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Abstract. We study the distribution of first-passage functionals of the type
A= f(ff x™(t) dt where x(t) represents a Brownian motion (with or without

drift) with diffusion constant D, starting at zp > 0, and ?; is the first-passage
time to the origin. In the driftless case, we compute exactly, for all n > —2, the
probability density P, (A|xg) = Prob.(A = A). We show that Pn(A):EO) has
an essential singular tail as A — 0 and a power-law tail ~ A~("F3)/(n+2) g
A — 00. The leading essential singular behavior for small A can be obtained
using the optimal fluctuation method (OFM), which also predicts the optimal
paths of the conditioned process in this limit. For the case with a drift toward
the origin, where no exact solution is known for general n > —1, we show that
the OFM successfully predicts the tails of the distribution. For A — 0 it predicts
the same essential singular tail as in the driftless case. For A — o0 it predicts a
stretched exponential tail — In P, (Alxg) ~ AY ™+ for all n > 0. In the limit of
large Péclet number Pe = pxo/(2D), where (4 is the drift velocity toward the
origin, the OFM predicts an exact large-deviation scaling behavior, valid for all
A: —In Py (Alzg) ~ Pe®, (2 = A/A), where A = z{*' /pu(n + 1) is the mean
value of A in this limit. We compute the rate function ®,(z) analytically for
all n > —1. We show that, while for n > 0 the rate function ®,(2) is analytic
for all z, it has a non-analytic behavior at z=1 for —1 < n < 0 which can be
interpreted as a dynamical phase transition. The order of this transition is 2
for —1/2 < n < 0, while for —1 < n < —1/2 the order of transition is 1/(n + 1);
it changes continuously with n. We also provide an illuminating alternative
derivation of the OFM result by using a WKB-type asymptotic perturbation

© 2020 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/20,/023202+29$33.00


mailto:satya.majumdar@u-psud.fr
mailto:meerson@mail.huji.ac.il
stacks.iop.org/JSTAT/2020/023202
https://doi.org/10.1088/1742-5468/ab6844
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab6844&domain=pdf&date_stamp=2020-02-11
publisher-id
doi

Statistics of first-passage Brownian functionals

theory for large Pe. Finally, we employ the OFM to study the case of yu <0
(drift away from the origin). We show that, when the process is conditioned on
reaching the origin, the distribution of A coincides with the distribution of A
for © > 0 with the same |pu|.

Keywords: Brownian motion, large deviations in non-equilibrium systems,
classical phase transitions, fluctuation phenomena
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1. Introduction

Functionals of Brownian motion appear naturally in many different contexts span-
ning across physics, chemistry, biology, computer science and mathematics (see [1]
for a review). Statistical properties of the functionals of a one-dimensional Brownian
motion over a fixed time interval have been studied extensively since the celebrated
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Feynman-Kac formula [2]. Another class of functionals of one-dimensional Brownian
motion have also attracted quite a lot of attention, namely the first-passage Brownian
functional, defined up to the time of first passage of the Brownian motion, starting say
at xy > 0, to a certain point in space, e.g. the origin [1]. More precisely, let us consider
a one-dimensional Brownian motion z(t) with diffusion constant D that starts at 25 > 0
and evolves in time via the Langevin equation

dx

where n(t) is the Gaussian white noise with zero mean and the correlator
(n(t)n(t')) =2D6(t —t'). Let ¢y denote the first time the process z(t) crosses the origin.
Clearly t is a random variable that varies from trajectory to trajectory. Let us define
a random functional

A:Afmmma, @)

where U(x) can, in principle, be an arbitrary function. One is interested in computing
the probability distribution P(A|zy) that the functional A takes a specified value A,
given the starting position of the particle zy. Motivated by several physical examples
(see below), we will focus here on scale-free functionals, where U(z) = 2", with n > —2
as we justify later. Thus our object of interest is the probability density function (PDF)
P,(A|zo) that the first-passage functional

ty
A:/[ﬂM%ﬁ 3)
0
takes the value A. There are many examples where this family of functionals is of rel-

evance. For example, n = 0 corresponds to A = t;, that is the first-passage time itself,
whose exact distribution is well known [3, 4]:

2
Ty —3/2 T
Py(ts|zo) = mtf /2 exp (_4D0tf> . (4)

For large t; > x3, the PDF Py(tf|zo) has a power-law tail, Py(ts]|zo) ~ t;g/z. In con-

trast, at t; — 0, the PDF has an essential singularity Py(tf|xo) ~ exp (—Ajggtf ) Another

example concerns the case n = 1, where A = f(f 7 x(t)dt is the area swept by the Brownian
motion till its first-passage time, and its distribution was computed exactly in [5]. This
particular case n =1 has many applications ranging from queueing theory and combi-
natorics, all the way up to the statistics of avalanches in self-organized criticality [5].
For example, in the context of the queueing theory, x(¢) may represent the length of a
queue in front of a ticket counter during the so-called ‘busy period’ (say in the morn-
ing) and A represents the total serving time of the customers during the busy period.
The same functional A also appears in the study of the distribution of avalanche
sizes in the directed Abelian sandpile model [6, 7], of the area of staircase polygons
in compact directed percolation [7-9] and of the collapse time of a ball bouncing on a
noisy platform [10]. The case n = —3/2 appears in an interesting problem of estimat-
ing the distribution of the lifetime of a comet in the solar system (see e.g. [11] and the

https://doi.org/10.1088/1742-5468/ab6844 3


https://doi.org/10.1088/1742-5468/ab6844

Statistics of first-passage Brownian functionals

discussion in [1]). The case n = —1/2 appears in the context of computing the distribu-
tion of the period of oscillation of an undamped particle in a random potential, such as
the Sinai potential [12].

Given the multitude of applications for different choices of n, it is natural to ask
whether one can compute the distribution P,(A|z¢) for arbitrary n. Our first main
result in this paper is an exact solution for P,(A|x¢) for arbitrary n > —2, for which
P,(A|zo) is well behaved. As we show, P,(A|z) is given by the formula

Pu(Alzo) 1 N 1/233(1]/ v 1
wW(Alzg) === | =] —Fexp| - , vV=—7,

VETwy \ D) A P\ T DA ne2 ©)
where I'(...) is the gamma function. One can check that equation (5) perfectly agrees
with all the known solutions for n =0, n=1, n=—1/2 and n= —3/2. As one can see

from equation (5), a power-law tail at large A and an essential singular behavior at
A — 0 appear for all admissible n. In order to shed light on the nature of the essential
singularity, we employ the optimal fluctuation method (OFM). The OFM has been
successfully applied recently in several other problems, dealing with Brownian motion
pushed to a large deviation regime by constraints [13—-17]. Here we show that the OFM
reproduces the essential singularity exactly by identifying the optimal, or most likely,
path—a special trajectory of the Brownian motion that makes a dominant contribution
to the PDF P,(A|zg) at A — 0. In particular, we find that, when A — 0, the most likely
value of the first-passage time ¢ is finite for —2 < n < 2 and infinite for n > 2.

In the second part of this paper we study the same class of functionals as in equa-
tion (3), but for a Brownian motion with a nonzero constant drift,

& — bl
Eria /I OF (6)

starting at ap > 0. In equation (6), n(t) is the same zero mean, delta-correlated Gaussian
white noise as before, and p describes the drift. If © > 0, the Brownian particle drifts
toward the origin, while for p < 0 it drifts away from the origin. The relative magni-
tude of the drift and diffusion is described by the dimensionless Péclet number,
Ko

Pe = 5D (7)
For p > 0 (drift toward the origin), the particle will surely cross the origin for the first
time at a finite ¢, and we are again interested in the PDF P,(A|z,) of the values A of
the functional (3) for general n. It turns out that, for g > 0, this PDF is well behaved
only for n > —1, as we explain below. For the case of p < 0, the Brownian particle
escapes to infinity with a finite probability [3]. We briefly consider the case of i < 0 by
conditioning the process on the non-escape.

