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Abstract. Construction industry has existed the problems of high investment and pollution. As
a big country in the construction industry, China has a vast territory and the CO, emissions of
the construction industry vary greatly among different regions. So which provinces should pay
more attention to the CO, emissions of the construction industry is a question worthy of
consideration. Based on the provincial panel data of China from 1997 to 2015, this paper
extends the STIRPAT model and empirically analyses the impact of influencing factors in
different quantiles by using quantile regression panel model. Research results show that: (1)
The effect of population size, economic growth, energy structure and industrial scale on CO, of
construction industry in different quantiles are positive, while the effect of energy efficiency is
negative. (2) The effect of population size on CO, emissions in the 50th-75th quantile
provinces is greater than those in the other quantile provinces; the impact of economic growth
in the 10th-25th quantile provinces is higher than those in the other percentile provinces; the
influence of energy structure in the 25th-50th and 50th-75th quantile provinces are stronger
than those in the other quantile provinces; the influence intensity of industry scale in the upper
90th quantile provinces is the highest in all the quantile provinces; the effect of energy
efficiency in the upper 90th quantile provinces is lower than those in the other percentile
provinces. According to these results, we put forward some corresponding policy suggestions.

1. Introduction

Greenhouse gas emissions has become a main course of global warming and environmental pollution,
and the carbon dioxide (CO,) accounts for about 70% of the greenhouse gas. China is the largest CO,
emitter in the world at present, its total emissions of CO, have reached 9232.6 million tons in 2017,
1.81 times that of the United States. With the increasing international pressure, China has become the
focus of a global plan to reduce carbon emissions. According to the data provided by the World Bank,
in order to achieve the goal of energy saving and emission reduction by 2030, 70% of the potential
emission reduction in construction industry. Therefore, it is of great practical significance to study the
main driving forces of CO, emissions in China's construction industry for formulating effective
environmental protection and emission reduction strategies.

In recent years, scholars have conducted a large number of studies on the main driving forces of
CO, emissions in the construction industry with people's attention to environmental pollution and
energy consumption, and achieved fruitful results. We can find that the main methods to study on the
influencing factors of CO, emissions in the construction industry include life cycle assessment
method[1-3], input-output method[4-5], decomposition method[6] and so on. These traditional
methods based on mean regression to study CO, emissions in construction industry. However, the
economic variables are often non-normal distributed, and the tail of distributions hide important
information. We know that the quantile regression does not need to assume zero-mean,
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homoscedasticity and normal distribution of stochastic error term, it can reduce the limitation of
residual distribution and the quantile estimators are more effective than the OLS estimators when
disturbance items are not normal[7]. Beyond that, the quantile regression can reflect the influence of
the change of independent variables on the whole conditional distribution of dependent variable and
estimate different parameter values at different quantile levels of dependent variable compared with
the OLS method. Third, the quantile regression is monotonous and homogeneous, which can transform
the unstable sample data in the regression process without affecting the estimation effect. Last, the
guantile regression estimates parameters by minimizing the sum of absolute weighted residuals and it
is less sensitive to outliers and more robust in parameter estimation. In order to overcome the
shortcomings of the existing research methods, this paper will apply the quantile regression model to
investigate the impacts of the influencing factors of CO, emissions in China's construction industry
under different level of CO, emissions with a provincial panel data of China during the period of
1997-2015.

2. Model and Methodology Specification

2.1. Quantile Regression Model

The quantile regression method was first proposed by Koenker and Bassett[8]. Regression for
independent variable X based on conditional quantile of dependent variable Y, and the regression
models under all gquantiles are obtained. The mathematical expression of the quantile regression model
is as follows:

Yi =X, + #y,0< 0 <1 (1)

Quanta(yi | Xi) = Xi’ﬂa )
where y denotes the dependent variable, x is a vector of the explanatory variable, x denotes the

random error term, whose conditional quantile distribution is equal to zero. Quant, (y; | x;) is the éth
guantile of the dependent variable.

The estimator of regression coefficients in the quantile 4 is ﬁg which satisfies:

ﬂa =arg;nin Z 0|yi _Xi,:B + Z (1_0)|yi _Xi'ﬁ

YizX B Yi<xip (3)

Different parameter estimates can be obtained by giving different 9 values. We use the linear
programming to solve the problem of (3), and apply the bootstrap method to estimate the standard
deviation and confidence interval of the parameters in the quantile regression.

