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Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic sys-
tem containing random variables. The classical-quantum system is transformed into a Kolmogorov model for force and
energy analysis. Combining different forces, the system is divided into two categories: conservative and non-conservative,
revealing the mechanical characteristic of the classical-quantum system. The Casimir power, an analysis tool, is employed
to find the key factors governing the orbital trajectory and the energy cycle of the system. Detailed analyses using the
Casimir power and an energy transformation uncover the causes of the different dynamic behaviors, especially chaos. For
the corresponding classical Hamiltonian system when Planck’s constant 7 — 0, the supremum bound of the system is de-
rived analytically. Difference between the classical-quantum system and the classical Hamiltonian system is displayed
through trajectories and energies. Quantum-classical correspondences are further demonstrated by comparing phase por-

trait, kinetic, potential and Casimir energies of the two systems.
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1. Introduction

Research on quantum applications has attracted a
great deal of attention recently, especially in quantum
computation,!!! quantum chip,”! quantum communication,
quantum application in image binarization?! using quantum
entanglement'*! or quantum protocols,! and so on. Quan-
tum mechanics does not describe the phase space of the sys-
tem motion as classical mechanics because of the uncertainty
and stochasticity. However, quantum systems become clas-
sical Hamiltonian systems in the limit when Planck’s constant
i — 0.16] Alternatively, researchers have demonstrated that un-
der decoherence a quantum system corresponds to a conserva-
tive chaotic Hamiltonian system. In the last two decades, re-
searchers have investigated the correspondence between quan-
tum and classical Hamiltonian systems. For example, Brack
et al.l’! demonstrated the existence of quantum beats in a
classical system, i.e., the Hénon—Heiles system, which is a
conservative chaotic Hamiltonian system. Hou and Hul®! as

9101 derived the relationship between quan-

well as Song et al.!
tum entanglement and classical chaos through the average lin-
ear entropy using the Dicke Hamiltonian model. Eckhardt et
al.'"!) presented a conservative chaotic Hamiltonian function

in which there appears quantum mechanical behavior. Gong
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and Brumer!'?! pointed out that the decoherence, i.e., the loss
of coherence, of a quantum system corresponds to this con-
servative chaotic Hamiltonian system. Taking into account the
quantum-classical correspondence, the classical chaotic sys-
tem is called a classical-quantum chaotic system. Further-
more, researchers examined the classical-quantum correspon-
dence in the chaotic system using a uniform structure measure
for the distribution functions of both the classical and quan-
tum phase spaces.!!3] When the ratio of two parameters in the
chaotic system is large, the maximum Lyapunov exponent is
larger than that of many other existing conservative chaotic
systems, such as the classical Hénon—Heiles system.!”) There-
fore, the objective of this paper is the study of the classical-
quantum chaotic system, particular in relation to the quan-
tum mechanics of decoherence and study of corresponding
classical Hamiltonian conservative system in the limit when
Planck’s constant i — 0.

Chaotic systems mainly divide into two major categories:
dissipative systems for which the divergence of the system is
less than zero and conservative systems for which it is equal to

0.[1415] Conservative systems preserve the volume in phase

zer
space, its dimension being integer, whereas dissipative sys-
tems do not conserve the volume, its dimension being fac-

tional. From the Liouville theorem, a Hamiltonian system
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must conserve this volume. %! Hence, the conservative chaotic
Hamiltonian system is restricted more than the conservative
chaotic non-Hamiltonian system, because it conserves both
Hamiltonian energy and volume. To our knowledge, research
on the conservative chaos dynamics is scant, especially con-
cerning the conservative chaotic Hamiltonian systems.