For p > 0 the PDF P,(Al|zg) of the values of the functional (3) was studied previ-
ously only for n =0, where A is the mean passage time itself [3], and n = 1, where A
represents the area under the drifted Brownian motion [5, 10]. The case of n=0 is
exactly solvable and well known [3]. In the case of n =1 it was possible to obtain an
exact solution for the Laplace transform of P;(A|zy) in terms of Airy functions [5, 10].
However, inverting this Laplace transform turned out to be extremely hard, and even
extracting the asymptotic behavior of P;(A|zg) was quite nontrivial and technical, in
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particular for large A [5]. Several papers have been devoted to extracting the large A
asymptotics and computing the moments of A for n =1 [18, 19]. For other n > —1 and
1 > 0 there are no known exact solutions (not even in the Laplace space). This is an
ideal situation where one can apply the OFM and obtain powerful new results. Here we
take this course and obtain the exact leading-order asymptotic behaviors of P,(A|zo)
both at A — 0 and A — oo, for arbitrary n > —1. In particular, we show that for n > 0
these asymptotics are given by the expressions

n+2
Zo

1
D nt2)? A A =0,
—In P, (A|xg) ~ (8)

nt2 1
g—gunﬂ Antt, A — o0,

o=

where

VA2 T(141/n) 170

o=+ D\ S a2+ 1)

9)

For n = 0 equation (8) agree with the asymptotics extracted from the exact expression
for Py(A|zo) using the fact that lim, o 5, = 1/2 [3]. For n = 1, they agree with those of
[5, 18]. The A — 0 asymptotic in equation (8) is valid for all n > —1, is independent of
w1 and agrees with the leading small-A behavior, equation (5), obtained for p = 0. The
large- A asymptotic in equation (8) is valid only for n > 0. For —1 < n < 0, the large-A
tail of P,(A|xg) presumably exhibits a power-law behavior which is beyond the accu-
racy of the OFM. The asymptotics (8) constitute the second main result of our paper.

In the weak noise limit, which corresponds to Pe — oo, see equation (7), the OFM
becomes asymptotically exact for all A. We show that in this limit —In Py (A) exhibits
a large deviation scaling of the form

A
—InP,(A) =Ped, (z) , (10)
where
n+1
— . I‘O
A=) (1)

and we compute analytically, for any n > —1, the rate function ®,(z). When n > 0, the
rate function vanishes only at its unique minimum point z= 1, that is at A = A, where
A is the mean value of A in the limit of Pe — co. In this case ®,(z) has a quadratic
behavior near the minimum point z = 1, describing typical, Gaussian fluctuations of A.
Furthermore, it diverges at 2 — 0 and z — 0o leading to the asymptotic behaviors (8).

For —1 < n < 0 the behavior of ®,,(z) changes dramatically. At z < 1 the rate func-
tion ®,,(z) continues to be nonzero, and its z — 0 asymptotic corresponds to the A — 0
asymptotic of equation (8). Remarkably, the rate function is equal to zero at all z > 1,
and we uncover a dynamical phase transition at z=1. For —1/2 < n <0 we obtain
®,(2) ~ (1 —2)* as z — 1 from below, so this dynamical phase transition is of the
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second order. However, for —1 < n< —1/2, we find ®,(z) ~ (1 —2)Y/"*) as 2 — 1
from below. Here the order of transition continuously depends on n and varies from
2 at n — —1/2 to infinity at n — —1. The order of transition is thus in general non-
integer and even non-rational. This dynamical phase transition and, more generally,
the exact rate function ®,,(z) for all n > —1, alongside with the predicted optimal paths
of the Brownian motion, conditioned on a specified A, constitute the third main result
of this paper.

Finally, we employ the OFM to study the case of p < 0 (drift away from the origin),
when the process is conditioned on reaching the origin. Here we show that the distribu-
tion of A coincides with the distribution of A for p > 0 with the same |u|.

The rest of the paper is organised as follows. In section 2 we consider the Brownian
motion with zero drift. We first obtain, in section 2.1, P, (A|zo) exactly for arbitrary
n > —2. In section 2.2 we show how to obtain the small-A asymptotics of P, (A|zy),
and explain the essential singularity, by using the OFM. In section 3 we consider the
Brownian motion with a drift toward the origin ( > 0). We start with presenting some
exact results in the particular cases n =0, 1 and 2. Then we show how one can apply
the OFM in order to compute, in the limit of Pe — oo, the exact rate function ®,,(z) for
all n > —1. In section 4 we reproduce our OFM results for ®,(z) by a different, albeit
related method: applying a variant of WKB approximation to the exact equation for
the Laplace transform of P,(A|zy). We conclude with a summary and discussion in sec-
tion 5. The case p < 0 is considered in the appendix.

2. Brownian motion with zero drift

2.1. Exact results

Here we consider the Brownian motion with zero drift as described by equation (1). In
order to compute P(A|xy) for general U(z), it is useful to consider its Laplace transform

t o0
Qp(z0) = <e_pA> = <e_p b’ U(x(t))dt> = / P(A|xg) e PAdA. (12)
0

The angular brackets (...) denote averaging over all trajectories starting at zy (this
averaging includes averaging over the history as well as over # itself). A nice prop-
erty of this Laplace transform is that one can derive a linear second-order ordinary
differential equation (ODE) for @,(x¢) by treating the starting position %y as a variable.
This is the ‘backward’ approach since one varies the position at the initial time. For a
simple derivation of this equation we refer the readers to [1] (see also [5, 20]). The main
idea, in words, is to evolve the trajectory from zy to a new starting position xg + dxg in
a small time interval dt and then keep track of how ),(z¢) evolves as a result. Skipping
details, one obtains

d*Q,

D
da?

— pU(z0) @p(x0) =0, (13)

valid for xy > 0, with the boundary conditions:

https://doi.org/10.1088/1742-5468 /ab6844 6
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(i) Qpro=0)=1 and (ii)) Q,(x¢— 00)—0. (14)

The condition (i) stems from the fact that in this case t;= 0 for a well behaved U(x),
and hence (e7? b’ Ulz®)dty 1 as z9 — 0. The condition (ii) follows from the fact that,

as xo — 00, t; — 0o as well. When A is kept fixed, the resulting PDF P(A|x), and its
Laplace transform @,(x¢), must vanish.

Notice that equation (13) is different from the Feynman-Kac equation: the latter is
a partial differential equation that involves time explicitly (since it deals with function-
als over a fixed time interval). In our case, since one sums over all possible trajectories
with different first-passage times, there is no explicit time dependence in the equa-
tion for Q,(zo).

Equation (13) can be viewed as a Schrodinger equation (with a bit unusual bound-
ary condition (14)(i) for the ‘wave function’) for a zero-energy particle, and solving it
for arbitrary potential U(x) is not possible. Fortunately, for our choice U(z) = 2", as in
equation (3), the solution can be obtained in a closed form. Here equation (13) becomes

a2Q
D p
da?

—pay Qp(ze) =0. (15)

This equation has two linearly independent solutions

q1(xo) = Vxo I, (QV\/%xgl”> and  qa(x) = Vzo K, <2V\/%ZL’§1") . (16)

where v =1/(n+2), I,(...) and K,(...) are the modified Bessel functions of the first

and second kind [21, 22], respectively, and we assumed n > —2 strictly®. As zq — oo,

¢1(xo) diverges, while g2(z¢) tends to zero. Therefore, ¢;(x¢) should be discarded. The

solution go(z) is well-behaved at zy — 0. Normalizing it so as to obey the boundary

condition (14) (i), we arrive at the desired Laplace transform
2vY L

v D
Qp(xo):Wp/2\/$_oKy<2u 51‘5), v= n> —2.

