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Abstract

To determine if the SuperNova Empirical Model (SNEMO) can improve Type Ia supernova (SN) standardization
of several currently available photometric data sets, we perform an initial test, comparing results with the much-
used SALT2 approach. We fit the SNEMO light-curve parameters and pass them to the Bayesian hierarchical
model UNITY 1.2 to estimate the Tripp-like standardization coefficients, including a host-mass term as a proxy for
redshift-dependent astrophysical systematics. We find that, among the existing large data sets, only the Carnegie
Supernova Project data set consistently provides the signal-to-noise and time sampling necessary to constrain the
additional five parameters that SNEMO7 incorporates beyond SALT2. This is an important consideration for future
SN Ia surveys like LSST and WFIRST. Although the SNEMO7 parameters are poorly constrained by most of the
other available data sets of light curves, we find that the SNEMO2 parameters are just as well constrained as the
SALT?2 parameters. In addition, SNEMO2 and SALT?2 have comparable unexplained intrinsic scatter when fitting
the same data. When looking at the total scatter, SNEMO7 reduces the Hubble-Lemaitre diagram rms from 0.148
to 0.141 mag. It is not then the SNEMO methodology, but the interplay of data quality and the increased number of
degrees of freedom that is behind these reduced constraints. With this in mind, we recommend further investigation
into the data required to use SNEMO7 and the possibility of fitting the poorer photometry data with intermediate
SNEMO-like models with three to six components.
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1. Introduction

Observations show that measurable properties of Type Ia
supernovae (SNe) are correlated with their peak brightnesses,
making SNe Ia standardizable candles (Phillips 1993; Hamuy
et al. 1996; Riess et al. 1996; Perlmutter et al. 1997). Once their
peak brightnesses are standardized, they can be used as
distance indicators and aid in our understanding of the
expansion history of the universe. The precision with which
cosmological parameters are constrained depends, in part, on
how well SN Ia standardization reduces the dispersion in peak
brightnesses. Beginning in the 1990s, standardization techni-
ques were developed that reduced the dispersion to 0.15 mag,
resulting in the discovery of the accelerating expansion of the
universe (Riess et al. 1998; Perlmutter et al. 1999). Since then,
improving techniques for SN Ia standardization has been a
continuous topic of research. (e.g., Phillips et al. 1999; Guy
et al. 2005, 2007; Jha et al. 2007; Burns et al. 2011). Further
improvements may be needed in order to remove possible
percent level systematics (e.g., Foley & Kasen 2011; Kim et al.
2013; Fakhouri et al. 2015; Burns et al. 2018; Pierel et al. 2018;
Hayden et al. 2019) that could affect systematic uncertainty
limited measurements of dark energy by future missions like
LSST (LSST Science Collaboration 2009) and WFIRST
(Spergel et al. 2015; Hounsell et al. 2018). SNe Ia are typically
observed photometrically in a few broadband optical filters

with an observation every few days. The resulting light curves
are then fit to one of several empirically based models in order
to extract SN Ia parameters that quantify properties like light-
curve shape and color. These parameters are then used to
standardize the absolute luminosity of the supernovae, measure
distances, and eventually constrain cosmological parameters.
The exact interpretation of these parameters differs for each
light-curve fitting method.

Light-curve fitters like Hamuy et al. (1996), Riess et al.
(1996), Phillips et al. (1999), and Jha et al. (2007) use a single
light-curve shape parameter and separate the sources of SN Ia
color variation by assuming a fixed Milky-Way-like extinction
curve to describe the variation due to dust and attributing the
remaining color variation to intrinsic color differences in the
SNe Ia. Tripp (1998) and Guy et al. (2007) also use a single
light-curve shape parameter, but do not separate the sources of
color variation. The popular SALT2 model (Guy et al.
2007, 2010; Betoule et al. 2014; Mosher et al. 2014) uses a
linear model of the SN Ia spectral energy distribution sequence
fit from light curves and spectra. The model is parameterized
by finding the coefficients that produce synthetic photometry
most similar to the observed photometry. One parameter, xi,
captures the broader—brighter (or Phillips) relationship identi-
fied in Phillips (1993) and Pskovskii (1977). For normal
SNe Ia, the distribution of x; roughly follows a standard
normal distribution. The second parameter, ¢, accounts for
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color variability both from dust and intrinsic diversity. For
typical SNe Ia, c is also roughly normally distributed, but with
a narrower spread; most SNe Ia have a ¢ value within a few
tenths of a magnitude of zero.

