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Abstract

The mean free path of cosmic rays in diffuse interstellar and intracluster gas is determined primarily by pitch angle
scattering from hydromagnetic waves with wavelength of order the cosmic-ray gyroradius. In the theory of cosmic-
ray self confinement, the waves are generated by instabilities driven by the cosmic rays themselves. The dominant
instability is due to bulk motion, or streaming, of the cosmic rays, parallel to the background magnetic field B, and
transfers cosmic-ray momentum and energy to the thermal gas as well as confining the cosmic rays. Classical
arguments and recent numerical simulations show that self confinement due to the streaming instability breaks
down unless the cosmic-ray pressure and thermal gas density gradients parallel to B are aligned, a condition that is
unlikely to always be satisfied We investigate an alternative mechanism for cosmic-ray self confinement and
heating of thermal gas based on pressure anisotropy instability. Although pressure anisotropy is demonstrably less
effective than streaming instability as a self-confinement and heating mechanism on global scales, it may be
important on mesoscales, particularly near sites of cosmic-ray injection.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Galactic winds (572); Interstellar medium (847);
Plasma astrophysics (1261)

1. Introduction

Cosmic rays provide a window into high energy processes
throughout the universe, significantly affect interstellar and
intracluster gas dynamics and energy balance, and are agents of
star formation and black hole feedback. All these aspects of
cosmic-ray astrophysics depend on how cosmic rays propagate
through the ambient magnetic field B.

The near isotropy and long confinement times of Galactic
cosmic rays imply that their propagation is largely diffusive
(see Grenier et al. 2015 for a recent review). While diffusion
through space can be produced by propagation along randomly
wandering magnetic field lines B, diffusion parallel to B, and to
a lesser extent perpendicular to B, is thought to be primarily
due to scattering by magnetic fluctuations on scales of order the
cosmic-ray gyroradius.

There are two theories for the origin of these fluctuations. In
the self-confinement theory, the fluctuations are hydromagnetic
waves that have been amplified by kinetic instabilities driven
by cosmic-ray momentum space anisotropy (Wentzel 1968;
Kulsrud & Pearce 1969). The unstable feature, or free energy
source for the instability, is generally bulk drift, or streaming,
which arises naturally, e.g, from the presence of discrete
cosmic-ray sources and global Galactic gradients. In the
extrinsic turbulence theory, the fluctuations are also hydro-
magnetic waves, but are driven by a mechanism such as a
turbulent cascade that is independent of cosmic rays.

In both theories, momentum is transferred between the
cosmic rays and the thermal gas through what can be described
in the limit of short scattering mean free path as a pressure
gradient force - Pc. In self-confinement theory, the thermal
gas is also heated collisionlessly by damping the waves at the
rate the cosmic rays excite them; for the streaming instability,
this works out to be v PA c∣ · ∣. In the extrinsic turbulence
theory, there is no heating, provided the fluctuations have no
preferred direction of propagation. Here, Pc and vA are the
cosmic-ray pressure and Alfvén velocity in the plasma

component prB 4 i , with ri the plasma mass density. Both
theories lend themselves to fluid descriptions of cosmic-ray
interactions with thermal gas (“cosmic-ray hydrodynamics”),
and can be smoothly bridged when both extrinsic and self-
generated waves are present (Zweibel 2017). Because both
theories are based on scattering, they include spatial diffusion,
but in many cases it is weak compared to advection by the
thermal gas or Alfvénic streaming relative to it.
Both theories have been implemented in models of galactic

winds and star formation feedback (Breitschwerdt et al. 1991;
Everett et al. 2008; Uhlig et al. 2012; Agertz et al. 2013; Booth
et al. 2013; Salem & Bryan 2014; Girichidis et al. 2016;
Ruszkowski et al. 2017; Farber et al. 2018; Mao &
Ostriker 2018; Bustard et al. 2019; Chan et al. 2019; Hopkins
et al. 2020). These works show that the mass flux, momentum
flux, thermal structure, and even the existence of galactic winds
are sensitive to the model of cosmic-ray transport, as is the
degree to which cosmic-ray feedback suppresses star forma-
tion. For example, assuming that cosmic rays are advected with
the thermal gas but neither stream nor diffuse suppresses wind
launching in Milky Way–like disks (Uhlig et al. 2012), but
lowers the star formation rate more than models with cosmic-
ray streaming, which are more effective in launching winds but
less effective in suppressing star formation (Ruszkowski et al.
2017). With observational constraints on cosmic-ray transport
in star-forming galaxies now emerging from models of their γ-
ray emission (Chan et al. 2019), it is more important than ever
to understand all the physical processes in play.
The streaming instability can be excited when the bulk drift

speed vD is super-Alfvenic. The growth rate increases with vD,
and cosmic rays can be considered self confined if the vD
required to overcome damping is not too much greater than vA.
While instability growth and damping rates depend only on
local conditions that can be evaluated from point to point, self
confinement also depends on the global structure of the system
due to a “bottleneck effect,” which was first hypothesized by
Skilling (1971) and first demonstrated in numerical simulations
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by Wiener et al. (2017). The drift anisotropy is associated with
a spatial gradient in cosmic-ray pressure Pc along the
background magnetic field B such that the drift is down the
gradient and the unstable waves propagate in the same direction
as the drift. It can then be shown that Pc varies along a
magnetic flux tube in proportion to rg

i
2c , where g ~ 4 3c is the

cosmic-ray adiabatic index. If ri increases in the direction of
cosmic-ray streaming, this relation predicts that Pc increases as
well. This implies that waves going in the opposite direction
should be unstable. Under these irreconcilable conditions, the
cosmic-ray pressure gradient flattens, there are no waves, and
cosmic rays do not exchange energy or parallel momentum
with the ambient medium.

