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Abstract

We investigate the existence, normalization and explicit construction of edge
zero modes in topologically ordered spin chains. In particular we give a
detailed treatment of zero modes in a Z3 generalization of the Ising/Kitaev
chain, which can also be described in terms of parafermions. We analyze when
it is possible to iteratively construct strong zero modes, working completely
in the spin picture. An important role is played by the so called total domain
wall angle, a symmetry which appears in all models with strong zero modes
that we are aware of. We show that preservation of this symmetry guarantees
locality of the iterative construction, that is, it imposes locality conditions on
the successive terms appearing in the zero mode’s perturbative expansion.
The method outlined here summarizes and generalizes some of the existing
techniques used to construct zero modes in spin chains and sheds light on
some surprising common features of all these types of methods. We conjecture
a general algorithm for the perturbative construction of zero mode operators
and test this on a variety of models, to the highest order we can manage. We
also present analytical formulas for the zero modes which apply to all models
investigated, but which feature a number of model dependent coefficients.
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1. Introduction

Part of the interest in topological phases of matter stems from their potentially revolutionary
technological applications. One of the most exciting possibilities would be the ability to store
and manipulate quantum information in topological degrees of freedom. This information
would be intrinsically protected from some or all local error processes and there are now sig-
nificant efforts being made to harness this property in scalable quantum devices [1-4].

The information in a topological quantum computation is typically stored in the system’s
ground state manifold, see e.g. [5]. Recently however there has been increased interest in
whether the same topological properties can protect information at temperatures above the
topological gap. In non-interacting topological superconductors [6] such high-energy stabil-
ity, naturally exists because the existence of a topological (Majorana) zero mode guarantees
topological degeneracy at all energies. A natural question then is if such high-temperature
stability can exist in more realistic interacting systems.

One of the main examples used to study this phenomenon is the so-called interacting
p-wave wire/Kitaev chain. It is a well known fact that these models can be mapped to spin
chains via the Jordan—Wigner transformation. The presence of topological order in this model
and similar ones, is signalled by the appearance of unpaired zero modes localised at the edges
of the system when we take open boundary conditions [6, 7]. In free fermion models, since the
existence of these modes implies the presence of degeneracies throughout the whole spectrum,
they are usually referred to as strong zero modes [8]; as opposed to weak (or almost strong)
ones which would only act on a low-energy subspace and which give rise to degeneracy only
within that subspace. The importance of the degeneracies high in the spectrum comes from the
fact that this could possibly lead to high temperature fault-tolerant quantum computing [9].
In the interacting chain, strong zero modes have been established via bosonization arguments
[10] and using iterative approaches at half filling, via a mapping to the XYZ chain [11]. The
Kitev chain is also known to have a region near the flat-band limit where interactions do not
destroy the bulk topological degeneracy [12—14]. Away from this regime there are indications
that disorder induced localisation can help mitigate interaction-driven processes that destroy
the topological degeneracy at high temperatures [9, 15].

More exotic interacting variants of the Kitaev chain are the so-called Zy parafermionic
clock models [8, 16, 17], which similarly to the Kitaev chain, also admit a description in
terms of generalised spin chains. When written in these terms they are usually referred as
chiral Potts models and the different types of phases that they possess have been subject of
extensive studies [18—22]. Notably there have been proposals for experimental realization of
these parafermionic chains [23-25]. These models are also expected, in varying degrees, to
possess high-temperature degeneracy, related to the presence of strong zero modes [26-28]
(to some extent this is true also for the discrete group generalization of the clock models [29]).
One of the most prominent regimes where this is expected to happen is around the chiral 7/6
point of the Z3 model, where a constraint on total domain wall angle, prevents resonant decay
processes that would otherwise destroy the topological stability at high energy densities.

In this paper we analyse how this constraint on the domain wall angle [27, 28] enters in the
iterative construction of the associated zero-energy parafermionic modes. In contrast to previ-
ous works we work entirely in the generalized spin picture and we provide a simple ansatz
for the shape taken by the general solution of the problem, using the so called super-operator
formalism. In particular we show that the problem of finding zero modes at the edges of the
system is related to a special type of degenerate perturbation theory of the super-operator
Hamiltonian, which is obtained as the commutator with the original Hamiltonian, acting on
the Hilbert space of operators. In this sense we are able to relate the domain wall symmetry
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to the locality of the terms appearing in this degenerate perturbation theory. Our approach can
be readily extended to other types of spin chains and we find interesting common features
between several of the studied models. In fact, we find that our treatment applies equally well
to all spin models that we have considered.

We also address the problem of normalization of zero modes and we show how the prop-
erties of the zero mode for the unperturbed model induce similar behaviours upon the for-
mal expansion of the zero mode for the perturbed one. Nonetheless, the problem regarding
the existence of a finite radius of convergence for the formal perturbative series of the zero
mode is still largely unanswered, but we are able to provide some encouraging results on this
through numerical analysis.

In addition to general properties of strong zero modes, we also exhibit a method to con-
struct the zero modes to any desired order of perturbation theory in the coupling constant of
the interaction term in the Hamiltonian (in practice the order is limited only by computing
resources). This method also generalizes straightforwardly to many spin models and we have
used it extensively in guiding and checking our other results. We conjecture that the method is
in fact an algorithm for finding zero modes to any order, but have not been able to prove this
rigorously.

An outline of the paper is as follows. In section 2 we review the relevant quantum clock
model Hamiltonian and its properties which are relevant for the rest of the paper. Here we
also introduce the concept of total domain-wall angle and how it relates to the super-operator
picture and the iterative construction of the zero mode. In sections 3 and 4 we illustrate some
relevant symmetries of the problem and then connect the iterative construction to the general
framework of degenerate perturbation theory. In section 6 we illustrate how the total domain
wall angle is related to the locality of the successive terms appearing in the perturbative expan-
sion and in section 7 we provide a general ansatz for the form taken by the solution of the
formal expansion of the strong zero mode. In sections 8 and 9 we consider the problem of
normalization and convergence of the formal series. In section 10 we describe a method (con-
jectured algorithm) for finding the zero mode, the results of which can be used to verify some
of the claims made throughout the paper. Finally, in section 11, we draw our conclusions and
indicate possible directions for further research.

2. The model

We consider the Z3 quantum clock Hamiltonian as given in [24, 26], although our analysis can
in principle be generalized to all Zy with N a prime number*. The Hamiltonian can be written
in the form H = Hy + fV, where

L—1

E i0 —if
H():— e! 0’;—0','4,1—‘{-6 O'[O';I.+1

i=1

L
V= Z ellr 4 e o7 (1)
i1

4When N is not prime it is generally not possible to have strong zero modes, because of the presence of bands in the
model that are everywhere degenerate [27].
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with the convention

1 0 O 010
c=10 w O =10 0 1 )
0 0 u? 1 00

and w = e”T is a third root of unity. The Hilbert space is spanned by vectors of the form

|il»i29"-7iL> (3)

where iy € Zj represents the values of the ‘clocks’ at each site. This model can be viewed
as a generalization of the Ising model (N = 2). The commutation relations between o and 7
matrices are

Tioj = w‘S‘VUjT,- . 4)

The following operator generalizes the fermion parity operator of the Ising model and plays a
prominent role in the rest of the paper,

L
o=~ ©)
i=1

This operator moves the clock at each site one unit back. As [H, Q] = 0, the spectrum of the
Hamiltonian splits into three sectors, identified by the three eigenvalues of Q. In terms of the
basis written above, Hy is diagonal and its spectrum is given by

-1
Eiiy....ip = Z €ip1—ix = No€0 + N1€1 + o€y (6)
k=1
where
2
€m = —2 COS (7;m + 9) (7

and n,, counts the number of domain walls of type m in the state (3). We say that there is
a domain wall of type m between sites k + 1 and k when i1 — ix = m. In particular, the
absence of domain wall is the same as a domain wall of type 0. The typical energy bands of
H, for different values of 6 are shown in figure 1.

The energy of the unperturbed model is therefore determined by the set of vectors of type
(no, n1,ny) such that

ng+n +n=L—1. ®)

Note that the spectrum of Hj is the same in each Q-sector, so that three copies of each band
exist, with different values of Q. This degeneracy may be split through the action of V.

As shown in [27], an important role is reserved for the #-values at which bands with dif-
ferent (ng, n1,ny) have the same energy. These resonance points are further distinguished by
another symmetry of Hy, namely the total domain wall angle,

P= U;[O'L.
. i27p
Writing P = e, we get
L1

p:iLfi1:Zik+17ik:n1+2n2 mod 3, 9)
k=1
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Figure 1. Spectrum of H, for L = 6. The different colors represent the different total
domain wall angles.

so all the states in the Hy-band labeled by (ng, n1, ny) have total domain wall angle given by
p = ny + 2ny. Strong zero modes may only occur at any given @ if either there are no bands
crossing at this value of 6 or, alternatively, if any bands that cross have the same value of p
(taken modulo 3). We note that there are in fact special values of 6 at which the total domain
wall angle is conserved even though different bands cross. One of these special points for the
N =3 model is found at § = %, which also corresponds to the superintegrable point of the
model when ¢ = % as well [19, 20] .

2.1. Parafermionic zero modes

Using a non-local transformation due to Fradkin and Kadanoff [18], analogous to the Jordan—
Wigner transformation, one can rewrite the spin model in terms of parafermionic variables.
Parafermionic operators are defined as follows,

Y2i-1 ZGiHTj 72i=waiHTj
J<i J<i
and satisfy the relations
vy = Dy A =1 (10)

The Hamiltonian in terms of the parafermions basis is given by

L—1
Hy = —Juwe' Z 72Ti'72i+1 +h.c.
i=1

(1)

L
V = —fwe'¢ Z Vi1 + hec.
i=1
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and the parity operator becomes

L
U T
Q=w H'Vzi—]'Yzi‘
i=1

In the exact same way as in the Ising case, there exist two parafermionic operators localized
on the edges that commute with Hy, namely ~y; and ,;. In terms of clock operators they are
given by
M =01 oL =worQ . (12)

As in the Ising case a question arises over the existence of a localized zero mode when we intro-
duce the potential V term; but because of relation (10) the situation is much more involved>.

