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The famous Kadomtsev–Petviashvili (KP) equation is a classical equation in soliton theory. A Bäcklund transfor-
mation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlevé
expansion in this paper. One-parameter group transformations and one-parameter subgroup-invariant solutions for the ex-
tended KP equation are obtained. The consistent Riccati expansion (CRE) solvability of the KP equation is proved. Some
interaction structures between soliton–cnoidal waves are obtained by CRE and several evolution graphs and density graphs
are plotted.
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1. Introduction
The famous Kadomtsev–Petviashvili (KP) equation is

written as

(ut +uxxx−6uux)x +3δuyy = 0, (δ =±1), (1)

where the subscripts denote derivatives. It is firstly derived
by Kadomtsev and Petviashvili to study the stability of soliton
solutions of the Korteweg–de Vries (KdV) equation with re-
spect to weak transverse perturbations.[1] When δ = −1 and
1, the KP equation represents the KPI and KPII equations, re-
spectively. As a extension of the KdV equation in two dimen-
sions, both of the KPI equation and the KPII equation have
arisen in various physical contexts, such as plasma physics,
fluid mechanics, optics, condensed matter physics, and geo-
physics, etc.[1–3]

Nowadays, the KP equation is one of the most important
soliton equations, because the KP equation (1) is a univer-
sal completely-integrable (2+1)-dimensional nonlinear evo-
lution equation. The KP equation is a member of the KP
soliton hierarchy and it serves as a kernel model in the uni-
versal Sato’s theory.[4,5] Many integrable properties of the
KP equation have been researched in the past years, in-
cluding lump solutions,[6,7] mixed lump-kink solutions,[8,9]

line-soliton solutions,[10] the Lax representation,[11] multi-
component Wronskian solution,[12] Painlevé property,[13]

Darboux transformation,[14,15] consistent tanh expansion,[16]

Bäcklund transformation,[17] and similarity reductions.[11]

In 2013, the theory of nonlocal residual symmetry was
put forward.[18] In order to localize the residual symmetries
to the localized symmetries, the researched system should be
extended to a extended system. The Lie point symmetries of
the extended system are composed of the residual symmetries
and the standard Lie point symmetries, which suggests that
the residual symmetry method is a useful complement to the
classical Lie group theory.[18–21] The concepts of consistent
Riccati expansion (CRE) and CRE solvability were proposed
in 2015.[22] A system having a CRE is then defined to be CRE
solvable. The CRE solvability is demonstrated quite univer-
sal for various integrable systems. Especially, it is revealed
that CRE can be applied to obtain interaction solution between
solitons and cnoidal waves.

In Ref. [23], with the help of the Lax pair and the adjoint
Lax pair of the KP equation, the authors researched the non-
local symmetries of the KP equation related to the Darboux
transformations. In this paper, we will research the nonlocal
symmetries of the KP equation related to the Bäcklund trans-
formations. To our knowledge, the CRE solvability of the KP
equation has not been reported. So we focus our attention on
the nonlocal symmetries and CRE of the KP equation in this
paper.
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This paper is organized as follows. In Section 2, trun-
cated Painlevé expansion is applied to the KP equation, and a
Bäcklund transformation of the KP equation is obtained. Sec-
tion 3 is devoted to one-parameter group transformations and
one-parameter subgroup invariant solutions. Bäcklund trans-
formations related to nonlocal symmetries are discussed in
Section 4. In Section 5, the CRE solvability of the KP equa-
tion is proved, and soliton–cnoidal wave interaction solutions
of the KP equation are discussed. The final section is summary
and discussion.

2. Bäcklund transformations of KP equation re-
lated to truncated Painlevé expansion
The truncated Painlevé expansion method is proved to be

very useful in solving nonlinear partial differential equations
(PDEs).[24–26] For the KP equation (1), its truncated Painlevé
expansion can be written as[13]

u = u0 +
u1

f
+

u2

f 2 , (2)

where

u0 =
fx ft −3 fxx

2 +4 fx fxxx +3δ fy
2

6 fx
2 , (3)

u1 =−2 fxx, (4)

u2 = 2 fx
2. (5)

The substitution of Eqs. (2)–(5) into the KP equation
solves[13]

Sx +Kx +3δCCx +3δCy = 0, (6)

where

S = { f ;x}= fxxx

fx
− 3

2
fxx

2

fx
2 ,

K =

(
ft
fx

)
, C =

(
fy

fx

)
(7)

with f being arbitrary function of {x,y, t}. S, K, and C are in-
variants under the Möbious transformation, then equation (6)
can be called as Schwarzian KP equation. From the combina-
tion of Eqs. (2)–(7), we can obtain a Bäcklund transformation
on the KP equation (1) and the Schwarzian KP equation (6).

