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Abstract

Gravity signatures observed by the Juno and Cassini missions that are associated with the strong zonal winds in
Jupiter’s and Saturn’s outer envelopes suggest that these flows extend for several thousand kilometers into the
interior. It has been noted that the winds seem to abate at a depth where electrical conductivity becomes significant,
suggesting that electromagnetic effects play a key role for confining the winds to the outer weakly conducting
region. Here, we explore the possible mechanisms for braking the zonal flow at depth in two model setups with
depth-dependent conductivity and forced jet flow, i.e., in axisymmetric shell models and in more simple linearized
box models that allow the exploration of a wide parameter range. Braking of the winds directly by Lorentz forces
does not reduce their speed in the conducting region enough to be compatible with the inferred secular variation of
Jupiter’s field. Stable stratification above the depth where conductivity becomes significant can solve the problem.
Electromagnetic forces drive a weak meridional circulation that perturbs the density distribution in the stable
region such that the wind speed decreases strongly with depth, due to a thermal wind balance. For this mechanism
to be effective, the stable layer must extend upward into a region of low conductivity. Applying the results of the
linearized calculations to Jupiter suggests that the dissipation associated with the zonal winds can be limited to a
fraction of the internal heat flow and that the jets may drop off over a depth range of 150–300 km.

Unified Astronomy Thesaurus concepts: Planetary structure (1256)

1. Introduction

The depth to which the strong alternating zonal winds at the
surfaces of Jupiter and Saturn penetrate into the interior of the
planets has been an open issue for decades. Some models
assume that they are restricted to a thin atmospheric layer
(Ingersoll & Cuzzi 1969), whereas others suggest that they
extend deeply into the molecular hydrogen shell of the planets
(Busse 1983). For Jupiter, an overview on observations and
theoretical models is given in Vasavada & Showman (2005).
Several attempts have been made to model jet formation in 3D
numerical simulations of rotating and convecting spherical
shells that represent the outer nonconducting envelope of gas
planets, e.g., see Aurnou & Olson (2001), Christensen
(2001, 2002), Heimpel et al. (2005, 2015), Kaspi et al.
(2009), and Gastine et al. (2012). Those authors had some
successes in producing multiple jets with strong zonal flow of
approximately constant velocity on cylinders aligned with the
spin axis, provided there is no frictional resistance on the lower
boundary. However, with viscous friction at the bottom of
nonmagnetic models, strong jet flow occurs only in equatorial
regions outside the tangent cylinder, i.e., the cylinder coaxial to
the rotation axis that touches the inner shell boundary at the
equator (Jones & Kuzanyan 2009). The same holds for models
that combine the generation of a strong dipole-dominated
magnetic field in the deeper electrically conducting interior
with flow in a poorly conducting outer envelope (Gastine et al.
2014; Jones 2014; Dietrich & Jones 2018; Duarte et al. 2018).
Here, the location of the tangent cylinder that separates regions
of strong and weak jet flow is given by the depth at the equator
where conductivity becomes significant. The equatorial jet in
the magnetic models, which stretches along cords that connect
points on the outer boundary in one hemisphere to the mirror
points in the other hemisphere, is confined by a combination of
viscous and Lorentz forces. In nonmagnetic cases, the jets
would extend much further toward the rotation axis (Duarte

et al. 2013). Inside the tangent cylinder, boundary friction—or
in the magnetic case, Maxwell stresses (Dietrich & Jones 2018)
—effectively eliminate the jets.
The analysis of higher-degree gravity moments determined

by the Juno and Cassini Grand Finale missions, respectively,
strongly suggests that the jet flows extend to a depth of around
3000 km in Jupiter (Guillot et al. 2018; Iess et al. 2018; Kaspi
et al. 2018) and around 8000 km in Saturn (Galanti et al. 2019;
Iess et al. 2019). The nonuniqueness of gravity inversions
precludes a determination of how precisely the wind velocity
changes with depth (Kaspi et al. 2018). In principle, a deep
circulation that is unrelated to the surface winds could also
explain the observed gravity signal (Kong et al. 2018).
Furthermore, some technical issues of how to link the gravity
signal to the flow dynamics remain (Zhang et al. 2015; Galanti
et al. 2017; Wicht et al. 2020). Nevertheless, the zonal wind
effect on the odd-degree gravity moments of Jupiter, which is
not masked by the rotational deformation of the planet
(Kaspi 2013), along with the finding that a good match to
these moments can be found based on a simple downward
extension of the surface winds (Kaspi et al. 2018), strongly
indicates that their speed must be significant to more than
1000 km depth. Moore et al. (2019) find that the secular
variation of Jupiter’s magnetic field is consistent with
advection of field lines by the zonal winds at a depth of
(0.93–0.95)rJ, where electrical conductivity becomes signifi-
cant (rJ is Jupiter’s mean radius). The data require that the wind
velocity has dropped to several cm s−1 at that depth, down from
the several tens of m s−1 at the surface.
The forcing of the zonal flow could either be associated with

shallow moist convection in a weather layer or with deep
convection in the molecular hydrogen envelope. In either case,
energy is pumped in an inverse cascade from turbulent small-
scale motions into large-scale jets (Vasavada & Show-
man 2005). In a rotationally dominated regime, correlations
of the different components of the small-scale flow lead to
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Reynolds stresses that cause a latitudinal transport of angular
momentum. Cloud tracking at Jupiter (Salyk et al. 2006) and
Saturn (Del Genio et al. 2007) has revealed a momentum flux
from small eddies into the zonal jets. The number of jets and
their direction—prograde near the equator on Jupiter and
Saturn, and retrograde at Uranus and Neptune—could be
affected by the proportion between internal and external heat
flow (Liu & Schneider 2010) or the abundance of water (Lian
& Showman 2010) in the different planets. It has been pointed
out by Showman et al. (2006) that irrespective of whether the
forcing is shallow or deep, due to the Proudman–Taylor
theorem that holds in a nearly inviscid rotating system at low
Rossby number, the jets themselves could penetrate deeply into
the fluid. Detailing how the jets are forced is not in the focus of
the present study. Rather, we address the physical mechanism
that can limit the penetration depth.

The electrical conductivity increases gradually with depth in
the gas planets, from virtually negligible values in the top few
thousand kilometers, through a semiconducting region with
steeply increasing values due to hydrogen ionization, to
metallic conductivity at greater depth (French et al. 2012). It
has been noted that the depths where the winds abate according
to the gravity analyses coincide with the levels where electrical
conductivity becomes significant (Kaspi et al. 2018; Galanti
et al. 2019). This may suggest that Lorentz forces due to the
electrical currents induced by the interaction of the jet flow
with the intrinsic magnetic field of the planet brake the zonal
flow. Liu et al. (2008) argued that the requirement to limit the
ohmic dissipation associated with the induced currents to
plausible values sets a limit on the depth (or conductivity value)
of wind penetration that is in rough agreement with the
gravitationally inferred penetration depth. They also showed
that, at this depth, the Lorentz forces would be far too small to
directly break the Proudman–Taylor theorem. The constraint on
ohmic dissipation is not compelling, as argued by Glatzmaier
(2008) and Wicht et al. (2019a), because Liu et al. (2008)
derived it under the assumption that the magnetic field is
essentially unmodified by the zonal winds. This does not hold
when the winds penetrate beyond the depth where the local
magnetic Reynolds number exceeds one. Nonetheless, there
can be little doubt that, at a depth where the conductivity is
high, the velocity should have dropped to the range of cm s−1

that is expected for Jupiter’s dynamo region (Christensen &
Aubert 2006), in agreement with the estimate from the secular
variation of Jupiter’s field (Moore et al. 2019). Wicht et al.
(2019b) predict the pattern and amplitude of the magnetic field
produced by the winds, and Duer et al. (2019) present a method
for the joint analysis of gravity and magnetic secular variation
data, which will allow to better constrain the depth of the
winds. These magnetic signatures may be revealed by the
ongoing measurements of the Juno mission.