17)
The inversion of this Laplace transform looks challenging, but we succeeded in perform-
ing it by virtue of the following identity [22]:

n+2’

00 v/2
/ dz 2V te P2 =2 (B> K, (2p) . (18)
0 Y

Consequently, the Laplace inversion
- v 1 v —v—1 _—
£t [ Ko (2yAp)] = 5y AT e (19)

Hence, using the identity (19) and choosing v = (v?/D) xé/ Y one can invert equa-
tion (17) and get an exact expression for our distribution P,(A|zo), valid for all A >0
and xg > 0, once n > —2:

3For n < —2 and p > 0, the only solution of equation (15) that satisfies the boundary condition Q,(zy — 00) = 0 is
Qp(z0) = 0 leading to A = oo.

https://doi.org/10.1088/1742-5468/ab6844 7


https://doi.org/10.1088/1742-5468/ab6844

Statistics of first-passage Brownian functionals

1 \" x v / 1
P,(Alxg) = = | = ——— "), = .
(Aleo) = 775 (D) At eXp( DA™ ) YT n T2 (20)
One can check that P,(A|zg) is normalized to unity, [;° P,(Alze)dA =1 Also,
for n=-3/2, —1/2, 0 and 1, it reduces to the known results. As one can see, the

A—dependence of Pn(A\:co) in equation (20) is given by a product of just two factors: the

1 . 2$1/V
power-law factor A that describes the large-A decay and the factor exp ( 5 ),

which determines the much faster small-A decay and exhibits an essential singularity
at A — 0. The power-law factor A7"~! can be obtained by the following scaling argu-
ment. Noting that for a Brownian motion one has z(t) ~ t'/2 for large t, one obtains
for large t;

A= / t(n+2) /2. @1

Now, the distribution of the first-passage time tf for large tsscales as Fy(ty|zo) ~ 2o t; -3/ 2

see equation (4). Hence, using Py(tf|zo) dt; = P, (A|xo) dA and plugging the scaling rela-
tion into equation (21), we obtain P,(A|xg) ~ g A™V"! = g A~"F3/+2) for A — oc?,

This scaling argument however fails to account for the essentially-singular small-A
behavior, since one can no longer use the scaling relation (21) for small A. This large-
deviation-type behavior, however, is perfectly captured by the optimal fluctuation
method as we now demonstrate.

2.2. Optimal fluctuation method explains essential singularity at A — 0

When applied to the Brownian motion, the OFM essentially becomes geometrical optics
[13-17]. A natural starting point of the OFM is the probability of a Brownian path
x (t), which is given, up to pre-exponential factors, by the Wiener’s action, see e.g. [1]:

I
—lnP_S_E/O #2(t) dt. 22)

The distribution P, (A|zg) can then be written as P,(Alxg) = (0 (A — A)) where, as in
equation (12), the angular brackets denote an average over all Brownian trajectories,
starting at zy and reaching the origin for the first time at ¢, as well as over all possible
values of ¢. The delta-function can be replaced by its integral representation:

Pu(Alan) = 0(A - ) = (55 [ oo |55 (A=) ), o3)

2

where the integration over A is along the vertical axis (the Bromwich contour) in the
complex A plane. This extra piece, added to the Wiener measure in equation (22), gives
rise to an effective action functional

Sutt = % B /0 7 ) dt — A ( /0 ()t — A>] | 24)

4Tt follows from equation (20) that the mean value of A is finite for —2 < n < —1 and infinite for n > —1.

https://doi.org/10.1088/1742-5468 /ab6844 8
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Thus, one can interpret A as the Lagrange multiplier that enforces the constraint
A= A. In the regime when the effective action S is very large, the leading-order
contribution to P,(A|zo) can be obtained by the saddle point method. This requires
minimizing Segr from equation (24) (i) over all trajectories x (t) that start at z, satisfy
the condition z(t) > 0 for 0 < ¢ < t;, and arrive at =0 at time ¢, (ii) over all possible
values of t;, and (iii) over A so as to impose the constraint A = A. It is convenient to
think of S+ as of the action of a Newtonian particle of unit mass with the time-inde-
pendent Lagrangian
L'UQ

Ly(z, 1) = 5 + Az", (25)
where the first terms describes the kinetic energy, and the second term corresponds to
the effective potential V(z) = —Az". The extremal is described by the Euler-Lagrange
equation

&(t) — Ana™ 1(t) = 0. (26)

Having solved this equation subject to all constraints, we will obtain the optimal (most
likely) path of our constrained Brownian motion. The first integral of equation (26)
describes conservation of energy:

jj2
S At =E, 0<t<ty (27)

where the energy F is a constant of motion. To determine F, we minimize S in equa-
tion (24) with respect to ¢ at fixed 2y and A and obtain

-2
(7 )

Comparing equations (27) and (28), we obtain £ = 0, so that

=0. (28)

t=ty

T =", 0<t<ty (29)

By virtue of equation (29), the effective action in equation (24), evaluated on the opti-
mal path, is equal to

AA

optimal path - 2D :

Sopt - Seff’ (30)

To express A via A and 1z, we have to integrate equation (29) and obtain the optimal
path z(t), satisfying the required constraints. From equation (29) we obtain
i = V22" (31)

The equation with the plus sign, & = v2X2z"/2, must be discarded because it would
drive the path to infinity and lead to A = oo for all n. Some of the further details of
the optimal path depend on whether —2 < n <2, n> 2, or n =2, as we will now see.

2.2.1. n> 2. The solution of equation (31) that obeys the initial condition z(0) = xy,
can be written as

https://doi.org/10.1088/1742-5468/ab6844 9


https://doi.org/10.1088/1742-5468/ab6844

Statistics of first-passage Brownian functionals

(32)

Here the optimal path approaches zero only at ¢ — oco. That is, the optimal value of
the first-passage time ¢y = ooc. The constraint (3) (with time integration extended to
infinity) yields

2x6‘+2
T A+ (33)
so the optimal path, for specified 7y and A, is
2
(n—2)agt] 2
t) = 1+ ——-"—- .
() xo{ + (34)
Plugging A from equations (33) into (30), we get
n+2
_ %
Sopt - (n + 2>2DA (35)
As a result,
x8+2
Pn(A|I'0) ~ GXP(_Sopt) = exXp {—m} y (36)

and we must demand Sopt > 1 to justify the saddle point evaluation of the path int-
egral. Equation (36) correctly reproduces the leading-order singular behavior of the
exact result in equation (20). This happens when A — 0 at fixed 2y and D, or for any

A when Dz, ™™ = 0.

2.2.2. —2<n<2 Here equation (32) continues to hold, but the optimal solution
z(t) has a compact support 0 < ¢ < ty, where ¢ is a finite optimal first-passage time. In
terms of A

n

1—n
2x, 2
ty = \/_—0 (37)
VA (2—n)
The constraint (3), with integration from 0 to #;, again yields equations (33) and (34)
(where 0 <t < tf) and equations (35) and (36), in full agreement with the leading
small-A behavior of P,(A|zg) in equation (20). In terms of A the optimal first-passage
time (37) is
(n+2)A

tp= 2t 2<n<2
Ty n (38)

In the particular case n =1 the optimal path (34) is a parabola

. CL’()(SA - Qi'ot)2 . %

) ="z O0st

/A

ty (39)

https://doi.org/10.1088/1742-5468 /ab6844 10
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The parabola is tangent to the t-axis at ¢= ¢, For n =0 the optimal path (34) is a
straight line:

t
= 1—— <ttty = A
(t) = @0 ( A) L 0<t <ty (40)

2.2.3. n=2. In the special case n = 2, the solution of equation (31), conditioned on
79 and A, is
ac2t

o(t) = zge 24, (41)

so that the optimal first passage time is infinite. Here A = 23/(8A?), and the optimal
action is described by equation (35) and, again, correctly describes the singular behav-
ior of exact Py(A|zo) from equation (35) with n=2 at A — 0.

