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Abstract

We adopt the deep learning method called the Convolutional Approach to Shell Identification (CASI) and extend it
to 3D (CASI-3D) to identify signatures of stellar feedback in molecular line spectra. We use magnetohydrodynamics
simulations modeling the impact of stellar winds in a turbulent molecular cloud to generate synthetic
13CO(J= 1− 0) observations. We train two CASI-3D models: ME1 predicts only the position of feedback, while
MF predicts the fraction of the mass coming from feedback in each voxel. We adopt 75% of the synthetic
observations as the training set and assess the accuracy of the two models with the remaining data. Both models
identify bubbles in simulated data within 5% error. We use bubbles previously visually identified in Taurus in
13COto validate the models and show that both perform well on the highest confidence bubbles. Models ME1 and
MF predict total feedback gas mass of 2894Me and 302Me, respectively. After correcting for missing energy due
to the limited velocity range, model ME1 predicts feedback kinetic energies of 4.0×1046 erg and 1.5×1047 erg
with and without subtracting the cloud velocity gradient. Model MF predicts feedback kinetic energies of
9.6×1045 erg and 2.8×1046 erg with and without subtracting the cloud velocity gradient. Model ME1 predicts
bubble locations and properties consistent with previous visual identifications. However, model MF demonstrates
that feedback properties computed using visual identifications significantly overestimate feedback impact, due to
line-of-sight confusion and contamination from background and foreground gas.

Unified Astronomy Thesaurus concepts: Stellar wind bubbles (1635); Interstellar medium (847); Molecular clouds
(1072); Interstellar clouds (834); Astronomy data analysis (1858); Astronomical methods (1043); Convolutional
neural networks (1938); Neural networks (1933); Astrostatistics (1882); Interdisciplinary astronomy (804); Stellar
feedback (1602); Star formation (1569)

Supporting material: interactive figures

1. Introduction

Stellar winds driven by young stars create distinct features in
molecular clouds. The ejected mass compresses and heats the
ambient gas, producing shocks (Hollenbach & Tielens 1999).
In the case of more massive stars, stellar winds combined with
radiation create bubbles containing luminous H II regions.
Observational surveys find that signatures of such bubbles are
ubiquitous. For example, Churchwell et al. (2006, 2007)
visually identified numerous H II regions in the Spitzer Galactic
Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE)
data. They concluded these bubbles have a significant impact
on the dynamics and star formation of molecular clouds, and
they found 12% of the shells are associated with young
sources, which may have been triggered by shell expansion.
Over 50% of the bubbles identified are not spherically
symmetric, due to fluctuations in local gas density and/or
anisotropic stellar winds and radiation fields. These complica-
tions make bubble identification more challenging.

A variety of groups have investigated the impact of stellar
feedback bubbles that are due to stellar winds within molecular
clouds. Nakamura et al. (2012) found several parsec-scale
bubbles expanding and compressing the ambient gas, which
they proposed have contributed to the formation of several
dense filaments. They suggested that one of these dense
filaments is converging with another filament, triggering recent
star formation in the cloud. Quillen et al. (2005) mapped the
expanding cavities in NGC 1333, a subregion in the Perseus

molecular cloud. They found the kinetic energy of these
cavities is sufficient to power the turbulence in this region.
Arce et al. (2011) identified stellar feedback bubbles in a full
map of the Perseus molecular cloud and drew similar
conclusions about the energy budget. However, Li et al.
(2015) found that the energy injected from bubbles in the
Taurus molecular cloud is only 29% of the turbulent energy of
Taurus.
A variety of theoretical works have also investigated the

impact and signatures of stellar feedback. Boyden et al. (2016)
studied statistical signatures of stellar winds in synthetic
observations. They found that the covariance matrices of the
velocity channels are sensitive to the existence of stellar
feedback. Offner & Liu (2018) found that the slope of the
velocity power spectrum becomes steeper in simulations with
feedback compared to those without feedback. However, stellar
feedback might also indirectly add energy to the ambient gas
where there is no injected feedback mass (Offner & Liu 2018),
making quantitative statistical study of feedback more challen-
ging in observational data.
Historically, bubbles, such as those found in the above studies,

have been identified “by eye.” However, given the exponentially
increasing amount of data, visual identification is not scalable; that
is, it is almost impossible for humans to look through all the data
by eye (Molinari et al. 2010; Peek et al. 2011). Moreover, to study
the dynamics of bubbles, it is necessary to switch from two-
dimensional images (Beaumont et al. 2014) to three-dimensional
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data cubes (Arce et al. 2011; Li et al. 2015) because those contain
information about the gas motion. An extra dimension makes it
much more time intensive to identify the bubble features.
Moreover, it is impossible for humans to consistently identify or
classify without bias. However, systematic and repeatable
identification is possible with the aid of machine-learning
approaches (Beaumont et al. 2011, 2014; Van Oort et al. 2019).

Several machine-learning algorithms have been applied to
identify stellar feedback features (Beaumont et al. 2011, 2014).
Beaumont et al. (2011) applied support vector machines (SVM)
to distinguish a supernova remnant from the ambient gas in
12CO J=3−2 emission. Beaumont et al. (2014) developed
the Brut algorithm, based on random forests, to identify
bubbles in dust emission. To train Brut, they adopted bubble
identification results from over 35,000 participants in the Milky
Way Project, a citizen science project based on GLIMPSE data.
Xu & Offner (2017) expanded on this work by supplementing
the Brut training set with synthetic observations of bubbles in
simulated clouds. After retraining on the enhanced training set,
Brut more efficiently identified ultracompact and compact H II
regions generated by B-type stars. Leveraging both observa-
tional data (e.g., Simpson et al. 2012; Jayasinghe et al. 2019)
and synthetic observations can significantly enhance the
performance of machine-learning algorithms. However, Brut
requires the bubble to be centered in the image for it to be
accurately identified. This makes it computationally expensive
to identify bubbles in a large sky survey map because the data
must be cropped into small chunks centered at different
positions with different sizes to ensure the target bubbles are
centered in at least one image.

Due to the evolution of high-performance computing and the
power of graphics processing units (GPUs), deep learning is
gaining popularity thanks to its general applicability and high
accuracy. Recently developed deep learning methods are more
powerful in image recognition than earlier methods, like Brut.
Ntampaka et al. (2019) developed a deep machine-learning tool
based on convolutional neural networks (CNNs) to estimate the
mass of galaxy clusters in X-ray emission. The CNN is not
sensitive to the position of galaxy clusters, making it
straightforward to apply it to large sky survey maps. Van Oort
et al. (2019) developed an “encoder–decoder” Convolutional
Approach to Shell Identification (CASI) to identify stellar wind
bubbles in density slices and 2D CO emission. Once trained,
CASI can identify structures in minutes and achieves a 98%
pixel-level accuracy. However, one caveat of these CNN
models is that they are limited to 2D integrated intensity maps
or individual velocity channels. These algorithms do not take
radial velocity information into consideration, which may lead
to a high false detection rate when applied to 3D data. In other
words, this technique may identify a clear ring structure as a
bubble even though this structure is caused by a turbulent
pattern without any evidence of expansion in the spectra.
Alternatively, it may miss structures with coherent expansion
across a range of channels but which do not have a bubble
morphology in most channels.

In this paper, we adopt the deep learning method CASI (Van
Oort et al. 2019) and extend it to 3D (CASI-3D) in order to
exploit the full 3D CO spectral information to identify bubbles.
We develop two deep machine-learning tasks. Task I predicts
the position of feedback. Task II predicts the fraction of the
mass in the voxels that is coming from feedback. We describe
our deep machine-learning algorithm architecture and how we

generate the training set from synthetic observations in
Section 2. In Section 3, we present the performance of the
CNN model in identifying bubbles in both synthetic data and
observational data. We summarize our results and conclusions
in Section 4.

2. Method

2.1. CASI-3D Architecture

In this section, we give a brief overview of the CASI
architecture and describe our implementation in 3D. CASI-3D is
available on GitLab.4

Van Oort et al. (2019) developed the CASI architecture with
residual networks (He et al. 2016) and “U-net” (Ronneberger
et al. 2015). The residual networks exponentially increase the
complexity of the networks to prevent overfitting (He et al.
2016; Veit et al. 2016). “U-net” adds cross connections
between different layers, which enhance the performance in
constructing the output image (Ronneberger et al. 2015). CASI
utilizes a widely used optimization method, stochastic gradient
descent (SGD) with momentum, in the training. Momentum
indicates that the SGD takes the past time step into
consideration when conducting the optimization. It helps
accelerate SGD during training. CASI is trained on simulated
molecular cloud density 2D slices or CO integrated intensity
maps. It learns to predict the “tracer field,” which is an ORION
field (Li et al. 2012) that tracks the fraction of gas in each cell
that is launched in the stellar winds. A more detailed
description of CASI can be found in Van Oort et al. (2019).
We modify the CASI architecture and replace the 2D

convolutions with 3D convolutions, as shown in Figure 1.
The “encoder” part extracts the features from the input data,
and then the “decoder” part translates these features into
another image, such as the tracer field. In Van Oort et al.
(2019), the input data is a 256×256 array. The image goes
through four down-sampling (max pooling) layers. Given the
extra dimension in our model, we cannot maintain the same
spatial resolution in our 3D model, due to the limited memory
on the GPU. We re-form the input data to an array shape of
64×64×32 in position–position–velocity (PPV). The data
cube undergoes three down-sampling layers. We apply
7×7×7 filters in the first layer to represent the large-scale
structure in the training set. We then apply 3×3×3 filters in
the following layers, which capture the details of bubble
morphology and velocity information. We begin with 32 filters
and double them after each down-sampling layer. We adopt the
average pooling method to down-sample the data. See
Appendix A.1 for more discussion of the down-sampling
methods.
Owing to the limitation of the GPU memory, we set the

batch size to be eight. The batch size indicates the number of
samples that propagate through the network at one time. We
explore different numbers of epochs during the training. An
epoch is one iteration of the prediction, error estimation, and
weight update cycle over all the training data. After some
number of epochs, the model error converges and does not
decrease much more. The learning rate is a hyperparameter that
controls the magnitude of filter weight updates with respect to
the loss gradient. The learning rate affects how quickly our
model converges to an acceptable minimum squared error

4 https://gitlab.com/casi-project/casi-3d
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value. If the learning rate is too high, the model diverges and
cannot reach the minimum squared error value. If the learning
rates are too low, it will take a long time for the model to
converge as it makes very tiny updates to the weights in the
network.