The analysis of [27] shows, through a perturbative approach, that V can destroy the
zero mode for values of 6 where bands with different values of the total domain wall
angle cross. The same perturbative analysis hints that the band degeneracy is left unbroken
whenever the total domain wall angle is conserved. Even though this persistence of the
degeneracy strongly suggests the presence of zero modes whenever there are no bands
crossing or when the crossing bands have the same total domain wall angle, there is no
guarantee that localized and normalizable zero modes exist. Our aim is therefore to build
up a recursive method, along the lines of [8, 29], that would allow the explicit construction
of such operators.

Considering the left edge of the system, it is reasonable to expect that if a localized zero
mode v exists, when we introduce the transverse field, this will reduce to ~; in the limit
f — 0. In other words we suppose that the zero mode admits the expansion

L
= O 4 ) 4™ =" ), (13)
i=0

where (%) = 5, = ¢,. The defining relations of the zero mode 1 are similar to those satisfied
by ¥

[H,¢] = 0(e™¢) (14)
with 1/¢ o« log(f) and
Qv = wihQ (15)

which implies that the splitting between bands with the same (ng, n1, ;) in different Q sectors
vanishes exponentially with the length of the system.
For the normalization we will mainly be concerned with the conditions

W =1+0( ) (16)
and

v =yf o). (17)
Together, they imply that the zero mode norm on a finite chain is given by

Php =1+ 0(¢). (18)

3Tt is worth mentioning that these parafermionic modes admit a description in terms of generalized Fock space [17].
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Despite this, the norm of ¥ may still diverge if the limit L — oo is taken at fixed f, because the
coefficient in front of the f* term may grow quickly with L, similarly to what happens in [14]
for spin chains. We will consider this further in section 8.

We stress that we will be interested in zero modes localised at the edge of the system. For
finite systems, this property is ensured if matrix elements acting on sites that are at distance /
from the edge also appear at an order in the perturbing parameter f that is equal or greater than
I. However in the limit L —> oo this may not be enough to guarantee that the mode is localised
as the matrix elements themselves could grow faster than f, similarly to what happens to the
normalization.

Let us now consider the commutator [H, 1. From (13) we have

L
[H,)=> f* ([Ho,w“‘)} + [V,w“‘—“}), (19)
k=1
which means that in order for (14) to be true (for all f) we must have
[Ho,df(k)] =— {V,w(kfl)] k=1,2,...,L—1. (20)

The commutators with Hy, and V are linear operators acting on the Hilbert space of operators.
Therefore, in principle, each of (20) gives a linear system that can be solved recursively once
we fix 1), In reality this method still presents certain ambiguities, related to the fact that the
commutators with Hy, and V are not invertible operators. We will address these in detail in
the following.

To understand the point it is better to rewrite the operators Ho = [Hp,- Jand V = [V, - |ina
different form. The Hilbert space on which these commutators act is isomorphic to the Hilbert
space for two copies of the original model. This can be established by using the so called
Choi—Jamiolkowski isomorphism [30, 31],

|i17i25~ . -’iL>li17j2" . '9jL> = |i19i25' . '9iL><j19j29' . -,jL‘ (21)
with |i1, i, .. .,i.)and |j1, /2, . . . ,jr) as in (3). On each site this basis simply correspond to the
canonical basis for matrices. For example we have

1 0 O
o=(0 w 0] =10)0)+w|)[1) +w?]2)2)
0 0 w?
01 0
=0 0 1] =+ ine -0 )

It can be easily seen that, given any operator O, in this basis, the commutator with O takes
the form

[0, ]=021-120" (23)

where O7 is the transpose of the operator O. In the following we will usually refer to these
operators after their action on the left and right sectors of (21)

ol=0%1 of=1o0. (24)



J. Phys. A: Math. Theor. 53 (2020) 095006 D Pellegrino et al

Since Hy and V are hermitian and because of (23), we have
Ho = [Ho.- | = HY — HY' = HE — HY'

) (25)
V=1V, ]| =Vt VR =L yR*

Using a nomenclature coming from the study of open quantum systems, we will refer to
operators acting on the space of operators as super-operators [32]. Note that in the literature,
the definition of right operators differs from our own by a transposition (that is Of = 1 ® O7).
The basis (21) is precisely the one in which H) is diagonal and we can write
- t t
Ho = Z ek ol +e?of  Tof + he.
i=1

L
V= Z —e7rt e F fhe..

(26)
i=1
It will be useful for the following to isolate the local structure of V, therefore we set
Vi = —e7f 4 e 7R + he. (27)
and V can be written as the sum of its local terms
L
V=> V. (28)
k=1
Since Hy is diagonal we can easily find its eigenvalues, which we will indicate as
BNt =By g — B, (29)

with Ej j, ., Ei is,...;, asin (6). The unperturbed energies of Hy depend only on the domain
walls along the chain. This means that when the left and right chain have the same domain
walls at the endsite L, they will cancel out and we get

i15025e e L—15iL _ goi1si2e oL —1 - _
Elez-uJLfl,iL - Ejlxl'szLfl Vip,ji-1=0,1,2. (30)

Written in terms of the basis (21) the operator 1 takes the form

w(o) =0 :Zwi1|il>|i1>®lL71 G1)
i
where I} is the identity operator acting on a chain of length k:

I = Z livs s s lin i, ook .
Uyeensli
In what follows, in order to simplify the notation, we will often write the basis states in (21) as
liic) k)

where i, j, represents the collection of the k indices is and js. If k < L it should be understood
that there is an I;_ tensored at the end of the chain. For example we will write (31) as

PO =" Wi (33)
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In the cases where we need to highlight the relationship between specific indices we will often
write expressions like
|it— 1s il" ik—l> |jl— 1 ,jl"jk—t> .
As a final remark we write down the form taken in the super-operator basis by the equa-
tion (20), which define the zero mode expansion:
Hop*+D = —pyp® gk =1,2,....L—1. (34)
3. Restrictions on the solutions

In this section we will consider super-operator symmetries of # and V. These can be used to
reduce the dimension of the space when we need to look for a solution of the problem. The
first symmetry we will describe can be given in terms of the super-operator

L L

Q=][~II+ (35)
i=1 =1
The use of Q allows to rewrite condition (15) as®

QY =wip. (36)
Since Q¥ = wip© and since Ho and V commute with Q we can impose this condition also
at higher orders.
The two super-operators Ho and V also have a chiral symmetry that reflects the commuta-
tor structure of their definition

(TK)Ho(TK)™! = —H,

-1 (37)
(TKWV(TK) " ==V
where 7 is the super-operator which exchanges the left and right sectors,
Tlig)lic) = i) lic) (38)
and /C is the complex conjugation
K@K = —il . (39)

In other words 7K simply corresponds to the conjugate transposition of operators. As in the
previous case, since

TE@®) = (K@) (40)

we can impose this condition, by induction, also at higher orders. By this we mean that the
expansion obtained starting from C(1(?)), denoted as (K1/)*), can be obtained as

(Kep)® = TK(p®) . (41)
Note that in the case ¢ = 0, both Hg and V are real super-operators, and (41) reduces to
1/,(k) — 7‘1/,(16), 42)

% From our definitions we have that (15) can be given as

0" = wQr' .

Since in our basis Q is orthogonal, equation (36) follows.

9



J. Phys. A: Math. Theor. 53 (2020) 095006 D Pellegrino et al

which can be used to diminish the dimensionality of the Hilbert space where we need to look
for a solution.

3.1. General considerations on Null(H,)

Consider now a vector belonging to Null(#,), which is non trivial only up to some site
k < L — 1. Explicitly, if the operator

i,y - oy ik—1s k) 1o d2s - - s Jk—10Jk) @ Ik (43)
belongs to Null(#,), because of (30), one must have
Eiir.ici = Ej o gt [=0,1,2. (44)

Concretely this means that an operator belongs to Null(#,) if it maps between states with the
same band energy (with respect to Hy). Since [ is arbitrary, we can subtract two copies of the
above equation with different values of the final clocks / and /. Using (7) we get

Eik,l - Eik,l’ = Ejk,l - Ejk,l/

and, after simple trigonometric manipulation, we end up with the condition
sin (141~ 2i) % + 0) =sin ((1+1 - %)% + 0). 45)

Since I, I are arbitrary this equation can be true if and only if i; = ji. This means that operators
that commute with Hy cannot have 7s on the last site where they act non-trivially. We remark
that this has do be true independently of 6.

Suppose now that 6 is such that the total domain wall angle, as defined in (9), is conserved.
This means that

k=it =jk—Ju- (46)
Since we just saw that for operators in Null(Hy) iy = ji, we have
i =Jji- (47)

We can therefore sum up these observations by the following statement:

Property 1. A basis for the operators belonging to Null(#,) and acting non trivially only
up to some site k is given by

li—1, 8) [de—1 i) E;EZ =0

if, in addition, € is such that the total domain wall angle is conserved, then the basis can be
further restricted to
itie— 1.0k -0

it ik, i) i, Jk—100k)  Ej5

As we will see this simple characterization of the vectors in Null(?{y) will be crucial when
we will consider the existence of zero modes.

4. Super-operators and perturbation theory

As seen in (19) and (20), in order to find the zero mode, we need to solve the system of
equations

10
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Hop®HD = —pyp® k=1, . L—1. (48)
We will now show that this problem maps to a perturbation expansion of the super-Hamiltonian

H="Ho+fV. (49)
Consider a 7 as in (13) such that

Hy = Evp (50)
with

E=E® +EO 4 f2E® 4 4 fLED), (51)

If we call Py the projector into Null(H) and Qyp = 1 — Py, we can project (50) into Null(H,)
and its orthogonal space. Using that PyHo = 0 and Py + Qp = 1 we have

fPoVY = EPyp

HoQoy) +fQoVY = EQoy . 62
Order by order this set of equations gives
k+1
PoV = —PoVy® + ZE(k—&-l—i)wlgi)
- k+1
Ho ) = —QoV (0l + ) + 3 ECH=0y 0, (53)
i=0

where w,ﬁk) = Py ®), ék) = Qy™® and these are the defining equations of any degenerate
perturbation theory.

