ni3(Al, Ti) is lower than that of
Ni3Al. In Fig. 3(d), the elastic constants of the quaternary sys-
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tem are higher than those of Ni3Al (124.36 GPa), except for
C44 (119.62 GPa) of (Ni0.75Co0.25)3(Al0.25W0.75). The elastic
constants of the quaternary systems increase upon Co addition.
The elastic constants of the Ni–Co–Al–W systems generally
increase upon W addition. On the whole, the strengthening
effect of W is higher than that of Ti on the elastic constants. In
terms of the elastic constants, Co addition can strengthen C11

and C12 of both the γ and γ ′ phases.

300 400 150 200 100 200

(d)(Ni,Co)3(Al,Ti)

(Ni,Co)3(Al,W)

Co3(Al,Ti)
Ni3(Al,Ti)
Co3(Al,W)
Ni3(Al,W)

(Ni,Co)3Ti

(Ni,Co)3W

(Ni,Co)3Al

NiCo (FM)

NiCo (PM)

(c)

C11/GPa C12/GPa C44/GPa

(a)

(b)

Fig. 3. Elastic constants C11, C12, and C44 for the selected systems. The sys-
tems are classified into four categories: (a) NiCo solutions including param-
agnetic (PM) and ferromagnetic (FM) states, (b) (Ni, Co)3X including (Ni,
Co)3Al, (Ni, Co)3W, (Ni, Co)3Ti and all binary systems, (c) other ternary
systems including W or Ti elements, and (d) quaternary systems. The ver-
tical ordinate in this figure (Co, W, and Ti concentrations) increases in each
system, and in panel (d) the W/Ti concentration changes first and then the
Co concentration changes.

5. Discussion
5.1. Relationship between bulk modulus and volume

The bulk modulus of free-electron-like metals varies sig-
nificantly with the atomic volume V when different elements
are compared, and V does not depend much on the lat-
tice structure as long as the electronic structure is not much
changed.[22] We tested the relationship utilizing the bond va-
lence based on the uniform electron gas model for transition
metals.[49] Based on a published calculation method[41] and
electron density results,[50] figure 4 illustrates the changes in
bulk modulus with respect to electron density and volume.
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Fig. 4. Linear relationship between electron density and (B/V )1/2 of Ni3Al-
type alloys. The red line fits data from systems with L12 structures, with a
slope of 0.0627.

5.2. Stability and ductility

Before providing further analysis of the elastic properties,
we analyze their stability and ductility.

5.2.1. Stability

In the Ni–Co binary phase diagrams, the NiCo solution is
an fcc structure with a Co concentration below 65%. In the bi-
nary systems, the stable structure of Ni3Al and Co3Ti is L12,
the stable structure of Co3W is D019, the stable structure of
Ni3Ti is D024, and L12 is not a stable structure for Co3Al. In
the Ni–W binary phase diagrams, there are stable intermetallic
compounds of Ni4W and Ni2W present, and the stable struc-
ture of Ni3W is D022.[51] Here, we provide a stability analysis
of ternary and quaternary systems with L12 crystal structures,
and do not do so for NiCo solution and binary systems. Three
methods were adopted to measure the structural stability, i.e.,
the Born stability criteria,[52] formation energy, and pseudo-
gap.

The Born stability criteria for cubic crystals are

C11 > |C12| , C44 > 0, C11 +2C12 > 0. (17)

All the results in this study are within the limit of mechanical
stability, satisfying the Born stability criteria.

The formation energy of the alloy was calculated using
the constituent pure elements as reference states as follows:

∆H((Nix,Co1−x)3(Aly,M1−y))

= E((Nix,Co1−x)3(Aly,M1−y))−0.75xE(Ni)

−0.75(1− x)E(Co)−0.25yE(Al)−0.25(1− y)E(M), (18)

where E(Ni), E(Co), E(Al), and E(M) are the first-principles
calculated total energies (per atom) of the constituent pure el-
ements Ni, Co, Al, and M at the most stable states, i.e., Ni
and Al are fcc, Co and Ti are hexagonal close-packed (hcp),
and W is body-centred cubic (bcc). All the formation energy
in the Ni–Co–Al–Ti system is negative, which means that all
the possible concentration combinations can form stable struc-
tures. With more Ti occupying the Al sites, they become more
stable, as reported elsewhere.[53] In the Ni–Co–Al–W system,
the formation energy of several structures is positive when the
W concentration is high, such as, (Ni0.75Co0.25)3W. The posi-
tion of the pseudo-gap shows that (Ni0.75Co0.25)3(Al0.25W0.75)
is unstable. The systems tend to be unstable at higher Ni and
W.