More and more researchers pay attention to nonlinear dy-
namic analyses,!!”20] especially dynamic analyses of chaotic
systems. The methodologies employed entail numerical calcu-
lations, analyses of boundaries, aperiodic solutions, sensitivity
to initial, bifurcation,?!-24 circuit implementation, [25] Lya-
punov exponent calculations,?27] fractional order,*®! Mel-
nikov analysis, >3] Poincaré map,3*31 system control, and
synchronization. 3%l Both the Melnikov method and the me-
chanical analysis method divide a Hamiltonian system with
disturbance into a conservative part and a non-conservative
part, similarities between the two methods are corresponding
to the conservative part, the rate of change of the Melnikov
function in the Melnikov method and the Casimir function of
the mechanical analysis method are both zeros. The Melnikov
function is analyzed from a mathematical perspective, and the
Casimir function has a physical background. The Melnikov
method uses the homoclinic orbit to find the existence con-
ditions of chaos in the sense of Smale horseshoe. The me-
chanical analysis method first obtains the extreme surface and
then analyze trajectory characteristics of the system via ex-
treme surface. Other methods also do not cover the mechan-
ics of the chaotic systems such as the conservation of energy,
the physical underpinnings and background, the conversion
among the internal energy, the dissipation, and the external
force. Recently, Pelino e al.,’”! Qi et al.,’%**! Yang and
Qi have studied the mechanics including energy transfor-
mation, force for some chaotic systems. For instance, using
the Kolmogorov model, Pelino et al.!*’! presented the energy
cycle of the Lorenz system. For the brushless dc motor chaotic
system, Qil*® decomposed the forces and derived the energy
cycling by employing the Kolmogorov model and the Casimir
function. Using the mechanics analysis method, Yang and
Qi1 decomposed the vector field of the plasma chaotic sys-
tem into four types of torque: inertial, internal, dissipative, and
external, and comparison of mechanics analysis and general-
ized competitive mode analysis. For the chaotic system of a
permanent-magnet synchronous motor, the Casimir energy as
stored energy and its rate of change as the power difference
between the dissipative energy and the energy supplied to the
motor are employed to shed some insight into the mechanisms
of the system.*) Moreover, details of mechanical analysis or
energy cycling of many chaotic systems are revealed by con-
verting these systems into the Kolmogorov form.[*1=#31 The
mechanical analysis is able to uncover the causes of sinks,
periodic orbits, and chaos produced by systems. However,

studies concerning the mechanism have only focused on dis-
sipative chaotic systems. To date, there has been no analy-
sis of causes of different dynamical behaviors for a quantum,
classical-quantum or conservative Hamiltonian system.

A classical-quantum chaotic Hamiltonian system can dis-
play both classical chaotic and quantum features. Therefore,
the mechanical analysis is a good technique to uncover the
mechanism behind the production of different dynamical be-
haviors.

This paper identifies a classical-quantum chaotic system
and quantum-classical correspondence as the object of study.
The classical-quantum chaotic system is transformed into a
Kolmogorov-type system characterized by a vector field of
three forces: inertial, internal, and external. Correspondingly,
three energies, i.e., kinetic, potential and supplied, are found
for the classical-quantum Hamiltonian system. The mecha-
nism behind the dynamical behaviors, such as periodic orbits,
pseudo-periodic orbits, sources and chaos, are revealed us-
ing a combination of forces and energy. The Casimir power
is employed to find the cause for the different dynamical be-
haviors. For the corresponding classical Hamiltonian system,
the supremum bound of the system is derived analytically and
a variety of dynamics is shown in the Lyapunov spectrum.
By comparing trajectories and energies of the system, differ-
ence between the classical-quantum system and the classical
Hamiltonian system is demonstrated. Quantum-classical cor-
respondences are demonstrated by comparing trajectories, 3D
view of the phase space trajectories, phase portrait, energies of
the two systems.

The structure of this paper is as follows. In Section 2, the
quantum-classical correspondence is conducted and the corre-
sponding classical Hamiltonian system is described. In Sec-
tion 3, the classical-quantum system is transformed into an
equivalent Kolmogorov-type system. The Casimir power is
used to further reveal the cause of each orbit type, especially
chaotic flow. In Section 4, quantum-classical correspondences
are further displayed via energies. A summary is given in Sec-
tion 5.

2. Quantum-classical correspondence and clas-
sical Hamiltonian system

In this study, the classical Hamiltonian function chosen
to investigate the corresponding quantum mechanical system

ig[11-13]

1 a b
HY) =3 (i )+ + (6800, ()
where a and b are parameters, x and y the system co-
ordinates with corresponding system momenta p, and py,

Y =[xy, px, py]T. For this system, the corresponding time-
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independent Schrodinger equation is

2 a b
— Vi oY) v =Ey, @)
2 2 4
where 7 is Planck’s constant, y the wave function, and V2 the
Laplace operator. In rectangular coordinates, the gradient op-
erator is V = a%i + a% J. The operators x, p,, y, and p, satisfy
the commutation relations [x, pi| = i#, [x,py] =0, [y, px] =0,
[y, py] = ih.
For convenience, let x; = x, x2 =y, X3 = py, X4 = py, then
H(X) can be rewritten as

HX) =303+ +5dd+ 20dead), 0)
where X is a vector, X = [x1,x2,x3,x4]".

In the quantum world, the notion of a certain point in
the phase space does not make sense because the positions
x; and x», the momenta x3 and x4 cannot be measured in-
stantly (Heisenberg’s uncertainty principle). To describe the
behavior of quantum, we have to introduce a function of quasi-
probability density, called the Wigner function, to measure the
random property of quantum state. The Wigner function has a
good performance for analyzing quantum unstable variables,
and is written as

S B B C R R )

X Ly, </3z (x%+x§)> L, (i (x§+x§)> , @)

where the Laguerre polynomial L; (x) = Z—T :—; (e™x%).

