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ABsTRACT: In this paper, The Multi-Objective Genetic Algorithm (MOGA) is employed to optimize
a low-beta lattice for the storage ring of the Iranian Light Source Facility (ILSF) [1]. This technique
is based on tracking particles to select the working tune points and the appropriate sextupoles
strengths, which in turn improve Dynamic Aperture (DA) and Momentum Acceptance (MA). In
addition, we utilize Frequency Map (FMA) and tune scan to optimize MOGA results. Furthermore,
the effect of multiple errors due to magnetic elements and Insertion Device (ID) is studied in the
ILSF storage ring and the details of beam parameter variation because of the errors and an in-
vacuum undulator are discussed. The results show that by applying the MOGA, DA and Toscheck
lifetime improve.
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1 Introduction

Iranian Light Source Facility is the 4™ generation synchrotron light source in the design stage.
ILSF storage ring lattice is a five bend achromat lattice with a circumference of 528 m and natural
emittance of 270 pm-rad. There are two proposed lattices for the ILSF storage ring, the existing [2]
and the low-beta lattice. In this paper, the low-beta lattice will be described and optimized for the
ILSF storage ring, which is actually high- and low-beta lattice. The high beta straight is suitable for
injection, and the low beta straight for ID to improve brightness. To meet the user’s demands [3]
in the future, i.e. providing high brilliance photon source and a beam with a small emittance, is
necessary. In order to increase brightness in the low-beta lattice, the betatron functions in some
straight sections should be decreased. Also, the efficient way to minimize emittance is to adjust
quadrupole strength to obtain the minimum emittance, which is achieved by OPA [4] in the low-beta
lattice. As a result, the emittance remains constant in comparison with the existing lattice, the optic
function, and the main parameters of these two lattices are shown in figure 1 and table 1. Figure 1b
shows that the low-beta lattice includes 9 families of quadrupoles and 10 families of sextupoles
with a symmetric mirror structure that the ILSF storage ring constitutes by 10 low-beta supercells.
The significant change in the low-beta lattice is the horizontal beta function which decreases in
the long straight section of the low-beta lattice. In addition, because of different types of straight
sections (short and long) in the low-beta lattice, the periodicity reduces to 2. The first modification
improves the brightness of the emitted photon from Insertion Devices (IDs), the comparison of
the brightness from ID in the existing and the low-beta lattice is illustrated in figure 2. However,
in virtue of strong sextupole magnets and decreased supersymmetry from 20 to 10 in comparison
with the existing lattice, the low-beta lattice has a weak performance with small DA, MA, and poor
injection efficiency.
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Figure 1. Twiss parameters in the existing and the low-beta lattice by assigning the location of sextupoles.

The Genetic Algorithm (GA) has been applied to improve the parameters of the low-beta lattice.
This algorithm has been used in a wide range of engineering and industrial applications. GA also
has been employed in the accelerator field since 1992 [6], to optimize the injector design of Cornel
energy recovery linac-based light source [7] or to improve the laser parameters for a photoinjector
gun [8-10]. It has been applied to balance design and operating costs of a superconducting rf,
too [11, 12]. It also has a role in optic optimization in advance photon source [13] and free-electron
laser applications [6].

In sections 2 and 3 of this paper, we will address briefly non-linear theory and genetic algorithm.
In section 4, we introduce the low-beta lattice in more details, while in section 5, the optimization
results are discussed. Also, in section 6, we will study different types of errors and the effect of
insertion device on the different parameter of the machine. Finally, we summarize the results in
section 7.



Table 1. Main parameters of both lattices.