We can now see that finding the zero mode is equivalent to solve the perturbation theory
problem when we impose the conditions

ED =0 j<L-1, (54)

which concretely means that we are asking our perturbation to not split the degeneracy up to
order L — 1. Equation (53) thus reduces to

PV = —Povy ) (55)

Hoyp{t) = —QpV (¢§k> + w,ﬁ”) (56)

which in turn are equivalent to (34).

Usually in degenerate perturbation theory one looks for solutions that split the energy at
some order. This is therefore a quite strange perturbation expansion, as we are specifically
looking for a solution of the perturbative problem that does not split the energy at any order.
Moreover we explicitly require that ¢)(®) = ¢, while generally the starting point of the pertur-
bation, inside the degenerate space, is to some extent undetermined. This makes the existence
of a solution of (55) and (56) highly non trivial. In particular we know from [27], that if we
are at resonance points where the total domain wall angle is not conserved, the system will
develop energy splitting at order strictly less than L and this means that a solution of (55) and
(56) is generally not possible.

To understand the structure of the potential solution let us now consider the action of H
and V. The operator V can act at most on one element of the chains, while H can act on two
elements. This means that, if as in (31) we start with an operator that is localized on the edge,

1
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and a solution of (34) exists, the next order will be made of operators different from the iden-
tity for at most one site more than the previous order. For this reason, from now on we will
consider each 1)(¥) to be operators acting non-trivially on a chain of length k + 1. In this sense
(34) can be rewritten as

Hop "V = VW o 1. (57)
With this notation we can rewrite (55) and (56) as

PV @ 1) = PV @ Iy) (58)

Hopp{ ) = —QpV (w;“ + w,&“) ®I . (59)

If a solution exists, equation (58) implies that
V() +40) @ 1 € Null(Ho) (60)

When this latter condition is satisfied we can easily find a solution for ”l/);k“) by inverting Ho

1
U = v (o) o) @ 0, 61)

where we can omit the Q because of (60). Hence, if we find a zp,Ek) such that (58) holds, we can

always find a l/)ék-H) which makes the iterative construction work; and if z/),gk) acts on chains
only up to order k + 1, then the resulting zero mode will still be localized on the edge by con-
struction. Note however that nothing prevents Povw,gk) ® I, from containing terms that live on
chains of length k + 2 (remember that wék) lives on a chain of length k£ + 1). We will see that if
this is the case, then a ‘local’ solution for ¢,§k> will generally not exist (see property 5).

In this section we showed the importance of zp;’“) and equation (61) shows that the problem
of finding zero modes is essentially a problem of finding 1/15‘). In the following we will care-

fully consider the situations in which such a ‘local’ ,Sk) exists and when it does not.

5. General considerations on 1,

Here we will consider what are the general properties of the solution z/),gk) of (58). To this end
we keep the discussion general by considering ¢,, 5, € Null(Ho) such that
PoVa, @11 = B, ® 1. (62)

Later on we will specialize ¢, and 3, to zp,S") and POV(w(Sk) ® I ) respectively.
Now take 3, to be some operator that acts non trivially only up to some site z. From prop-
erty 1 we know that

By =3 B it ig) 1. ) (63)

for some coefficients ,89'""?’. In the same way, «, is an operator that acts non-trivially only up
L—1,l
to some site ¢ such that

| W I . . .
A = Zaji—ll,i,: |l’,*1’lf’>|.]t’71alt’>s (64)

12
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the following property then holds:
Property 2. Consider the equation
PoVay, @1 = 5, @ I

with o, 8, € Null(H,) as in (63) and (64). If we assume that this equation holds than neces-
sarily ' = and

a, = Z Oéifiz’ilil |i172» i171>|jt72, it71> 1L . (65)

Jz—z’ir—l

This property means that, if /3, acts non-trivially up to some site ¢, then equation (71)
imposes that a, can act non-trivially only up to site # — 1. The proof of this statement is given
in appendix A. The idea behind it is that, since we have /; at the end of both «, and 3, then
the action of Py) on ¢, is inconsistent with the equality unless

Via, =0. (66)
As an example of this consider the state
|0,2,0)|0,1,0) ® I,
which belongs to Null(H,) for a system of length 3 and general §. When we act with PyVs
we obtain
PoVs(10,2,0)(0,1,0) ® I;) = — e79(0,2,1,2)|0, 1,0,2) — €'?|0,2,2,0)/0, 1,0,0)
+¢'9|0,2,0,0)0,1,1,0) +e79|0,2,0,1)]0,1,2,1) .

Similarly, whatever initial vector we pick on the left hand side, we will always find operators
still belonging to Null(#,) and whose left-right indices differ on the third site. In other words,
the action of Py); is never trivial, unless we have an identity operator present on the third site.
This fact, appropriately generalized, together with (62), implies property 2 (see appendix A
for more details).

In the context of finding the zero modes expansion, this property means thatif Py ) ( ,Y‘) QL)
contains operators that act up to chain of length 7, then if ¢,§k) exists, it has to acts on ‘smaller’

chains. This can be used to reduce the dimension of the space where we need to look for a
solution of the problem.

5.1. Starting point of the expansion

The previous discussion raises some new questions. Suppose that for a given 6 a solution for
the zero mode expansion that starts at 1)(°) = ¢ does not exist. It is reasonable to ask whether
it is possible to fix 1(®) € Null(#,) differently, in a way that would allow a solution of the
perturbative problem to exist. As a first step towards the answer to this question, we consider
equations (58) and (59) at zeroth order

PV @) =0 P =0 (67)

from the proof of property 2 we see that in order for this equation to have a solution we are
forced to have

PO = "wlfin)ir) - 68)

13
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This means that a basis of solutions is determined by

010y (DI 2)]2), (69)

except when 6 = 0, Z, 2%, in which cases a solution such that Y = wh© does not exist’.

Summing up, we have restrictions on the possible local starting points for the zero mode
expansion and the following property holds

Property 3. When 0 # 0, 7, %’T, the unique possible local starting point of the zero mode

expansion is given, up to a multiplicative constant, by

PO =0y . (70)

When 6 = 0, 3 27” a local zero mode cannot exists.

6. Locality and total domain wall angle

As we saw in the previous sections the question about the existence of an expansion for the
zero mode is really a question about the existence of an expansion 1, € Null(#,) and we have
explored to some extent what restrictions we can impose to the solution. In particular we have
seen that the ‘length’ of @Zz},“ is necessarily smaller than the ‘length’ of wék).

In this section we will concentrate on the other side of equation (58), that is PV (¢, ® I1).
In particular we will discuss the restrictions that the total domain wall angle imposes on it.
In this sense the presence of total domain wall angle conservation translates to a condition
imposed upon the locality of the terms appearing in the expansion of Po(ngk) ®I;). The
following property can be established:

Property 4. Suppose that a local solution for the zero mode expansions exists up to some
order k. If the total domain wall angle is conserved then

PoVyH @ 1) =BY &1, (71)

with 6,@ € Null(H,y) as in property 1 and of the same ‘length’ of zbék).

The proof of this statement is given in appendix B. Note however that this statement is not
at all trivial. Consider for example the operator |0, 0)|1, 1), which belongs to Null(#,) for any
6. Then

7 This can be easily seen by considering that at these resonance points there are additional states present in
Null(H,). For example consider § = 0 and, to simplify the notation, ¢ = 0. We have

PoV]0)|0) @ I = —1,2)]0,2) — [2.1)]0, 1) + [0, 1)[2. 1) + [0,2)1,2)
PoVIDID @I = —[0,2)[1,2) — [2.0)]1,0) + |1,2)]0,2) + |1,0)|2.0)
PoVI2)[2) @ I = —[0, 1)[2, 1) — [1,0)[2,0) + 2, 1)[0, 1) + |2,0)]1,0).

It can be seen now that the unique solution of (67) is

L = 0)[0) + [1)[1) + [2)[2),

which is inconsistent with the condition Ql/)(o) = w’(/J(O). A similar analysis can be conducted for the other fs

and ¢ # 0.

14
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Figure 2. (a) Free spectrum for a chain of length L = 3, the only resonance points for
such system are at § = 0 and 6 = . (b) Free spectrum for a chain of length L = 4, by
increasing the length of the system a new resonant point appears at § = arctan ?

PoV(10,0) 1,0,0)/1,1,0),

which, evidently, cannot be written as 3, ® I; with j, of length 2. Concretely this property
means that projecting the term Vz/J,gk) to the null space of H( does not result in any non-trivial
elements further up the chain when total domain wall angle is conserved.

One can show that if condition (71) does not hold, then it is generally not possible to find a

L) ®IL) =¢?0,0,1)0,1,1) —e'¢

solution of the perturbative expansion for wﬁ“ such that condition (58) is satisfied and hence
a local solution for the formal expansion of the zero mode does not exist. This fact is a gen-
eralization of what happens for the case # = 0 that we analysed in the previous section, and it
has to do with the fact that the identity operator /; contains a sum of spins as in (32). For more
details we refer to appendix B.

Condition (71) is generally not satisfied when total domain wall angle is not conserved,
making it also a sufficient condition for the conservation of the total domain wall angle.

This raises now questions on the order at which the expansion breaks down when we
are at resonant points. As we saw, when finding the zero mode expansion, we effectively
consider chains of growing lengths. In this sense new resonance points appear as we con-
sider chains of increasing length. Consider for example the spectrum of chains of length
L =3 and L = 4 in figure 2, where we see that new resonant points appear. This means that
an expansion of the zero mode can exist only up to an order that is equal to the length of
the chain where the resonant point first appears. This agrees with the perturbative analysis
conducted in [27].

