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Abstract
We investigate the existence, normalization and explicit construction of edge 
zero modes in topologically ordered spin chains. In particular we give a 
detailed treatment of zero modes in a Z3 generalization of the Ising/Kitaev 
chain, which can also be described in terms of parafermions. We analyze when 
it is possible to iteratively construct strong zero modes, working completely 
in the spin picture. An important role is played by the so called total domain 
wall angle, a symmetry which appears in all models with strong zero modes 
that we are aware of. We show that preservation of this symmetry guarantees 
locality of the iterative construction, that is, it imposes locality conditions on 
the successive terms appearing in the zero mode’s perturbative expansion. 
The method outlined here summarizes and generalizes some of the existing 
techniques used to construct zero modes in spin chains and sheds light on 
some surprising common features of all these types of methods. We conjecture 
a general algorithm for the perturbative construction of zero mode operators 
and test this on a variety of models, to the highest order we can manage. We 
also present analytical formulas for the zero modes which apply to all models 
investigated, but which feature a number of model dependent coefficients.
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1.  Introduction

Part of the interest in topological phases of matter stems from their potentially revolutionary 
technological applications. One of the most exciting possibilities would be the ability to store 
and manipulate quantum information in topological degrees of freedom. This information 
would be intrinsically protected from some or all local error processes and there are now sig-
nificant efforts being made to harness this property in scalable quantum devices [1–4].

The information in a topological quantum computation is typically stored in the system’s 
ground state manifold, see e.g. [5]. Recently however there has been increased interest in 
whether the same topological properties can protect information at temperatures above the 
topological gap. In non-interacting topological superconductors [6] such high-energy stabil-
ity, naturally exists because the existence of a topological (Majorana) zero mode guarantees 
topological degeneracy at all energies. A natural question then is if such high-temperature 
stability can exist in more realistic interacting systems.

One of the main examples used to study this phenomenon is the so-called interacting 
p-wave wire/Kitaev chain. It is a well known fact that these models can be mapped to spin 
chains via the Jordan–Wigner transformation. The presence of topological order in this model 
and similar ones, is signalled by the appearance of unpaired zero modes localised at the edges 
of the system when we take open boundary conditions [6, 7]. In free fermion models, since the 
existence of these modes implies the presence of degeneracies throughout the whole spectrum, 
they are usually referred to as strong zero modes [8]; as opposed to weak (or almost strong) 
ones which would only act on a low-energy subspace and which give rise to degeneracy only 
within that subspace. The importance of the degeneracies high in the spectrum comes from the 
fact that this could possibly lead to high temperature fault-tolerant quantum computing [9]. 
In the interacting chain, strong zero modes have been established via bosonization arguments 
[10] and using iterative approaches at half filling, via a mapping to the XYZ chain [11]. The 
Kitev chain is also known to have a region near the flat-band limit where interactions do not 
destroy the bulk topological degeneracy [12–14]. Away from this regime there are indications 
that disorder induced localisation can help mitigate interaction-driven processes that destroy 
the topological degeneracy at high temperatures [9, 15].

More exotic interacting variants of the Kitaev chain are the so-called ZN parafermionic 
clock models [8, 16, 17], which similarly to the Kitaev chain, also admit a description in 
terms of generalised spin chains. When written in these terms they are usually referred as 
chiral Potts models and the different types of phases that they possess have been subject of 
extensive studies [18–22]. Notably there have been proposals for experimental realization of 
these parafermionic chains [23–25]. These models are also expected, in varying degrees, to 
possess high-temperature degeneracy, related to the presence of strong zero modes [26–28] 
(to some extent this is true also for the discrete group generalization of the clock models [29]). 
One of the most prominent regimes where this is expected to happen is around the chiral π/6 
point of the Z3 model, where a constraint on total domain wall angle, prevents resonant decay 
processes that would otherwise destroy the topological stability at high energy densities.

In this paper we analyse how this constraint on the domain wall angle [27, 28] enters in the 
iterative construction of the associated zero-energy parafermionic modes. In contrast to previ-
ous works we work entirely in the generalized spin picture and we provide a simple ansatz 
for the shape taken by the general solution of the problem, using the so called super-operator 
formalism. In particular we show that the problem of finding zero modes at the edges of the 
system is related to a special type of degenerate perturbation theory of the super-operator 
Hamiltonian, which is obtained as the commutator with the original Hamiltonian, acting on 
the Hilbert space of operators. In this sense we are able to relate the domain wall symmetry 
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to the locality of the terms appearing in this degenerate perturbation theory. Our approach can 
be readily extended to other types of spin chains and we find interesting common features 
between several of the studied models. In fact, we find that our treatment applies equally well 
to all spin models that we have considered.

We also address the problem of normalization of zero modes and we show how the prop-
erties of the zero mode for the unperturbed model induce similar behaviours upon the for-
mal expansion of the zero mode for the perturbed one. Nonetheless, the problem regarding 
the existence of a finite radius of convergence for the formal perturbative series of the zero 
mode is still largely unanswered, but we are able to provide some encouraging results on this 
through numerical analysis.

In addition to general properties of strong zero modes, we also exhibit a method to con-
struct the zero modes to any desired order of perturbation theory in the coupling constant of 
the interaction term in the Hamiltonian (in practice the order is limited only by computing 
resources). This method also generalizes straightforwardly to many spin models and we have 
used it extensively in guiding and checking our other results. We conjecture that the method is 
in fact an algorithm for finding zero modes to any order, but have not been able to prove this 
rigorously.

An outline of the paper is as follows. In section 2 we review the relevant quantum clock 
model Hamiltonian and its properties which are relevant for the rest of the paper. Here we 
also introduce the concept of total domain-wall angle and how it relates to the super-operator 
picture and the iterative construction of the zero mode. In sections 3 and 4 we illustrate some 
relevant symmetries of the problem and then connect the iterative construction to the general 
framework of degenerate perturbation theory. In section 6 we illustrate how the total domain 
wall angle is related to the locality of the successive terms appearing in the perturbative expan-
sion and in section 7 we provide a general ansatz for the form taken by the solution of the 
formal expansion of the strong zero mode. In sections 8 and 9 we consider the problem of 
normalization and convergence of the formal series. In section 10 we describe a method (con-
jectured algorithm) for finding the zero mode, the results of which can be used to verify some 
of the claims made throughout the paper. Finally, in section 11, we draw our conclusions and 
indicate possible directions for further research.

2. The model

We consider the Z3 quantum clock Hamiltonian as given in [24, 26], although our analysis can 
in principle be generalized to all ZN with N a prime number4. The Hamiltonian can be written 
in the form H = H0 + fV , where

H0 = −
L−1∑
i=1

eiθσ†
i σi+1 + e−iθσiσ

†
i+1

V = −
L∑

i=1

eiφτi + e−iφτ †i

�

(1)

4 When N is not prime it is generally not possible to have strong zero modes, because of the presence of bands in the 
model that are everywhere degenerate [27].
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with the convention

σ =




1 0 0
0 ω 0
0 0 ω2


 τ =




0 1 0
0 0 1
1 0 0


� (2)

and ω = e
2πi

3  is a third root of unity. The Hilbert space is spanned by vectors of the form

|i1, i2, . . . , iL〉� (3)

where ik ∈ Z3 represents the values of the ‘clocks’ at each site. This model can be viewed 
as a generalization of the Ising model (N  =  2). The commutation relations between σ and τ  
matrices are

τiσj = ωδi,jσjτi .� (4)

The following operator generalizes the fermion parity operator of the Ising model and plays a 
prominent role in the rest of the paper,

Q =

L∏
i=1

τi .� (5)

This operator moves the clock at each site one unit back. As [H, Q] = 0, the spectrum of the 
Hamiltonian splits into three sectors, identified by the three eigenvalues of Q. In terms of the 
basis written above, H0 is diagonal and its spectrum is given by

Ei1,i2,...,iL =

L−1∑
k=1

εik+1−ik = n0ε0 + n1ε1 + n2ε2� (6)

where

εm = −2 cos
(

2πm
3

+ θ

)
� (7)

and nm counts the number of domain walls of type m in the state (3). We say that there is 
a domain wall of type m between sites k  +  1 and k when ik+1 − ik = m. In particular, the 
absence of domain wall is the same as a domain wall of type 0. The typical energy bands of 
H0 for different values of θ are shown in figure 1.

The energy of the unperturbed model is therefore determined by the set of vectors of type 
(n0, n1, n2) such that

n0 + n1 + n2 = L − 1 .� (8)

Note that the spectrum of H0 is the same in each Q-sector, so that three copies of each band 
exist, with different values of Q. This degeneracy may be split through the action of V .

As shown in [27], an important role is reserved for the θ-values at which bands with dif-
ferent (n0, n1, n2) have the same energy. These resonance points are further distinguished by 
another symmetry of H0, namely the total domain wall angle,

P = σ†
1σL.

Writing P = e
i2πp

3 , we get

p = iL − i1 =

L−1∑
k=1

ik+1 − ik = n1 + 2n2 mod 3,� (9)
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so all the states in the H0-band labeled by (n0, n1, n2) have total domain wall angle given by 
p = n1 + 2n2. Strong zero modes may only occur at any given θ if either there are no bands 
crossing at this value of θ or, alternatively, if any bands that cross have the same value of p  
(taken modulo 3). We note that there are in fact special values of θ at which the total domain 
wall angle is conserved even though different bands cross. One of these special points for the 
N  =  3 model is found at θ = π

6 , which also corresponds to the superintegrable point of the 
model when φ = π

6  as well [19, 20] .

2.1.  Parafermionic zero modes

Using a non-local transformation due to Fradkin and Kadanoff [18], analogous to the Jordan–
Wigner transformation, one can rewrite the spin model in terms of parafermionic variables. 
Parafermionic operators are defined as follows,

γ2i−1 = σi

∏
j<i

τj γ2i = ωσi

∏
j�i

τj

and satisfy the relations

γiγj = ωsign(i−j)γjγi γN
i = 1 .� (10)

The Hamiltonian in terms of the parafermions basis is given by

H0 = −Jωeiθ
L−1∑
i=1

γ†
2iγ2i+1 + h.c.

V = −fωeiφ
L∑

i=1

γ†
2i−1γ2i + h.c.

� (11)

Figure 1.  Spectrum of H0 for L  =  6. The different colors represent the different total 
domain wall angles.
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and the parity operator becomes

Q = ω−L
L∏

i=1

γ†
2i−1γ2i.

In the exact same way as in the Ising case, there exist two parafermionic operators localized 
on the edges that commute with H0, namely γ1 and γ2L. In terms of clock operators they are 
given by

γ1 = σ1 γ2L = ωσLQ .� (12)

As in the Ising case a question arises over the existence of a localized zero mode when we intro-
duce the potential V  term; but because of relation (10) the situation is much more involved5.

The analysis of [27] shows, through a perturbative approach, that V  can destroy the 
zero mode for values of θ where bands with different values of the total domain wall 
angle cross. The same perturbative analysis hints that the band degeneracy is left unbroken 
whenever the total domain wall angle is conserved. Even though this persistence of the 
degeneracy strongly suggests the presence of zero modes whenever there are no bands 
crossing or when the crossing bands have the same total domain wall angle, there is no 
guarantee that localized and normalizable zero modes exist. Our aim is therefore to build 
up a recursive method, along the lines of [8, 29], that would allow the explicit construction 
of such operators.

Considering the left edge of the system, it is reasonable to expect that if a localized zero 
mode ψ exists, when we introduce the transverse field, this will reduce to γ1 in the limit 
f → 0. In other words we suppose that the zero mode admits the expansion

ψ = ψ(0) + fψ(1) + . . .+ f Lψ(L) =

L∑
i=0

f iψ(i),� (13)

where ψ(0) = γ1 = σ1. The defining relations of the zero mode ψ are similar to those satisfied 
by ψ(0)

[H,ψ] = O(e−
L
ξ )� (14)

with 1/ξ ∝ log( f ) and

Qψ = ωψQ� (15)

which implies that the splitting between bands with the same (n0, n1, n2) in different Q sectors 
vanishes exponentially with the length of the system.