Parameters Unit | Existing Lattice (EL) | Low-beta Lattice (LBL)
Beam Energy GeV 3 3
Natural horizontal beam emittance pm-rad 270 276
Lattice structure - 5SBA 5BA
Number/length of straight sections -/m 20%7.0 10%6.87/10*%6
Natural energy spread - 6.80 x 107* 6.80 x 107#
Momentum compaction factor - 1.82x 1074 1.904 x 107#
2nd order Momentum compaction factor - 3.82x 107 2.99 x 107
Tune(Q«/Qy) - 44.16/16.22 46.27/17.32
Natural chromaticity (H/V) - -107.79/-61.45 -99.301/-64.623
Horizontal damping partition J - 1.38 1.40
RF frequency MHz 100 100
Coupling %o 1.0 1.0
Beam size at the straight section (H/V) pwm 68.92/2.96 61.30/3.30
Beam divergence at the straight section (H/V) | urad 3.87/0.90 4.52/0.83
Maximum beam current mA 400 400
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Figure 2. Comparison of the brightness from ID in the existing and the low-beta lattice. The calculation is

done by SPECTRA [5].

2 Theory of nonlinear beam dynamics

In the course of the preliminary optimization, we have used 10 different families of sextupoles in
the low-beta lattice. The following Hamiltonian can explain the nonlinear effect of the sextupoles

on the motion of particles [14]
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where p,/, is the momentum of a particle, b, and b3 are quadrupole and sextupole magnetic
field component respectively, and ¢ is momentum deviation. Also, Z(x3 —3xy?) demonstrates sex-
tupoles’ Hamiltonian, and %(x2 +y?) represents Hamiltonian of quadrupoles. Eq. (2.1), is expanded
up to third order, for higher-order multipoles Hamiltonian, the expansion should be continued.

Applying the perturbation theory, the first order Hamiltonian in the presence of quadrupoles
and sextupoles can explain by Resonance Driving Terms (RDTs) as below

Nsext jtk  lim . .
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that j, k, and [ are the integer numbers. Also, B/, and ¢,/, are beta function and phase advance,
respectively. One can see that &;100; and /fggqq; are independent of phase advance and they are
called first-order or linear chromaticity
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which k-indices show the beta function and dispersion in the position of k-magnet. We have used two
families of sextupoles (53, $4), for correcting linear chromaticity. The second order of chromaticity
which is formulated as below
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leads to an incoherent betatron tune spread, and it can produce Landau damping of transverse
instabilities [15]. One thing which is clear from the second order of chromaticity equation is that
the considerable variation of dispersion and betatron function will increase the value of second-order
of chromaticity. In fact, the higher order of chromaticity causes the particles not to act appropriately
in the storage ring, for compensating the effect of second-order of chromaticity and improving other
parameters in the lattice the other families of sextupoles (S1, S2, S5, S6, S7, S8, S9, S10) are
applied. As one can see from figure 1b, (S1, S2, S9, S10) are placed in the dispersion free region
and (S3, S4, S5, S6, S7, S8) are located in dispersion region, these two groups of sextupole families
are called geometric and chromatic respectively.

3 MOGA algorithm and sorting method

The GA algorithm is employed in two different ways. The single objective optimization problem
which presents a single solution and multi-objective optimization problems which produce a set of
solutions [16]. In this paper, we deal with some parameters which need to be optimized, and it
means that the multi-objective optimization problem in GA is applied. One can formulate MOGA



as below

Min or Max F.(x), n=12...,N
subject to Hi(x) > or<0, k=12....K
Gi(x) =0, j=12...,J

xb < x < xV i=12...,n (3.1)

where F,, are the objectives, Hy and G; are the inequality and equality constraints. Also, le and xl.L
are upper and lower bounds on variables. In this algorithm, a group of individuals which are repre-
sented by x = (x1, x2, ..., x,)", creates population and successive populations are generation [17].
GA generates a set of populations in an objective surface which is called Pareto front without any
domain or ranking knowledge, but the user needs more criteria for choosing the solutions or sorting
them from best to worst, this is done by sorting algorithm.

Some of the most important sorting algorithms which improved MOGA are discussed in
refs. [18-20]. NSGA-II which has been proposed by Deb et all in 2000, uses in this work for
sorting the solutions. This algorithm is propounded as a new version of NSGA [21].

