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Abstract. Construction industry has existed the problems of high investment and pollution. As 

a big country in the construction industry, China has a vast territory and the CO2 emissions of 

the construction industry vary greatly among different regions. So which provinces should pay 

more attention to the CO2 emissions of the construction industry is a question worthy of 

consideration. Based on the provincial panel data of China from 1997 to 2015, this paper 

extends the STIRPAT model and empirically analyses the impact of influencing factors in 

different quantiles by using quantile regression panel model. Research results show that: (1) 

The effect of population size, economic growth, energy structure and industrial scale on CO2 of 

construction industry in different quantiles are positive, while the effect of energy efficiency is 

negative. (2) The effect of population size on CO2 emissions in the 50th-75th quantile 

provinces is greater than those in the other quantile provinces; the impact of economic growth 

in the 10th-25th quantile provinces is higher than those in the other percentile provinces; the 

influence of energy structure in the 25th-50th and 50th-75th quantile provinces are stronger 

than those in the other quantile provinces; the influence intensity of industry scale in the upper 

90th quantile provinces is the highest in all the quantile provinces; the effect of energy 

efficiency in the upper 90th quantile provinces is lower than those in the other percentile 

provinces. According to these results, we put forward some corresponding policy suggestions. 

1. Introduction 

Greenhouse gas emissions has become a main course of global warming and environmental pollution, 

and the carbon dioxide (CO2) accounts for about 70% of the greenhouse gas. China is the largest CO2 

emitter in the world at present, its total emissions of CO2 have reached 9232.6 million tons in 2017, 

1.81 times that of the United States. With the increasing international pressure, China has become the 

focus of a global plan to reduce carbon emissions. According to the data provided by the World Bank, 

in order to achieve the goal of energy saving and emission reduction by 2030, 70% of the potential 

emission reduction in construction industry. Therefore, it is of great practical significance to study the 

main driving forces of CO2 emissions in China's construction industry for formulating effective 

environmental protection and emission reduction strategies. 

In recent years, scholars have conducted a large number of studies on the main driving forces of 

CO2 emissions in the construction industry with people's attention to environmental pollution and 

energy consumption, and achieved fruitful results. We can find that the main methods to study on the 

influencing factors of CO2 emissions in the construction industry include life cycle assessment 

method[1-3], input-output method[4-5], decomposition method[6] and so on. These traditional 

methods based on mean regression to study CO2 emissions in construction industry. However, the 

economic variables are often non-normal distributed, and the tail of distributions hide important 

information. We know that the quantile regression does not need to assume zero-mean, 
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homoscedasticity and normal distribution of stochastic error term, it can reduce the limitation of 

residual distribution and the quantile estimators are more effective than the OLS estimators when 

disturbance items are not normal[7]. Beyond that, the quantile regression can reflect the influence of 

the change of independent variables on the whole conditional distribution of dependent variable and 

estimate different parameter values at different quantile levels of dependent variable compared with 

the OLS method. Third, the quantile regression is monotonous and homogeneous, which can transform 

the unstable sample data in the regression process without affecting the estimation effect. Last, the 

quantile regression estimates parameters by minimizing the sum of absolute weighted residuals and it 

is less sensitive to outliers and more robust in parameter estimation. In order to overcome the 

shortcomings of the existing research methods, this paper will apply the quantile regression model to 

investigate the impacts of the influencing factors of CO2 emissions in China's construction industry 

under different level of CO2 emissions with a provincial panel data of China during the period of 

1997-2015.  

2. Model and Methodology Specification 

2.1. Quantile Regression Model 

The quantile regression method was first proposed by Koenker and Bassett[8]. Regression for 

independent variable X based on conditional quantile of dependent variable Y, and the regression 

models under all quantiles are obtained. The mathematical expression of the quantile regression model 

is as follows: 

 
,0 1i i iy x       

 (1) 
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where y denotes the dependent variable, x is a vector of the explanatory variable, μ denotes the 

random error term, whose conditional quantile distribution is equal to zero. Quantθ (yi | xi) is the θth 
quantile of the dependent variable. 

The estimator of regression coefficients in the quantile θ is ˆ
  which satisfies: 
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Different parameter estimates can be obtained by giving different θ values. We use the linear 

programming to solve the problem of (3), and apply the bootstrap method to estimate the standard 

deviation and confidence interval of the parameters in the quantile regression.  