Theorem 1 (Bäcklund transformation theorem) If f
satisfies the Schwarzian KP equation, then

u = u0 =
fx ft −3 fxx

2 +4 fx fxxx +3δ fy
2

6 fx
2 (8)

is a solution of the KP equation.

3. One-parameter group transformations and
one-parameter subgroup invariant solutions
of KP equation
Symmetry study is one of the most effective method to

research PDEs.[27–32] The symmetry determining equation of

the KP equation is

σxt +σxxxx−12ux σx−6uσxx−6σ uxx +3δ σyy = 0, (9)

where σ is the symmetry of u in the KP equation. It is easy to
verify that σ =−2 fxx satisfies Eq. (9) when u satisfies Eq. (8).
From Eq. (2) and Eq. (4), we know that −2 fxx is the residue
of the truncated Painlevé expansion of the KP equation. The
residue of the truncated Painlevé expansion is a symmetry of
a PDE, so we call this symmetry as residual symmetry.

The residual symmetry can be combined the classical Lie
symmetries, and the full Lie point symmetries can be obtained.
Then we can establish an extended system, which include the
KP equation, the Schwarzian KP equation and the Bäcklund
transformations between the two equations. The extended sys-
tem can be written as

(ut +uxxx−6uux)x +3δuyy = 0, (10a)(
fxxx

fx
− 3

2
fxx

2

fx
2

)
x
+

(
ft
fx

)
x

+3δ
fy

fx

(
fy

fx

)
x
+3δ

(
fy

fx

)
y
= 0, (10b)

u =
fx ft −3 fxx

2 +4 fx fxxx +3δ fy
2

6 fx
2 , (10c)

fx = g, (10d)

gx = h. (10e)

For the extended KP system, the symmetry σ should be ex-
tended to four symmetry components {σu,σ f ,σg,σh}, which
satisfy the symmetry determining equations in the form of

σ
u

xt +σ
u

xxxx−12ux σ
u

x−6uσ
u

xx−6σ
u uxx

+3δ σ
u

yy = 0, (11a)

(σ f
x ft +6δ fyσ

f
y +4 fxxxσ

f
x) fxx +3(δ fy

2−3 fxx
2)σ f

xx

−(σ f
xt +3δσ

f
yy +σ

f
xxxx) fx

2 +[σ f
xx ft

−2σ
f
x fxt +(σ f

t +4σ
f
xxx) fxx +4σ

f
xx fxxx

−2σ
f
x( fxxxx +3δ fyy)] fx = 0, (11b)

6σ
u fx

3− (σ f
t +4σ

f
xxx) fx

2 +(6 fxxσ
f
xx +4 fxxxσ

f
x

−6δ fyσ
f
y) fx +[ ft fx +6(δ fy

2− fxx
2)]σ f

x = 0, (11c)

σ
f
x = σ

g, (11d)

σ
g

x = σ
h. (11e)

From the above equations, we can obtain the subvectors
in the form of

V1 =−h∂u−
f 2

2
∂ f − f g∂g− (g2 + f h)∂h,

V2 = f ∂ f +g∂g +h∂h, V3 = ∂ f ,

V (F1) =

(
1
3

F1,tx−
1

18
δF1,tty2

)
∂x
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+

(
δ

108
F1,ttty2− 2

3
uF1,t −

x
18

F1,tt

)
∂u

+ F1∂t +
2
3

F1,ty∂y−
1
3

F1,tg∂g−
2
3

F1,th∂h,

V (F2) = F2∂x−
1
6

F2,t∂u,

V (F3) =−
1
6

δF3,ty∂x +F3∂y +
δ

36
F3,tty∂u, (12)

where F1, F2, and F3 are functions of t. The generalized vector
is

V =C1V1 +C2V2 +C3V3 +V (F1)+V (F2)+V (F3), (13)

where V1 is related to residual symmetry, V2 is the scaling

transformation, V2 is translation transformation, and the oth-

ers denote Galilean translation transformations.

