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Abstract

A disk wind can cause perturbations that propagate throughout the disk via diffusive processes. On reaching the
inner disk, these perturbations can change the disk luminosity, which in turn, can change the wind mass loss rate,
Mw. It has been argued that this so-called “wind-driven relaxation cycle” might explain the observed variability in
some disk accreting objects. Here, we study the response of the innermost mass accretion rate Ma to the loss of
matter at different rates and radii. We allow the wind launching radius, RL, to scale with Ma. We computed a grid of
time-dependent models for various Mw– Ma and RL– Ma dependencies. We find that the disk behavior significantly
differs for the “variable RL” case compared to the “fixed RL” case. In particular, much stronger winds are required
to destabilize the disk in the former than the latter case. However, the Ma amplitude does not grow significantly
even for unstable cases because the oscillations saturate at a low level either due to disk depletion or due to the
wind being launched at very small radii, or both. This result implies that disk winds are unlikely to be responsible
for state transitions as those require large changes in the inner disk. Despite modest changes at the inner disk
regions, the disk surface density at large radii can vary with a large amplitude, i.e., from 0 to a few factors of the
steady state value. This dramatic variation of the outer disk could have observable consequences.

Unified Astronomy Thesaurus concepts: Accretion (14); Hydrodynamics (1963); Low-mass x-ray binary
stars (939)

1. Introduction

Various astrophysical systems including X-ray binaries,
young stellar objects, cataclysmic variables (CVs) and active
galactic nuclei (AGNs) are powered by accretion disk
processes. The relatively high luminosity of these objects is
due to the efficient conversion of accretion power into
radiation. The luminosity generated from such accretion
processes tend to vary with time which provides us with
important clues as to the nature of the accretion disk, the
accretor, and also the object or source supplying matter to
the disk.

For a constant rate of mass supply, time variability could be
attributed to spatial and temporal variations in the disk structure
or the strength and configuration of the disk magnetic field.
Such variations can arise due to the extended nature of the
disks, with the inner and outer radii differing by orders of
magnitude (ranging between two orders in CVs, to about seven
orders in AGNs). The surface properties at small radii differ
from those at large radii and there is a host of different physical
processes that may cause the accreting material to undergo
time-dependent evolution. They include a variety of local
instabilities such as convective, thermal or magnetorotational
instability (Balbus & Hawley 1998; Fromang & Lesur 2019).
Yet there are several nonlocal processes that could also lead to
time variability.

One of the consequences of the large radial extent is the huge
variation in escape velocity throughout the disk. Thus, as long
as a disk has a slightly concave surface, the high-energy
radiation that is emitted by the inner disk can irradiate the outer
disk leading to the formation of a high-temperature surface
layer in which thermal speeds can exceed the escape velocity.
This can drive a strong wind from outer radii and cause a
disruption in the accretion flow. When information about this
disruption reaches the inner disk, it changes the local emission
which, in turn, affects the disk irradiation. Thus, the radiation

from the inner disk acts as a coupling between the inner and
outer disks. The self-irradiated disk is an example of a “self-
regulated accretion” process (Shields et al. 1986, S86 hereafter)
with feedback.
The Compton-heated corona and eventual disk wind

(Begelman et al. 1983) have widespread applications in
understanding the absorption lines observed in AGNs (Woods
et al. 1996) and X-ray binaries (Proga & Kallman 2002;
Luketic et al. 2010; Miller et al. 2015; Waters & Proga 2018).
However, it is unclear as to what degree a disk wind can
destabilize the accretion disk and be responsible for the
observed variability in the luminosity and spectral energy
distribution (SED). To assess this role of the disk winds, we
may define a variable  h º M Mw w a, where Mw and Ma are the
wind mass loss rate (at the outer disk region) and mass
accretion rate onto an accretor, respectively. The ratio measures
the efficiency of wind driving due to the accretion power and
indicates how strongly the wind is coupled to the latter. The
model of instantaneous response of wind-to-accretion and
vice versa showed that a wind with ηw as low as one,
destabilizes the disk (Begelman et al. 1983). However, taking
the effect of viscosity into account, S86 found that the accretion
at the inner disk edge responded much slower to the change in
the disk surface density, Σ, at large radii. Viscosity stabilizes
the disk by producing a “delay” or “relaxation time” to the
propagation of perturbations throughout the disk. Therefore, a
much higher ηw was needed to generate variability in the disk.
For systems with relatively high luminosities, the escape