Stably stratified layers may exist inside the gas planets that
can have an effect on the variation of the zonal winds with
depth. Guillot & Gautier (1994) suggested that a zone of
radiative heat transfer exists at temperatures in the range of
1200–2000 K, corresponding to a radius range of (0.97–0.99)rJ
in Jupiter. However, if significant amounts of alkali metals are
present, the opacity would be high enough to eliminate the
radiative zone (Guillot et al. 2004). Segregation of helium due
to its limited miscibility with hydrogen is a likely candidate for
creating a stable layer with a gradient in He concentration,
especially in Saturn (Schöttler & Redmer 2018). However, the

reduced miscibility is associated with the metallization of
hydrogen, and the stability region that is formed by this
mechanism is probably too deep for affecting zonal flows.
Debras & Chabrier (2019) studied models of Jupiter’s internal
structure in the light of the precise measurements of higher
even-degree gravity coefficients by the Juno mission. They
concluded that, in order to satisfy these and the atmospheric
heavy element abundance determined by the Galileo mission, a
region of compositional (and entropy) change must exist
between inner and outer convecting regions. In their models,
the compositionally stratified region could be located between
(0.8-0.9)rJ and 0.95rJ.
Using simple circulation models, Showman et al. (2006)

considered the interaction of zonal flow, forced in a thin layer
at the very top, with a stably stratified region. They showed that
a meridional circulation is set up and perturbs the thermal (or
buoyancy) structure in the stable region such that the zonal
flow velocity decreases with depth due to a thermal wind
balance. In a steady state, the meridional circulation is
controlled by a balance between driving forces and frictional
or dissipative effects, which are parameterized in their model.
In the case of negligible friction, the winds extend unabated
through the stable region. In simplified convection models in a
rotating annulus, Jones et al. (2003) found that boundary
friction, while diminishing the amplitude of zonal flows, may
be important for obtaining multiple jets inside the tangent
cylinder. Liu et al. (2013, 2014) considered fully convecting
outer envelopes of Jupiter and Saturn, but assume that the wind
speed decreases with depth due to a thermal wind balance.
They suppose that the energy transferred at shallow depth into
the zonal winds is lost by ohmic dissipation in the (semi-)
conducting region. They argue that convection homogenizes
entropy along the spin axis, but allows for entropy gradients
perpendicular to the spin axis, which are then the cause for the
thermal wind effects. While they construct models with an
entropy structure that ensures a drop-off of the zonal flow that
is sufficiently strong to limit the ohmic dissipation to a
reasonable amount, the physical mechanism that produces such
an entropy structure, well-correlated with the jets, remains an
open question. Three-dimensional convection simulations that
exhibit zonal jets do not show the required entropy distribution.
The present study revisits the physical mechanism for the

variation with depth of zonal winds in a rotating magnetized
planet with radially varying electrical conductivity. We use
simplified axisymmetric models of zonal flows driven by an
ad hoc volume force, which is assumed to represent the action
of Reynolds stresses created by turbulent convection. These
models are necessarily far from planetary values, with regard to
some essential control parameters, and are not meant to
quantitatively predict the wind structure inside Jupiter or
Saturn. Rather, they serve to illuminate some of the principles
that govern the dynamics of such a system. In addition, two-
dimensional and linearized models in Cartesian geometry are
used to extend the parameter range all the way toward plausible
planetary values. They allow quantitative inferences regarding
the structure of deep-reaching zonal winds and the conditions
for their compatibility with all known constraints.

2. Model Setup and Governing Equations

We consider axisymmetric spherical shell and 2D Cartesian
models of flow that is driven by an imposed volume force and
is subject to strong rotational effects. The background
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stratification of the fluid is stable below a certain depth and is
neutral above. The electrical conductivity varies strongly with
radius (height). In an imposed magnetic field, currents are
induced and the associated Lorentz forces affect the circulation.
The spherical shell models serve to illustrate the physical
effects and to show that the simplifications in the Cartesian
models, which reach much more extreme parameter values, do
not qualitatively change the results. The spherical shell
simulations are done with the Boussinesq approximation
(constant background density). Gastine & Wicht (2012) found,
in anelastic convection simulations, that the properties of the
jets did not differ significantly from those in Boussinesq
models. The Cartesian models in the present work employ
variable background density in the anelastic approximation.

We solve for velocity u, magnetic field B, and codensity
perturbation c from a reference state Co. Codensity combines
the effects of entropy perturbations and deviations of
composition from a background state (Braginsky &
Roberts 1995). It is defined as r a bc= ¢ + ¢c T˜( ), where T′
and χ′ are deviations in temperature and composition,
respectively, from an adiabatic and well-mixed reference state,
α and β are expansion coefficients, and r r˜( ) is the unperturbed
reference density. We employ nondimensional variables where
the basic length scale is the shell thickness or layer depth D,
and time is scaled by D2/κo. Magnetic field is scaled by
r m h Wo o o

1 2( ) and codensity by ¢D Co, where ¢Co is the codensity
gradient dCo/dr at the lower boundary, κo is a reference
diffusivity for codensity, ρo is the reference density at the
bottom of the system, μo the vacuum permeability, ηo the
magnetic diffusivity at the bottom, and Ω the rotation rate. In
their general form, the governing equations are
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The unit vector ez indicates the direction of the rotation axis,
and er the radial direction (in the Cartesian models, both
directions coincide). Here, Π is an effective pressure
(Braginsky & Roberts 1995); nF is the viscous force term,
equal to  u2 in the Boussinesq case and more complex in the
anelastic case (e.g., Gastine & Wicht 2012); and FD is the
imposed driving force per unit mass (scaled with k Do

2 3).
The four nondimensional control parameters are an Ekman

number based on the codensity diffusivity

k
=
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D
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a Rayleigh number describing the degree of stratification in the
stable layer
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the Prandtl number
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and the Roberts number
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h
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The Roberts number is related to the more common magnetic
Prandtl number Pm=ν/ηo by q=Pm/Pr. Gravity g is
assumed to be constant, whereas the codensity diffusivity κ

and magnetic diffusivity η are depth-dependent. In the case of
κ, the diffusivity is assumed to represent an effective value,
enhanced by turbulent mixing, which is smaller in the stably
stratified region than in the overlying freely convecting region.
The degree of stability in the stratified region is expressed by
the nondimensional Brunt–Väisälä frequency

= W = kN N ERaPr , 91 2˜ ( ) ( )

whose dimensional value is r r= ¢-N g d dr1 1 2( ˜ ) , with ρ′

being the deviation of density from that of the isentropic and
compositionally homogeneous reference state. For Jupiter, with
a nonadiabatic density increase of 0.5–2.5% distributed over
2500–7500 km as in the models by Debras & Chabrier (2019),
Ñ would be approximately in the range 0.8–3.