The quantile regression model is quite different from the traditional segmental regression method.
The traditional segmental regression estimates parameters based on subset of samples, while the
quantile regression estimates the parameters of different quantiles using all sample data[9].
Koenker[10] discussed the details of the quantile regression methods.

2.2. Construction of Empirical Model
IPAT model was first proposed by Ehrlich and Holdren[11] to reflect the impact of population on
environmental stress. The mathematical expression of the model is as follows:

I=P-AT 4)

where I, P, Aand T indicate the pollution intensity of a pollutant, the population size, the economic
development level of a country and the technology development level respectively.

Although the IPAT model is concise and intuitive, it also has some limitations. First, the IPAT
assumes that the elasticity coefficients of the impact of population size, economic prosperity and
technological level on the environment are consistent, which conflicts with the environmental Kuznets
curve hypothesis. Second, the unity of the dimensions on both sides of the equation limits other factors
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that may affect environmental pressure. Third, the hypothesis testing unable to proceed[12]. In order
to overcome the above limitations, this paper adopts the Stochastic Impacts by Regression on
Population, Affluence and Technology (STIRPAT) model, which based on the IPAT model and
proposed by Dietz and Rosa[13]:
I = aRb ACTtdéZt (5)
where a represents the intercept term; I, P, A and T are the same as in equation (4); b, ¢ and d
represent the elastic coefficients of environmental effects with respect to P, Aand T respectively, & is
the random error term; since the model is used for annual data analysis, subscript t depicts the year. In
order to eliminate possible heteroscedasticity, all variables are logarithmic processed. The sample data
set is the panel data, so the equation (5) after logarithmic transformation can be written as follows:

Inl, =Ina+b(InR,)+c(InA,)+d(InT,)+e, ©)
combined with this study and considered the actual situation of China's construction industry, we
further expand the STIRPAT maodel to the following form:

InCO,;, =Ina+ g, InPOP, + £, InPGDP, + S, In ENE,

+ B, INENS, + 5. InIS, +e,. 7

where the CO, (10,000 tons) represents the CO, emissions of the construction industry of each province;
POP (10,000 people) is the total population size of each province at the end of the year; PGDP (yuan) is
economic growth and is represented by GDP per capita of each province which is converted into constant
prices (1997=100) to cut the effects of inflation; ENE (10,000 yuan per tce) is energy efficiency, which is
used to measure the technical development level of the construction industry, represents the actual output
of the unit energy consumption in the construction industry; ENS is calculated by dividing coal
consumption in the construction industry by its total energy consumption; IS reflects the scale effect of
construction industry and is calculated by added value of construction industry divided by GDP; a and e are
the intercept and disturbance terms, respectively. The panel regression model (7) can carry out mean
regression on the influencing factors of CO, emissions in China's provincial construction industry. In
the actual economic problems, the CO, emissions and the influencing factors may not follow the
normal distribution. In order to study the impact of various factors on CO, emissions from China's
construction industry in different quantiles, we introduce quantiles into the model (7) and obtain the
econometric model for empirical analysis:

Q.(INCO,,) = (Ina), + £, In POP, + 5, In PGDP,

+ f,. INENE, + 5, INENS, + ., In IS, ®)

where Q(InCOy;) and (Ina), represent zth quantile in the dependent variable and constant term
respectively. B., f2., Ban P @nd Ps. indicate the regression parameters of zth quantile in the explanatory
variables.