According to the initial value problem considered by Wiener
et al. (2017), the characteristic timescale for bottleneck
formation is of order the Alfvén transit time D/vA between
the cosmic-ray source and the point a distance D away where
the density gradient reverses. Because the Alfvén transit time
must compete with other timescales such as the cosmic-ray
source modulation time and the timescales on which density
structures form, disperse, and move, bottlenecks may not
always reach a steady state. Nevertheless, the possibility of
bottlenecks suggests a picture in which cosmic-ray self
confinement, and the heating and momentum transfer that
accompany it, could be quite intermittent in space and time.
Because much of the diffuse gas in the universe is clumpy and
astrophysical magnetic fields are usually tangled, this

intermittency might be the generic state. Bottlenecks may be
a confounding issue, for example, in treatments of cosmic-ray
propagation and cosmic-ray heating in clusters of galaxies,
where the magnetic geometry is usually assumed to be simple
(Loewenstein et al. 1991; Guo & Oh 2008; Wiener et al. 2013;
Jacob & Pfrommer 2017a, 2017b; Wiener & Zweibel 2019).
Because cosmic-ray heating and momentum transfer are

important in so many astrophysical systems, we must ask
whether drift anisotropy is the only path to self confinement. In
this paper we develop a complementary theory for cosmic-ray–
thermal gas coupling mediated by hydromagnetic waves. The
theory is based on an instability similar to the drift instability,
but the energy source is pressure anisotropy.
Pressure anisotropy instability is described qualitatively in

Kulsrud (2005). It was studied previously by Lazarian &
Beresnyak (2006, hereafter LB06), and by Yan & Lazarian
(2011), who investigated it as a mechanism for cosmic-ray self
confinement and an energy sink for interstellar turbulence, and
was recently studied numerically by Lebiga et al. (2018). We
instead consider a case in which the instability is driven by an
input of cosmic-ray energy itself. This is the most direct
conceptual analog of heating due to streaming down the
cosmic-ray pressure gradient.
The main outcome of our work is that for global or galactic

scale processes, pressure anisotropy instability is much weaker
than drift anisotropy as a mechanism for cosmic-ray self
confinement and plasma heating. We find that under otherwise
similar conditions, the spatial diffusivity resulting for pressure
anisotropy is a factor of order c/vA larger than the diffusivity
resulting for drift anisotropy, and the heating rate associated
with pressure anisotropy is lower than that due to drift
anisotropy by a factor of order vA/c. The underlying reason is
that when scattering is due to drift anisotropy instability, it
balances the tendency of cosmic rays to stream down their
pressure gradient at the speed of light. In the case of pressure
anisotropy, scattering balances the rate of change of the
magnetic field, the characteristic speed of which is typically the
magnetoacoustic speed in the thermal gas. Therefore, a level of
turbulent fluctuations that is lower by a factor of approximately
vA/c is required to maintain marginal stability against pressure
anisotropy. The lower energy density in fluctuations translates
to a lower level of heating, which is quantified in Section 4.3.
Phenomena on smaller spatial scales with a shorter intrinsic
timescale can drive anisotropy harder, leading to stronger
scattering and possibly a significant level of heating. Thus,
pressure anisotropy instability might play an important role in
cosmic-ray self confinement near a young supernova remnant
that has been an active cosmic-ray source for a few thousand
years on scales of several parsecs, but less of a role near a
galactic starburst that has been active for tens of megayears on
scales of 100 or more parsecs.
In Section 2, we pose the simplest possible problem that

brings out the relevant effects: expansion of a magnetic flux
tube due to spatially uniform injection of cosmic-ray pressure.
In Section 3, we discuss the pressure anisotropy instability. In
Section 4, we derive an expression for the heating rate that
results from instability due to cosmic-ray driven flux tube
expansion, and in Section 5, we discuss the implications of the
instability for cosmic-ray self confinement and estimate the
spatial diffusion coefficient. In Section 6, we apply the theory
to the problem of a bottleneck formed between a galactic halo
cloud and a galactic disk (Wiener et al. 2019). Section 7 is a

Figure 1. Top: the blue curves, from an unpublished simulation by J. Wiener,
trace magnetic field lines that have been distorted by the buildup of cosmic-ray
pressure between a source of cosmic rays at the left boundary and a dense
cloud, shown in darker blue, in which the Alfvén speed is lower than in the
surrounding medium. This is a bottleneck of the kind described in Section 1
and in Wiener et al. (2019). In the absence of scattering, the cosmic-ray
pressure becomes anisotropic due to the changes in the volume and length of
the magnetic flux tubes. Bottom: the simplified model on which the
calculations in this paper are based. Cosmic rays are injected uniformly onto
the thin magnetic flux tube shown in red, which expands at the
magnetoacoustic speed to maintain pressure equilibrium with its surroundings.
Spatial gradients (other than the kinetic scales associated with growing
hydromagnetic waves) do not enter the model, which we therefore describe as
Zero-D.
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summary and speculation on how drift and pressure anisotropy
instability might combine and a conclusion.

2. Formulation of the Problem

2.1. Macroscopic Dynamics

Here, we develop a simple model in which input of cosmic-
ray energy drives expansion of the ambient gas, which weakens
the magnetic field and causes cosmic-ray pressure anisotropy.
The anisotropy triggers instabilities that scatter the cosmic rays
and heat the gas, leading to a relationship between the energy
injection rate, the rate of doing work, and the rate of heating.
An example of a situation in which these events might occur is
shown in Figure 1(a), while the simplified problem we solve is
shown in Figure 1(b).

Consider a uniform medium with a background magnetic
field B, thermal gas pressure Pg, and cosmic-ray pressure Pc.
This equilibrium system is perturbed by injecting cosmic rays
onto a magnetic flux tube, or bundle of field lines, of radius R,
at the same rate DPc , everywhere along the flux tube and
uniformly over its cross section, ignoring the possibility of
instability due to a cross field gradient (Riquelme &
Spitkovsky 2010). In a more realistic situation the cosmic-ray
source is likely to be localized to a small region along the flux
tube and the cosmic rays stream down their gradient along the
field lines as well as causing local transverse expansion of the
magnetic field. We briefly speculate on the joint effects of
parallel gradients and transverse expansion in Section 7; here
we focus on the latter.

The flux tube responds to cosmic-ray injection by expanding
perpendicular to its major axis. We approximate the speed of
expansion by the magnetoacoustic speed Cma

g g g
r

º
+ +

C
P P P

, 1ma
g g c c m m

g

1 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where gg and gp are the thermal and cosmic-ray polytropic

indices, pºP B 8m
2 ( ) is the magnetic pressure, and g = 2m

for transverse expansion. In writing Equation (1) we have made
several simplifying assumptions. We have replaced the
perpendicular cosmic-ray pressure Pc⊥ by the isotropic
pressure Pc; assuming that scattering by waves keeps the
pressure anisotropy near marginal stability, this is accurate to
order vA/c. We have also assumed that the effects of heating
and cooling on the thermal gas can be subsumed into an
effective polytropic index g ;g a simplification that is common in
interstellar gas dynamics.

The characteristic expansion timescale for the tube is
t ~ R CD ma, while the total pressure changes on a timescale
of t ~ + + DP P P PP g c m c( )  . If t t 1D P  , the tube maintains
pressure equilibrium with its surroundings; this sets an upper
limit on the radius R. By the same assumptions made in
deriving Equation (1),

r
= -DC

d

dt
P , 2ma

2 g
c ( )

or because rB g is constant for uniform, transverse expansion

r

r r t
= = -

D
º -

B

B

P

C

1
, 3

B

g

g

c

g ma
2

( )
  

where we have introduced the magnetic field timescale tB for
later use. From the First Law of thermodynamics, the rateDWc
at which the cosmic rays do work is

r t
D =

D
= - =W

P P

C
P

B

B

P
. 4

B
c

c c

g ma
2 c

c ( )  

In Section 4, we derive a rate of heating in terms of the rate of
doing work.

