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Abstract. Mountain torrents and debris flows are rapid transport processes for soil and water 
materials in small watersheds in mountainous areas. They have a strong destructive power and 
often result in devastating natural disasters. Natural ecosystems can regulate natural disasters, 
reduce the risk of damage, increase the stability of disaster-prone environments and reduce the 
vulnerability of downstream areas. The upper reaches of the Minjiang River (URM) in Sichuan 
Province, China is a typical area prone to flood and debris flow disasters. An established 
scientific model was used to analyze land cover change in the URM to discover the optimum 
land use pattern. Based on the analysis of the pattern of temporal and spatial changes of 
ecosystems in the URM, the results showed that the amount of ecosystem change in the URM 
was small, and the overall change rate of ecosystems was only 1.7%. There was an obvious 
trend of landscape fragmentation in the whole URM region, and the change of ecosystems had 
clear regional differences. Human economic activities were the main reason for the changes in 
the spatial pattern of ecosystems from 1985 to 2013. 

1. Introduction 
Mountainous areas have steep terrain and plentiful sedimentary material. High intensity rainfall or 
rapid snow melt can lead to disastrous flash floods and debris flows [1]. The simultaneous occurrence 
of mountain floods and debris flow (MFDF) will magnify the corresponding hazards of each single 
process, which is of particular concern [2]. For effective disaster early warning, it is essential to 
identify typical areas prone to MFDF so that the distribution and pattern of temporal and spatial 
changes to ecosystems can be analyzed. Yang et al. developed comprehensive index values to evaluate 
the landscape ecological security of Maoxian County in Sichuan Province in 2000, 2007 and 2015, 
using changes of ecological pattern over time from multi-stage remote sensing images [3]. Based on 
remote sensing data from 2000, 2005, 2008 and 2013, Zhao Weiquan analyzed the evolution of 
landscape patterns in the Chishui River Basin [4]. Normalized difference vegetation index (NDVI) 
data have been used to study both long-term and large-scale trends of change in land ecosystem 
vegetation health and growth, and short-term changes in land distribution patterns in local areas [5-6]. 
Previous research has used a range of scientific theories and models to analyze land resources, 
improve the ecological security coefficient and explore the values of ecosystem services [7-8]. In this 
paper, we analyzed the distribution and pattern of ecosystems and their temporal and spatial changes 
in the URM as a case study of a typical disaster-prone area to optimize the land use pattern and reduce 
the occurrence of MFDF. 
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Table 1. Ecosystem pattern and change evaluation index 

Evaluation content Evaluating indicator 

Composition of ecosystem 
Ecosystem area 

Proportion of ecosystem composition 

Changes in ecosystem composition Change rate of ecosystem type area 

Characteristics and changes of 

landscape pattern in ecosystem 

number of patches(NP) 

Mean patch size(MPS) 

Mean patch size of type(MPST) 

Edge Density (ED)(m/hm2) 

contagion index(CONT) (%) 

3. Results and Discussion 

3.1. Changes in Ecosystem Composition 

3.1.1. The range of natural ecosystem change 
The change in forest and grassland was relatively small at less than 2%. The net decrease of forest area 
was 91.3 km2, with a decrease rate of 0.6%, and an average annual decrease of 3.3 km2 in the URM 
from 1985 to 2013. The grassland area increased by 43.5 km2, with an average annual increase of 1.6 
km2, and an increase rate of 0.7%. In general, the areas were relatively stable. The area of other natural 
ecosystem types increased by 161.0 km2, with an average annual increase of 5.8 km2, accounting for 
6.0% of the total, and the total area also remained stable. Wetland areas increased rapidly by 13.4 km2 
in area and 10.9% in proportion.  

3.1.2. The range of artificial ecosystem change 
Artificial surface area increased significantly by 84.5 km2, an average of 3.0 km2 per year, with an 
increase rate of 601.5%. However, there was a large net reduction in cultivated land area of 211.0 km2, 
with an average annual reduction of 7.5 km2, accounting for 21.5% of the total in the URM from 1985 
to 2013. This shows that the area of cultivated land decreased significantly in the URM.  

3.2. Intensity of Ecosystem Change 

3.2.1. The intensity of ecosystem change 
From the perspective of changes in level 1 ecosystem types, the overall change rate of ecosystems 
from 1985 to 2000 was 0.1%, or 23.1 km2. The rate of conversion in the second half of the study was 
much larger, with 413.7 km2 (1.6%) of level 1 classified ecosystems being converted. Over the whole 
period 1985–2013, the overall change rate of ecosystems was 1.7% (436.1 km2) in the URM (Table 2). 