3. Data Source and Description

The variables involved in model (8) are panel data of 30 provinces, municipalities and autonomous
regions in China's mainland from 1997 to 2015. Due to the lack of relevant variable data in Tibet, it is
not included in the sample. Provincial construction industry CO, emissions data is collected from
CEADs; the data of coal consumption is from China Energy Statistics Yearbook (1998-2016); the
other explanatory variables data sets are from China Statistics Yearbook (1998-2016) and 30
Provincial Statistical Yearbook (1998-2016). The definitions and statistical description of all the
variables in this study are shown in Table 1.
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Table 1. Definition and statistical description of variables in the model (8)

Variable Definition Units of measurement Mean Std.dev. Min Max
CcO, Total CO, emission 10,000 tons 139.16 154.05 10 2220
POP Population size 10,000 people 4258.23 2670.43 280 10849

PGDP Per capita GDP Yuan 19985.62 5715.89 2250 79255.90
ENE Energy efficiency 10,000 yuan per tce 15.70 14.89 0.6924 109.30
ENS Energy structure Percent 20.46 19.19 0.31 99.90

1S Industry scale Percent 6.73 1.86 3.25 14.03

4. Empirical Results

4.1. Test of Multicollinearity

In this paper, Klein's method [14] is used to examine the multicollinearity test. From the results of
likelihood ratio test (F = 25.8834, P = 0.0000) and Hausman test (* = 13.3422, P = 0.0204), we can
see that the fixed effect panel regression model should be used to fit the sample data and obtains
R?=0.602. The correlation coefficient matrix of explanatory variables in this paper is shown in Table 2.
As can be seen from Table 2, the absolute value of correlation coefficients of each explanatory
variable is less than R?, which shows that the correlation between explanatory variables will not cause
multicollinearity problems in the model, and all variables are suitable for regression estimation.

Table 2. The correlation coefficient matrix

InPOP InPGDP INENE INENS InIS

InPOP 1.00 -0.03 0.25 -0.10 -0.36
InPGDP -0.03 1.00 0.39 -0.46 -0.25
INENE 0.25 0.39 1.00 -0.25 -0.14
INENS -0.10 -0.46 -0.25 1.00 0.10
InlS -0.36 -0.25 -0.14 0.10 1.00

4.2. Unit Root Test and Co-integration Test

We applied the Levin-Lin-Chu (LLC) to implement the panel unit root test, and the results are shown
in Table 3. It can be seen that all variables are non-stationary at the 1% significance level, but their
first order difference series are stationary, it indicates that the variables in this study are first order
single integration. Further, we implemented panel co-integration test to examine whether there is a
long-term equilibrium relationship between the CO, emissions of the construction industry and its
main driving forces. In KAO panel test, ADF = -6.123 and P = 0.0000, which rejects the primitive
hypotheses that there is no co-integration relationship. The results are indicative of a significant co-
integration relationship between the dependent variable and the explanatory variables.

Table 3. Results of panel unit root tests

Variable | Test form st;lrt(ie::ic Results First difference | Test form st:':lrt(iaz:ic Results
InCO, (0,0) 5.85 non-stationary AInCO, (C,T -17.09*** | stationary
InPOP (0,0) 11.62 non-stationary AInPOP (C,T -11.10*** | stationary

InPGDP (C,T 4.48 non-stationary AINPGDP (C,T -2.52*** | stationary
INENE (0,0) 4.87 non-stationary AINENE (C,T -12.65*** | stationary
INENS (C,0) -0.62 non-stationary AINENS (C,T -18.86*** | stationary

InIS (0,0) 4.68 non-stationary AlnlS (C,T -13.12*** | stationary
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Remark: The optimal lag is based on the Akaike Information criterion (AIC) and Schwartz
information criterion (SC). ***, ** * indicates a significant at 1%, 5% and 10% significance level
respectively. In the Test form, 0, C and T represent constant, intercept and trend items respectively.

4.3. Normal Distribution Tests

We tested the normality of all variables before regression analysis through the Q-Q plot, and the
results are shown in Figure 1 (a-f). The observed values of all variables deviate from the straight line,
indicating that all variables do not conform to the normal hypothesis. Accordingly, OLS regression
can’t reveal the important information contained in the tail of the data comprehensively, which further
proves that it is reasonable to use quantile regression model for empirical analysis.
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Figure 1. Normal Q-Q plots of InPOP, INGDP, INnENE, InENS, InlS and InCO, respectively