The quantile regression model is quite different from the traditional segmental regression method. 

The traditional segmental regression estimates parameters based on subset of samples, while the 

quantile regression estimates the parameters of different quantiles using all sample data[9]. 

Koenker[10] discussed the details of the quantile regression methods. 

2.2. Construction of Empirical Model 

IPAT model was first proposed by Ehrlich and Holdren[11] to reflect the impact of population on 

environmental stress. The mathematical expression of the model is as follows: 

 I P A T    (4) 

where I, P, A and T indicate the pollution intensity of a pollutant, the population size, the economic 

development level of a country and the technology development level respectively.  

Although the IPAT model is concise and intuitive, it also has some limitations. First, the IPAT 

assumes that the elasticity coefficients of the impact of population size, economic prosperity and 

technological level on the environment are consistent, which conflicts with the environmental Kuznets 

curve hypothesis. Second, the unity of the dimensions on both sides of the equation limits other factors 
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that may affect environmental pressure. Third, the hypothesis testing unable to proceed[12]. In order 

to overcome the above limitations, this paper adopts the Stochastic Impacts by Regression on 

Population, Affluence and Technology (STIRPAT) model, which based on the IPAT model and 

proposed by Dietz and Rosa[13]: 

 
b c d

t t t t tI aP A T 
 (5) 

where a represents the intercept term; I, P, A and T are the same as in equation (4); b, c and d 

represent the elastic coefficients of environmental effects with respect to P, A and T  respectively, ξt is 

the random error term; since the model is used for annual data analysis, subscript t depicts the year. In 

order to eliminate possible heteroscedasticity, all variables are logarithmic processed. The sample data 

set is the panel data, so the equation (5) after logarithmic transformation can be written as follows: 
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 (6) 

combined with this study and considered the actual situation of China's construction industry, we 

further expand the STIRPAT model to the following form: 
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where the CO2 
(10,000 tons) represents the CO2 emissions of the construction industry of each province; 

POP (10,000 people) is the total population size of each province at the end of the year; PGDP (yuan) is 

economic growth and is represented by GDP per capita of each province which is converted into constant 

prices (1997=100) to cut the effects of inflation; ENE (10,000 yuan per tce) is energy efficiency, which is 

used to measure the technical development level of the construction industry, represents the actual output 

of the unit energy consumption in the construction industry; ENS is calculated by dividing coal 

consumption in the construction industry by its total energy consumption; IS reflects the scale effect of 

construction industry and is calculated by added value of construction industry divided by GDP; a and e are 

the intercept and disturbance terms, respectively. The panel regression model (7) can carry out mean 

regression on the influencing factors of CO2 emissions in China's provincial construction industry. In 

the actual economic problems, the CO2 emissions and the influencing factors may not follow the 

normal distribution. In order to study the impact of various factors on CO2 emissions from China's 

construction industry in different quantiles, we introduce quantiles into the model (7) and obtain the 

econometric model for empirical analysis: 
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 (8) 

where Q(lnCO2it) and (lna)τ represent τth quantile in the dependent variable and constant term 

respectively. β1τ, β2τ, β3τ, β4τ and β5τ indicate the regression parameters of τth quantile in the explanatory 

variables. 

3. Data Source and Description 

The variables involved in model (8) are panel data of 30 provinces, municipalities and autonomous 

regions in China's mainland from 1997 to 2015. Due to the lack of relevant variable data in Tibet, it is 

not included in the sample. Provincial construction industry CO2 emissions data is collected from 

CEADs; the data of coal consumption is from China Energy Statistics Yearbook (1998-2016); the 

other explanatory variables data sets are from China Statistics Yearbook (1998-2016) and 30 

Provincial Statistical Yearbook (1998-2016). The definitions and statistical description of all the 

variables in this study are shown in Table 1.  
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Table 1. Definition and statistical description of variables in the model (8) 