For the normalization we will mainly be concerned with the conditions

ψ3 = 1 + O(e−
L
ξ )� (16)

and

ψ2 = ψ† + O(e−
L
ξ ) .� (17)

Together, they imply that the zero mode norm on a finite chain is given by

ψ†ψ = 1 + O(e−
L
ξ ) .� (18)

5 It is worth mentioning that these parafermionic modes admit a description in terms of generalized Fock space [17].
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Despite this, the norm of ψ may still diverge if the limit L → ∞ is taken at fixed f , because the 
coefficient in front of the f L term may grow quickly with L, similarly to what happens in [14] 
for spin chains. We will consider this further in section 8.

We stress that we will be interested in zero modes localised at the edge of the system. For 
finite systems, this property is ensured if matrix elements acting on sites that are at distance l 
from the edge also appear at an order in the perturbing parameter f  that is equal or greater than 
l. However in the limit L �→ ∞ this may not be enough to guarantee that the mode is localised 
as the matrix elements themselves could grow faster than f L, similarly to what happens to the 
normalization.

Let us now consider the commutator [H,ψ]. From (13) we have

[H,ψ] =
L∑

k=1

f k
([

H0,ψ(k)
]
+
[
V ,ψ(k−1)

])
,� (19)

which means that in order for (14) to be true (for all f ) we must have
[
H0,ψ(k)

]
= −

[
V ,ψ(k−1)

]
k = 1, 2, . . . , L − 1 .� (20)

The commutators with H0, and V  are linear operators acting on the Hilbert space of operators. 
Therefore, in principle, each of (20) gives a linear system that can be solved recursively once 
we fix ψ(0). In reality this method still presents certain ambiguities, related to the fact that the 
commutators with H0, and V  are not invertible operators. We will address these in detail in 
the following.

To understand the point it is better to rewrite the operators H0 = [H0, · ] and V = [V , · ] in a 
different form. The Hilbert space on which these commutators act is isomorphic to the Hilbert 
space for two copies of the original model. This can be established by using the so called 
Choi–Jamiolkowski isomorphism [30, 31],

|i1, i2, . . . , iL〉|j1, j2, . . . , jL〉 := |i1, i2, . . . , iL〉〈 j1, j2, . . . , jL|� (21)

with |i1, i2, . . . , iL〉 and |j1, j2, . . . , jL〉 as in (3). On each site this basis simply correspond to the 
canonical basis for matrices. For example we have

σ =




1 0 0
0 ω 0
0 0 ω2


 = |0〉|0〉+ ω|1〉|1〉+ ω2|2〉|2〉

τ =




0 1 0
0 0 1
1 0 0


 = |0〉|1〉+ |1〉|2〉+ |2〉|0〉 .

�

(22)

It can be easily seen that, given any operator O, in this basis, the commutator with O takes 
the form

[O, · ] = O ⊗ − ⊗ OT� (23)

where OT is the transpose of the operator O. In the following we will usually refer to these 
operators after their action on the left and right sectors of (21)

OL = O ⊗ OR = ⊗ O.� (24)
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Since H0 and V  are hermitian and because of (23), we have

H0 = [H0, · ] = HL
0 − HR

0
T
= HL

0 − HR
0
∗

V = [V , · ] = VL − VRT
= VL − VR∗ .

� (25)

Using a nomenclature coming from the study of open quantum systems, we will refer to 
operators acting on the space of operators as super-operators [32]. Note that in the literature, 
the definition of right operators differs from our own by a transposition (that is OR = ⊗ OT ).

The basis (21) is precisely the one in which H0 is diagonal and we can write

H0 =

L−1∑
i=1

−eiθσL
i+1

†
σL

i + eiθσR
i+1

†
σR

i + h.c.

V =

L∑
i=1

−eiφτL
i + e−iφτR

i + h.c. .

�

(26)

It will be useful for the following to isolate the local structure of V , therefore we set

Vk = −eiφτL
k + e−iφτR

k + h.c.� (27)

and V  can be written as the sum of its local terms

V =

L∑
k=1

Vk .� (28)

Since H0 is diagonal we can easily find its eigenvalues, which we will indicate as

Ei1,i2,...,iL
j1,j2...,jL = Ej1,j2,...,jL − Ei1,i2,...,iL� (29)

with Ej1,j2,...,jL , Ei1,i2,...,iL  as in (6). The unperturbed energies of H0 depend only on the domain 
walls along the chain. This means that when the left and right chain have the same domain 
walls at the endsite L, they will cancel out and we get

Ei1,i2,...,jL−1,iL
j1,j2...,jL−1,iL = Ei1,i2,...,jL−1

j1,j2...,jL−1
∀ iL, jL−1 = 0, 1, 2 .� (30)

Written in terms of the basis (21) the operator ψ(0) takes the form

ψ(0) = σ1 =
∑

i1

ωi1 |i1〉|i1〉 ⊗ IL−1� (31)

where Ik is the identity operator acting on a chain of length k:

Ik =
∑

i1,...,ik

|i1, i2, . . . , ik〉|i1, i2, . . . , ik〉 .� (32)

In what follows, in order to simplify the notation, we will often write the basis states in (21) as

|ik〉|jk〉,

where ik , jk represents the collection of the k indices is and j s. If k  <  L it should be understood 
that there is an IL−k tensored at the end of the chain. For example we will write (31) as

ψ(0) =
∑

i

ωi|i〉|i〉.� (33)
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In the cases where we need to highlight the relationship between specific indices we will often 
write expressions like

|it−1, it, ik−t〉|jt−1, jt, jk−t〉 .

As a final remark we write down the form taken in the super-operator basis by the equa-
tion (20), which define the zero mode expansion:

H0ψ
(k+1) = −Vψ(k) k = 1, 2, . . . , L − 1 .� (34)

3.  Restrictions on the solutions

In this section we will consider super-operator symmetries of H0 and V . These can be used to 
reduce the dimension of the space when we need to look for a solution of the problem. The 
first symmetry we will describe can be given in terms of the super-operator

Q =

L∏
i=1

τL
i

L∏
i=1

τR
i .� (35)

The use of Q allows to rewrite condition (15) as6

Qψ = ωψ .� (36)

Since Qψ(0) = ωψ(0) and since H0 and V  commute with Q we can impose this condition also 
at higher orders.

The two super-operators H0 and V  also have a chiral symmetry that reflects the commuta-
tor structure of their definition

(T K)H0(T K)−1 = −H0

(T K)V(T K)−1 = −V
� (37)

where T  is the super-operator which exchanges the left and right sectors,

T |iL〉|jL〉 = |jL〉|iL〉� (38)

and K is the complex conjugation

K(i )K−1 = −i .� (39)

In other words T K simply corresponds to the conjugate transposition of operators. As in the 
previous case, since

T K(ψ(0)) = (Kψ(0))� (40)

we can impose this condition, by induction, also at higher orders. By this we mean that the 
expansion obtained starting from K(ψ(0)), denoted as (Kψ)(k), can be obtained as

(Kψ)(k) = T K(ψ(k)) .� (41)

Note that in the case φ = 0, both H0 and V  are real super-operators, and (41) reduces to

ψ(k) = T ψ(k),� (42)

6 From our definitions we have that (15) can be given as

QLψ = ωQRT
ψ .

Since in our basis Q is orthogonal, equation (36) follows.

D Pellegrino et alJ. Phys. A: Math. Theor. 53 (2020) 095006



10

which can be used to diminish the dimensionality of the Hilbert space where we need to look 
for a solution.

3.1.  General considerations on Null(H0)

Consider now a vector belonging to Null(H0), which is non trivial only up to some site 
k � L − 1. Explicitly, if the operator

|i1, i2, . . . , ik−1, ik〉|j1, j2, . . . , jk−1, jk〉 ⊗ IL−k� (43)

belongs to Null(H0), because of (30), one must have

Ei1,i2,...,ik ,l = Ej1,j2,...,jk ,l l = 0, 1, 2 .� (44)

Concretely this means that an operator belongs to Null(H0) if it maps between states with the 
same band energy (with respect to H0). Since l is arbitrary, we can subtract two copies of the 
above equation with different values of the final clocks l and l′. Using (7) we get

Eik ,l − Eik ,l′ = Ejk ,l − Ejk ,l′

and, after simple trigonometric manipulation, we end up with the condition

sin
(
(l + l′ − 2ik)

π

3
+ θ

)
= sin

(
(l + l′ − 2jk)

π

3
+ θ

)
.� (45)

Since l, l′ are arbitrary this equation can be true if and only if ik = jk. This means that operators 
that commute with H0 cannot have τ s on the last site where they act non-trivially. We remark 
that this has do be true independently of θ.

Suppose now that θ is such that the total domain wall angle, as defined in (9), is conserved. 
This means that

ik − i1 = jk − j1 .� (46)

Since we just saw that for operators in Null(H0) ik = jk, we have

i1 = j1 .� (47)

We can therefore sum up these observations by the following statement:

Property 1.  A basis for the operators belonging to Null(H0) and acting non trivially only 
up to some site k is given by

|ik−1, ik〉|jk−1, ik〉 Eik−1,ik
jk−1,ik = 0

if, in addition, θ is such that the total domain wall angle is conserved, then the basis can be 
further restricted to

|i1, ik−2, ik〉|i1, jk−1, ik〉 Ei1,ik−1,ik
i1,jk−1,ik = 0 .

As we will see this simple characterization of the vectors in Null(H0) will be crucial when 
we will consider the existence of zero modes.

4.  Super-operators and perturbation theory

As seen in (19) and (20), in order to find the zero mode, we need to solve the system of 
equations

D Pellegrino et alJ. Phys. A: Math. Theor. 53 (2020) 095006
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H0ψ
(k+1) = −Vψ(k) k = 1, . . . , L − 1 .� (48)

We will now show that this problem maps to a perturbation expansion of the super-Hamiltonian

H = H0 + fV .� (49)

Consider a ψ as in (13) such that

Hψ = Eψ� (50)

with

E = E(0) + fE(1) + f 2E(2) + . . .+ f LE(L).� (51)

If we call P0 the projector into Null(H0) and Q0 = 1 − P0, we can project (50) into Null(H0) 
and its orthogonal space. Using that P0H0 = 0 and P0 +Q0 = 1 we have

fP0Vψ = EP0ψ

H0Q0ψ + fQ0Vψ = EQ0ψ .
� (52)

Order by order this set of equations gives

P0Vψ(k)
p = −P0Vψ(k)

q +

k+1∑
i=0

E(k+1−i)ψ(i)
p

H0ψ
(k+1)
q = −Q0V

(
ψ(k)

q + ψ(k)
p

)
+

k+1∑
i=0

E(k+1−i)ψ(i)
q ,

�

(53)

where ψ(k)
p = P0ψ

(k), ψ(k)
q = Q0ψ

(k) and these are the defining equations of any degenerate 
perturbation theory.

We can now see that finding the zero mode is equivalent to solve the perturbation theory 
problem when we impose the conditions

E( j) = 0 j � L − 1,� (54)

which concretely means that we are asking our perturbation to not split the degeneracy up to 
order L  −  1. Equation (53) thus reduces to

P0Vψ(k)
p = −P0Vψ(k)

q� (55)

H0ψ
(k+1)
q = −Q0V

(
ψ(k)

q + ψ(k)
p

)
� (56)

which in turn are equivalent to (34).
Usually in degenerate perturbation theory one looks for solutions that split the energy at 

some order. This is therefore a quite strange perturbation expansion, as we are specifically 
looking for a solution of the perturbative problem that does not split the energy at any order. 
Moreover we explicitly require that ψ(0) = σ1, while generally the starting point of the pertur-
bation, inside the degenerate space, is to some extent undetermined. This makes the existence 
of a solution of (55) and (56) highly non trivial. In particular we know from [27], that if we 
are at resonance points where the total domain wall angle is not conserved, the system will 
develop energy splitting at order strictly less than L and this means that a solution of (55) and 
(56) is generally not possible.