2.1. Setup of Spherical Shell Models

We solve the above equations in a spherical shell with inner
radius ri=4 and outer radius ro=5 in the Boussinesq limit,
i.e., r̃=1. Spherical coordinates (r, θ, f) are used and only
axisymmetric flow is considered, i.e., ∂/∂f=0. The dimen-
sionless background codensity gradient ¢Co equals one at ri and
decreases mildly with r so that the total flux ¢r Co

2 remains
constant up to r− ri<0.32. For r− ri>0.48, it is zero with a
smooth transition in between. The diffusivity κ is set to the
reference value κo in the upper part of the shell (i.e.,
nondimensional value is one), and is reduced tenfold in the
stable lower region, also with a smooth transition. The driving
force is specified as g= fF eA f r s h sD f ( ) ( ) ( ) , where Af is the
amplitude of forcing, fe is the unit vector in azimuthal
direction, s=r sin(θ) is the distance to the rotation axis (or
cylindrical radius). The forcing is restricted to radii larger than
rf, which is set here to 4.7, i.e., forcing is limited to the top 30%
of the shell. Setting = - -r r r r1f f¯ ( ) ( ), the radial depend-
ence is, for r>rf:

= -f r r r3 2 . 102 3( ¯) ¯ ¯ ( )

Figure 1(a) shows the radial variation of the background
codensity, of the codensity diffusivity, and of the forcing
function. Seven bands of alternating zonal flow inside the
tangent cylinder <s ri are driven in each hemisphere by
specifying an s-dependence of the forcing as

g p=s s rsin 7.5 . 11o( ) ( ) ( )

Friction outside the tangent cylinder is less than it is inside. To
avoid excessive differences in zonal flow velocities between
the two regions, the forcing function is attenuated in the s-
direction, setting h(s) to one for s<3, to - -s1 0.5 3 2( ) for
3<s<4, and to - s0.5 5 2( ) for s>4. The complete pattern
of the forcing function is displayed in Figure 2(b).
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The boundary conditions are impermeable and shear-stress
free at ro and at ri. We note that the forcing function implies a
net torque on the shell; in the absence of magnetic coupling to
the interior, which is immobile in the rotating reference frame,
this would imply a continuous spin-up. That is taken care of by
simply removing the solid-body rotation part from the solution.
The condition for the codensity perturbation is c=0 at ro and
dc/dr=0 ar ri. The magnetic field at ro is matched with a
potential field above the shell. An axial dipole field with
amplitude Bo at the poles is imposed as a boundary condition at
ri. All other magnetic field components are matched with a field
that is obtained by solving Equation (2) with =u 0 and η=1
in the region inside the sphere. This means that the electrical
currents associated with a toroidal magnetic field, which is
induced by the flow in the shell, can close through the highly
conducting interior. The discontinuity in horizontal velocity at
ri between the flow in the shell and the immobile core implies a
complex nonlinear jump condition for the radial derivative of
the toroidal field at the interface; see Equations (5.8)–(5.10) in
Kuang & Bloxham (1999).

To solve the equations numerically, a pseudo-spectral
dynamo code that expands all variables in spherical harmonic
functions in the angular variables and in Chebychev poly-
nomials in radial direction is used (Christensen & Wicht 2015).
Here, it is stripped down to only axisymmetric modes. We use
341 Legendre polynomials in the θ-direction and 97 Cheby-
chev polynomials in the radial direction. By using a grid-

stretching technique, we condense the radial grid points in the
transition region between the stable and the unstable parts. The
system is marched in time until a stationary solution is reached.
In all models presented here, the Ekman number has been set

to Eκ=10−5, and the Prandtl number Pr and the Roberts
number (at the bottom) q are one. The magnetic diffusivity
increases exponentially

h h= D -r rexp ln , 12i( ( )( )) ( )

where the change from the inner boundary to the outer
boundary is by a factor hD = 108. The setup and the choice of
parameters was not made with the aim to represent conditions
for Jupiter or Saturn as closely as possible. Instead, the models
are meant to explore and illustrate general principles that
govern the depth-dependence of zonal flow.

3. Results for Spherical Shell Models

We discuss a sequence of models with increasing complexity
to highlight the effects of a stable layer and of a magnetic field
on the zonal flow, first separately and then in combination. The
amplitude of forcing has been set to an arbitrary value of
Af=2500 in most simulations, which is small enough to
render the nonlinear terms in the equations almost negligible.
The question of their relevance is addressed by running a case
with much stronger forcing. Model parameters and some results
are summarized in Table 1.
Before discussing the results, we consider two equations that

hold in a steady state when nonlinear terms can be neglected,
and which are useful for interpreting the results. With these
approximation, the f component of Equation (1) is, in the
Boussinesq case:

= + - +
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free imposed dipolar field. Here, s is the cylindrically radial
coordinate perpendicular to the rotation axis. The viscous force
term in f-direction is =  -n f f fF u u s,

2 2. The equation tells
that the meridional circulation is controlled by the forcing term
FD, by viscous friction (insignificant in a real planet), and by
the Lorentz force associated with an induced current. The f
component of the curl of Equation (1) results in
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This is, aside from the viscous term where w is vorticity, a
thermal-magnetic wind equation that relates the change of the
jet velocity along the direction of rotation to the codensity
perturbations and magnetic forces, and is therefore key to our
study.

3.1. Nonmagnetic without Stable Stratification

Figure 2(a) shows the velocity field in the nonmagnetic case
without a stable layer. The zonal flow satisfies the Proudman–
Taylor theorem almost perfectly, i.e., it hardly varies with z.
The meridional circulation is weaker than the zonal flow. In the
top region, the force driving the zonal flow is balanced by the
Coriolis force associated with the meridional circulation

Figure 1. (a) Radial variation of background codensity Co (black), forcing
function f (red), and diffusivity κ (blue) used in the spherical models. (b) Radial
variation of magnetic diffusivity η used in the spherical models (black). The
profile shown by the blue line is used in the Cartesian models where the vertical
coordinate z replaces r − ri.
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according to Equation (13), hence it implies a flow in the s-
direction. At depth, the direction of us must reverse because of
mass conservation, and here the Coriolis force must be
balanced by viscous friction in the bulk of the fluid, resulting
in a distributed return flow, when Lorentz forces are
unavailable.

3.2. Nonmagnetic with Stable Stratification

We next consider nonmagnetic case 2 with a strongly stable
layer ( »N 4˜ ) in the lower part of the shell. Inside the tangent
cylinder, the jet flow in the neutrally stable region is slightly
stronger than in the absence of a stable region (Figure 2(c)). In
the stable layer, it decreases with depth in amplitude, although
it remains significant down to the lower boundary. The
meridional circulation grazes the top of the stable region
where it creates a codensity anomaly by lateral advection,

which is strongest in the upper part of the stable layer
(Figure 2(d)). The zonal flow velocity decreases with depth,
due to the associated thermal wind effect given by the first term
on the rhs of Equation (14). The jets become slanted, i.e., they
extend in the radial direction in the stable layer rather than
along the z-axis. The ratio of the rms velocity on the bottom
boundary to that at the surface inside the tangent cylinder
(s<3.95) is listed in Table 1 under the entry Ru. In the cases
with a stable layer but without magnetic field, Ru is still
approximately 0.5 at »N 4˜ . This simulation suggests that, in a
real planet, a stable layer alone—without some additional
resistive effect on the flow—may be rather inefficient in
reducing zonal flow velocities with depth.