3. Brownian motion in the presence of drift

3.1. Exact results

Here we consider the Brownian motion in the presence of a nonzero drift ;1 which can
be described by equation (6). We are again interested in the PDF P(A]xo) of the first-
passage functionals of the type A = f(ff U(z(t))dt. Following the same line of argu-
ments as in the driftless case [5, 20], one can obtain, for arbitrary U(x), a second-order
ODE for the Laplace transform, Q,(zo) = [;° e ?4P(A|zo) dA:

*Q,  dQ

a2 N dx(’: — pU(z0) Qp(x0) = 0. (42)

The boundary conditions (14) continue to hold. For our choice U(z) = 2" equation (42)
becomes

d’Q d@
D p p
dxd a dz

—pay Qp(zg) =0. (43)

Unlike for p# = 0, where exact solutions could be derived for arbitrary n > —2, for © > 0
we are aware of only three exactly solvable cases for equation (43): n =0, 1 and 2, so
let us briefly consider them.

3.1.1. n=0. Here A= t;, and the solution of equation (43) with the boundary condi-
tions (14) is elementary [5, 20]:

2
0yt o (b3t T [ 15 40). @

This Laplace transform can be readily inverted to give the well-known exact
distribution of the first-passage time [3]
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Zo 1 ( t)2
————exp |[——— (2 — ,
JirDe LAy Y (45)

which is a simple extension of the driftless result (4).

Po(ts|zo) =

3.1.2. n=1. In this case, studied in [5], one obtains

By L2
5O u +4pDxo
e 2D Al (4p2/3D4/3

2
1 —B
Al <4p2/3D4/3)

where Ai(z) is the Airy function. Inverting this Laplace transform exactly does not
seem feasible. Even extracting the asymptotic behaviors of P;(A|x,) for large A from
this Laplace transform is nontrivial. This was done in [5] by employing a rather tech-
nical method (see also [18]). In contrast, the small-A behavior is easy to derive as it
effectively corresponds to the driftless case. The asymptotic behaviors of P;(A|zg) are
given by [5]

Qu(0) = / Py(Alrg) e P dA = , “6)

L A™3 exp <— i ) ) A—0,

I'(1/3)(9D)1/3 9D A
Py (Alxg) ~ (47)
1/4 - _ 3/2
()" Wb)m#”m?’“exp(— %MTVA>7 A — o0,

where the leading-order A — 0 asymptotic coincides with the corresponding asymptotic
in equation (8) for n=1.

3.1.3. n=2. To our knowledge, this case has not been studied before. The general
solution of equation (43) can be represented as a linear combination of two independent
solutions, one of which decaying at infinity, and the other growing without limit. In
view of the boundary condition (14) at xy — 0o, the growing solution must be discarded.
The remaining arbitrary constant is chosen so that the solution obeys the boundary
condition (14) at ) = 0. Skipping details, we just present the solution for Q,(zo):

4p\1/4
pag Dq [(Ep) :EO:| 1 Mz
Qp(zrog) = €D D, (0) , where ¢=—=
q

__ 48
2 8D32p’ 9

and D,(z) is the parabolic cylinder function [21]; note that D,(0) = /7 22 /T'[(1 — ¢)/2].
Inverting the Laplace transform (48) exactly looks hopeless. Once again, while the lead-
ing small-A behavior coincides with the one in the driftless case, extracting the large A
asymptotics is not easy.

We are unaware of any other case except n =0, 1 and 2, when equation (43) with
the boundary conditions (14) can be solved exactly. That is, not even the Laplace trans-
form can be determined exactly. As we will now see, here comes the real power of the
OFM. But before employing the OFM, we present one more exact result: for the mean

value of the random variable A = fotf z™(t) dt for any n > —1.
Exact mean. In terms of the Laplace transform @),(z), the mean is given by
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t d@p(zo0)
A) =my(x :</ x"tdt>=—p— ; 49
(A) 1(o) ; (t) dp  lpmo (49)
where (), () satisfies equation (43). Taking the derivative of equation (43) with respect
to p and setting p = 0, we obtain a simple differential equation for m;(z):

d?my (o) dmy (o) "

w2 M a, (50)

It has to be solved subject to the following boundary conditions: (i) m;(zo = 0) = 0 and
(if) m(zo) cannot grow faster than a power law as g — 00. The solution is straightfor-
ward, and we obtain, for n > —1,

1 X0 [e'e]
ml(xo)=5/ dxe’“/D/ y e P dy. (51)
0 T

Evaluating the double integral, we arrive at the exact result

1|zt D\"! o/ D U Zo
- - d g r( 1,—)—r 1]
my (o) M{n+1+(u> [e n+1,— (n+1)

1 n+1 . 592
:A{1+P"+1 s [eQPF(n—I—l,ZPe)—F(n—i—l)}}, n> -1, (52)

where I'(n + 1, 2) f e " u" du is the incomplete gamma function, and A is defined in
equation (11). Note that, as Pe tends to infinity, the function e?°T (n + 1, 2Pe) behaves
as 2"Pe". As a result, the exact mean value m; (o) approaches A from equation (11) as
1/Pe when Pe — 00®.

By taking higher derivatives of Q,(zo) with respect to p and setting p =0 one can
derive differential equations for higher moments and, in principle, solve them recur-
sively. However, this recursive procedure, beyond the first moment, quickly becomes
complicated. In addition, it does not shed light on the tails of the distribution P, (A|x).
We will show now how to obtain the distribution tails by using the OFM.

3.2. Optimal fluctuation method

By virtue of the Langevin equation (6), the probability of an unconstrained path z (¢)
is now given by

1 i 9
—lnP_S—E/0 (4 p)” dt. (53)

As in the driftless case in equation (24), taking into acount the constraint A = A gives
rise to an effective action

Su=g5 (3 [ @rwtae= ([orai- )] G

% As one can check from equation (52), m;(zo) diverges in the driftless case =0, or Pe = 0, in agreement with our
driftless result of section 2.1 for n > —1.
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where A\ is the Lagrange multiplier. Again, we assume a priori that there is a regime
where S is large and hence P,(A|xg) can then be estimated by the saddle point
method. This again means minimizing S.¢ with respect to (i) all trajectories starting at
79 at t =0 and ending at z= 0 at ¢t = ¢; while staying positive in between, (ii) all pos-
sible values of t;, and (iii) all A so as to impose the constraint A = A. Once the optimal
path is found, the distribution P,(A|z,) can be evaluated from the optimal action
—In P, (A|xg) = Sopt = Sett (55)

optimal path )
The presence of the p-term alters neither the Euler-Langrange equation,
#(t) — dna™ Ht) = 0, (56)

nor the energy integral

j72
5 Ax" = E = const. (b7)
For zero drift, the energy F was zero. For p > 0, it will be nonzero as we will see
shortly. As in the driftless case, E is determined from minimizing Se in equation (54)
with respect to ¢ for fixed 2y and A. This minimization gives a condition that we will

use shortly:

1. 2 n
5 @+, =" (ty) =0, (58)
Before proceeding further, let us remark that for A = 0 the process is unconstrained,

and the optimal path—the ballistic trajectory
x(t) = xo — pt (59)
—is unaffected by the noise. In this case

)

T _ g 1
nnt 1) ) n > ) (60)

zo/p
A:/ (xg — pt)" dt =
0
where A is defined in equation (11). This is thus the mean value of A in the limit of
Pe — 00, as we also obtained from the exact result (52). Let us first consider the case
n > 0, where equations (57) and (58) suffice to determine the energy E of the effective
Newtonian particle.