To understand the structure of the potential solution let us now consider the action of H0 
and V . The operator V  can act at most on one element of the chains, while H0 can act on two 
elements. This means that, if as in (31) we start with an operator that is localized on the edge, 
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and a solution of (34) exists, the next order will be made of operators different from the iden-
tity for at most one site more than the previous order. For this reason, from now on we will 
consider each ψ(k) to be operators acting non-trivially on a chain of length k  +  1. In this sense 
(34) can be rewritten as

H0ψ
(k+1) = −Vψ(k) ⊗ I1.� (57)

With this notation we can rewrite (55) and (56) as

P0V(ψ(k)
p ⊗ I1) = −P0V(ψ(k)

q ⊗ I1)� (58)

H0ψ
(k+1)
q = −Q0V

(
ψ(k)

q + ψ(k)
p

)
⊗ I1 .� (59)

If a solution exists, equation (58) implies that

V
(
ψ(k)

p + ψ(k)
q

)
⊗ I1 ∈ Null(H0)

⊥ .� (60)

When this latter condition is satisfied we can easily find a solution for ψ(k+1)
q  by inverting H0

ψ(k+1)
q = − 1

H0
V
(
ψ(k)

p + ψ(k)
q

)
⊗ I1,� (61)

where we can omit the Q0 because of (60). Hence, if we find a ψ(k)
p  such that (58) holds, we can 

always find a ψ(k+1)
q  which makes the iterative construction work; and if ψ(k)

p  acts on chains 

only up to order k  +  1, then the resulting zero mode will still be localized on the edge by con-

struction. Note however that nothing prevents P0Vψ(k)
q ⊗ I1 from containing terms that live on 

chains of length k  +  2 (remember that ψ(k)
q  lives on a chain of length k  +  1). We will see that if 

this is the case, then a ‘local’ solution for ψ(k)
p  will generally not exist (see property 5).

In this section we showed the importance of ψ(k)
p  and equation (61) shows that the problem 

of finding zero modes is essentially a problem of finding ψ(k)
p . In the following we will care-

fully consider the situations in which such a ‘local’ ψ(k)
p  exists and when it does not.

5.  General considerations on ψp

Here we will consider what are the general properties of the solution ψ(k)
p  of (58). To this end 

we keep the discussion general by considering αp, βp ∈ Null(H0) such that

P0Vαp ⊗ I1 = βp ⊗ I1.� (62)

Later on we will specialize αp and βp to ψ(k)
p  and P0V(ψ(k)

q ⊗ I1) respectively.
Now take βp to be some operator that acts non trivially only up to some site t. From prop-

erty 1 we know that

βp =
∑

β
it−1,it
jt−1,it |it−1, it〉|jt−1, it〉� (63)

for some coefficients βjt−1,it
it−1,it

. In the same way, αp is an operator that acts non-trivially only up 
to some site t′ such that

αp =
∑

α
it′−1,it′
jt−1,it′

|it′−1, it′〉|jt′−1, it′〉,� (64)
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the following property then holds:

Property 2.  Consider the equation

P0Vαp ⊗ I1 = βp ⊗ I1

with αp,βp ∈ Null(H0) as in (63) and (64). If we assume that this equation holds than neces-
sarily t′ = t and

αp =
∑

α
it−2,it−1
jt−2,it−1

|it−2, it−1〉|jt−2, it−1〉 ⊗ I1 .� (65)

This property means that, if βp acts non-trivially up to some site t, then equation  (71) 
imposes that αp can act non-trivially only up to site t  −  1. The proof of this statement is given 
in appendix A. The idea behind it is that, since we have I1 at the end of both αp and βp, then 
the action of P0V  on αp is inconsistent with the equality unless

Vtαp = 0 .� (66)

As an example of this consider the state

|0, 2, 0〉|0, 1, 0〉 ⊗ I1,

which belongs to Null(H0) for a system of length 3 and general θ. When we act with P0V3 
we obtain

P0V3(|0, 2, 0〉|0, 1, 0〉 ⊗ I1) =− e−iφ|0, 2, 1, 2〉|0, 1, 0, 2〉 − eiφ|0, 2, 2, 0〉|0, 1, 0, 0〉
+ eiφ|0, 2, 0, 0〉|0, 1, 1, 0〉+ e−iφ|0, 2, 0, 1〉|0, 1, 2, 1〉 .

Similarly, whatever initial vector we pick on the left hand side, we will always find operators 
still belonging to Null(H0) and whose left–right indices differ on the third site. In other words, 
the action of P0V3 is never trivial, unless we have an identity operator present on the third site. 
This fact, appropriately generalized, together with (62), implies property 2 (see appendix A 
for more details).

In the context of finding the zero modes expansion, this property means that if P0V(ψ(k)
q ⊗ I1) 

contains operators that act up to chain of length t, then if ψ(k)
p  exists, it has to acts on ‘smaller’ 

chains. This can be used to reduce the dimension of the space where we need to look for a 
solution of the problem.

5.1.  Starting point of the expansion

The previous discussion raises some new questions. Suppose that for a given θ a solution for 
the zero mode expansion that starts at ψ(0) = σ1 does not exist. It is reasonable to ask whether 
it is possible to fix ψ(0) ∈ Null(H0) differently, in a way that would allow a solution of the 
perturbative problem to exist. As a first step towards the answer to this question, we consider 
equations (58) and (59) at zeroth order

P0V(ψ(0)
p ⊗ I1) = 0 ψ(0)

q = 0� (67)

from the proof of property 2 we see that in order for this equation to have a solution we are 
forced to have

ψ(0)
p =

∑
i1

ψi1
i1 |i1〉|i1〉 .� (68)
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This means that a basis of solutions is determined by

|0〉|0〉 |1〉|1〉 |2〉|2〉,� (69)

except when θ = 0, π
3 , 2π

3 , in which cases a solution such that Qψ(0) = ωψ(0) does not exist7. 
Summing up, we have restrictions on the possible local starting points for the zero mode 
expansion and the following property holds

Property 3.  When θ �= 0, π
3 , 2π

3 , the unique possible local starting point of the zero mode 
expansion is given, up to a multiplicative constant, by

ψ(0)
p = σ1 .� (70)

When θ = 0, π
3 , 2π

3  a local zero mode cannot exists.

6.  Locality and total domain wall angle

As we saw in the previous sections the question about the existence of an expansion for the 
zero mode is really a question about the existence of an expansion ψp ∈ Null(H0) and we have 
explored to some extent what restrictions we can impose to the solution. In particular we have 

seen that the ‘length’ of ψ(k)
p  is necessarily smaller than the ‘length’ of ψ(k)

q .
In this section we will concentrate on the other side of equation (58), that is P0V(ψq ⊗ I1). 

In particular we will discuss the restrictions that the total domain wall angle imposes on it. 
In this sense the presence of total domain wall angle conservation translates to a condition 

imposed upon the locality of the terms appearing in the expansion of P0(Vψ(k)
q ⊗ I1). The 

following property can be established:

Property 4.  Suppose that a local solution for the zero mode expansions exists up to some 
order k. If the total domain wall angle is conserved then

P0(Vψ(k)
q ⊗ I1) = β(k)

p ⊗ I1� (71)

with β(k)
p ∈ Null(H0) as in property 1 and of the same ‘length’ of ψ(k)

q .

The proof of this statement is given in appendix B. Note however that this statement is not 
at all trivial. Consider for example the operator |0, 0〉|1, 1〉, which belongs to Null(H0) for any 
θ. Then

7 This can be easily seen by considering that at these resonance points there are additional states present in 
Null(H0). For example consider θ = 0 and, to simplify the notation, φ = 0. We have

P0V|0〉|0〉 ⊗ I1 = −|1, 2〉|0, 2〉 − |2, 1〉|0, 1〉+ |0, 1〉|2, 1〉+ |0, 2〉|1, 2〉
P0V|1〉|1〉 ⊗ I1 = −|0, 2〉|1, 2〉 − |2, 0〉|1, 0〉+ |1, 2〉|0, 2〉+ |1, 0〉|2, 0〉
P0V|2〉|2〉 ⊗ I1 = −|0, 1〉|2, 1〉 − |1, 0〉|2, 0〉+ |2, 1〉|0, 1〉+ |2, 0〉|1, 0〉.

It can be seen now that the unique solution of (67) is

I1 = |0〉|0〉+ |1〉|1〉+ |2〉|2〉,
which is inconsistent with the condition Qψ(0) = ωψ(0). A similar analysis can be conducted for the other θs 
and φ �= 0.
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P0V(|0, 0〉|1, 1〉 ⊗ I1) = eiφ|0, 0, 1〉|0, 1, 1〉 − e−iφ|1, 0, 0〉|1, 1, 0〉,

which, evidently, cannot be written as βp ⊗ I1 with βp of length 2. Concretely this property 

means that projecting the term Vψ(k)
q  to the null space of H0 does not result in any non-trivial 

elements further up the chain when total domain wall angle is conserved.
One can show that if condition (71) does not hold, then it is generally not possible to find a 

solution of the perturbative expansion for ψ(k)
p  such that condition (58) is satisfied and hence 

a local solution for the formal expansion of the zero mode does not exist. This fact is a gen-
eralization of what happens for the case θ = 0 that we analysed in the previous section, and it 
has to do with the fact that the identity operator I1 contains a sum of spins as in (32). For more 
details we refer to appendix B.

Condition (71) is generally not satisfied when total domain wall angle is not conserved, 
making it also a sufficient condition for the conservation of the total domain wall angle.

This raises now questions on the order at which the expansion breaks down when we 
are at resonant points. As we saw, when finding the zero mode expansion, we effectively 
consider chains of growing lengths. In this sense new resonance points appear as we con-
sider chains of increasing length. Consider for example the spectrum of chains of length 
L  =  3 and L  =  4 in figure 2, where we see that new resonant points appear. This means that 
an expansion of the zero mode can exist only up to an order that is equal to the length of 
the chain where the resonant point first appears. This agrees with the perturbative analysis 
conducted in [27].

We can sum up this discussion with the following

Property 5.  Suppose that θ is at a resonant point which does not conserve the total domain 
wall angle. Then the formal expansion for the zero mode can exist only up to an order compat-
ible with the length of the chain at which the resonant point first appears.

This shines some light into the behaviour of the zero mode expansion when total domain 
wall angle is not conserved, but still fails to address the problem of the existence of zero 
modes at those values of θ where the total domain wall angle is conserved (including all 

Figure 2.  (a) Free spectrum for a chain of length L  =  3, the only resonance points for 
such system are at θ = 0 and θ = π

6 . (b) Free spectrum for a chain of length L  =  4, by 
increasing the length of the system a new resonant point appears at θ = arctan

√
3

5 .
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non-resonant points). Unfortunately we are not able to provide a complete proof of the exist-
ence of zero modes in these cases. However an extensive analysis conducted through symbolic 
calculation with Mathematica shows that, when condition (71) is satisfied, a formal expansion 
of the zero mode at each order k exists, and can be constructed systematically. A procedure for 
this construction, which we conjecture in the form of an algorithm, is presented in section 10. 
The solutions for the zero mode present interesting general properties that extend readily to 
other spin chain models. This will be the subject of the next section.

7.  General form of the solution

We will now present a method that allows to construct a general solution for the recursive 
problem. We stress that our approach can be used to consider the solution of similar problems 
in other spin chain models as well, which we explored to some extent and we will discuss later 
in the section. This hints at the existence of some general principle that allows the machinery 
to work, although some of the details are still mysterious to us.

As we already pointed out, the problem of finding a zero mode at some order k is essen-

tially a problem of finding ψ(k)
p . For clarity we repeat that once we find a ψ(k)

p  such that

P0V(ψ(k)
p + ψ(k)

q )⊗ I1 = 0� (72)

we can readily find ψ(k+1)
q , by inverting H0

ψ(k+1)
q = −Q0

H0
V(ψ(k)

p + ψ(k)
q )⊗ I1� (73)

and this inversion is straightforward when everything is written in the basis that we chose, as 
H0 is in diagonal form.

As we saw the problem in finding ψ(k)
p  is implicitly connected to the locality of the operator 

Vψ(k)
q ⊗ I1, as described by condition (71). If condition (71) is satisfied, then we find that, to 

the extent that it was possible to check, the solution of the problem can be written in the form

ψ(k)
p =

∑
l1+l2+...+lk−1=k

Γl1,l2,...,lk−1P0VS l1VS l2 · · · S lk−1Vψ(0)
p� (74)

with Γl1,l2,...,lk−1 ∈ Q and

S l =




P0 l = 0(
Q0
H0

)l
l �= 0

.� (75)

In the case of the N  =  3 parafermionic clock model we have, for example:

ψ(0)
p = σ1,

ψ(1)
p = 0,

ψ(2)
p = −1

2
P0V

(
Q0

H0

)2

Vψ(0)
p ,

ψ(3)
p =

1
2
P0V

(
Q0

H0

)2

V
(
Q0

H0

)
Vψ(0)

p +
1
2
P0V

(
Q0

H0

)
V
(
Q0

H0

)2

Vψ(0)
p ,
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ψ(4)
p =

3
8
P0V

(
Q0

H0

)2

VP0V
(
Q0

H0

)2

Vψ(0)
p − 3

4
P0V

(
Q0

H0

)2

V
(
Q0

H0

)
V
(
Q0

H0

)
Vψ(0)

p

+−1
2
ψ(4)

p − 1
2
P0V

(
Q0

H0

)
V
(
Q0

H0

)2

V
(
Q0

H0

)
Vψ(0)

p − 1
4
P0V

(
Q0

H0

)
V
(
Q0

H0

)
V
(
Q0

H0

)2

Vψ(0)
p

+−1
4
ψ(4)

p +
1
4
P0VP0V

(
Q0

H0

)
V
(
Q0

H0

)3

Vψ(0)
p +

3
4
P0VP0V

(
Q0

H0

)2

V
(
Q0

H0

)2

Vψ(0)
p .