From the vector fields, one can obtain one-parameter in-

variant subgroups. The partial operator ∂t in V (F1) shows that

time t is variable, while the other terms on F1 are functions

of t, which make it too complicated to obtain a one-parameter

invariant subgroup from V (F1). Only when special function

of F1 is given, we can obtain some special one-parameter in-

variant subgroups. From V1, V2, V3, V (F2), and V (F3), five

one-parameter invariant subgroups in the following form can

be obtained:

gε(V1) : {x,y, t,u, f ,g,h} −→
{

x,y, t,u− 2ε h
ε f +2

+
2g2 ε2

(ε f +2)2 ,
2 f

ε f +2
,

4g
(ε f +2)2 ,

4h
(ε f +2)2 −

8g2 ε

(ε f +2)3

}
,

gε(V2) : {x,y, t,u, f ,g,h} −→ {x,y, t,u, f eε ,g eε ,heε} ,

gε(V3) : {x,y, t,u, f ,g,h} −→ {x,y, t,u, f + ε,g,h} ,

gε(V (F2)) : {x,y, t,u, f ,g,h} −→
{

x+F2 ε,y, t,u− ε

6
F2,t , f ,g,h

}
,

gε(V (F3)) : {x,y, t,u, f ,g,h} −→{
x−
(

δε2

12
F3 +

yε δ

6

)
F3,t , y+F3 ε, t,u−

(
δε2

72
F3 +

yεδ

36

)
F3,tt, f ,g,h

}
. (14)

By means of one-parameter subgroups, the exact solutions dependent on a one-parameter can be obtained from a known exact
solutions. Then, the following Bäcklund transformation theorem can be obtained.

Theorem 2 (One-parameter group transformation) If {u(x,y, t), f (x,y, t),g(x,y, t),h(x,y, t)} is an exact solution of the
extended KP equation, then so are the following functions:

u1 = u(x,y, t)− 2ε h(x,y, t)
ε f (x,y, t)+2

+
2g(x,y, t)2 ε2

(ε f (x,y, t)+2)2 , f 1 =
2 f (x,y, t)

ε f (x,y, t)+2
,

g1 =
4g(x,y, t)

(ε f (x,y, t)+2)2 , h1 =
4h(x,y, t)

(ε f (x,y, t)+2)2 −
8g(x,y, t)2 ε

(ε f (x,y, t)+2)3

 , (15a)

{
u2 = u(x,y, t), f 2 = f (x,y, t) eε , g2 = g(x,y, t)eε , h2 = h(x,y, t) eε

}
, (15b){

u3 = u(x,y, t), f 3 = f (x,y, t)+ ε, g3 = g(x,y, t), h3 = h(x,y, t)
}
, (15c) u4 = u(x−F2 ε, y, t)− ε

6
F2,t , f 4 = f (x−F2 ε, y, t),

g4 = g(x−F2 ε, y, t), h4 = h(x−F2 ε, y, t),

 , (15d)



u5 = u
(

x− δ

12
ε2F3 F3,t +

δ

6
ε yF3,t , y− εF3, t

)
+

(
δ

72
ε2 F3−

yε δ

36

)
F3,tt ,

f 5 = f
(

x− δ

12
ε2F3 F3,t +

δ

6
ε yF3,t , y− εF3, t

)
,

g5 = g
(

x− δ

12
ε2F3 F3,t +

δ

6
ε yF3,t , y− εF3, t

)
,

h5 = h
(

x− δ

12
ε2F3 F3,t +

δ

6
ε yF3,t , y− εF3, t

)
,


. (15e)