Variable Definition Units of measurement Mean Std.dev. Min Max 

CO2 Total CO2 emission 10,000 tons 139.16 154.05 10 2220 

POP Population size 10,000 people 4258.23 2670.43 280 10849 

PGDP Per capita GDP Yuan 19985.62 5715.89 2250 79255.90 

ENE Energy efficiency 10,000 yuan per tce 15.70 14.89 0.6924 109.30 

ENS Energy structure Percent 20.46 19.19 0.31 99.90 

IS Industry scale Percent 6.73 1.86 3.25 14.03 

4. Empirical Results 

4.1. Test of Multicollinearity 

In this paper, Klein's method [14] is used to examine the multicollinearity test. From the results of 

likelihood ratio test (F = 25.8834, P = 0.0000) and Hausman test (χ2 = 13.3422, P = 0.0204), we can 

see that the fixed effect panel regression model should be used to fit the sample data and obtains 

R2=0.602. The correlation coefficient matrix of explanatory variables in this paper is shown in Table 2. 

As can be seen from Table 2, the absolute value of correlation coefficients of each explanatory 

variable is less than R2, which shows that the correlation between explanatory variables will not cause 

multicollinearity problems in the model, and all variables are suitable for regression estimation. 

 

Table 2. The correlation coefficient matrix 

  lnPOP lnPGDP lnENE lnENS lnIS 

lnPOP 1.00 -0.03 0.25 -0.10 -0.36 

lnPGDP -0.03 1.00 0.39 -0.46 -0.25 

lnENE 0.25 0.39 1.00 -0.25 -0.14 

lnENS -0.10 -0.46 -0.25 1.00 0.10 

lnIS -0.36 -0.25 -0.14 0.10 1.00 

4.2. Unit Root Test and Co-integration Test 

We applied the Levin-Lin-Chu (LLC) to implement the panel unit root test, and the results are shown 

in Table 3. It can be seen that all variables are non-stationary at the 1% significance level, but their 

first order difference series are stationary, it indicates that the variables in this study are first order 

single integration. Further, we implemented panel co-integration test to examine whether there is a 

long-term equilibrium relationship between the CO2 emissions of the construction industry and its 

main driving forces. In KAO panel test, ADF = -6.123 and P = 0.0000, which rejects the primitive 

hypotheses that there is no co-integration relationship. The results are indicative of a significant co-

integration relationship between the dependent variable and the explanatory variables. 

 

Table 3. Results of panel unit root tests 

Variable Test form 
Test 

statistic 
Results First difference Test form 

Test 

statistic 
Results 

lnCO2 (0, 0) 5.85  non-stationary △lnCO2 (C, T) -17.09*** stationary 

lnPOP (0, 0) 11.62  non-stationary △lnPOP (C, T) -11.10*** stationary 

lnPGDP (C, T) 4.48  non-stationary △lnPGDP (C, T) -2.52*** stationary 

lnENE (0, 0) 4.87  non-stationary △lnENE (C, T) -12.65*** stationary 

lnENS (C, 0) -0.62  non-stationary △lnENS (C, T) -18.86*** stationary 

lnIS (0, 0) 4.68  non-stationary △lnIS (C, T) -13.12*** stationary 
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Remark: The optimal lag is based on the Akaike Information criterion (AIC) and Schwartz 

information criterion (SC). ***, **, * indicates a significant at 1%, 5% and 10% significance level 

respectively. In the Test form, 0, C and T represent constant, intercept and trend items respectively. 

4.3. Normal Distribution Tests 

We tested the normality of all variables before regression analysis through the Q-Q plot, and the 

results are shown in Figure 1 (a-f). The observed values of all variables deviate from the straight line, 

indicating that all variables do not conform to the normal hypothesis. Accordingly, OLS regression 

can’t reveal the important information contained in the tail of the data comprehensively, which further 

proves that it is reasonable to use quantile regression model for empirical analysis. 

 

 
(a)                                                  (b)                                                   (c) 

 
(d)                                                  (e)                                                  (f) 

Figure 1. Normal Q-Q plots of lnPOP, lnGDP, lnENE, lnENS, lnIS and lnCO2 respectively 

4.4. Quantile Regression Results Analysis 

Quantile regression can directly reveal the marginal impact of explanatory variables on CO2 emissions 

of different quantiles in construction industry. Different quantile functions can be obtained under 

different quantiles, which can reveal the influence of the main driving forces on the dependent 

variables of corresponding quantiles. Therefore, five representative quantiles (10, 25, 50, 75 and 90) 

are selected for quantile regression, and the estimation results are analyzed in depth. According to 

annual average CO2 emissions of China's construction industry from 1997 to 2015, 30 provinces in 