2.2. Microscale Response

As the flux tube expands, the cosmic-ray momentum
distribution becomes anisotropic with respect to B. If the
magnetic field changes slowly relative to the cosmic-ray
gyration frequency and there is no scattering, the particle
motion is adiabatic and two orbital properties, the magnetic
moment m-p B12 2( ) and longitudinal action mp B n, which
for the situation here is just mp , can be treated as constant.
Here, p is the magnitude of the momentum and m º p B pB·
is the cosine of the pitch angle. The evolution of the cosmic-ray
phase space distribution function pf t,( ) is given by

m
m

¶
¶

+
¶
¶

+
¶
¶

= D
f

t

dp

dt

f

p

d

dt

f
f p t, , 5( ) ( )

or assuming adiabatic motion,

m
m

m
¶
¶

+
- ¶

¶
-

¶
¶

= D
f

t

B

B
p

f

p

f
f p t

1

2
, , 6

2 ⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
 

where Df p t,( ) is the phase space counterpart of DPc and we
assume particles are injected isotropically (see Lichko et al.
2017 for a more general version of Equation (6) that includes
shearing as well as compression). In Equation (6), anisotropy
arises through the term multiplying B B in the sense that if

ºB B 0 and fis initially isotropic, it will remain isotropic.
We therefore refer to this term as the driver of anisotropy in
Equation (9). It should be borne in mind, however, that in the
problem considered here it is Df p t,( ) , or DPc , which causes
B B to be nonzero in the first place, so in an energetic sense,
DPc is the driver.

The evolution of f can be followed more easily if we expand
it as a Legendre series in μ

m m= S =
¥f p t f p t P, , , , 7l l l0( ) ( ) ( ) ( )

where

ò m m mº
+

-
f p t

l
f p t P d,

2 1

2
, , . 8l l

1

1
( ) ( ) ( ) ( )

It can be shown from well-known relations between Legendre
functions that the solution of Equation (6) contains all
harmonics of even order =l n2 , even if f is initially isotropic.
However, we show in Section 3 that the magnitude of the
anisotropy, which we estimate as f f2 0∣ ∣, is capped at a value of
order vA/c. Therefore, the primary driving term is isotropic,
and we approximate Equation (6) by

m m
¶
¶

+ -
¶

¶
= D

f

t

B

B
P P p

f p t

p
f p t

3

,
, . 90 2

0( ( ) ( )
( )

( ) ( )
 
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According to Equation (9), if f is initially isotropic, it generates
P2 anisotropy but no higher orders. In our problem <B B 0 ,
so assuming <df dp 00 , the anisotropy is positive.

The physical significance of f2 becomes apparent if we
compute the pressure anisotropy

ò

ò ò

m
m

m

m m

D º - º -
-

= =

^P P P fpv p dpd

fpvP p dpd f pvp dp

1

2
2

5
. 10

c c c
2

2
2

2
2

2
2

⎛
⎝⎜

⎞
⎠⎟

( ) ( )



Equation (10) shows that f2 is a direct measure of pressure
anisotropy. Strictly speaking, it is Pc⊥ that drives the expansion
of the flux tube, but for the small anisotropy expected here, this
is a correction that we can ignore.

3. Pressure Anisotropy Instability

We are interested in instabilities of hydromagnetic waves
that are driven by gyroresonant particles. A particle gyroreso-
nates with a circularly polarized wave of frequency ω and
wavenumber kP parallel to B if its parallel velocity vP and
relativistic gyrofrequency gW = W0 (where W0 is the
nonrelativistic gyrofrequency and γ is the Lorentz factor)
satisfy the condition that the wave frequency Doppler shifted to
the particle frame matches the cyclotron frequency

w m-  W =k v 0. 11( )

Here, the±signs refer to right and left circular polarization,
respectively. We assume throughout the paper that the cosmic
rays and interstellar ions are both protons, but the analysis can
be generalized to other ion species.

Because w ~k v v cA∣ ∣ , we can drop ω in evaluating the
resonance condition, unless m 1∣ ∣  . The resonant μ, mr, is then

m = 
W

= 
W

º 
k v

m

k p

p

p
, 12r

i 0 1 ( )
 

where º Wp m ki1 0  is the minimum momentum that can
resonate with a wave of parallel wavenumber kP.

There are three types of hydromagnetic waves: the fast and
slow magnetosonic waves, and the shear (or intermediate)
Alfvén wave. Kulsrud & Pearce (1969) showed that waves
propagating parallel to B grow faster than oblique waves, so we
assume parallel propagation here. In this case, one of the
magnetosonic waves becomes a pure acoustic wave, which
does not perturb the magnetic field and for which there are no
gyroresonant effects, and the other magnetosonic wave
becomes degenerate with the Alfvén wave, with both being
purely transverse and both satisfying the dispersion relation
w = kvA. In this fully degenerate case, both linearly and
circularly polarized waves are valid normal modes, but
degeneracy holds only in the limit w W  0ci . When higher
order terms in w W  0ci are included, the normal modes are
circularly polarized waves, with the left- and right-hand waves
becoming ion cyclotron and whistler waves at higher
frequencies, respectively.

The gyroresonant cosmic-ray pressure anisotropy instability
also breaks the frequency degeneracy of left and right circularly
polarized parallel propagating hydromagnetic waves (the
gyroresonant cosmic-ray streaming instability, however, is
independent of polarization, so degeneracy remains). The
growth rate of parallel propagating, circularly polarized waves,

is

ò
p

m m d w m wG = - - W
q v

c
p dpd v kv A f k

2
1 , ,

13

c

2 2
A
2

2
2 2( ) ( ) ( )

( )

where we have suppressed the subscript on k because we now
take =k k. The anisotropy functional A is

w
w

m
m

º
¶
¶

+ -
¶
¶

A f k
f

p

kv

p

f
, ,

1
. 14⎜ ⎟⎛

⎝
⎞
⎠[ ] ( )

From here on we will drop the μ term multiplying m¶ ¶f
relative to w ~kv c vA in A.
Integrating Equation (13) over μ, using Equation (12), and

rearranging the prefactor gives

ò
p

wG =
W

-
n

p dp p p A f k
8

, , . 15
i p

c
0

1
2

1
2

1

( ) [ ] ( )