velocity from a disk at a given radius could be reduced by the
radiation pressure on free electrons and due to opacity from
spectral lines and bound-free processes. In X-ray binaries, the
latter two are negligible because the gas is highly ionized and
few lines as well as few bound transitions are present. Yet, as
expected, and shown both numerically and theoretically, the
radiation pressure on free electrons introduces a linear scaling
between the launching radius of the thermal wind and the
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luminosity, L (Proga & Kallman 2002). In AGNs and CVs, the
radiation pressure on lines (line driving) can produce a wind
with  µ aM Lw

1 , where α is the force multiplier parameter. The
value of α depends on the SED, the chemical composition, and
the physical conditions in the gas but it generally ranges from
0.2 to 0.8 (e.g., Castor et al. 1975). The above scaling is quite
universal as it holds for 1D stellar wind (Castor et al. 1975) as
well as for 2D (e.g., Proga et al. 1998; Proga 1999) and even
3D disk winds (Dyda & Proga 2018).

In this paper, we study a more generalized model of disk
wind coupling to accretion power. We verify our results against
the classic case of linear dependence of wind on accretion rate
(S86) and then extend our analysis to nonlinear dependencies
of the wind. This allows us to test our model against different
possibilities. Our main focus is to study the dynamic variability
of the launching radius of the wind and explore our model for
different free parameters. The outline of the paper is as follows:
in Section 2, we describe in brief the mathematical and
computational techniques used in our analysis. In Section 3, we
introduce our calculation and verification of the S86 result
(with increased numerical resolutions). Our generalized
approach toward the problem allows us to look at the results
of two different models holistically and identify several
previously unexplored cases. Finally, in Section 4, we
summarize the applications of disk oscillations that have been
studied in the past and what future prospects they might hold.

2. Methods

2.1. Equations and Analytical Results

We assume azimuthal symmetry and perform 1D simulations
on a geometrically thin and optically thick disk along the radial
direction. We have adopted similar formulations and notations
as used in S86. Their approach involves solving the diffusion
equation that describes the disk evolution (Lynden-Bell &
Pringle 1974; Pringle 1981). As in S86, we assume a constant
rate of mass injection at the outermost disk radius, Rd, from an
external source. This is true for all the cases studied henceforth.
The loss of mass in the form of wind takes place at the very
same radius as for the first model, which corresponds to the
model described by Equation (3.5) in S86 (see Section III.(b)
in S86).Figure 1 shows a schematic of this model. We also
assume a simple radius-dependent viscosity ν∝R, similar to
that used inLynden-Bell & Pringle (1974),for all our
models.The mass continuity and angular momentum

conservation gives us the following diffusion equation,

( ) ( )
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Here M is the mass accretion rate at a given radius, ν is the
kinematic viscosity, and Σ is the local surface mass density.
The net source term, S, accounts for both a steady mass input to
the disk (Sin), as well as a mass loss due to wind ejection from
the disk (Sw). The general mass input and output rates,
respectively, are defined by

( ) ( ) òp=M S R R dR2 and, 4
R

R
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where Ri and Rd are the innermost and outermost disk radii,
respectively, and the mass loss is calculated up to an arbitrary
radius R within which mass is being lost. The above equations
are recast using dimensionless variables as in Equations (2.5)–
(2.10) in S86. We present these equations below for clarity of
our method description,