We can sum up this discussion with the following

Property 5. Suppose that § is at a resonant point which does not conserve the total domain
wall angle. Then the formal expansion for the zero mode can exist only up to an order compat-
ible with the length of the chain at which the resonant point first appears.

This shines some light into the behaviour of the zero mode expansion when total domain
wall angle is not conserved, but still fails to address the problem of the existence of zero
modes at those values of § where the total domain wall angle is conserved (including all
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non-resonant points). Unfortunately we are not able to provide a complete proof of the exist-
ence of zero modes in these cases. However an extensive analysis conducted through symbolic
calculation with Mathematica shows that, when condition (71) is satisfied, a formal expansion
of the zero mode at each order k exists, and can be constructed systematically. A procedure for
this construction, which we conjecture in the form of an algorithm, is presented in section 10.
The solutions for the zero mode present interesting general properties that extend readily to
other spin chain models. This will be the subject of the next section.

7. General form of the solution

We will now present a method that allows to construct a general solution for the recursive
problem. We stress that our approach can be used to consider the solution of similar problems
in other spin chain models as well, which we explored to some extent and we will discuss later
in the section. This hints at the existence of some general principle that allows the machinery
to work, although some of the details are still mysterious to us.

As we already pointed out, the problem of finding a zero mode at some order & is essen-

tially a problem of finding 1/),, " For clarity we repeat that once we find a 1/;,2") such that
PV + ) @ =0 (72)

we can readily find ¢§k+l), by inverting H
YD = QO VP +o0) @1 (73)

and this inversion is straightforward when everything is written in the basis that we chose, as
‘Ho is in diagonal form.

As we saw the problem in finding zp,Ek) is implicitly connected to the locality of the operator
V1,bgk) ® I, as described by condition (71). If condition (71) is satisfied, then we find that, to
the extent that it was possible to check, the solution of the problem can be written in the form

q/)(k) _ Z Fll,zz,_.,,lk_,POVSll VSIZ . Slkflvwl()o)

() (74)
h+b+...+h—1=k
with Ty, ;. €Qand
, Po =0
S'= ! . (75)
(1) 1s0
In the case of the N = 3 parafermionic clock model we have, for example:
Z/f,go) =01,
P =0,
1 %
2 _ _ - =0 (0)
Yy 5 PoV <H0> Vb,

Do O O Do
(3) (0) 0)
=g () v () s g () v () v
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3 (N (N Do Do
4) _ 0 _ - =0 =0 (0)
p 8P0V( ) VP()V(,HO) Vi/Jp PV(,HO) V(H())V(,H )Vl/)
D D\’ (o) (o)) (o) D\’
YA C) I =0 0) _ = =0 =0 (0)
- 2% Pov (H0>V(’H0) V(HO) Ve POV ('HO)V< 0)V<7'10) Vo

1 Qo Do o o
(4) (0) (0)
L/J + 4730V770V (Ho) % (,H ) 1/1 + 'P()V'Pov (7‘[0) v (7‘[0) V?,bp .

(=1

For the values taken by the I's in the next order that we could check we refer to appendix D.
Note that the coefficients do not depend on 6 and ¢ and that all the terms in each sum act trivi-
ally on the last site of the chain, as imposed by property 4. This gives another hint of the fact
that when 6 is such that the total domain-wall angle is not conserved, the zero mode operator

cannot be constructed, as the presence of % will induce divergences at resonant points that

cannot be removed. In particular this accounts for the divergences witnessed in the expansion
of the zero mode in [8, 14, 27].

In appendix C we present a proof for the solutions of w,fz). The solutions for the next orders

were checked by symbolic computation using Mathematica. We were able to explicitly check
our ansatz up to Sth order in the perturbative expansion®, even though we know that a solution
for z/),g@ exists. (We were able to construct this solution using the methods in section 10, but
not able to check that it takes the form conjectured in this section.) Note that already to the
third order we have to deal with a Hilbert space of dimension 3% and that the existence of these
types of solutions is therefore related to the exact cancellation of a very large number of terms,
making it hard to believe that the above structure is simply the result of chance. The results
from [27] and [28] corroborates this idea. This becomes even more apparent when we try to
apply the same methodology to other spin models.

As a final remark we note that this ansatz is quite reminiscent of the formulas obtained for
effective Hamiltonians in the framework of degenerate perturbation theory [33, 34].

71. Ilterative method in other models

In order to further understand the structure of the solution we can also apply our method to
spin models where the existence of a zero mode is already known, like the XYZ model [11]
or the models considered in [14]. In the cases we studied, we found that the known solutions
for the zero modes follow our description. Interestingly the existence of these formal expres-
sions for the zero modes hold even when there is no underlying symmetry, as for example in
the case of the Hamiltonian®

L—1 L
—Y oot +f Y ol + ot (76)
i=1 i

with f the perturbing parameter. This Hamiltonian does not commute with the fermion parity
(or with any other symmetry, as far as we are aware) and is not integrable. Nonetheless our

construction can still be carried out starting with 1/),(,0) = o7 (the free model still possesses a

local zero mode on the left edge). The resulting zero mode is in general not normalizable,
which means that we do not expect it to survive in the thermodynamic limit, but surprisingly a

8 The solution for w]()s) is given in appendix D.
9 This model was considered in several other works, see e. e.[35, 36].
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formal expression for it can still be written out for any order we could check (up to 8th order).
It might be interesting to consider how this is related to the slow thermal relaxation of local
operators treated in [37].

By considering different models we also see that in general the coefficients I's are model
dependent. For example if we consider the Hamiltonian

}:mmﬂ+f§:mHo+mHo—J%+ﬂ’ (77)

i=1

the first orders of the projections of the zero mode, v, € Null(#'¢), constructed with our
method, are given by

© _ =
d/p - 7

a1,
1 _
¢/p - 07
¢/1()2) ;P/ V! (5/0> v/w/[(JO),
G 2 Q' Q' Q' Q' (0)
w/p 3rp/ V/ (H/ > V (Hl V/¢(0) P/OV/ H/ V/ H/ V/d]/p .

We believe that the existence of these expressions has to do with the chiral symmetry 7K
introduced in section 3, however we leave this for future work.

Finally we tried to apply the same method also to non-hermitian models and the same gen-
eral structure holds. Notably we investigated the case of free parafermions [16], which can be
described through the Hamiltonian H' = Hj) + fV’, with

L—1 L
fZULIJiffZTi. (78)
i=1 i=1

This is the same as the spin clock model (1) when 6 = 0 and ¢ = 0, except for the omission
of the hermitian conjugate terms. In this case, to each order k, we find

k Qo k
oy —< o ) u =0 9
These are formally the same expressions that one obtains in the case of the transverse Ising

model (N = 2) and this provides further evidence that these types of models, rather than (1),
constitute a closer generalization, even if not hermitian, of the transverse Ising model [16].

8. The problem of normalization

In the last section we showed that there are cases where we can write down a formal expres-
sion for the zero mode. However the fact that we can construct these operators does not gen-
erally mean that in the limit L — oo the zero modes exists, as the perturbation series could
fail to converge. In this section we will therefore address the problem of normalization. As
outlined in section 2.1, we require our zero mode to satisfy the conditions

Y =L+0(f") (80)

and
iy =n+0(f ") . (81)
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In this section we will show that these two conditions are equivalent and that once we find a
formal solution for the zero mode they can always be fulfilled. Let us therefore consider these
cases in full generality.

8.1. Expansions of 1

Consider 1° first. Since v admits an expansion in f, so does >:

O =LA f@)W + NP 4 (82)
and we have
(w3)(k) _ ¢(k1)¢(k2)1/,(k3) )
k1+kzz-4-:k3:k (83)

Since every 1) satisfies the equation [Hy, ®)] = —[V,*~D]so does (1/*)®), in fact

[Ho, (wa)oo} - ¥ [Ho,w(k”} )k g (k) [Ho,w"”)} ) g ) g (he) [Ho,w(k”}

ky+ky+hk3=k
using that [Ho, ¢(1)] =— [V,¢(l_1)] for all [ < k we get
>o- [V,Q/,(kl—l)} MCOMCIRACY [V,qﬁ(kz—l)} k) k) (ko) {V,qp(ka—l)} _

ki+ky+ks=k

Since 1(~1) = 0, we see that

[Ho. (69)®] = = [v. (") )] (84)
or, written in the super-operator formalism
HoW) W ol =-veH*Ven. (85)

In line with what we have done in the previous sections we can project this equation down
to Null(H,) and its orthogonal space. Equation (85) is therefore equivalent to

H0(¢3)§k) QI = *Q()V ((¢3)£Ik71) 4 (11}3)[(7k71)> ® I (86)
PV P @1 = PP @ 1

with (w3)§k) = Qo(¢*)® and (1/13),(,k) = Po(¢*)*). We can now see that the following prop-
erty holds.

Property 6. If a solution for the zero mode exists up to some order k then
@Y =0 @Y =N V=12 .k (87)

with constants \; € C.
This property can be easily proved by induction. It is true for j = 0, as
W =al=1.

Since

Q)™ = (")
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and since the super-operator @ commutes with o and V, from (86), we can assume that

QMW = )W Vi=1,2,... k. (88)
Suppose therefore that the property 6 is true for j — 1, that is
@WHgV =0 @)YV =Nk (89)

Since VI; = 0 we have
Ho(¥*)P @I = —QV(*)y ™V @1 =0,
which in turn means
W)y =0,
because by hypothesis (wS)(Sj ) ¢ Null(Ho). Hence we are left with
PV @8 = PV @6 =0.

We already encountered this equation in section 5 and we know that its solutions are the linear
combinations of the operators

o) ;  Hhel  [2)2)ef.