The standardization method commonly referred to as Tripp
standardization (Tripp 1998) combines these light-curve shape
and color parameters linearly to estimate the distance modulus,
w. This is typically done for the rest-frame B-band magnitude
(mp). Using the parameters from the SALT2 SN Ia light-curve
model, the Tripp standardization equation is

p=mg— Mg —axi+ 3o, (D

where p, mp, and Mp are the distance modulus, apparent
magnitude, and absolute magnitude, respectively. The o and (3
parameters are the linear standardization coefficients corresp-
onding to the SN Ia light-curve shape (x;) and intrinsic color
(c).The parameters mp, x;, and c are fit for each individual
SN Ia, while Mp, o, and 3 are global parameters that are fit
simultaneously, along with the cosmological parameters of
interest, using the full data set.

There is evidence suggesting that SNe Ia show considerably
more spectral diversity than the current shape and color
parameters capture (Branch et al. 2006; Kim et al. 2013;
Fakhouri et al. 2015; Hayden et al. 2019; Rubin 2019). This
diversity may present itself as uncorrected systematic shifts in
the peak luminosity of SN Ia. An example of such an
unaccounted for systematic is seen in the host galaxy mass
step (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al.
2010). The mass step is a shift in average peak luminosity of
~0.06 mag between SN Ia from low stellar mass host galaxies
(<10 My /M.) to high mass hosts (=100 My/M.). This
result has been seen in multiple samples with a >50
significance (Childress et al. 2013; Uddin et al. 2017;
Moreno-Raya et al. 2018).

1.1. SNEMO

In order to address the issue of unmodeled spectral diversity,
Saunders et al. (2018) presented the Super-Nova Empirical
MOdels (SNEMO), which apply expectation maximization
factor analysis (EMFA, a dimensionality reduction algorithm
similar to principal component analysis) to optical spectro-
photometric time series data obtained by the Nearby Supernova
Factory (SNfactory; Aldering et al. 2002). EMFA reduces the
dimensionality of the training data set to a predefined number
of eigenvectors. In the case of SNEMO, these eigenvectors are a
time series of spectra (Saunders et al. 2018, Equations (7) and
(10)). Combined, these eigenvectors represent a linear basis
from which one can reconstruct any optical SN Ia spectral time
series. This method of defining the eigenvectors is similar to
the method used to define SALT2’s x; (Guy et al. 2007, Section
5), however the EMFA algorithm used to obtain the SNEMO
components handles missing and noisy data in a different
manner and does not use any photometric training data.
Additionally, SNEMO does not fit a variable color law and
instead assumes a Fitzpatrick & Massa (2007) reddening law
(Saunders et al. 2018, Section 3.2). Like SALT2, each of the
best-fit model coefficients (or eigenvector projections) describe
a certain light-curve shape and can be combined to standardize
supernova magnitudes. Unlike some light-curve shape para-
meters (e.g., Amys), these EMFA eigenvectors are pure
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mathematical constructs and do not necessarily connect to
anything physical or intuitive.

SNEMO is a family of models trained on the same data.
Saunders et al. (2018) released three variants”: SNEMO2,
SNEMO7, and SNEMO15.'% SNEMO?2 is named for its two
spectral-temporal eigenvectors; SNEMO7 and SNEMOI15 have
seven and fifteen eigenvectors, respectively. In addition, each
SNEMO model has a color correction curve that is identical to
the Fitzpatrick & Massa (2007) reddening law. The “zeroth”
eigenvector, describing the mean spectral-temporal evolution,
is related to mp in Equation (1), and its corresponding
coefficient used only as an overall scaling factor. The other
spectral-temporal and color parameters are combined linearly
to standardize SNe Ia.

SNEMO2, which consists of a mean vector, one spectral-
temporal component of variation, and a color law, is directly
analogous to SALT2, differing only in the training data and
methodology used to obtain the model components. SNEMO2
allows for a direct comparison between the SNEMO and SALT2
training methodologies without introducing any more degrees
of freedom to the model. The other SNEMO models introduce
more parameters to allow the model to capture more of the
spectral variation. In the initial release of SNEMO, Saunders
et al. (2018) showed that these extra parameters do improve the
quality of the model in fitting the diversity of SN Ia behavior.