Rank and Crowding Distance (CD) are the first two main parameters in NSGA-II which should
be defined for each individual in the population. Rank is the level of non-domination and it can be
explained as: consider x¥) and x\) as two solutions for eq. (3.1), one can say that x¥) dominates
xY) when x acts better than or as same as xU) for all the objectives and exactly in one objective
x' shows better result than xV). If two solutions do not dominate each other, they are placed in the
same rank.

The other parameter for sorting in NSGA-II is CD which is explained as the measure of
solution’s density [22] and it defines as follows
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The crowding distance is d’ = a’{ + dé + .... The parameters of eq. (3.2), are shown in figure 3.

Defining rank and CD for each solution, the parents choose based on the Binary tournament
selection. It means that between two solutions x; and x,, the solution with lower rank is selected.
However, if the rank of the solutions is the same, the solution with higher CD is preferred, as
spatially distributing samples points is a crucial consideration in most sampling algorithm, CD
measures the relative isolation of X from a given i points, the greater the CD, the greater is its
isolation [20].

4 The low-beta lattice

The effective beam emittance for a soft x-ray light source is related to twiss parameters and natural
emittance as follow [23]
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Figure 3. Definition of Crowding distance in NSGA-II.

where z = x, y, €, is natural emittance, og is energy spread, 3, is twiss function, 7, is dispersion,
L is the undulator length and A is the radiation wavelength. From figure 1b, one can see that
the dispersion function is zero in straight sections, so the effective emittance in straight sections

becomes
L\a »
ff_ 2 472
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In order to increase brightness, it is needed to reduce the effective beam emittance, since the
brightness is inversely proportional to the effective beam emittance. From eq. (4.2), for minimizing
the effective beam emittance, natural emittance should decrease. Also, there is an optimum value
for B, which minimizes sgﬁ and calculates as follows

oo L 43
= — = — .
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minimizing the natural emittance and optimizing the beta function in order to improve the brightness
from the IDs, are the main alterations of the low-beta lattice.

In working with MOGA, the working tune points influence on the speed of the answer’s
convergence, as well as finding an optimal solution. So, we analyze tune scan in order to select
the best working tune points based on DA area and Touscheck lifetime. Scanning the working
tune points is done by varying the strength of one focusing and one defocusing quadrupole, which
does not affect the zero dispersion in the straight sections. For each tune, DA and MA track
and Touscheck lifetime calculates based on the result of MA tracking. We scan v, and v, from
(46.01, 17.01) to (46.60, 17.60). One can see from figure 4, the working tune points [46.21-46.24]
for v, and [17.21-17.24] for v, have DA area near to 70 um? and Touscheck lifetime more than
1 hour. Based on the scanning [46.21-46.24] and [17.21-17.24] for v, and v, respectively, are
the best choice for working tune points. Also, to minimize the effect of 3™ and 4" order betatron
resonances, the target working point is chosen slightly far from 0.25. So, the tunes and their ranges,
are the first constraints in MOGA optimization.
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Figure 4. Tune scan based on Touscheck lifetime and DA area.

The second constraint which should consider in optimization is betatron function that many
parameters are dependent on it like RDTs, stop bandwidths, linear orbit error amplification factors,
etc. [24, 25]. Also, it affects injection efficiency and brightness of the lattice. Therefore, we
put a restriction on the maximum beta functions in vertical and horizontal planes by two other
quadrupoles magnet as below

B < 25(m) “4.4)
Bymar < 30(m)

The other constraints in order to avoid large tune-spread due to energy errors and to suppress the
transverse head-tail instabilities is the first-order natural chromaticity which should be corrected
and brought close to zero by sextupole magnets.