( )ºR R R , 6d*
( )n n nº , 70*
( )  ºM M M , 8in*
( )S º S S , 90*

( )ºt t t , 100*
( )ºS SR M , 11d

2
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where ν0 is the characteristic viscosity,  nS º M0 in 0 is the
characteristic surface density and nºt Rd0

2
0 is the character-

istic viscous timescale. Using the coordinate transformation,
=x R 1 2
* , Equations (1) and (2) can be rewritten as,
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As in the wind model studied by S86, we treat mass loss using
a delta function (launching of wind at a given radius), and S86
defined the main model parameter as

( ) ºC M M , 14w a

where ( ) ºM M Ra in . In this paper, we alternatively refer to this
ratio as the wind efficiency, ηw. While discussing or referring to
the classic case studied in S86, we use the “C” notation for
comparison. As demonstrated by S86, once the disk has
attained a steady state, perturbations in disk surface density
would either persist, grow, or decay with time. This forms the
basis of the “self-regulated accretion” and ηw (or C) determines
how strongly coupled the wind is to the central accretion rate
and hence, to the luminosity of the central source. At steady

Figure 1. Schematic of the model described as “δ-function wind at Rd with
n µ R” studied in S86. Matter enters the disk at a constant rate at Rd while the
X-ray source accretes matter from the innermost disk radius. The accretion
leads to X-ray irradiation of the outer disk region which drives the wind. The
inset shows the outermost radial grid, where diffusion of matter at a rate M and
removal of matter by a wind at rate Mw are compensated by mass injection
( Min). A diffusive process disperses matter throughout the disk.
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state, the mass conservation relation applied to the disk, gives

( )( ) ( )  = +M M M , 15a
s

w
s

in

where the superscript (s) denotes the steady state value.The
expression for steady state mass accretion rate normalized to
the mass input rate Min reads in the following way,

( )( ) =
+

M
C

1

1
. 16a

s

*

Using a straightforward radius-dependent viscosity law, S86
performed an analytical calculation to find the critical value of
C that would lead to a perpetual oscillation in disk density
about its steady state value. The amount of matter depleted
through wind and accretion is continually replenished by the
constant supply of matter. This results in a variability of mass
accretion rate and luminosity at the inner edge of the disk. For
the parameter C, S86 obtained the value required for sustained
stable (critical) oscillations analytically as,

( )p= »C cosh 11.6, 17crit

such that when C<Ccrit, the oscillations decay, whereas for
C>Ccrit, they grow.

The wind mass loss rate might not be a linear function of
mass accretion rate. S86 considers such a possibility and they
show based on their analytical treatment that for a power-law
dependence, µC Ma

kl, where kl is an arbitrary constant, the Ccrit

would be reduced by a factor of ( )+ -k1 l
1 (see analogous

Equation (4.5) in S86). The case with kl=0 corresponds to the
case discussed above, where Equation (17) gives the value of
Ccrit.

We formally approach this possibility by generalizing our
Equation (14) and writing it in the following way:

( ) º ¢M C M . 18w a
p

* *
where the subscript ∗ stands for mass loss rates normalized to
the input mass rate Min, where any remaining constant of
proportionality has been absorbed into C′, and p is an arbitrary
constant exponent. Note that Equation (18) reduces to
Equation (14) when p=1. The requirement for the steady
state condition becomes

( ) ( )( ) ( ) + ¢ - =M C M 1 0, 19a
s

a
s p

* *
but this equation needs to be solved numerically.