Instability requires >A 0 in at least some part of phase space.
Because ¶ ¶ <f p 0/ for typical cosmic-ray distributions, the
source of instability must be in the anisotropy term. However,
due to the factor of w ~kv c vA multiplying m¶ ¶f , the
anisotropic part of f need only be of order vA/c relative to the
isotropic part for the wave to be unstable.
The classical streaming instability occurs for drift anisotropy

of the form

m a m= -
¶

¶
f p t f p t p

f p t

p
P, , ,

,
. 160

0
1( ) ( )

( )
( ) ( )

In order to carry out the stability analysis we will make the
standard assumption that the time dependence of f is so slow
that it can be dropped relative to the instability frequency and
growth rate, i.e., we will approximate mf p t, ,( ) by mf p,( ).
It can be shown from the Lorentz invariance of f that the

distribution function given Equation (16) is isotropic in a frame
moving with speed ac, up to factors of order a2. Assuming the
particles are ultrarelativistic ( ~v c), the parameter α is directly
related to the bulk drift, or streaming velocity by

ò m m m aº =v
n

v f p p dpd c
1

, . 17D
c

2( ) ( )

Substituting Equation (16) into (14) and using Equation (17)
gives

w wº = -A f k A f k
df

dp

v

v
, , , , 1 , 18d

D0

A

⎛
⎝⎜

⎞
⎠⎟[ ] [ ] ( )

where we have taken w =k vA. Then, substituting
Equation (16) into (15) gives Gcd, the growth rate of the
streaming instability as

p
G = W

>
-

n p

n

v

v8
1 , 19cd

i

D
0

c 1

A

⎛
⎝⎜

⎞
⎠⎟

( )
( )

where  is a spectrum-dependent constant of order unity and
>n pc 1( ) is the number density of cosmic rays with momentum
>p p1, which are the only cosmic rays that can resonate with

the wave.
In the case of pure pressure anisotropy considered in

Section 2, there are no gradients along the magnetic field, so
the series (7) contains only terms with even l. Therefore,

m¶ ¶f is an odd function of μ. If m¶ ¶ >f 0 <0( ), only

4
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waves propagating in the positive (negative) direction can be
unstable. But if particles of some particular mr resonate with a
wave of one polarization, particles with m m= - r resonate with
a wave of the opposite polarization. Therefore, if a circularly
polarized wave is unstable, the wave with the opposite circular
polarization propagating in the opposite direction is also
unstable, and has the same growth rate. This implies that
cosmic rays confined by pressure anisotropy instability would
be advected by the thermal gas, rather than streaming relative to
it at the Alfvén speed.

We make the ansatz

m z m= -f p f p p
df

dp
P, 200

0
2( ) ( ) ( ) ( )

(Equation (42) provides some support for this form of f2).
Using Equation (10), the parameter ζ is related to the pressure
anisotropy by

z =
DP

P

5

12
, 21c

c
( )

where º +^P P P2 3c c c( ) is the scalar pressure; for the
expanding flux tube considered here, z > 0. Substituting
Equation (20) into (14) and approximating ¶ ¶f p by ¶ ¶f p0
on the grounds that f f 12 0∣ ∣  gives

w
z m
w

=
¶
¶

-A f k
f

p

kv
, , 1

3
, 22pa

0 ⎜ ⎟⎛
⎝

⎞
⎠[ ] ( )

which is to be evaluated at mr. From Equation (12) and using
z > 0), we see that if the polarization is chosen such that the
resonant particles are traveling in the same direction as the
wave, the wave can be unstable, while the opposite sense of
circular polarization is always damped. That is, right circularly
polarized waves propagating in the positive direction and left
circular polarized waves propagating in the negative direction
are the only possible unstable ones. (Similar arguments show
that in a compressing flux tube with z < 0, the instabilities are
positive propagation direction/left circular polarization and
negative propagation direction/right circular polarization.)
These results are consistent with the arguments given in
Kulsrud (2005).

In the important case of a power law cosmic-ray distribution
µ -f p p ,a

0 ( ) Equations (15) and (21) yield for the growth rate
for pressure anisotropy instability

p
G = W

> -
-

D
-

n p

n

a a

a

c

v

P

P8

5 2

4 1
1 , 23cpa

i
0

c 1
2

A

c

c

⎡
⎣⎢

⎤
⎦⎥

( ) ( )
( )

( )

with = - - a a3 2( ) ( ). In the strong anisotropy limit,
which corresponds to dropping the “1” in the square bracket on
the right-hand side of Equation (23), our expression for the
instability growth rate agrees with the strong anisotropy limit
given in LB06. For the local interstellar cosmic-ray spectrum
with ~a 4.7, = 0.63, and the threshold anisotropy for
instability is z > 0.55, or D ~P P v c1.3c c A .

4. Calculation of the Heating Rate

Our tool for calculating the rate at which cosmic rays heat
the thermal plasma will be the Fokker–Planck equation, which
is the Vlasov equation plus scattering terms. As is usual in
quasilinear diffusion theory, we assume the waves are small

amplitude and have random phases. We consider only resonant
wave–particle interactions with parallel propagating Alfvén
waves. We begin with a brief review of heating when the
waves are generated by drift anisotropy and then calculate
heating when the waves are generated by pressure anisotropy,
which is the main contribution of this paper.

4.1. Heating Due to Drift Anisotropy

We assume f has a spatial gradient along the background
magnetic field =B sBˆ such that the cosmic rays drift toward
positive s. The Fokker–Planck equation is

m
m

¶
¶

+
¶
¶

=
¶

¶
+

¶
¶

mf

t
v

f

s

F

p p
p F

1
, 24p2

2( ) ( )

where mF and Fp are the components of the diffusive flux,
which can be written in terms of components of the momentum
space diffusion tensor D as

m
=

¶
¶

+
¶
¶

m mm mF D
f

D
f

p
, 25p ( )

m
=

¶
¶

+
¶
¶

mF D
f

D
f

p
. 26p p pp ( )

In the case of drift anisotropy, only waves propagating toward
positive s are present, but with both signs of circular
polarization (which we assume have equal intensity). The
components of D are (Schlickeiser 1989)

n m
=

-
mmD

1

2
, 27

2( ) ( )

= =m m mmD D
pv

v
D , 28p p

A ( )

= mmD
pv

v
D , 29pp

A
2

⎜ ⎟⎛
⎝

⎞
⎠ ( )

where ν is the pitch angle scattering frequency, which is related
to the spectral magnetic energy density of resonant waves Wk

by

n m
p

= Wp
kW

B
,

8
. 30k

2
( ) ( )

Equations (27)–(29) are valid for small amplitude, parallel
propagating Alfvén waves of arbitrary polarization traveling
parallel or antiparallel to B.
Substituting Equations (27) and (28) into (25) gives

n m
=

-
mF

pv

v
A f kv k

1

2
, , , 31

2
A

A
( ) ( ) ( )

where A, the functional introduced in Equation (14), is
fundamental to the criterion for instabiity (Equation (13)).
Likewise,

n m
=

-
F

pv

v
A f kv k

1

2
, , . 32p

2
A

2

A⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( )

The implications of the close relationship between momentum
space diffusion and wave excitation (or damping) will shortly
become clear.
In some early studies of self confinement by drift anisotropy,

such as Kulsrud & Pearce (1969) and Skilling (1971, 1975), the
Fokker–Planck equation is solved in a frame moving with the
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waves, in which case the cosmic-ray scattering is purely elastic,
with mmD the only nonzero component of the diffusion tensor.
Because we are interested in energy exchange between the
cosmic rays and the background, and because pressure
anisotropy excites waves propagating in both directions, we
work in the rest frame of the thermal plasma.