The Wigner function of a given state can be calculated by
Egs. (3) and (4) with fixed m =n =5.

The Wigner distribution is presented in Figs. 1(a) and 1(b)
with respect to the planes of x; —x3 and x — x4, respectively.
The classical phase space has probability density being real
and normalized. However, differing from the probability den-
sity, the Wigner function does not have to be positively def-
inite. No matter what the energy is, the phase space has re-
gions where the Wigner function takes on negative values, as
shown in Figs. 1(a) and 1(b). These figures in 3D look like the
ripples of water. Further, to clearly see the characteristics of
distribution, the contour plots are displayed in Figs. 1(b) and
1(c), which demonstrate two properties of the Wigner func-
tion: (1) high and low scattered wave form, (2) uniform dis-
tribution to any direction like concentric circles. The Wigner
function is shown with respect to one coordinate [Fig. 1(e)].
Interestingly, the trend of the distribution of Wigner with the
variable x3 (same for other variables) is very similar to the
sampling function!*6! F(®) = 2Sa(w) = 2sin/  [Fig. 1(H)],
which reflects the frequency spectrum distribution of a rectan-
gular pulse.

The Wigner function is employed to calculate the mean
of quantum behavior or trajectory (x;) based on the Hamilto-
nian equation. Equation (5) governs how the Wigner function
impacts the behavior of quantum. The arbitrary quantum state
can be acquired via

(mlFCO)In) = [ FX)Won(X)dX. )

Symbol (x) indicates the mean of variable *.
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Fig. 1. The Wigner distribution in 3D space: (a) (x1,x3,W) and (b)
(x2,x4,W), 2D plane: (c) (x1,x3) and (d) (x2,x4), (€) W—x3, (f) fre-
quency spectrum of the rectangular pulse signal.

Eckhardt e al.!'" studied a quantum mechanics of the
corresponding Hamiltonian function (1) in observations of
scars, periodic orbits, and vibrational adiabaticity. Corre-
sponding to Hamiltonian function (1), in order to exhibit the
random property and keep the classical Hamiltonian equation,

Gong and Brumer!!?! gave the following system

J0H
dx = det,
JH
dy = —dr,
Y Dy
JoH
dpx = _gdt‘f' \% 2DT'17
JH
dpy = —Tydf‘f' V2Dna, (6)

where D is the energy-dependent rate from the environment,
11 and 1), are the independent real differential stochastic vari-
ables. The classical Hamiltonian function, Eq. (3), is selected
for three reasons: (a) the energy scaling is sufficient to avoid
any overwhelming energy exchange with the environment un-

der quantum condition, (b) the chaotic degree is sufficient to
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recognize the classical-quantum discrepancy, and (c) the po-
tential has no simple harmonic terms.[!!]

Furthermore, the quantum-classical corresponding to the
Hamiltonian function (3) is examined for the conservative
chaotic Hamiltonian system using a uniform structure mea-
sure for the distribution functions of the quantum and classical
phase space.!'3! However, through literature review, there has
been no literature concerning a mechanical analysis related to
forces and energy conversions and the evolutional dynamics
of the classical-quantum systems.

By Eq. (3) and x; = x,x2 =y, X3 = px, X4 = py, we have

OH _9H _ . 9dH _9H _ . _9H _ _9H _ 2 1 3
Tpx = 9w =X Gpy T gy =X T Gx = gy, = —anixy —bxy,
OH _ _9H _ 2 3 : :
=9y T Ty, = —@x1X2 —bxy, system (6) is rewritten as
X1 =x3, X2=Xx4,
X3 = —axlx% — bx% +v2Dny,
X4 = —ax%xz — bxg +V2Dn;y. @)

The general classical system refers to the system correspond-

ing to quantum system in the limit when Planck’s constant

(a) I I—claslsical r«lesult
—quantum result |

—classical rgsult
—quantum result

0 20 40 60 80 100
t

1.0 — classical result

fi — 0. At this time, there is decoherence between the clas-
sical system and the quantum system, which has been studied
by many scholars, such as Ref. [12]. From Eq. (5), the in-
tegration makes the state trajectory generated by Hamiltonian
equation smoother, or less random, however, because of the
randomness of Wigner function, the quantum trajectory still
exhibits chaotic. This counteraction makes the decoherence
between classical and quantum normally under the condition
h — 0. Therefore, our paper discuss the correspondence be-
tween a new classical system (7) containing random terms and
the quantum system, which is also the significance of this pa-
per. For the sake of clarity, we call system (7) the classical-
quantum system corresponding to quantum systems of Hamil-
tonian function (3) with Wigner function (4).