To fulfill the mentioned constraints, four quadrupoles, and two sextupoles families have used,
the quadrupoles are selected based on their effect on dispersion and emittance. In designing stage
of the low-beta lattice and tunning the parameters by OPA, we find out that changing the strength of
some quadrupoles will change the twiss parameters, especially the natural emittance and dispersion
in straight sections dramatically. Based on this perception, we choose one focusing and one
defocusing quadrupole in dispersion free region to correct the working tune points, as well as two
focusing quadrupoles in high dispersion region to restrict the maximum beta function in vertical and
horizontal planes. In accordance with section 2, (S3, S4) are used to correct linear chromaticity, and
the other sextupoles are applied for compensating the second-order of chromaticity and optimizing
DA and MA. Also, since these sextupoles compensate for the linear chromaticity, other sextupoles
used as a variable parameter to optimize the area of DA, MA, and compensate for the effect of
second-order chromaticity.

5 Nonlinear optimization results for bare lattice

DA defines as the area in the transverse plane in which the particles are stable after a given number
of turns [26]. Besides, MA is the maximum momentum deviation that a particle can experience
without becoming unstable and being lost [27]. The Touschek lifetime must compute by taking



Table 2. Type and rate of magnet errors during the MOGA optimization.

Magnet Type of Error | Rate of Error | Unit
Quadrupoles FSE 4e — 4 -
TILT le—4 RAD
Sextupoles FSE 4e — 4 -
TILT le—4 RAD
5001
N 400L
C 300] |
O 2001
Qi 1001
ol ?% i ricad ‘
2019/ o 209/6 2019/7
ime starting Wed Apr 24 11:50:353 2019
Wed COct 30 14:48:32 40330 2019
o 2.8 o o 694, |
g 26| VESabs s
f/ 2.4
o 2.20
204
E 1.8L "
B 1.6] %
- 14l ° 0 % |
4x107°% 507° 6x10°° 7x10°° 8x10°°

Areal (m*m)

Figure 5. Rank of the solutions, DA area Touschek lifetime during MOGA optimization.

Table 3. The five best solutions in MOGA optimization.

runID Vy vy Brmae (M) | By (M) | DAgrea (m?) | tLifetime (h)
6150 | 46.2106 | 17.3251 | 15.1147 | 25.9793 | 7.16e — 05 2.8814
8562 | 46.2099 | 17.3233 | 15.0634 | 25.9604 | 7.75¢ — 05 2.7940
19293 | 46.2100 | 17.3216 | 15.0595 | 25.9568 | 8.07¢ — 05 2.5917
16944 | 46.2099 | 17.3225 | 15.0610 | 25.9582 | 7.48¢ — 05 2.8244
17197 | 46.2099 | 17.3217 | 15.0589 | 25.9569 | 7.79¢ — 05 2.6685

into account the positive and negative momentum acceptances. The area of dynamic aperture and
Touschek lifetime are two objectives in MOGA optimization, which have been assessed during the
optimization, during the MOGA optimization some tiny errors e.g., FSE! and TILT? errors for
quadrupoles and sextupoles, as well as the effect of RF and SR are considered to find the robust
solution. The errors which considered in the MOGA optimization are presented in table 2.

The results of the MOGA optimization are pictured in figure 5 and the five best solutions of
the optimization present in table 3.

Fractional strength error.
2Rotational about longitudinal axis.
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Figure 7. DA before (dashed-line) and after (solid-line) MOGA optimization.

The optimization and searching for the best solution carried out for about 25000 jobs, in each
job submission 200 jobs submitted, so the optimization process took more than four weeks.

Among the five best solutions, we select the solution with the greatest area of DA as a final
result of optimization. The variation sextupoles strengths after optimization in runID 19293, which
considers as a final result, is shown in figure 6. The tracking is done with ELEGANT [28]; also we
use the SDDS TOOLKIT [29] program and MATLAB, to plot the results of ELEGANT tracking.

