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Abstract. Considering a finite time horizon crossing over multiple stages of a product life
cycle, this study presents a genetic algorithm to deal with an economic order quantity model
with multiple demand rates under a non-periodic policy. In real, the demand of the product life
cycle is a non-linear function but we assumes it as four-segment linear or constant
approximations in this work. In addition, a multiple-segment to be combined with linear or
constant functions can be approximated a nonlinear function. This study does not focus on this,
but it provides a genetic algorithm to deal with this proposed inventory problems. The
particular of this research is that we develop a proposed replenishment scheme by the
differentiating equation of the total cost with respect to replenishment time. Then, calculate the
total cost of the proposed scheme as the fitness function to evaluate the populations. In this
paper, an explicit procedure to obtain an approximating solution is provided and numerical
examples to illustrate the proposed model are shown as well.

1. Introduction

The collaborative planning, forecasting and replenishment (CPFR) is an aim to assist and support joint
practice among entities for supply chain integration. Under scenario of the CPFR, a suppler would
request a buyer to build up a medium- to long-term proposal replenishment schedule for their
collaborative forecast and inventory policy. Therefore, the planner of the supplier has to map out the
interval and demand of each stage and set up an intermediate-range distribution requirement plan
according to the buyer’s forecast. This planning horizon is perhaps across over multiple stages on
product life cycle. Due to technology advancement and innovation, product life cycle are becoming
shorter and shorter especially electronic consumer products recently. For this phenomenon of product
life cycle, most previous studies have assumed that the demand pattern is one linear function on
production or inventory problems. Nevertheless, the previous researches consider only one linear
function over the planning horizon, which is not able to deal with the above situation with different
demand trend and multiple stages. One primitive solution following previous one linear function
algorithm is to sum each separated stage with the single-piece linear model; but it is neither practical
nor effective. To acquire a better solution and release a strict assumption that is no inventory to be
held at the end of each stage, this study proposes a genetic algorithm for the economic order guantity
problem when the trend of demand is a piecewise linear function.

To consider an increasing demand on the product life cycle or bloom season, Resh et al. [1] were
the first to introduce the classical lot-size model with deterministic and time-proportional demand rate.
Donaldson [2] first proposed an analytic approach for replenishment problem with a linear (increasing)
trend in demand. Based on the above contribution, Henery [3] put forward a recursive procedure for
determining the optimal replenishment schedule under the condition of a specified replenishment lots.
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Hariga [4] developed an iterative algorithm to derive replenishment schedule for both increasing and
decreasing trend in demand. Rau and Ouyang [5] investigated how to model an economic order
quantity with a piecewise linear trend in demand. Hill [6] first introduced a general, time-varying,
continuous, deterministic demand pattern through a complete product life cycle that broke the demand
pattern up into stages and approximated the pattern for each stage by a cubic polynomial.

Genetic algorithms (GAs) are one of most common search methodologies to mimic the process of
natural selection and natural genetics for optimization and search problems. The genetic algorithm was
first introduced by Holland [7]. Many contributions have widely applied to solve issues for operations
and supply chain management, such as inventory control, facility layout, line balancing, production
scheduling, and logistics distribution etc.. For characteristics of the chromosome in genetic algorithms,
the formulation is ideally suited for using GAs, so Khouja et al. [8] proposed a genetic algorithm to
handle the economic lot size problem (ELSP) with discrete demand. Genetic algorithms only need a
computable objective function with no requirements of mathematical theory proof such as convexity.
Consequently, Gaafar [9] selected genetic algorithms for the deterministic time-varying lot sizing
problem with batch ordering and backorders. Recently, Bera et al [10] studied GAs applying to a
realistic inventory model with continuous demand under finite horizon. Considering deteriorating,
inflation, budget constraints, shortages and finite planning time horizon, Ouyang [11] and Jana et al
[12] also selected GAs for inventory models with continuous demand.