Because the dynamics of quantum system is quite hard to
investigate, we can firstly confirm whether the stochastic dy-
namical behavior of system (7) reflects the stochastic behavior
of the quantum system. This can be verified by finding the
correspondence of the means of both the quantum system and

the classical-quantum system (7).
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Fig. 2. Time series for (a) (x1), (b) (x2), (¢) {x3), (d) (x4) and 3D view of the phase space trajectory (x; —x» —x3), (e) classical result, (f)

quantum result.
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Adopting the values of all parameters 7 = 0.1, a = 1,
b=0.01, D = 6 x 10~*. Here the stochastic variables 11 and
M, satisfying mean M(n;) = M (1) = 0, variance E(1;) =
E(n2) =0.001. Comparisons of the results between classical-
quantum system (7) and quantum system corresponding to
Hamiltonian function (3) are conducted in Fig. 2, which
present the conspicuous correspondence of the classical and
quantum results, orange and blue lines represent the quan-
tum and classical results, respectively. It can be seen that the
trends of the trajectories of the classical-quantum system and
the quantum system are very similar, with only small differ-
ences in mean amplitude. Furthermore, from the 3D view of
the phase space, the two system behave similarly in terms of
both shape and orbits [Figs. 2(e) and 2(f)]. Therefore, the dy-
namic properties of the quantum system can be uncovered by
analyzing the dynamics of the classical-quantum system.

In addition to the simulation demonstration of similar-
ity between the two systems, indeed, the quantum system be-
comes a classical Hamiltonian system in the limit z — 0 from
the Schrodinger equation.

3. Force-based analysis of the classical-quantum
system

The classical Hamiltonian system corresponding to the
Hamiltonian function is

. _OH R
=g =0 h=go =,
X3 = fg—z = —axlx% fbx%,
X4 = —g—z = —ax%xz — bx%. (8)
The rate of change of H(X) is
H(X) = dHcth) =VH(X)'™X =0. )

In addition,

V(¢) is the phase-space volume, and the derivative of V (¢) is

Therefore, the system is energy conserving.

d‘é—gw =V.-F= i} %}f) =0, and hence, in phase space, sys-
tem (8) is an enel;gy and volume-conserving system. The me-
chanical analysis includes performing a decomposition of the
forces and determining the cycling of energy, and helps un-
cover the mechanism underlying the classical-quantum. Sys-

tem (7) written in vector form is

X1 X3 0
¢ 0
. X2 X4
X = =
X3 —axlx% — bx? + V2D,
X4 —ax%xz — bx% V2Dny

0 0 107 [axx3+bx} 0

0 001 ax%szrbx% 0
= +

-1 000 X3 \/2DT’1

0 -100 X4 V2Dn,
=J(X) - VH(X)+ R, (10)

where the Hamiltonian energy, H(X ) =K (X )+ U(X), com-
prises the kinetic energy K(X) and potential energy U(X),

specifically,
1
K(X) =53 +x)), (1)
X _ a2 Q 4, .4
U( )— 2x1x2+4(x1 +X2). (12)

System (7) can also be transformed into an equivalent
Kolmogorov-type system,

_xl X3 [ 0
X X4 0
X = =
X3 faxlx% — bx? + V2D
| X4 fax%xz — bx% | V2D1,
[ X3 0 i 0
- X4 0 I 0
| =x x| — axlx% — bx? V2Dn
| —X2 Xy — ax%xz — bx% i v2Dn,
[0 010 x1 |
|0 001 X
S |-1 000 X3
| 0 -100 Xq |
0 i 0
0 0
+ X1 —axlx%—bx? + V2Dn,
Xy — ax%xz — bx% ] V2D,
=J(X) VH(X)+ E(X)+R. (13)

Here we define a new Hamiltonian energy H; (X)) as follows:
1

H\(X) = 5 (0 +25+23 +23), (14)

VH(X) = [v.x0,x0,0] (1)

with H(X) = K1 (X) + U, (X), a sum of the kinetic energy
K1 (X) and the potential energy U, (X ), for which K (X)) =
13 +x3), Ui (X) = (x? +x3). System (13) converts to

X =J(X)-VH(X)+E(X)+R

0 010]T0 T0 0 10] [x
0 001(]|0 0 001 |x
121000 |x| =1 000]]0
0 —100] |x4 | 0 —100] [0

0 [0

0 0

+ xl—axlx%—bx% + @nl

xz—ax%xz—bx% _\/@nz
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= J(X) VK{(X)+J(X) VU (X)+ E(X) +R. (16)

In summary, systems (7), (10), (13), and (16) are equivalent
systems.