We test two strategies to set the learning rate during training:
a fixed learning rate during the whole training process or an
adaptive learning rate that changes with the epoch. The fixed
learning rate is set to 0.01. The adaptive learning rate is initially
set to 0.02 and halved every 19 epochs. Considering the
computing time limits during the training, we set the maximum
epoch number to be 277. Meanwhile, we set an early-stopping
criterion for models ME1, ME2, ME5, ME6, and ME7. The
early-stopping criterion provides guidance on how many
epochs can be run before the model begins to overfit. The
model stops the training if the validation loss decreases less
than 0.0001 after 100 epochs. In practice, most models (ME2,
ME5, ME6, ME7) reach the early-stopping criterion before
reaching the epoch limit.

2.2. Training Task

We develop two training tasks to identify stellar feedback
bubbles. Task I involves training to predict the position of
feedback, which reproduces the morphology of bubbles. Task
II involves training to predict the fraction of the mass that
comes from stellar feedback, which gives a better mass
estimation of the bubbles.

2.2.1. Training Task I: Predicting the Position of Feedback

In Task I, we aim to predict the position of feedback on a
pixel-by-pixel basis. We use the mean squared error (MSE) as
the loss function in the training. The loss function is a metric to
quantify the performance of the model predictions. The mean
squared error is defined as

( ) ( )å= -
=n

Y YMSE
1

, 1
i

n

1
pred tracer

2

where Ypred represents the prediction from the model, Ytracer
represents the “ground truth” as described by the tracer field,
and n indicates the number of samples. In this model, Ytracer is
the emission of 13COat the specific positions where there is

feedback gas. The 13COintensity is proportional to the mass of
the gas in the optically thin regime.
Observational data includes noise, so we must adopt a

prescription to define feedback that accounts for noise limits.
We adopt MSE in part because it is less affected by the noise in
the data cube than other loss functions. We set a threshold
based on the input data noise level, 0.2 K, to binarize the
prediction map; that is, a pixel is assigned a 1 if the predicted
emission is above 0.2 K, and a pixel is assigned a 0 if the
predicted emission is below 0.2 K. The binarized prediction
map indicates the location of the bubbles in PPV space. The
final loss indicates the error of the prediction, which is related
to the mass estimation uncertainty.
To explore the performance of different models with different

hyperparameters, we train models with different learning rates,
different epochs, different optimization methods, and different
loss functions. We easily rule out other loss functions and
optimization methods based on the performance on the training
set, and we adopt MSE as the loss function and SGD as the
optimization method. We list different models with different
learning rates and with different epochs in Table 1. We
additionally explore the completeness of the training set on the
performance. More discussion can be found in Section 2.3.4.

2.2.2. Training Task II: Predictions for the Fraction of
Feedback Mass

Task I basically classifies pixels individually as belonging to
feedback or not belonging to feedback. However, it does not
take into account that many pixels contain some feedback and
some nonfeedback gas. To address this, we train another model
to predict the fraction of the mass that comes from stellar
feedback. We adopt the same learning rate, epoch, and
optimization method as the best model in Section 2.5. We
define the new training data to be PPV cubes containing the
fraction of mass, rather than the emission, that comes from
the feedback. We describe how these cubes are constructed in
more detail in Section 2.3.2.
We test the MSE, intersection over union (IoU), and a

combination of MSE and IoU as the loss function and compare
their performance in Appendix A.2. The IoU is a metric to
evaluate the overlap fraction between the prediction and the

Figure 1. Architecture of the U-net CNN model with residual functions.
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tracer field and is defined as

( )Ç
È

=
Y Y

Y Y
IoU . 2

pred tracer

pred tracer

The combination of MSE and IoU is defined as

( )w= ´ +L MSE IoU, 3new

where ω is the weight of the MSE in the new loss function.
Here we set ω=100. Since the fraction is between 0 and 1, the
MSE is not sensitive to small values, while the IoU is strongly
sensitive to small values. We find that the combination loss
function performs the best in predicting the fraction of the mass
that comes from stellar feedback.

2.3. Training Sets

2.3.1. Synthetic 13COObservations

To train CASI-3D, we adopt magnetohydrodynamic (MHD)
simulations that model sources launching stellar winds in a
piece of a turbulent molecular cloud (Offner & Arce 2015). The
simulation box is 5×5×5 pc3, with a total mass of 3762Me
and mean density of ∼500 cm−3. Offner & Arce (2015)
conduct different simulation runs with different mass-loss rates,
different magnetic fields, different turbulent patterns, and
different evolutionary stages to study the impact of stellar
winds on the ambient gas. More details about the simulations
can be found in Offner & Arce (2015).

We apply the publicly available radiation transfer code
RADMC-3D (Dullemond et al. 2012) to model the 13CO(J=
1−0) line emission of the simulation gas. We use
13COemission rather than 12CO because 12CO is optically
thick at the average simulation column density. To construct
the synthetic observations, we adopt the simulation density,
temperature, and velocity distribution for the RADMC-3D
inputs. In the radiative transfer, H2 is assumed to be the only
collisional partner with 13CO. In general, we assume the
13COabundance is constant where [13CO/H2]=1.5×10−6.
However, when gas conditions are likely to result in full
dissociation of 13CO(T> 1000 K or n(H2)<50cm−3), we
set the abundance to zero. In addition, we also set the
13COabundance to zero in conditions where it would freeze
out onto dust grains (n(H2)<104 cm−3) or where it would be
dissociated by strong shocks (∣ ∣ > -v 10 km s 1).

We increase the training set by also considering thin clouds.
Qian et al. (2015) study the thickness of molecular clouds from
the core velocity dispersion (CVD) and find that the line-of-
sight thicknesses of Taurus, Perseus, and Ophiuchus molecular
clouds are 1

8
of their length. To recreate the distinct circular

structures of the observed stellar feedback, we crop the data
cube into thinner slices, including widths of 2 and 0.9 pc. We
show the emission from 13COwith different cloud thicknesses
in Appendix A.1 and discuss why we adopt 13COin favor of
12CO in our analysis.

2.3.2. Training Target: Tracer Field for Task I

To construct the training set for Task I, we first define the
position of the bubbles using the tracer field that indicates the
fraction of gas coming from stellar feedback at each position. A
given voxel is assigned to be part of a bubble structure where
more than 2% of the mass comes from stellar feedback.
Conversely, a voxel is assigned to be pristine gas where less
than 2% of the mass comes from stellar feedback. To better
capture the morphology of the bubbles, we define the position
of a bubble by the gas temperature, where T�12 K. We
discuss different definitions of bubbles in Appendix A.2,
including a criterion using the gas velocity.
We mask all the positions of pristine gas. We set the

13COabundance to be 0 in the masked region and compute the
radiative transfer to obtain the 13COemission that is only
coming from the stellar feedback, which we refer to as the
13COfeedback map. Figure 2 shows an example of synthetic
13COobservations and the 13COfeedback map. In PPV space,
the feedback map is the 13COemission that comes from stellar
feedback, which allows us to distinguish between the feedback
and diffuse emission from the host molecular cloud. The wind
tracer is the positive signal that CASI-3D learns to pick out
from the messy 13COemission of the molecular cloud.
In PPV space, the 13COfeedback map emission is only a

fraction of the total emission in each voxel, due to the
foreground and background emission along the line of sight. As
a result, we built the target in Task I by filling the voxels where
there is feedback with the corresponding 13COemission in
PPV space. This closely emulates what astronomers do in
observational data (Arce et al. 2011; Li et al. 2015). The model
in Task I adopts the raw 13COdata cube and returns a data
cube of the same shape that only has the 13COintensity in the
feedback regions.