4.4. Quantile Regression Results Analysis

Quantile regression can directly reveal the marginal impact of explanatory variables on CO, emissions
of different quantiles in construction industry. Different quantile functions can be obtained under
different quantiles, which can reveal the influence of the main driving forces on the dependent
variables of corresponding quantiles. Therefore, five representative quantiles (10, 25, 50, 75 and 90)
are selected for quantile regression, and the estimation results are analyzed in depth. According to
annual average CO, emissions of China's construction industry from 1997 to 2015, 30 provinces in
China are divided into six groups (Table 4). It can be seen from table 4 that although the economic
development of some provinces is quite different, the annual CO, emissions of the construction
industry have little change.
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Table 4. Provincial distribution in term of CO, emissions in the construction industry

Quantile Province
The lower 10th quantile group Heilongjiang, Guangxi, Hainan
The 10th-25th quantile group Jiangsu, Jiangxi, Guizhou, Qinghai, Ningxia
The 25th-50th quantile group Beijing, Hebei, Henan, Guangdong, Chongging, Gansu, Xinjiang
The 50th-75th quantile group Tianjin, Shanxi, Liaoning, Anhui, Fujian, Sichuan, Yunnan, Shannxi
The 75th-90th quantile group Inner Mongolia, Jilin, Shanghai, Hunan

The upper 90th quantile group Zhejiang, Shandong, Hube

Table 5. Estimation results: quantile regression panel model and fixed effects
linear panel OLS model during the period of 1997-2015

Quantile regressions

Variables OLS
10th quant 25th quant 50th quant 75th quant 90th quant
Intercept  -11.535*** -13.040*** -13.144%** -12.708*** -9.948*** -12.583***
InPOP 0.546*** 0.634*** 0.722%** 0.721*** 0.446*** 0.587***
INPGDP 1.274%** 1.301*** 1.216*** 1.224%** 1.070*** 1.315***
INENE -0.947*** -0.775*** -0.655*** -0.677*** -0.409** -0.762***
INENS 0.295*** 0.332*** 0.355*** 0.321*** 0.310*** 0.320***
InIS 0.034 0.258* 0.423*** 0.391*** 0.799*** 0.361***

Remark: *** ** * indicates a significant at 1%, 5% and 10% significance level respectively.

The estimation results of quantile regression are shown in Table 5 and Figure 2. We give the
estimation results of OLS in Table 6 for comparative analysis. From Table 5, it can be seen that most
of the parameter estimation results of the influencing factors are significant at the 10% test level. The
regression coefficients of INPOP, InGDP, InENS and InIS are all positive, indicating that population
size, economic growth, energy consumption structure and industrial scale have a positive impact on
CO, emissions of construction industry; the regression coefficients of INENE are estimated to be
negative, indicating that technological level effectively inhibits the growth of CO, emissions of
construction industry. In addition, the elasticity coefficient of INPGDP is the largest in all quantiles,
indicating that economic growth is the main factor affecting CO, emissions in construction industry,
and population size and energy consumption structure have a greater impact. Especially, the results of
parameter estimation of InlS are not significant in low quantiles, indicating that industrial scale only
has more influence on the provinces where CO, emissions in construction industry are in the middle
and high quantiles. From Figure 2, we can see that the parameters trends of INPOP and InENS up first
and then down with the increase of quantiles, INPGDP down, and INENE and InIS up. These show that
the effects of the influencing factors of CO, emissions in construction industry are heterogeneous, and
several interesting phenomena of quantile regression results are discussed below.

The effects of population size on CO, emissions in the 50th-75th quantile provinces are greater
than those in the other quantile provinces, which may be caused by the different annual growth rate of
population in different regions. Generally speaking, the increase of population will promote the
construction demand of housing, transportation, infrastructure and so on, which will lead to the
increase of energy and building materials consumption, and CO, from the construction industry will
increase. The larger the population, the stronger the human economic activity will be, which will
further lead to an increase in CO, emissions from the construction industry. Due to the implementation
of the national policy of Family Planning, the population growth rate in all regions of China has been
at a low level in recent years. According to the relevant data of China Statistical Yearbook, the annual
average population growth rate during 1997-2015 period in the 50th-75th quantile provinces is 1.16%,
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is far larger than those in the lower 10th quantile provinces (0.46%), the 10th-25th quantile provinces
(0.64%), 25th-50th quantile provinces (-0.86%), 75th-90th quantile provinces (0.92%) and upper 90th
quantile provinces (0.61%). Therefore, the impact of population size on CO, emissions from
construction industry in the 50th-75th quantile provinces is stronger than those in the other quantile
provinces.