4. Bäcklund transformations of the KP equation related to nonlocal symmetries
Symmetry method is a very powerful method to research PDEs. From the symmetry components, we can further obtain

reduction equations and the corresponding similarity solutions. The substitution of the similarity solutions into the extended KP
system will solve symmetry reduction equations. Six types of nontrivial reduction cases are obtained.
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Case 1 F1(t) 6= 0,C1 6= 0.
In the first case, we will discuss the most general condition. In this case, we do not suppose any concrete form for F1,F2,

and F3. The group invariants are

ξ =
x

F1
1/3 +

1
18

δ F1,ty2

F1
4/3 +

δ

6

(
y

F1
2/3 −

∫ F3

F1
5/3 dt

) ∫ F3,t

F1
2/3 dt +

1
18

δF1,t

(∫ F3

F1
5/3 dt

)2

− δ

9

(∫
F1,tt

∫ F3

F1
5/3 dt dt +

F1,t y
F1

2/3

)
×
∫ F3

F1
5/3 dt +

1
6

δ

∫ F3,t

F1
2/3

∫ F3

F1
5/3 dt dt +

1
9

δ y
F1

2/3

∫
F1,tt

∫ F3

F1
5/3 dt dt +

δ

18

∫
F1,tt

(∫ F3

F1
5/3 dt

)2

dt−
∫ F2

F1
4/3 dt, (16a)

η =
y

F1
2/3 −

∫ F3

F1
5/3 dt. (16b)

Because the special form of F1, F2, and F3 are not given,
all integral terms on F1, F2, and F3 cannot be simplified. Then,
the reduction equations and the similarity solutions are very
lengthy, and we will not list them in this case. For simplicity,
we will assume some simple concrete forms for F1, F2, and F3

in the following cases.
Case 2 F1 = C5 6= 0, F2 = C6t + C7, F3 = C8t +

C9,2C1C3 +C1
2 6= 0.

In this case, the group invariants are simplified to

ξ = x− 1
18

δ C8
2 t3

C5
2 − 1

12
δ t2 C9 C8

C5
2 − 1

2
t2 C6

C5

+
1
6

δ t C8 y
C5

− t C7

C5
, (17a)

η = y− 1
2

C8 t2

C5
− C9 t

C5
. (17b)

We take the parameter ∆ =
√

2C1 C3 +C2
2 for simplicity. The

similarity solution of {u, f ,g,h} is

u =U− 8C1
2 G2 exp{[∆ (t +F)]/C5}

∆ 2 {exp [∆ (t +F)/C5]+1}2

− 4C1 H
∆ {exp [∆(t +F)]/C5 +1}

− 1
6

C6 t
C5

, (18a)

f =
C2

C1
+ tanh

[
∆(t +F)

2C5

]
∆

C1
, (18b)

g =−G sech
[

∆(t +F)

2C5

]2

, (18c)

h =−H sech
[

∆(t +F)

2C5

]2

− 2C1G2

∆
sech

[
∆ (t +F)

2C5

]2

× tanh
[

∆(t +F)

2C5

]
, (18d)

where {U ≡ U(ξ ,η),F ≡ F(ξ ,η),G ≡ G(ξ ,η),H ≡
H(ξ ,η)}, which satisfy the reduction equations

U =
δFη

2−Fξ ξ
2

2Fξ
2 − 1

6
C9 Fη

Fξ C5
+

1
6

∆ 2Fξ
2

C5
2 −

∆Fξ ξ

C5

+
δηC8−6C7

36C5
+

1+4Fξ ξ ξ

6Fξ

, (19a)

G =−1
2

Fξ ∆ 2

C5 C1
, (19b)

H =−1
2

Fξ ξ ∆ 2

C5 C1
, (19c)

−3C5 Fξ ξ δ Fη
2 +Fξ Fξ ξ C9 Fη −

∆ 2 Fξ ξ Fξ
4

C5
+3C5 Fξ ξ

3

+(3C5 δ Fηη −C9 Fξ η +Fξ ξ ξ ξ C5)Fξ
2

−(4C5 Fξ ξ ξ +C5)Fξ ξ Fξ = 0. (19d)

The substitution of Eqs. (19a)–(19c) into Eq. (18a) leads to an
exact solution of the KP equation.

Theorem 3 (Bäcklund transformation)
The following formula is an exact solution of the KP

equation:

u =
1
2

δ Fη
2

Fξ
2 −

1
6

C9 Fη

Fξ C5
+

1
6

∆ 2Fξ
2

C5
2 −

2∆ 2Fξ
2

C5
2

exp
(

∆(t +F)

C5

)
[

exp
(

∆(t +F)

C5

)
+1
]2 −

∆ Fξ ξ

C5
tanh

[
∆(t +F)

2C5

]
− 6C7−δ C8 η +6C6 t

36C5

+
1+4Fξ ξ ξ

6Fξ

− 1
2

Fξ ξ
2

Fξ
2 , (20)

where F(ξ ) is governed by Eq. (19d).