Using the SNfactory training and a separate SNfactory
validation set, SNEMO15 was found to be the model able to
capture the most spectral diversity while avoiding overfitting.
SNEMO7 was considered to be a model that well-sampled
multiband light curves should be able to constrain, while
capturing more SN Ia variation than SNEMO2 (or SALT2). In
addition, SNEMO7 was determined to be the point of
diminishing returns when using Tripp-like linear standardiza-
tion. It is worth noting that there is evidence for the further
consideration of nonlinear spectral behavior (e.g., ejecta
velocities) that may require the more descriptive spectral fits
obtained with SNEMOI5.

For a further understanding of the similarities and difference
between SALT2 and SNEMO, we plot the correlations between
the model parameters in Figure 1. Figure 13 of Saunders et al.
(2018) shows this same plot but for SNEMO2 parameters
measured from spectrophotometric data. This work focuses on
SNEMO?7 parameters derived from photometric data, so Figure 1
uses our nominal SNEMO7 data set. Details on the data and
model are described in Section 2.

In this work, we perform the initial test of how well SNEMO7
standardizes SNe Ia using only publicly available photometric
light-curve data. This goes beyond the spectrophotometric time
series data set used in the development and initial testing of the
SNEMO models. We include a host stellar mass term as a proxy
for any uncorrected SN Ia astrophysical systematics. It is these
possible unknown systematics that stand as the largest threat to
precision dark energy measurements. Host stellar mass has
become a standard proxy since Kelly et al. (2010). However
more recent research by Gupta et al. (2011), Hayden et al.
(2013), Rigault et al. (2013, 2018), Childress et al.

° htps: //snfactory.Ibl.gov/snemo/index.html

Unlike principal component analysis, when using the same data to generate
models with differing numbers of eigenvectors, EMFA does not guarantee that
the first few eigenvectors are the same. That means SNEMO?7 is not just the first
seven eigenvectors of SNEMOI15. However, in practice the first three or four
eigenvectors of these two models are nearly identical.
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Figure 1. Correlations between parameters of SALT2 and SNEMO7 from our nominal photometric data set: no error model, 0; < 2, and without outliers (N = 229).
This is similar to the SNEMO2 correlations from spectrophotometric data shown in Figure 13 of Saunders et al. (2018).

(2013, 2014), Moreno-Raya et al. (2018), Rose et al. (2019),
and others, show that alternative astrophysical measurements
may better match the true physical mechanism.

We use the following criteria to evaluate SNEMO7’s ability to
standardize current photometric SNe Ia data sets:

1. When applying the model to current light-curve-only
data, are the standardization coefficients consistent with
those derived from the spectrophotometric time-series
training data set?

2. How many standardization coefficients are distinguish-
able from zero?

3. What are the correlations between the coefficients?
Strong correlations imply that a projection needs to be
fit even if the standardization coefficient is consistent
with zero.

4. Given current data sets, does SNEMO7 reduce the need for
unexplained intrinsic scatter in SN Ia (Oupexplained) in the
Hubble-Lemaitre diagram?

5. Does SNEMO?7 reduce the correlations with host galaxy
properties, such as the one with stellar mass (y)? A
reduction of these correlations would imply a reduced
systematic floor for SN Ia standardization.

These tests do not attempt to validate or characterize SNEMO’s
ability to fit light curves, but rather focus on questions
concerning population-level effects that have the potential to
impact cosmological measurements. Characterizing light-curve
fits will be done thoroughly in a forthcoming paper (Saunders
et al. 2020). We will also not investigate the limits of Tripp-like
standardization equations or methods. Finally, we are here only
asking how SNEMO fares on these five criteria when given the
current quality of SN Ia data sets, not how it performs when
given the data quality expected from LSST or WFIRST. These
are all important research topics and should be discussed
independently.

In Section 2, we discuss the photometric data and the method
we used to test SNEMO7, and in Section 3, we discuss our
findings and present answers the five questions above. In
Section 4, we discuss how these results impact SN Ia
cosmology in the systematics dominated era of LSST and
WFIRST.

2. The Data and UNITY

This work uses high-redshift (z = 0.5) Hubble Space
Telescope (HST) data from Riess et al. (2007), mid-redshift
(0.1 £z < 0.4) data from the rolling supernovae surveys of
the Sloan Digital Sky Survey (SDSS; Sako et al. 2014) and the
(0.1 £z < 1.0) Supernova Legacy Survey (SNLS; Betoule
et al. 2014), and nearby (z < 0.1) SNe Ia observed with
targeted follow up from the Foundation survey (Foley et al.
2018; Jones et al. 2018), the Carnegie Supernova Project (CSP)
third data release (Krisciunas et al. 2017), and the Center for
Astrophysics Fred Lawrence Whipple Observatory Supernovae
data releases (CfA; Riess et al. 1999; Jha et al. 2006; Hicken
et al. 2009, 2012). Of these many data sets, CSP followed the
SNe Ia at a faster cadence than most and obtained observations
with higher-than-typical signal-to-noise. We use only objects
with available host galaxy stellar mass measurements (R. Gupta
et al. 2020, in preparation). The number of SNe Ia from each
survey are in the first two rows of Table 1. The total size of the
sample with host galaxy stellar mass measurements is 914.