China are divided into six groups (Table 4). It can be seen from table 4 that although the economic 

development of some provinces is quite different, the annual CO2 emissions of the construction 

industry have little change. 
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Table 4. Provincial distribution in term of CO2 emissions in the construction industry 

Quantile Province         

The lower 10th quantile group Heilongjiang, Guangxi, Hainan 

The 10th-25th quantile group Jiangsu, Jiangxi, Guizhou, Qinghai, Ningxia 

The 25th-50th quantile group Beijing, Hebei, Henan, Guangdong, Chongqing, Gansu, Xinjiang 

The 50th-75th quantile group Tianjin, Shanxi, Liaoning, Anhui, Fujian, Sichuan, Yunnan, Shannxi 

The 75th-90th quantile group Inner Mongolia, Jilin, Shanghai, Hunan 

The upper 90th quantile group Zhejiang, Shandong, Hube 

 

Table 5. Estimation results: quantile regression panel model and fixed effects 

linear panel OLS model during the period of 1997-2015 

Variables 
Quantile regressions 

OLS 
10th quant 25th quant 50th quant 75th quant 90th quant 

Intercept -11.535*** -13.040*** -13.144*** -12.708*** -9.948*** -12.583*** 

lnPOP 0.546*** 0.634*** 0.722*** 0.721*** 0.446*** 0.587*** 

lnPGDP 1.274*** 1.301*** 1.216*** 1.224*** 1.070*** 1.315*** 

lnENE -0.947*** -0.775*** -0.655*** -0.677*** -0.409** -0.762*** 

lnENS 0.295*** 0.332*** 0.355*** 0.321*** 0.310*** 0.320*** 

lnIS 0.034 0.258* 0.423*** 0.391*** 0.799*** 0.361*** 

 

Remark: ***, **, * indicates a significant at 1%, 5% and 10% significance level respectively. 
 

The estimation results of quantile regression are shown in Table 5 and Figure 2. We give the 

estimation results of OLS in Table 6 for comparative analysis. From Table 5, it can be seen that most 

of the parameter estimation results of the influencing factors are significant at the 10% test level. The 

regression coefficients of lnPOP, lnGDP, lnENS and lnIS are all positive, indicating that population 

size, economic growth, energy consumption structure and industrial scale have a positive impact on 

CO2 emissions of construction industry; the regression coefficients of lnENE are estimated to be 

negative, indicating that technological level effectively inhibits the growth of CO2 emissions of 

construction industry. In addition, the elasticity coefficient of lnPGDP is the largest in all quantiles, 

indicating that economic growth is the main factor affecting CO2 emissions in construction industry, 

and population size and energy consumption structure have a greater impact. Especially, the results of 

parameter estimation of lnIS are not significant in low quantiles, indicating that industrial scale only 

has more influence on the provinces where CO2 emissions in construction industry are in the middle 

and high quantiles. From Figure 2, we can see that the parameters trends of lnPOP and lnENS up first 

and then down with the increase of quantiles, lnPGDP down, and lnENE and lnIS up. These show that 

the effects of the influencing factors of CO2 emissions in construction industry are heterogeneous, and 

several interesting phenomena of quantile regression results are discussed below. 

The effects of population size on CO2 emissions in the 50th-75th quantile provinces are greater 

than those in the other quantile provinces, which may be caused by the different annual growth rate of 

population in different regions. Generally speaking, the increase of population will promote the 

construction demand of housing, transportation, infrastructure and so on, which will lead to the 

increase of energy and building materials consumption, and CO2 from the construction industry will 

increase. The larger the population, the stronger the human economic activity will be, which will 

further lead to an increase in CO2 emissions from the construction industry. Due to the implementation 

of the national policy of Family Planning, the population growth rate in all regions of China has been 

at a low level in recent years. According to the relevant data of China Statistical Yearbook, the annual 

average population growth rate during 1997-2015 period in the 50th-75th quantile provinces is 1.16%, 
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is far larger than those in the lower 10th quantile provinces (0.46%), the 10th-25th quantile provinces 

(0.64%), 25th-50th quantile provinces (-0.86%), 75th-90th quantile provinces (0.92%) and upper 90th 

quantile provinces (0.61%). Therefore, the impact of population size on CO2 emissions from 

construction industry in the 50th-75th quantile provinces is stronger than those in the other quantile 

provinces. 