Case 3 F1 = C5 6= 0, F2 = C6t +C7, F3 = C8t +C9,

2C1C3 +C1
2 = 0, and C1 6= 0.

In this condition, the similarity solution is in the form of

u =
1
2

C1
2 G2

C5
2 (t +F)2

− 1
6

C6 t
C5

+
C1 H

C5 (t +F)
+U, (21a)

f =
C2

C1
+

2C5

C1 (t +F)
, (21b)
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g =
G

(t +F)2 , (21c)

h =
H

(t +F)2 +
C1 G2

(t +F)3 C5
, (21d)

where U , F , G, H are functions of group invariants

ξ = x− 1
18

δ C8
2 t3

C5
2 − (6C6 C5 +δ C9 C8) t2

12C5
2

+
(−6C7 +δ C8 y) t

6C5
, (22a)

η = −1
2

C8 t2

C5
− C9 t

C5
+ y. (22b)

Substituting the similarity solution Eqs. (21a)–(21d) into the
extended KP system Eqs. (10a)–(10e) leads to the following
reduction equations

U =
1
2

δ Fη
2

Fξ
2 −

1
6

C9 Fη

C5Fξ

− 6C7−δη C8

36C5

+
1+4Fξ ξ ξ

6Fξ

− 1
2

Fξ ξ
2

Fξ
2 , (23a)

G =−
2Fξ C5

C1
, (23b)

H =−
2Fξ ,ξ C5

C1
, (23c)

FξC9Fη

C5
−3δFη

2 +

(
3δFηη −

C9Fξ η

C5
+Fξ ξ ξ ξ

)
Fξ

2

Fξ ξ

−(1+4Fξ ξ ξ )Fξ +3Fξ ξ
2 = 0. (23d)

Plugging Eqs. (23a)–(23c) into Eq. (21a), we can obtain the
solution of u expressed by the following theorem.

Theorem 4 (Bäcklund transformation)
If F(ξ ) satisfies Eq. (23d), then the exact solution of u in

the KP equation can be in the form of

u =
δ Fη

2−Fξ ξ
2

2Fξ
2 − 1

6
C9 Fη

Fξ C5
+

2Fξ
2

(t +F)2 −
2Fξ ξ

t +F

− 6C7−δ C8 η +6C6 t
36C5

+
1+4Fξ ξ ξ

6Fξ

. (24)

Case 4 F1 =C5 6= 0, F2 =C6t+C7, F3 =C8t+C9, C1 = 0.
Substituting F1 = C5, F2 = C6t +C7, F3 = C8t +C9, and

C1 = 0 into symmetry components, we will find that the group
invariants are in the form of

ξ = x− δ C8
2 t3

18C5
2 −

(6C6 C5 +δ C9 C8) t2

12C5
2

+
(−6C7 +δ C8 y) t

6C5
, (25a)

η = y− C8 t2

2C5
− C9 t

C5
, (25b)

and the similarity solution is

u =−1
6

C6 t
C5

+U, (26a)

f =−C3

C2
+F e(C2 t/C5), (26b)

g = G e(C2 t/C5), (26c)

h = H e(C2 t/C5), (26d)

where U = U(ξ ,η), F = F(ξ ,η), G = G(ξ ,η), and
H = H(ξ ,η). The substitution of the similarity solution
Eqs. (26a)–(26d) into the extended KP system Eqs. (10a)–
(10e) will solve the reduction equations in the form of

U =
1
2

δ Fη
2

Fξ
2 −

C9 Fη −C2 F
6C5 Fξ

+
δ C8 η−6C7

36C5

+
2
3

Fξ ξ ξ

Fξ

− 1
2

Fξ ξ
2

Fξ
2 , (27a)

G = Fξ , (27b)

H = Fξ ξ , (27c)

C9Fξ Fξ ξ Fη +Fξ
3 C2 +(Fξ ξ ξ ξ C5 +3Fηη C5 δ −Fξ η C9)Fξ

2

−3Fξ ξ Fη
2 C5 δ − (4Fξ ξ ξ C5 +C2 F)Fξ ξ Fξ

+3Fξ ξ
3 C5 = 0. (27d)

Substituting Eq. (27a) into Eq. (26a) leads to an exact solution
of u for the KP equation, which can be expressed by the follow
theorem.