The bare lattice DA of final solution for on-momentum ( %p =0) and off-momentum ( %p =+3%)
particles is presented in figure 7, also the local MA before and after MOGA optimization is plotted in
figure 8. The analyzes show improvement in the area of DA, as well as local momentum acceptance
(LMA) in comparison with the initial low-beta lattice. However, based on the size of the vacuum



0.02 - 8
--- MA before optimization
MA after optimization

9

<0.02 - =)

Positive and

s(m)

Figure 8. Momentum acceptance in one period before (dashed-line) and after (solid-line) MOGA optimiza-
tion by considering the effect of RF, SR and some tiny errors 2. The Touschek lifetime for the optimized
lattice is 2(h).

y (m)

—0.015 —-0.010 —-0.005 0.000 0.005 0.010

x (m)
(a)

Figure 9. DA and Tune of the optimized lattice based on the diffusion.

chamber, which is considered 10mm in simulation, one of the desired goals in the optimization is at
least 10mm length of DA in the x-direction, which did not achieve after 25000 jobs of optimization.
So, we started to check some parameters of the final result to find a way to improve the result of
optimization. We commence with tune-scan, which we had done it before starting the optimization
too. In this stage, we scan tunes for a wide range of numbers to see if there are any better working
tune points. We track tune for 46-49 in x plane and 16-19 in y plane. The results show that the
tune for y plane should change a bit from (17.31-17.34) to (17.32-17.39) that a slight variation in
quadrupoles strengths does it.

The frequency map applies in this stage for finding the dangerous resonance and checking the
tune shift [14]; the results are pictured in figure 9. In figure 9, one can see that for each point in the
(x,y) aperture there corresponds a point in the (Qx, Qy) plane, the color code gives a measure of
the stability of the particle (purple = unstable; red = stable). The indicator for the stability is given

~-10-
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by the variation of the betatron tune during the evolution: i.e., tracking N turns we compute the
tune from the first % and the second % that call it diffusion

D = logjgy/(Q2 — QLY + (0% - Q1) (5.1)

It is clear from figure 9 that some particles have chaotic movement for a range of values in x and y
directions. We figure out by comparing the plots in figure 9, that the 3rd and 4t/ order resonances
cause the chaos motion. OPA code is applies for changing the weight factors of two first-order
geometric terms e.g., Oy — 20y, O + 20y, and two terms of the second-order of chromaticity
which is independent to the angle e.g., 20, 40,. The changes cause that the chaotic movement
disappeared, and the area of DA improved as it is pictured in figure 10. The RDTs variation before
and after optimization with OPA is shown in figure 11. Finally, we compare the DA of this lattice
with the bare lattice in figure 12. From figure 12, the improvement after OPA optimization for
off-momentum (%p = 3%) in x and y plane and for on-momentum particles (%p = 0) in x plane
is clear, although the DA for on-momentum particles in y plane does not show any improvement

and it decreases. On the other hand, DA for particles which have a momentum deviation equal to
dp
p
FSE, and TILT) in all magnet elements, RF and synchrotron radiation in tracking, shows that the

lattice which is optimized by MOGA has a better result in comparison with the lattice which is
optimized by OPA, so we opt the MOGA optimized lattice as a final result for the ILSF storage
ring. Also, we continue the GA optimization for the final lattice, too, but it does not show any big

= —3% remains constant. Overall, considering all types of the multiple errors (misalignment,

improvement after 16000 jobs.

6 Effect of errors and insertion device on the optimized lattice

The main limitation of dynamic aperture arises from the chromaticity of sextupoles. However,
errors in magnetic elements and IDs can reduce the dynamic aperture too. In this section, we
analyze the effect of multiple errors in magnetic elements and IDs on the area of DA and Touscheck
lifetime that the rate of the errors are presented in table 4.

—11 =
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Table 4. Type and rate of magnet errors in simulation.