For the values taken by the Γs in the next order that we could check we refer to appendix D. 
Note that the coefficients do not depend on θ and φ and that all the terms in each sum act trivi-
ally on the last site of the chain, as imposed by property 4. This gives another hint of the fact 
that when θ is such that the total domain-wall angle is not conserved, the zero mode operator 

cannot be constructed, as the presence of Q0
H0

 will induce divergences at resonant points that 
cannot be removed. In particular this accounts for the divergences witnessed in the expansion 
of the zero mode in [8, 14, 27].

In appendix C we present a proof for the solutions of ψ(2)
p . The solutions for the next orders 

were checked by symbolic computation using Mathematica. We were able to explicitly check 
our ansatz up to 5th order in the perturbative expansion8, even though we know that a solution 

for ψ(6)
p  exists. (We were able to construct this solution using the methods in section 10, but 

not able to check that it takes the form conjectured in this section.) Note that already to the 
third order we have to deal with a Hilbert space of dimension 36 and that the existence of these 
types of solutions is therefore related to the exact cancellation of a very large number of terms, 
making it hard to believe that the above structure is simply the result of chance. The results 
from [27] and [28] corroborates this idea. This becomes even more apparent when we try to 
apply the same methodology to other spin models.

As a final remark we note that this ansatz is quite reminiscent of the formulas obtained for 
effective Hamiltonians in the framework of degenerate perturbation theory [33, 34].

7.1.  Iterative method in other models

In order to further understand the structure of the solution we can also apply our method to 
spin models where the existence of a zero mode is already known, like the XYZ model [11] 
or the models considered in [14]. In the cases we studied, we found that the known solutions 
for the zero modes follow our description. Interestingly the existence of these formal expres-
sions for the zero modes hold even when there is no underlying symmetry, as for example in 
the case of the Hamiltonian9

H′ = −
L−1∑
i=1

σz
iσ

z
i+1 + f

L∑
i

σx
i + σz

i� (76)

with f  the perturbing parameter. This Hamiltonian does not commute with the fermion parity 
(or with any other symmetry, as far as we are aware) and is not integrable. Nonetheless our 

construction can still be carried out starting with ψ(0)
p = σz

1 (the free model still possesses a 
local zero mode on the left edge). The resulting zero mode is in general not normalizable, 
which means that we do not expect it to survive in the thermodynamic limit, but surprisingly a 

8 The solution for ψ(5)
p  is given in appendix D.

9 This model was considered in several other works, see e.g. [35, 36].

D Pellegrino et alJ. Phys. A: Math. Theor. 53 (2020) 095006



18

formal expression for it can still be written out for any order we could check (up to 8th order). 
It might be interesting to consider how this is related to the slow thermal relaxation of local 
operators treated in [37].

By considering different models we also see that in general the coefficients Γs are model 
dependent. For example if we consider the Hamiltonian

H′ = −
L−1∑
i=1

σz
iσ

z
i+1 + f

∑
i

σx
i+1σ

x
i + σy

i+1σ
y
i = H′

0 + fV ′� (77)

the first orders of the projections of the zero mode, ψ′
p ∈ Null(H′

0), constructed with our 
method, are given by

ψ′(0)
p = σz

1,

ψ′(1)
p = 0,

ψ′(2)
p = −1

2
P ′

0V ′
(
Q′

0

H′
0

)2

V ′ψ′(0)
p ,

ψ′(3)
p = −2

3
P ′

0V ′
(
Q′

0

H′
0

)2

V ′
(
Q′

0

H′
0

)
V ′ψ(0)

p − 1
3
P ′

0V ′
(
Q′

0

H′
0

)
V ′

(
Q′

0

H′
0

)2

V ′ψ′(0)
p .

We believe that the existence of these expressions has to do with the chiral symmetry T K 
introduced in section 3, however we leave this for future work.

Finally we tried to apply the same method also to non-hermitian models and the same gen-
eral structure holds. Notably we investigated the case of free parafermions [16], which can be 
described through the Hamiltonian H′ = H′

0 + fV ′, with

H′ = −
L−1∑
i=1

σ†
i+1σi − f

L∑
i=1

τi .� (78)

This is the same as the spin clock model (1) when θ = 0 and φ = 0, except for the omission 
of the hermitian conjugate terms. In this case, to each order k, we find

ψ′(k)
q =

(
− Q0

H′
0
V ′
)k

ψ(0)
p ψ′(k)

p = 0 .� (79)

These are formally the same expressions that one obtains in the case of the transverse Ising 
model (N  =  2) and this provides further evidence that these types of models, rather than (1), 
constitute a closer generalization, even if not hermitian, of the transverse Ising model [16].

8. The problem of normalization

In the last section we showed that there are cases where we can write down a formal expres-
sion for the zero mode. However the fact that we can construct these operators does not gen-
erally mean that in the limit L → ∞ the zero modes exists, as the perturbation series could 
fail to converge. In this section we will therefore address the problem of normalization. As 
outlined in section 2.1, we require our zero mode to satisfy the conditions

ψ3 = IL + O
(

f−L)� (80)

and

ψ†ψ = IL + O
(

f−L) .� (81)
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In this section we will show that these two conditions are equivalent and that once we find a 
formal solution for the zero mode they can always be fulfilled. Let us therefore consider these 
cases in full generality.

8.1.  Expansions of ψ3

Consider ψ3 first. Since ψ admits an expansion in f , so does ψ3:

ψ3 = IL + f (ψ3)(1) + f 2(ψ3)(2) + . . .� (82)

and we have

(ψ3)(k) =
∑

k1+k2+k3=k

ψ(k1)ψ(k2)ψ(k3) .� (83)

Since every ψ(k) satisfies the equation [H0,ψ(k)] = −[V ,ψ(k−1)] so does (ψ3)(k), in fact
[
H0, (ψ3)(k)

]
=

∑
k1+k2+k3=k

[
H0,ψ(k1)

]
ψ(k2)ψ(k3) + ψ(k1)

[
H0,ψ(k2)

]
ψ(k3) + ψ(k1)ψ(k2)

[
H0,ψ(k3)

]

using that 
[
H0,ψ(l)

]
= −

[
V ,ψ(l−1)

]
 for all l � k we get

∑
k1+k2+k3=k

−
[
V ,ψ(k1−1)

]
ψ(k2)ψ(k3) − ψ(k1)

[
V ,ψ(k2−1)

]
ψ(k3) − ψ(k1)ψ(k2)

[
V ,ψ(k3−1)

]
.

Since ψ(−1) = 0, we see that
[
H0, (ψ3)(k)

]
= −

[
V , (ψ3)(k−1)

]
� (84)

or, written in the super-operator formalism

H0(ψ
3)(k) ⊗ I1 = −V(ψ3)(k−1) ⊗ I1 .� (85)

In line with what we have done in the previous sections we can project this equation down 
to Null(H0) and its orthogonal space. Equation (85) is therefore equivalent to

H0(ψ
3)(k)

q ⊗ I1 = −Q0V
(
(ψ3)(k−1)

q + (ψ3)(k−1)
p

)
⊗ I1

P0V(ψ3)(k)
p ⊗ I1 = −P0V(ψ3)(k)

q ⊗ I1

� (86)

with (ψ3)
(k)
q = Q0(ψ

3)(k) and (ψ3)
(k)
p = P0(ψ

3)(k). We can now see that the following prop-
erty holds.

Property 6.  If a solution for the zero mode exists up to some order k then

(ψ3)( j)
q = 0 (ψ3)( j)

p = λjIj+1 ∀j = 1, 2 . . . , k� (87)

with constants λj ∈ C.

This property can be easily proved by induction. It is true for j   =  0, as

(ψ3)(0) = σ3
1 = I1 .

Since

Q(ψ3)(0) = (ψ3)(0)
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and since the super-operator Q commutes with H0 and V , from (86), we can assume that

Q(ψ3)( j) = (ψ3)( j) ∀j = 1, 2, . . . , k .� (88)

Suppose therefore that the property 6 is true for j   −  1, that is

(ψ3)( j−1)
q = 0 (ψ3)( j−1)

p = λj−1Ij .� (89)

Since VIj = 0 we have

H0(ψ
3)( j)

q ⊗ I1 = −Q0V(ψ3)( j−1)
p ⊗ I1 = 0,

which in turn means

(ψ3)( j)
q = 0,

because by hypothesis (ψ3)
( j)
q /∈ Null(H0). Hence we are left with

P0V(ψ3)( j)
p ⊗ I1 = −P0V(ψ3)( j)

q ⊗ I1 = 0 .

We already encountered this equation in section 5 and we know that its solutions are the linear 
combinations of the operators

|0〉|0〉 ⊗ Ij |1〉|1〉 ⊗ Ij |2〉|2〉 ⊗ Ij .

Since we are supposing that a solution exists and because of (88), we have that the unique 
solution is given by

(ψ3)( j)
p = λjIj� (90)

for some constant λj ∈ C, that will generally depend on θ.

8.2.  Expansion of ψ†ψ

We can now consider what happens to ψ†ψ. Also in this case, since ψ admits an expansion in 
f , so does ψ†ψ

ψ†ψ = IL + f (ψ†ψ)(1) + f 2(ψ†ψ)(2) + . . .� (91)

and we have

(ψ†ψ)(k) =
∑

k1+k2=k

ψ(k1)
†
ψ(k2) .� (92)

Now the discussion goes exactly like the previous one for ψ3 and we have that (ψ†ψ)(k) satis-
fies the equations

H0(ψ
†ψ)(k)

q = −Q0V
(
(ψ†ψ)(k−1)

q + (ψ†ψ)(k−1)
p

)
⊗ I1

P0V(ψ†ψ)(k)
p ⊗ I1 = −P0V(ψ†ψ)(k)

q ⊗ I1 .
� (93)

In the same way as before, the following property can be proved

Property 7.  If a solution for the zero mode exists up to some order k then

(ψ†ψ)( j)
q = 0 (ψ†ψ)( j)

p = λ′
j IL ∀j = 1, 2 . . . , k� (94)

with constants λ′
j ∈ R.
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8.3.  Expansions of ψ2 and ψ†

We will now consider the expansions of ψ2 and ψ†10 and we will see how we can choose the 
normalization by considering the relation between them. To understand the point suppose that

ψ2 = ψ† + O( f L)� (95)

then this would imply that

(ψ3)( j) = (ψ†ψ)( j) ∀ j = 1, 2, . . . , L − 1� (96)

and therefore:

λj = λ′
j ∀ j = 1, 2, . . . , L − 1 .� (97)

If this condition is satisfied then we can always make sure that (80) and (81) are satisfied by 
renormalizing ψ. This therefore raises the question: can we make sure that at each order j  

(ψ2)( j) = (ψ( j))†,

and if not, can we use the freedom in choosing a solution to make sure that this becomes true? 
We can start to answer this question by establishing the following

Property 8.  Suppose that

(ψ2)( j) = (ψ( j))†� (98)

with j = 1, 2, . . . , k − 1. Then we have

(ψ2)(k) − (ψ†)(k) = λ′′
k σ

†
1 ⊗ IL−1� (99)

with λ′′
k ∈ C.

The proof of this property goes exactly in the same way as the proofs for properties 6 and 7.  
Although note that for it to be true we need to assume that we are able, somehow, to make sure 
that (98) holds at each order j   <  k. The only difference is that

Q((ψ2)(0) − (ψ†)(0)) = ω2((ψ2)(0) − (ψ†)(0))

which means that a solution of

P0V((ψ2)(k) − (ψ†)(k))⊗ I1 = 0

is given by λ′′
k σ

2
1 ⊗ Ik. We are finally in the position to consider how to fix the normalization.