Theorem 5 (Bäcklund transformation)
One exact solution of the KP equation can be written as

u =
2
3

Fξ ξ ξ

Fξ

+
δ Fη

2−Fξ ξ
2

2Fξ
2 +

δ C8 η−6C7−6C6 t
36C5

+
C2 F−C9 Fη

6Fξ C5
, (28)

where F(ξ ) is constrained by formula (27d).
Case 5 F1 =C5, F2 =C7, F3 =C9, C1 =C2 =C3 = 0.
On this condition, we can obtain the traveling transforma-

tion, and the similarity solution is

u =U(ξ ,η), f = F(ξ ,η),

g = G(ξ ,η), h = H(ξ ,η), (29)

where group invariants are

ξ = x− C7 t
C5

, (30a)

η = y− C9 t
C5

. (30b)

The corresponding reduction equations are

U =
δ Fη

2−Fξ ξ
2

2Fξ
2 − 1

6
C9 Fη

Fξ C5
− 1

6
C7

C5
+

2
3

Fξ ξ ξ

Fξ

, (31a)

G = Fξ , (31b)

H = Fξ ξ , (31c)

Fξ

(
FηC9

C5
−Fξ ξ ξ

)
−3δFη

2
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+

(
Fξ ξ ξ ξ +3δFηη −

Fξ ηC9

C5

)
Fξ

2

Fξ ξ

+3Fξ ξ
2 = 0. (31d)

The combination of Eq. (29) and Eq. (31a) makes an exact
traveling wave solution of the KP equation.

Theorem 6 (Bäcklund transformation)
The traveling wave solution of the KP equation can be in

the form of

u =
δ Fη

2−Fξ ξ
2

2Fξ
2 − 1

6
C9 Fη

Fξ C5
− 1

6
C7

C5
+

2
3

Fξ ξ ξ

Fξ

, (32)

where F(ξ ) is governed by Eq. (31d).

5. CRE solvability and interaction wave solu-
tions of the KP equation
CRE is an important method to obtain some interaction

wave solutions for PDEs. CRE solvability method is a way
to judge whether the equation is integrable by means of con-
sistent Riccati expansion. The Riccati equation is in the form
of

Rw = a0 +a1R(w)+a2R(w)2, (33)

with a0, a1, and a2 being arbitrary constants. The authors in
Ref. [33] systematically presented the general solution to the
Riccati equation. One exact solution of the Riccati equation is

R(w) =−
√

θ

2a2
tanh

(√
θ w
2

)
+

a1

2a2
, (34)

where

θ = a1
2−4a0 a2. (35)

A system

P(x, t,v) = 0, P = {P1,P2, ...,Pm},

x = {x1,x2, ...,xn}, v = {v1,v2, ...,vm}, (36)

can be expanded as

vi =
Ji

∑
j=0

vi, jR j(w), (37)

where R(w) is a solution of the Riccati equation. Plugging
formula (37) into the system (36), and vanishing all the coef-
ficients on Ri(w), the following system will be obtain

Pj,i(x, t,vl,k,w) = 0. (38)

If the system (38) is consistent, then the expansion (37) is a
CRE and the nonlinear system (36) is CRE-solvable.[22]

To our knowledge, CRE of the KP equation has not been
researched. In this section, we will discuss the CRE of the KP
equation, then obtain some interaction wave solutions of the
KP equation. u in Eq. (1) can be expanded as

u = q0 +q1 R(w)+q2 R(w)2 (39)

with q0, q1, q2, and w being functions of {x,y, t}, and R(w)
being a solution of the Riccati equation.