Magnet Type of Error Rate of Error | Unit
Misalignment in x direction 40e - 6 m
Dipole Misalignment in y direction 40e - 6 m
FSE le-4 -

ETILT le—4 RAD
Misalignment in x direction 40e - 6 m
Quadrupoles | Misalignment in y direction 40e - 6 m
FSE 40e — 4 -

TILT le—4 RAD
Misalignment in x direction 40e - 6 m
Sextupoles | Misalignment in y direction 40e - 6 m
FSE 40e — 4 -

TILT le—4 RAD

Besides, the beta distortion in the presence of magnet errors leads to a larger beam size and
may increase the effects of high order field and resonances [30], so before considering the effect of
errors on DA, beta-beating should be corrected. We calculate the beta-beating as follow
B-Bo

Bo
where [ is the beta function in the bare lattice, and S is the beta function for the lattice with the
errors. Considering correctors in the middle of some sextupoles in the lattice, the beta-beating
decreased to less than 10% in both directions, which is large for synchrotron light source. So, we

,Bbeating = (6.1)

applied LOCO [31] to correct the beta-distortion in this step. Regarding magnet errors which is
considered in simulation, there is no closed orbit in the first tracking. So, the correction process
starts with trajectory correction or pre-correction [32]. The results show that the maximum COD
(Closed Orbit Distortion) for 100 random error distribution in horizontal and vertical planes before
correction is 6 mm, and after correction, the rms COD calculates less than 70 and 60 um for
horizontal and vertical direction, respectively. The position of horizontal and vertical correctors, as
well as BPMs, are pictured in figure 13a. One can see that 16 BPMs, 16 vertical and 16 horizontal
correctors have been used for COD in each supercell. After correcting closed orbit, the linear
parameters, e.g., dispersion and beta function, must be corrected. By changing the strength of
quadrupoles, the beta-beating corrects to less than 1% and 1.5% in vertical and horizontal planes,
respectively. The beta-distortion before and after correction is presented in figure 14. In addition,
the dispersion before and after correction is shown in figure 15. The rate of quadrupoles changes
and tune shift due to magnet errors before and after beta-beating correction are presented in tables 5
and 6. After beta-beating correction, DA tracks in Accelerator Toolbox for MATLAB [33], and the
results are pictured in figure 16. One can see from figure 16 that because of the errors DA decreases,
this reduction for %p = 0 particles is notable in both direction before beta-beating correction, while
after beta-beating correction, DA improves. For off-momentum particles, result of the ideal lattice
(without error) and the lattice which its beta-beating is corrected in the presence of all types of
magnet errors, are presented in figure 16b. Also, the result of MA tracking is shown in figure 17.
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Figure 13. COD correction for 100 random error distribution.

The results in figure 17, show that after COD and beta-beating correction the MA improve in
the lattice with magnet errors, but by considering the effect of RF and SR, we expect that the results
show lower values. Also, the lifetime for the corrected lattice with magnet errors, without the effect
of RF and SR is pictured in figure 18.

After sextupoles, IDs are the biggest nonlinearity at light sources and damping rings; there are
two significant effects due to the perturbation of the electron beam by IDs in a ring that usually
needs to consider, one of them is shift of the tune due to the magnetic field of the IDs, which results
in beta-beating and a smaller dynamic aperture. The other is the change in emittance and energy
spread of the electron beam due to the energy radiated from the IDs [34]. In continue, we consider
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Figure 14. Beta-distortion before and after correction.

the effect of Insertion Devices (IDs) on the beam. There are seven types of beamlines and IDs in the
ILSF, which cover a wide spectral range (10 ev-30 kev). We calculate the influence of one of them,
which is in-vacuum hybrid undulator (IVU) that extracts the micro-molecular (MX) beamline. The
design and calculation of this ID that we called it U18 has finished, so we decided to put U18 in the
low-beta lattice to see the effect of the ID on the dynamics of the electron beam, for more details
about IDs and instabilities in the ILSF see refs. [35, 36]. We consider a U18 in the middle of the long
straight section. In the presence of U18, the vertical beta function changes, while horizontal beta
function does not change. The distorted beta function is compensated by three quadrupoles adjacent
to ID, while the regular quadrupoles remain unchanged. The strengths of the quadrupoles nearest to
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Figure 15. Dispersion before and after beta-beating correction.