We solve Equation (24) under the assumption that the
scattering mean free path l nº v is short compared to the
gradient length scale º ¶ ¶L f f sc c c∣ ( )∣, and the cosmic-ray
streaming anisotropy is  v c 1A( )  . We then keep only the
second term on the left-hand side of Equation (24), and only
the first term on the right-hand side. Integrating once with
respect to μ and using Equations (27) and (28) gives a
relationship between the spatial gradient of f, the scattering
frequency ν, and pvAA/v

m n
¶
¶

+
¶
¶

= -
¶
¶

pv

v

f

p

v

v p

f v f

s
. 33A

A

⎛
⎝⎜

⎞
⎠⎟ ( )

If we replace ¶ ¶s by a gradient length scale -L 1, we see that
the ratio of the anisotropic to the isotropic part of f is of
order nc L( ).

Next, we derive an energy equation from Equation (24) by
multiplying by particle energy ò and integrating over phase
space. The result is

ò m
¶
¶

+
¶
¶

= -U

t

F

s
vF p dpd , 34p

c c 2 ( )

where

ò mº U fp dpd , 35c
2 ( )

ò m mº F v fp dpd 36c
2 ( )

are the cosmic-ray energy density and energy flux vector,
respectively. The right-hand side of Equation (34) represents
energy transfer between cosmic rays and waves due to
scattering. It is shown in the Appendix that this can be written
in terms of the wave energy densities and growth rates as

ò òmº = GH vF p dpd k W dk2 , 37d p k
2

c( ) ( )

which was first given for gyroresonant instability by Kennel &
Engelmann (1966) and the notation Hd is meant to suggest a
plasma heating rate, because energy added to the waves must
be transferred to the thermal plasma if the waves are in a steady
state. Here, we evaluate the energy transfer term directly using
Equation (33)

ò
m

m= -
- ¶

¶
= -

¶
¶

H v
pv

v

f

s
p dpd v

P

s

1

2
, 38d

2 A
2

c 2
A

c( ) ( )

where for streaming toward increasing s, ¶ ¶ <P s 0c .
Equation (38) agrees with the standard expression for the

collisionless heating rate, and is notable for its simplicity and
lack of any explicit dependence on wave properties. It does,
however, have an implicit dependence in that the cosmic-ray
pressure gradient is determined by transport, and the transport
is determined, in part, by the degree of scattering. But as
Equations (33) and (13) show, the scattering rate is linked to
the wave growth rate. In a steady state, wave growth is
balanced by wave damping by the thermal background. So
ultimately, the pressure gradient and heating rate are

determined by the properties of the cosmic-ray source and
the background gas through which the cosmic rays stream. In
particular, if the waves are heavily damped, the cosmic-ray
anisotropy must be large to overcome wave damping. This
corresponds to a long scattering mean free path or a large
diffusion coefficient, which flattens the cosmic-ray pressure
gradient and reduces the rate at which cosmic rays can heat and
do work on the thermal gas.

4.2. Heating Due to Pressure Anisotropy

Now, we attempt to derive an expression for the heating rate
due to pressure anisotropy instability that is as compact as
Equation (38). Under the terms of our problem, Equation (24)
is replaced by Equation (9) plus momentum space diffusion
terms

m m

m

¶
¶

+ -
¶
¶

= D +
¶

¶
+

¶
¶

m

f

t

B

B
P P p

f

p

f p
F

p p
p F

3

1
. 39p

0 2
0

2
2

( ( ) ( ))

( ) ( ) ( )





As discussed below Equation (22), waves of opposite
circular polarization propagate in opposite directions, and
particles resonate with waves traveling in the same direction
they are (we assume the waves propagate in both directions
with equal intensity). Accordingly, Equations (27) and (29)
respectively can be used for mmD and Dpp, but

m= = >m m mmD D
pv

v
D ; 0, 40p p

A ( )

m= = - <m m mmD D
pv

v
D ; 0. 41p p

A ( )

The discontinuity in the off-diagonal terms mD p and mDp is only
apparent, as n º 0 for m = 0 for any distribution of waves with
a short wavelength cutoff. Scattering mechanisms that supple-
ment pitch angle scattering at small μ, such as mirroring, have
been proposed (Felice & Kulsrud 2001) but we ignore them
here; we have also dropped terms of order vA/c in the diffusion
tensor, which remove the singularity at m = 0 (Schlickei-
ser 1989). Importantly, because for pressure anisotropy m¶ ¶fc
is odd in μ, mF is odd in μ while Fp is even.
We solve for the anisotropy driven by the time varying

background magnetic field by multiplying Equation (39) by
mP2 ( ) and integrating over μ, making the same assumptions

about the ordering of terms we made in deriving Equation (33)
from Equation (24): we drop ¶ ¶f t , replace f by f0 in the B B
term, and drop Fp but keep mF on the right-hand side. The result
is

ò

ò

nm m
m

m

nm m w m

-
¶
¶

+
¶
¶

= -

=
¶
¶

pv

v

f

p

v

v p

f
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pv

v
A f k d

B

B
p

f

p

1

1 , ,

2

45
. 42

A

0

1
2

A

A

0

1
2

0⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )

( ) [ ]

( )


The left-hand side of Equation (42) is proportional to the
anisotropy factor A while the right-hand side of Equation (42)
is positive, as expected for anisotropy driven instability.
However, whereas Equation (33) gives A directly as a function
of ν and p, Equation (42) involves an integral of A with ν. The
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more important difference between Equations (33) and (42) is
that the timescale on the right-hand side of Equation (33) is the
light travel time Lc/c, while the timescale on the right-hand
side of Equation (42) is the flux tube expansion timescale
B B∣ ∣ . We discuss the implications of Equation (42) for cosmic-
ray self confinement in Section 5.