2. Assumptions and Notation

2.1. Assumptions

According to characteristics of product life cycle stages, the demand starts to increase gradually in the
introduction stage. Next, the demand increase rapidly during the growth stage. Then, the demand
becomes to steady over the maturity stage. Finally, the demand ends to decrease fast under the decline
stage. In real, the demand of the product life cycle is a non-linear function but we treat it as four-
segment linear or constant approximations in here. The demand pattern of this proposed product life
cycle is shown in Figure 1. Except the above assumptions, we still have some relative inventory
restrictions in our study as follows:

e Afinite foreseeable time horizon is considered.

e The demand of each stage is a constant, linearly increasing or decreasing function.
e  The ending point of the first stage is the starting point of the second stage and time is continuous.
e Asingle item is considered.

e Lead-time or shortage is not considered.

¢ Demand is always greater than zero at the end of the time horizon.
e No stock is held at the beginning and the end of the time horizon.
2.2. Notation

n number of replenishment cycles.

n’ optimal replenishment cycles.

H; end time of the introduction stage.

H, end time of the growth stage.

Hs end time of the maturity stage.

Hy end time of the decline stage.

H planning horizon.

W total cost, including set up and holding cost.

W'(n) optimal total cost for n replenishment cycles.

C1 set up cost per order.

C, holding cost per unit per year.

fi(t) demand function during the ith stage.

a demandatt=0

b, rate of demand change per unit of time during stage i and b; = 0 during maturity stage.
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ti Terminating time of ith replenishment cycles time or starting time of i+1th replenishment
cycles periodi=0,1,..., n-1.

!
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Figure 1. Demand pattern for this proposed product life cycle
3. The Mathematical Development

3.1. Single-Stage Model

The single-stage is a case that only one demand rate over the planning horizon. Suppose a fixed
number of n replenishments and the demand function is f(t) = a; + bst under the planning horizon H.
Therefore, we have the total relevant cost, including the replenishment cost and holding cost as
follows:

Doetopt;
W =nc, + CZZLH .[t f (u)dudt
&)
From equation (1), it is easy to understand that this proposed inventory model is a nonlinear
problem, where we have to resolve the replenishment schedule t; and number of production cycles n
over a planning horizon H. Under a s deterministic n, the derivative of equation (1) with respect to t;, i
=1,2....n-1,is

oW tin
=5 [(ti ) ()~ ], f(t)dt}
! )
Hence, W has the stationary point at t; if equation (2) = 0, which is a necessary condition for
obtaining the optimal solution, that is

“Edt=@ -t )f@) i=12...n—1
! ®)

Solve equation (3) and derive

t., = (—a-+4/(-2b%, t, + 3% — 2abt, , +4abt, +a?))/b @
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3.2. Two-stage model

The first stage demand function is fi(t) = a; + bst with planning time from 0 to H; and the second
demand function is fy(t) =a; + b;H; + b,(t - H;) with planning time from H; to H, which is the end of
the whole planning horizon, as shown in equation (4).

£(t) = a, +bt t<H,
|a, +bH, +b,(t-H,) H,<t<H )
Suppose the kth replenishment period is across stages one and two and there are two linear demand
functions fy(t) and f,(t) at the kth replenishment period. Then, the total cost, including the
replenishment and inventory holding cost, is given by
k—
W =nc, +¢, ( ZZL‘_‘“ 1 f, (u)dudt + thl thl f (u)dudt + (H, —t,_,)[* f,(t)dt
i=0 i k-1 1

t

Hy Jt

n-1
+[j i f, (u)dudt+ X [ [ f, (u)dudt
i=k1 " (6)
Similarly, under a deterministic n value, the derivative of equation (6) with respect to t;, i =1,2....n-
1 and then we have a stationary point at t; as follows:

ti+1 -
(t—ty) ) = [ fu(u)du i=1.,k-1
Hy tiyg .
(t —ty) f.(t) = Li f,(t)dt +jH1 f, (t)dt i=k-1
ti+il -
(ti—ti_l)f(ti)zjti f,(u)du |=k+1,..,n—1. .
We solve equation (7) and obtain the following equation
ti,1 = (—a+ /(=202 ot + 3027 —2abt; , +4abt; +a?)) /b,
when t,,<H, and i=1.,k-1
—a+[Hybb, + H2b,2 + 26bt, .t —30b,t2 + 4H,ab, + 2abt; , —4abyt, +a?
i+1 = b2
when t<H; and t,,>H; and i=k-1
tig = (—a-+ (20,7t it + 30,22 — 2ab,t, , +dabyt, +a%)) /b,
when t,,>H; and i=k+1.,n-1 (8)

3.3. Multiple-Stage Model

Actually, the two-stage model can be easily extended into multiple-stage models because of
deterministic the period of each stage. We are able to follow the procedure for handling two-stage
model when we encounter piecewise linear demand.