The influence of economic growth on CO, emissions of construction industry shows a downward
trend with the increase of quantile, and the provinces with 10th-25th quantile CO, emissions of
construction industry have the greatest impact, which may be caused by the different proportion of
fixed-asset investment in construction industry in the whole society of the region. Infrastructure
construction is the premise of economic development. Therefore, investment in fixed assets has
always been greatly supported by central and all levels governments as one of the important strategic
industries that promote economic development. However, the large-scale investment in fixed assets
has driven the rapid development of the construction industry, consumed a large number of steel,
cement and fossil fuels, and produced a large number of CO, emissions. After calculating the annual
average growth rate of fixed assets investment in construction industry in 1997-2015 based on China
Statistical Yearbook, we found that the annual average growth rate of fixed assets investment in the
10th-25th quartile provinces is higher than those in other quartile provinces. The rapid growth of fixed
assets investment leads to the high annual growth rate of energy consumption in construction industry,
and the annual growth rate of CO, emissions in construction industry also increases. Therefore, the
impact of economic growth on CO, emissions in construction industry in 10th-25th quantile provinces
is greater than those in other quantile provinces.

The inhibition of energy efficiency on CO, emissions from construction industry in the upper 90th
quantile provinces are less than those in the other quantile provinces. This may be related to the
difference of patent technology level, R&D investment and the number of R&D personnel in different
regions. With the development of new technologies such as energy saving and emission reduction,
energy efficiency plays an increasingly prominent role in improving the environment and enhancing
the competitiveness of enterprises. On the one hand, patents can protect technological R&D
achievements effectively, and encourage enterprises to expand investment in technological R&D.
Relevant data from China Science and Technology Statistics Yearbook show that the average annual
growth rate of patents granted in the upper 90th quantile provinces during 1997-2015 is lower than
those of other quantile provinces. The slow growth in the number of patents has led to the slow
progress of technological level in provinces with CO, emissions above 90th quantile compared with
other quantile provinces. On the other hand, the R&D of new technology needs a lot of R&D funds
and R&D personnel. Therefore, R&D funds and R&D personnel determine the level of energy
efficiency. We found that annual growth rate of R&D investment and R&D personnel of R&D
institutions in the upper 90th quantile provinces during 1997-2015 is much lower than those in other
quantile provinces based on China Statistical Yearbook. The slow growth of R&D investment and
R&D personnel is also one of the reasons for the slow technological progress in the upper 90th
quantile provinces. The slow progress of energy saving and emission reduction technology results in
energy efficiency has less inhibition on CO, emissions of provinces in the upper 90 quantile compared
with other quantile provinces.

The elasticity coefficient of energy structure in the median is the largest, which has a higher impact
on the construction industry in the 25th-50th and 50th-75th quantile provinces than other percentile
provinces. This may be due to the difference in the proportion of coal consumption to the total energy
consumption of construction industry in different provinces. China is currently the largest producer
and consumer of coal in the world. Coal is rich in reserves and low in price, which has become the
main source of energy consumption in China. Because coal combustion produces a large amount of
CO,, coal consumption accounts for a significant proportion of total energy consumption, which will
inevitably increase the CO, emissions of the construction industry. We identified that the annual
average proportion of coal consumption in total energy consumption of provinces in 25th-50th and
50th-75th quantile during 1997-2015 is higher than those of provinces in the other quantile based on
China Energy Statistics Yearbook. Therefore, the impact of energy structure on CO, emissions from
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construction industry in 25th-50th and 50th-75th quantile provinces is greater than that of other
quantile provinces.