The influence of economic growth on CO2 emissions of construction industry shows a downward 

trend with the increase of quantile, and the provinces with 10th-25th quantile CO2 emissions of 

construction industry have the greatest impact, which may be caused by the different proportion of 

fixed-asset investment in construction industry in the whole society of the region. Infrastructure 
construction is the premise of economic development. Therefore, investment in fixed assets has 

always been greatly supported by central and all levels governments as one of the important strategic 

industries that promote economic development. However, the large-scale investment in fixed assets 

has driven the rapid development of the construction industry, consumed a large number of steel, 

cement and fossil fuels, and produced a large number of CO2 emissions. After calculating the annual 

average growth rate of fixed assets investment in construction industry in 1997-2015 based on China 

Statistical Yearbook, we found that the annual average growth rate of fixed assets investment in the 

10th-25th quartile provinces is higher than those in other quartile provinces. The rapid growth of fixed 

assets investment leads to the high annual growth rate of energy consumption in construction industry, 

and the annual growth rate of CO2 emissions in construction industry also increases. Therefore, the 

impact of economic growth on CO2 emissions in construction industry in 10th-25th quantile provinces 

is greater than those in other quantile provinces. 

The inhibition of energy efficiency on CO2 emissions from construction industry in the upper 90th 

quantile provinces are less than those in the other quantile provinces. This may be related to the 

difference of patent technology level, R&D investment and the number of R&D personnel in different 

regions. With the development of new technologies such as energy saving and emission reduction, 

energy efficiency plays an increasingly prominent role in improving the environment and enhancing 

the competitiveness of enterprises. On the one hand, patents can protect technological R&D 

achievements effectively, and encourage enterprises to expand investment in technological R&D. 

Relevant data from China Science and Technology Statistics Yearbook show that the average annual 

growth rate of patents granted in the upper 90th quantile provinces during 1997-2015 is lower than 

those of other quantile provinces. The slow growth in the number of patents has led to the slow 

progress of technological level in provinces with CO2 emissions above 90th quantile compared with 

other quantile provinces. On the other hand, the R&D of new technology needs a lot of R&D funds 

and R&D personnel. Therefore, R&D funds and R&D personnel determine the level of energy 

efficiency. We found that annual growth rate of R&D investment and R&D personnel of R&D 

institutions in the upper 90th quantile provinces during 1997-2015 is much lower than those in other 

quantile provinces based on China Statistical Yearbook. The slow growth of R&D investment and 

R&D personnel is also one of the reasons for the slow technological progress in the upper 90th 

quantile provinces. The slow progress of energy saving and emission reduction technology results in 

energy efficiency has less inhibition on CO2 emissions of provinces in the upper 90 quantile compared 

with other quantile provinces. 

The elasticity coefficient of energy structure in the median is the largest, which has a higher impact 

on the construction industry in the 25th-50th and 50th-75th quantile provinces than other percentile 

provinces. This may be due to the difference in the proportion of coal consumption to the total energy 

consumption of construction industry in different provinces. China is currently the largest producer 

and consumer of coal in the world. Coal is rich in reserves and low in price, which has become the 

main source of energy consumption in China. Because coal combustion produces a large amount of 

CO2, coal consumption accounts for a significant proportion of total energy consumption, which will 

inevitably increase the CO2 emissions of the construction industry. We identified that the annual 

average proportion of coal consumption in total energy consumption of provinces in 25th-50th and 

50th-75th quantile during 1997-2015 is higher than those of provinces in the other quantile based on 

China Energy Statistics Yearbook. Therefore, the impact of energy structure on CO2 emissions from 
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construction industry in 25th-50th and 50th-75th quantile provinces is greater than that of other 

quantile provinces. 