3.2.1. n> 0. In this case 2"(tf) = 0, and it follows from equation (58) that

i‘t:tf =K. (61)
Then, using equation (57) at t = t;, we obtain £ = u?/2. As a result,

iZ M2

5~ Az"(t) = 5 forn>0 and 0<t <ty (62)

Once the energy is fixed, the optimal path z(¢) and the optimal first-passage time ¢; can
be determined by integrating the first-order ODE (62) with the boundary conditions
2(0) = 25 and a(ty) = 0, while A is set up by the constraint A = A. For a general n> 0
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the optimal path cannot be expressed in explicit form. However, it is possible to evalu-
ate the optimal action Sop as a function of A in a parametric form, where the Lagrange
multiplier plays the role of the parameter.

Let us first express the effective action in equation (54) for the optimal path as a
function of A and #. Expanding (& + p)? and using equation (62) and the condition
»(ty) = 0, we obtain

Sopt = % (—pao+p°ty + XA) . (63)
When p = 0 equation (63) reduces to equation (30) for the driftless case. Our goal now
is to express A and the optimal value of ¢;in terms of A and the parameters D, u and .
The nature of the optimal trajectory depends on the parameter A. Consider first A > 0,
where the effective potential V' (x) = —Az™ is negative for all z > 0. Here the effective
Newtonian particle with fixed energy F = u?/2, that starts at zyp > 0 can reach =10
only if it moves monotonically toward 0. The situation is different for A < 0. Note that
the A cannot be arbitrarily negative, since that the particle energy E = u?/2 cannot be
smaller that its potential energy. Using equation (62) at ¢ = 0, we see that A cannot be
smaller than —\., where

12

= n.
2§

A (64)
Now consider —A. < A < 0. In this case, the potential V' (z) = —Az" is positive for
x> 0, and there are two possible solutions for x(¢) with the same A: a monotone decreas-
ing one and a non-monotone one. For the non-monotone solution z(t) first increases
until it reaches the reflection point z,, = (2u%/|A|) /", where @ = 0, gets reflected and
decreases to zero. For the same A the non-monotone solution yields a larger value of A
than the monotone one. Figure 1 depicts the dependence of A on A, which is described
by equations (71) and (81) below, in the particular case of n = 1. One can see the lower
branch of the A(\)-dependence (branch 1), and the upper branch (branch 2). We now
compute the optimal action (63) separately for branches 1 and 2.
Branch 1: —\, < A < +o00. Here we have only monotone trajectories with < 0, see
the left panel of figure 2. Hence, from equation (62), taking the negative root, we have

d
SNy ) (65)

i
Integrating this ODE from ¢ = 0 to ¢ = ¢; subject to 2(0) = 7y and a(¢;) = 0, we obtain

o / o dx

= V2 + 2 (66)
It is convenient to define the dimensionless parameter

a= <. (67)

For branch 1 we have —1 < a < +00. Rescaling z = o« in equation (66), we obtain
zo [* du

tr= _—
d o Jo 1+aur

=N R1/2,1/n1+1/n,—a); —1<a<oo, n>0 (68)
1
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30
25
20

=15

10

0
—1 0 1 2 3
A,

Figure 1. A/A versus \/)., as described by equations (71) and (81) for n= 1.
For fixed A >0 there is only one solution for the optimal path z(t) and A,
corresponding to the lower branch (branch 1). For —A. < A <0 there are two
solutions, corresponding to the lower and upper branches (branches 1 and 2),
denoted by the blue and orange lines, respectively.

where 9F)(a,b,c, z) is the hypergeometric function [22]. Now we express A via a from
equation (67):

o oo dt o " dx
A:/o x(t)dt—/0 x™(t) a‘dx— i (69)

NOY A

This can be recast as

u™ du rptt

i Jo Vitaw  p(n+1)

For a = 0 equations (68) and (70) yield the unconstrained (noiseless) values t; = /1,
and A= A from equation (60), respectively. Introducing the dimensionless variable
z = A/ A, we rewrite equation (70) as

A
ZZZ:2F1(1/2;1+1/"72+1/n7_a)- (71)

n+1 1
)

A= oF1(1/2,1+1/n,2+1/n,—a); —1<a<oo. (70)

The limiting value a = —1 corresponds to
I'(2+4+1/n)

ze=2(a=—-1)=9F1(1/2,1+1/n,2+1/n,1) = ﬁm

(72)
Hence branch 1 is valid for 0 < z < z.. Plugging the expressions for ¢ from equa-

tion (68) and z = A/A from equations (71) into (63), we see that S, can be written in
the scaling form

A
Sopt = Pe (1)7(11) (Z) ) (73)

where the scaling function for branch 1, (I)S)(Z), is given in a parametric form by the
equations

https://doi.org/10.1088/1742-5468/ab6844 16


https://doi.org/10.1088/1742-5468/ab6844

Statistics of first-passage Brownian functionals

1.0 1.0 2.0
08 0% 1.5
<06 206 -
04 0.4 = 10
0.2 0.2 0.5
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 6 7
Ht/xo Ht/xo Ht/xo

Figure 2. Examples of the optimal paths x(t) corresponding to the branch 1 (the
left panel) and branch 2 (the right panel), see the main text. At A\ = —\. (the
middle panel) # vanishes at ¢=0. In these examples n=1, so that z(t) is a
parabola.

2 =5F(1/2,141/n,2+ 1/n, —a),

oM = 14 ,R(1/2,1/n,1+1/n, —a) + —2 (74)

with the parameter —1 < a < oo. The limiting behaviors of CID%U(Z) as z — 0 (that is,
a — 00) and z — 1 (that is, a — 0) are the following:

2(n+1)

CES)EEL z — 0.
O (2) ~ (75)
sl (z— 12, z— L

Plugging the z — 0 asymptotic from equations (75) in (73) and using equation (55)
leads to the first line of equation (8) of the Introduction; it is independent of the drift
p. In its turn, the z — 1 asymptotic in equation (75) describes a Gaussian behavior of
P, (A|zo) near its mean value A = A:

—In P, (Alzg) = Sopt (|JA — A < A) =~ 2+ Dp” (A-A)", (76)
0

with the variance 02 = 2 D 25""!/(2n + 1)u®. Notice that o /A scales as 1/v/Pe, as to be

expected for small Gaussian fluctuations.
Branch 2: —\. < A < 0. Here #; and A come from two trajectory segments (see the
right panel of figure 2), which are governed by the equations

d
d_f:‘/gmwrm, 0<t<tm, (77)
d

d_gt;:_\/z/\anru?, 0<t<tp, (78)

where t,, is the reflection time of the Newtonian particle from x = x,,, = (2u%/|A|) /™.
We obtain

Lm dz /zm dz
ty = 4
/ /x Vw12 Jo o+ 2 (79)
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Using the same notation and rescalings as for the branch 1 (but —1 < a < 0 now), we
can rewrite equation (79) as

x92B(1/n,1/2) — B_,(1/n,1/2)
G n(—a)'/" ’
(80)
where Bla,b] = [ y*~' (1 —y)**dy is the incomplete beta function (with z < 1) and
Bla, b] = Bi[a,b] is the standard beta function [22].
The calculation of A is very similar, therefore we give only the final result for it.
Similarly to the branch 1, the rescaled quantity z = A/A can be expressed as

et [
! wolJy 14+ aun 0 V14 au?