Remark 1 (1) Similar to the three terms of the dissipative
system, the three terms on the right-hand side of system (16)
are understood as describing!*!! the inertial force (released by
kinetic energy K;(X)), the internal force (generated by po-
tential energy U;(X)), and the external force, including the
dissipative force, produced by E(X)+ R.

(2) To the best of our knowledge, the literature contains
no analysis of the mechanism underlying chaos production
for a conservative system. The purpose behind transform-
ing system (7) and system (8) into an equivalent dissipative
Kolmogorov-type system is to unify the study of conserva-
tive chaos and dissipative systems, and to analyze the cause
of chaos generation in classical-quantum system (7) and the
classical Hamiltonian system (8).

The Casimir function, C(X),*8 is a very important phys-
ical quantity similar to the fluid dynamics studies. It is also
meaningful in analyzing the system’s stability and the global
dynamics of the system. From the kernel of the Lie Poisson
bracket, C(X) is defined as*”]

{F(X),G(X)} = JndFo,G=VF(X)TIVG(X), (17)

ie., {C(X),G(X)} =0,VG(X) € C(g*). Hence, it rep-
resents a constant of the motion of the system (13), C(z) =
{C(x),H;(x)} = 0. The Casimir function of system (13) has
quadratic form

C(X)= %(x%+x% +x3443). (18)

Definition The derivative of the Casimir function is
called the Casimir power.

Considering the Casimir energy and Casimir power,from
Refs. [38,40,41] we have:

(1) If C(X) > 0 holds for all times, then the orbit of the
system willl diverge as a source.

(2) If C(X) is a non-zero constant, i.e., C(X) = 0 with
C(X) # 0, then the orbit will be periodic.

(3) If C(X) < 0 holds for all times, then the orbit of the
system will converge to a sink.

(4) If C(X) oscillates periodically, then the orbit will be
periodic.

(5) If C(X) is bounded and irregularly vibrating around
the zero line, then the orbit of the system will be chaotic.

(6) If C(X) converges onto zero asymptotically, the orbit
will converge to a sink.

Therefore, the Casimir power provides a criterion to de-
termine whether a system can generate chaotic motion.

Next, we discuss the effects of the different types of
forces on the system that alter its behavior from simplic-
ity to complexity, and we reveal the key causes produc-

ing chaos. In the following, we set a = 1, b = 0.01,

"=

and impose the initial condition X = [x10,X20,%30,X40
[0.40,0.60,0.50,0.414]".

3.1. System containing only the conservative term

In this section, we mainly discuss the situation when the
system contains inertial force K;(X), internal force U;(X)
and part of external force E(X ). At this time, the system is a
Hamiltonian conservative system in any case.

3.1.1. System containing only the term of inertial force

When the system contains only the inertial force term (de-
scribing the kinetic energy released K;(X)), ie., Hj(X) =
K1 (X) = £(x3 +x3), the corresponding system is

0 01070
. 0 0010
X =0X)vEX)=| o ool | a9

0 -100 X4

H|(X) =K (X) =x3-03+x4 14 =0, (20)

system (19) is still a conservative system. Hence, H;(X) =
K1 (X) = constant and U;(X) = 0, it is easy to prove that
when the initial value is set to Xy = [O.40,0.60,0.50,O.414]T,
then the Casimir power is

C(X) = x1 %1 +x2-Xp+X3 03+ x4 %4
= X1 x3+x2-x4 >0, 21

and hence the trajectory diverges as a source [Fig. 3(a)]. The
kinetic energy is conserved [Fig. 3(b)], and the Casimir en-
ergy increases with time [Fig. 3(c)]. The Casimir power is
also greater than zero [Fig. 3(d)].

0
0 2 4 6 8 10 0 2 4 6 8 10
t t

Fig. 3. System containing only the inertial force term, (a) 3D view of
(x1 —x2 — x3). Time series of (b) the Hamiltonian energy (H;), (c) the
Casimir energy, and (d) the Casimir power.
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The reason why the Casimir energy of system (19) in-
creases is that x| and x; are displacements. Although the mo-
menta of the system, x3 and x4, are conserved, the displace-
ments x; and x» continue to increase, so the Casimir energy
increases with the size of the displacements.

3.1.2. System containing both inertial and internal
forces

When the system contains both inertial force (kinetic

energy released K; (X)) and internal force (potential energy

stored U (X)), the governing equation becomes

X = J(X)-VH|(X)

= J(X)-VKi(X)+J(X)- VU (X)
[0 0 10]] 0 0107 [x
o oot1|]o 0 001 |x
T -1 000]|x -1 000||0
|0 100 |[x] [0 -100]]0
[0 0 107 [x]
0001 |x )
1000/ |x |’
| 0 —100] [ x|

and the rate of change of the Hamiltonian is H;(X) =
K](X)+01(X) =
conservative. The rate of change of kinetic and potential ener-

0. The Hamiltonian for this system is also

gies are

K1 (X) =2x3-x1+x4-x2, (23)
and

Up(X) = —x X3 — X2 - X4, (24)

neither of which are conservative but exchange energy to con-
serve the total energy.