2.1. SNEMO7 Light-curve Fits

The three released SNEMO models are available in the
sncosmo python package'' (version 1.7). We use the
mcmc_lc function in that package to find the posterior
distribution of the best-fit model coefficients (i.e., the
eigenvector projections, c¢;) for each SN Ia and estimate their
uncertainties (0;) from these posteriors. This function uses
Markov Chain Monte Carlo to sample from

X2 = (ﬁ)bs _fmod )T (Eobs + zmod)_l(f‘;bs _fmod)' (2)

This is a function of the model coefficients (z, 1, ¢;, A,), Where
Jops (b, p) is the flux observed in bandpass b at phase p, and
Jinod (0, D5 2, Ty, ¢i, Ay) is the flux predicted in bandpass b at
phase p, obtained by performing synthetic photometry on the
spectral time series model with the given model coefficients. A
diagonal covariance matrix whose entries represent the
observational uncertainty in each bandpass and phase observed
(3obs) 1s added to the model covariance (X,0q) to obtain the full
covariance matrix used in the light-curve fits. The population
dispersion of a given component (c;) is normalized to

' Barbary et al. 2015
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Table 1
Number of SN Ia Passing Quality Cuts from Various SNEMO Models
CSP  Foundation CfA  SDSS SNLS HST Total

Total SNe 134 223 97 371 239 9 1073
Host Mass 99 99 97 371 239 9 914

Avail.

SNEMO2

No Error

Model
0; <2 96 99 95 355 234 6 885
1% Error

Model
0; <2 96 98 96 355 234 7 886
2% Error

Model
0; <2 97 98 94 352 234 6 881

SNEMO7

No Error

Model
0 <1 80 36 16 12 13 0 157
0; <2 83 62 45 24 26 0 240
1% Error

Model
0 <1 66 9 4 11 0 0 90
0 <2 75 52 28 21 18 0 194
2% Error

Model
0; < 1 36 0 1 2 0 0 39
0; <2 73 22 9 15 7 0 126

Note. o; is the uncertainty on each fit eigenvector. When o; = 1, the uncertainty
is approximately the 1o dispersion in the population. The data from the CfA,
SDSS, SNLS, and HST surveys were obtained via the JLA compilation
(Betoule et al. 2014).

approximately 1, meaning ~1000 normal SNe Ia should have a

¢; range of ~—3 to 3. Further details on the interpretation of
SNEMO parameters can be found in Saunders et al. (2018). In

addition to the SNEMO coefficients, the time of maximum
brightness is fit along with the model coefficients with wide,
uniform priors ((—50, 50) for each of the model coefficients,
and (min(zyps) — 20, max(f,p)) for the time-of-max). When
running the inference, we let the redshift in SNEMO vary within
the uncertainty of the measurement (~0.0001). We also correct
for Milky Way dust reddening using the Schlafly & Finkbeiner
(2011) maps.

In a SALT2-like analysis, initial light-curve quality cuts based
on phase sampling and signal-to-noise are usually applied. We
do not yet have a similar heuristic for which light curves are
high enough quality to be fit with SNEMO7. Instead, we filter
the SNeIa on the SNEMO7 parameters and uncertainties
directly, rather than any other measured properties of the light
curves. We define an object to be well fit by SNEMO7 when its
eigenvector coefficient values are less than a threshold
(cil < 5) and the uncertainties on those coefficients are also
smaller than another threshold (o; < 2). The cut on |¢;| < 5 is
intended to remove large outliers, and the cut on ¢; > 2
removes SN la that have an uncertainty in the best-fit
coefficients larger than twice the 1o population dispersion. A
high o;, e.g., >2, represents data that can be fit by a wide range
of models, effectively putting no constraint on the true values
of the model parameters. We investigate the effect of different
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o; cutoff values on our results in Appendix. These quality cuts
remove unconstrained fits without excessively restricting our
sample size. This results in a nominal data set of N = 240.