8.3.1.  Choice of the normalization.  As we already pointed out, whenever we find a solution 
for the expansion of the zero mode, it is not unique. In fact, given a solution of order k, we can 
always add to it a solution of the equation

P0Vξ(k)
p ⊗ I1 = 0,� (100)

10 Note that in the super-operator basis (21) ψ† is given by

ψ† = T Kψ.
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with ξ(k)
p ∈ Null(H0) and we would still get a zero mode, in fact

P0V(ψ(k)
p + ξ(k)

p )⊗ I1 = P0Vψ(k)
p ⊗ I1 = −P0Vψ(k)

q ⊗ I1 .

By now we should be acquainted with the fact that if we are looking for solutions such that 
Qψ = ωψ, the only possible choice for ξ(k)

p  is given by

ξ(k)
p = ξkσ1 ⊗ Ik� (101)

with ξk ∈ C.
This freedom can be used to fix the normalization and in particular we can use it to enforce 

the condition

(ψ2)( j) = (ψ†)( j).� (102)

Doing this at every order will guarantee that

ψ2 = ψ† + O( f L) .� (103)

First of all note that

(ψ2)(k) =
∑

k1+k2=k

ψ(k1)ψ(k2) .� (104)

It is therefore not difficult to prove that if we use our freedom to add operators of the form 

ξ
(k)
p  to ψ(k)

ψ(k) → ψ(k) + ξ(k)
p� (105)

(ψ2)(k) − (ψ†)(k) will transform as

(ψ2)(k) − (ψ†)(k) → (ψ2)(k) − (ψ†)(k) + (2ξk − ξ∗k )σ
†
1 .� (106)

By using induction and property 8, we can therefore see that if at every order j � L − 1 we set

ξj = −Re(λ′′
j )−

i
3

Im(λ′′
j ),� (107)

then

ψ2 = ψ† + O
(

f L) .� (108)

As we already noted, because of properties 6 and 7 this condition implies

(ψ3)( j) = λjIL (ψ†ψ)( j) = λjIL ∀j = 1, 2, . . . , k� (109)

and λj ∈ R as in property 7. Therefore, up to a common normalization factor, equations (80) 
and (81) are true. Note again that in general λj will depend on θ and φ.

It is worth mentioning that the results contained in this section can be easily generalised to 
consider ZN parafermionic models with N prime. The conditions (80) and (81), in the case of 
general N, would be rewritten as

ψN = IL + O
(

f−L) ψ†ψ = IL + O
(

f−L)� (110)

and the properties listed in this section can be generalised in an obvious way. The only notable 
difference is the choice of ξj, which we use to normalize correctly the zero mode. In the case 
of general N we would in fact get
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ξj = − 1
N − 2

Re(λ′′
j )−

i
N

Im(λ′′
j ) .� (111)

In the case N  =  2, the two conditions in (110) are equivalent, as we are dealing with 
Majorana zero modes. In this case, Property 6 simply states that, as long as we are able to 
find a solution of the iterative problem, the expansion of ψ2 will always be proportional to the 

identity operator and we do not need to introduce any extra ξ(k)
p . This fact was already noted 

in previous works dealing with Majorana zero modes [11, 14].
Ultimately the results in this section hold because the form of V  restricts the range of pos-

sible solutions of (67). By repeating the analysis of section 5, it can in fact be proved that for 
general N a basis of solutions is given by

|0〉|0〉 |1〉|1〉 · · · |N − 2〉|N − 2〉 |N − 1〉|N − 1〉 .
�

(112)

While this has proved to be the case in all of the spin models we have studied, it is entirely 
possible that a more general form of V  would prevent this.

9.  Convergence of the formal series

Even though the method outlined above seems to work at every order, divergences may still 
arise, as the coefficients of the truncated series constituting the zero mode for a chain of length 
L could grow faster than f −L . In this sense the above expansions for the zero mode have to be 
considered as formal expressions that we can write whenever θ is such that the total domain 
wall angle is conserved.

The next problem we need to address is therefore about the radius of convergence of these 
formal series in f .

To this end we first need to define what is the error that we make when we truncate the 
expressions for the zero modes. Hence we define

N 2 =

∣∣∣∣
1
3L Tr

(
ψ†ψ

)
− 1

∣∣∣∣ ,� (113)

where the normalization factor 1/3L is such that IL has norm 1 and ψ is obtained by truncating 
the expansion at order L

Figure 3.  In (a) we show the value of N 2 in equation (113), which signals the deviation 
from 1 of the norm of the truncated expansion, for different chain lengths L and θ = π

4 , 
φ = 0. In (b) we show N 2 for different chain lengths L and θ = π

6 , φ = 0.
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ψ = ψ(0) + fψ(1) + . . .+ f L−1ψ(L−1) + f Lψ(L) .� (114)

N 2 is therefore simply the Frobenius norm of ψ.
Even though we can always satisfy

ψ†ψ = IL + O
(

f L)� (115)

the sum of all terms of order f L could still diverge for L → ∞. The expansion converges if and 
only if N 2 → 0. In figure 3 we show the plots of N 2 for θ = π

4  and π6 , in both cases we chose 
φ = 0. From these graphs we see that there seems to be a finite radius of convergence, even 
though the information available is limited.

A related problem concerns the convergence of the commutator between the total hamilto-
nian H and the truncated zero mode

ε = (H0 + fV)ψ = f L+1Vψ(L) .� (116)

In figure 4 we show plots for the norm11 of ε in the cases of θ = π
6 , θ = π

4  and φ = 0. In 
this case we also have strong suggestion that a finite radius of convergence exists, but further 
analysis is needed in order to have a definitive answer on the subject. In particular, in order to 
give an estimate of the radius of convergence, we need more information about the constants 
Γl1,l2,...,lk−1

 appearing in (74) and at the moment we lack a proper understanding of how these 
constants arise in the solution.

10.  Algorithmic solution for the formal series

The general ansatz for the solution ψ(k) that we have provided in section 7, lends itself well to 
direct checking. Nevertheless the problem of finding the constants Γl1,l2,...,lk−1

 of (74) is gener-
ally not an easy task, especially for large k. However, if we are not interested in the specific 
values taken by these constants, it is possible to design algorithms that would allow to find 

the ψ(k)
p  at any given order (with limitations due to computational power). Strictly speaking 

we cannot prove that this algorithm works at all orders, as we need to assume our ansatz (74) 
to hold true for it to work. If this is the case we can employ some of the symmetries of the 

Figure 4.  In (a) we show the norm of ε in equation (116), for different chain lengths L 
and θ = π

4 , φ = 0. In (b) we show the norm of ε for different chain lengths L and θ = π
6 , 

φ = 0.

11 As before we consider the normalization constant to be 1
3L.
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problem, and some of the remarkable cancellations of terms that have to take place in order 

for such solution to exist, to simplify the determination of ψ(k)
p . As such, the recipes that we 

will present in this section have always worked.

With this in mind consider a solution for ψ(k)
p  as in (74). It can be seen by induction, using 

repeatedly property (30) and the local structure of V , that

ψ(k)
p = ψp,k + ψp,k−1 ⊗ I1 + . . .+ ψp,1 ⊗ Ik−1� (117)

where ψp,l are operators acting on chains of length l:

ψp,l =
∑

j,i

(ψl)
i1,il−2,il
i1,jl−2,il |i1, il−2, il〉|i1, jl−2, il〉 with Ei1,il−2,il

i1,jl−2,il = 0 .� (118)

With il−2 and jl−2 not necessarily different from each other. The equation satisfied by the 

solution ψ(k)
p  is given by

P0(Vψ(k)
p ⊗ I1) = β(k)

p� (119)

with β(k)
p = −P0(Vψ(k)

q ) and

β(k)
p =

∑
j,i

(β)
i1,ik−1,ik+1
i1,jk−1,ik+1

|i1, ik−1, ik+1〉|i1, jk−1, ik+1〉 with Ei1,ik−1,ik+1
i1,jk−1,ik+1

= 0 .

� (120)
The idea behind how to find a solution is now to determine one by one all the ψp,l that con-

stitute ψ(k)
p , starting from ψp,k. Doing this will reduce at each step the dimensionality of the 

problem. Suppose now that we are able to find ψp,k, then we can write

P0(Vψ(k,1)
p ⊗ I2) = β(k)

p − P0(Vψp,k ⊗ I1)� (121)

with

ψ(k,1)
p = ψp,k−1 + ψp,k−2 ⊗ I1 + . . .+ ψp,1 ⊗ Ik−2.� (122)

If a solution exists and follows (117), because of the locality of V  and condition (30) then we 
must have

P0(Vψ(k,1)
p ⊗ I2) = β(k,1)

p ⊗ I1� (123)

with β(k,1)
p ⊗ I1 = β

(k)
p − P0(Vψp,k ⊗ I1) and

β(k,1)
p =

∑
j,i

(β1)
i1,ik−2,ik
i1,jk−2,ik |i1, ik−2, ik〉|i1, jk−2, ik〉 with Ei1,ik−2,ik

i1,jk−2,ik = 0 .� (124)

Therefore β(k,1)
p  acts on a chain that is one site smaller than the one on which β(k) acts. This 

means that we can reduce the problem to

P0(Vψ(k,1)
p ⊗ I1) = β(k,1)

p ,� (125)

which is equivalent to solve the initial problem on a smaller chain and this is computationally 
very convenient as the Hilbert spaces involved in the process are of smaller dimensions. This 
process can be repeated now for ψp,k−1, ψp,k−2, etc until we exhaust all the terms.

We now need to describe how to determine the various ψp,l. We remark that the fact that it 
is always possible to go from β(k,l)

p  living on a chain of length k  +  1  −  l to a β(k,l+1)
p  living on 

a chain of length k  −  l is not trivial. It is a consequence of the existence of a solution of the 
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form (117) and this implies the equality and the cancellation of a large number of terms in β(k)
p  

when we remove ψp,l as described above. The presence of this structure can be traced back to 
the general form of the solution described in section 7 and is part of the reason that makes us 
believe that this form holds in general.

We will now describe how to determine the various ψp,l terms. This is simpler than it may 
look, as we do not need to consider the action of the whole V  on ψp,l, but only the action of 
Vl . Given in fact the structure of (117) this super-operator can act non-trivially only on ψp,l 
and its action is particularly simple, as all the terms appearing in ψp,l have il = jl . This means 

that, in order to deduce the form of ψp,l, we only need to consider those terms in β(k,k−l)
p  such 

that il �= jl .
For the sake of clarity we will describe the method for a specific example. We will hence 

consider the case for θ = π
12 and φ = 0, where no resonance occurs. In general, the analysis 

for any given resonance point (where total domain wall angle is conserved), will depend upon 
the particular combinations of domain walls that happen to have the same energy. The fol-
lowing analysis needs therefore to be changed accordingly on a case by case basis and works 
only when we are not at a resonant point. Our purpose is to present a general approach to 
constructing solutions for ψp,l. There is no real difference in considering solutions for ψp,l for 
different ls.

Consider therefore, as an example, the case of ψ(5)
p , and suppose that we already know the 

solution for ψp,5. As we described we can find β(5,1)
p  from β(5)

p  and ψp,4  will be given as

ψp,4 =
∑

i,j

(ψ4)
i1,i2,i3,i4
i1,j2,j3,i4 |i1, i2, i3, i4〉|i1, j2, j3, i4〉 Ei1,j2,j3,i4

i1,j2,j3,i4 = 0� (126)

and

β(4,1)
p =

∑
j,i

(β1)
i1,i2,i3,i4,i5
i1,j2,j3,j4,i5 |i1, j2, j3, j4, i5〉|i1, i2, i3, i4, i5〉 Ei1,i2,i3,i4,i5

i1,j2,j3,j4,i5 = 0.� (127)

As we said we can reconstruct ψp,4  from β(4,1)
p  by considering the action of V4 only. This 

means that we need to look at the elements of β(4,1)
p  such that i4 �= j4. We have to distinguish 

two subcases with respect of the values taken by i3 and j 3.