In the above analyses, a fixed wind launching radius has
been assumed. However, in general, this may not be an ideal
condition. Our main focus here is to examine the effects of
relaxing this assumption by allowing the radiation from the
inner disk to irradiate the entire disk and causing reduced local
escape velocity. We can express luminosity L in units of the
Eddington factor Γ, such that L=ΓLEdd, where LEdd is the
Eddington luminosity. Here we assume that the irradiation
luminosity L of the disk equals the total accretion luminosity.
We express the coupling between the launching radius and Ma
using the following expression:

( )( )




= - GR
M

M
1 , 20L

a

a
s*
*

*
where RL* is the launching radius normalized to Rd. Our
Equation (20) is similar to Equation (22) in Proga & Kallman

(2002) that was derived for the launching radius of a Compton-
heated wind, corrected for radiation driving. When Γ=0,
RL=Rd and we have the case studied by S86. The only
numerical constraint is that RL�0.
Using their analytical method for the simplest case (Γ= 0,

p= 1), S86 derived an expression for the period of oscillations
as

( )µP
R

R
. 21L

d
*

We expect that in our variable RL model, the disk stability
condition and the variability period will be sensitive to Γ.

2.2. Numerical Methods

We have used numerical methods similar to that used in Bath
& Pringle (1981). We have developed a Python code to study
the effects of self-regulated accretion as discussed in the
previous section. The wind launching zone is a delta function,
with mass loss taking place from a single radial grid zone.

( )
( )



p
=

¢ - ¢-
S

CM

R R
, 22w

a

j j
2

1
2*
*

* *
where ¢ = ¢R xj j

2
* and ( )¢ = + +x x x 2j j j 1 . Here Rj refers to the

wind launching radius and ¢Rj* is the averaged launching radius
value used to calculate Sw. The disk surface density Σ* is
assigned an initial value of 0. We take  =M 1in , since all mass
rates are normalized to Min and together with Equation (22),
calculate the source term S*. The diffusion Equation (12) is
then solved using a forward difference method while updating
Σ*. The boundary condition is obtained by imposing the
condition that mass flux is finite and conserved at the disk
edges, i.e., ( )n¶ S ¶ =R 0.
Our resolution study shows that the calculated value of the

accretion rate depends on the width of each radial zone. In
particular, the variable Γ model is sensitive to smaller
resolution in x, Nx (Nx<200). Hence, for most of our models
presented below, we use Nx=200 (see Section 3 for more
discussion).
To ensure that the value of Σ remains realistic at all times, it

is quite common to impose the condition Σ*=0, whenever
the numerical solution leads to Σ*<0. This condition is
especially important when we deal with growing oscillations.
Instead of allowing the disk to deplete completely, we
introduce a floor value of 0.001 for Σ.
Three timescales that enter this problem are (1) the mass

outflow timescale, tout, (2) mass inflow timescale, tin and, (3)
diffusion timescales, tdiff. These scales can be defined as

( ) ( ) ( ) = S St R R , 23L w Lout

( ) ( ) ( ) = S St R R and, 24Lin in in

( )=
D

t
x

0.25
4

3
, 25diff

2

where Equation (25) expresses the stability criterion of
Equation (12) which is a diffusion equation. In our numerical
calculations, we choose a time step to be 20% of the shortest of
the above three timescales.
The initial condition is to set the disk surface density to be 0

and let matter diffuse from the surrounding source until the
accretion disk reaches a steady state. We then perturb it by
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switching on the wind. In practice, we allow the system to
reach ( ) ( )-  M1 a

s

*, where ò is a very small number of the order
of 10−3. It takes roughly three viscous timescales to reach this
near steady state. We use the fsolve method in SciPy’s1

optimization library to find the root of Equation (19).

3. Results

First we checked the results from our simulations against the
results presented in S86. Our resolution is higher than theirs by
a factor of 10. This increased resolution does not considerably
affect the key result although it does substantially reduce the
amplitude of oscillation. This can be attributed to the fact that
we have limited our analysis to a single zone wind regardless of
the radial resolution. Namely, we still inject and eject the same
amount of matter but now from a radial ring with smaller area.
We find that Ccrit≈11.3 as opposed to 11.4 obtained by S86.
Figure 2 illustrates our results in a similar manner to Figure 1
by S86. As expected, we observe damped oscillation for
C<11.3 and growing oscillations for C>11.3. We note that
we consider only those oscillations to be stable whose
amplitudes vary by less than 10−4. This condition is
consistently followed throughout our analysis, and is used to
classify the oscillations into categories.