We derive an energy equation analogous to Equation (34) by
multiplying Equation (39) by  and integrating over momen-
tum space. The result is

ò m
¶
¶

- + = D -^
U

t

B

B
U P U vF p dpd . 43p

c
c c c

2( ) ( )
 

The first term on the right-hand side of Equation (43) is the
cosmic-ray energy injection rate corresponding to the cosmic-
ray pressure source. If the pressure were isotropic and we
substituted r rg g for B B , the left-hand side of Equation (43)
would be in standard form for describing adiabatic expansion.
Because in the absence of collisions, P⊥ decreases slightly
faster than Pc itself, anisotropy slows the rate of energy loss. If
we use the identity

= +
-

^
^

P P
P P

3
, 44c c

c c ( )

then Equation (43) can be written as

ò m
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¶

- +

= - + D -^

U

t

B

B
U P

B

B
P P U vF p dpd

3
. 45p

c
c c

c c c
2

( )

( ) ( )



 

Because pressure anisotropy is reversed in an increasing
magnetic field, the anisotropy term on the right-hand side of
Equation (45) is positive whatever the sign of B B . It shows
that anisotropy reduces the rate of energy loss in a decreasing
magnetic field and increases the rate of energy gain in an
increasing field. In both cases, this is because the parallel
momentum is fixed. Although the anisotropy term formally
resembles gyroviscous heating (Kunz et al. 2011), it is not a
true heating process because it is completely reversible.

Energy transfer to waves, however, is a true energy loss
process. To evaluate it, we write out the diffusion term
explicitly, using the even parity of Fp noted below
Equations (42) and (14). This gives

ò
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We know from Equation (42) that
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(where the first inequality simply follows from m  1).
Therefore, we have a lower bound on the magnitude of

cosmic-ray heating
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where in the last step we have used Equations (3) and (1).
Equation (48) is only a lower bound because our analysis does
not give the functional form of ν. Experimentation with various
trial functions for ν suggests that Equation (48) is unlikely to
underestimate the heating by more than a factor of 2.
We can generalize Equation (48) by comparing the rates at

which the cosmic rays are heating their environment to the rate
at which they are doing work on it, which from Equation (4) is
-P B Bc  . Therefore, the rate of heating is the rate of work
multiplied by a factor of order vA/c.

4.3. Comparison of Drift and Pressure Anisotropy Heating

The rate of cosmic-ray heating due to streaming anisotropy
(Equation (38)) is proportional to Pc , while the heating rate
due to pressure anisotropy (48) is proportional to Pc , so in order
to compare them they must be given in the same dimensions.
Suppose cosmic rays are injected at x=0 when the

background magnetic field =B xBˆ . We take P t0,c( ) to be a
given, increasing function of time and assume the cosmic rays
stream away from the boundary at speed vA. To keep the
problem simple, we assume = + DP t P P t0,c c0 c( ) ( ) with
DP P 1c c0  and ignore the compression and acceleration of
the thermal gas by the cosmic rays. Then, Pc at a point >x 0
can be found from

¶
¶

+
¶
¶

=
P

t
v

P

x
0, 49c

A
c ( )

the solution of which is

= -P x t P t x v, 0, . 50c c A( ) ( ) ( )

The heating rate Hd is found directly from Equation (49)

=
¶

¶
= D -H x t

v

P x t

t
P t x v,

1 ,
0, . 51d

A

c
c A( ) ( ) ( ) ( )

Comparing Equations (48) and (51), we see that heating due to
pressure anisotropy is lower by a factor of order vA/c, as
suggested by the analysis in Section 4.2. The essential
difference is that in the case of drift anisotropy, scattering
balances the tendency of cosmic rays to stream down the
magnetic field aligned component of their gradient at the speed
of light, but in the case of pressure anisotropy, scattering
balances the driving of pressure anisotropy by transverse
expansion of the magnetic field at the magnetoacoustic speed.
It should be borne in mind, however, that while we assumed
uniform cosmic-ray injection along the flux tube for explora-
tory purposes, this condition is unlikely to occur in nature. In
Section 7, we speculate on the joint effects of parallel and
perpendicular cosmic-ray pressure gradients.

5. Implications for Cosmic Ray Self Confinement

Equations (33) and (42) constrain the product of the pitch
angle scattering frequency ν and the anisotropy factor A, which
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appears in the growth rate Gc. Requiring that Gc equals Gd , the
rate of damping by the thermal background, yields an
independent constraint on A. From this, we can estimate the
scattering frequency ν, from which we can derive the cosmic-
ray spatial diffusivity k n~ v2 and check for self consistency
of the frequent scattering/short mean free path assumption that
underlies cosmic-ray hydrodynamics.

We can already guess from the results of Section 4.3 that kpa,
the diffusivity due to self confinement by pressure anisotropy
instability, is larger than kd , its counterpart in the drift case, by
a factor of order c/vA. From Equation (30) we see that ν is
directly proportional to the fluctuation spectrum W, while Gc is
now to be equated to Gd . If their product is smaller in the
pressure anisotropy case by a factor of vA/c, the scattering rates
themselves must be smaller by approximately the same factor.
Here, we provide some background on the argument and show
explicitly how ν can be estimated.

The most important damping mechanisms are thought to be
ion-neutral friction (Kulsrud & Pearce 1969), nonlinear Landau
damping by thermal ions (Lee & Völk 1973; Kulsrud 1978),
damping by an ambient turbulent cascade (Yan & Lazar-
ian 2002; Farmer & Goldreich 2004), and enhancement of
turbulent damping by high plasma β effects (Wiener et al.
2017). With the exception of ion-neutral friction, which
appears to be strong enough to prevent cosmic-ray self
confinement in dense, neutral gas entirely (Everett &
Zweibel 2011), the other mechanisms suppress self confine-
ment only above energies of about 100–300 GeV for Milky
Way conditions. Although we will not have to make explicit
calculations involving any damping mechanisms to compare
kpa with kd, we provide a sample calculation for nonlinear
Landau damping in Section 6.

From Equations (33) and (18) we estimate the diffusivity due
to drift anisotropy instability as

k
n

~ ~ -
v

v L
v

v
1 , 52d
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2
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⎞
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which corresponds to a ratio of mean free path to length scale

l
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1 . 53d DA
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If we take kd to be the widely accepted value ´3 1028 cm2

s−1, set vA=100 km s−1 (corresponding to an ion density of
0.01 cm−3 and B=5 μG) and take L to be 1 kpc,
then - ~v v 1 1D A .

From Equations (42) and (22), the diffusivity due to pressure
anisotropy instability is

k t~
D

-vv
c P

v P
1 , 54Bpa A

c

A c
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⎝⎜

⎞
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where we have removed the spectrum-dependent factors from
Equation (23) because they are of order unity. The corresp-
onding ratio of mean free path to fiducial length tv BA is

l
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c P

v P
1 . 55

B

pa

A

c

A c

⎛
⎝⎜

⎞
⎠⎟ ( )

Due to the similarity between the drift and pressure anisotropy
instability growth rates (Equations (19) and (23)), the drift and
pressure anisotropy factors required to balance wave damping
are probably about the same: namely, order unity. Therefore,

the scattering mean free path due to pressure anisotropy is
probably similar to the Alfvén travel length tv BA .