10.1.Case i3 �= j3

To explain the strategy in this situation we consider a specific example. Consider therefore 
the terms

(β1)
0,0,2,0,1
0,1,0,1,1 (β1)

0,0,2,0,2
0,1,0,2,2 (β1)

0,0,2,1,2
0,1,0,2,2 (β1)

0,0,2,2,0
0,1,0,0,0,

that is, vectors that agree up to the third indices. Using Mathematica it can be checked that

β0,0,2,0,1
0,1,0,1,1 = β0,0,2,0,1

0,1,0,2,2 = −

(
62 + 71i − (5 + 60i)

√
3

16
√

2 +
√

3

)

β0,0,2,1,2
0,1,0,0,2 = β0,0,2,2,0

0,1,0,0,0 =

(
62 + 71i − (5 + 60i)

√
3

16
√

2 +
√

3

)
.

Note that all the coefficients are the same up to a sign. This is in agreement with the fact 
that they stem from the action of V4 on a single operator. In order to find what it is, it suf-
fices to consider the operators that we obtain when we make the fourth indices agree by 
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changing only one of them and discarding the fifth indices. For example for the first vector, 
|0, 0, 2, 0, 1〉|0, 1, 0, 1, 1〉, we would get the two terms

|0, 0, 2, 1〉|0, 1, 0, 1〉 |0, 0, 2, 0〉|0, 1, 0, 0〉.� (128)

It can be checked that only |0, 0, 2, 0〉|0, 1, 0, 0〉 belongs to Null(H0) and therefore this is the 
only vector that can belong to ψp,4 . With some effort it can be shown that when i3 �= j3 and we 
are not at a resonance, there is always one and only one vector that belongs to Null(H0) for 
any given combination of indexes i1, j 1, etc that are not involved12. Therefore all these vectors 
can be obtained from the action of P0V4 on

−

(
62 + 71i − (5 + 60i)

√
3

16
√

2 +
√

3

)
|0, 0, 2, 0〉|0, 1, 0, 0〉 ⊗ I1 .� (129)

In other words (ψ4)
0,0,2,0
0,1,0,0 = −

(
62+71i−(5+60i)

√
3

16
√

2+
√

3

)
. Note that all this is possible because the 

coefficients for β follow the symmetries that we have highlighted above. This procedure can 
then be repeated for all the terms in β(4,1) such that i4 �= j4 and i3 �= j3. We can now consider 
the case of i3 = j3.

10.2.Case i3 = j3

Also in this case, to understand the point, it is better to consider a specific case. Take therefore 
the terms

(β1)
0,0,2,2,0
0,2,2,0,0 (β1)

0,0,2,1,1
0,2,2,2,1 (β1)

0,0,2,0,2
0,2,2,1,2

(β1)
0,0,2,1,2
0,2,2,0,2 (β1)

0,0,2,0,0
0,2,2,2,0 (β1)

0,0,2,2,1
0,2,2,1,1 .

It can be checked with Mathematica that

(β1)
0,0,2,2,1
0,2,2,1,1 = −(β1)

0,0,2,1,1
0,2,2,2,1 (β1)

0,0,2,0,0
0,2,2,2,0 = −(β1)

0,0,2,2,0
0,2,2,0,0 (β1)

0,0,2,1,2
0,2,2,0,2 = −(β1)

0,0,2,0,1
0,2,2,1,0

and

(β1)
0,0,2,2,0
0,2,2,0,0 = − −276 + 117i + 217

√
3

8
√

2 +
√

3(−37 − 14i + (20 + 3i)
√

3))
+

1
52

√
1980 − 2337i

(β1)
0,0,2,1,1
0,2,2,2,1 = − 1

52

√
1980 − 2337i

(β1)
0,0,2,0,2
0,2,2,1,2 =

−276 + 117i + 217
√

3

8
√

2 +
√

3(−37 − 14i + (20 + 3i)
√

3))
.

� (130)
Note that

(β1)
0,0,2,2,0
0,2,2,0,0 + (β1)

0,0,2,1,1
0,2,2,2,1 + (β1)

0,0,2,0,2
0,2,2,1,2 = 0 .� (131)

Again we need to consider the action of P0V4 on vectors of length 4. That is

12 Note that there exist operators such that by making the 4th indices agree and discarding the last ones, none of the 
resulting operators belong to Null(H0). Consider for example |0, 2, 2, 2, 0〉|0, 1, 1, 1, 0〉. It can be easily checked then 

both |0, 2, 2, 1〉|0, 1, 1, 1〉 and |0, 2, 2, 2〉|0, 1, 1, 2〉 are not part of Null(H0).This means that (β1)
0,2,2,2,0
0,1,1,1,0 = 0, otherwise 

it would not be possible to find a solution. This is part of the peculiar cancellations that take place when solving 
these equations.
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(ψ4)
0,0,2,0
0,2,2,0|0, 0, 2, 0〉|0, 2, 2, 0〉+ (ψ4)

0,0,2,1
0,2,2,1|0, 0, 2, 1〉|0, 2, 2, 1〉+ (ψ4)

0,0,2,2
0,2,2,2|0, 0, 2, 2〉|0, 2, 2, 2〉 .

Acting with P0V4 on this operator (tensored with I1) and equating it with the terms in β(4,1)
p  

that we are interested in, yields the system of equations




(ψ4)
0,0,2,2
0,2,2,2 − (ψ4)

0,0,2,0
0,2,2,0 = (β1)

0,0,2,2,0
0,2,2,0,0

(ψ4)
0,0,2,1
0,2,2,1 − (ψ4)

0,0,2,2
0,2,2,2 = (β1)

0,0,2,1,1
0,2,2,2,1

(ψ4)
0,0,2,0
0,2,2,0 − (ψ4)

0,0,2,1
0,2,2,1 = (β1)

0,0,2,0,2
0,2,2,1,2 .

� (132)

Since condition (131) holds, the system admits solutions and we can set

(ψ4)
0,0,2,0
0,2,2,0 =

β0,0,2,0,2
0,2,2,1,2 − β0,0,2,2,0

0,2,2,0,0

3
+ λ

(ψ4)
0,0,2,1
0,2,2,1 =

β0,0,2,1,1
0,2,2,2,1 − β0,0,2,0,2

0,2,2,1,2

3
+ λ

(ψ4)
0,0,2,2
0,2,2,2 =

β0,0,2,2,0
0,2,2,0,0 − β0,0,2,1,1

0,2,2,2,1

3
+ λ

�

(133)

with some arbitrary constant λ that we can take to be 0. The value that we chose for this con-
stant is not important as we know from our discussion in section 5 that a basis for the solution 
of

P0V(ψ(5)
p ⊗ I1) = 0� (134)

is given by σ1. This means that at the end of this process, after we determined all the ψp,l, the 
various arbitrary constants that we fix during the solution will reduce to some multiple of σ1 
(always assuming that the algorithm will produce a legitimate solution of the problem)13.

We can repeat this procedure for all terms of β(4,1)
p  such that i3 = j3 and then continue to the 

next step where we consider β(4,2)
p  as described. The process can now be repeated in the same 

way again by considering terms with i3 �= j3, then considering the subcases i2 �= j2, i2 = j2 and 

so on until we find all the terms in ψ(k)
p .

This concludes our explanation on how to find solutions for ψp. Although the details given 
here only apply to the case of the chiral Potts model, the procedure ultimately reduces to 
finding the action of the pseudo-inverse of P0VlP0 for the various l � k. It can therefore be 
generalized to consider the other models that we mentioned in section 7 as well.

11.  Conclusions

We have analysed the construction of strong zero modes in ZN parafermionic chain models. 
Although we applied our method specifically to the Z3 case the techniques that we have shown 
here can be generalised to all prime N and to many other spin chain models.

We investigated in particular the connection of the existence of parafermionic zero modes 
with the conservation of the total domain wall angle, and the iterative constuction of zero 
mode operators, generalizing results from [8, 11, 14]. In addition we showed that the existence 
of zero modes is connected to a perturbation theory problem at the level of super-operators. 

13 As we saw in section 8, we can exploit the addition of linear combinations of σ1 to fix the normalization of the 
zero mode, so at this level it does not really matter which constant multiplies σ1.
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More precisely, this is a constrained perturbative problem in the degenerate null space of the 
commutator with the free Hamiltonian.

We have shown directly that, at resonance points where the total domain wall angle is not 
conserved, local zero modes cannot be constructed and we have demonstrated that the conser-
vation of total domain wall angle amounts to a condition regarding the locality of the terms 
appearing in the iterative expansion. Ultimately we find that this last property is what allows 
the construction of zero modes in this and similar models.

We also addressed the problem of normalization of the zero mode in the thermodynamic 
limit and we have shown that properties of the zero mode at f   =  0 (e.g. symmetries) general-
ize to f �= 0 and this allows us to show how a normalized zero mode can be constructed at all 
values of L. However the problem of convergence of the expansion is still largely unanswered 
(this is connected to the problems of prethermalization and long coherence time for spin edges 
[14, 28, 38]).

We have provided a general ansatz for the shape taken by the solution of the perturbative 
expansion. These results have been checked using numerical symbolic calculations up to 5th 
order, even though we where able to find a solution up 6th order. However we were not able 
to check if this last solution is consistent with the provided ansatz, although there are strong 
suggestions that it does. We find that this framework agrees with other known iterative con-
structions of strong zero modes [11, 14]. This raises questions about the reasons that allow 
such methods and the accompanying remarkable cancellations to work. Further developments 
in this direction are needed in order to fully understand this.
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Appendix A.  Proof of properties 1 and 2

In this appendix we will prove the properties given in section 5. We will first consider prop-
erty 2

Property A.1.  Consider the equation

P0Vαp ⊗ I1 = βp ⊗ I1� (A.1)

with αp,βp ∈ Null(H0) given as

αp =
∑

α
it′−1,it′
jt−1,it′

|it′−1, it′〉|jt′−1, it′〉� (A.2)

and

βp =
∑

β
it−1,it
jt−1,it |it−1, it〉|jt−1, it〉 .
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Assuming such equation to hold then, necessarily, t′ = t and

αp =
∑

α
it−2,it−1
jt−2,it−1

|it−2, it−1〉|jt−2, it−1〉 ⊗ I1 .� (A.3)

Proof.  To prove this property consider the action of V  on αp. We have

Vαp =

t′−1∑
k=1

Vkαp + Vt′αp .� (A.4)

Since the last two left and right indices in (A.2) are the same for all the terms in the sum, we 
can easily write down the action of Vt′ on αp. That is

Vt′αp =
∑(

α
it′−1,it′+1
jt′−1,it′+1 − α

it′−1,it′
jt′−1,it′

)
e−iφ|it′−1, it′ + 1〉|jt′−1, it′〉

+
∑(

α
it′−1,it′−1
jt′−1,it′−1 − α

it′−1,it′
jt′−1,it′

)
eiφ|it′−1, it′ − 1〉|jt′−1, it′〉 .

�
(A.5)

In order to consider solutions of (A.1) we now need to project down these terms in Null(H0). 
As we saw, since H0 can act on two sites per time, we need to consider the addition of an iden-
tity operator at the end of the chain. This means that we need to consider operators of the type

|it′−1, it′ ± 1, it′+1〉|jt′−1, it′ , it′+1〉 .� (A.6)

Projecting down into Null(H0) consists on finding values it′+1 ∈ Z3 such that

E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

= 0 .� (A.7)

To simplify the problem we can write E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

 as

E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

= E
it′−1,it′
jt′−1,it′

+ E
it′−1,it′±1,it′+1
it′−1, it′ ,it′+1

,

where we have gathered all the final domain walls in the second term. Since by hypothesis 

E
it′−1,it′
jt′−1,it′

= 0, we are left with

E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

= E
it′−1,it′±1,it′+1
it′−1, it′ ,it′+1

.

Consider now E
it′−1,it′±1,it′+1
it′−1, it′ ,it′+1

. In terms of domain wall energies we have

E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

= εit′+1−it′ + εit′−it′−1
− εit′+1−it′∓1 − εit′±1−it′−1

,

with εm as in (7). If we now set

it′+1 = 2it′ ± 1 − it′−1 mod 3� (A.8)

we get

E
it′−1,it′±1,it′+1
jt′−1, it′ ,it′+1

= 0.� (A.9)
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This means that all the terms in (A.5) will always produce operators that belong to the Null(H0) 
when we tensor them out with I1. Therefore the operator P0Vtαp ⊗ I1 will always invariably 
contain terms of the form

|it′−1, it′ , it′+1〉|jt′−1, jt′ , it′+1〉 it′ �= jt′ ,� (A.10)

that cannot be removed from the rest of the action of V , since they leave the last left–right 
index the same. Imposing that αp constitutes a solution of (62), with βp as in (63) means that 
t = t′ and that

Vtαp = 0,� (A.11)

because in βp all the terms have the same left–right indices at site t, while we saw that if (A.11) 
is not satisfied then Vt  will produces terms of the form (A.10) when acts on αp. Condition 
(A.11), in turn means that

αp =
∑

α
it−2,it−1
jt−2,it−1

|it−2, it−1〉|jt−2, it−1〉 ⊗ I1,� (A.12)

which proves the statement.� □ 

We can now consider the other property given in section 5.