Table 5. Gradient of quadrupoles in the low-beta lattice with magnets errors before and after beta-beating

correction.
Quadrupole | Original gradient | Max Gradient with error after | Max Relative
families (%) Beta-Beating correction (%) Change
Q1 4.0448 4.0960 0.120
Q2 3.2328 3.2773 0.130
Q3 2.8578 2.8761 0.010
Q4 3.5934 3.6161 0.010
QM1 3.8022 3.8093 0.002
QM2 -1.6616 —1.6500 0.007
QM3 —1.9816 -1.9716 0.005
QM4 2.8036 2.8073 0.001
QM5 -2.0918 —2.0837 0.004

U18 before and after beta correction present in table 7 and beta-beating before and after correction is
displayed in figure 19. One can see that after correction, beta distortion decreases to less than 0.5%,
except at the U18 location. DA and MA, in the presence of U18, show that DA decreases sharply
in the vertical plane. The result of FMA and MA in the presence of one in-vacuum undulator is

presented in figure 20 and 21. The Touschek lifetime for the lattice with ID will decrease too.
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Table 6. Effect of magnet errors and correction on tunes.

Ideal Tune Tune after Tune after
COD correction | Beta-Beating correction

vy | 46.2101 46.1945 46.2108
Vy 17.3210 17.3407 17.3212
8- ,ﬂ
1Y [ ® —ideal Lattice
L ,,' :'\ \\ : : :::t:r:::]ecdcrrecbd

X [mm)]

(a) On-momentum particles.

[ T T T

= |deal DA Apip =% +3
= = = Aftar correction Apip = % +3
Ideal DA Apip =% -3

= = = After correction DAApip =% -3

¥ [mm]
w

,__———---_.__...-"'

X [mm)]

(b) Off-momentum particles.

Figure 16. DA by considering magnet errors for on- and off-momentum particles.
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Figure 17. MA for the corrected lattice with magnet errors without considering the effect of RF and SR.

Table 7. Gradient of adjacent quadrupoles to U18 before and after beta beating correction.

Original gradient (L)

Gradient with U18 (L)

Relative Change

QD3U
QF4U
QD5U

-1.9816
2.8036
-2.0918

-1.9820
2.8055
—-2.1040

2e-04
6e-04
5e-03
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Figure 18. Lifetime for the bare corrected lattice with magnet error in different pressure.
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Figure 19. Beta-Beating along the ring with one in-vacuum undulator in a long straight section before and
after correction. The peak points represent beta beating in U18.

7 Conclusion

The low-beta lattice for the ILSF storage ring is optimized by genetic algorithm. The linear and non-
linear optics are optimized simultaneously by MOGA to improve dynamic aperture and momentum
acceptance without violation of constraints. It means that for each job, first, the four quadrupoles
strength tuned, then the nonlinear optimization start. This method is straightforward, we need only
to propose a possible lattice, and consider some twiss parameters as constraints. The code automati-
cally searches for the low emittance lattice with better dynamic aperture and momentum acceptance.
If there are feasible solutions, the algorithm will return the solutions with the best objectives, and
the optimal global solution can be obtained. If not, it returns the solutions with the lowest constraint
violation. The solutions are sorted based on Rank and CD by the NSGA-II sorting algorithm.
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Moreover, FMA and tune scan are applied to improve the results of MOGA optimization.
The final analysis shows that by considering the effect of errors, RF, and SR, the lattice which is
optimized by MOGA, shows a better performance. Finally, in the last section, the magnet errors and
insertion device are considered in the optimized lattice to bring the final results closer to the realistic
storage ring. The results show that in the presence of all magnet errors, after COD and beta-beating
correction, DA and MA improve. In addition, in the presence of U18, DA in the horizontal plane
does not change tremendously; however, it changes significantly in the vertical plane.

As a result, the performance of the low-beta lattice which has higher brilliance in comparison
with the existing lattice is improved, while the emittance remains constant. However, the Touschek
lifetime does not meet the needs, this defect can be covered by continuous injection, but the losses
of beam may damaging fragments in the storage ring. Also, by increasing the length of the bunch,
we can improve the Touschek lifetime too.
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