0.6

— Hamiltonian energy (
— kinetic energy (K1) (b)

0.4 /\ A
) on
1

1
0 0
: 1

(x3)
=)
Energies

(@2) —1— (1) 10
0.6 1.0
(c) (d)
0.5
0.4
g g o
0.2
—0.5
00246810 *1‘00246810
t t

Fig. 4. System containing both inertial torque and internal force: (a)
3D view of (x; —x; —x3), (b) time series of energies, (c) time series of
Casimir energy, (d) time series of Casimir power.

The Casimir power is
C(X) = x1 %1 +x2- % +X3- 43+ x4 %4
= X1-X3+X3-X4—x3-X] +x4-Xx =0. (25)

Because both Casimir energy and Hamiltonian are conserved,
When kinetic
energy increases, the potential energy decreases by an equal

the trajectory is a periodic orbit [Fig. 4(a)].

amount, thereby maintaining a constant energy [Fig. 4(b)].
The Casimir energy is constant [Fig. 4(c)] and the Casimir
power is always zero [Fig. 4(d)], and thus reflects the observed
conservation.

3.1.3. System containing containing inertial, internal
forces and external force E(x)

Now, the system is governed by

X = J(X)-VK{(X)+J(X)-VU,(X) + B(X)

0 010]fo0 0 0107 [x
10 001 0 0 001 |x
T -1 000 |x3 -1 00010
0 —100| x4 0 —100( |0
0
0
; (26)
xl—ax1x2 b)c1

Xy — ax%xz — bx2

which has a third term, an external force E(X) but does not
include the random variable part. System (26) is actually the
original Hamiltonian system (8), so it is different from system
(22). The external force changes the dynamic behavior from
periodic trajectories of the previous system (22) [Fig. 4(a)] to
chaotic orbits for system (26) [Fig. 5(a)], color represents the
Casimir energy. Hence this external force is the important fac-
tor producing chaos.

The derivative of the Hamiltonian is H(X) = VH(X)T-
J(X)-VH(X)=0,s0 H(X) is conserved [Fig. 5(d)], but we
notice that H; (X) changes [Fig. 5(c)]. From the perspective
of H; (X)) change, system (26) is similar to a dissipative sys-
tem.

From system (26), the external force term x; — axlx% —
bx3 is present in the third equation, and x, — axtx, — bx3 is
present in the fourth equation. Both forces twist the system to
produce chaos and both play complementary roles as either an
external or dissipative force. The Casimir energy is irregular
[Fig. 5(e)] and the Casimir power is

C(X) = x1%) +xo%2 + X303 + X454
= x3x1 + X430 — (bx? 4 ax3)x1x3 — (ax? + bx3)xaxy
= (1—bx} —ad)xixs + (1 —ax? —bx3)xoxy.  (27)
Hence, the Casimir power decomposes into two terms
Coy (X) = (1 — bxi — ax3)x - x3, (28)
Cox,(X) = (1 —ax] — bx3)xz - x4, (29)
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with
C(X)= Cex3 (X)+ Cex4 (X). (30)

Note that external force x| — ax;x3 — bx} of the third equa-
tion of system (26) is the source of the power factor C‘ex3 (X),
and x, — ax}x, — bx3 of the fourth equation contributes to the
power factor C,y, (X ). Hence, we can have the following con-
clusions.

Remark 2 The Casimir power of system (26) does not
depend on the inertial or internal force, but on external forces.
The two components of the Casimir power undergo mutual ex-
changes.

4 (c) — Hamiltonian energy (Hj)
— kinetic energy (K;)

- = potential energy (Uj)

Energies

4(9)
3
©)
~ 2
1
0

0 20 40 60 80 100

We need to demonstrate how the two external forces,
x1 —ax1x3 — bx; and x, — axix, — bx3 in Eq. (26), play both ap-
plying and dissipative roles. In Fig. 5(f), the curve in the first
line corresponds to the term Cey, (X ) of the Casimir power. In
some time intervals, it is positively indicating that the exter-
nal force x| — axlx% - bxf accelerates the system and supplies
energy. However, in other time intervals, it is negatively in-
dicating that the same external x; — axlx% — bxf decelerates

the system and expends energy. The same argument applies to
Cex, (X)) as for C,y, (X)) [Fig. 5(f), second line]. Therefore, the
two external forces are indistinguishable in their action on the
system. The sum C,y, (X) + C,y, (X) represents the exchange
power [Fig. 5(f), third line].