Table 1
Training Model Parameter

Model Task Training Set Learning Rate Epoch
Fiducial Resolution Negative Set High Resolution

(5 pc×5 pc) (2.5 pc×2.5 pc)

ME1 I ✓ ✓ ✓ adaptive 277
ME2 I ✓ ✓ ⨯ adaptive 223
ME3 I ✓ ✓ ✓ fixed 60
ME4 I ✓ ✓ ✓ adaptive 60
ME5 I ✓ ⨯ ✓ adaptive 189
ME6 I ✓ ⨯ ✓ adaptive 260
ME7 I ⨯ ✓ ✓ adaptive 260
MFa II ✓ ✓ ✓ adaptive 277

Note.
a The training set and the hyperparameters of model MF are the same as those of ME1. The only difference is the training set. Model MF adopts the fraction of the
feedback mass as the target. The other models adopt the intensity of the feedback emission in the training.
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In the final step, we compute the bubble properties from
the output prediction. The prediction is the reconstructed
13COemission in voxels associated with feedback in PPV
space. We apply a threshold based on the noise level of the
input data to mask out noise-induced false bubble identifica-
tions. We then sum over all the voxels to calculate the mass,
momentum, and energy of the identified bubbles.

2.3.3. Training Target: Mass Fraction for Task II

To attempt to improve mass, momentum, and energy
estimation in the feedback identification, we adopt the fraction
of feedback mass as the target in Task II. To build the target,
we first convert the raw density from position–position–
position space to PPV space, just like the 13COdata cube.
Next, we convert to PPV space the density cubes that only
include the feedback gas. We take the ratio of the two
converted cubes to get the fraction of feedback mass in PPV
space. The fraction ranges from 0 to 1, and the fraction value is
not necessarily proportional to the actual 13COintensity. If the
13COemission is optically thin, its column density is
proportional to the emission intensity. Knowing the fraction
of the feedback in each position allows us to calculate the
actual feedback mass.

Note that the emission predicted by Task I does not
exclusively come from the feedback gas. Pristine gas that is
not associated with feedback also contributes to the emission.
Thus, Task I overestimates the mass coming from feedback.
Consequently, Task II is a more advanced approach to
estimating the physical properties of the feedback bubbles.

2.3.4. Data Augmentation

We adopt simulations with different mass-loss rates,
different magnetic fields, different turbulent patterns, and
different evolutionary stages to create synthetic observations.
The simulations have a physical scale of 5 pc on a side. To
enhance the diversity of the training set, we conduct radiative

transfer from three different angular views and rotate the
images every 15° from 0° to 360°. Figure 2 shows an example
of the integrated intensity and the tracer field of 13COwith
different model outputs. We also construct a “zoomed-in”
synthetic observation on bubbles with an image size of
2.5 pc×2.5 pc. Different scales of bubbles in the training set
reinforce the ability of the model to detect bubbles on different
scales.
To help CASI distinguish feedback bubbles from shell-like

structures produced from supersonic turbulence in the mole-
cular cloud, we also conduct synthetic observations on purely
turbulent simulations including noise, which do not contain
feedback sources. We adopt the nonfeedback cloud emission
data as a negative training set. This negative training set is
essential because it trains the algorithm to ignore large (e.g.,
0.5–2 pc) arc-like and shell-like features that ambient turbulent
motions may generate despite no recent stellar feedback. In the
Taurus survey, for instance, there are areas that are consider-
ably larger than our adopted postage stamp view-port size that
lack any feedback sources while curving, filamentary structures
are visually apparent. The model must perform well in those
areas or else may provide false detections. Table 1 lists the
properties of the training sets adopted by seven different
models.
To make the synthetic cubes closer to the real observational

data in Section 2.4, we convolve them with a telescope beam of
50″ and add noise. We assume the synthetic images are at a
distance of either 140 or 250 pc and are observed by Five
College Radio Astronomy Observatory (FCRAO; Ridge et al.
2006). Figure 3 shows a bubble before and after we convolve
the image with the beam and add noise. The noise level,
0.125 K, is the same as the rms noise in the Taurus
13COobservational data. Moreover, we randomly shift the
central velocity of the cubes between −1 and 1 km s−1 to
increase the diversity of the training set.
In total, we generate 7821 synthetic data cubes: 3910 have a

field of view (FoV) of 5 pc×5 pc, 3648 have an FoV of

Figure 2. Upper row: 13COintegrated intensity including emission from the full cloud. Bottom row: integrated intensity of the full 13CO (upper row) masked by a
13COsynthetic observation of the tracer field to obtain the pixel locations of the feedback in PPV space (see Section 2.3.2). First column: synthetic observations
corresponding to model W2_T2_t0 in Offner & Arce (2015). Second column: synthetic observations corresponding to model W2_T2_t1. Third column: synthetic
observations corresponding to model W1_T2_t0. Fourth column: synthetic observations corresponding to model W2_T3_t0.
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2.5 pc×2.5 pc, and 509 contain no feedback sources. We
adopt 4693 of the data cubes as a training set, 1564 data cubes
as a test set, and 1564 data cubes as a validation set. The
validation set allows us to estimate how well the model has
been trained. The test set assesses the accuracy of the final
model.

2.4. Taurus Data

The Taurus 13COJ=1−0 map was observed between
2003 and 2005 using the 13.7 m FCRAO Telescope
(Narayanan et al. 2008). The map covers an area of ∼98 deg2

with a beam size of 50″. The data have a mean rms antenna
temperature of 0.125 K. We combine this with the Class III
young stellar object (YSO) catalog of Kraus et al. (2017) as a
reference to determine the potential driving sources of the
bubbles. Kraus et al. (2017) reexamined 396 candidate
members from previous surveys in the literature covering
3h50m<α<5h40m and 14°<δ<34°. They concluded 218
YSOs are confirmed or likely Taurus members, but 160
candidates are confirmed or likely interlopers, and the
remaining 18 objects are uncertain.

Li et al. (2015) visually identified 37 bubbles in the Taurus
molecular cloud from the 13COemission, and we adopt these
as an observational test sample for our models. We divide these
37 bubbles into three categories based on their morphology and
likely driving source. The three ranked categories of bubbles
are as follows:

A. An A bubble contains at least one YSO inside the bubble
and has a clear circle/arc morphology.

B. A B bubble contains no YSOs inside but contains at least
one YSO on the bubble rim or near the bubble boundary.

C. A C bubble contains no known YSOs in or around the
bubbles.

Among the 37 bubbles, 7 are Rank A, 16 are Rank B, and 14
are Rank C.

To make the observational data suitable for the algorithm,
we first down-sample the Taurus 13COdata cube by a factor of
3 so that it has a resolution (∼1′) similar to that of the training
set. We shift the down-sampled cube’s mean velocity to 0, and
we then crop the velocity range from −4 to 4 km s−1. We crop
the cube to 2.7 pc×2.7 pc after centering on each bubble
identified by Li et al. (2015). This procedure generates a stack
of data cubes with a shape of 64×64×32. See Appendix D
for more detail.

However, investigating only the 37 previously identified
bubbles is limiting. CASI-3D does not require the bubbles to be
centered in the image, and the algorithm is able to rapidly
search the entire Taurus map if it is divided into smaller data
cubes. Furthermore, comparing the CASI-3D identification of
the previously defined, cropped bubbles to those identified in
the full map in an unbiased search allows us to verify that the
algorithm is translation invariant and insensitive to the position
of the bubble.

CASI-3D requires input data that has the same dimensions as
the training data. When applying the CNN model to the full
map, we decompose the Taurus data into a series of
64×64×32 cubes. Each cube is offset by five pixels
(∼5′), resulting in 92% overlap with adjacent steps. We begin
cropping from the northeast corner of the full map. Then we
move to the next position along the R.A. direction with a step
size of five pixels. When we finish the sampling procedure
along the R.A. direction at fixed decl., we move five pixels in
decl., and then repeat the process again.

2.5. Model Selection

2.5.1. Validation

After training, we find all models in Task I converge to an
MSE below 0.1, and a combination of MSE and IoU in Task II
(model MF) converges to unity. Figure 4 shows the training

Figure 3. Integrated intensity of 13CO(J=1−0). Left: 13COintegrated intensity of a simulated bubble without noise. Middle: 13COintegrated intensity of a
simulated bubble convolved with a beam of size 50″ and with 0.125 K noise. Right: 13COintegrated intensity of an observed bubble, TMB 8, identified by Li
et al. (2015).

Figure 4. Training and validation errors of model ME1 during training.
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and validation errors of model ME1. After 277 epochs, this
model converges to an MSE of 0.06. The number of epochs
used in the training, 277, is set by the maximum job run-time
permitted on our computing resources. We show the perfor-
mance of seven CNN models on a test set of synthetic
observations in Figure 5. All models in Task I and II clearly
capture the shell features produced by stellar feedback.

2.5.2. Mean Opinion Score: Visually Assessing the Model
Performance

To visually assess the performance of the CNN models on
observational data, we apply eight CNN models as listed in
Table 1 to the Taurus 13CObubble data. All test bubbles have a
clear circular or arc-like structure across a range of velocity
channels, which provides an appropriate test sample. However,
we do not quantitatively know the true bubble boundaries, so
we use visual identification and assessment to evaluate the
performance of the models. We introduce the mean opinion
score (MOS) to visually quantify the performance of the Task I
models on the Rank A and B bubbles in Taurus. The MOS is
expressed as an integer ranging from 1 to 5, where 1 is poor
performance and 5 is excellent performance. We create a rubric
outlining the characteristics of each score to ensure that visual
ranking between assessors is as uniform as possible. The rubric
is as follows:

1. Excellent performance. The prediction covers the full rim
structure of the bubble, with less than 10% extra
emission, that is, a minimal amount of false-positive
pixels.