6. Example: Application to Bottlenecks in Galactic Halos

One of the motivations for this study was the realization that
models of cosmic-ray self confinement by drift anisotropy
should be prone to the formation of bottlenecks. Here we apply
the theory of self confinement by pressure anisotropy to the
models of bottleneck formation in low density gas between a
cosmic-ray source and a denser cloud such as shown in the top
panel of Figure 1 (Wiener et al. 2017, 2019). That study
focused on the effect of the cosmic-ray source on the cloud.
Here we address the effects of pressure anisotropy on the
intercloud medium for the range of parameters chosen for that
study. In Wiener et al. (2019), the cosmic rays were injected in
a pulse of duration comparable to the Alfvén and sound travel
times from the source to the cloud, so spatial gradients were
important and a steady state was never achieved. In order to
minimize these effects,we imagine that the cloud is much closer
to the source than the 1 kpc chosen in the original bottleneck
studies.
Prior to cosmic-ray injection, the intercloud medium has

thermal pressure = ´ -P 3.2 10g
13 dyne cm−2, magnetic

pressure = ´ -P 3.97 10m
14 dyne cm−2, and negligible

cosmic-ray pressure. A heating rate G0 of ´ -1.0 10 25 erg s−1

per hydrogen atom is included to balance radiative losses at the
initial temperature = ´T 1.1 106 K, giving a volumetric
heating rate of about ´ -9.0 10 29 erg cm−3 s−1.
The fiducial cosmic-ray energy flux into the domain rateDPc

is ´ -1.67 10 25 erg cm−3 s−1. From Equation (3), the
characteristic flux tube transverse expansion time tB is

´3.7 1012 s. Although the steady state cosmic-ray pressure
of ´ -8.2 10 14 dyne cm−2 derived from the simulation
parameters is less than 25% of the original pressure, because

~ ´ -v c 2 10A
4, the resulting distention of the magnetic field

is more than enough to excite the cosmic-ray pressure
anisotropy instability.
From Equation (48), the lower bound on the heating rate Hpa

is ´ -1.2 10 30 erg cm−3 s−1, slightly more than 1% of the
heating rate that offsets radiative cooling. Even in models with
10 times the fiducial source strength, heating would be a
relatively weak effect compared to the heating required to
offset radiative cooling.
The mean free path for scattering, however, is more

interesting. From Equation (42), we estimate ν by approximat-
ing Equation (42) as

n
D
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v

c
p

df

dp
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from which it follows that
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corresponding to a mean free path of about 1.6 pc if the
anisotropy factor is unity. Bearing in mind that this value of ν is
weighted by m m- <1 12( ) , and that if wave damping is weak
the anisotropy factor could be significantly stronger, we
conclude that pressure anisotropy instability could well be
adequate to couple the cosmic rays to the intercloud medium.
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It is also instructive to repeat the estimate of ν if nonlinear
Landau damping is the primary dissipation mechanism. For
cosmic rays near the mean energy, the damping rate Gnlld is

nG ~
v

c
, 58i

nlld ( )

where vi is the thermal ion velocity. Equating Gnlld to Gc, which
we estimate from Equation (42), gives

n
nt
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c
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v
. 59i

B i
c
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Solving Equation (59) for ν, we find
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For the parameters assumed in Wiener et al. (2019),
Equation (60) gives n ~ ´ -3.7 10 8 s−1. The corresponding
mean free path is l ~ 0.26 pc. Although this is a rough
estimate, it suggests good confinement. Our estimate for the
heating rate is unchanged.

According to these results, waves driven by the pressure
anisotropy instability would provide a short scattering mean
free path and lock the cosmic rays to the thermal fluid.
However, the cosmic-ray pressure profile would be quite flat
and the cosmic rays would transfer little heat or momentum to
the gas.

7. Summary and Conclusions

Cosmic ray propagation and cosmic-ray hydrodynamics—
the fluid description of how cosmic rays exchange energy and
momentum with magnetized thermal plasma—depend on
kinetic scale plasma processes. One of the most potent and
best studied of these is the drift, or streaming instability, of
Alfvén waves with a wavelength of order the cosmic-ray
gyroradius. In a steady state, which is assumed to be reached on
a timescale short compared to the macroscopic dynamical time,
energy and momentum transferred from the cosmic rays to the
waves is absorbed by the thermal gas such that cosmic rays
exert a parallel force of magnitude Pc on the thermal gas, heat
the gas at a rate of magnitude v PA c∣ ∣ , and drift down their
pressure gradient at velocity vA relative to the thermal
background.

In order for the instability to operate, the parallel cosmic-ray
pressure and thermal gas density gradients must point in the
same direction. If this condition is not met, a cosmic-ray
“bottleneck” forms, in which the cosmic-ray pressure is
constant and the cosmic rays do not exchange momentum or
energy with the ambient medium. This can fundamentally alter
the impact of cosmic rays on gas dynamics and thermo-
dynamics, as speculated by Skilling (1971) and first demon-
strated by Wiener et al. (2017).

In this paper, we have investigated a complementary
mechanism for cosmic-ray self confinement and coupling to
the thermal gas based on an instability driven by cosmic-ray
pressure anisotropy. The pressure anisotropy instability, like
the drift instability, is triggered by anisotropy of order vA/c,
destabilizes hydromagnetic waves with wavelength of order the
cosmic-ray gyroradius, and has a growth rate proportional to
the ratio of cosmic ray to thermal gas density, scaled by the
nonrelativistic ion cyclotron frequency (Equations (19)
and (23)).