A n+1 4l 2ﬁF(1+1/n)
_ 2 _o) —B_.(1+1/n,1/2)|, -1 0.
Sl Sl ) { L(3/2 1 1/n) (1+1/n,1/2) Sos (81)
When a approaches its minimum value a = —1, z approaches z. (given by equation (72))

above, therefore the branch 2 is valid for z > z.. Substituting ¢;and A = z A into equa-
tion (63), we obtain

A
Sopt = Pe @) (j) ; (82)

where @512)(2') is defined parametrically by the equation

1, . [2Va0(1/n) a
P2 = 14 —(—a)"V/m{ XL B [1/n,1/2 —_— 83
and equation (81). Although the solutions for the rate function ®,(z) for z < 2z, and
z> z. come from two different branches, the function ®,(z) is analytic at z = z, for all
n> 0.

The z — oo asymptotic of (ID%Z)(Z) is achieved in the limit of a — 0, and we obtain

®7(12)(z S o0) = (2,1/71 Zc)n/(n+1) /(1) (84)

Using this result in equation (73), we obtain from equation (55) the asymptotic result,
presented in the second line of equation (8) in the Introduction.

For some values of n the special functions in equations (81) and (83) become elemen-
tary functions. A simple and instructive case is n = 1. Here equations (81) and (83)
become

(8 —4a)vVa—+1+38

z = ;

3a? (85)
(D(Q) _ _(a+4)\/a—|—1—|—3a+4
! 3a '
Eliminating a, one can obtain the explicit rate function
2
Dy(2) = 0 [(1+32)*2 -9z +1], (86)

which in fact holds for all 0 < z < co. Figure 3 shows the plot of ®;(z).
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3.2.2. — 1< n<0. Dynamical phase transition. For —1 < n < 0 the OFM predicts a
dramatic difference between the regimes of A < A and A > A. Remarkably, for A > A
the rate function ®,(z) is equal to zero. Indeed, to achieve an arbitrary large A, the
particle can follow the zero-action noiseless path (59) almost until ¢y = zo/p. Arbi-
trarily close to ¢, when x(t) is already very close to zero, we can change the path a
little, and make the functional (3) arbitrary large. The resulting action can be made
arbitrary small. For A < A the action is nonzero, and we will calculate it shortly. These
calculations will show that the system exhibits a dynamical phase transition® at A = A.

Let us determine the optimal path and the action for A < A, and start with deter-
mining the energy F of the effective Newtonian particle. For —1 < n < 0, x,,(ty) diverges.
Therefore, instead of equation (58), we will use a different argument. Let us express A
in terms of £ and A\. For n <0 and A < A, the optimal path z(#) must be monotone
decreasing, so the energy integral (57) yields equation (65). As a result,

o dz z™

A:/O [z()]" dt = i \/ﬁ (87)

At A = 0 the optimal path is noiseless, and equation (87) must give A = A, as in equa-
tion (60). This leads to E = p?/2 as in the case of n > 0. Equation (63) remains valid
here, and we need to express A and the optimal value of ¢ through A, D, y and .
Since A < A, A must be positive (see equation (87)). Figure 4 shows the dependence of
A/A on a = \/)., which is described by equation (90), in the particular case n = —2/3.

To reach =0 the particle must move toward z= 0 from the start, and we again
arrive at equations (65) and (66), although for n < 0 the final expressions are different.
Introducing u = z/7 and a = 2z} /u?, we obtain

11 1 “Unp(A-4T(142
2F1(_,_;1+_;_a)—a (2 ") ( ”) ;7 0<a<oo, —1<n<O.
2'n n N3
(88)

Zo

te = =
T

Now we express A via a from equation (87) with E = pu?/2:

ty xo nd
A:/ 2 (t)dt = -
0

0 2z + 2 (89)

In terms of the dimensionless variable 2 = A/A, equation (89) gives

A 2n+1) <1 n+21 1 1

5’—7’2‘5;—5)’ Veest (90)

A migya
Plugging the expressions for ¢ from equation (88) and z = A/A from equations (90) into
(63), we can represent Sope (and hence —In P, (A|zg)) in the scaling form
A

—1In Pn(A|I()) ~ Sopt = Pe q)—1<'n<0 (Z - E) ) (91)

where the scaling function ®_;.,.0(z) is given in a parametric form by equation (90)
and the equation

6 A sharp transition occurs only in the limit of Pe — co. We expect that at finite but large Pe, the transition is
smoothed on a narrow interval around A = A, the width of which scales as a negative power of Pe.
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Figure 3. The rate function ®,(A/A), described by equation (86).

(92)

=l/np(l _ 1\ (141
@—1<n<0:—1—a (2 ") ( +") +o F) (1 1 1 )+2az(a)

Sl —ial) F o
NZ3 2'n n ¢ (n+1)

where 0 < a < co. Let us recall that, z = A/A — 0 corresponds to a = 2\ /u? — oo,
while z — 1 from below implies a — 0, as in figure 4. As A increases from 0 to A, A
decreases monotonically from oo to 0 for all —1 < n < 0.

What happens at A > A? We note that A cannot be negative for —1 < n < 0: oth-
erwise, the effective potential energy —\z" would go to plus infinity at x — 0, making
the arrival of our finite-energy Newtonian particle at z = 0 impossible. Therefore, as A
increases beyond A, A\ must stick to its value at A = A, which is zero. Since A = 0 cor-
responds to a noiseless classical path as in equation (59), we obtain S, = 0, and the
rate function vanishes identically, as we already argued above.

Thus summarizing, for any —1 <n <0 at large Pe = uz,/2D, the distribution
P,(A|zo) exhibits the scaling form

A
—In P,(A|zg) ~ Pe ®, (z = z) , (93)
with the rate function
O (2), z2<1, (94)
) _ n
(2) {o, — (95)

where @, (z) is nontrivial and is given parametrically in equation (92). In the next sec-
tion we will show that @, (z) vanishes as (1 — z)* as z — 1 from below, with an n-depen-
dent exponent «,,. For —1/2 < n < 0, we will obtain «a,, = 2, while for -1 < n < —1/2
an = (1 — 2)Y/+1), The non-analytic behavior of ®,(z) at z= 1 implies a dynamical
phase transition, as announced in the Introduction.

The asymptotic of ®_;.,¢(z) as z = 0 (that is, a = 00) coincides with that given
by the first line in equation (75).

As before, it is instructive to consider specific values of n for which the hypergeo-
metric functions in equations (90) and (92) become elementary functions. An especially
simple case if n=—2/3, when equations (90) and (92) yield z(a) = /1 + a — v/a and
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Figure 4. z = A/A versus a = A/, where A, =p?/(2zf), for =1 <n <0 and
A < A as described by equation (90). Here for any A\ >0 there is only one
solution for the optimal path x(¢) and A. The specific example is n = —2/3, where

z=+1+a—+/a.

®_s/5(a) = (1/2) [a¥? + (2 — a)v/1 + a — 2], respectively. Eliminating a and recalling
that ®_1<n<o = 0 for z > 11, we obtain an aesthetically beautiful elementary expression

(1-2)°(=+43)
P_y/3(2) = {O & v~ i 1’ Eg?;
’ <z 1

depicted in figure 5. It describes a dynamical phase transition of the third order at
z=1.

4. &,(z) via WKB approximation

In this section we provide an alternative perturbative derivation of the rate function
®,,(2) for all n> —1 in the large-Pe limit, starting from the exact differential equa-
tion (43). The method we use here is a variant of the dissipative WKB approximation
[23]. We will see that it reproduces exactly the OFM result for all n > —1 in the large
Pe-limit. Moreover, it provides a different representation of the rate function ®,(z)
which is somewhat easier for the asymptotic analysis near z =1 to determine the order
of the dynamical phase transition at z=1 for —1 < n < 0.