The impact of industrial scale on CO, emissions of construction industry shows an upward trend
with the increase of quantile. The elasticity coefficient in 90th quantile is greater than that of 10th,
25th, 50th and 75th quantile, which is mainly due to the differences of construction industry scales in
different province. The construction industry is a production sector specializing in civil engineering,
housing construction and equipment installation, such as factories, railways, bridges, ports, roads and
public infrastructure construction. The development of the construction industry needs to consume a
lot of building materials, such as steel, cement, aluminum and glass products. The large consumption
of these building materials will inevitably lead to a large amount of CO, emissions in the construction
industry. According to the China Statistical Yearbook, the average annual output value of the
construction industry of the upper 90th quantile provinces in 1997-2015 is 518.294 billion yuan, and
those in the lower 10th, 10th-25th, 25th-50th, 50th-75th and 75th-90th quantile provinces are 69.363
billion yuan, 22.632 billion yuan, 216.258 billion yuan, 196.976 billion yuan and 162.932 billion yuan
respectively. We can see that the scale of construction industry in the upper 90th quantile provinces
are much larger than those in other percentile provinces. Therefore, the impact of industrial scale on
CO, emissions of construction industry in the upper 90th quantile provinces is stronger than those of
other percentile provinces.
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Figure 2. The effects of influencing factors on the CO, emissions in construction industry

Remark: Shaded areas represent 95% confidence bands for the quantile regression estimates.
The horizontal dotted lines depict the 95% confidence intervals for the OLS estimates. The
vertical axis represents the elasticities of explanatory variables.

5. Conclusions and Policy Implications

Based on the panel data of 30 provinces in China from 1997 to 2015, this paper extends the
STIRPAT model and uses the quantile regression panel model to empirically study the main
influencing factors of CO, emissions in China's construction industry, focusing on the
different effects of influencing factors in different quantiles. The results show that: (1)
Population size, economic growth, energy structure and industrial scale have positive impacts
on carbon emissions of construction industry, while technological level has negative impacts.
(2) The impact of population size on CO, emissions from construction industry in 50th-75th
quantile provinces is larger than those in other percentile provinces, which may be related to
the different population growth rates in different regions. The impact of economic growth on
provinces in 10th-25th quantile is greater than those of provinces in other quantile, which may
be caused by the difference of fixed-asset investment in construction industry in different
provinces. The difference in patented technology, R&D expenditure and R&D personnel
cause energy efficiency has less inhibition on CO, emissions of construction industry in the



2019 2nd International Conference on Materials Engineering and Applications IOP Publishing
IOP Conf. Series: Materials Science and Engineering 730 (2020) 012059 doi:10.1088/1757-899X/730/1/012059

upper 90th quantiles provinces than those of provinces in other quantile. Energy structure has
stronger impact on CO, emissions of provinces in the 25th-50th and 50th-75th quantiles than
other percentile provinces may owe to obvious differences in coal consumption. The effects
of industrial scale on CO, emissions of provinces in the upper 90th quantile are higher than
those of provinces in other quantile because of the differences in scale of construction
industry. Therefore, all levels governments and relevant enterprises should pay more attention
to the heterogeneous effects of these factors on the construction industry CO, emissions in
different quantile provinces. People-oriented, tailored to local conditions, different energy
saving and emission reduction schemes should be adopted according to the characteristics and
problems of different regions, rather than "one-size-fits-all".

The above research conclusions imply the following policy suggestions: (1) The 10th-25th
quantile provinces need to further optimize their economic structure and reduce excessive
dependence on fixed-assets investment. Local governments should establish special
governance mechanism to guide and encourage social capital to develop new energy high-
tech industry. (2) For the 25th-50th and 50th-75th quantile provinces of CO, emissions in
construction industry, the local governments should encourage residents adopt green material
in the decoration process and expand the construction of hydropower and nuclear power
stations to reduce coal consumption for power generation during construction. The local
construction companies can use energy saving composite materials to replace hollow clay
bricks, which can reduce the coal consumption for the production of clay bricks. In addition,
the application of 3D printing technology in the construction industry is the future
development direction of the local construction industry. (3) The upper 90th quantile
provinces need to further improving energy efficiency of construction industry. Firstly, the
local government should encourage construction enterprises develop and apply new
technologies, new equipment, new materials and new craft for green construction, make
reasonable indicators of construction energy consumption. Secondly, the local governments
should support the merger and acquisition of large construction enterprises with advantages,
and accelerate the construction industry to use energy-saving, efficient and environment
friendly construction equipments and tools in line with national and industrial standards.
Thirdly, local governments should increase investment in R&D funds and encourage
scientific research institutions to train technical personnel related with building energy saving
and adopt flexible and effective policies to attract relevant professionals.
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