In the level 2 classification of ecosystem types, the overall change rate of the ecosystem was 0.2% 
from 1985 to 2000, with 38.4 km2 of different ecosystem types being converted. Between 2000 and 
2013, the rate of change was 2.4% (614.9 km2). Over the period 1985–2013, the overall change rate of 
ecosystems was 2.6% or 653.7 km2 in the URM (Table 2). 
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Table 2. Comprehensive change rate and conversion intensity of ecosystems in the URM 

classification indicator 1985~2000 2000~2013 1985~2013 

Level 1 classification 
EC(%) 0.09 1.62 1.71 

LCCI(%) -0.05 -1.55 -1.60 

Level 2 classification 
EC(%) 0.15 2.42 2.57 

LCCI(%) -0.06 -2.01 -2.07 

3.2.2. The stages of ecosystem change 
The main changes occurred from 2000 to 2013 in the URM. According to the change of ecosystem 
types of the level 1 classification, the comprehensive change rate of the ecosystem was 1.7% from 
1985 to 2013, 1.6% from 2000 to 2013, and 0.2% from 1985 to 2000. According to the change of 
ecosystem types of level 2 classification, the comprehensive change rate of ecosystem was 2.6% from 
1985 to 2013, 2.4% from 2000 to 2013, and 0.2% from 1985 to 2000 in the URM. 

3.3. Change of Ecosystem Pattern 

3.3.1. Fragmentation of the regional landscape 
The trend of landscape fragmentation was obvious, and the distribution of landscape types became 
more scattered in the URM. The number of patches increased from 42,232 to 44,447, an increase of 
5.2% while the average patch area decreased from 60.3 ha to 57.3 ha, a decrease of 5.0%. The 
boundary density increased from 35.8 m/ha to 36.9 m/ha and the aggregation index decreased from 
64.6% to 64.1% from 1985 to 2013 (Table 3). The four indicators show a clear trend of fragmentation 
of landscape types. 
 

Table 3. Landscape pattern characteristics and changes in level 1 ecosystems in the URM 

year NP MPS(ha) ED(m/ ha) CONT(%) 

1985 42232 60.3 35.8 64.6 

2000 42356 60.1 35.9 64.5 

2013 44447 57.3 36.9 64.1 

3.3.2. Changes in fragmentation patterns 
The fragmentation of wetlands and artificial surfaces decreased, the fragmentation of cultivated land 
and other ecosystem types increased, and the fragmentation of forest and grassland remained stable 
from 1985 to 2013. The area of wetland patches in the URM increased from 6.7 ha to 7.5 ha (11.9%), 
while the area of artificial surface patches increased from 24.6 ha to 42.3 ha (72.0%). In contrast, the 
area of cultivated land patches decreased from 15.0 ha to 11.6 ha (22.7%) and the area of other types 
of patches decreased from 61.0 ha to 50.6 ha. The area of forest patches decreased by 1.3% from 208.3 
ha to 205.6 ha; the area of grassland patches decreased by 2.6% from 27.4 ha to 26.7 ha. 

3.4. Regional Differences of Ecosystem Changes 

3.4.1. Extension along the main rivers and valleys 
The overall rate of ecosystem change in the URM was mainly characterized by extension along both 
sides of the large river valley from 1985 to 2013. The change of ecosystem types was most obvious 
along the main stream of the Minjiang River and its tributaries, such as the Xiaoxinggou and Weilong 
Rivers, especially in some reaches of the main stream of the Minjiang River. 
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3.4.2. The change of ecosystem types in the vicinity of main urban settlements 
The ecosystem types of the URM changed most rapidly around the main towns and surrounding areas. 
In the small watersheds around Dujiangyan, Wenchuan, Maoxian, Heishui and Songpan, the overall 
change rate of ecosystems was significantly higher than that of the surrounding areas from 1985 to 
2013. 

4. Conclusion 
The intensity of ecosystem change in the URM was relatively small, and the overall rate of ecosystem 
change was only 1.7% from 1985 to 2013. Changes in ecosystems showed clear stages: the major 
changes occurred between 2000 and 2013, with conversion of forest to other types, and the conversion 
of cultivated land to forest land and artificial surfaces. The overall landscape fragmentation trend of 
the URM was obvious and the distribution of landscape types was more scattered. The fragmentation 
of wetlands and artificial surfaces landscapes was reduced, the fragmentation of arable land and other 
ecosystem types increased, and the fragmentation of forest and grassland was generally stable. Human 
economic activities in the URM were the main reason for the change of ecosystem spatial patterns. 
Around 60.4% of ecosystem conversion was related to the changes in the cultivated land and artificial 
surface ecosystems from 1985 to 2013. 
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