The impact of industrial scale on CO2 emissions of construction industry shows an upward trend 

with the increase of quantile. The elasticity coefficient in 90th quantile is greater than that of 10th, 

25th, 50th and 75th quantile, which is mainly due to the differences of construction industry scales in 

different province. The construction industry is a production sector specializing in civil engineering, 

housing construction and equipment installation, such as factories, railways, bridges, ports, roads and 

public infrastructure construction. The development of the construction industry needs to consume a 

lot of building materials, such as steel, cement, aluminum and glass products. The large consumption 

of these building materials will inevitably lead to a large amount of CO2 emissions in the construction 

industry. According to the China Statistical Yearbook, the average annual output value of the 

construction industry of the upper 90th quantile provinces in 1997-2015 is 518.294 billion yuan, and 

those in the lower 10th, 10th-25th, 25th-50th, 50th-75th and 75th-90th quantile provinces are 69.363 

billion yuan, 22.632 billion yuan, 216.258 billion yuan, 196.976 billion yuan and 162.932 billion yuan 

respectively. We can see that the scale of construction industry in the upper 90th quantile provinces 

are much larger than those in other percentile provinces. Therefore, the impact of industrial scale on 

CO2 emissions of construction industry in the upper 90th quantile provinces is stronger than those of 

other percentile provinces. 

 

 

Figure 2. The effects of influencing factors on the CO2 emissions in construction industry 
 

Remark: Shaded areas represent 95% confidence bands for the quantile regression estimates. 

The horizontal dotted lines depict the 95% confidence intervals for the OLS estimates. The 

vertical axis represents the elasticities of explanatory variables.

5. Conclusions and Policy Implications 

Based on the panel data of 30 provinces in China from 1997 to 2015, this paper extends the 

STIRPAT model and uses the quantile regression panel model to empirically study the main 

influencing factors of CO2 emissions in China's construction industry, focusing on the 

different effects of influencing factors in different quantiles. The results show that: (1) 

Population size, economic growth, energy structure and industrial scale have positive impacts 

on carbon emissions of construction industry, while technological level has negative impacts. 

(2) The impact of population size on CO2 emissions from construction industry in 50th-75th 

quantile provinces is larger than those in other percentile provinces, which may be related to 

the different population growth rates in different regions. The impact of economic growth on 

provinces in 10th-25th quantile is greater than those of provinces in other quantile, which may 

be caused by the difference of fixed-asset investment in construction industry in different 

provinces. The difference in patented technology, R&D expenditure and R&D personnel 

cause energy efficiency has less inhibition on CO2 emissions of construction industry in the 
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upper 90th quantiles provinces than those of provinces in other quantile. Energy structure has 

stronger impact on CO2 emissions of provinces in the 25th-50th and 50th-75th quantiles than 

other percentile provinces may owe to obvious differences in coal consumption. The effects 

of industrial scale on CO2 emissions of provinces in the upper 90th quantile are higher than 

those of provinces in other quantile because of the differences in scale of construction 

industry. Therefore, all levels governments and relevant enterprises should pay more attention 

to the heterogeneous effects of these factors on the construction industry CO2 emissions in 

different quantile provinces. People-oriented, tailored to local conditions, different energy 

saving and emission reduction schemes should be adopted according to the characteristics and 

problems of different regions, rather than "one-size-fits-all". 

The above research conclusions imply the following policy suggestions: (1) The 10th-25th 

quantile provinces need to further optimize their economic structure and reduce excessive 

dependence on fixed-assets investment. Local governments should establish special 

governance mechanism to guide and encourage social capital to develop new energy high-

tech industry. (2) For the 25th-50th and 50th-75th quantile provinces of CO2 emissions in 

construction industry, the local governments should encourage residents adopt green material 

in the decoration process and expand the construction of hydropower and nuclear power 

stations to reduce coal consumption for power generation during construction. The local 

construction companies can use energy saving composite materials to replace hollow clay 

bricks, which can reduce the coal consumption for the production of clay bricks. In addition, 

the application of 3D printing technology in the construction industry is the future 

development direction of the local construction industry. (3) The upper 90th quantile 

provinces need to further improving energy efficiency of construction industry. Firstly, the 

local government should encourage construction enterprises develop and apply new 

technologies, new equipment, new materials and new craft for green construction, make 

reasonable indicators of construction energy consumption. Secondly, the local governments 

should support the merger and acquisition of large construction enterprises with advantages, 

and accelerate the construction industry to use energy-saving, efficient and environment 

friendly construction equipments and tools in line with national and industrial standards. 

Thirdly, local governments should increase investment in R&D funds and encourage 

scientific research institutions to train technical personnel related with building energy saving 

and adopt flexible and effective policies to attract relevant professionals. 
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