2. Good performance. The prediction covers 75% of the rim
structure of the bubble, with less than 25% extra
emission.

3. Average performance. The prediction covers half the rim
structure of the bubble, with less than 50% extra
prediction.

4. Fair performance. The prediction covers one-third of the
rim structure of the bubble, with less than 70% extra
prediction.

5. Poor performance. The prediction covers less than one-
third of the rim structure of the bubble, with more than
70% extra prediction.

Figures 6 and 7 show the integrated intensity of example
Rank A and B bubbles and compare the predictions from the
CNN models.
We conduct a blind rating of the performance of the seven

models in Task I, where each coauthor assessed the quality of
each bubble prediction. To judge the prediction, the coauthors
looked at the integrated intensity map and the channel-by-
channel prediction of each model for each bubble. Figure 8
shows the MOS of each model as rated by the four coauthors.
Five of the seven models have an overall MOS that is above
average. We easily rule out models ME6 and ME7, which have
lower MOSs. ME1 exhibits decent performance on the Taurus
bubbles, and it is trained using the most complete training set
that includes both negative examples (no bubbles) and higher
resolution bubbles. We adopt ME1 as the fiducial model in the
following analysis.
For Task II, we maintain the same training set and

hyperparameters as those adopted for ME1 and simply replace
the training target data with the fraction of mass coming from
feedback in the training set, as discussed in Section 2.1.

3. Results

3.1. Assessing Model Accuracy Using Synthetic Observations

In this section, we use the synthetic images to assess how
accurately physical properties can be determined from the
identified bubbles. We apply all of the models to the synthetic
observations of the bubbles in the test set, as shown in Figure 5.
We mask the prediction cubes at 0.2 K, which is consistent with
the noise level of the input cubes. We then calculate the mass of
the bubbles by assuming that the 13COemission line is optically
thin and has an excitation temperature of 25 K (Narayanan et al.
2012; Li et al. 2015). We examine the uncertainty of the bubble
mass estimation in terms of the choice of excitation temperatures
in Appendix C. We take 1.5×10−6 as the abundance ratio
between 13COand H2 (Narayanan et al. 2012; Li et al. 2015).

Figure 5. Integrated intensity of the 13CO(top left), the integrated intensity of the full 13CO masked by a 13CO synthetic observation of the tracer field to obtain the
pixel locations of the feedback in PPV space (second from top left), and the prediction of eight CNN models for the bubble emission.
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Finally, we compute the total mass by summing over the bubble
volume.

Figure 9 shows the mass estimated from the two models,
ME1 and MF. We also plot the true feedback mass, which we
estimate directly by adding the mass contained in all cells with
T�12 K and a tracer fraction �2% (see Section 2.3.2). We
find ME1 overestimates the bubble mass by a factor of 3 or
more, while MF correctly predicts the bubble mass within 4%
error. The low-mass bubbles are overestimated by a factor of
10 by model ME1, while the high-mass bubbles are over-
estimated by a factor of 3 by model ME1. Since the low-mass
bubbles are usually small, they do not expand enough to break
out of the cloud such that more gas along the line of sight
contributes to the 13COemission. Their velocities are also
small, yielding more surrounding gas in the velocity channels
where the feedback is. On the other hand, high-mass bubbles
are usually large with more gas coming from the driving YSOs
and have larger expanding velocities. The gas along the line of
sight of the high-mass bubbles occupies a smaller fraction (but
still a large portion) in each velocity channel compared to that
of low-mass bubbles.

We compare the 1D line-of-sight momentum between the
model prediction and the true simulation feedback in Figure 10.
We define the 1D momentum as the sum of the gas mass in
each channel multiplied by the channel velocity, where we
have shifted the mean cloud velocity to zero. Model ME1
overestimates the 1D momentum by a factor of 2.8. In contrast,
model MF is able to correctly predict the 1D momentum within
10% error.

Under the assumption of isotropic expansion, the 3D
momentum would be expected to be a factor of 3 larger
than the 1D momentum, while the 3D kinetic energy would be
a factor of 3 larger than the 1D kinetic energy. Figures 11 and
12 show the 1D momentum and energy, respectively, predicted
by the two models compared to the respective 3D quantities
calculated from the simulation. Again, we find that the
momentum and energy predicted by model MF are comparable
to the true simulation values.

One caveat here is that we limit the velocity range of the
synthetic observations in the training set to match the Taurus
observation. To assess how much mass, momentum, and
energy are missed by applying this cutoff, we calculate the total
mass, momentum, and energy associated with velocities that
exceed the CO spectrum velocity range. We find that 9% of the
mass is in gas with ∣ ∣ >v 4 km s−1. Meanwhile, 20% of
the momentum and 44% of the energy are missed because of
the limited CO velocity range. In observations, the amount
of missing mass, momentum, and energy will depend both on
the observation spectral range and the source masses, which are
often not well constrained. In the following sections, we correct
the totals for the missing mass, momentum, and energy.
The different accuracies achieved by the ME1 and MF

models can be understood as follows. Model ME1 is trained
using the tracer intensity and thus can only predict the feedback
position. We find that the training set for ME1, namely the full
13COemission masked by the position of the tracer field in
PPV space, is not a good indicator of the fraction of feedback
mass in each voxel, because the emission at the predicted
position does not exclusively come from feedback gas. Instead,
gas along the line of sight that is not associated with feedback
contributes to the emission and can dominate the total. This
matches the current state of the art in human identification,
because visual identification of feedback cannot disentangle the
feedback from the nonfeedback gas within a given velocity
range and voxel. This is why our model ME1 predicts total
mass, momentum, and energy similar to that estimated by Li
et al. (2015), as we will show in Section 3.2. However, model
MF adopts the fraction of mass coming from feedback as the
training target, which allows the model not only to predict the
position of feedback but also to predict the fraction of the
mass coming from feedback in each voxel. This allows a
significantly more accurate determination of the mass,
momentum, and energy.

3.2. Physical Properties of the Individual Taurus Bubbles

Next, we estimate the masses of the bubbles in Taurus
identified by models ME1 and MF and compare them with the

Figure 6. Results of the eight models applied to Rank A bubble TMB12. First row, first column panel: integrated intensity of 13COoverlaid with a yellow ring
indicating the position and thickness of the bubble. Star symbols show the location of the Class III YSOs from Kraus et al. (2017). The remaining panels show the
predicted intensity integrated along the velocity axis for the eight CNN models.
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previous observational estimates. For the purpose of compar-
ison with the prior visual identifications, we analyze postage
stamps centered on each of the 37 Rank A, B, and C bubbles.
We calculate the bubble mass and momentum for each model
as described in Section 3.1. The observational approach to
calculating the observed bubble mass, momentum, and energy
is as follows. Li et al. (2015) adopt an annulus as a mask for
each bubble rim region, where the inner and outer radii of the
annuli are determined by visual inspection, and then add up the
emission of 13COin the masked region to calculate the mass.
The bubble velocity extent along the line of sight is also
determined by eye.

Figure 13 compares the bubble mass calculated from the two
CNN models and that from the observational approach for all
the bubbles identified by Li et al. (2015). The mass estimated
from ME1 shows an approximately linear trend compared with
that from the observational approach within a factor of 2.
Figure 13 also compares the mass calculated from MF with the
mass estimated from the observational approach. We find the

observational approach overestimates the bubble mass by an
order of magnitude.
Figures 14 and 15 compare the momentum and energy

calculated from the CNN models with those from the
observational approach. The momentum and energy estimated
from ME1 both show approximately linear trends compared to
those from the observational approach and are within a factor
of 2. However, when considering the fraction of mass coming
from feedback, both model ME1 and the observational
approach overestimate the momentum and energy by an order
of magnitude.
The differences between the observational approach and

model ME1 are not too surprising because the observational
approach to calculating the bubble mass, momentum, and
energy is fairly simple. For example, Li et al. (2015) may
overestimate or underestimate the mass depending on the ring

Figure 7. Same as Figure 6 but depicting the Rank B bubble TMB37.

Figure 8. Overall mean opinion score (MOS for each model, averaged over all
23 Rank A and Rank B bubbles and the visual rankings by the four human
judges).

Figure 9. Relation between the CNN-predicted bubble mass and the true
feedback mass for different bubbles. The filled symbols indicate the mass
calculated from model MF. The open symbols represent the mass calculated
from model ME1. The black dashed line indicates where the CNN correctly
predicts the true mass as determined by the tracer field and gas temperature.
The blue dashed line has a slope of 3, and the red dashed line has a slope of 10.
The physical parameters of the simulations with different labels are listed in
Offner & Arce (2015).
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mask they draw. In addition, bubbles are not always a closed,
symmetric circle. They are likely to be discontinuous on the
rim, as depicted in Figure 6. As we showed in Section 3.1, the
higher values obtained by model ME1 and the observations
compared to model MF are also not surprising because the
former approaches include excess material along the line of
sight that is not part of the feedback. However, the CASI-3D
models may also overestimate the total bubble properties
because there may be more than one bubble identified in each
postage stamp. To address this, we set the postage stamp size to
minimize this effect.