4. Genetic Algorithm

In this proposed model, the number of replenishment cycles n and replenishment schedule t; have to be
solved, which is a complicated nonlinear problem. Thus, we provide this genetic algorithm with the
chromosome of real number type for seeking to an approximately optimal solution. Based on
Bellman’s principle of optimization [13], once t; is found correctly and the remaining replenishment
schedule t, to t, can be determined by equation (4) for single-stage and equation (8) for multiple-stage.
Thus, we only have to search t; and neglect n. Our proposed genetic algorithm to derive an
approximate solution is shown in Figure 2 and illustrated as follows:
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Chromosome representation:

Due to short life product cycle, we assume a finite planning horizon that is always less than one year.
Consequently, randomly select a chromosome consisting of 20-bits for the first replenishment cycle
time t; under a reasonable range. For example, the terminating time of the first replenishment cycles t;
= 0.036 is near bit string 00001001001101110101 by binary expression.

Fitness function:

With a trial t;, we can obtain t, by equation (4) for single-stage and equation (8) for multiple-stage.
Repeatedly solve t3, ty,....., thy, t until t,4 <Hand t,>H. Then, let t, = H and compute total cost W(n,
{t}) and lett,, = H and compute total cost W(n-1, {t;}) from equation (3). Finally, compare with the
costs of these two scheme and select the lower one. Therefore, the fitness function can be expressed as
follows:

{W(n,{ti}) it w(n{t})<w(n-1{t})
W(n_l’{ti}) if W(n,{ti})>W(n—1,{ti}) (9)

GA operators:
GA operators create a new generation from parent chromosomes. There are three standard GA
operators are used, namely, reproduction, mutation and crossover.

Searching direction:
This GA searching direction is controlled by the self-adjustment rate of operators based on survivor
off-springs’ rates that are determined after each generation in order to the next search.

Input parameters:

Parameters of genetic algorithm, including population size, probability of mutation, probability of
crossover, generation size, initial rate of crossover operation, initial rate of mutation operation, initial
rate of reproduction operation and stop condition, are reasonably provided.

Output: The local optimal replenishment schedule and the total cost.

start :
population

Initial
generation
P(g)=0

Develop replenishment yes
scheme and calculate

the fitness function

stopping
criterion

End

: l no
- reproduction,

generation mutation and

P(g)=P(g)+1

(2)=P(g) crossover

Figure 2. Genetic algorithm for this proposed model

5. Numerical Examples
A VB6.0 program was written to solve the following examples. In order to illustrate our model, we
offer two examples as follows:
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Under ¢c; =4.5 and c,=1, suppose a short product life cycle item that H, = 0.2, H, = 0.5, H; = 0.8,
and H, =1.0. The demand functions are f;(t) = 6000, f,(t) = 1200+9000t, f5(t) = 3900 and f,(t) = 3900-
19500t.

Example 1: the planning horizon is from 0 to 0.4 and Example 2: the planning horizon is from 0.6
to 1.0. Applied to the proposed solution procedures, replenishment schedule for these two examples
are shown in Table I. The total costs for these two examples are 67.1572 and 89.6796.

Table 1. Replenishment schedules for numerical examples

Example /i 1 2 3 4
1 0.1423 0.2444 0.3273 0.4
2 0.6779 0.755 0.8372 1.0

6. Conclusions

For technology advancement, the product life cycle for 3C items are becoming very short. Many
industries may encounter that their planning horizon pass through different stages of the product life
cycle. In real, this inventory model is a very complex nonlinear problem that is difficult to provide
mathematical theory proof such as convexity. Therefore, this study develop a genetic algorithm for
relaxing the previous researches with a single-stage linear trend in demand. The particular of our
proposed algorithm is that we select the total cost’s differentiate equation to build up a proposed
replenishment scheme. Then, compute the total cost of this replenishment schedule as the fitness
function to evaluate the populations for solving this inventory problem. In terms of the future research,
people are able to deliberate our proposed method applying to genetic algorithm for other
unconstrained nonlinear problems especially in more complex inventory model with relative issues
under a production system.
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