In the growing oscillation cases, the mass accretion rate
grows until it saturates after some time. This saturation of
oscillation is caused by the local surface density reaching
negligible values or, in other words, complete depletion of
matter from that region of the disk. We expect that if S86
continued their calculations to longer times, they would likely
find the same behavior. For C=14.4 shown above, our
simulations showed that during this phase,S ,min* approaches 0,

whereasS ,max* approaches 2.5 times its steady state value. The
outcome of this instability is a small amplitude Ma* oscillation
but a large modification of the disk solution.
Table 1 summarizes the combination of p and C′ (for Γ= 0)

values used in our simulations. The wind to accretion ratio sets
the stability of the disk. The efficiency factor ηw is a function of
time and hence, we consider the value of ηw at the beginning of
the perturbation. The value of ηw decreases with increasing p
with a slope of about −1 on a log–log plot (Figure 3). This
confirms the inverse relationship between hw,crit and p, that we
discussed in Section 2.1 and demonstrates that the disk is easily
destabilized if the wind is more strongly coupled to accretion (
i.e., higher p).
Table 2 contains our parameter survey for the variable RL

model. The Γ factor strongly controls and alters the outcome of
disk evolution. In particular, we identified new cases for high Γ
(Γ� 0.7). In low Γ cases (Γ∼ 0.2), we observe some deviation
from the classical cases of stable oscillations.
We limit our presentation to three cases, p=0.5, 1, and 2.

The case p=1 corresponds to the special case studied in S86.
The other two cases are representative of the lowest and highest
p values considered (see Table 1). For 0.001�Γ�0.1, the
disk behavior does not deviate much from the classical
behavior depicted in Figure 2. However, for Γ�0.2, we find
some new results. We describe these cases in detail below.

Figure 2. Central mass accretion rate (normalized to the steady state mass
accretion rate) evolution of the disk for different wind strength parameter C.
The top panel shows decayed oscillations in the disk, the middle panel shows
the critical C case where the oscillation persists with constant amplitude. The
bottom panel shows a growing oscillation phase, which saturates after some
time due to local disk depletion.

Table 1
Summary of all Parameters (C′ and p) Used in Simulations for the Model

Described by Equation (18)

p ¢Cd ¢Ccrit
¢Cg

0.5 4.5 4.95 5
2/3 6 7.05 7.5
3/4 8 8.6 9
4/5 9 9.5 9.9
1 11 11.3 14.4
5/4 18.5 20 24
4/3 21 22.8 24
3/2 20.5 26 30.5
7/4 37 39 40.5
2 30.5 48.5 50.5

Note. The subscripts d, crit and g denote values of C′ for which the oscillations
decay, persist and grow, respectively. The value of ¢Ccrit increases with
increasing p. In Figure 3, we use the corresponding ¢Ccrit to plot the wind
efficiency ηw,crit, which decreases with increasing p.

Figure 3. Critical wind efficiency hw,crit as a function of the power-law index,
p, in accordance with Equation (18).

1 Python 3.6.7.
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1. Γ =0.2 and 0.3: We observe more than one ¢Ccrit value
resulting in stable oscillations. For example, constant
amplitude oscillations occur when ¢Ccrit is between 6.2 and
12. The lowermost panel of Figure 4 shows how the
sinusoidal nature of the stable oscillations starts to change
for C′13. We also find that for increasing C′, the
frequency of oscillation starts to increase. For Γ=0.3,
the results are similar to those of Γ=0.2.

2. Γ=0.4: For p=0.5 and p=1, we find a single value
of ¢Ccrit. For p=2, we see that ¢Ccrit lies between 130 and
300. The range of ¢Ccrit and the critical value of ¢C rise
considerably.