In previous studies of this instability (LB06; Yan &
Lazarian 2011), pressure anisotropy was assumed to be driven
by compressive interstellar turbulence. In this situation, cosmic
rays mediate the dissipation of turbulent energy as heat, and
absorb some of that energy themselves through second order
Fermi acceleration. As such, the cosmic rays create an energy
sink for the turbulent cascade at larger spatial scales than would
be expected due to dissipative processes in the thermal gas
alone.
We considered anisotropy driven by a slowly changing

magnetic field, but assumed the energy source for changing the
magnetic field to be the cosmic rays themselves, which we
modeled as simple injection (Section 2; see Figure 1). The
anisotropy destabilizes circularly polarized waves, which
propagate in both directions (Section 3). In Section 4, we
calculated the relationship between the force exerted by the
cosmic rays on the medium and the rate at which they heat it.
Whereas in the case of parallel streaming the magnitudes of the
force and the heating rate are Pc and v PA c , we found that
for a transverse force ̂ Pc the heating rate is only of order

̂v c C PA ma c( ) , where Cma is the magnetoacoustic speed
defined in Equation (1). The underlying reason for the
difference in heating rates for drift and pressure anisotropy is
that in the drift anisotropy case, scattering balances the
streaming of cosmic rays down the magnetically aligned
component of their pressure gradient at the speed of light, but
in the pressure anisotropy case, in which expansion is
perpendicular to B, the cosmic rays must overcome the inertia
of the thermal gas and scattering need only balance the driving
of pressure anisotropy by expansion at the much lower
magnetoacoustic speed. We showed in Section 5 that the
weaker scattering rate corresponds to weaker self confinement.
In Section 6, we applied the pressure anisotropy model to

one of the situations that motivated this paper: the formation of
a bottleneck between an interstellar cloud and a cosmic-ray
source (Wiener et al. 2017, 2019). We showed that although
the heating rate is only a small perturbation to the
thermodynamics, the scattering rate could be enough to prevent
the cosmic ray–thermal gas decoupling that would occur if a
bottleneck formed. In this section we also showed how ν can be
estimated when nonlinear damping is the main source of
thermal dissipation; this led to an estimate for λ somewhat
shorter than the estimate based on linear damping.
Based on the calculations in this paper, we can say that

pressure anisotropy instability and drift anisotropy instability
are not equivalent and not interchangeable as far as cosmic-ray
confinement and cosmic-ray coupling to thermal gas on global
(kiloparsec) scales are concerned. On intermediate, or mesos-
cales, the anisotropy drive may be strong enough to confine the
cosmic rays and provide momentum transport, but not a
significant amount of heating.
In general, cosmic-ray sources are localized in space, in

which case we would expect both drift and pressure anisotropy
to be present. For definiteness, suppose the direction of
streaming is such that the drift anisotropy >f 01 , while

>f 02 due to cosmic-ray expansion of the flux tube onto
which cosmic rays are injected. The waves for which drift and
pressure anisotropy are both destabilizing have the largest
growth rate. These waves propagate in the same direction as the
cosmic-ray streaming and have m > 0r . If f1 and f2 adjust such
that cosmic-ray excitation balances thermal damping, then
waves propagating in the opposite direction, or with the
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opposite sense of polarization, are damped. Therefore, the
cosmic rays will be convected at the Alfvén speed, and their
pressure will vary as rg

g
2c along the magnetic flux tube. If rg

increases along the flux tube, this is exactly the condition for
bottleneck formation. But due to pressure anisotropy, the
cosmic rays do not decouple completely. Rather, as the
pressure gradient flattens, counterpropagating waves of oppo-
site polarization will become unstable, and the system will
resemble the one studied here, with a short cosmic-ray mean
free path but little momentum or heat transfer. There would be
very little difference between this bottleneck and the original
one based on drift anisotropy alone. In future work, we hope to
explore this complex picture through analysis and numerical
simulations.
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Appendix

Here we sketch proof that resonant scattering from an
ensemble of randomly phased, small amplitude waves transfers
energy between waves and cosmic rays in a way that is
consistent with wave growth and damping. For general
discussions of wave/particle energetics see Kennel & Engel-
mann (1966), Kulsrud & Pearce (1969), and Stix (1992); here,
we consider only parallel propagating Alfvén waves, which is
the relevant case for our problem.

Consider a wave of wavenumber =k Bk B with electric
field dEk

d d d= +y y-E E Ek e e
1

2
, 61k

i
k

i* *( ) ( ) ( )

where y wº -kz t . We will assume w w= + Gir c, with
wG 1rc∣ ∣  . The spectral energy density dWk is the sum of the

electric, magnetic, and background plasma kinetic energy
densities; the magnetic and kinetic energies are equal and larger
than the electric energy density by a factor of c vA

2( ) . Then,

d
p

d d
d d
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E E
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v
e e
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2

1

4 8 8
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i i k k
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2

2
2

A
2

*
**( )

( )

where áñ denotes an average over the phase ψ.
Let the perturbed cosmic-ray distribution function produced

by the wave be dfck. In the quasilinear approach used here,
diffusion in momentum space is produced by the interaction of
each wave electromagnetic field with the distribution function
it produces, integrated over all k

ò
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d d
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*
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· · ( )

where d dº + ´F E v Bq ck k k( ) is the electromagnetic force
due to the wave and D/Dt is the convective derivative in phase
space. We derive an energy equation, by multiplying
Equation (63) by particle energy  and integrating over
momentum space. Here, we are mainly interested in the
right-hand side, which we integrate by parts

ò ò

ò

ò
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d d d d

d d d d

=-
¶

¶
+

¶
¶

= +

= +

  F
p

F

p

v E E

E J E J

Df

Dt
d p

f

f
dkd p

q f f dkd p

dk

1

4

1

4
1

4
, 64

k
ck

k

ck

k ck k ck

k ck k ck

c 3

3

3

*
*

* *
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·

·
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( · · ) ( )

where dJck and dJck* are the perturbed cosmic-ray current
Fourier component and its complex conjugate generated by
the wave.
Each Fourier component of the cosmic-ray current dJck is

related to the total wave current dJk and the wave plasma
current dJpk by

d d d= -J J J . 65ck k pk ( )

The relationship between dEk and dJk follows from combining
Ampere’s law and Faraday’s law, and dropping the displace-
ment current, which gives

d
w

d
p

=J
Eic k

4
. 66k

k
2 2

( )

The plasma current dJkp for an undamped, parallel propagating
Alfvén wave can be shown to be

d
w d

p
=J

Ei c

v 4
. 67pk

k
2

A
2

( )

Substituting Equations (66) and (67) into Equation (65) gives
the cosmic-ray current

d
d
p

w
w

= -J
E

i
i c

v

k v

4
. 68ck

k
2

A
2

2
A
2⎛

⎝⎜
⎞
⎠⎟ ( )

Taking the scalar product of Equation (68) with dEk*, then
taking the scalar product of the complex conjugate of
Equation (68) with dEk and its complex conjugate, subtracting
one equation from the other, and using Equation (62) together
with the assumptions w = k vr

2 2
A
2 and wG 1rc∣ ∣  gives

d d d d+ = - GE J E J W
1

4
2 . 69k ck k ck kc* *( · · ) ( )

Substituting Equation (69) into Equation (64) gives the result
we sought

ò ò d= - G
Df

Dt
d p W dk2 . 70k

c 3
c ( )

Equation (70) shows that the quasilinear force term represents
the exchange of energy between the cosmic rays and the waves
that scatter them. If G > 0c (unstable waves), the cosmic rays
lose energy to the waves.
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