Our starting point is the exact differential equation (43) satisfied by the Laplace
transform @), (x¢). We start with the scaling ansatz (as anticipated from our OFM
analysis in the previous section)

_pag o (A O
P.(A) exp{ 2D<I>n(A>], A_u(n+1)’ (98)

o0

in the Laplace transform Q,(xo) = [, e 4 P,(A)dA. We obtain, up to pre-exponential
factors,
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(98]

D_r3(2)
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z

Figure 5. The rate function ®_5/3(2), as in equations (96) and (97), for the
Brownian functional A = [}/ [2(¢)]"2/3dt. This system exhibits a dynamical phase
transition of third order.

- A
Qp(g) ~ /0 dA exp [—pA — % P, (Z)}

N/o dz exp{—% [¢n(2)+cp$gz]}7 c=

9D (99)
p2(n+1)
When the Péclet number Pe = px/2D is large, we can evaluate the integral in equa-

tion (99) by the saddle point method, while keeping the product u = cpzy fixed. This
gives us the scaling ansatz in the Laplace space, for any n > —1:

Qp(0) ~ exp [—% W (u = cpx(f)] : (100)
where the scaling function ¥, (u) is given by the Legendre transform

U, (u) = mzin [uz+ ®,(2)] . (101)
Conversely, once V¥, (u) is known, we can extract ®,(z) via the inverse Legendre
transform

d,(2) = max [—uz+ U, (u)] . (102)

Our immediate task, therefore, is to determine W, (u) from equation (43) for Q,(x).
Seeking the solution in the eikonal form

Qo) = e~ w020 (103)
we obtain an exact equation for s,(x):
1 1
—§Dsg(aco) - Z[s;(xo)]z + gs;,(:vo) — Dpzj = 0. (104)

The WKB approximation is again based on the large parameter Pe — co. In the lead-
ing WKB order [23] we can neglect the second-derivative term in equation (104) and

express s, () via 7y from the ensuing quadratic equation for s, (z)":

sp(T0) = —p + \/p? + 4Dpap. (105)

https://doi.org/10.1088/1742-5468 /ab6844 22


https://doi.org/10.1088/1742-5468/ab6844

Statistics of first-passage Brownian functionals

Integrating this first-order equation, we obtain
x0
sp(wo) = —pao + / vV #* +4Dpag da. (106)
0

Comparing equations (100) and (103), we obtain ¥, (u) = s,(x¢)/(uxo), where 2y should
be expressed through v = cpzj. As in the OFM, the calculations in the cases n >0
and —1 < n < 0 are slightly different, and we perform them separately®.

41.n>0

Here equation (106) yields, after rescalings,

U, (u) =—-1+ ﬁ / VIt2m+ Do va tdo=—1+4,F [-1/2,1/n,1+1/n, -2 (n+ 1) u].
0
(107)
As a result, the rate function ®,(z) is given by

Q,(z) =max {—uz—1+F [-1/2,1/n,1+1/n,—2(n+1)u|}, n=0. (108)

This expression is more compact than, but equivalent to, equation (74) that we obtained
by the OFM. The two branches, which played a prominent role in section 3.2, appear
here in the form of two different zeros of the wu-derivative of the function inside the
curly brackets in equation (108). Finally, we included n = 0 in the applicability domain
of equation (108) because

7131}1(1) Uo(u) = =1+ V14 2u, (109)
and, as one can check,
(z —1)?
By (z) = max <—uz—1+\/1—|—2u>:2—, (110)
u z

which coincides with the large deviation function in the exponent of the exact expres-
sion (45) for Py(ts|xo).

4.2. — 1 < n < 0. Dynamical phase transtion

In this case equation (106) yields
1 > 1
q;n(u):_1_m/u V1+2((n+1)v e tdo

B(n + Luzhy [_%’ 5wy _2(n-1+1)u]
+

n+2

1 (111)

)

" When solving the quadratic equation, we should discard the solution with the minus sign, to avoid a divergence
of Qp(zo) at zo — oo.

8 For n =0 the WKB result for Q,(x), described by equations (103) and (106), is exact and coincides with equa-
tion (44). Here s,(x¢) is proportional to x, and the neglected term with s} (x) in equation (104) vanishes identi-
cally.
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and the rate function is

1 1 1.1 1. 1
8(n+ Duaky [—5’ Ty T T w —m}

(IDn(z)zmgx —uz—1+ , —1l<n<O0.

(112)
As u — 0, the leading-order asymptotic of ¥,,(u) is u. The corresponding leading-order
asymptotic of the function —uz + ¥, (u) is (1 — 2)u; it is positive for z< 1 and nega-
tive for z> 1. As a result, the function —uz + ¥, (u) has a local maximum at some
u = u(z) > 0 only when z < 1. For z > 1 the maximum is always achieved at v = 0, and
the maximum value is zero. Therefore, in full agreement with the OFM results of sec-
tion 3.2.2, the rate function ®,(z), as described by equation (112), is nonzero at z < 1
and zero for all z > 1:

o -(2), z2<1, (113)
Pn(z) = {0, 2>1,  (114)

where the function @, (2) is given in equation (112). One can show that equation (112)
and the OFM result, described by equations (90) and (92), are exactly equivalent.

Order of the dynamical phase transition. To determine the order of the dynami-
cal phase transition at z = 1, we should extract the leading-order asymptotic of ®,(z) at
1 — 2z <« 1. This asymptotic corresponds to the u — 0 asymptotic of the function ¥, (u)
from equation (111) which includes the leading linear term and the first subleading non-
linear term. The latter asymptotic depends on whether 1/2 <n<0or —1 <n< —1/2:

(n+1)? 1
U, (u—0) = U= g Wty —p<n <0, (115)
u—Copu™n ..., —l<n<-—3, (116)

where

L1+ 3)T(-4-1)

2% /m(n + 1)x arn

In the marginal case n = —1/2 we obtain a quadratic subeading term with a logarith-
mic correction:

n

1 1
W_y/9(u—0) :u_é_qu In <—) +....
" (118)
At —1/2 < n < 0 we use equations (112) and (115) to obtain
_ (2n+1) 5
d ~—= (1 — 1-— 1. 119

This expression describes small one-sided Gaussian fluctuations of A < A. For
all —1/2 < n < —0, the rate function ®,(z) is continuous together with its first deriva-
tive at z= 1. The second derivative has a discontinuity, so the dynamical phase trans-
ition in this case is of second order.
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For —1 < n < —1/2, we use equations (112) and (116) to obtain, close to z=1,

_ 1w 1 1 1\ 1
O (1-2<1)~ om [F (2 + ﬁ) r (—5 — 5)} (1 —2)=+1.  (120)
In this regime small fluctuations of A around the mean value A are non-Gaussian.
Furthermore, the order of the phase transition at z= 1 now continuously depends on
n. As n varies from —1/2 to —1, the order of transition continuously increases from 2
to infinity. In general, it is non-integer and not even rational. This intricate behavior
is quite remarkable.

In the marginal case n = —1/2 we use equations (112) and (118) to obtain, to lead-
ing order
_ (1—2)2
o ,(1-2x]) ~ ——=. (121)
/ In ()
Finally, using the u — oo asymptotic of equation (111),
2y/2(n+1)u
v, (u— ~
(u — 00) —— (122)

and equation (112), we checked that, to leading order, the A — 0 asymptotic of
—In Py(A, z) is equal to v2zy” /(DA), in agreement with the exact result (5) obtained

for p = 0.
In the particular case n= —2/3 the calculations simplify dramatically. Here we
obtain

1
Vogpalu) = g <2ux/6u 9 —2vV6u*? 4 3v6u+ 9 — 9) ,
(123)
and the maximization in equation (112) yields equations (96) and (97) of section 3.2.2.