Figure 2. Axisymmetric models of forced zonal flow, uf, depicted by color in panels (a), (c), (e), and (g), where contour lines show the meridional flow. (a)
Nonmagnetic case 1 without stable layer; (b) pattern of driving force used in all cases; (c)–(d) nonmagnetic case 2 with stable layer, where panel (d) shows codensity
perturbation; (e)–(f) magnetic case 4 with Bo=5 without a stable layer, where panel (f) shows Bf in color and poloidal field lines; (g)–(h) magnetic case 5 with
Bo=1 and a stable layer, where panel (h) shows codensity perturbation and poloidal field lines. Contour steps for uf are shown by color bars (oversaturated in the
equatorial region in panel (e)), those for Bf are 0.0001 in (f), and those for codensity perturbation in (d) and (h) are 0.0008. The vertical line in (e) indicates the
position of the cord at s=3 for which profiles are shown in Figures 3 and 4. Values on this cord are listed in Table 1 for all models.
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3.3. Magnetic without Stable Stratification

We now turn to cases 3 and 4, which lack a stable layer but
have an exponentially varying electrical conductivity and an
imposed dipolar field. While the jet outside the tangent cylinder
remains strong, the amplitude of the zonal flow inside the
tangent cylinder is reduced by more than two orders of
magnitude compared to cases 1 and 2 (Table 1 and Figure 2(e);
note the difference in color scale between different velocity
plots in Figure 2). To obtain the same jet velocity as in the
nonmagnetic cases, much stronger forcing would be required.
By implication, the amount of energy dissipation would be
much higher. With a magnetic field amplitude Bo=1 (case 3),
which is equivalent to an Elsasser number Λ=1 being reached
for the conductivity at the bottom boundary, the jet velocity
hardly changes with depth all the way down to the lower
boundary. The Elsasser number is a measure for the ratio
between Lorentz forces and Coriolis forces, and is defined as

s
r

L =
W
B

. 15
2

( )

When the magnetic field strength is increased to Bo=5 (case
4), with Λ=25 being reached at the bottom, the surface wind
speed inside the tangent cylinder drops by another factor of
four compared to the case with Bo=1. In contrast to the case
with the weaker field, with Bo=5 the wind velocity changes
with depth in the lowermost part of the shell and drops by an
order of magnitude toward the bottom (Figure 3). The same
effect would be achieved for Bo=1 by increasing the
conductivity by a factor of 25. Note that values of Λ>1 are
not reached in the semiconducting regions in the gas planets,
but require fully metallic conductivity. The zonal flow induces
a magnetic field in the f-direction (toroidal field, Figure 2(f)) in
the lowermost part of the shell. However, the currents
associated with this field, which run in the (s, z) plane, are
not directly related to the decrease of the zonal velocity, which
requires a jf current (Equation (14)). Instead, the Lorentz force
associated with the toroidal field currents balances the Coriolis
force of the meridional circulation in this depth range according
to Equation (13). Figure 3 shows for the center of one of the
jets inside the tangent cylinder, at s=3, the variation of the
zonal velocity and of the s component of the velocity as
function of the z coordinate. Also shown is the driving force FD

and the f component of the Lorentz force, taken from the
simulation. Both forces are multiplied by 2/Eκ in the plot.
They fall almost exactly on the curve for us, showing that the

viscous term in Equation (13) is insignificant in this simulation.
Compared to the previously discussed cases, where viscous
forces balanced the meridional return flow, this role is now
taken by magnetic forces. Finally, the interaction of the
meridional flow with the magnetic field then gives rise to an
electrical current jf, which relates to the drop of the zonal flow
velocity with depth according to Equation (14). We also note
that the Elsasser number, which varies strongly in the shell
(mainly because of the variable conductivity), has a value
around one at the point of the strongest decrease of uf(z).
To achieve the same zonal flow velocity inside the tangent

cylinder as in the nonconducting cases 1 and 2, the driving
force—and hence, the power input and the dissipation—had to
be increased by factors of approximately 100 for Bo=1 and
500 for Bo=5. At least in the quasi-linear regime of these
simulations, where the imposed background field is not
significantly altered, strong zonal flows do not abate drastically
before they reach a depth of high conductivity. This seems
incompatible with the secular variation and possibly the
magnetic field geometry of Jupiter. An additional mechanism
is needed to reduce the wind speed with depth.

Table 1
Axisymmetric Spherical Models

Case Ñ Bo Af fu ,max qu ,max fB ,max r50 − ri r10 − ri Dohm Ru

1 0 0 2500 16.0 0.056 L L L 0% 0.935
2 4.24 0 2500 22.8 0.019 L 0.213 0.048 0% 0.517
3 0 1 2500 0.163 0.041 0.0045 L L 41% 1.080
4 0 5 2500 0.036 0.016 0.0008 0.111 0.048 56% 0.120
5 4.24 1 2500 17.8 0.013 0.0016 0.353 0.238 18% 0.0013
6 4.24 1 250000 1769 1.241 0.162 0.352 0.236 17% 0.0013

Note. Maximum values of fu , uθ and Bf are taken at s=3. Here, r50 and r10 are the radii at which the zonal flow velocity has dropped to 50% and 10%, respectively,
of its surface value. We define Dohm as the fraction of dissipation by ohmic losses, and Ru is the ratio of rms velocity at the bottom to that at the surface inside the
tangent cylinder.

Figure 3. Velocity and forces along a cord at s=3 (shown as black line in
Figure 2(e)) for case 4 with a strong magnetic field and no stable layer. Here, zo
is the value of z at the inner boundary and FL is the f component of the Lorentz
force. Forces have been multiplied by 2/Eκ.
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3.4. Magnetic with Stable Stratification

