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Abstract. Considering a finite time horizon crossing over multiple stages of a product life 
cycle, this study presents a genetic algorithm to deal with an economic order quantity model 
with multiple demand rates under a non-periodic policy. In real, the demand of the product life 
cycle is a non-linear function but we assumes it as four-segment linear or constant 
approximations in this work. In addition, a multiple-segment to be combined with linear or 
constant functions can be approximated a nonlinear function. This study does not focus on this, 
but it provides a genetic algorithm to deal with this proposed inventory problems. The 
particular of this research is that we develop a proposed replenishment scheme by the 
differentiating equation of the total cost with respect to replenishment time. Then, calculate the 
total cost of the proposed scheme as the fitness function to evaluate the populations. In this 
paper, an explicit procedure to obtain an approximating solution is provided and numerical 
examples to illustrate the proposed model are shown as well. 

1. Introduction 
The collaborative planning, forecasting and replenishment (CPFR) is an aim to assist and support joint 
practice among entities for supply chain integration. Under scenario of the CPFR, a suppler would 
request a buyer to build up a medium- to long-term proposal replenishment schedule for their 
collaborative forecast and inventory policy. Therefore, the planner of the supplier has to map out the 
interval and demand of each stage and set up an intermediate-range distribution requirement plan 
according to the buyer’s forecast. This planning horizon is perhaps across over multiple stages on 
product life cycle. Due to technology advancement and innovation, product life cycle are becoming 
shorter and shorter especially electronic consumer products recently. For this phenomenon of product 
life cycle, most previous studies have assumed that the demand pattern is one linear function on 
production or inventory problems. Nevertheless, the previous researches consider only one linear 
function over the planning horizon, which is not able to deal with the above situation with different 
demand trend and multiple stages. One primitive solution following previous one linear function 
algorithm is to sum each separated stage with the single-piece linear model; but it is neither practical 
nor effective. To acquire a better solution and release a strict assumption that is no inventory to be 
held at the end of each stage, this study proposes a genetic algorithm for the economic order quantity 
problem when the trend of demand is a piecewise linear function.   

To consider an increasing demand on the product life cycle or bloom season, Resh et al. [1] were 
the first to introduce the classical lot-size model with deterministic and time-proportional demand rate. 
Donaldson [2] first proposed an analytic approach for replenishment problem with a linear (increasing) 
trend in demand. Based on the above contribution, Henery [3] put forward a recursive procedure for 
determining the optimal replenishment schedule under the condition of a specified replenishment lots. 
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Hariga [4] developed an iterative algorithm to derive replenishment schedule for both increasing and 
decreasing trend in demand. Rau and Ouyang [5] investigated how to model an economic order 
quantity with a piecewise linear trend in demand. Hill [6] first introduced a general, time-varying, 
continuous, deterministic demand pattern through a complete product life cycle that broke the demand 
pattern up into stages and approximated the pattern for each stage by a cubic polynomial. 

Genetic algorithms (GAs) are one of most common search methodologies to mimic the process of 
natural selection and natural genetics for optimization and search problems. The genetic algorithm was 
first introduced by Holland [7]. Many contributions have widely applied to solve issues for operations 
and supply chain management, such as inventory control, facility layout, line balancing, production 
scheduling, and logistics distribution etc.. For characteristics of the chromosome in genetic algorithms, 
the formulation is ideally suited for using GAs, so Khouja et al. [8] proposed a genetic algorithm to 
handle the economic lot size problem (ELSP) with discrete demand. Genetic algorithms only need a 
computable objective function with no requirements of mathematical theory proof such as convexity. 
Consequently, Gaafar [9] selected genetic algorithms for the deterministic time-varying lot sizing 
problem with batch ordering and backorders.  Recently, Bera et al [10] studied GAs applying to a 
realistic inventory model with continuous demand under finite horizon. Considering deteriorating, 
inflation, budget constraints, shortages and finite planning time horizon, Ouyang [11] and Jana et al 
[12] also selected GAs for inventory models with continuous demand. 

2. Assumptions and Notation 

2.1. Assumptions 
According to characteristics of product life cycle stages, the demand starts to increase gradually in the 
introduction stage. Next, the demand increase rapidly during the growth stage. Then, the demand 
becomes to steady over the maturity stage. Finally, the demand ends to decrease fast under the decline 
stage. In real, the demand of the product life cycle is a non-linear function but we treat it as four-
segment linear or constant approximations in here. The demand pattern of this proposed product life 
cycle is shown in Figure 1. Except the above assumptions, we still have some relative inventory 
restrictions in our study as follows: 
• A finite foreseeable time horizon is considered. 
• The demand of each stage is a constant, linearly increasing or decreasing function. 
• The ending point of the first stage is the starting point of the second stage and time is continuous. 
• A single item is considered. 
• Lead-time or shortage is not considered. 
• Demand is always greater than zero at the end of the time horizon. 
• No stock is held at the beginning and the end of the time horizon. 

2.2. Notation  
n number of  replenishment cycles. 
n* optimal replenishment cycles. 
H1 end time of the introduction stage. 
H2 end time of the growth stage. 
H3 end time of the maturity stage. 
H4 end time of the decline stage. 
H  planning horizon. 
W total cost, including set up and holding cost. 
W*(n)  optimal total cost for n replenishment cycles. 
c1  set up cost per order. 
c2  holding cost per unit per year. 
fi(t)  demand function during the ith stage. 
a1  demand at t = 0  
b1 rate of demand change per unit of time during stage i and bi = 0 during maturity stage. 
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ti  Terminating time of ith replenishment cycles time or starting time of i+1th replenishment 
cycles period i = 0, 1,…, n-1. 