5. Discussion

In the first part of the paper, we studied the distribution of the functional A = fot Ta™(t) dt,
where x(t) represents a Brownian motion with diffusion constant D, starting at zp > 0,
and t; represents the time of the first-passage to the origin. We computed the PDF
P, (A|xg) = Prob.(A = A) exactly for all n> —2, when this PDF is well defined. The
PDF exhibits an essentially singularity as A — 0 and a fat tail ~ A=(+3)/(n+2) 55
A — o0o. We complemented our exact analysis by employing the OFM. In OFM, one
seeks the optimal path that minimizes the effective classical action. The latter yields
(the minus logarithm of) the PDF in the leading order. As we showed, the OFM cor-
rectly reproduces the leading essential singular tail at A — 0. The OFM, however, can-
not be used for a description of the fat tail for large A. This is because the power-law
behavior for large A arises from the contributions of many competing stochastic trajec-
tories, and there is not one single optimal path that would dominate this tail. An added
value of the OFM analysis, when it applies, is a detailed prediction of the optimal path
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that is not readily available in the exact method. The optimal path gives an instructive
visual insight into the nature of large deviations in the system. It would be interesting
to observe the optimal path in experiments/numerical simulations.

In the second part of the paper we studied the PDF P, (A|z) of the same functional
as above, but now z(t) is a Brownian motion with a nonzero drift p. In this case the
PDF is well defined only for n > —1.

For a drift toward the origin (1 > 0), an explicit result for the PDF P, (A|xg) is
available only for n=0. It is here where the OFM becomes an invaluable tool, and
not just a complementary technique: it allows to determine the tails of P,(A|x,) for
any n > —1. The OFM results can be understood in terms of the dimensionless Péclet
number Pe = pzq/(2D) that shows the relative role of the drift and diffusion. There are
two important aspects of the OFM results for P, (A|x):

e For arbitrary Pe, OFM correctly predicts both tails of P,(A|zg): A — 0 and
A — oco. In the former case one again finds essential singular behavior as in
the driftless case. In the latter case P,(A|zo) has a stretched exponential tail,
—In P,(Alxg) ~ AV for n > 0.

e For large Pe, OFM captures the exact PDF P,(A|xg) for all A. In this case
we showed that —In P,(A|zg) = Pe®, (z = A/A) with A=a{*"/u(n+1). We
computed the rate function ®,(z) analytically.

We have also shown that the OFM results can be reproduced by an alternative asymp-
totic perturbative theory—the dissipative WKB approximation. While the OFM can
be viewed as a WKB approximation in the ‘real space’, the second method is analo-
gous, due to a Legendre transformation involved, to a WKB approximation in the
‘momentum space’.

One interesting conclusion of our large-Pe analysis is that, for —1 < n <0, the
function ®,(z) is non-analytic at z=1 thus describing a dynamical phase trans-
ition. Remarkably, the order of this transition depends on n—while it is second order
for —1/2 < n <0, the order is 1/(n + 1) for —1 < n < —1/2. A sharp transition, how-
ever, occurs only in the limit of Pe — co. We expect that at finite but large Pe, the
transition is smoothed on a narrow interval around A = A, the width of which scales
as a negative power of Pe.

We remark that the mechanism behind the dynamical phase transition with vary-
ing order of the transition at —1 < n < —1/2 is very different from the mechanism of
similarly looking singularities in the rate function describing the free energy in a class of
multicritical matrix models [24-29] (see also [30] and [31] for slightly different perspec-
tives based on extreme statistics in matrix models). In the latter case the order of the
phase transition near the so-called double scaling limit can also be varied by varying
the degree of the polynomial describing the matrix potential. In our case, however, the
transition occurs in a much simpler setting of a single particle.

Finally, we employed the OFM to study the case of ¢ < 0 (drift away from the ori-
gin), see the appendix. We showed that, when the process is conditioned on reaching
the origin, the distribution of A coincides, in the limit of large Pe, with the distribution
of A for p > 0 with the same value of |u|. In the case of n =0 this duality between the
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two settings is known to be exact, that is to hold for any Pe [32]. It would be interest-
ing to see whether it is also exact for n # 0.
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Appendix. Outward drift

For outward drift, u < 0, the probability that the particle ultimately reaches x =0, is
[3]

Py=e "B = o2 (A1)
Suppose that the Péclet number

ED

Pe — D (A.2)
is much larger than 1. Then the probability (A.1) of ever reaching zero is exponen-
tially small. Still, one can ask a similar question about the probability density of the
Brownian functional A from equation (3) when the process is conditioned on reach-
ing x= 0. Within the framework of the OFM, this conditional probability density is
equal to the ratio of the probability densities of two different optimal paths: with and
without the constraint A = A. Equivalently, the optimal constrained action is equal to
the difference of the actions of the optimal paths with and without the constraint. For
completeness, we first show, within the framework of the OFM, that the unconstrained
action is equal to 2Pe in agreement with the exact result (A.1). In the absence of con-
straint on A, the Euler-Lagrange equation (56) becomes simply # = 0. Its solutions,
obeying the initial condition 2(0) = xy and the condition of reaching z = 0 at some time
t;, can be written as z(t) = x¢(1 — t/ts). The unconstrained action is, therefore,

1 [t ) 1 (%[ 2 1 /(2
- L[ dt = — [ (o dt = — (0 4 12— 2ay) . (A-3)
S 4D/0 (& + ) 4D/0 ( tf+u> 1D (tf+“ f /mo)

Now we should minimize this expression with respect to the first-passage time t;. The
minimum value of Sis achieved at ty = x¢/|u|: the optimal unconstrained path describes
ballistic motion with the velocity equal to the minus deterministic drift velocity. The
resulting optimal unconstrained action, as obtained from equation (A.3), is equal to
|p|xo/ D = 2Pe, as to be expected from equation (A.1). Notice that the corresponding
optimal unconstrained value of A,

n+1
)

Ay= —0
RRPICREY

(A.4)

coincides, up to the change y — |p|, with A from equation (11).
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Now we should find the optimal path constrained by A = A. The Euler-Lagrange
equation (56), the initial condition 2(0) = xy and the constraint A = A do not depend
on . The p-dependence comes only from the value of the energy E of the effective
Newtonian particle in equation (57). As one can show, it is equal to E = u?/2 as before®.
The offshoot is that, for a fixed A, the optimal path for i < 0 coincides with the optimal
path for ¢ > 0 with the same |u|- As a result, A as a function of the Lagrange multiplier
A in the two problems with the same || is exactly the same.

The optimal actions in these two problems, S, and S_, (where u < 0), are of course
different. Let us evaluate their difference. We have

ty ty ty
S”_S_”:;D/O (& + p)? dt—i i (& — p)? dt:41D/0 2ux2¢dt:%:2f’e, u<0.
(A.5)
Therefore, S, = S_, + 2Pe. After subtracting the unconditioned action—which is also
equal to 2Pe—we arrive at

A
~InPHr<Y(A)~ S , =Ped, (A_o) : (A.6)

where Pe is defined in equation (A.2), and ®,(z) was calculated in section 3.2.1 for
n >0, and in section 3.2.2 for —1 < n < 0. That is, all our results for the rate func-
tion in the case of favorable drift (the asymptotics, the dynamical phase transition
at —1 < n < 0, etc) also hold for the unfavorable drift with the same value of |u|, if the
latter process is conditioned on reaching z = 0. In the particular case n = 0 this duality
has been previously established (exactly, that is for any value of Pe) in [32].
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