5.2.2. Ductility

Here, Pugh’s approximation[30] and the Cauchy pressure
are adopted to evaluate the mechanical properties of the se-
lected systems with various alloying concentrations,[54,55] as
shown in Fig. 5. The Pugh’s modulus ratio G/B reflects the
competition between the shear and cohesive strength at the
crack tip of fracture, and the brittle-ductile limit is suggested to
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be around B/G = 1.75. On the other hand, a negative Cauchy
pressure is suggested as being associated with covalent inter-
atomic bonding.[56] An understanding of Cauchy pressure is
related to an understanding of crystal structure trends in the
transition metals. In Fig. 5, the higher Co or W of the γ ′ phase
tends to become brittle.
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Co3Al0.25W0.75

NiCo
(Ni,Co)3X
ternary
quaternary

G
/
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C12↩C44/GPa

0.57

Fig. 5. The G/B versus Cauchy pressure maps of the systems (the legend
corresponds to the systems shown in Fig. 3).

5.3. Elastic modulus

From the elastic constants results of Subsection 4.2, we
provide an analysis of the shear modulus along the main shear
direction, and directional Young’s modulus. An explanation
of the elastic properties will be supplied from the perspective
of electronic structure origin.

5.3.1. Shear modulus

In Fig. 6(a), the shear modulus of NiCo solution, in a
paramagnetic state, along the [110] and [112̄] directions in-
crease with Co concentration: from the physical meaning of
shear modulus, Co addition into NiCo solution corresponds
to a strengthen effect on shear modulus and the ideal shear
strength along [110] and [112̄] directions. AZ decreases, as
caused by the insensitivity of C12 to changing Co concentra-
tion (Fig. 3(a)). The anisotropies of NiCo solution in both the
ferromagnetic, and paramagnetic states are lower than that of
pure Ni in a paramagnetic state. The alloying effects on the

0 100

(d)

(c)

(b)

Shear modulus/GPa

 G[110]

 G[112]

(a)

0 2 4

Anisotropy index

 AZ

(Ni,Co)3(Al,Ti)

(Ni,Co)3(Al,W)

Co3(Al,Ti)
Ni3(Al,Ti)
Co3(Al,W)
Ni3(Al,W)

(Ni,Co)3Ti

(Ni,Co)3W

(Ni,Co)3Al

NiCo (FM)

NiCo (PM)

Fig. 6. (a) Directional shear modulus and the corresponding (b) anisotropy
index of the systems (vertical ordinate information is consistent with that of
Fig. 3).

shear modulus are presented in Fig. 6. In the γ ′ phase, the ad-
dition of Co, Ti, and W leads to an increased shear modulus
in (Ni, Co)3(Al, Ti), though some systems do not match this
trend. In many systems with L12 structures, the addition of
Co, Ti, and W results in a reduction in AZ .

5.3.2. Directional Young’s modulus

The {110} plane includes the cubic high symmetry crys-
tallographic directions [100], [110], and [111]. Here, we
chose this cross-section to give a complete presentation of
the directional Young’s modulus. From the elastic constants
results, we only give the Young’s modulus of NiCo(PM),
NiCo(FM), Co3(Al, W), (Ni, Co)3W, Co3(Al, Ti), and (Ni,
Co)3(Al, W) systems. As all these systems satisfy 2S11 −
2S12 − S44 > 0 in Fig. 7, the Young’s modulus satisfies
E[100] < E[110] < E[111], as derived from Eq. (9). The E[111] of
(Ni0.75Co0.25)3(Al0.25W0.75) in Fig. 7(f) is the biggest while
E[100] is the smallest as a result of the significant anisotropy
index AZ of 3.016 of (Ni0.75Co0.25)3(Al0.25W0.75) and its large
elastic constants. The value of AZ of Co3W (1.710) is lower
than that of Co3(Al0.25W0.75) (1.733), corresponding to E[111]

of Co3W being lower than that of Co3W(Al0.25W0.75) as
shown in Fig. 7(c). The shape of the Young’s modulus plot
in Fig. 7 is closely related to the anisotropy index of these sys-
tems, as derived from Eq. (9).

5.3.3. Electronic structure

Except for the inclusion of the main crystal direction,
the {110} plane also includes tetrahedral and octahedral inter-
stices of the cubic systems. Here, we chose the {110} plane to
analyze the charge density difference (Fig. 8(a)). The charge
accumulates in tetrahedral interstices, which is consistent with
the charge density difference of fcc Al.[57] The bonding of W
atoms with its neighbors is higher than among Al atoms. The
trend of bonding of Co–W is higher than that of Ni–W, espe-
cially along the [110] direction. The directional bonding char-
acter of the charge density explains why Ni3W and Co3W are
stronger than Ni3Al and Co3Al. As Co and Ni are neighbors in
the periodic table, the shape of their s-orbitals and p-orbitals
are the same (Fig. 8(b)). Compared with a Co atom, the d-
orbital of Ni moves to a deeper energy level and occupies a
higher energy peak.