3. G = 0.5: For all p values, we obtain single-valued ¢Ccrit.
We note that ¢Ccrit for Γ=0.5 is less than that for
Γ=0.4. This result holds true for all three p values
investigated.

4. Γ=0.7: Figure 5 summarizes the distinct cases obtained
for p=1. We see that up to a certain value of C′, the
accretion rate initially increases and at the same time
oscillates with relatively high frequency and small

amplitude. In the case of C′=6.5, we see that eventually
the fundamental oscillation dominates and steadies
around 1. As C′ increases, we see a growing oscillation
that eventually saturates.

5. Γ=0.9: The behavior is similar to the Γ=0.7 case. For
higher C′, the frequency increases rapidly with time.

The amplitude of oscillations in Ma* remain constrained to
∼50% of its steady state value in all our simulations. This can
be mostly attributed to the amount of matter available to be
launched as wind and also the constraint on the lowest possible
launching radius. In all of the cases studied, the amplitude of
oscillation increases for increasing ηw.
As stated in Section 2.2, we have chosen a spatial resolution

of Nx=200 for the above cases. Our resolution study showed
that there are quantitative changes in most cases as well as
qualitative changes in some of the extreme cases. For example,
for = ¢ = G =p C1, 6, 0.7, the oscillations cease earlier for
Nx=400, while for Nx=800, they persist for a longer number
of time steps. In addition, the amplitude of oscillations also
decrease with increasing resolution. For higher Nx, there is a

Table 2
Summary of Parameter Survey

p=0.5

Γ ¢Csd ¢Cd ¢Ccrit
¢Cg ¢Csg

0.001 L 3.5 ⟶ 4.7a 4.71 4.715 ⟶ 4.75 4.8
0.01 L ⟶4 4.71 4.72 ⟶4.8 5 L
0.05 L ⟶4.7 4.75 4.772 ⟶4.8 5 L
0.1 L ⟶5 5.05 5.067 ⟶5.1 5.2 L
0.2 ⟶5.2 5.5 ⟶5.8 6 ⟶6.2 12 L
0.3 L ⟶4 5.45 ⟶5.48 6.2 ⟶6.5 9 ⟶10 15
0.4 ⟶4 4.417 L 4.418 L ⟶4.419 5
0.5 ⟶3.4 3.6 Lb 3.63 L ⟶3.7 4

p=1

Γ ¢Csd ¢Cd ¢Ccrit ¢Cg ¢Csg

0.001 L 11.4 11.6 L 11.65
0.01 L 11.6 11.65 11.7 L
0.05 L 11.8 ⟶11.87 11.9 11.95 L
0.1 L 12.6 12.65 12.7 L
0.2 L 16.5 16.55 16.6 L
0.3 18 L ⟶20 32 L 45
0.4 15 L 15.93 L ⟶20 25
0.5 L ⟶11.8 11.88 11.89 L ⟶11.9 11.95

p=2

Γ ¢Csd ¢Cd ¢Ccrit ¢Cg ¢Csg

0.001 L 39.4 ⟶35 39.3 ⟶39.5 40 50
0.01 L ⟶11 39.5 39.7 40 L
0.05 L ⟶39.7 41 41.3 ⟶41.5 42 L
0.1 L ⟶42 43.5 43.7 44 L
0.2 L ⟶43 55 60.35 ⟶62 65 L
0.3 L ⟶60 100 107.8 ⟶110 120 L
0.4 L 110 ⟶130 300 500 L
0.5 78 ⟶80 83 83.7 85 100