Since we are supposing that a solution exists and because of (88), we have that the unique
solution is given by

W = NI (90)

for some constant \; € C, that will generally depend on 0.

8.2. Expansion of i1

We can now consider what happens to 1/f1. Also in this case, since ¢ admits an expansion in

£, so does T

Pl =1+ f(@T) D + 2 (Ty) P + o1
and we have
() ® = Z ¢<kI>T¢<kz>. ©2)
ki +ko=k

Now the discussion goes exactly like the previous one for ¢* and we have that (Ww)(k) satis-
fies the equations

Ho('0)() =~V (') + wlw)ED) @ 1,

PoVWi)P @I = —PV (i) o1 . o
In the same way as before, the following property can be proved
Property 7. If a solution for the zero mode exists up to some order k then

@)@ =0 @) =N V=12 .k (94)

with constants )\; e R.
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8.3. Expansions of 1 and 1

We will now consider the expansions of 1/? and 11! and we will see how we can choose the
normalization by considering the relation between them. To understand the point suppose that

W =4t + O(f") ©3)
then this would imply that

WHD = @tp)D Vi=1,2,...,L—1 (96)
and therefore:

A=A Vj=12,...,L—1. O7)

If this condition is satisfied then we can always make sure that (80) and (81) are satisfied by
renormalizing . This therefore raises the question: can we make sure that at each order j

(1/}2)(1‘) — (qp(j))T’

and if not, can we use the freedom in choosing a solution to make sure that this becomes true?
We can start to answer this question by establishing the following

Property 8. Suppose that

@Y = (p)i (98)
with j=1,2,...,k — 1. Then we have
@)W — @HW = Nl @1, (99)

with \} € C.

The proof of this property goes exactly in the same way as the proofs for properties 6 and 7.
Although note that for it to be true we need to assume that we are able, somehow, to make sure
that (98) holds at each order j < k. The only difference is that

QWM — (H) ) = w?((¥?)@ — (1))
which means that a solution of
PoV((")™ = (D)o n =0

is given by \/o? ® I;. We are finally in the position to consider how to fix the normalization.

8.3.1. Choice of the normalization. As we already pointed out, whenever we find a solution
for the expansion of the zero mode, it is not unique. In fact, given a solution of order k, we can
always add to it a solution of the equation

PoVER @ 1y =0, (100)

10 Note that in the super-operator basis (21) v is given by

o = TKy.
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with §1§k) € Null(H,) and we would still get a zero mode, in fact
PV + &) ol =Pyl @ ) = —PoVy @ 1

By now we should be acquainted with the fact that if we are looking for solutions such that
Qv = w1, the only possible choice for §,§k) is given by

N = oy @ I (101)

with &, € C.
This freedom can be used to fix the normalization and in particular we can use it to enforce
the condition

W = (pH)V. (102)
Doing this at every order will guarantee that
v =9+ o). (103)
First of all note that
2y(k) — (k1) o (R2)
(%) k%%w v (104)
1 2=

It is therefore not difficult to prove that if we use our freedom to add operators of the form
&9 o yp®

Pp® = p® 4 glgk) (105)
(W)W — (1) ® will transform as

(@)Y = @N® = @)® = @H® + & - ). (106)
By using induction and property 8, we can therefore see that if at every order j < L — 1 we set

§=—Re(X)) ~ sIm(¥), (107)
then

=9t +o(ff) . (108)

As we already noted, because of properties 6 and 7 this condition implies
WHD =N, @)V =N V=12, 0k (109)

and ); € R as in property 7. Therefore, up to a common normalization factor, equations (80)
and (81) are true. Note again that in general A; will depend on ¢ and ¢.

It is worth mentioning that the results contained in this section can be easily generalised to
consider Zy parafermionic models with N prime. The conditions (80) and (81), in the case of
general N, would be rewritten as

YW=nL+0(ff)  Ylv=n+0(f7") (110)

and the properties listed in this section can be generalised in an obvious way. The only notable
difference is the choice of &;, which we use to normalize correctly the zero mode. In the case
of general N we would in fact get
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Figure 3. In (a) we show the value of N?in equation (113), which signals the deviation
from 1 of the norm of the truncated expansion, for different chain lengths L and 6 = 7,
¢ = 0. In (b) we show N? for different chain lengths L and § = 5 ®6=0.

1
9T N2
In the case N =2, the two conditions in (110) are equivalent, as we are dealing with

Majorana zero modes. In this case, Property 6 simply states that, as long as we are able to
find a solution of the iterative problem, the expansion of 1% will always be proportional to the

Re(\/) — %Im()\;’) : (111)

identity operator and we do not need to introduce any extra §,§k). This fact was already noted
in previous works dealing with Majorana zero modes [11, 14].

Ultimately the results in this section hold because the form of V restricts the range of pos-
sible solutions of (67). By repeating the analysis of section 3, it can in fact be proved that for
general N a basis of solutions is given by

0)j0) DI - IN=2IN=2) [N-DIN-1). (112

While this has proved to be the case in all of the spin models we have studied, it is entirely
possible that a more general form of V would prevent this.

9. Convergence of the formal series

Even though the method outlined above seems to work at every order, divergences may still
arise, as the coefficients of the truncated series constituting the zero mode for a chain of length
L could grow faster than £~ . In this sense the above expansions for the zero mode have to be
considered as formal expressions that we can write whenever 6 is such that the total domain
wall angle is conserved.

The next problem we need to address is therefore about the radius of convergence of these
formal series in f.

To this end we first need to define what is the error that we make when we truncate the
expressions for the zero modes. Hence we define

1
N? = % (viy) — 1], (113)

where the normalization factor 1/3% is such that I; has norm 1 and %) is obtained by truncating
the expansion at order L
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Figure 4. In (a) we show the norm of ¢ in equation (116), for different chain lengths L
and 0 = %, ¢ = 0. In (b) we show the norm of ¢ for different chain lengths L and § = %,

¢=0.

=@ 4 ) 4 (D) L) (114)

N2 is therefore simply the Frobenius norm of ).
Even though we can always satisfy

Yl =1+ 0(f") (115)

the sum of all terms of order f* could still diverge for L — co. The expansion converges if and
only if N2 — 0. In figure 3 we show the plots of N/ for § = 7 and %, in both cases we chose
¢ = 0. From these graphs we see that there seems to be a finite radius of convergence, even
though the information available is limited.

A related problem concerns the convergence of the commutator between the total hamilto-
nian H and the truncated zero mode

e= Ho+fV)0 = fLHivyd) (116)

In figure 4 we show plots for the norm'! of € in the cases of # = T 0=%and ¢ =0.In
this case we also have strong suggestion that a finite radius of convergence exists, but further
analysis is needed in order to have a definitive answer on the subject. In particular, in order to
give an estimate of the radius of convergence, we need more information about the constants
Ty, by....1._, @ppearing in (74) and at the moment we lack a proper understanding of how these
constants arise in the solution.

10. Algorithmic solution for the formal series

The general ansatz for the solution w(k) that we have provided in section 7, lends itself well to
direct checking. Nevertheless the problem of finding the constants Ty, ., of (74) is gener-
ally not an easy task, especially for large k. However, if we are not interested in the specific
values taken by these constants, it is possible to design algorithms that would allow to find
the 1/),(,k) at any given order (with limitations due to computational power). Strictly speaking
we cannot prove that this algorithm works at all orders, as we need to assume our ansatz (74)
to hold true for it to work. If this is the case we can employ some of the symmetries of the

' A5 before we consider the normalization constant to be 3%
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problem, and some of the remarkable cancellations of terms that have to take place in order
for such solution to exist, to simplify the determination of w,ﬁ"). As such, the recipes that we
will present in this section have always worked.

With this in mind consider a solution for w,Sk) as in (74). It can be seen by induction, using
repeatedly property (30) and the local structure of V), that

w;k) =Ypr + k1 L+ ...+ Py @ Ly (117)
where ), ; are operators acting on chains of length /:
¢p,l = Z(M)Z:}ij’;ﬂil,iz—z, il>|il’jl—2, il> with E;ll,;:iz =0. (118)

i
With i;—> and j, , not necessarily different from each other. The equation satisfied by the

solution w,gk)

is given by
Po(VyiP @ 1y) = B (119)

with 889 = —=Po(Vpi¥) and

k _2 : [F1 T /TP . .. . . it i
ﬂlg )= (6)il,jk—lyik+] |l1’lk71’lk+1>‘l1"]k71’lk+1> with Eil,jk—],ik+l =0.
Jil
(120)

The idea behind how to find a solution is now to determine one by one all the v, that con-
stitute w;k), starting from 1, x. Doing this will reduce at each step the dimensionality of the
problem. Suppose now that we are able to find 1), , then we can write

Po(Vul) @ b) = B — Po(Viu ® 1) (121)
with

D = it + Ypre2 @I+ + Uy @ Lo (122)

If a solution exists and follows (117), because of the locality of V and condition (30) then we
must have

PV @ L) = gD @1 (123)
with 850 @ 1, = 8 — Po(Viypx @ 1)) and

k1) _ 71 TRED S /A . .. . . 10k 2,0k _
Bk = Z(ﬁl),‘l‘jk_z’ik‘ll,lkf%lk>|ll’.]k72»lk> with E; 575 =0 (124
i
Therefore B,Sk’l) acts on a chain that is one site smaller than the one on which 3% acts. This
means that we can reduce the problem to

Po(WyiD @ 1) = gk, (125)

which is equivalent to solve the initial problem on a smaller chain and this is computationally
very convenient as the Hilbert spaces involved in the process are of smaller dimensions. This
process can be repeated now for v, x_1, 1, x—2, etc until we exhaust all the terms.

We now need to describe how to determine the various 1), ;. We remark that the fact that it
is always possible to go from B,Sk’l) living on a chain of length k + 1 — [to a 515"”“) living on
a chain of length k — [ is not trivial. It is a consequence of the existence of a solution of the
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form (117) and this implies the equality and the cancellation of a large number of terms in ﬂ,gk)
when we remove 1, as described above. The presence of this structure can be traced back to
the general form of the solution described in section 7 and is part of the reason that makes us
believe that this form holds in general.