Property A.2.  When θ �= 0, π
3 , 2π

3 , the unique possible local starting point of the zero mode 
expansion is given by

ψ(0)
p = σ1 .� (A.13)

When θ = 0, π
3 , 2π

3  a local zero mode cannot exists.

Proof.  Suppose by contradiction that

ψ(0)
p =

∑
ψ

it−1,it
jt−1,it |it−1, it〉|jt−1, it〉� (A.14)

for some t ∈ N+. In order to be a good starting point of our zero mode expansion ψ(0)
p  has to 

satisfy

P0V(ψ(0) ⊗ I1) = 0 .� (A.15)

As we saw in the proof of property 2, the action of P0V  on ψ(0)
p ⊗ I1 will always be different 

from zero when it acts on the last index, unless

Vtψ
(0)
p = 0 .� (A.16)

By induction this means that

ψ(0)
p =

∑
i

ψi
i |i〉|i〉 .� (A.17)

As we saw in the main text, if θ = 0, π
3 , 2π

3 , then the only possible solution is given by 
ψ
(0)
p ∝ I1. This solution is inconsistent with the condition

Qψ(0)
p = ωψ(0)

p ,� (A.18)
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since

QI1 = I1 .� (A.19)

Thus, if θ = 0, π
3 , 2π

3 , there is no local solution to the zero mode expansion problem. If θ is 
not one of this resonant points than the solution, up to a multiplicative constant, is given by

ψ(0)
p = σ1 .� (A.20)

To directly check all this and see how the total domain wall angle conservation enters into the 
problem, consider

Vψ(0)
p ⊗ I1 = (−eiφτL

1 + e−iφτR
1 + h.c.)ψ(0)

p ⊗ I1 .

To compute this expression consider

(−eiφτL
1 + e−iφτR

1 + h.c.)|0〉|0〉 = −eiφ|2〉|0〉+ e−iφ|0〉|2〉 − e−iφ|1〉|0〉+ eiφ|0〉|1〉 .

As we saw in section 3 we can use the symmetry under Q and T K to build the complete action 

of V  on ψ(0)
p  and this yelds

Vψ(0)
p ⊗ I1 = −

∑
i1 �=j1,i2

(ω j1 − ωi1)ei( j1−i1)φ|i1, i2〉|j1, i2〉 .
� (A.21)

Note that the difference between the two indexes j1 − i1 has been introduced for notation 
convenience and has to be intended as taking values in {−1, 1}. This means that in the event it 
results equal to 2 or  −2, it has to be substituted with  −1 or 1 respectively. We will keep using 
the same convention throughout the rest of the appendixes. Since we are supposing that total 
domain wall angle is conserved then it follows that

P0Vψ(0)
p ⊗ I1 = 0� (A.22)

because i1 �= j1 in (A.21), while operators in Null(H0) have i1 = j1 as prescribed by  
property 1.� □ 

Appendix B.  Proof of properties 4 and 5

In this appendix we will prove property 4, that we recall here for convenience

Property B.3.  Suppose that a local solution for the zero mode expansions exists up to some 
order k. If the total domain wall angle is conserved then

P0(Vψ(k)
q ⊗ I1) = β(k)

p ⊗ I1� (B.1)

with β(k)
p ∈ Null(H0).

This property has to do with the general structure of the solution, in the following we will 
prove a generalization of it.

Property B.4.  Suppose that a solution for the zero mode exists up to some order k � 1. If 
the total domain wall angle is conserved then
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P0(Vψ(k)
q ⊗ I1) = β(k)

p ⊗ I1

with β(k)
p ∈ Null(H0) and the solution ψ(k) is constituted by operators that act non trivially on 

chain of length k  +  1. In particular

	 •	�The operators ψ(k)
q  can be written as

ψ(k)
q = η(k)

q + ρ(k)
q

		 where η(k)
q  is a linear combination of operators of the form

|i1, i2, . . . , ik, ik+1〉|j1, j2, . . . , jk, ik+1〉 il �= jl ∀ l = 1, 2 . . . , k� (B.2)

		 while ρ(k)
q  acts trivially on site k  +  1 and is a linear combination of operators of the form

|ik−1, ik〉|jk−1, ik〉 ⊗ I1 Eik−1,ik
jk−1,ik �= 0 .

	 •	�ψ(k)
p  is made of operators that act non-trivially on chains that are not longer than k. This 

means that ψ(k)
p  is a linear combinations of operators of the form

|i1, ik−2, ik〉|i1, jk−2, ik〉 ⊗ I1 Ei1,ik−2,ik
i1,jk−2,ik = 0 .

Proof.  We will first prove that

ψ(k)
q = η(k)

q + ρ(k)
q� (B.3)

by induction on j � k.

Case j  =  1

We start by considering ψ(0). We have

ψ(0) = ψ(0)
p =

∑
i

ωi|i〉|i〉 .� (B.4)

As we saw in appendix A, if the total domain wall angle is conserved, then

P0Vψ(0)
p ⊗ I1 = 0� (B.5)

and

Vψ(0)
p ⊗ I1 = −

∑
i1 �=j1,i2

(ω j1 − ωi1)ei( j1−i1)φ|i1, i2〉|j1, i2〉 .
� (B.6)

In order to find ψ(1) we now need to use equation (58), that in the present case are given by

Q0H0ψ
(1)
q = −Q0V(ψ(1)

q ⊗ I1)

P0V(ψ(1)
p ⊗ I1) = −P0V(ψ(1)

q ⊗ I1) .
� (B.7)
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As we saw the first of these equations is easily solved:

ψ(1)
q = −Q0

H0
V(ψ(0)

p ⊗ I1) =
∑

i1 �=j1,i2

(ω j1 − ωi1)
ei( j1−i1)φ

Ei1,i2
j1,i2

|i1, i2〉|j1, i2〉 .

In order to find a solution for ψ(1)
p  we need to repeat what we did for ψ(0):

Vψ(1)
q ⊗ I1 = −

∑
i1 �=j1,i2 �=j2,i3

(ω j1 − ωi1)

(
1

Ei1,j2
j1,j2

− 1
Ei1,i2

j1,i2

)
ei( j1−i1)φei( j2−i2)φ|i1, i2, i3〉|j1, j2, i3〉

−
∑

i1 �=j1,i2,i3

(ω j1 − ωi1)

(
e2i( j1−i1)φ

E2i1−j1,i2
j1 ,i2

− e−2i( j1−i1)φ

E i1 ,i2
2j1−i1,i2

)
ei(i1−j1)φ|i1, i2, i3〉|j1, i2, i3〉 .

Where the terms with i1 = j1 cancel identically and are therefore excluded from the sum. 
Since all terms in the sum have i1 �= j1, if the total domain wall angle is conserved14, we have

P0V(ψ(1)
q ⊗ I1) = 0 .� (B.8)

Therefore in the case j   =  1

P0V(ψ(1)
q ⊗ I1) = β(1)

p ⊗ I1,� (B.9)

with β(1)
p = 0 ∈ Null(H0). We therefore conclude that ψ(1)

p = 0 constitute a solution of 
(B.7)15.

Case j  =  l-1

Suppose now that property 4 holds for j   =  l  −  1. We have

ψ(l)
q = −Q0

H0
Vψ(l−1) ⊗ I1 = − 1

H0
V
(
η(l−1)

q + ρ(l−1)
q + ψ(l−1)

p

)
⊗ I1.

Consider now V  as a sum of its local terms. Since ψ(l−1) lives on a chain of length l we can 
consider V  only up to terms that act on site l on the chain

V =

l−1∑
t=1

Vt + Vl = Ṽl−1 + Vl,� (B.10)

where we defined

Ṽl−1 =

l−1∑
t=1

Vt .� (B.11)

Note that by hypothesis ρ(l−1)
q , ψ(l−1)

p  act non trivially on a chain only up to sites l  −  1, which 
means that the action of Vl  is 0 on them. Hence we have

ψ(l)
q = −Q0

H0

(
Vlη

(l−1)
q + Ṽl−1

(
η(l−1)

q + ρ(l−1)
q + ψ(l−1)

p

))
⊗ I1 .� (B.12)

14 For chains of length L  =  3 the resonance points are given by θ = 0, π
3 , 2π

3  and θ = π
6 . Since the resonance at 

θ = π
6  conserves total domain wall angle the only problematic phases are θ = 0, π

3 , 2π
3 , as chains for length L  =  2.

15 It can be proved that this solution also satisfy the requirement on the normalization that we discussed in section 8.
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Suppose therefore that

Q0Ṽl−1

(
η(l−1)

q + ρ(l−1)
q + ψ(l−1)

p

)
⊗ I1 =

∑
β

il−1,il
jl−1,il |il−1, il〉|jl−1, il〉 ⊗ I1,

where the operators in the sum have the same indices at site l because Ṽl−1 acts trivially at site 
l. Therefore we have

Q0

H0
Ṽl−1

(
η(l−1)

q + ρ(l−1)
q + ψ(l−1)

p

)
⊗ I1 =

∑ β
il−1,il
jl−1,il

Eil−1,il,il+1
jl−1,il,il+1

|il−1, il, il+1〉|jl−1, il, il+1〉,

where the dependence of the coefficients β on il comes from η(l−1)
q . Using that Eil−1,il,il+1

jl−1,il,il+1
= Eil−1,il

jl−1,il  
we get

∑ β
il−1,il
jl−1,il

Eil−1,il
jl−1,il

|il−1, il, il+1〉|jl−1, il, il+1〉 =
∑ β

il−1,il
jl−1,il

Eil−1,il
jl−1,il

|il−1, il〉|jl−1, il〉 ⊗ I1,

hence we can set

ρ(l)
q = −Q0

H0
Ṽl−1

(
η(l−1)

q + ρ(l−1)
q + ψ(l−1)

p

)
⊗ I1 .� (B.13)

Suppose now that

η(l−1)
q =

∑
it �=jt

η
i1,i2,...,il−1,il
j1,j1,...,jl−1,il |i1, i2, . . . , il−1, il〉|j1, j2, . . . , jl−1, il〉� (B.14)

the action of Vl  is then given by:

Vlη
(l−1)
q =

∑
it �=jt

(
η

i1,i2,...,il−1,il
j1,j1,...,jl−1,il − η

i1,i2,...,il−1,jl
j1,j1,...,jl−1,jl

)
ei( jl−il)φ|i1, i2, . . . , il−1, il〉|j1, j2, . . . , jl−1, jl〉 .

Since the left and right l indices are different from each other we can write

η(l)
q = −Q0

H0
(Vlη

(l−1)
q ⊗ I1) .� (B.15)

This proves the first part of the property, we can now prove that

|i1, ik−2, ik〉|i1, jk−2, ik〉 ⊗ I1 Ei1,ik−2,ik
i1,jk−2,ik = 0

constitute a basis for ψ(l)
p . Again we recall property (30), which states that whenever we have 

the same domain wall at end of the chain, on the left and on the right sector, they cancel out 
when computing the energy

Ejl−1,il,il+1
il−1,il,il+1

= Ejl−1,il
il−1,il ∀ il = 0, 1, 2 .� (B.16)

This means in particular that

P0(V|il−1, il〉|jl−1, il〉 ⊗ I2) = (P0V|il−1, il〉|jl−1, il〉 ⊗ I1)⊗ I1 .� (B.17)
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As can be explicitly checked. Therefore, extending by linearity, we have

P0(Vψ(l)
q ⊗ I1) = (P0Vρ(l)

q )⊗ I1 .� (B.18)

Thus the only problems when we consider (71), may arise from η(l)
q . If the total domain wall 

angle is conserved, however, this can never happen. In (B.2), in fact, i1 �= j1 and we know that 
operators in Null(H0) need to have i1 = j1 because of property 1. This means that the action 
of V1 is the only one that can survive after the projection into Null(H0):

P0(Vη(l)
q ⊗ I1) = P0(V1η

(l)
q ⊗ I1) + P0(

l+1∑
t=2

Vtη
(l)
q ⊗ I1) = P0(V1η

(l)
q ⊗ I1) .