Several different effects may cause errors in estimating the
mass, momentum, and energy from the CO emission. We find
that the choice of excitation temperature could cause a factor of
2 error in mass estimation, but it cannot account for a factor of

10 (see Appendix C for more detail). Likewise, the assumption
of LTE has a small effect on the mass estimation. We conclude
that the line-of-sight gas contamination is the main uncertainty
in mass estimation. As we discussed in Section 3.1, low-mass
bubbles are overestimated by a larger factor (a factor of 10)
than high-mass bubbles (a factor of 3), due to the line-of-sight
gas contamination. For low-mass bubbles, the line-of-sight
contamination is the dominant factor overestimating the mass,
but for high-mass bubbles, the uncertainty that comes from
line-of-sight contamination is similar to the uncertainty that
comes from assuming a fixed excitation temperature.
It is also worth considering the estimates from a physical

perspective. The mass associated with feedback based on our
understanding of the launching velocities of feedback is usually
comparable to the young star’s mass. It is physically impossible for
a fewMe young star to drive a 50–60Me bubble. Arce et al.
(2011) pointed out that these high-mass bubbles could be produced

Figure 10. Relation between the CNN-predicted bubble momentum and the
true feedback 1D momentum from different bubbles. The filled symbols
indicate the momentum calculation from model MF. The open symbols
represent the momentum calculation from model ME1. The dashed line
indicates where the CNN correctly predicts the true momentum.

Figure 11. Relation between the CNN-predicted bubble momentum and the
true feedback 3D momentum from different bubbles. The filled symbols
indicate the momentum calculation from model ME1. The open symbols
represent the momentum calculation from model ME1. The black dashed line
has a slope of 1, and the blue dashed line has a slope of 1 3 , which indicates
that velocity symmetry is a reasonable assumption in estimating the true 3D
momentum.

Figure 12. Relation between the CNN-predicted bubble energy and the true
feedback energy from different bubbles. The filled symbols indicate the energy
calculation from MF. The open symbols represent the mass calculation from
ME1. The black dashed line has a slope of 1, and the blue dashed line has a
slope of one-third.

Figure 13. Bubble mass estimated from the CASI-3D model predictions and the
observational mass estimate from Li et al. (2015). The gray dashed line
indicates the trend for equal mass, while the purple dashed line is scaled down
by 10. The blue symbols indicate the mass calculated from model ME1. The
red symbols represent the mass calculated from model MF.
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if vwind=200 km s−1 with – = - -m 10 10wind
7 6 Me yr−1. How-

ever, these mass-loss rates are orders of magnitude higher than
those that can be explained by stellar winds, outflows (considering
outflows are collimated; Bally 2016), or ionization or radiation
pressure from the stars observed in Taurus (Smith 2014). The mass
directly launched by young stars in both theoretical work and
observations is small, ∼10−9Me yr−1 (e.g., Shu et al. 1994;
Hartigan et al. 1995). Numerical simulations suggest the entrained
gas can contribute three times more mass than the direct mass loss
from young stars (Offner & Chaban 2017). In observations, the
mass associated with feedback is included in the estimate of the
entrained gas. Model ME1 does the same thing: it predicts the gas
associated with feedback (including the entrained gas) but cannot
disentangle the line-of-sight contamination. Model MF goes one
step further to predict the fraction of gas mass associated with
feedback (including the entrained gas). Although we include the
entrained gas in the bubble mass estimation, the result is
significantly less than 10–100Me. Reducing the bubble mass by

excluding extra gas along the line of sight brings the estimates
closer in line with both empirical and theoretical models for
feedback.
Table 2 lists the physical parameters of all of the Taurus

bubbles. It includes the estimates from Li et al. (2015) and our
models ME1 and MF. Li et al. (2015) do not consider the
correction factors for bubble mass, momentum, and energy,
due to the limited 13COvelocity range, so to make a fair
comparison, we do not apply correction factors to the
predictions from models ME1 and MF.

3.3. Assessing the Global Impact of Feedback: Full
Taurus Map

3.3.1. Feedback Features Identified in the Full Map

We apply the CASI-3D models to the complete Taurus map to
predict all of the emission associated with feedback. We divide
the Taurus map into smaller cubes as discussed in Section 2.4.
To create the full prediction map, we adopt the largest value
from the overlapping predictions at each pixel. Note that the
5×5 pixel regions in the map corners have only one cube
prediction for each pixel.
To check the accuracy of this method, we compare the model

predictions of the postage stamps and those from the large map.
Figure 16 shows that the large map prediction captures the
bubble rims better than the single postage stamp predictions.
Figures 17 and 18 show the predictions from models ME1

and MF for the whole Taurus map. The CASI-3D model
predictions cover almost all of the previously identified bubble
regions and predict additional feedback regions in the Taurus
map. The new predictions are correlated with the locations of
Class III YSOs, as shown on the map. Figure 17 shows that
most predictions are close to several groups of YSOs. For
example, new bubble N3, which was not previously identified,
seems to enclose a large group of YSOs. This suggests that the
YSOs are shaping the surrounding clouds through their
feedback and creating a wind signature in the 13COspectra.
We further discuss the newly detected feedback regions below.
We identify three types of bubbles in our model predictions:

high-confidence bubbles that were identified by the previous
observational survey (red boxes), high-confidence bubbles that
we believe are real bubbles that were missed in the previous
survey (yellow boxes), and low-confidence bubbles that are
new bubbles found by our models but we believe are less
certain (white boxes). The first category of high-confidence
bubbles corresponds to “true positives.” The second category
of missing high-confidence bubbles corresponds to “true
negatives,” and the final category of low-confidence bubbles
may represent “false positives.”
First, we discuss the high-confidence bubbles (true positives)

that are consistent with the previous human identifications.
These bubbles have a clear ring or arc-like structure and have at
least one YSO inside. Bubbles H1, H2, H3, and H4 correspond
to TMB 37, TMB 29, TMB12, and TMB7 in Li et al. (2015),
respectively. These bubbles are identified by both model ME1
and MF, although the extent of the emission in model MF may
be smaller if the fraction of the mass coming from feedback is
predicted to be low.
Next, we discuss the high-confidence bubbles that were not

included in Li et al. (2015). These bubbles have a clear bubble
rim morphology and have YSOs nearby if not directly within
the bubble center. For example, in the yellow box N1 we see

Figure 14. Bubble momentum estimated from the CASI-3D model predictions
and the observational momentum estimate from Li et al. (2015). The gray
dashed line indicates the trend for equal momentum, while the purple dashed
line is scaled down by 10. The blue symbols indicate the momentum calculated
from model ME1. The red symbols represent the momentum calculated from
model MF.

Figure 15. Bubble energy estimated from the CASI-3D model predictions and
the observational energy estimate from Li et al. (2015). The gray dashed line
indicates the trend for equal energy, while the purple dashed line is scaled
down by 10. The blue symbols indicate the energy calculated from model ME1.
The red symbols represent the energy calculated from model MF.

11

The Astrophysical Journal, 890:64 (22pp), 2020 February 10 Xu et al.



the bubble rim and the cavity. Moreover, one Class III YSO is
centered in the cavity, which is likely to be the driving source
of the bubble. The predictions from both ME1 and MF for N1
highlight the bubble rim. In another example, N3, we can easily
identify the bubble rim in Figure 17. Supporting the bubble’s
existence is a group of Class III YSOs inside its rim. However,
when we look at the prediction from model MF for N3 in
Figure 18, we cannot see the bubble rim prediction. This
suggests that there is likely a small amount of mass coming
from the feedback.

Finally, we discuss the low-confidence bubbles. These
bubbles tend not to be associated with any YSOs. In addition
to the Class III YSOs identified in Kraus et al. (2017), we check
all types of YSOs in Taurus that were identified by Rebull et al.
(2010). These are plotted in Figures 31 and 32 in Appendix E.
We highlight four such bubbles in white boxes in Figure 17.
We note that a number of the bubbles identified by Li et al.
(2015) do not contain any Class III YSOs, such as L4. In these
cases, the driving source may have moved out of the bubble,
or the YSO census may be incomplete. Another possible

explanation is that although the morphology is circular or
arc-like, they are caused by cloud turbulence, which causes
coherent motion across several velocity channels. It is difficult
to distinguish the bubble structure from turbulent patterns when
a circular or arc-like pattern appears across multiple channels.
However, we believe this last explanation is unlikely, because
we include pure turbulence snapshots in the training set as
negative training images. Thus, CASI-3D should not be prone to
misidentifying turbulent patterns as bubbles.
Overall, we conclude that the two CNN models perform as

well as or better than “by-eye” visual identifications of bubbles.
They appear to reasonably predict both the bubble position and
the fraction of mass coming from feedback.

3.3.2. Mass, Momentum, and Energy of the Feedback Identified in the
Full Taurus Cloud

We now calculate the feedback mass, momentum, and
energy in Taurus based on the predictions from models ME1
and MF. Table 3 lists the feedback properties calculated in this
work and those calculated in Li et al. (2015).