All differential coefficients on R(w) of the combination
of Eqs. (1), (33), and (39) show that

q0 =
1
6

wt

wx
+

(
1
6

a1
2 +

4
3

a2 a0

)
wx

2 +a1wxx

+
2
3

wxxx

wx
+

wy
2 δ −wxx

2

2wx2 , (40a)

q1 = 2a1 a2wx
2 +2a2 wxx, (40b)

q2 = 2a2
2 wx

2 (40c)

with w satisfying

wtwxxwx +θwxxwx
4− (wxt +wxxxx +3δwyy)wx

2 +(4wxxxwx +3δwy
2)wxx−3wxx

3 = 0. (41)

According to the definition on CRE and CRE solvable, the KP equation is CRE-solvable. The combination of Eqs. (34), (39),
and Eqs. (40a)–(40c) shows that an exact solution of the KP equation can be expressed as the following formula

u =
θ

2
wx

2 tanh

(
w
√

θ

2

)2

−
√

θwxxtanh

(
w
√

θ

2

)
− θ

3
wx

2 +
4wxxx +wt

6wx
+

wy
2δ −wxx

2

2wx2 , (42)

where w is solved by Eq. (41). Then, the concrete form of the exact solution u can be proposed if w is solved. We will try to
solve Eq. (41) in the following paragraphs.

In Eq. (42), w can be supposed to have the form of

w = k1 x+ l1 y+ω1 t +a3 Eπ(sn(k2 x+ l2 y+ω2 t, µ), ν , µ), (43)

where k1, l1, ω1, k2, l2, ω2, a3, n, and m are parameters to be determined, and Eπ is the third type of incomplete elliptic integral.
Substituting Eq. (43) into Eq. (41), and collecting the coefficients of different powers on sn(k2 x+ l2 y+ω2 t, µ), one will find
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the relationships of the parameters. The five types of parameter restrictions can lead to five types of nontrivial solutions of w and
u, i.e., 

−4k1
2a5ν2 +

a3
2(l2k1− l1k2)

2δν

k2
2k1

+4k1a5
2(1+µ2)ν−4µ2a5

3 = 0

ν θ +4(ν−1)(µ2−ν) = 0[
8(1−ν)k2(l1k2 +a4)k1

3−4a3 k2
2(2a3k2l2 +3a4)(2ν−3)k1

2 + 4k2
4a4a3

3

+8a3
2k2

3 (2a3k2l2− l1k2ν +3a4)k1
]

µ2 + 8ν(l1 k2 +a4)k2 (ν−1)k1
3 +νa3[a3l2(ω2

−16k2
3)+12k2

2a4(ν−2)]k1
2−a3

2νk2[(8k2
3l1 +ω2l1 +ω1l2)k1−ω1l1k2] = 0


, (44)

{
a0 =

(ν−1)µ2

ν a2 a32 −
4ν−a1

2 a3
2−4

4a2 a32 , k1 = 0, l1 = 0, ω1 =−
4k2

3
µ2 a3

ν

}
, (45)

{
a0 =

1
4

a1
2

a2
+

k2
2 (ν−1)(µ2−ν)

k1
2 a2 ν

, a3 =−
k1

k2
, l1 =

l2 k1

k2
, ω2 = 4k2

3
ν +

k2 ω1

k1

}
, (46)

{
ν =

µ2 a5

k1
, a0 =

1
4

a1
2

a2
+

k2

a2 a3a5
− k2 µ2

a3 a2 k1
, l1 =

l2 k1

k2
,ω2 =

k2ω1

k1
+4k2

2(µ2−1)
l2
a3

}
, (47)

{
ν =

a5

k1
, a0 =

k2 µ2

a2a3a5
+

1
4

a1
2

a2
− k2

a3 a2 k1
, l1 =

l2 k1

k2
,ω2 =

k2 ω1

k1
+4k2

2 (1−µ
2)

a5

a3

}
, (48)

where a4 = l1 k2 + l2 k1, a5 = k1 +a3k2.
The substitution of Eq. (43) into Eq. (42) makes the solution of u in the form of

u =
(νS2k1−a5)

