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Abstract . The enzymatic esterification of sugar-fatty acid ester to produce bio-based
surfactants or emulsifiers has been recognized as an alternative way to the chemical synthesis
due to its environmentally friendly reaction. Therefore, present study aimed to employ an
optimal procedure for the continuous synthesis of fructose stearate by using immobilised
Rhizomucor miehei lipase (RML) in a packed-bed reactor. Briefly, lipase immobilization on
chicken eggshells was conducted and characterized using Transmission Electron Microscopy
(TEM) and Brunauer-Emmett-Teller (BET) analysis. Subsequently, the screening of enzyme
loading was performed. Response Surface Methodology (RSM) based on central composite
design (CCD) was applied to optimize the temperature, flow rate and substrate molar ratio. The
immobilisation efficiency on eggshells was 63.64%. After immobilization, the BET surface
area, total pore volume and pore diameter of the eggshells were reduced to 1.0714 m+/g, 1.003
x 10- cm/g and 3.7449 nm, respectively. Furthermore, both BET analysis before and after
immobilization revealed that the pore structures of eggshells were classified as Type Il
isotherm. From preliminary study, enzyme loading of 1.5 g immobilized lipase was selected as
the optimum enzyme loading. The quadratic model in RSM analysis was validated to predict
the optimum conditions. A maximum of fructose stearate concentration as high as 7.252 x 10+
mol/L obtained at a better condition of 37.47°C under a flow rate of 0.074 ml/min and 2.82:1
substrate molar ratio of fructose to stearic acid. This work has pronounced the eggshell is as a
potential carrier for RML immobilization with ability to be used in packed bed reactor to
synthesis fructose stearate.

1. Introduction

Sugar esters are attractive and biocompatible surfactants which possess excellent stability,
detergency, foaming, emulsifying and dispersing effects, turning it into one of the most versatile
process chemicals [1]. In synthesis of sugar ester, the lipase-catalyzed reaction theoretically
inserts a fatty acid into a specific position of the sugar. Lipases have substrate specificity towards
the acyl donors that are varying in carbon chain length. Rhizomucor miehei lipase (RML) is sn-
1,3 specific lipase in which its sn-1,3 position is usually held by unsaturated fatty acids, such as
oleic acid, palmitic acid and stearic acid [2]. Adsorption of lipase on hydrophobic eggshells
support occurs surrounding the active center at lower ionic strength if compared to other
enzymes. Lipase will recognize the supports as a lipid/water interface [3]. During hydrophobic
adsorption, lipases are strongly absorbed on the interface of hydrophobic supports and switch the
conformational equilibrium of lipase towards the stabilized open form [4]. Enzyme in its
immobilized form has many favorable qualities, including enhanced stability towards extreme
environment, convenient handling, ease separation of products, and efficient recovery and reuse
[5-6].
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In the present study, enzymatic esterification of fructose and stearic acid by immobilized RML
was conducted in packed bed reactor (PBR). PBR enables the reaction to run at higher enzyme
loading and shorter diffusion pathway than that of the batch conditions, leading to higher
conversion yield and higher rate of reaction per unit of enzyme [7]. Furthermore, reaction under
continuous mode via PBR can increase the automated operation and surmount a problem of the
long-time reaction in batch approach due to large amount of downtime to be scheduled for
emptying, cleaning, and filling [8].

Hence, this study was carried out to study the efficiency of immobilization approach using
eggshells by means of surface and porosity values from Brunauer-Emmett-Teller (BET) method.
The aim was also to obtain optimum conditions of temperature, flow rate and substrate molar
ratio of fructose to stearic acid for enzymatic synthesis of fructose stearate using immobilized
enzyme in packed bed reactor via response surface methodology (RSM).

2. Experimental

Chicken eggshells were collected from the hawker stall around Universiti Sains Malaysia
(Penang, Malaysia). Commercial Rhizomucor miehei lipase (RML) was purchased from
Sigma-Aldrich and other chemicals used throughout the study were purchased from Merck,
QRec, R&M Chemical and Sigma-Aldrich.

2.1. Pre-treatment of chicken eggshells

Prior to lipase immobilization, the chicken eggshells were pre-treated by using the optimized
conditions obtained from preliminary studies done by Salleh et al. (2016). All dried eggshell was
sieved with 63 pum pore size.