SNEMO7 does not yet have an uncertainty model (the X,04 in
Equation (2)). A formal uncertainty model describes the
regions in parameter space where SNe la are more diverse
than the model and reduces the impact these regions have on
fitting data. This uncertainty model is under development (C.
Saunders et al. 2020, in preparation), but in this work we need
to look at the effect of treating the model as imperfect. For
SALT2, the uncertainty model is partially determined by the
statistical uncertainty from their training data set (Guy et al.
2007); the model is more certain in areas that had more training
data. For SNEMO, the training data was selected to all have the
same rest-frame wavelength coverage. As such, this part of the
uncertainty model should be smooth. The other part of the
SALT?2 uncertainty model describes correlated residuals around
the model. We expect this component to be reduced for
SNEMO?7, as it describes more of the intrinsic SN behavior.
Using these assumptions, we investigate the effects of an
imperfect model using a simplified uncertainty model. This
naive uncertainty model consists of a diagonal covariance
matrix with entries given by 1% or 2% of the peak flux value in
each band. The formal uncertainty model in development, has
more variation in phase than our naive model, but its scale is
within this range.

The addition of these uncertainties degrades the coefficient
measurement precision (i.e., ;), therefore reducing the number
of SN Ia passing quality cuts. With a 1% naive uncertainty
model, the number of SN Ia passing our quality cuts are
N = 194, and dropping to N = 126 with the 2% uncertainty
model. Ultimately, the data sets that survive these cuts are
dominated by CSP SNe Ia. Table 1 shows how varying the
light-curve fit quality cuts and uncertainty model affects the
total number of SNe Ia in our sample.

Several factors contribute to the poor constraints on the
model parameters. A large factor is wavelength coverage. The
SNEMO model is defined from 3300 to 8600 A, and any
observations in bands with rest-frame wavelengths outside of
this range are not used to constrain the model parameters. As an
example, we find that all of the SNLS objects that pass our cuts
are at redshifts below ~0.7, which is where the effective
wavelength of the r-band falls below the lower bound of the
SNEMO wavelength range. The signal-to-noise ratio of the
observations or the temporal sampling of the light curves can
also have an impact on our ability to constrain the model
parameters in the light-curve fits. A full study of these effects is
left to future work.

2.2. UNITY1.2

We used the Unified Nonlinear Inference for Type Ia
cosmologY (UNITY) framework to estimate the standardiza-
tion equation, Equation (3) below. UNITY, a Bayesian
hierarchical model implemented in Stan (Carpenter et al.
2017) using pystan (Riddel et al. 2018), was developed by
Rubin et al. (2015) and further refined by Hayden et al. (2019).
A more recent version (UNITY1.2) now includes the capability
of modeling Tripp-like standardization equations with an
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arbitrary number of standardization parameters.'> Because our
focus is on standardization and not cosmology directly, we
assume a flat, ACDM cosmology with {, = 0.3.

All spectral energy distribution models considered (SALT2,
SNEMO2, and SNEMO7) are unable to achieve a dispersion in
distance modulus that is consistent with measurement uncer-
tainties and linear standardization. We model the remaining
“unexplained” dispersion with a model parameter: unexplained
intrinsic scatter, Oypexplained- W€ aSSUME Oupexplained describes the
width of a Gaussian distribution. More details about this
parameter are described in Rubin et al. (2015, Section 2.7).

We use a simple Gaussian mixture model in magnitude for
modeling the outlier distribution (see Kunz et al. 2007). Thus,
we have no explicit outlier rejection, but as SNe Ia get further
from their predicted rest-frame B-band magnitudes, they are
more and more likely to be described by the outlier distribution.
We fix the width of the outlier Gaussian to 0.5 mag, added in
quadrature with the measurement uncertainties, and allow the
fraction of SNe Ia in this distribution to be a model parameter.
A further explanation is presented in Rubin et al. (Section 2.3
of 2015).