We will now describe how to determine the various 1), ; terms. This is simpler than it may
look, as we do not need to consider the action of the whole V on 1),;, but only the action of
V. Given in fact the structure of (117) this super-operator can act non-trivially only on 1,
and its action is particularly simple, as all the terms appearing in 1), ; have i; = j;. This means

that, in order to deduce the form of ¢, ;, we only need to consider those terms in ,S"”‘") such

that i; # j;.

For the sake of clarity we will describe the method for a specific example. We will hence
consider the case for 6 = % and ¢ = 0, where no resonance occurs. In general, the analysis
for any given resonance point (where total domain wall angle is conserved), will depend upon
the particular combinations of domain walls that happen to have the same energy. The fol-
lowing analysis needs therefore to be changed accordingly on a case by case basis and works
only when we are not at a resonant point. Our purpose is to present a general approach to
constructing solutions for 1, ;. There is no real difference in considering solutions for 1, ; for
different /s.

Consider therefore, as an example, the case of 1/155), and suppose that we already know the
solution for 1, 5. As we described we can find Bp(s’l) from 5,55) and 1), 4 will be given as

Upa =3 ()i, i, i3, i) [iv, s an i) EfE =0 (126)

Ly

and

4.1 TR 700 2 T S N FO A W 0K
B0 =D (B0l g g dan i) ins i, s dis) B = 0. oo
i
As we said we can reconstruct 1), 4 from @54’1) by considering the action of V4 only. This
means that we need to look at the elements of @54’1) such that is # js. We have to distinguish
two subcases with respect of the values taken by i3 and j3.

10.1.Case i3 # j3

To explain the strategy in this situation we consider a specific example. Consider therefore
the terms

0,0,2,0,1 0,0,2,0,2 0,0,2,1,2 0,0,2,2,0
Bororr  B)orozz (Bierozz  (B)oiooe:
that is, vectors that agree up to the third indices. Using Mathematica it can be checked that

00201 _ 400201 _ (62 +7li—(5+ 60i)\/§>

0,1,0,1,1 — ~0,1,0,2,2 —
162 + V3

00212 200220 (62 +71i — (5 + 60i)\/§>

0,1,0,02 — ~0,1,0,0,0 —
16V2+ V3

Note that all the coefficients are the same up to a sign. This is in agreement with the fact
that they stem from the action of V4 on a single operator. In order to find what it is, it suf-
fices to consider the operators that we obtain when we make the fourth indices agree by
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changing only one of them and discarding the fifth indices. For example for the first vector,
|0,0,2,0,1)|0,1,0,1, 1), we would get the two terms

|0,0,2,1)|0,1,0,1) |0,0,2,0)|0,1,0,0). (128)

It can be checked that only |0, 0,2,0)|0, 1,0, 0) belongs to Null(,) and therefore this is the
only vector that can belong to 1, 4. With some effort it can be shown that when i3 # j3 and we
are not at a resonance, there is always one and only one vector that belongs to Null(#,) for
any given combination of indexes i1, j, etc that are not involved'2. Therefore all these vectors
can be obtained from the action of Py, on

62 +71i — (5 + 60i)v/3
(TN G803 ) 1 6.2,0)00.1,0.0) 011 (129)
16V2+/3
In other words (14)0 780 = — <62+71]61_(2\/ﬂ\/(;’)‘/§> Note that all this is possible because the
o +

coefficients for /3 follow the symmetries that we have highlighted above. This procedure can
then be repeated for all the terms in 3 (41) such that iy # j4 and i3 # j3. We can now consider
the case of i3 = ja.

10.2.Case i3 = j3

Also in this case, to understand the point, it is better to consider a specific case. Take therefore
the terms

(Bo3350  (Bosas  (Bosats

(Bo3305  (B033%0  (BoSaT -
It can be checked with Mathematica that
(B)oaarn = —(B)o2321  (B1)o2320 = —(B)o2350  (B)o230s = —(Bi)oaato
and

—276 + 117i + 217V/3

1
(Bo2200 = — + /1980 — 2337i
B0 B2 4 V/B(=37 — 14i+ (20 + 3i)V3)) 2
1
(BS54 = 55 V1980 — 2337
(8100202 —276 4+ 117i +217+/3
1 = .
0222 8 /2 1 V/3(=37 — 14i + (20 + 30)V/3))
(130)
Note that
(Bo2300 + (Bo2221 + (B1)o2312 = 0. (131)

Again we need to consider the action of Py, on vectors of length 4. That is

12 Note that there exist operators such that by making the 4th indices agree and discarding the last ones, none of the
resulting operators belong to Null(#). Consider for example |0,2,2,2,0)|0, 1, 1, 1,0). It can be easily checked then

both [0,2,2,1)[0, 1, 1, 1) and |0,2,2,2)[0, 1, 1,2) are not part of Null(#,).This means that (3;)07770 = 0, otherwise
it would not be possible to find a solution. This is part of the peculiar cancellations that take place when solving

these equations.
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0,2,2,1) + (¥4)0933

0,0,2,2)[0,2,2,2) .

0,0,2,0)

0,2,2,0) + (¢4)057]

0,0,2,1)

(¥a)0930

Acting with PyV;, on this operator (tensored with /;) and equating it with the terms in B,EM)
that we are interested in, yields the system of equations

(a7 — (¥a)o22p = (82200
(a)o221 — (Wa)o22s = (B2 (132)
(o230 — (Ya)o31 = (Br)o2303

Since condition (131) holds, the system admits solutions and we can set

0,0,2,02 _ £0,0,2,2,0
0,0,2,0 0,2,2,1,2 0,2,2,0,0
(Va)o220 = +A

0220 = 3
002,11 _ £0,0,2,02

( 7/’4)83%31 _ Po2221 - 02212 |y
00220 _ 002,11

(v - Foain _fhosy 133

with some arbitrary constant A that we can take to be 0. The value that we chose for this con-
stant is not important as we know from our discussion in section 5 that a basis for the solution
of

PV @ 1) =0 (134)

is given by oy. This means that at the end of this process, after we determined all the v,, the
various arbitrary constants that we fix during the solution will reduce to some multiple of o
(always assuming that the algorithm will produce a legitimate solution of the problem)'?.

We can repeat this procedure for all terms of @54’1) such that i3 = j; and then continue to the
next step where we consider Bp(“) as described. The process can now be repeated in the same
way again by considering terms with i3 # j3, then considering the subcases iy # ja, i; = j and
so on until we find all the terms in w}").

This concludes our explanation on how to find solutions for 1),. Although the details given
here only apply to the case of the chiral Potts model, the procedure ultimately reduces to
finding the action of the pseudo-inverse of PyV; P, for the various [ < k. It can therefore be
generalized to consider the other models that we mentioned in section 7 as well.

11. Conclusions

We have analysed the construction of strong zero modes in Zy parafermionic chain models.
Although we applied our method specifically to the Zj3 case the techniques that we have shown
here can be generalised to all prime N and to many other spin chain models.

We investigated in particular the connection of the existence of parafermionic zero modes
with the conservation of the total domain wall angle, and the iterative constuction of zero
mode operators, generalizing results from [8, 11, 14]. In addition we showed that the existence
of zero modes is connected to a perturbation theory problem at the level of super-operators.

13 As we saw in section 8, we can exploit the addition of linear combinations of ¢ to fix the normalization of the
zero mode, so at this level it does not really matter which constant multiplies ;.
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More precisely, this is a constrained perturbative problem in the degenerate null space of the
commutator with the free Hamiltonian.

We have shown directly that, at resonance points where the total domain wall angle is not
conserved, local zero modes cannot be constructed and we have demonstrated that the conser-
vation of total domain wall angle amounts to a condition regarding the locality of the terms
appearing in the iterative expansion. Ultimately we find that this last property is what allows
the construction of zero modes in this and similar models.

We also addressed the problem of normalization of the zero mode in the thermodynamic
limit and we have shown that properties of the zero mode at f = 0 (e.g. symmetries) general-
ize to f # 0 and this allows us to show how a normalized zero mode can be constructed at all
values of L. However the problem of convergence of the expansion is still largely unanswered
(this is connected to the problems of prethermalization and long coherence time for spin edges
[14, 28, 38]).

We have provided a general ansatz for the shape taken by the solution of the perturbative
expansion. These results have been checked using numerical symbolic calculations up to 5th
order, even though we where able to find a solution up 6th order. However we were not able
to check if this last solution is consistent with the provided ansatz, although there are strong
suggestions that it does. We find that this framework agrees with other known iterative con-
structions of strong zero modes [11, 14]. This raises questions about the reasons that allow
such methods and the accompanying remarkable cancellations to work. Further developments
in this direction are needed in order to fully understand this.
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Appendix A. Proof of properties 1 and 2

In this appendix we will prove the properties given in section 5. We will first consider prop-
erty 2

Property A.1. Consider the equation
PVa, @11 = B, ® I (A.1)

with ay,, 8, € Null(H,) given as
ap = i i)y in) (A2)
and

/Bp = Zﬂjjjmlt—l, it>|jl—l’it> .
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Assuming such equation to hold then, necessarily, ¢’ = ¢ and

ap =Y b i, i)z irt) @11 (A3)

Ji—2si—1

Proof. To prove this property consider the action of V on a,. We have

t'—1

Va, =Y Via, + Vv, . (A4)
k=1

Since the last two left and right indices in (A.2) are the same for all the terms in the sum, we
can easily write down the action of V on a,. That is

o illil,l}l‘l’l i,/il,i,/ —ip|s . . .
Viay = E (aj,/_l,i/-i—l —, )€ i 1,8 + D)]jo—1, i)
iy iy — i iy i . . .
3 (o =g ) i~ Dlie-ri) . (A)