While the simulations discussed so far confirm and illustrate
some principles that had been conjectured before and studied in
other models (e.g., Showman et al. 2006; Liu et al. 2008), we
now enter new terrain by combining a stable layer with
magnetic effects. Case 5, where Bo=1, is shown in
Figures 2(g)–(h). The zonal flow inside the tangent cylinder
has a slightly larger surface velocity than in the nonmagnetic
case without stable layer. In contrast to that case, the zonal flow
velocity in case 5 starts to drop at mid-depth and decreases
most sharply in the upper part of the stable layer (Figure 4(a)).
Its value close to the inner boundary is approximately 1/1000th
of the surface velocity. This drop-off is exclusively related to a
thermal wind effect, as shown in Figure 4(b), which compares
¶ ¶fu z with the prediction from a thermal wind balance, i.e.,
with RaPrEκ/(2r) ∂c/∂θ at s=3. The two lines plot almost
exactly on each other, showing that neither the Lorentz force
term in Equation (14), which is essential in case 4 without
stable layer, nor the viscous term play a role. However, the
Lorentz force is important for the meridional circulation, which
causes the codensity perturbation that is essential for the drop-
off with depth of the jet velocity. In Figure 4(c), we compare
the velocity in the s-direction on the cord with s=3 with the
various force terms in Equation (13). The Lorentz force is not
the only contributor at the depths where the driving force FD

has dropped to zero, but is essential to balance FD in the
meridional flow equation. Without it, in case 2, where viscosity
is the only antagonist to the driving force, the meridional
circulation is unable to penetrate deeply into the stable layer
and to create a codensity anomaly that kills the jets before they
can reach the bottom boundary. However, in the magnetic case
with a stable layer, the viscous force in Equation (13) is of the
same magnitude as the Lorentz force. This contrasts with the
strongly magnetic but neutrally stratified case 4, where the
viscous contribution is insignificant. This difference is not
surprising, as uf is almost three orders of magnitude smaller in

the neutrally stratified case. That viscous effects are rather large
is also shown by the fact that dissipation by ohmic losses is
generally smaller than viscous dissipation, especially also in
case 5 (Dohm in Table 1). In a real planet, the opposite might be
expected.
All cases discussed so far have been calculated in an almost

linear regime. The Rossby number = WfU DRo ,max ( ), which
describes the ratio between the nonlinear inertial term and the
Coriolis term, reaches only up to 2×10−4. In the magnetic
cases, the amplitude of the induced field is much smaller than
that of the imposed field, and the Lorentz force arising from the
interaction of the induced currents with the induced field can be
ignored. The Rossby number for Jupiter’s zonal jets at higher
latitudes is (1–2)×10−2. This Rossby number is reached in
case 6, where the forcing amplitude Af has been increased by a
factor of 100 compared to that in case 5. Here, the amplitude of
the induced toroidal field reaches 17% of that of the imposed
dipole field. Nonetheless, all properties of the solution still
scale almost linearly compared to case 5, i.e., they are larger by
a factor of 100 (Table 1). The depth and the shape of the drop-
off of the jet flow are essentially the same as in case 5. This
suggests that linearized models, such as those studied in
Section 4, can be meaningful for the gas planets.
To summarize the results of this section, only the

combination of a stably stratified layer with electromagnetic
effects seems to be able to simultaneously meet two
requirements: (1) for a given moderate forcing, strong zonal
jets develop at the surface; and (2) at the same time, their
velocity drops off to very small values before the jet has
reached a depth with high electrical conductivity. While the
axisymmetric models are useful to illustrate the main physical
effects, their excessive viscosity prevents them from being used
directly for a quantitative comparison with the gas planets. This
would require much lower values of the Ekman number that
cannot be reached, for technical reasons, in such simulations.

Figure 4. Plots along the cord at s=3 for magnetic case 5 with a stable layer, similar to Figure 3. The stratification is neutral above the upper horizontal line and
assumes its full value of Ñ =4.24 below the lower line. (a) Zonal flow and toroidal field. Here, Bf is multiplied by 104. (b) Comparison of terms in the vorticity
Equation (14). Here, FB is the buoyancy (or thermal wind) term, multiplied by kE 2. The magnetic and viscous terms in Equation (14) make no significant
contribution. (c) Comparison of terms in the f component of the equation of motion Equation (13). Forces are multiplied by Eκ/2, FL is the Lorentz force term.
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4. Linearized Cartesian Models

Simulations in Cartesian geometry are numerically cheaper
than spherical shell calculations. In addition, the similarity of
the weakly forced and the strongly forced spherical solutions
suggests that nonlinear effects are secondary, at least in the
magnetic case with a stable layer. We therefore employ
linearized Cartesian calculations that reach the relevant
planetary parameter regime. This enables us to make (semi-)
quantitative predictions for gas planets.

4.1. Model Setup and Equations

The model setup is illustrated in Figure 5. A layer of unit
depth (0<z<1) is assumed. Gravity and rotation are aligned
and parallel to the z-axis. The imposed magnetic field Bo is
constant and points in the z-direction. This would approxi-
mately represent the situation close to the poles in a spherical
shell. The results of the axisymmetric shell models suggest that
the behavior is not fundamentally different at lower latitudes
inside the tangent cylinder. Cartesian models with the magnetic
field pointing in the x-direction (not discussed in detail here)
show similar results. The system is periodic in the x-direction,
which replaces latitude or the s-coordinate in a sphere. A flow
in the y-direction (which replaces longitude) is driven by an
imposed sinusoidal force FD=Af f (z) sin(kx). The system is
two-dimensional, i.e., ∂/∂y=0. Here, f (z) has the same form
as in Equation (10), with z replacing r. Forcing is nonzero in
the range 0.7<z<1.0.

Equations (1)–(4) are written in terms of the following
dependent variables: U=uy for the jet flow, the stream
function ψ for the meridional flow that is obtained as
r r y= ´u eymeri˜ ( ˜ ), c for codensity perturbation, bz for
the perturbation of the z-component of the poloidal field, and jz
for the z-component of the current density that is associated
with the toroidal field. In contrast to the Boussinesq spherical
shell models, we use here the anelastic approximation. For
simplicity, we assume an exponential density variation with a
constant scale height dρ.

The equations are linearized, assuming for the perturbation
field b Bo∣ ∣  and for the meridional flow u u U,x z∣ ∣ ∣ ∣ ∣ ∣
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The viscous term in Equation (17) is
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The components bx, by that appear in these equations are
obtained from the primary variables bz, jz by using  =b 0· ,
 ´ =b j, and  =j 0· .
The variables are expanded in sine or cosine functions in the

x-direction, e.g., =U U z kxsin¯ ( ) ( ). Because of the lineariza-
tion, all wavenumbers k decouple. Equations (16)–(20) reduce
to a set of five coupled ordinary differential equations in z. The
same boundary conditions as in the spherical models are
assumed, except for the magnetic field on the lower boundary,
which is matched with a field that is obtained for an
exponentially decreasing diffusivity η in the substratum
z<0. This condition can be implemented analytically for a
given horizontal wavenumber k. The background codensity
gradient changes around z=zs from stable ( ¢ =C 1o ) in the
lower part to neutral above. The transition is smoothed again,
but the transition interval is narrower than in the spherical shell
simulations and restricted to zs±0.01. The reference value for
codensity diffusivity κo is now that in the lower layer. We
assume that, in the upper region, the effective diffusivity by
turbulent convection is so efficient that it practically wipes out
any significant codensity differences. This means codensity is
not solved for in that region, and the condition c=0 is applied
at the upper end of the stable region at z=zs+0.01.
We note that, in the case of stationary solutions (∂/∂t=0),

which are the only ones considered here, the Roberts number q
can be eliminated from the equations by introducing a modified
variable for the magnetic field perturbation and the current
density, =b b q* and =j j q* . For the simulations, where
we set q=1, this is not important. However, it becomes
relevant when we scale the model results to real planets.
Equations (16)–(20) are solved for a specific wavenumber k,

where derivatives ∂/∂x turn into factors ik, by a finite-
difference scheme, using up to 4000 equidistant points in z. The
equations are marched in time using an implicit scheme until a

Figure 5. Schematic drawing of the Cartesian model.
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steady state has been reached. The solutions are linear in Af,
and therefore the forcing amplitude can be easily adjusted such
that all reported solutions have a velocity of U=1.0 at z=1.
We report results for Eκ in the range between 10−8 and 10−11,
and Rayleigh numbers Ra between 1016 and 3×1024. In the
cases with the highest values of the Rayleigh number, i.e.,
Ra�1024 for zs=0.7 and Ra�1021 at zs=0.6, the
numerical scheme becomes unstable for our standard setup.
A stable solution can be obtained by applying the boundary
conditions for U, ψ, and c not at z=0 but at z=0.35, and by
setting these variables to zero below that depth. This is justified
because at the highest values of Ra, all three variables assume
almost zero values in the lower part of the domain. Comparison
to a case in which a converged solution could also be obtained
for the standard setup showed only very slight differences.