—-0.4

—-0.8

0.3 ———
—H 1 H,
(d) kii'e“t'ictoe‘.'fgﬁ’gﬁi?ﬁy (0
- - potential energy (U)

n 0.2
L
20
=
[}
=

M 0.1

0

~ 2
&

s 0

L 2

~ 1
5

S _(1)

2

9/ 0

—2

0 20 40 . 60 80 100

Fig. 5. Conservative Hamiltonian system containing all three forces producing chaos: 3D view of the phase space trajectory (x| —x, — x3) with
(a) Casimir energy (color scale) and (b) Casimir power. Time series of (c) and (d) energies, (e) Casimir energy, and (f) Casimir power. (g) The

chaotic orbit and supremum hypersurface bound.
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The Casimir power C(X) oscillates irregularly around
the zero line and is bounded, thus further evidencing the
chaotic nature of the trajectory of the system [Fig. 5(f)]. Fig-
ures 5(a) and 5(b) show two orbits along with a color coding of
the Casimir energy and Casimir power, respectively. Note that
both energy and power dictate the trajectories of the chaotic
system.

In general, the bounds of a chaotic system are difficult to
find, especially in an analytic form. Nevertheless, we find an
analytic bound for the chaotic trajectory of this conservative
Hamiltonian.

Theorem 1 The classical Hamiltonian system (8) has
supremum bound

a

b
551G+ (X +x5) =Ho, (31

1
H(X) = (3 +33) + 53+ 5

2
where Hy is the initial value of H(X).

Proof Because the Hamiltonian H(r) = Hy is valid for
any time, Equation (31) constitutes the supremum hypersur-
face bound. The proof is completed.

In Fig. 5(g), the orbits are completely and exactly en-
closed within the blue-green transparent supremum surface
bound. Note that the figure shows a 3D figure in the phase
space x| —x — x3, S0 Hy can be evaluated by any point in this
figure, i.e., Hy = 3x3) + 4x3x% + 5 (xfy +x3).-

Remark 3 (1) The original conservative Hamiltonian
system (8) is transformed into an equivalent Kolmogorov sys-
tem. The dynamical mechanical analysis used to analyze the
dissipative system is employed to analyze the dynamics of the
conservative system. This method reveals the causes of chaos
in the conservative system very well and it provides a link be-
tween the dissipative and conservative systems.

(2) When H(X) is constant, there is no way to explain the
system dynamics using the Hamiltonian, the Casimir energy
however changes and is able to explain the energy exchange.
Therefore, the Casimir power can analyze the dynamic char-
acteristics of the system. That is, the Hamiltonian and Casimir
functions both complement each other, and using them, we can
determine the characteristics of the system.

(3) The Kolmogorov—Arnold—Moser (KAM) theorem is a
well-known result for understanding the Hamiltonian chaotic
systems. 3] From the KAM theory, if a Hamiltonian system
having function H; is perturbed by another Hamiltonian sys-
tem having function H;, then the coupled Hamiltonian sys-
tem with function H = H; + €H, may produce chaos because
the two Hamiltonian systems exchange energy. However, the
KAM theory must use a coupled system to analyze a system,
it is unable to analyze why the system is chaotic from the
system itself when only a single Hamiltonian exists. In the
above description, we convert the Hamiltonian system into a
dissipative-like system and analyze why the system produces

chaos through the force decomposition. Compared with the
KAM theory, this method provides a new perspective and is
convenient.

Let Lyapunov exponents of the system are L;,L,,L3, L4,
respectively, and L1 > Ly > L3 > Ly.

(a) Setting b = 0.01 and X = [0.40,0.60,0.50,0.414]T
while varying a, we find that if a € [0,0.035] we obtain L; =
L, = L3 = L4y =0, and hence the classical Hamiltonian system
(8) performs periodic or quasi-periodic dynamics [Fig. 6(a)].
Ifae (0.035,2], L >0,l,=L3=0,and Ly =—L; <0, Sys-
tem (7) undergoes chaotic flow.

The Lyapunov exponents are symmetric about the zero
point [Fig. 6], and the sum of Lyapunov exponents is equal to
zero, further verifying that the system is conservative.

(b) Setting a = 1 and initial value X, =
[0.40,0.60,0.50,0.414]" while varying b, the Lyapunov ex-
ponents of the classical Hamiltonian system (8) are calculated
[Fig. 6(b)]. For b € [0,0.21], we obtain L; >0, L, = L3 =0,
and Ly = —L; < 0, hence the classical Hamiltonian system
(8) exhibits conservative chaos. For b € (0.21,2], we obtain
Ly =L, = L3 = Ly =0, and hence system (8) performs peri-
odic or quasi-periodic motion.