In the bonding as shown in Fig. 8, the s-orbital does not
participate to any significant extent in bonding. For the d-
orbitals, the shape and the peak position are similar, W forms
a hybrid with Ni or Co below −3.35 eV. The p-orbital of W
and d-orbital of Ni show p–d hybridization at around −2.2 eV,
while the d-orbital of W and d-orbital of Co form a d–d hy-
bridization at around −1.8 eV. From the bonding strength
point, the Co–W bonding is stronger than that of the Ni–W
bonding. However, the directionality of the Ni–W bonding
is stronger than that of Co–W bonding. From Fig. 8(a), the
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charge accumulation of Ni–Al and Co–Al around octahedral
interstices position is similar. As the charge accumulation
around Al is not obvious, the bonding of Al with its neigh-
bours can be neglected in the (Ni, Co)3(Al, W) systems, but
the bonding of W with its neighbours is strong. The higher
addition of Co and W allows strong directional bonding, thus
corresponding to the higher elastic constants. The directional-

ity of the bonding around Co atoms along the [011] direction
is higher than that around Ni atoms. From the topology the-
ory of the charge density,[58] this corresponds to the higher
shear modulus and Young’s modulus along the [011] direc-
tion. Moreover, this also causes a reduction in the anisotropy
index and an increase in the G/B ratio, which means that the
materials become brittle with higher Co and W additions.

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

 Ni
 Ni0.875Co0.125
 Ni0.75Co0.25
 Ni0.625Co0.375
 Ni0.5Co0.5
 Ni0.375Co0.625

(a) (b)

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

(c)

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

(d)

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

(e)

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

(f)

[0
0
1
] 
d
ir
e
c
ti
o
n

[110] direction

 22
 24
 26
 42
 44
 46
 62
 64
 66

 Ni
 Ni0.875Co0.125
 Ni0.75Co0.25
 Ni0.625Co0.375
 Ni0.5Co0.5
 Ni0.375Co0.625

Ni3W
(Ni0.75Co0.25)3W
(Ni0.5Co0.5)3W
(Ni0.25Co0.75)3W

Co3W

 Co3Al
 Co3(Al0.75Ti0.25)
 Co3(Al0.5Ti0.5)
 Co3(Al0.25Ti0.75)
 Co3Ti

Co3Al
Co3(Al0.75W0.25)
Co3(Al0.5W0.5)
Co3(Al0.25W 0.75)
Co3W

Fig. 7. Directional Young’s modulus in the {110} plane for different systems: (a) NiCo systems in a paramagnetic state, (b) NiCo systems in a ferromagnetic
state, (c) Co3(Al, W) systems, (d) Co3(Al, Ti) systems, (e) (Ni, Co)3W systems, and (g) quaternary systems of (Ni, Co)3(Al, W). The x direction is [110],
the y direction is [001], and the red dotted line denotes the [111] direction.

0

0.10

0.20

0

0.10

0.20

-10 -8 -6 -4 -2 0 2
0

1.0

2.0

3.0

Nis
Cos
Ws

T
D

O
S
/
a
rb

. 
u
n
it
s

Nip
Cop
Wp

(b)

Energy/eV

Nid
Cod
Wd

0.018

-0.085

[1
0
0
]

[011]

(a)

Fig. 8. The charge difference iso-surface and density of state in (Ni, Co)3(Al, W) systems and the partial density of state including a W atom and its nearest
neighbour Co and Ni atoms. The Ni, Co, and W in panel (b) correspond to atoms in the blue rectangle of panel (a).

026102-8



Chin. Phys. B Vol. 29, No. 2 (2020) 026102

6. Conclusion
The lattice constant, bulk modulus, and elastic constants

of NiCo-based model systems were investigated by first prin-
ciples calculation in combination with SQS. The relationship
between bulk modulus and volume, stability and ductility, and
elastic modulus were discussed. The key results may be sum-
marised as follows.

(i) The lattice constants and bulk modulus of the systems
vary linearly with the concentrations of Co, Ti, and W. The ad-
dition of Co, Ti, and W can regulate the lattice mismatch and
bulk modulus of NiCo-based superalloys.

(ii) Co can linearly strengthen the elastic constants, shear
modulus, and Young’s modulus of Ni solution in a paramag-
netic state, and decrease the anisotropy index simultaneously.
Except for the value of C44 of (Ni0.75Co0.25)3(Al0.25W0.75),
the addition of W and Ti strengthens the elastic constants of
quaternary (Ni, Co)3(Al, W/Ti) systems.

(iii) W exerts a strengthening effect on the elastic proper-
ties of the γ ′ phases, however, high W and Ni concentrations
lead to instability (e.g., in (Ni0.75Co0.25)3(Al0.25W0.75)), and
high W and Co concentrations result in brittle behaviour (e.g.,
in Co3(Al0.25W0.75)).

(iv) The shear modulus and Young’s modulus in a specific
direction do not change monotonically with Co, Ti, and W ad-
dition. The strength and directionality of the bonding are con-
sistent with the strengthened elastic properties and enhanced
ductility of the alloys.
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