4.2. Choice of Parameters

We strive at using parameters that are close to conditions in
Jupiter as far as possible. We assume that the model domain
covers the outer 10% of Jupiter, i.e., z=0 corresponds to
0.9rJ. We use a superexponential variation of electrical
conductivity. Figure 6 shows the conductivity values in the
upper 12% of Jupiter’s interior according to quantum
mechanical ab initio simulations by French et al. (2012). They
are decently fitted by

s = ´
-
-

-r
r r

1.2 10 S m exp
2.5

1.05
. 2212 1
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⎝⎜
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Identifying a radius of 0.9rJ with the lower boundary of the
Cartesian model, Equation (22) translates into a nondimen-
sional magnetic diffusivity of

h = ´
-

-z
z

5.557 10 exp
25

1.5
, 238

⎛
⎝⎜

⎞
⎠⎟( ) ( )

which is shown by the blue line in Figure 1(b) and is applied in
the Cartesian models. To avoid numerical problems, the values
are capped at a diffusivity h = 10max

10. Equation (22) gives a
conductivity of 6.9×104 S m−1 at 0.9rJ. Together with a

density at this depth of 577 kg m−3 (Nettelmann et al. 2012)
and Ω=1.76×10−4 s−1, this results in a magnetic field scale
of 1.2 mT. Jupiter’s dipole field has, on average, a strength of
0.6 mT in the region (0.9–1.0)rJ. Hence, a nondimensional
value of Bo=0.5 is appropriate and is applied here.
The average distance between a prograde jet and its

retrograde neighbors at the surface of Jupiter is approximately
4° or 4800 km. With the depth of the simulation box
corresponding to 0.1rJ or 7000 km, the nondimensional
wavenumber is around p=k 1.5 , and we fix this value in our
calculations.
We set the nondimensional density r̃ equal to one at z=0.

The scale height is quite variable in the molecular hydrogen
envelope of the gas planets. For our calculations, where a
constant scale height is assumed, we pick a nondimensional
value of dρ=0.43429, corresponding to a density ratio
Δρfrom top of bottom of ten. This roughly matches the scale
height in Jupiter at about (0.95–0.96)rJ, or z=0.5–0.6 in the
simulations box, which is not far from where the drop-off of the
jet flow occurs in our models.
We compare results for two locations of the upper boundary

of the stable layer, zs=0.6 and zs=0.7, corresponding to
0.96rJ and 0.97rJ, respectively. As we will see, a stable region
that extends rather high up turns out to be essential for meeting
constraints on the power that is driving zonal winds in Jupiter.
We calculated a series of models for each value of zs by varying
the Rayleigh number over a wide range, and choosing the
Ekman number Eκ such that the fraction of viscous dissipation
of the total (viscous plus ohmic) dissipation is always below
5%. At higher Rayleigh number, this requires lower values of
the Ekman number.

4.3. General Properties of the Solution

Figure 7 shows depth profiles for a case with zs=0.7 at a
high value of the Rayleigh number and low Ekman number.
The jet velocity (full line in Figure 7(a)) stays constant above
the stable region and drops sharply at the very top of the stable
layer to very small values. The meridional circulation (ux, uz) is
approximately seven orders of magnitude weaker than the jet
flow. It vanishes at depths not far below the top of the stable
layer. As was already seen in the spherical shell simulations,
the decrease of U=uy is associated with the thermal wind
term FB (the last term in Equation (17)), whereas the magnetic
term FL does not contribute (Figure 7(b)). The codensity
perturbation causing the thermal wind effect is created by the
meridional flow, which results from the Lorentz force
associated with the induced electrical current component jx as
the only significant antagonist to the driving force FD

(Figure 7(c)). This contrasts with the spherical shell model,
where viscous friction still played a significant role in the
meridional force balance (compare Figure 4(c)).
The electrical current ( jx, jz) associated with the toroidal

magnetic field is induced by the interaction of the zonal flow U
with the background field in the region where U has not yet
vanished, and where at the same time the electrical conductivity
is already sufficient to allow for a current to develop
(Figure 7(d)). This region is restricted to a rather thin sublayer
near the top of the stable region. The electrical current closes
via the jz component through the highly conducting interior.
Because of the high value of the Rayleigh number, a very weak
codensity perturbation is sufficient to balance the drop of the
zonal flow velocity via the thermal wind term. To set up the

Figure 6. Conductivity in the upper part of Jupiter’s interior, according to
French et al. (2012) (circles) and fit by Equation (22).
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codensity perturbation, a weak meridional flow is sufficient.
This, in turn, requires only a weak Lorentz force that is
achieved by the small current jx, which is possible in a region
of poor conductivity. The Elsasser number Λ, which for a given
Bo may be considered as a measure for the conductivity, is only
7×10−7 at the depth zs=0.69 where the sharpest drop in
velocity occurs. This is in drastic contrast to the value Λ≈1
that must be reached to let the zonal velocity drop in the
absence of stable stratification (see Section 3.3). The ohmic

dissipation associated with the current system is also
concentrated around the transition between the stable and the
unstable layer (red line in Figure 7(d)). Because of the
weakness of the current, the dissipation remains comparatively
small despite the high resistivity. Correspondingly, only a small
driving power is required.
While the current components jx, jz associated with the

induced toroidal magnetic field are already small, the
jy component that relates to the perturbation of the poloidal

Figure 7. Depth-dependent profiles for a Cartesian case with Ra=3×1023, Eκ=10−11 and zs=0.7. Horizontal lines indicate the boundary of the stable layer. (a)
Velocity components; ux and uz are multiplied by 106. (b) Depth variation of the jet velocity compared with the thermal wind term FB and magnetic wind term FL in
Equation (17). (c) Meridional flow component ux (black line) compared with the driving force FD and the y-component of the Lorentz force in Equation (16). (d)
Current density and ohmic dissipation. Force terms in (b) and (c) are multiplied by Eκ.
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magnetic field is even smaller by several orders of magnitude
(broken line in Figure 7(d)). Consequently, the bx and bz
components are very tiny and the Lorentz force term associated
with bx in Equation (17) can be neglected.