2.2. Lipase immobilization into chicken eggshells

Using adsorption technique, RML was immobilized on pre-treated eggshell. About 67 % (v/v)
of lipase in phosphate buffer (50 mM, pH 7) was loaded into the flask along with 10 g of
eggshell. The immobilization was carried out at 37 °C and 200 rpm for 1 hour and later being
stored at 4°C for 16 hours after incubation. Unbound lipase was removed by washing with
phosphate buffer [9]. Immobilized lipase was checked for its enzyme activity using tributyrin
method [3]. The size and morphology of eggshell before immobilization was determined by
transmission electron microscopy (TEM). Surface characterization for both eggshell powder
before and after immobilisation was carried out at liquid N2 temperature of 77K using
Micromeritics ASAP 2020. The specific surface area of samples SBET, was determined using
multipoint Brunauer-Emmett-Teller (BET) method. The Barrett- Joyner-Halenda (BJH) method
was used to measure pores’ volume, Vpore  and the pore diameter distribution [10-12].

2.3. Continuous synthesis of fructose stearate using packed bed reactor

The PBR system which comprised of a cylindrical glass column (10 mm i.d.x 90 mm length)
was filled with starting mixture of fructose and stearic acid well dissolved in ethanol (0.5 M to
1.0 M) in a feeding tank incorporated with immobilized RML. A re-circulating water bath was
employed to
maintain the desired temperature and by-pass valve was required to lower the pressure of the
reactor system, thus allow the substrate to flow back to the feed tank. Range of conditions
(temperature, flow rate and substrates molar ratio of fructose to stearic acid) obtained from
preliminary was further optimized using response surface methodology. Design Expert 7.0.0
software was used to design and analyze the experimental data. After factors screening in
preliminary study, significant parameters were selected to undergo face centered central
composite design (CCD) in response surface methodology to determine the optimum condition
for producing the highest concentration of fructose stearate. The experimental sequence for a total
of 15 experiment runs suggested by software was randomized to reduce the effects of
uncontrolled factors.
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2.4. High-performance liquid chromatography

The quantitative analysis of residual fructose concentration was performed by Shimadzu high
performance liquid chromatography (HPLC) equipped with Thermo Scientific Hypersil™ APS-2
HPLC Columns with mobile phase mixture of acetonitrile and deionized water, 85:15 by volume
at a flow rate of 1.0 ml/min. The sample volume of 20 pL was injected into the HPLC system and
eluted at 35 °C. The concentration of fructose stearate was calculated as:

Concentration of fructose stearate = (X, — X,)/X, x 100 Eq. 1

where X, is the fructose concentration at the beginning of reaction; X, is the residual fructose
concentration in the mixture at the end of the reaction.

One-way analysis of variance (ANOVA) was employed to evaluate the reliability and validity of the
results obtained. The results are considered as statistically significant if the p-value < 0.05.

3. Results and discussion

The TEM images of eggshell powder before immaobilization shown in Figure 1 illustrated that eggshell
powder was made up of mixture of irregular rhombohedral and quasi-spherical shapes. Similar
observation had been reported by Rahman et al., (2014) for eggshell nanopowder with the particle size
in the range of 400 nm to 900 nm. The eggshell powder also exhibited its highly agglomerated nature
that revealed many bright stripes, known as the ordered crystal lattice fringes which can be observed
in various directions. In general, TEM analyses reflected high degree of crystallinity of eggshell
powder. The results further support that the eggshell has high mechanical strength that makes it a
suitable carrier in enzyme immobilization [12-14].

Figure 1 . TEM image of eggshell powder before immobilisation at 50 K magnification

From Table 1, BET analysis showed that surface area decreases from 2.1364 m:/g before lipase
immobilization to 1.0714 m2/g after immobilization. There was also a significant decrease in the
average pore diameter of the eggshell after immobilization. Reduction of eggshell powder pore
volume of eggshell also observed after immobilization. The huge reduction found in surface area, pore
diameter and pore volume indicated that the enzyme was successfully adsorbed on eggshell in which
was similar as the finding by Rodrigues et al., (2008) in the immobilization of Candida antarctica
lipase on activated carbon [15]. From tributyrin assay conducted, the enzyme activity before and after
immobilization were also determined and a high enzyme immobilization efficiency of 63.64% was
obtained (result not shown). Upon immobilization, RML filled up some spaces of the pores and
destroyed other pores simultaneously, constructing new pores with various sizes and irregular shapes,
resulting in the decrease in surface area, pore diameter and pore volume [16].
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Table 1. The BET surface area, pore diameter and pore volume eggshell powders before and after
enzyme immobilisation