0.4
(a)
. i
§ 0.2}
e}
o,
s
o0
le]
[=]
2
< —0.2f
>
—
—0.4g 05 1.0 15 2.0
0.3
(b)
L 0.2f
a
=
) 0.1f
[o
Z
> 0 o
2
s —0.1f
o
g
S —0.2f
—0-% 05 1.0 15 2.0

b

Fig. 6. Lyapunov exponent of system (8) at Xy = [0.40.,0.60,0.50,0.414]1-:
(a) varying a with b = 0.01, (b) varying b witha = 1.

3.2. System containing both the term of conservative and
random variables

When the system contains the terms of inertial, internal,
external force and random variables R, the governing equation
turns into

X = J(X) VH(X)+E(X)+R
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0 010 0 0 010 X1
0 001 0 0 001 X7
T -1 000 |x ~1000|]0
0 —-100 X4 0 —-100 0
0 0
0 0
x| — ax1x2 bx1 \/@nl
X — axlxz — bx2 V2Dn,

)+J(X)- VU (X)+E(X)+R. (32)

J(X)-VK (X

(x2)

150 200

0.23995

0.23990

(H)

0.23985

0.2398% 0

50 100 150 200 0 50 100 150 200
t t

Fig. 7. Time series (a) (x1), (b) (x2), (c) Hamiltonian energy, and (d)
Casimir energy.
System (32) is actually the original classical-quantum system
(7). In Fig. 7, blue and purple lines represent the results of sys-
tem (7) and system (8), respectively, which indicates that the
orbits of two systems diversify after a period of time. Actually,

2.5

(a)l ' ' " classical result
quantum result

— classical result

0 20 40 60 80 100
t

— quantum result

* i)

100

o

in terms of Hamiltonian energies of the two systems, they only
differ a little bit [Fig. 7(c)]. However, Casimir energy changes
greatly, which reveals the reason why the large difference of
trajectories of the two systems [Figs. 7(a) and 7(b)]. Due to
the addition of random variables, the trajectory of system (7)
varies greatly. This also explains why there is large decoher-
ence between quantum system and the classical Hamiltonian
system (8),[1%] but the quantum-classical systems have a good

correspondence.

4. Energies of classical-quantum correspon-
dence

In this section, quantum-classical correspondence is fur-
ther revealed via comparing energies. In Fig. 8, blue curves
represent the classical-quantum behaviors produced by sys-
tem (7), purple curves stand for the quantum results pro-
duced by system (2) with Wigner function (3). The quantum-
classical correspondence of phase portrait in x; — x» is verified
in Fig. 8(a). Figures 8(b), 8(c) and 8(d) display quantum-
classical correspondence of kinetic energy, potential energy
and Casimir energy, respectively. The amplitudes of kinetic
energy and Casimir energy of the two systems are not much
different. However, amplitudes of the potential energy of the
two systems differ greatly. The reason should be that the po-
tential energy contains quartic terms. The energy determines
the dynamics of a system, therefore analysis combining all en-
ergies helps to comprehend the correspondence and difference
between the two systems.

0.3 b). " — classical result
—~ 0.2
N
~ 0.1
% 20 40 60 80 100
t
0.4 — quantum result
< 02
0
0 20 40 60 80 100
t
6 . . . .
4 (d) — classical result_
o
~ 2
% 20 40 60 80 100
t
4 . . . .
— quantum result
: 2W

00 20 40 60 80 100

t

Fig. 8. Quantum-classical correspondence, (a) phase portrait for the (x; — x2), (b) the kinetic energy (K), (c) the potential energy (U), (d) the

Casimir energy (C).
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5. Conclusions

Quantum-classical correspondence has been conducted
via the Wigner function and a classical-quantum chaotic sys-
tem containing random variables. A dynamic mechanical
analysis has been used effectively in analyzing a classical-
quantum system exhibiting strongly chaotic flow. The sys-
tem is transformed into an equivalent Kolmogorov-type sys-
tem. The vector field of the chaotic Hamiltonian system is
decomposed into three different forces. We find that combina-
tions of different forces (or different energies) determine the
dynamical behaviors of the system, such as periodic orbits.
The Casimir energy and power are effective in finding insights
into causes of different dynamical behaviors produced. For the
corresponding classical Hamiltonian system, the supremum
bound of the system is analytically derived and verified, and
rich dynamics of the system are explored through the Lya-
punov spectrum. Differences between the classical quantum
system and the classical Hamiltonian system are displayed by
trajectories and energies. Quantum-classical correspondences
are further demonstrated by comparing phase portrait, energies
of the two systems.
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