4.4. Dependence on Control Parameters

Next, we want to quantify the dependence of several
properties of interest on the control parameters. One such
property is the power exerted by the driving forces, or
equivalently, the energy dissipation. The nondimensional
power per unit area of the surface, scaled by r k Do o

3 3, is
obtained as

ò r=P F z U z dz
1

2
. 24D

0

1
˜ ( ) ( ) ( )

The prefactor comes from averaging the sinusoidal variation in
x. Given that U≈1 in the depth range where FD does not
vanish, for the chosen forcing function and density profile, the
power is in close approximation P=0.00935Af. Another
property of interest is the characteristic length scale on which
the jet velocity decreases. It is defined here as

= -L z z
5

4
, 2590 10( ) ( )

with z90 and z10 being the points where U has dropped to 90%
and 10%, respectively, of its surface value. A different
definition of the decay length based on the value of dU/dz at
the depth where U has dropped to 1/2 gives results that are not
much different, but systematically smaller by a factor of about
0.85. The final property whose systematic dependence on
control parameters we consider is the maximum strength of the
toroidal magnetic field by,max* .

To identify the key parameter that controls these properties,
we rewrite Equations (16)–(20) for a particular wavenumber k,
drop the time derivative and the viscous terms, and eliminate
the Roberts number q by using the modified variables for the
perturbed field and for the current density. Furthermore, we
drop the Lorentz force term in Equation (17), which was found
to be insignificant. Because of the latter, we can ignore
Equation (19), which is then only “diagnostic” and does not
influence the other variables:
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Here, we set =kE A Af f¯ , and we define a “rotational Rayleigh
number”
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For fixed values of Bo and k, and fixed η(z), ¢C zo ( ), r z˜( ) and
forcing function f (z), RaΩ is the only remaining free parameter.

Because we require U to become one at the surface, the forcing
amplitude Af or Af¯ is not a free control parameter but a
diagnostic parameter, i.e., it sets the force needed to obtain a jet
with unit velocity. Because the power P is proportional to Af, it
follows that the product EκP is a function of RaΩ. Furthermore,
the other diagnostic parameters, L and by,max* (= j kz,max

* ), are
only functions of RaΩ. For a few cases, this has been verified
by changing Eκ while keeping the same value of RaΩ. Aside
from tiny differences due to residual viscosity effects, the
results are identical.
With increasing values of RaΩ, the power required for

driving a zonal flow with unit velocity at the surface decreases
significantly (Figure 8(a)). The drop-off of the jet velocity near
the top of the stable layer becomes sharper (Figure 8(b)), and
the induced toroidal magnetic field becomes weaker
(Figure 8(c)). The variation is not linear in the log–log plot,
i.e., no simple power-law dependence applies. The curves
flatten out toward high values of RaΩ for power and toroidal
field amplitude. This is probably a consequence of the fact that,
with increasing values of RaΩ, the action is squeezed more and
more into a thin layer near the top of the stable region
(Figure 7). For L, the curve steepens toward the high end of
parameter values.
While the drop-off length scale L does not differ much

between the two model series, the driving power and the
toroidal field strength depend rather strongly on the location of
the upper boundary of the stable region, especially near the
high end of values for RaΩ. For zs=0.7, the toroidal field is
weaker and the power requirement is lower by more than an
order of magnitude than it is for zs=0.6.

4.5. Scaling to Jupiter

In order to apply the results to the gas planets, we need to
estimate the appropriate values of the control parameters Eκ, q,
and = kW N ERa 2˜ . We do this for Jupiter. The relevant value
of the diffusivity κ is an effective one in the stable region. The
molecular values of thermal and compositional diffusivity are
not very different from each other in the range
(0.25–1)×10−6 m2 s−1 (French et al. 2012). For the nominal
depth D=7000 km of the Cartesian models, this would lead to
values of Eκ on the order of 10−16. However, a stable region in
a gas planet is unlikely to be stagnant. Transport processes
occur by double-diffusive or “semi”-convection (Leconte &
Chabrier 2013; Debras & Chabrier 2019), e.g., in the form of a
stack of internally convecting layers. If Jupiter’s internal heat
flow of 5.4Wm−2 (Guillot et al. 2004) had to be transported
through the stable layer by conduction with the molecular
conductivity λ≈2Wm−1 K−1, it would require an unreason-
able thermal gradient of 2700 K km−1, very much larger than
the adiabatic temperature gradient of 0.7 K km−1. If we assume
that the mean temperature gradient across the stack of double-
diffusive layers is 1 K km−1, i.e., moderately superadiabatic,
the “effective” diffusivity due to the small-scale convection in
the layers would be enhanced above the molecular value by a
factor of ~2500. Applying this factor, we assume a value of
1.5×10−3 m2 s−1 for the effective diffusivity κeff. The
effective Ekman number Eκ is then 1.7×10−13. Together
with a plausible range of < <N0.8 3˜ for a stable layer in
Jupiter suggested by the models of Debras & Chabrier (2019),
this leads to values around 1013 for the parameter RaΩ.
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Relevant dimensional and resulting nondimensional parameters
are summarized in Table 2.

The most extreme cases in the Cartesian model series reach
the plausible range of RaΩ in Jupiter, shown as the shaded
region in Figure 8. If we assume that the stable layer extends
out to 0.97rJ (zs=0.7), our results predict for Jupiter a
nondimensional power EκP around 2×10−9, a drop-off length
scale L=0.025–0.04, and a toroidal field =b b qy y* of the
order (0.7–1)×10−8. These values refer to a nondimensional
jet velocity of one. For a typical jet velocity inside Jupiter’s
tangent cylinder of 20 m s−1, the nondimensional value is 1011,
using the effective value of κ. The result for the toroidal field
strength is to be multiplied with this factor and that for power
with the factor squared. We then end up with the following
estimates for the dimensional values: power per unit area is
around 0.7Wm−2, the toroidal field strength is 0.11–0.15 mT,
and the decay length of the jet flow is 200–300 km.

It is reassuring that the estimated power that is pumped into
the zonal jets is less than the internal heat flow by almost an
order of magnitude. To convert such fraction of the heat flow
into kinetic energy poses no problem from a thermodynamic
efficiency point of view. The analysis of the flux of momentum
from eddies into zonal flow, based on cloud-tracking data at
Jupiter, suggests that the associated energy conversion rate

could be 0.7–1.2Wm−2 (Salyk et al. 2006), in full agreement
with our result. The predicted toroidal field strength is one-fifth
of that of the dynamo-generated dipole field. Therefore, the
linearity assumption in the calculations is not violated—albeit,
it is just marginally satisfied.
These estimates hold for a location of the upper boundary of

the stable layer at 0.97rJ. Figure 8 shows that lowering the
boundary to 0.96rJ would boost the power requirement by a
factor of 30, which may be incompatible with the probable
upper limit. This power estimate must be taken with caution,
because also the maximum toroidal field gets larger by an order
of magnitude in the simulations. When scaled to Jupiter
parameters, it would exceed the imposed background field.
This agrees with the finding of Wicht et al. (2019b), that the
wind-induced zonal toroidal field reaches the same order of
magnitude as the poloidal field for a penetration depth of the
winds between 0.97rJ and 0.96rJ. Hence, the linearity
assumption of our simulations would be violated. Nonetheless,
it may be safe to take a value around 0.965rJ as the plausible
lower limit for the top of the stable layer.