2θT 2

2(ν S2−1)2 − 2a3k2
2
νSCD

√
θ T

(ν S2−1)2 − 1
6(νS2−1)2(νS2k1− k1−a3k2)2

×{[8a3 k2
3
ν

3k1µ
2 +2θk1

4
ν

4−ν
4(3δ l12 +ω1k1)]S8 +[16a3ν

2k1(µ
2−µ

2
ν−ν)k2

3

+4a3
2k2

4
ν

2
µ

2 +a3ν
3(ω1−8k1

3
θ)k2 +ν

3(12δ l12−8θk1
4 +a3ω2k1 +4ω1k1 +6δ l1a3l2)]S6

+[12θk1
4
ν

2 +24a3νk1(ν
2−µ

2)k2
3 +12k1

2
ν

2a3
2
θk2

2 +a3ν
2(24k1

3
θ −a3ω2−3ω1)k2

+4a3
2
ν(ν +µ

2
ν−6µ

2)k2
4−3ν

2(δa3
2l22 +a3ω2k1 +6δ l12 +6δ l1a3l2 +2ω1k1)]S4

+[4a3
2
ν(4µ

2 +4−3ν)k2
4 +8a3νk1(2+2µ

2−a3
2
θ −2ν)k2

3 +νa3(3ω1−24θk1
3)k2

+2νa3
2k2(ω2−12θk1

2k2)+ν(18δ l1a3l2−8θk1
4 +12δ l12 +4ω1k1 +3a3ω2k1 +6δa3

2l22)]S2

+2a3
2(a3

2
θ −4ν)k2

4 +8a3k1(a3
2

θ −ν)k2
3 +12θk1

2a3
2k2

2−a3ω2k1−ω1k1

+[8θk1
3a3−a3(a3ω2 +ω1)]k2 +2θk1

4−3δa3
2l22−6δ l1a3l2−3δ l12}, (49)

where

T = tanh
{

1
2

√
θ [k1 x+ l1 y+ω1 t +a3 Eπ(sn(k2 x+ l2 y+ω2 t, µ), ν , µ)]

}
,

S = sn(k2x+ l2y+ω2t, µ), C = cn(k2x+ l2y+ω2t, µ), D = dn(k2x+ l2y+ω2t, µ) (50)

with the parameters satisfying one of formulas (44)–(48).

The evolution of u with x and t at y = 1 is demonstrated in
Fig. 1(a), where the parameters satisfy Eq. (46) and the free pa-
rameters being {δ = 1,µ = 0.8,ν = 0.2,k1 = 2,ω1 =−2,k2 =

3, l2 = 8}. Figure 1(b) shows the density of u in Fig. 1(a).
Figure 1 clearly shows the interactions of cnoidal waves and
solitary waves.

The solution of u satisfying formula (47) is demonstrated

in Fig. 2, with the free parameters being selected as follows:

δ = 1, µ = 0.9, a3 = 0.4, k1 = 2, k2 =−2, ω1 = 4, and l2 = 6.

Figure 2(a) displays the evolution of u with x and y, which

shows the cnoidal waves reside on solitary waves. The evo-

lution of the shifted periodic wave u with x and t is displayed

in Fig. 2(b). Figure 2(b) demonstrates that the exact solution

is rapidly approached the periodic waves on both sides of the

solitons.
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Fig. 1. The solution and the density of u expressed by Eq. (49) with for-
mula (46), respectively. The free parameters are δ = 1, µ = 0.8, ν = 0.2,
k1 = 2, ω1 =−2, k2 = 3, and l2 = 8.
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Fig. 2. Evolution of u with space and time. The parameters are constrained
by Eq. (47), and the free parameters are δ = 1, µ = 0.9, a3 = 0.4, k1 = 2,
k2 = −2, ω1 = 4, and l2 = 6. Panel (a) is the evolution of u with x and y,
and panel (b) is the evolution of u with x and t.

Figures 3(a) and 3(b) demonstrate the density of u in
Figs. 2(a) and 2(b), respectively. We can see that figure 3

clearly displays the interaction between solitons and cnoidal
waves.
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x
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Fig. 3. The density plots for the corresponding Fig. 2.

6. Summary and discussions
A Bäcklund transformation between the KP equation and

the Schwarzian KP equation is demonstrated by means of
the truncated Painlevé expansion. By means of the truncated
Painlevé expansion, nonlocal residual symmetries of the KP
equation are studied. One-parameter group transformation and
one-parameter subgroup-invariant solutions are obtained. Sev-
eral Bäcklund transformations related to the nonlocal symme-
tries are proposed. The CRE method is applied to study the KP
equation and the CRE solvability of the KP equation is proved
by CRE. With the help of CRE, the interaction solutions be-
tween solitons and cnoidal waves are obtained.
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