In order to consider solutions of (A.1) we now need to project down these terms in Null(H,).
As we saw, since H can act on two sites per time, we need to consider the addition of an iden-
tity operator at the end of the chain. This means that we need to consider operators of the type

|iz’—17it' + l,it'+l>‘jt’—1»iz’, it’+l> . (A.6)

Projecting down into Null(#g) consists on finding values ir 1 € Z3 such that

(WS Y

—-0. (A7)

jr/ —1 it’ ’ir’+l

iy iy £1
To simplify the problem we can write £y~ “"J:‘

+El/

o —1 Ll Jir sty 1 bl

,/,l,i,/:tl,il/+l o i,/,l,i,/ l,l/:tl l,/+1

)

where we have gathered all the final domain walls in the second term. Since by hypothesis
J’:*:i’j = 0, we are left with

,/_],il/il,i,/+] i,/_],i,/il,it/+l

| SR N Lt s Ll 4

Consider now E’ ”:,’l ':llll’;“ In terms of domain wall energies we have
J'Li:l ﬁ::ﬁl = €iy =iy T €iyp—iy_, ~ €y —ipF1 T €ipEl—iy_ s
with €, as in (7). If we now set
ipy1 =2ip =1 —iy_; mod3 (A.8)
we get
iy £ g (A.9)

§ P
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This means that all the terms in (A.5) will always produce operators that belong to the Null(#,)
when we tensor them out with /;. Therefore the operator PyV;c, ® I} will always invariably
contain terms of the form

|it’—]9il/’it’+l>|jl/—l’jt'7il/+1> it’ #jt” (Al())

that cannot be removed from the rest of the action of V, since they leave the last left-right
index the same. Imposing that oy, constitutes a solution of (62), with 3, as in (63) means that
t = ¢’ and that

Via, =0, (A.11)

because in 3, all the terms have the same left-right indices at site t, while we saw that if (A.11)
is not satisfied then V; will produces terms of the form (A.10) when acts on «,. Condition
(A.11), in turn means that

ap = Ay i) ji—2sir—1) @ (A.12)

—2.0—1
which proves the statement. O
We can now consider the other property given in section 5.

Property A.2. Whenf # 0, 5, 2{, the unique possible local starting point of the zero mode
expansion is given by

PO =0y . (A.13)

When 6 = 0, g, 27” a local zero mode cannot exists.

Proof. Suppose by contradiction that

O =3 i) -1 i) (A.14)

for some 7 € NT. In order to be a good starting point of our zero mode expansion 1/),50) has to
satisfy
PV O o) =0. (A.15)

As we saw in the proof of property 2, the action of Py} on ¢,§°> ® I will always be different
from zero when it acts on the last index, unless

Vi =0. (A.16)

By induction this means that
v =D wilili) - (A17)
i

S5 27”, then the only possible solution is given by

o I;. This solution is inconsistent with the condition

QLY = wy©, (A.18)

As we saw in the main text, if § =0
(0)
P

31



J. Phys. A: Math. Theor. 53 (2020) 095006 D Pellegrino et al

since

oL =1, . (A.19)

Thus, if 6 =0, 3, 27”, there is no local solution to the zero mode expansion problem. If 6 is

not one of this resonant points than the solution, up to a multiplicative constant, is given by

PO =0y . (A.20)

To directly check all this and see how the total domain wall angle conservation enters into the
problem, consider

VO @1 = (—erf + e rf +he)y¥ @1 .
To compute this expression consider
(=7 +e7rf + h.c.)|0)[0) = —e'?[2)|0) + e ?|0)[2) — e '?|1)|0) + €?[0)|1) .

As we saw in section 3 we can use the symmetry under @ and 7 K to build the complete action
of V on z/),SO) and this yelds

Vi @h =~ Y (@ —w)e T i) iy, i) . A21)
i #j1.02

Note that the difference between the two indexes j; — i; has been introduced for notation
convenience and has to be intended as taking values in {—1, 1}. This means that in the event it
results equal to 2 or —2, it has to be substituted with —1 or 1 respectively. We will keep using
the same convention throughout the rest of the appendixes. Since we are supposing that total
domain wall angle is conserved then it follows that

PV @ 1) = 0 (A.22)

because i #j; in (A.21), while operators in Null(#,) have i; =j; as prescribed by
property 1. O

Appendix B. Proof of properties 4 and 5

In this appendix we will prove property 4, that we recall here for convenience

Property B.3. Suppose that a local solution for the zero mode expansions exists up to some
order k. If the total domain wall angle is conserved then

PV @ 1) = B @ 1 (B.1)

with 859 € Null(H,).

This property has to do with the general structure of the solution, in the following we will
prove a generalization of it.

Property B.4. Suppose that a solution for the zero mode exists up to some order k > 1. If
the total domain wall angle is conserved then
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PoVeP @ 1) =B @1,
with /3,5") € Null(#,) and the solution 1™ is constituted by operators that act non trivially on
chain of length k + 1. In particular
e The operators zpé") can be written as
w(k) - 77; ) 4 p(k)

K. I
where 77; is a linear combination of operators of the form

i1, d2, ooy Bkp 1) s T2s - - -5 s T 1) i # i Vi=12...,k (B.2)

while pflk) acts trivially on site k + 1 and is a linear combination of operators of the form

[ik—1. k) -1, i) @ Iy Eft L),

Jk 1sik

( ) is made of operators that act non-trivially on chains that are not longer than k. This
means that z/),, is a linear combinations of operators of the form

lits ik—2, k) |i1, Jk—2, i) @ I ;,1;;:27; =0
Proof. We will first prove that

P =ik 4+ plb) (B.3)
by induction on j < k.
Casej=1

We start by considering ©). We have
=y = Z W'l (B.4)

As we saw in appendix A, if the total domain wall angle is conserved, then

PVl @ I =0 (B.5)
and

W,SO) QI = — ; (wjl _ wi‘)ei(j‘_i‘)¢|i1,i2>U1,i2> ) B6)

L7j1:0

In order to find 9(") we now need to use equation (58), that in the present case are given by

QuHol) = -V @ 1)

B.7
PV @) = -PoV({V ®@6). ®B7)
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As we saw the first of these equations is easily solved:
ei(jl —i )¢

El:1 i
i1 #j1,i2 T2

9D =~ 2VEO e1) = Y (wh - wh)

o liv, i2) )1, i2) -

In order to find a solution for w,S” we need to repeat what we did for 1/(©):

vl en=- 3 (wh-u) <Ei1Jz - Elju'2> =m0y iy i) . i3)

i #1703 Jid2 Jisd2

_ Z (wjl _ wil)

i1 150203
Where the terms with i} = j; cancel identically and are therefore excluded from the sum.
Since all terms in the sum have i; # jy, if the total domain wall angle is conserved'*, we have

PV @) =0. (B.8)

gk hb

12 2jy—i1siz

2i(j1—i1) o —2i(ji—i1)¢ o
(e € ) eIy iy i3t i i3) -

Therefore in the case j = 1

PV 1) =M o, (B.9)

with ﬂ,gl) =0 € Null(H,). We therefore conclude that z/),gl) = 0 constitute a solution of
(B.NHV.
Case j=1-1

Suppose now that property 4 holds for j =/ — 1. We have

W__ oyt or Ly (a0 -1, 0-1)
’l/Jq ,HOV’(/J ® 1 /H()V(nq +Pq +7[1p )®11.

Consider now V as a sum of its local terms. Since (1) lives on a chain of length [ we can
consider V only up to terms that act on site / on the chain
-1 B
V=Y Vi+V=Vii+V, (B.10)

t=1

where we defined
N -1
Vii=> V. (B.11)
=1

Note that by hypothesis pt(,lfl), wIS’*“ act non trivially on a chain only up to sites / — 1, which
means that the action of V) is 0 on them. Hence we have

Q S _ _ _
P = —H—z (v,ny DV, (ny D pl=D 4yl 1’)) ®hL. (B.12)

14 For chains of length L = 3 the resonance points are given by 6 = 0, 5 %” and § = %. Since the resonance at

6 = % conserves total domain wall angle the only problematic phases are § = 0, 7, sz as chains for length L = 2.

151t can be proved that this solution also satisfy the requirement on the normalization that we discussed in section 8.
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Suppose therefore that

Qi 1( =D 4 pU=1) 4 I~ 1))®1 => By, i1 ir) ® 1,

where the operators in the sum have the same indices at site [ because V1 acts trivially at site
[. Therefore we have

i1,
035 — — — ji—1.0 . .. . ..
=09, (Uél I)JFPE,I 1)+¢Ig1 1)) ®L = E ﬁm,l,zl,m])ljl—uzl,z,+1),
Ji— 1510041

. . —1 . i—1.0
where the dependence of the coefficients Bon ijcomes fromny . Using that E;i " Z Zi =K
we get

sz 1l ﬁ.il—lsl:l
Z EJ'; ]l” -1, i i) 15 i i) = Z EJ,EZ -1, i) i1, 8) @ I,

Ji—151 Ji— 1.0

hence we can set

Qo ~ _
) =2V (D A ) @ (B.13)

Suppose now that

—1) Q1,024 i1 — 15] . T . .
( anlxll Ji—1,0 11’12"'"ll—l’llﬂll’h"'"][—1’ll> (B 14)
ir#jr

the action of V; is then given by:

(I-1) _ 130250 si1— 1401 11,0250 i1 — 141 elli— iNg . AN . .
Vimy, ) = M gioeedi—vit ~ Mrajtoeeedi—14i =09y iy i, i) s - - sdi— 1) -
ir#jr

Since the left and right / indices are different from each other we can write

o
P A SV en). (B.15)

This proves the first part of the property, we can now prove that

i1, dk—2, i) |1, k=20 i) @ Iy EMi2k —

o Jk—25lk

constitute a basis for 1#,5”. Again we recall property (30), which states that whenever we have
the same domain wall at end of the chain, on the left and on the right sector, they cancel out
when computing the energy