Table 2
Physical Parameters of Taurus Bubbles

Bubble Rank Li+ (2015) ME1 MF

ID Mass Momentum Energy Mass Momentum Energy Mass Momentum Energy
(Me) (Me km s−1) (1044 erg) (Me) (Me km s−1) (1044 erg) (Me) (Me km s−1) (1044 erg)

TMS_1 B 59 65 7 15 39 11 1.9 6.2 2.25
TMS_2 B 31 34 4 43 32 4 9.1 8.2 1.29
TMS_3 B 129 207 33 120 169 35 10.7 15.1 3.33
TMS_4 B 56 62 7 42 65 14 3.6 5.4 1.14
TMS_5 B 32 52 8 56 45 5 3.6 3.5 0.54
TMS_6 B 33 37 4 10 9 1 2.7 3.2 0.64
TMS_7 C 91 191 40 95 73 9 10.5 9.7 1.50
TMS_8 B 46 97 20 33 48 12 2.8 4.5 1.12
TMS_9 C 22 17 1 39 34 4 5.3 4.3 0.58
TMS_10 C 217 282 37 228 272 57 24.8 35.8 8.26
TMS_11 A 78 149 28 94 70 9 7.1 5.9 0.81
TMS_12 A 45 108 26 57 43 5 3.7 3.0 0.39
TMS_13 B 84 176 37 112 88 11 8.1 8.6 1.46
TMS_14 C 18 33 6 13 44 17 2.8 9.0 3.71
TMS_15 A 98 107 12 109 90 12 6.0 7.6 1.68
TMS_16 A 57 92 15 75 60 8 1.5 2.4 0.64
TMS_17 C 10 8 1 15 19 3 1.4 2.4 0.67
TMS_18 C 54 103 19 72 63 9 2.5 3.0 0.57
TMS_19 A 41 78 15 66 77 13 3.5 4.0 0.68
TMS_20 B 12 13 1 21 28 5 1.8 2.3 0.42
TMS_21 B 11 24 5 3 15 9 1.1 4.6 2.38
TMS_22 B 119 131 14 134 168 33 12.3 18.4 3.92
TMS_23 C 10 11 1 24 21 3 0.1 0.1 0.02
TMS_24 C 20 22 2 29 52 10 1.8 2.9 0.56
TMS_25 C 9 26 8 7 11 2 0.2 0.6 0.22
TMS_26 B 11 23 5 8 29 12 3.0 10.6 4.71
TMS_27 C 46 111 26 24 82 33 9.4 32.3 13.87
TMS_28 C 205 656 209 293 365 68 14.2 18.4 3.50
TMS_29 A 91 119 15 120 145 27 7.0 7.3 1.19
TMS_30 C 420 672 107 576 636 106 23.2 26.3 4.65
TMS_31 C 62 81 10 43 89 26 6.6 23.9 10.33
TMS_32 C 12 22 4 7 29 14 2.6 12.6 6.74
TMS_33 B 92 74 6 143 153 25 5.6 5.9 0.96
TMS_34 C 67 182 49 36 39 7 4.7 5.3 1.51
TMS_35 B 30 39 5 22 27 4 4.4 3.8 0.64
TMS_36 A 29 47 7 16 25 6 3.7 4.2 1.00
TMS_37 B 25 53 11 19 40 12 7.0 17.6 6.96
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Model ME1 predicts 2630Me of gas associated with
feedback, which is consistent within a factor of 2 with the
feedback mass calculated in Li et al. (2015). However, model
MF predicts that only 275Me of gas is associated with
feedback, which is an order of magnitude smaller than the
previous calculations. The smaller amount of feedback mass is
also consistent with the total stellar mass in Taurus, which is
estimated to be on the order of 200Me in Kraus et al. (2017).
The feedback mass predicted by model ME1 and that
calculated from Li et al. (2015) are 10 times the stellar mass,
which is inconsistent with the expected amount of gas
entrained by feedback (Offner & Chaban 2017).

Despite the detailed machine-learning identification, we
must still confront the challenge of how to disentangle
feedback from the bulk cloud motion. For example, Taurus
has a velocity gradient that stretches from the southeast to
northwest. Not accounting for this gradient may artificially
enhance the feedback total. The most accurate way to account
for the bulk motion is not clear; thus, we present two
approaches to calculating the feedback momentum and energy.
The first way treats the molecular cloud as a whole, with the
same fixed central velocity. We shift the central velocity to zero
and calculate the 1D momentum and 1D energy channel by
channel as described in Section 3.1. The second approach is
similar but treats the molecular cloud locally, which means the
cloud does not have a fixed central velocity but has a central
velocity gradient across the entire cloud. We subtract
the central velocity pixel by pixel and then calculate the
momentum and energy channel by channel. To convert the 1D
line-of-sight estimates to 3D, we make the assumption of
isotropic expansion to calculate the 3D momentum and 3D
energy. Finally, in Section 3.1, we assessed the model accuracy
using synthetic observations and found that 20% of the
momentum and 44% of the energy are missed because of the
limited CO velocity coverage. Considering the limited velocity
range of the 13COdata cube, we apply these correction factors
for the missing momentum and energy here.

The momentum estimate without the velocity gradient
treatment from model ME1 is close to that from Li et al.
(2015). The momentum estimate with the velocity gradient
treatment from model ME1 is 38% smaller than the calculation
in Li et al. (2015). Once corrected for the extra 13COemission
from the foreground or background, the momentum (with and

without the velocity gradient treatment) predicted by model MF
is an order of magnitude smaller than the calculation in Li et al.
(2015).
Both energy estimates (with and without the velocity

gradient treatment) from model ME1 are within a factor of 2
compared to the energy calculated in Li et al. (2015). In
contrast, model MF implicitly corrects for the extra
13COemission coming from the foreground or background,
such that the predicted energy is an order of magnitude smaller
than that calculated in Li et al. (2015). We discuss the
implications in the following section.

3.3.3. Assessing the Relative Energies of Turbulence and Feedback

In this section, we compare the total energy associated with
feedback and the total cloud turbulent energy. The relative
magnitude of these energies impacts the cloud lifetime and
whether turbulence can slow collapse by providing pressure
support against self-gravity. Often, the impact of feedback is
weighed against the rate of turbulence dissipation. We follow
Li et al. (2015) and define the turbulent dissipation rate as

( )=L
E

t
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where tdiss is the turbulent dissipation time. The method to
estimate the turbulent dissipation time in Li et al. (2015) is
from Mac Low (1999),
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where tff is the freefall timescale,rms is the Mach number of
the turbulence, and κ is the ratio of the driving length to the
Jean’s length of the cloud. For = 5rms and a freefall time
tff=7×106 yr, which assumes a mean cloud number density
of n=20 cm−3, the turbulent dissipation rate is 3.1×
1033 erg s−1. However, Taurus is not a uniform sphere, and
the mean number density of n=20 cm−3 adopted by Li et al.
(2015) is too low. The typical mean number density of a
molecular cloud is around n=100 cm−3, which gives
tff=3.3×106 yr and Lturb=6.8×1033 erg s−1. Arce et al.
(2010) and Narayanan et al. (2012) also adopt this method to

Figure 16. Comparison of the prediction of a postage stamp and that from the large map on bubble TMB29. Left: integrated 13COintensity. The red stars indicate
Class III YSOs from the Kraus et al. (2017) catalog. Middle: integrated prediction from model ME1 run on the postage stamp shown in the left panel. Right: integrated
ME1 prediction from the full map prediction, reconstructed from overlapping postage stamps.
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calculate the turbulent dissipation rates in Perseus and Taurus,
respectively.

One caveat here is that the equation to calculate the turbulent
dissipation rate is obtained from simulations, which depend on
the initial conditions and the way turbulence is driven.

The energy injection rate is defined as Lbubble=Ebubble/tkinetic,
where Ebubble is the kinetic energy of the bubble and tkinetic is
the kinetic timescale of the bubble. The kinetic timescale of the
bubble can be calculated as tkinetic=R/Vexp, where R is the

radius of the bubble and Vexp is the expansion velocity of the
bubble. We find that the energy injection rate from bubbles in
ME1 is = ´L 1.0 10turb,ME1

34 erg s−1, which is slightly larger
than the turbulent dissipation rate of the cloud. If we subtract the
velocity gradient, the energy injection rate from bubbles is

= ´L 2.8 10turb,ME1,G
33 erg s−1, which is about half of the

turbulent dissipation rate of the cloud. In summary, like Li et al.
(2015), we conclude that feedback is sufficient to maintain the
current level of cloud turbulence.

Figure 17. The 13COintegrated intensity of the Taurus molecular cloud overlaid with the integrated prediction of feedback position from ME1 along velocity
channels in red. The arcs in yellow indicate the position of previously identified bubbles in Li et al. (2015). The star symbols demonstrate the locations of the Class III
YSOs from Kraus et al. (2017).

Figure 18. Same as Figure 17 but predicted by MF.
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However, we have shown that model ME1 overestimates
the energy because excess foreground and background
material is included in the calculation. Consequently, we find
that after recalculating the feedback energy using the more
accurate model MF prediction, the kinetic energy from the
feedback decreases by an order of magnitude, which means
the energy injection rate from stars is smaller by an order of
magnitude: = ´L 2.0 10turb,MF

33 erg s−1. Under this circum-
stance, the energy injection rate from feedback is 29% of the
turbulent dissipation rate of the cloud. If we subtract the
velocity gradient, the energy injection rate from feedback is

= ´L 6.7 10turb,MF,G
32 erg s−1, which is an order of magni-

tude smaller than the turbulent dissipation rate. This indicates
that some additional energy is needed to drive turbulence in the
Taurus molecular cloud, which could be provided by outflows,
for example. Feedback from bubbles may not be sufficient to
maintain the cloud turbulence over long timescales.

The Taurus molecular cloud is host to an older population of
stars (τ∼ 10–20Myr), which indicates the lifetime of the cloud
is at least 10–20 million years (Kraus et al. 2017). However,
this lifetime is much longer than the gravitational collapse
freefall time of the Taurus molecular cloud estimated from
12CO, which is 3.3 million years. This suggests that there must
be energy injected to support the cloud against gravitational
collapse, which suggests feedback is playing some role in
driving turbulence but is not dominant.