Using the SNEMO7 model with UNITY requires a total of
eight standardization coefficients: six for the light-curve-shape
eigenvectors, one for the color law, and finally a coefficient
describing the effect (if any) of host galaxy stellar mass. These
can be combined into a standardized distance modulus
equation, following the Tripp convention

N
= mp — (MB + PBA; + ym + ZOtiCi ) (3)
i=1

where u, mpg, and Mp are the distance modulus, apparent and

absolute magnitude, respectively, the same as l;l\gluation (1). For
SALT2 and SNEMO2, N = 1, but for SNEMO7, N = 6. A, and (8

are the color term and color standardization coefficient,
respectively. Ay is a spectral variant of the traditional Ay
extinction. For comparison to SALT2, A, should be approxi-
mately (Ry + 1)c¢, meaning that § should be ~1. Finally, v is
the standardization coefficient applied to the logarithm of the
stellar host galaxy stellar mass (m)."*> The zero-point of m is
shifted such that the data set’s average is zero, partially
decorrelating + and the absolute magnitude Mp. As this
standardization equation uses the same sign for all of the
coefficients, these a coefficients have the opposite signs as the
one in Equation (1). Due to the small sample sizes, we ran
UNITY 1.2 without estimating selection effects or calibration
offsets between data sets.

2.3. SALT? Fit as a Reference

In order to test if SNEMO can improve the Hubble-Lemaitre
diagram unexplained dispersion or reduce the correlations with
host galaxy properties, we first need a baseline for our

'2 These latest updates can be found at https: //github.com/rubind /host_unity.
The computational analysis procedures for this work are documented in

rdr2019/makefile.

3 When accounting for host mass using a step function, as opposed to the
linear method presented above, it is common to use ¢ as the standardization
variable. Host galaxy stellar mass will never be more than a proxy for an
astrophysical systematic, and since we are not performing any cosmological
measurements, the linear standardization via stellar mass is sufficient even
though more significant correlations may exist (Childress et al. 2014; Rigault
et al. 2015, 2018; Rose et al. 2019).
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comparison. As such, we use the SALT2.4 version of SALT2 to
fit the SNe Ia that passed basic quality cuts for SNEMO2 and
SNEMO7. The results were then put into UNITY1.2 to estimate
the standardization coefficients of Equation (3). The nominal
value for a SALT2 Tripp-like mass standardization parameter,
with the data set that can constrain SNEMO7, was found to be
v=—0.01 £0.02. This is in agreement with
v = 0.042 £ 0.013 seen in Sullivan et al. (2010). Note our
inflated uncertainties due to the smaller sample size. When
looking at the SNe Ia that can constrain SNEMO2, we measure a
nominal value of v = —0.043 £ 0.010, nearly identical to that
of Sullivan et al. (2010). This supports our conclusion that our
high threshold for light-curve quality does not introduce large
biases in the standardization parameters. The full fit can be seen
in Figure 2 with the numerical values presented in Tables 2
and 3.

3. Results and Discussion
3.1. SNEMO2

Our first objective was to test the modeling methodology
used by SNEMO. With only two model parameters to fit,
SNEMO2 allows for a direct comparison between SALT2 and
SNEMO. Figure 3 shows the resulting posterior, as inferred by
UNITY1.2, for the SNEMO2 standardization equation. Numer-
ical values are presented in Table 2.

SNEMO2’s standardization parameters are well constrained
and independent of the uncertainty model. Each data set
analyzed corresponds to one of the three different uncertainty
models, uses our default quality cuts of ; < 2 and|¢;| < 5, and
includes more than 800 SN la. There are no previous
measurements for the SNEMO2 «; or 3, but oupexplainea and 7y
can be compared to the values from SALT2. To calculate
Ounexplained YOU need to first remove the scatter characterized by
the uncertainty model (3,04, Equation (2)). For even a modest
uncertainty model, SNEMO2 and SALT2 have a comparable
unexplained intrinsic scatter. In addition, the correlation with
stellar mass is not statistically different. Finally, 2%—3% of the
SN Ia were flagged as cosmological outliers.

Since SNEMO2 is comparable to SALT2 when standardizing
SNe Ia, we claim that the modeling details in the SNEMO
family of models, e.g., wavelength coverage, use of factor
analysis, etc., are well-behaved. Following the idea that SNe Ia
exhibit more diversity than can be captured by two parameters
(Branch et al. 2006; Kim et al. 2014; Fakhouri et al. 2015;
Hayden et al. 2019; Rubin 2019), we proceed to test the seven
parameter SNEMO7 model.

3.2. SNEMO7

The results of the analysis of SNEMO7 and UNITY1.2 are
shown in Figure 4. This figure shows the posterior distributions
when using the published version of SNEMO7 (with no
uncertainty model), as well as with the addition of a 1%, and
a 2% peak luminosity uncertainty model. A 3% uncertainty
model was also tested, but resulted in an exaggeration of the
trends already observed when increasing the uncertainty from
1% to 2%, and as such is not presented.