Notes. ¢ ¢ ¢C C C, ,d gcrit hold the same meaning as described in the Table 1. The two new types of outcome, ¢Csd and ¢Csg , denote oscillations that decay/grow for a few
timescales before stabilizing and oscillating with a constant amplitude. In Figures 6 and 7, we use the corresponding ¢Ccrit to plot the wind efficiency h .w,crit
a The ⟶ denotes the range of tested values that fall under a certain category. The limits of the range are not absolute but give a more or less general idea of the
behavior within those C′ values.
b Empty cells denote parameter combination for which we do not find the outcome in question. This does not rule out the possibility of such a case or of any other new
cases. ¢Ccrit is the only value that was important for our analysis and the parameter survey was focused on finding the condition for stable (or critical) oscillations.
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clear tendency toward convergence. This resolution study was
conducted for several other cases in our parameter survey.
Convergence was evident for most cases with Γ�0.7. For

higher Γ, the behavior was more erratic and unpredictable for
different Nx. We restricted our Nx to 200 despite this fact, since
the nature of oscillations and the feedback on Mw remained
unaffected from a qualitative perspective.
In Figure 6, we show the steady state critical ηw–p relation

for various Γ. We find that the slope of this relation is nearly
constant for Γ�0.2. For higher Γ, the slope changes and more
than one hw,crit exists. For such cases we have shaded the region
between all the possible straight line fits. For Γ>0.5,
oscillations are distinctly different from that of the classical
cases and we cannot group them under simple categories (see
above and Figure 5). We do not plot these points in Figure 6 or
list them in our table of classification of disk oscillations.
To visualize our results for the wind efficiency in a different

way, we also plot steady state critical ηw as a function of Γ for
different p values (the upper panel of Figure 7). The curves for
different p values generally resemble each other. For Γ�0.2,
hw,crit increases with increasing Γ. For higher Γ, ηw decreases
with increasing Γ, in all three p cases. To more directly
compare the results for various p, in the bottom panel of
Figure 7, we plot hp w,crit versus Γ. For Γ<0.1, we see that
hp w,crit is nearly constant, which is what we concluded from

Figure 3.

4. Concluding Remarks

The study of disk winds in the context of state transition has
evoked a lot of interest over the past decades (e.g., Fender et al.
2005; Körding et al. 2006). The wind launching mechanism
and location may lead to time variability, the effects of which
could be coupled to the signatures of mass accretion by the
accretor. We explore this aspect through a self-regulated
accretion disk. We found that our model is unlikely to explain
state transitions in accretion disk spectra. However, it could be
responsible for persistent small amplitude regular single-mode
oscillations in the mass accretion rate. Admittedly, our
treatment is very simple. We use one viscosity law in all our
analyses, ν*=R*=x2. We did not consider thermodynamic
effects. We also did not incorporate magnetic fields in our
analysis. Moreover, we assumed a δ-function model for the
wind, which exaggerates the role of mass removal.

Figure 4. Examples of the time evolution of the accretion rate for Γ=0.2,
p=0.5, and various C′. The top panel shows an example of an initial decay
that is followed by a constant amplitude oscillation. The second, third, and
fourth panels depict the range of ¢Ccrit that lead to stable oscillations.

Figure 5. Same as Figure 4 but for Γ=0.7, p=1. The top three panels
indicate a damped high amplitude oscillation superposed on the fundamental
mode oscillating around the steady state value of 1. The lowest panel shows
growing oscillations that saturate but has a very high frequency of oscillation,
which increases with time.

Figure 6. Steady state critical wind efficiency ηw vs. p for different Γ values.
For some Γ, stable oscillations occur not just for a single value of ηw, but for a
range of ηw (see Figure 4 for some examples, e.g., second, third, and fourth
panels there). We shaded the regions for Γs where this happens.
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Despite the simplifications, this analysis might be a stepping
stone toward developing models that can account for the
existence of state transition signatures in accretion disks. Time
variability in accretion rates may be explained by physical
processes considered here. They are rich in features and may
hold the key to understanding the coupling forces operating in
an accretion disk. For example, the study of GRS 1915+105 by
Neilsen et al. (2011) is a very detailed analysis in that direction.
They nicknamed the oscillations in X-ray spectra as the
“heartbeat” state and conducted a study of the geometry of the
accretion disk using the X-ray continuum and emission lines in
the optical spectrum. They demonstrate a strong correlation
between mass loss in the form of wind and oscillations in the
accretion rate that would explain the long-term effects in
the disk.