3.3.4. Quantifying the Impact of Feedback with Turbulent Statistics

With an accurate prediction of the position of feedback in
hand, we compute multiple astrostatistics to study the different
properties between regions with and without feedback in
Taurus. We adopt the statistical analysis package TURBUSTAT
to conduct the statistical analysis (Koch et al. 2017, 2019).
TURBUSTAT contains 15 different statistics, but here we
consider only the spatial power spectrum (SPS) and the
covariance matrix used to compute the principal component
analysis (PCA). We adopt these statistics because they have
previously been shown to be sensitive to feedback, as discussed
in the introduction. The SPS is defined as the square of the 2D
Fourier transform of an image:
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in which T(ri, vj) is the spectral cube, where ri=(xi, yi) is the
position on the sky and vj indicates the spectral velocity channel.
It provides information about velocity correlations. In addition to
these two statistics, we also consider the distribution of line
widths of the feedback and nonfeedback gas, as well as the
distance between YSOs and pixels associated with feedback.
Figure 19 shows the SPS of the full 13CO integrated intensity

map of Taurus, the SPS of the region where the emission is
above 0.2 K (i.e., excluding noise), and the SPS of the model
ME1 and MF predicted feedback regions. Figure 19 shows that
the slope of the SPS is flattened over the feedback injection
region. If the emission is optically thin and the temperature is
roughly constant, this indicates mass or energy has been injected
into smaller scales by the feedback. Here, the 13COis mostly
optically thin, with the exception of dense cores.
Next, in Figure 20 we present the covariance matrices of the

velocity channels for the full 13CO integrated intensity map of
Taurus, the high signal-to-noise ratio region, and the prediction of
the models ME1 and MF. For comparison, Figure 20 also shows
the covariance matrices calculated using the synthetic data. The
covariance matrices of the predicted feedback regions clearly
show off-diagonal velocity features, which indicate coherent
motions at these velocities. These features can be characteristic of
the expansion of bubbles or high-velocity gas (Boyden et al.
2016), but they may also represent coherent cloud motions (e.g.,
Feddersen et al. 2019). In either case, the clear differences
between the identified feedback and nonfeedback gas underscore
that CASI-3D is indeed identifying statistically distinct regions.
Next, we assess the relative distance to the YSO locations,

which provide additional evidence that our regions are associated
with feedback. Figure 21 shows the distribution of the projected
distances between the YSOs and the emitting gas, and the
distribution of the projected distances between YSOs and the
feedback gas predicted by ME1 and MF. The median value of

Table 3
Properties of Feedback in the Taurus Molecular Clouda

Model Without Subtracting the Velocity Gradient Subtracting the Velocity Gradient

Mb P3D E3D
c Ed Mb P3D E3D

c Ed

(Me) (Me km s−1) (×1046 erg) (×1033 erg s−1) (Me) (Me km s−1) (×1046 erg) (×1033 erg s−1)

Li+ (2015) 1707 (11.4%) 3780 9.2 (28.8%) 6.4 (94.1%) L L L L
ME1 2894 (19.3%) 4366 15 (46.2%) 10 (153%) 2894 (19.3%) 2339 4.0 (12.6%) 2.8 (40.9%)
MF 302 (2.0%) 609 2.8 (8.6%) 2.0 (28.6%) 302 (2.0%) 366 0.96 (3.0%) 0.67 (9.8%)

Notes.
a Model name, feedback bubble mass, 3D feedback momentum, 3D feedback energy, and energy injection rate from feedback bubbles. The numbers in the table
consider the correction factors that are due to the limited velocity range of the 13COdata cube.
b The number in parentheses indicates the percentage of feedback mass compared to the whole molecular cloud mass (Pineda et al. 2010).
c The number in parentheses indicates the percentage of feedback energy compared to the whole molecular cloud turbulent energy (Li et al. 2015).
d The number in parentheses indicates the percentage of energy injection rate from feedback bubbles compared to the turbulent dissipation rate of the cloud. The
turbulent dissipation rate adopted here is = ´L 6.8 10turb

33 erg s−1, which assumes a mean cloud density of n=100 cm−3. This turbulent dissipation rate is about
two times higher than that from Li et al. (2015), which assumes a lower mean cloud density of n=20 cm−3.
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the projected distance between the YSOs and the feedback gas is
closer than that between the YSOs and all of the emitting gas.
The typical distance between the YSOs and the feedback gas is
0.7 pc, which is also the typical size of the bubbles.

Finally, we expect feedback regions to have larger velocity
dispersions. Figure 22 shows the distribution of the FWHM of
the high signal-to-noise ratio emission region and the FWHM
of the ME1 and MF predicted feedback regions. The median
values of the FWHM of the feedback regions are indeed larger
than that of the FWHM of the full map. The higher FWHM
indicates larger velocities in the spectrum associated with
feedback.

4. Conclusions

We adopt a deep learning method, CASI, and extend it to 3D
(CASI-3D) to identify stellar feedback features in 3D CO
spectral cubes. By creating different training sets, we develop
two deep machine-learning tasks. Task I predicts the position
of feedback. Task II predicts the fraction of the mass coming
from feedback. Our main findings are the following:

1. CASI-3D is a powerful method for identifying bubbles.
CASI-3D performs well on synthetic test data and recovers
feedback with an accuracy of 4% on a pixel level.

2. CASI-3D successfully predicts hidden information, such as
the fraction of mass coming from feedback.

3. We apply CASI-3D to the 13COobservations of the Taurus
molecular cloud and show that CASI-3D successfully
identifies previously known, visually identified bubbles.

4. We find that training Task I reproduces the mass,
momentum, and energy of individual bubbles inferred
by human visual identifications. In contrast, Task II,
which is trained on the feedback mass fraction, indicates
that the true mass, momentum, and energy are an order of
magnitude lower.

5. CASI-3D suggests that previous studies overestimate
feedback mass and energy in the Taurus molecular cloud.
The feedback mass is overestimated by a factor of 5. The
feedback energy is overestimated by a factor of 5
compared to that calculated without subtracting the
velocity gradient over the full map, and it is over-
estimated by a factor of 10 compared to that calculated
with subtracting the velocity gradient over the full map.

6. We carry out an analysis of the SPS to quantify the
turbulence properties in the feedback and nonfeedback
regions. We show that feedback flattens the slope of the
SPS of the full 13CO integrated intensity map of Taurus,
indicating that mass or energy has been injected at
smaller scales by feedback.

7. We calculate the covariance matrix and show that the
presence of feedback appears as off-diagonal peaks in the
covariance matrices.

Figure 19. SPS of the full 13CO integrated intensity map of Taurus, the SPS of the emission regions (excluding noise regions) where the emission is above 0.2 K, and
the SPS of the ME1 and MF predicted feedback regions.
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8. The median value of the projected distance between
YSOs and the feedback gas (0.64 pc predicted by model
ME1 and 0.75 pc predicted by model MF) is closer than
that between YSOs and all of the emitting gas (0.84 pc).
The median value of the FWHM of the feedback regions
(1.2 km s−1 predicted by model ME1 and 1.1 km s−1

predicted by model MF) is larger than that of the FWHM
of the full emitting regions (0.9 km s−1).

In future work, we plan to apply CASI-3D to other star-
forming regions and other types of feedback, such as
protostellar outflows (Arce et al. 2010).

D.X., S.S.R.O., R.A.G., and C.V.O. were supported by NSF
grant AST-1812747. S.S.R.O. also acknowledges support from
NSF Career grant AST-1650486. The authors acknowledge the
Texas Advanced Computing Center (TACC) at The University
of Texas at Austin for providing HPC resources that have
contributed to the research results reported within this paper.

Appendix A
CASI-3D Parameters

A.1. Down-sampling Methods

We test two widely used down-sampling methods to reduce
the size of the data: max pooling and average pooling. Max
pooling picks out the largest value to replace its adjacent pixels.
Max pooling can extract the most important features, but it is not
proficient in dealing with different noise backgrounds. Since all
large-map sky surveys are conducted through substantial
observing periods with different weather conditions and with
different baselines, the noise level is different in different patches
of the large map. When applying max pooling to down-sample
the data, the boundary between patches distinctly appears, which
makes the data inconsistent across the map. On the other hand,
average pooling extracts features smoothly, and it preserves the
overall value during down-sampling. Figure 23 shows an

Figure 20. Covariance matrices of the velocity channels on the full 13CO integrated intensity map of Taurus, the covariance matrices of the emission regions, and the
covariance matrices of the ME1 and MF predicted feedback regions. Left panel: covariance matrices of the velocity channels on synthetic data. Right panel:
covariance matrices of the velocity channels on Taurus 13COdata.

Figure 21. Distribution of the projected distance between YSOs and the
emitting gas, and the distribution of the projected distance between YSOs and
the feedback gas predicted by ME1 and MF.

Figure 22. Distribution of the FWHM of the emission regions, and the FWHM
of the ME1 and MF predicted feedback regions.

17

The Astrophysical Journal, 890:64 (22pp), 2020 February 10 Xu et al.



example of the two different down-sampling methods tested on
13COTaurus molecular cloud data.