Since the action Vl+1 does not survive the projection, the last indices in the constituent (B.2) 

of η(l)
q  are still the same. Therefore, using again (B.16), we have

P0(Vη(l)
q ⊗ I1) = β(l)

p ⊗ I1� (B.19)

with βl
p ∈ Null(H0) and

β(l)
p = P0V1η

(l)
q + P0Vρ(l)

q .� (B.20)

Now, if a solution for ψ(l)
p  exists, because of property 2, the second part of property B.4,  

regarding the structure of ψ(l)
p , follows. This concludes the proof.� □ 

Note that we can easily find the coefficients ηi1,i2,...,il,il+1
j1,j2,...,jl,il+1

 of η(l)
q . In fact we can see by induc-

tion that

η
i1,i2,...,il,il+1
j1,j2,...,jl,il+1

= − (ω j1 − ωi1)

Ei1,i2,...,il,il+1
j1,j2,...,jl,il+1

l∏
t=2

ei( jt−it)φ

(
1

Ei1,i2,...,it−1,it
j1,j2,...,jt−1,it

− 1

Ei1,i2,...,it−1,jt
j1,j2,...,jt−1,jt

)
.

� (B.21)
From the fact that all the is and j s are different up to the last site assures that all the energy in 
the formula are different from zero because of the conservation of total domain wall angle.

B.1.  Broken total domain wall angle

We can now consider what happens when the total domain wall angle is not conserved. As we 
saw in section 6 resonance points appear when we consider chains of increasing length. From 
property B.4 we can expect that the first operators that can produce problems stems from the 
η
(k)
q  described above, as it contains the operators that act non-trivially on the largest number 

of sites.
Suppose therefore that θ is such that total domain wall angle is not conserved on chains of 

length k  +  2. Using property 1 we know that the operators P0(Vψ(k)
q ⊗ I1) are a linear combi-

nation of operators of the form

|i1, ik−1, ik, ik+2〉|j1, jk−1, jk, ik+2〉 i1 �= j1 Ei1,ik−1,ik ,ik+2
j1,jk−1,jk ,ik+2

= 0 .� (B.22)

We note that the existence of this type of terms is equivalent to saying that condition (134) 
does not hold, otherwise we would have an identity at the end. Also note that these terms are 
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bound to stem out from the η(k)
q  of property B.4, and are invariably produced, as can be proved 

with a bit of effort.

Using property 2 we know that the solution ψ(k)
p  has to live on a chain of length k  +  1, but 

for chains of smaller length the total domain wall angle is still conserved, which means, using 

property 1, that ψ(k)
p  has to be the linear combination of vectors of the type

|i1, ik−1, ik〉|i1, jk−1ik〉 ⊗ I1 .� (B.23)

Given the local structure of V  this is impossible unless, ik = jk in (B.22)16. This means that

Ei1,ik−1,ik ,ik+2
j1,jk−1,ik ,ik+2

= Ei1,ik−1,ik
j1,jk−1,ik = 0,� (B.24)

but this is not possible since by hypothesis for chains of length k  +  1 the total domain wall 
angle is conserved. This means that a local solution of the expansion at order k cannot exist at 
a resonance point appearing on chains of length k  +  2 when total domain wall angle symmetry 
is broken. This proves property 5, that we repeat here for completeness.

Property B.5.  Suppose that θ is at a resonant point which does not conserve the total do-
main wall angle. Then the formal expansion for the zero mode can exist only up to an order 
compatible with the length of the chain at which the resonant point first appear.

Appendix C.  Proof of the solution for ψ(2)
p

In this appendix we will provide a proof of the formula for the solution of ψ(2)
p . To keep the 

exposition simple in the following we will consider φ = 0. The same arguments can be given 
also for the general case.

C.1.  Solution for ψ(2)

First of all from the proof of Property B.4 we know that

ψ(1)
q =

∑
i1 �=j1,i2

(ω j1 − ωi1)
1

Ei1,i2
j1,i2

|i1, i2〉|j1, i2〉

ψ(0)
p = 0

� (C.1)

and

Vψ(1)
q ⊗ I1 = −

∑
i1 �=j1,i2 �=j2,i3

(ω j1 − ωi1)

(
1

Ei1,j2
j1,j2

− 1
Ei1,i2

j1,i2

)
|i1, i2, i3〉|j1, j2, i3〉

−
∑

i1 �=j1,i2,i3

(ω j1 − ωi1)

(
1

E2i1−j1,i2
j1 ,i2

− 1

E i1 ,i2
2j1−i1,i2

)
|i1, i2, i3〉|j1, i2, i3〉 .

We will now find the solution for ψ(2) = ψ
(2)
q + ψ

(2)
p . As before we can solve for ψ(2)

q  by 
simply inverting H0:

16 V  in fact has to act through V1 to make i1 �= j1 in (B.22).
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ψ(2)
q =

∑
i1 �=j1,i2 �=j2,i3

ω j1 − ωi1

Ei1,i2,i3
j1,j2,i3

(
1

Ei1,j2
j1,j2

− 1
Ei1,i2

j1,i2

)
|i1, i2, i3〉|j1, j2, i3〉

+
∑

i1 �=j1,i2

ω j1 − ωi1

Ei1,i2
j1,i2

(
1

E2i1−j1,j2
j1 ,j2

− 1

E i1 ,i2
2j1−i1,i2

)
|i1, i2〉|j1, i2〉 ⊗ I1 .

�

(C.2)

Note that (C.2) follows the structure outlined in Property B.4. We are now in a position to 
prove that

ψ(2)
p = −1

2
P0V

(
Q0

H0

)2

V(ψ(0)
p ⊗ I2) .� (C.3)

First of all note that with this definition

ψ(2)
p = −1

2

∑
i1 �=j1,i2

(ω j1 − ωi1)


 1(

Ei1,i2
j1,i2

)2 +
1(

E j1,i2
i1,i2

)2


 |i1, i2〉|i1, i2〉 ⊗ I1

and since E j1,i2
i1,i2 = −Ei1,i2

j1,i2  we have

ψ(2)
p = −

∑
i1 �=j1,i2

(ω j1 − ωi1)
1(

Ei1,i2
j1,i2

)2 |i1, i2〉|i1, i2〉 ⊗ I1 .
� (C.4)

The action of V  on ψ(2)
p  is now given by

P0Vψ(2)
p = −

∑
i1 �=j1,i2 �=j2,i3

(ω j1 − ωi1)


 1(

Ei1,j2
j1,j2

)2 − 1(
Ei1,i2

j1,i2

)2


 |i1, i2, i3〉|i1, j2, i3〉 .

� (C.5)

We will now show that P0(Vψ(2)
q ⊗ I1) yields the same expression. Since ψ(2)

q  follows 

property B.4 we know that

P0(Vψ(2)
q ⊗ I1) = (P0V1ψ

(2)
q )⊗ I1.� (C.6)

This simplifies the problem, as we do not need to consider chains of length 4 and the problem 
stays confined on a chain of length 317. The action of P0V1 yelds

P0V1ψ
(2)
q =

∑
i1 �=j1,i2 �=j2,i3

ω j1 − ωi1

Ei1,i2,i3
j1,j2,i3

(
1

Ei1,j2
j1,j2

− 1
Ei1,i2

j1,i2

)
|i1, i2, i3〉|i1, j2, i3〉

−
∑

i1 �=j1,i2 �=j2,i3

ωi1 − ω j1

E j1,i2,i3
i1,j2,i3

(
1

E j1,j2
i1,j2

− 1

E j1,i2
i1,i2

)
|i1, i2, i3〉|i1, j2, i3〉

and all the operators in the sums are such that Ei1,i2,i3
i1,j2,i3 = 0. Note that all the terms with i2 = j2 

cancel identically. Consider now the energies Ei1,i2,i3
j1,j2,i3, E j1,i2,i3

i1,j2,i3  with j1 �= i1 as in the sums. We 
have

17 Again, this is true only in the case where total domain wall angle is conserved. For chains of length 4 means 

θ �= 0, π
3 , 2π

3 , arctan
√

3
5 .
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Ei1,i2,i3
j1,j2,i3 = Ei1,i2,i3

i1,j2,i3 + Ei1,j2
j1,j2 = Ei1,j2

j1,j2

E j1,i2,i3
i1,j2,i3 = Ei1,i2,i3

i1,j2,i3 + E j1,i2
j1,i2 = E j1,i2

i1,i2 ,
� (C.7)

where we used that Ei1,i2,i3
i1,j2,i3 = 0. Hence we get

P0Vψ(2)
q =

∑
i1 �=j1,i2 �=j2,i3

(ω j1 − ωi1)

(
1

(Ei1,j2
j1,j2 )

2
− 1

Ei1,j2
j1,j2 Ei1,i2

j1,i2

)
|i1, i2, i3〉|j1, j2, i3〉

−
∑

i1 �=j1,i2 �=j2,i3

(ωi1 − ω j1)

(
1

E j1,i2
i1,i2 E j1,j2

i1,j2

− 1

(E j1,i2
i1,i2 )

2

)
|i1, i2, i3〉|j1, j2, i3〉 .

Now, since E j1,i2
i1,i2 = −Ei1,i2

j1,i2  and E j1,j2
i1,j2 = −Ei1,j2

j1,j2 , we are left with

P0Vψ(2)
q =

∑
i1 �=j1,i2 �=j2,i3

(ω j1 − ωi1)

(
1

(Ei1,j2
j1,j2 )

2
− 1

(E j1,i2
i1,i2 )

2

)
|i1, i2, i3〉|j1, j2, i3〉,

� (C.8)
this is the same as (C.5). Therefore, to summarize, we have checked that a solution of

P0V(ψ(2)
p ⊗ I1) = −P0V(ψ(2)

q ⊗ I1),� (C.9)

exists and is given by

ψ(2)
p = −1

2
P0V

(
Q0

H0

)2

V(ψ(0)
p ⊗ I2) .� (C.10)

C.1.1.  Normalization.  As we noted in the main text this solution is not unique and we can 
consider any linear combination of the form

ψ(2)
p + ξ2σ1� (C.11)

and we would still get a solution of (C.9), for any ξ2 ∈ C. As we saw in this appendix and in 
section 8 the value of ξ2 can be determined from the condition

(ψ2)(2) = (ψ†)(2) .� (C.12)

Computing the value of ξ2 directly is rather bothersome and the algebra is quite involved, but 
we proved in section 8 that we can always find a ξ2 such that this condition is satisfied. Using 
Mathematica, for θ = π

6 , we get18

ξ2 = 0 .� (C.13)

18 Also in the case of θ = π
4  we get

ξ2 = 0 .

Note however that in general these constants are different from 0 and depend on θ. For example in the case θ = π
6  

we get
ξ3 =

i
6

,

while in the case of θ = π
4  we have

ξ3 =
i

3
√

2
.
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The same analysis conducted with symbolical computation also shows that with this choice 
of ξ2 we get

(ψ3)(2) = 0 .� (C.14)

So, overall

ψ(2) =

((
Q0

H0

)
V
(
Q0

H0

)
V +

1
2
P0V

(
Q0

H0

)2

V

)
ψ(0) .� (C.15)

Appendix D.  Coefficients for the solution ψ(5)
p

In this appendix we will display, for completeness, the non-zero Γi1,i2,i3,i4 introduced in sec-

tion 7, which appear in ψ(5)
p  as found through the use of Mathematica. We have

Γ0,0,4,1 = − 3
35 Γ0,0,3,2 = − 2

35 Γ0,3,0,2 = − 3
14 Γ0,1,1,3 = 1

35

Γ0,1,3,1 = 6
35 Γ1,0,3,1 = 1

5 Γ0,3,1,1 = 3
7 Γ0,1,2,2 = 3

35

Γ1,0,2,2 = 1
5 Γ0,2,1,2 = 1

7 Γ2,0,1,2 = 7
20 Γ1,2,0,2 = 3

10

Γ2,1,0,2 = 2
5 Γ0,2,2,1 = 2

7 Γ2,0,2,1 = 9
20 Γ1,1,1,2 = − 1

5

Γ1,1,2,1 = − 2
5 Γ1,2,1,1 = − 3

5 Γ2,1,1,1 = − 4
5 .

�

(D.1)
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