There are a few things that stand out from these results. First,
in Table 3, we see that the outlier percentage typically ranges
from 1.5% to 3.2%. UNITY 1.2 probabilistically separates these
into an outlier population, where they do not affect the inlier
population variables: Mg, Ounexplained> > B, and 7. Next, the
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Figure 2. Corner plot of the posterior distribution for the SALT2 standardization parameters: the peak luminosity of SN Ia (Mp), the unexplained intrinsic scatter in
magnitudes (Gunexplained)> and the standardization coefficients (o, 3, and v from Equation (3)). Gray contours are for the data set that passed the 0; < 2 quality cuts with
SNEMO7 (N = 240) whereas the blue contours are for the SN Ia that passed the same cuts when fit with SNEMO2 (N = 867). Each marginalized distribution’s median,
along with 1o uncertainties, are numerically represented above the corresponding histogram; top and bottom numbers are for the blue and gray distributions,
respectively. The location of a null host galaxy standardization is shown via the blue line. All two-dimensional contours show 20 confidence regions. This posterior
distribution is consistent with previously published estimates (Sullivan et al. 2010; Betoule et al. 2014; Scolnic et al. 2018).

unexplained intrinsic scatter starts at 0.125 £+ 0.011 mag, 3.2.1. Are the Standardization Coefficients Consistent between
slightly smaller than that of SALT2, and decreases to Data Sets?

0.10 £ 0.03 mag if we raise the uncertainty floor to 2%.
Finally, as the size of the uncertainty model increases, the
sample size decreases and as expected the uncertainty in the
standardization parameters increase.

Table 3 shows the estimated standardization coefficients
after applying various data quality cuts. Taking the data with no
uncertainty model added, we determine that they differ at ~20
with the original estimates produced when using the SNfactory
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Table 2
Parameter Estimation Results from UNITY 1.2 for SN Ia That Passed SNEMO2 Quality Cuts
SALT2 SNEMO2
% Error Model 1 2
Data set size 867° 885 886 881
Mp —19.193%9:50¢ —19.44473911 —19.4527591 —19.4555591
Ounexplained 0.1 16:())882 0.1 29ir888; 0.1 17t888; Oloztgggg
B 2.8579%¢ 0.8875%3 091795 0.9179%
ay —0.12670006 0.04470.07 00457007 004550008
2l —0.043%5516 —0.039%5514 —0.04275514 —0.03975515
No. of outliers 15 (1.7%) 21 (2.4%) 20 (2.3%) 26 (3.0%)

Notes. The SN Ia used in the SALT2 analysis are the ones that passed the 0; < 2 for SNEMO2 with no error model and were successfully fit with SALT2. The “No. of

outliers” is reported both as an absolute number and a percentage of the data set.

# For the same initial data set, SNEMO?2 has six additional SNe Ia rejected as cosmological outliers, where as 18 additional SNe Ia that were rejected at the SALT2 light-

curve fitting stage.

data set (Saunders et al. 2018, and forthcoming erratum). When
evaluating seven parameters, it is expected to see some
variability. In this analysis, a3 differs at >30 from the
SNfactory numbers. Having only one parameter reach this
level of disagreement is expected in about 2% of analysis, or
220. Including a non-zero mass standardization does slightly
shift the central values of the other standardization coefficients,
but not by the scale of the variation described above. The
correlations between ~ and each «, seen in Figure 4, are not
large enough to cause a drastic shift in any of the
standardization coefficients. Furthermore, these values can
shift by over 1o (e.g., o) with the addition of a 1% uncertainty
model. Our results show that the standardization coefficients
for SNEMO7 show only mild variation between data sets.

3.2.2. How Many Standardization Coefficients Are Distinguishable
from Zero?

Using SNEMO7 with no model uncertainties, most coeffi-
cients can be distinguished from zero at >20, with a4
distinguishable from O at greater than 40. A 1% uncertainty
model has similar results. However with a 2% uncertainty
model, UNITY1.2 is unable to distinguish the SNEMO7
standardization components from zero (except for «;). This is
likely due to a combination of data set size and the quality of
the light curves themselves. Assuming SNEMO7 has an
uncertainty model below ~2%, each light-curve parameter
will have a non-zero standardization coefficient.