Surface area Pore diameter Pore volume

(m2/g) (nm) (cm3 /g)
Before immobilization 2.1364 11.8392 6.323 x 10~
After immobilization 1.0714 3.7449 1.003 x 10~

Physical characterization of eggshell powder before and after RML immobilization was carried out
to describe the support capacity or affinity for RML. Figure 2 and 3 showed the N, adsorption—
desorption isotherm test results to determine the surface area, pore volume and pore diameter of the
eggshells. According to IUPAC, both the adsorption isotherms for before and after immobilization
were classified to Type Il isotherms which were frequently obtained when adsorption takes place on
nonporous or macroporous materials. The desorption hysteresis loop occurred in Figure 3 was
attributed to the co-existence of intrinsic micropores and inter-crystalline mesoporous structure in
eggshell. By comparing Figure 2 and Figure 3, the quantity of nitrogen adsorbed also decreased after
lipase immobilization which implies that there was fewer number of pores available after
immobilization as most of the pores were occupied by the lipase [17].
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Figure 2. Nitrogen adsorption/desorption Figure 3. Nitrogen adsorption/desorption isotherms
isotherms of eggshell powder before of eggshell powder after immobilization.

Experimental data obtained was fitted into quadratic model and from the subsequent analysis of
variance (ANOVA) test, concentration of fructose stearate was presented in term of actual factors as

the following:

Y =-1.87 + 0.10X, - 10.09X,+ 0.99X,+ 0.35X X ,- 6.27E: X X — 0.46X X -1.69E-X: —
14.37X.: —0.11X: Eqg. 2

Where X, is the temperature (°C), X, is the flow rate (ml/min) and X, is the substrate molar ratio of
fructose to stearic acid.

Response surface plots using RSM exhibit function of two factors at a time whilst other factors are
remained constant. These surface plots are useful in comprehending interaction effects between factors
and predicting the yield response for different combination of factor levels. The interaction terms AB
(temperature vs flow rate), AC (temperature vs substrate molar ratio of fructose to stearic acid) and
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BC (flow rate vs substrate molar ratio of fructose to stearic acid) were observed to have significant
effect towards concentration of fructose stearate. For instance, Figure 4 (a) displays the surface plot of
an increase in both temperature and flow rate would negatively affect the concentration of fructose
stearate. Both the temperature and flow rate have positive effects on the esterification at lowest values

in the range of both variables respectively. The temperatures higher than 35°C was found exceeded the
optimal threshold of RML, which might lead to unwinding of immobilized RMLs and progressively
inactivated the immobilized RML. Previous study also suggested the breaking of intramolecular
hydrogen bonds, van der Waals forces, hydrophobic and ionic interactions that gradually destabilizes
and disrupt the RML tertiary structure beyond the optimum temperature, thus probably resulted in a
lower product concentration [18]. As shown in the Figure 4 (b), a higher concentration of fructose
stearate was reached at a moderate temperature (35 °C) along with highest substrate molar ratio of
fructose to stearic acid (3:1). An excess of sugar contributes to an enhanced product yield due to the
sugar being a lyoprotectant compound was able to reduce the water activity of the medium, favoring
the esterification reaction [19-21]. The optimized conditions (temperature = 37.47°C, flow rate =
0.74 ml/min and substrate molar ratio of fructose to stearic acid = 2.82:1) were given by the model by
using numerical optimization tool with high product concentration of 7.252 x 10+ £ 0.025 mol/L.
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Figure 4 . ( a) 3D surface of fructose stearate concentration as a function of temperature (°C) and flow
rate (ml/min) at fixed substrate molar ratio of fructose to stearic acid (2:1), (b) 3D surface of

fructose stearate concentration as a function of temperature (°C) and substrate molar ratio of fructose
to stearic acid at fixed flow rate (0.13 ml/min).

4. . Conclusion

A high enzyme immobilization efficiency (63.64%) conducted after the immobilization agreed with
the findings from BET, where the adsorption isotherms analysis showed that the Brunauer—Emmett—
Teller (BET) surface area, total pore volume and pore diameter of the eggshells decreased
significantly after immobilization. Decrement in these surface and porosity values suggested that the
lipase was successfully immobilized on the treated eggshells. Subsequently, packed-bed reactor (PBR)
was successfully employed in the continuous enzymatic esterification of fructose and stearic acid to
produce satisfactory concentration of fructose stearate 7.252 x 10: mol/L at optimized conditions of

37.47°C, at flow rate of 0.074 ml/min, using 2.82:1 substrate molar ratio of fructose to stearic acid.
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