 

 
Figure 1. Demand pattern for this proposed product life cycle 

3. The Mathematical Development  

3.1. Single-Stage Model 
The single-stage is a case that only one demand rate over the planning horizon. Suppose a fixed 
number of n replenishments and the demand function is f(t) = a1 + b1t under the planning horizon H. 
Therefore, we have the total relevant cost, including the replenishment cost and holding cost as 
follows: 
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From equation (1), it is easy to understand that this proposed inventory model is a nonlinear 
problem, where we have to resolve the replenishment schedule ti and number of production cycles n 
over a planning horizon H. Under a s deterministic n, the derivative of equation (1) with respect to ti, i 
=1, 2….n-1, is   
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Hence, W has the stationary point at ti if equation (2) = 0, which is a necessary condition for 
obtaining the optimal solution, that is 
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3.2. Two-stage model 
The first stage demand function is f1(t) = a1 + b1t with planning time from 0 to H1 and the second 
demand function is f2(t) =a1 + b1H1 + b2(t - H1) with planning time from H1 to H, which is the end of 
the whole planning horizon, as shown in equation (4). 

1 1 1
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Suppose the kth replenishment period is across stages one and two and there are two linear demand 
functions f1(t) and f2(t) at the kth replenishment period. Then, the total cost, including the 
replenishment and inventory holding cost, is given by 
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Similarly, under a deterministic n value, the derivative of equation (6) with respect to ti, i =1,2….n-
1 and then we have a stationary point at ti as follows: 
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We solve equation (7) and obtain the following equation 
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3.3. Multiple-Stage Model 
Actually, the two-stage model can be easily extended into multiple-stage models because of 
deterministic the period of each stage. We are able to follow the procedure for handling two-stage 
model when we encounter piecewise linear demand. 

4. Genetic Algorithm 
In this proposed model, the number of replenishment cycles n and replenishment schedule ti have to be 
solved, which is a complicated nonlinear problem. Thus, we provide this genetic algorithm with the 
chromosome of real number type for seeking to an approximately optimal solution. Based on  
Bellman’s principle of optimization [13], once t1 is found correctly and the remaining replenishment 
schedule t2 to tn can be determined by equation (4) for single-stage and equation (8) for multiple-stage. 
Thus, we only have to search t1 and neglect n. Our proposed genetic algorithm to derive an 
approximate solution is shown in Figure 2 and illustrated as follows: 
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Chromosome representation: 
Due to short life product cycle, we assume a finite planning horizon that is always less than one year. 
Consequently, randomly select a chromosome consisting of 20-bits for the first replenishment cycle 
time t1 under a reasonable range. For example, the terminating time of the first replenishment cycles t1 
= 0.036 is near bit string 00001001001101110101 by binary expression. 

Fitness function: 
With a trial t1, we can obtain t2 by equation (4) for single-stage and equation (8) for multiple-stage. 
Repeatedly solve t3, t4,….., tn-1, tn until  tn-1 < H and tn ≥ H. Then, let tn = H and compute total cost W(n, 
{ti}) and  let tn-1 = H  and compute total cost  W(n-1, {ti}) from equation (3). Finally, compare with the 
costs of these two scheme and select the lower one. Therefore, the fitness function can be expressed as 
follows: 
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GA operators: 
GA operators create a new generation from parent chromosomes. There are three standard GA 

operators are used, namely, reproduction, mutation and crossover.  

Searching direction: 
This GA searching direction is controlled by the self-adjustment rate of operators based on survivor 

off-springs’ rates that are determined after each generation in order to the next search. 

Input parameters: 
Parameters of genetic algorithm, including population size, probability of mutation, probability of 

crossover, generation size, initial rate of crossover operation, initial rate of mutation operation, initial 
rate of reproduction operation and stop condition, are reasonably provided. 

Output:  The local optimal replenishment schedule and the total cost. 
 

 
Figure 2. Genetic algorithm for this proposed model 

5. Numerical Examples 
A VB6.0 program was written to solve the following examples. In order to illustrate our model, we 
offer two examples as follows:  
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Under c1  = 4.5 and c2=1, suppose a short product life cycle item that H1 = 0.2, H2 = 0.5, H3 = 0.8, 
and H4 =1.0. The demand functions are f1(t) = 6000, f2(t) = 1200+9000t, f3(t) = 3900 and f4(t) = 3900-
19500t.  

Example 1: the planning horizon is from 0 to 0.4 and Example 2: the planning horizon is from 0.6 
to 1.0. Applied to the proposed solution procedures, replenishment schedule for these two examples 
are shown in Table I. The total costs for these two examples are 67.1572 and 89.6796. 
 

Table 1. Replenishment schedules for numerical examples 

Example  / i 1 2 3 4 
1 0.1423 0.2444 0.3273 0.4 
2 0.6779 0.755 0.8372 1.0 

6. Conclusions 
For technology advancement, the product life cycle for 3C items are becoming very short. Many 
industries may encounter that their planning horizon pass through different stages of the product life 
cycle. In real, this inventory model is a very complex nonlinear problem that is difficult to provide 
mathematical theory proof such as convexity. Therefore, this study develop a genetic algorithm for 
relaxing the previous researches with a single-stage linear trend in demand. The particular of our 
proposed algorithm is that we select the total cost’s differentiate equation to build up a proposed 
replenishment scheme. Then, compute the total cost of this replenishment schedule as the fitness 
function to evaluate the populations for solving this inventory problem. In terms of the future research, 
people are able to deliberate our proposed method applying to genetic algorithm for other 
unconstrained nonlinear problems especially in more complex inventory model with relative issues 
under a production system.  
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