A.2. Loss Function

We test three types of loss functions—MSE, IoU, and a
combination of MSE and IoU—to predict the fraction of the
mass that comes from stellar feedback. Figure 24 shows the
performance of the model using different loss functions on a
test bubble. The model adopting IoU as the loss function can
capture the morphology of the bubble clearly but misses the
value information. The IoU model predicts almost unity at the
feedback position but does not reflect the actual fraction value.
The MSE model is able to capture the position of larger
feedback values but underestimates the smaller values, which is
useful for predicting the emission but not the fraction. The
model adopting both MSE and IoU as the loss function
performs the best. This model not only captures the distinct
bubble morphology but also returns reasonable fraction values.

Appendix B
Training Sets

A.1. Comparison of 13COEmission with Different Cloud
Thicknesses

Figure 25 shows the difference in the synthetic observations
between the whole cube and the cropped data for 13CO. The
13CObubble rim is embedded in the diffuse gas emission, and
the bubble cavity is not clear in the integrated intensity map
when the thickness of the cloud is 5 pc. Because 12CO is even

more optically thick, 12CO is not an appropriate proxy to trace
stellar feedback winds (e.g., Arce et al. 2011; Li et al. 2015).
When the thickness of the cloud becomes smaller, the bubble
rim and its cavity are recognizable in the 13COintegrated
intensity map. Although some bubble rims or their cavities are
not distinct in the integrated intensity map of 13CO, these
feedback features become recognizable in PPV space.

A.2. Different Definitions for the Bubble Extents

In this section, we assess the impact of different choices for
the bubble definition on the results. In addition to the bubble
definition described in Section 2.3.2, we also examine the
tracer field in the simulation data. The gas adjacent to the tracer
gas has a velocity vector going outward, which indicates the
feedback gas compresses the ambient gas without direct
contact. Although the fraction of feedback gas compared to
the entire amount of gas contained in these voxels is almost
zero, the adjacent layer contributes to the momentum and the
energy of the cloud. Consequently, we define the tracer field
with the velocity vector going outward from the central stars,
which increases the mass of the feedback bubble by a factor of
3. We furthermore test a temperature cut at T�12 K near the
tracer gas to calculate the bubble mass. The simulation data
cubes have an average temperature of 10 K. The temperature
drops quickly from the bubble rim to the ambient gas. We
compare the different tracer definitions in Figure 26. Both the
velocity cut plus the tracer field and the temperature cut plus
the tracer field are slightly larger in area than the original tracer
field. Both of these definitions yield bubbles that are similar in

Figure 23. Comparison of two different down-sampling methods tested on 13COTaurus molecular cloud data.

Figure 24. Performance of model MF adopting different loss functions to predict the fraction of the mass that comes from stellar feedback on a test bubble. Left:
integrated 13COintensity. Second from left: integrated true feedback fraction. Right panels: models using the IoU, MSE, and IoU+MSE loss functions, respectively.
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shape. Because there are five individual stars in the simulation
box, the bubbles generated by these stars are easily connected
to each other during the expansion. This affects the gas
velocities, which makes it difficult for us to define the gas flow
direction and determine which expansion is part of the shell.
Under this circumstance, the temperature cut is a better option
for defining the bubble boundary. We compare the bubble mass
calculated from the velocity-based bubble definition and the
temperature-based bubble definition in Figure 27. Larger
bubbles are more likely to overlap during the the expansion,
which makes the velocity-based bubble definition mass slightly

smaller than the the temperature-based bubble definition mass.
Overall, we conclude the temperature-based bubble definition
is the most appropriate definition of the bubble boundary.

A.3. Comparison of the Training and Observed Bubble Mass
Distributions

In this section, we examine the distribution of the bubble
masses in the training set. Figure 28 shows that the maximum
bubble mass in the training set is ∼120Me, and it spans the
range of the bubble masses in the test samples in Section 3.1.

Figure 25. Integrated intensity of 13CO(J=1−0). Upper left: integrated intensity of 13COgenerated using the whole data cube. Upper middle and upper right:
integrated intensity of 13COgenerated using the cropped data cube. Bottom left: integrated intensity of 13COwind tracer generated using the whole data cube. Bottom
middle and bottom right: integrated intensity of 13COwind tracer generated using the cropped data cube. “D” is the line-of-sight thickness of the data cube.

Figure 26. Different definitions for a synthetic bubble. First panel: the 13CO integrated intensity map. Second panel: the original definition of the bubble using the
ORION tracer field integrated over the velocity channels. Third panel: the temperature-based definition (T > 12 K plus the tracer field) integrated over the velocity
channels. Fourth panel: the velocity-based definition (gas with expanding velocities plus the tracer field) integrated over the velocity channels.
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Moreover, to extend the range of bubble masses, we have
included “zoomed-in” synthetic observations. In these 64×64
postage stamps, the original bubble is enlarged by a factor of 2 in
both length and width, which indicates the bubble area and the
mass both increase by a factor of 4. Because CASI-3D takes
postage stamp cubes as inputs, regardless of the actual physical
size of the cubes, the training set spans bubble masses up to
∼4×120Me, and it spans the range of the individual bubble
masses in observations in Section 3.2. In some cases, a single
64×64 postage stamp cannot cover an entire bubble. Only part
of the bubble appears within the input window, such as an arch
or a half circle. These cases in the training set are consistent with
the cases of larger bubbles that are contained in the full map
prediction in Taurus. Thus, to obtain the masses of the largest
bubbles in Taurus, we combine a stack of postage stamps that
cover different parts of each bubble to get the full prediction and
then calculate the bubble mass as described in Section 3.2.

Appendix C
Excitation Temperature Selection and Impact

In this section, we explore the uncertainty in the bubble masses
that is due to the choice of excitation temperature. We find that

25K (e.g., Narayanan et al. 2012; Li et al. 2015) is the most
appropriate choice for converting 13COemission to column
density in the synthetic observations. We show the ratio between
the mass estimated from 13COassuming a 25K excitation
temperature and the true mass calculated from the simulations in
Figure 29. The ratio is within a factor of 2 of unity when assuming
LTE and a 25K excitation temperature, which in turn
demonstrates that both LTE and the choice of 25K are reasonable.
Under the assumption of LTE, the mass estimation goes

linearly with the excitation temperature. From previous feed-
back mass estimates (e.g., Arce et al. 2011; Li et al. 2015), the
choice of excitation temperature ranges from 10 to 50 K. This
could introduce a factor of 2 uncertainty in the mass estimation,
but it cannot account for a factor of 10.

Appendix D
Assessing the Sensitivity of the Data Window

In this section, we check the sensitivity of the data window
to feedback as a function of voxel location. As discussed in
Section 2.2.1, the CASI-3D models predict the full Taurus map
feedback using a stack of 64×64×32 cubes, in total 11,340
cubes. We examine the “response” of each voxel in a
64×64×32 cube. We define the response as the fraction
of the stacked voxels over the 11,340 cubes that are detections
in a 64×64×32 cube. A detection is defined as a voxel
above 90% of the maximum prediction value for all over-
lapping voxels at the corresponding full map location.
Figure 30 shows the response integrated over the velocity
channels. The central region of the postage stamp is the most
sensitive region, where a higher fraction of the stacked voxels
fall above the prediction threshold. The boundary region of the
postage stamp is less sensitive to features, and detection is less
efficient. This figure illustrates that choosing the appropriate
cube offset is important to achieving the best sensitivity. To
ensure that all data are covered by the highly sensitive part of
the window, the maximum step size should not exceed
16 pixels. In our stacked prediction, we adopt a step size of
five pixels, which is smaller than the required step size, to crop
the full Taurus map.

Figure 27. Comparison between the velocity-cut tracer mass and the
temperature-cut tracer mass.

Figure 28. Distribution of bubble masses in the training set.

Figure 29. Ratio between the mass estimated from 13COassuming a 25 K
excitation temperature and the true mass calculated from the simulations.

20

The Astrophysical Journal, 890:64 (22pp), 2020 February 10 Xu et al.



We note that the range of the window sensitivity likely
depends on the training data and the target feature size. Here,
we aim to find bubbles that have typical sizes greater than
∼16 pixels or a quarter of the cube length. We recommend that
other users of CASI-3D check the window sensitivity for their
problem to determine the appropriate offset size when applying
CASI-3D to large data maps.

Appendix E
YSOs in the Taurus Molecular Cloud

Figures 31 and 32 show the 13COintegrated intensity of
Taurus overlaid with the integrated prediction of feedback from
models ME1 and MF (red). The arcs in yellow indicate the
position of the previously identified bubbles from Li et al.
(2015). The red stars indicate the locations of the Class III
YSOs from Kraus et al. (2017). The white stars represent the
locations of the YSOs from Rebull et al. (2011). The white
cross symbols indicate the locations of the YSOs from Rebull
et al. (2010).

Figure 31. The 13COintegrated intensity of Taurus overlaid with the integrated prediction of feedback from models ME1 and MF (red). The arcs in yellow indicate
the position of the previously identified bubbles from Li et al. (2015). The red stars indicate the locations of the Class III YSOs from Kraus et al. (2017). The white
stars represent the locations of the YSOs from Rebull et al. (2011). The white cross symbols indicate the locations of the YSOs from Rebull et al. (2010).

Figure 30. Integrated response of a voxel in the cube, that is, the fraction of
voxels predicted to be associated with feedback in the same position in the
stack of cubes summed over all velocity channels.
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