E][ Lainsirg1 EJ/ 1501 Vi1:0,1,2~ (B16)

—1,00041 i—1.0

This means in particular that

Po(Vli—1, i) [ji—1, i) ® L) = (PoV|ii—1, i)ji—1, 1) @ I;) @ I . (B.17)
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As can be explicitly checked. Therefore, extending by linearity, we have

Po(Vy’ @ 1) = (PoVp{) @ 1 . (B.18)

Thus the only problems when we consider (71), may arise from ny). If the total domain wall
angle is conserved, however, this can never happen. In (B.2), in fact, i; # j; and we know that
operators in Null(#,) need to have i; = j; because of property 1. This means that the action
of V, is the only one that can survive after the projection into Null(H,):
I+1
PoWVnl @ 1) = Po(Vinl) @ ) + Po(Y Vil @ ) = PoVin{" @ 1) .

t=2

Since the action Vi1 does not survive the projection, the last indices in the constituent (B.2)
of 77,51) are still the same. Therefore, using again (B.16), we have
Povn @ 1) =Y @ I (B.19)

with 5, € Null(#,) and

ﬂél) = PV n,gl) + Ponf,l) . (B.20)
Now, if a solution for w,ﬁ’) exists, because of property 2, the second part of property B.4,
regarding the structure of w,ﬁ’), follows. This concludes the proof. O
Note that we can easily find the coefficients 17;:;; lf ZL‘ of i, In fact we can see by induc-
tion that
(a2l wjl — " He‘(Jz ing 1 _ 1
M aeiisiter = Ell RETPN N EilsiZsu--it—]air Eil,iz,-..,izfl,/} ’
Jloj2se ity =2 125 ifit— 150t J12se =141

(B.21)

From the fact that all the is and js are different up to the last site assures that all the energy in
the formula are different from zero because of the conservation of total domain wall angle.

B.1. Broken total domain wall angle

We can now consider what happens when the total domain wall angle is not conserved. As we
saw in section 6 resonance points appear when we consider chains of increasing length. From
property B.4 we can expect that the first operators that can produce problems stems from the
(k) described above, as it contains the operators that act non-trivially on the largest number
of sites.
Suppose therefore that 6 is such that total domain wall angle is not conserved on chains of
length k + 2. Using property 1 we know that the operators Po(vwé") ® Iy) are a linear combi-
nation of operators of the form

L L L i
i1, dk—15 ik ikg2) 1 Sk—15Jks Trg2) i # 1 L U (B.22)

We note that the existence of this type of terms is equivalent to saying that condition (134)
does not hold, otherwise we would have an identity at the end. Also note that these terms are
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bound to stem out from the n,gk) of property B.4, and are invariably produced, as can be proved

with a bit of effort.

Using property 2 we know that the solution ¢,§k> has to live on a chain of length k£ + 1, but
for chains of smaller length the total domain wall angle is still conserved, which means, using
property 1, that wf(,k) has to be the linear combination of vectors of the type

iy, i1, i) [ Jk—1ik) @ I (B.23)
Given the local structure of V this is impossible unless, i = ji in (B.22)'%. This means that
TR TS T R T P S
Ejl,jk—lyik,ikJrz - E,‘]’l»jk—l»ik =0, (B.24)

but this is not possible since by hypothesis for chains of length k + 1 the total domain wall
angle is conserved. This means that a local solution of the expansion at order k cannot exist at
aresonance point appearing on chains of length k + 2 when total domain wall angle symmetry
is broken. This proves property 5, that we repeat here for completeness.

Property B.5. Suppose that § is at a resonant point which does not conserve the total do-
main wall angle. Then the formal expansion for the zero mode can exist only up to an order
compatible with the length of the chain at which the resonant point first appear.

Appendix C. Proof of the solution for 1>
In this appendix we will provide a proof of the formula for the solution of 1/1,52). To keep the

exposition simple in the following we will consider ¢ = 0. The same arguments can be given
also for the general case.

C.1. Solution for 4@

First of all from the proof of Property B.4 we know that

; S N
i =" (W —w“)ﬁ\lhlzﬂll,lﬁ

i1 71,02 i (C.1)
v =0
and
(1 B i 1 LYo
V1/1q ®Il = — Z (w —w ) EilJz - Eil.iz |l],lz,l3>l]1,]2,l3>
i1 Aj1,i#.0 Jid2 Jisi2
J1 i 1 1 U T
— Z (W' —w") P liv, b2, i3)|j1, B2, 13)
i1 #j15i,03 Jioia 2j1—iniz

We will now find the solution for ¢ = 1/)52) + w}z). As before we can solve for 1/15” by
simply inverting Ho:

16 in fact has to act through V; to make i; # j; in (B.22).
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2 wh —wh 1 1
vl= > Erin \ g give i1, 2, 83) i1 2, 13)

i A1 A2 .03 J1d2:3 Jid2 Jisia

wlt —wh 1 1 C .
+ Z o (Ezil—jl,fz T g ,iz> i) i) @ L ()

i#j15i2 Jl i J1o2 2j1—i1,iz

Note that (C.2) follows the structure outlined in Property B.4. We are now in a position to
prove that

PP = — Pov % (w<°>®12). (C3)
p HO P

First of all note that with this definition

1 . . 1 1 N,
z/;,?) =-3 Z (W' —w™) 5+ i1, i2) i1, B2) ® I

2
. . 11,02 Jisi2
i1 #j1,i2 (Ej] lz) (E” i )

iz _
and since E/'> = —E["2 we have
; ; 1 N
%52) = — Z (w" —wll)iz‘ll,l2>|l],lz> ®I .
2 i (€4
i1 A2 i
The action of V on 1/152) is now given by
. : 1 1 N s
POVQﬁ,(,z) = - Z (W —w") —— — 3 | i), i)
b (Ej}jj) (E};j;)
(C.5)

We will now show that Po(Vz/}éz) ® I;) yields the same expression. Since wéz) follows
property B.4 we know that

Po(VeP @ 1) = (PoVie{?) @ I. (C.6)

This simplifies the problem, as we do not need to consider chains of length 4 and the problem
stays confined on a chain of length 3'7. The action of PyV; yelds

wh =Wt 1 L
PoVivd = ). Firib (EilJz B Et‘m'z) i1, i, 3) i1, 2. 3)

i17£j1,i2;ﬁj2,i3 J1v2:i3 J1:j2 Jisiz

wh—wt (1 1
o Z Ejlgiz‘lé EJlJz E11 Ji2 |ll’ 12, l3> ‘11,12, l3>

i1 #j1. i Ejasi3 i142,03 i142 i1,i2

and all the operators in the sums are such that Ef]‘jj g = 0. Note that all the terms with i, = j,

cancel identically. Consider now the energies E!">3 E/“% with j, # i as in the sums. We
Jlx]Z 13 ll:/Z l3

have

17 Again, this is true only in the case where total domain wall angle is conserved. For chains of length 4 means

0 #0, Z,T,arctanﬁ
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E{l,i2,i3 — El:lsiZ,i3 +El:l’i2 _ Ei|J2

JiJ2,03 i142:i3 12 J1J2 (C.7)
E.jliizih _ El:]J:ZJ:} +E~jlii2 — Ejliiz '
1142513 112,13 T2 1,027

where we used that E;> = 0. Hence we get

) . 1 1 N T
Pothgz) — Z (w/l _wll) ((EilJz S - > ‘11,12,l3>[]1,j2,l3>

i1y i1,
i1 A1, A0 J1d2 E}lle':jl.iz

. . 1 1 T
o Z (W —wh) <Ej1»izEflJ2 N (Eflvi2)2> i1, 12, 13) 1. 2. 3) -

i#j,h#). i1i2 Mt i1,

Now, since E/"?? = —E"? and E]'> = —E'2, we are left with
1,12 J1s12 142 J1J2

' i 1 1 e
PV = Y (@ —wt) ((E“‘”)Z - (Ejl,i2)2> i1, i, 83) |12 13)
i #j1.7)2.3 Jia2 i1.i2
(C.8)

this is the same as (C.5). Therefore, to summarize, we have checked that a solution of
PV @ 1) = PV o), (C.9)

exists and is given by

2
U = 1P (52) VY ). (€.10)

C.1.1. Normalization. As we noted in the main text this solution is not unique and we can
consider any linear combination of the form

v + 6oy (C.11)

and we would still get a solution of (C.9), for any & € C. As we saw in this appendix and in
section 8 the value of &, can be determined from the condition

W@ = (1)@ (C.12)

Computing the value of &, directly is rather bothersome and the algebra is quite involved, but
we proved in section 8 that we can always find a &, such that this condition is satisfied. Using
Mathematica, for 6 = 7, we get'®

& =0. (C.13)

18 Also in the case of § = T we get

§&=0.
Note however that in general these constants are different from 0 and depend on 0. For example in the case f = %
we get .
i
§3 = 6,
while in the case of § = % we have
i
SN
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The same analysis conducted with symbolical computation also shows that with this choice
of &, we get

W)@ =0. (C.14)

Qo 2 1 9 2
® = ETN TR = il (0)
P = <<,H0>V<HO)V+2P0V (Ho) V>1/J . (C.15)

Appendix D. Coefficients for the solution gb,(,s)

So, overall

In this appendix we will display, for completeness, the non-zero T" introduced in sec-

i1,02,03,14
tion 7, which appear in 1/155) as found through the use of Mathematica. We have

3 2 3 1
Pooar =—35 Tooze=-35 Tozoo=—-7 Toisz= 35
6 1 3 3
Toiga= 3 Tiosai= 5 Tozii= 37 Toi2= 35
1 _ 1 _ 7 _ 3
Tiope= 35 To2i2= 75 Ta012= 35 Ti202= 7
2 2 9 1
Toioe= % To22a= % Too21= 5 TDiiiz=-3
_ 2 _ 3 _ 4
Figi=-5 Tizn=—-3 T =-3. (D.1)
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