5. Discussion and Conclusions

Our calculations suggest that the presence of a stably
stratified layer in the semiconducting region of gas planets

Figure 8. (a) Driving power multiplied by the Ekman number, (b) decay length of the jet flow, and (c) maximum modified toroidal field by* for the Cartesian models.
Circles are for an upper boundary of the stable layer at zs=0.6, and squares are for zs=0.7. The shaded region is a plausible range for RaΩ in Jupiter.

Table 2
Jupiter Parameters

D ro ηo κeff Ω N/Ω Eκ q Pr RaΩ

7×106 577 12 1.5×10−3 1.76×10−4 0.8–3 1.7×10−13 1.2×10−4 ≈1 4×1012–5×1013

Note. SI units where applicable.
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could play a key role for maintaining strong zonal jets that do
not require excessive forcing and that have dropped in velocity
very strongly at a depth where the conductivity has become
high enough that they can cause a detectable secular variation
of the magnetic field (Moore et al. 2019). Electromagnetic
effects are likewise important. However, by themselves, in the
absence of stable stratification, they can reduce the wind
velocity only at a depth where the Elsasser number assumes
values of order one, which requires fully metallic conductivity
values.

As long as something resists the jet flow in or below the
stable layer, a meridional circulation is set up, which perturbs
the density structure in the stable region as shown by Showman
et al. (2006). If the resistive action is located deeper than the
mechanism driving the jets, the density perturbation is such that
the jet velocity decreases with depth via a thermal wind effect.
Bulk viscosity is insufficient for achieving a steep decrease of
the jet flow over a depth range smaller than the jet width.
Hence, a stable layer alone, without the action of a magnetic
field, would not make the wind abate with depth sufficiently
fast. As our calculations showed, the Lorentz forces associated
with the currents that are induced in the semiconducting region
and give rise to a toroidal magnetic field can provide the
required balance. Only a very weak meridional flow is needed
to achieve a sufficient density perturbation in a strongly stable
layer. A weak electrical current is sufficient to drive the
meridional flow. In the linear regime, where flows act on a
strong background field, the locally induced currents j are
proportional to the local electrical conductivity σ (Wicht et al.
2019a). Ohmic heating, given by sj2 , thus scales with σ and
remains rather small. Therefore, even though the electrical
currents flow in a region of high resistivity, the ohmic
dissipation associated with them can be limited to values that
are on the same order as the estimates for the energy flux that is
transferred from eddies into the large-scale jets.

What other mechanism could lead to a reduction of the zonal
wind speed with depth? Potentially, Reynolds stresses that
drive the zonal flow near the surface might change sign at
depth. However, in 3D convection simulations in rotating
spherical shells, this has never been observed. Are magnetic
effects needed in addition to the stable stratification, or could
something else perturb the codensity structure in the stable
region in such a way that the zonal velocity decreases due to
the thermal wind balance? Possibly, the zonal flow may
influence the turbulent convection in the region above the
stable zone in such way that the heat flow at the top of the
stable region has a latitude-dependent modulation that imprints
the necessary codensity perturbation for the jets to drop off. To
clarify if this could be a viable mechanism, 3D simulations of a
convecting layer above a stable region would be needed. In our
model, the codensity perturbation is caused directly by the
penetration of the zonal flow into the semiconducting region,
due to the effects of the resulting Lorentz forces on the
meridional circulation.

The depth where the jet velocity starts to drop off is set by
the boundary between the stable region and the overlying
convective layer. For our mechanism to work, it is more
favorable if this boundary is higher up in the semiconducting
region. In our Cartesian calculations that match the estimate for
the power driving Jupiter’s jets, the top of the stable layer is at a
depth where the conductivity has dropped to 0.03 S m−1,
corresponding to 0.97rJ. A significantly deeper boundary of the

stable region would probably mean a power requirement in
excess of what is available. The limit may be reached at 0.965rJ
or 2500 km depth. However, this may not apply if our
assumption does not hold that turbulent diffusion in the
convecting region is so efficient that it wipes out any significant
codensity differences associated with the meridional flow. If
such differences could survive into the convecting region, the
drop of the jet velocity would start already at shallower depth.
Our models predict that the jet velocity remains constant

with depth until the top of the stable layer is reached, and then
drops sharply over a depth range of 200–300 km to very small
values. This is somewhat in contrast to the preferred model by
Kaspi et al. (2018) matching the observed gravity signal at
Jupiter, which shows a gradual decrease over several thousand
kilometers. However, this model still has a zonal flow velocity
of the order of 1 m s−1 at 0.94rJ, which would imply a
magnetic Reynolds number, based on the local conductivity
and the conductivity scale height, in excess of one. This would
result in a strong secular variation that is incompatible with
observation (Moore et al. 2019). It remains to be tested if a
model with a sharp drop at shallower depth can provide an
equally satisfactory fit to the gravity data. Again, if the
codensity anomaly can extend upward into the convecting
layer, the decay length of the jets could be larger than predicted
here. This may also be the case if the transition between stable
and unstable stratification is not sharp, but rather more gradual.
Cao & Stevenson (2017) and Wicht et al. (2019b) predict

that the toroidal field induced by the zonal flow in Jupiter
reaches approximately 10% of the strength of the dynamo-
generated poloidal field at 0.97rJ. This is roughly in agreement
with our prediction of 20–25%, or 0.11–0.15 mT, around this
depth. In the context of our simulations, the only way to
generate poloidal field from the toroidal one is through its
interaction with the meridional circulation (Equation (19)),
which is far too weak to produce a significant poloidal field.
When the dynamo-generated background field is not strictly
axisymmetric, but instead shows some longitude-dependence,
the interaction with the zonal flow causes a perturbation of the
poloidal field. However, this remains two orders of magnitude
weaker than the induced toroidal field (Wicht et al. 2019b).
Wicht et al. (2019b) also estimate the additional ohmic
dissipation caused by the interaction of the winds with the
non-axisymmetric parts of the magnetic field. Should the winds
reach down to 0.97rJ, this would amount to an rms 0.2Wm−2,
with strong spatial variations up to 15Wm−2 locally. The
toroidal field leaks, to some degree, into the convecting region
above the stable layer (see the associated currents jx, jz in
Figure 7(d)). Here, a turbulent α effect could generate poloidal
field. Making some assumptions regarding plausible values of
α, Cao & Stevenson (2017) estimated that this could generate a
poloidal field perturbation of up to 1% of the dipole field.
While our model seems to offer the best explanation for

strong zonal jets inside the tangent cylinder that drop off before
they enter into regions of rather high electrical conductivity, the
largest uncertainty is associated with the existence of a stably
stratified layer that extends upward to that depth range. The
location of the lower boundary of such layer is less critical. The
model by Guillot & Gautier (1994), based on low opacity
values in a certain temperature range, would meet this
requirement. However, low opacity is no longer favored. In
the models by Debras & Chabrier (2019), the top of the stable
layer is at around 0.95rJ, which is too deep. However, they did
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not systematically explore if a stable region that extends
upward to somewhat shallower depth would also be compatible
with the higher even-degree gravity moments of Jupiter and the
atmospheric composition. Such a study, or any other means to
constrain the depth range of a possible stable layer in Jupiter,
would be very helpful in assessing the viability of our zonal jet
model.
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gemeinschaft (DFG) in the framework of the priority program
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