A study of the same source, GRS 1915+105, by Zoghbi
et al. (2016) considered in detail the reflection spectrum during
the oscillatory phase of the source. Their calculations indicate
winds being launched from very small disk radius which
remains unchanged during this phase. Our variable RL model
allows the launching of wind from as close as the innermost
disk region for high Γ cases. The time evolution of the
accretion rate from our simulation does not indicate any distinct
spike or sharp flare, which leads us to conclude that the system
does not produce outbursts. Higginbottom et al. (2017) used
their photoionization modeling of the SEDs to argue that
thermally driven winds may hold the key to explaining the state
changes in such systems. On the other hand, Neilsen (2013)
goes on to demonstrate how heavy outflows not only quench
the disk, thus affecting the formation of jets and causing state
transition, but also influence the further production of winds.

Disk variability and the state changes could also be caused or
affected by instabilities of the disk itself. For instance, Janiuk
et al. (2002) study the effect of radiation instabilities leading to
limit-cycle behavior and modulations in accretion rates. As
opposed to our model, this radiation-driven instability may
result in sharp spikes indicating a high outflow from the
system.
There are a number of studies related to fast outflows with

high mass loss rates leading to state transitions and subsequent
detection of jets in the system (Neilsen & Lee 2009; King et al.
2013; Gatuzz et al. 2019). A similar situation has been
discussed in Casares et al. (2019), where a particular case of
V404 Cyg indicates the presence of massive outflows, almost 2
orders of magnitude higher than central mass accretion rate Ma.
They speculated that these outflows are produced by radiation-
driven winds coupled with classical thermal winds. This work
stands out as providing direct observational evidence of
powerful outflows leading to a quenching of accretion. The
optical Hα line profile clearly indicates disk contraction
following the massive outflow phase, consistent with what
we would expect happens when irradiation is reduced. Our
analysis of the Σ radial profile showed that Σ approaching 0 is
responsible for saturating the oscillations.
Recently, Tomaru et al. (2019) showed that the detection of a

blueshifted line from a black hole binary source H1743-322
strongly suggests a thermal-radiative disk wind. Their work
indicates a disappearing wind in the hard state which could be
attributed to the shadowing of the outer disk region by the inner
corona. They also went on to state that the absorption features
in other black hole sources such as GRS 1915+105 and GRO
J1655-40 are most likely due to thermal-radiative winds as
opposed to previously speculated magnetic effects. Another
recent paper (Dubus et al. 2019) studies the effect of thermal-
viscous instability on the light curves and stability diagrams
associated with black hole binary systems. Additionally, they
consider a fraction of the X-ray irradiation to be scattered by
the wind and partially impinge on the outer disk regions. This
has a stabilizing effect and can explain the shortened outbursts
but cannot explain the rapid decay of outbursts. They studied a
particular BHXB, GRO J1655-40, for which their model was
able to reproduce the observed features of the light curve. They
speculate that magnetic fields would need to be considered for
a more promising explanation for the outbursts.
These studies indicate several possible aspects of our

simplistic approach toward the study of wind-accretion
coupling. The criteria for instability derived by S86 is often
invoked when discussing consequences of observed or model
disk winds (e.g., Luketic et al. 2010). The main conclusion of
our work is that upon satisfying this criteria, a disk wind might
not be responsible for large scale variations in luminosity
because instability saturates at a relatively low level in terms of
Ma. However, it could result in a harder-to-detect significant
reduction of Σ at large radii.
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Figure 7. Steady state critical wind efficiency hw,crit vs. Γ for different p values
(top panel). In the bottom panel, we plot hp w,crit vs. Γ for different p values.
Once again, the shaded region highlights the possible hw,crit values for a
particular combination of p and Γ.
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