3.2.3. What Are the Correlations between the Coefficients?

The 2% uncertainty model does reveal strong correlations
between the parameters. These strong correlations suggest that
the constrainability of the standardization parameters would
dramatically improve if one or two of these parameters were
fixed or known. A lower dimensional model (like SNEMO6 or
SNEMO5) would have an effect similar to “fixing” one or two of
these parameters to zero. However, since a five parameter
EMFA model is not simply the first five parameters of a seven
parameter EMFA model, SNEMO5 would require a full
retraining rather than a simple truncation of SNEMO?7.

When looking at spectral time series data, SNEMO7 appears
to be a viable photometric light-curve fitter, but these strong
correlations imply that not all of the eigenvectors are
constrainable with today’s light curves. Since a much higher
percentage of the higher cadence CSP SN Ia passed quality

cuts, we know that the quality of the observed light curves (as
measured by wavelength coverage, signal-to-noise, temporal
sampling, etc.) plays a role in the ability of SNEMO?7 to be used
with photometric data. Additionally, the eigenvectors that
could be obtained from light curves are not necessarily the
same, nor in the same order, as those obtained from spectral
time series (like the SNEMO eigenvectors). Similar to the work
of Kim et al. (2013), the SNEMO eigenvectors manifested in
light curves should be investigated and perhaps a new model
generated that prioritizes the information available in the light
curves.

3.2.4. Does SNEMO7 Reduce Unexplained and Systematic Variations
in Standardization?

The final two questions deal with the uniformity of the
standardization. Using the SNEMO?7 light curves with no
additional error model, the unexplained intrinsic scatter
(Gunexplained) Moderately decreased from 0.135 & 0.009 mag
with SALT2 to 0.125 £ 0.011 mag, for the same SNe Ia. We
found that with a 2% uncertainty model, the unexplained
intrinsic scatter decreased from 0.141 £ 0.015 mag for SALT2
to 0.10 & 0.03 mag. Because this is a more direct comparison
t0 the Ounexplained Of SALT2, as both methods use some
uncertainty model, we conclude that SNEMO?7 is capable of
decreasing the unexplained intrinsic scatter on the Hubble—
Lemaitre diagram. With regard to the reduction of unexplained
variation or systematic limits of standardization, SNEMO7
shows only slightly significant deviations from SNEMO2 or
SALT2.

We also found that there was no apparent decrease in the
host galaxy stellar mass dependence. For the SNEMO?7 data set,
SALT2 only sees a non-zero mass dependence at 0.50, whereas,
with no uncertainty model the mass dependence of SNEMO7
was measured to have a 1.50 non-zero statistical significance.
As discussed in Section 2.3, this is not a removal of a host
galaxy mass correlation, but more likely an inflation of its
uncertainty due to the small sample size.

4. Impacts on Systematics Dominated Cosmology

Current cosmological analyses typically use SALT2 as their
nominal model for standardizing SN Ia magnitudes (e.g.,
Scolnic et al. 2018; DES Collaboration et al. 2019). The next
generation of SN Ia cosmological surveys will be limited by
systematic uncertainties. SNEMO7’s decreased scatter (rms) in
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Table 3
Parameter Estimation Results from UNITY1.2 for SN Ia That Passed SNEMO7 Quality Cuts, 0; < 2.
SALT2 Saunders et al. (2018) SNEMO?
% Error Model 0 1 2
Data set size 240 194 126 133 240 194 126
My —19.197931 —19.19619912 —19.188%9917 —19.5370%2 —19.5279% —19.50+982
Ounexplained 0.135%8:86 01313331 0.14149913 0125815 012143313 010303
B 3.025519 2.847010 2.96701% 1.08 4 0.04 103708 1015903 1015908
o —0.12579010 —0.12979%12 —0.122+9917 0.16 & 0.03 —0.05+392 —0.08+093 —0.091312
@ 0.02 4 0.03 0.045+3917 0.07+3% 0.11798¢
o 0.103 + 0.017 —0.03115913 —0.0267991$ —0.019%
ay 0.01 £ 0.02 —0.05479012 —0.06979317 —0.0759%7
as 0.045 =+ 0.009 —0.037+39% —0.036+0:01¢ —0.0299
a6 —0.041 + 0.017 001179919 0.025+5913 0.04+09
v —0.016(3 —0.03°303 —0.04%553 —0.03°303 —0.04%43 —0.07:317
No. of outliers 4 (1.7%) 4 (2.1%) 4 (3.2%) 7 (2.9%) 3 (1.5%) 4 (3.2%)

Note. The SN Ia used in the SALT? analysis are the ones that passed each of the SNEMO?7 analyses, respectively. The “No. of outliers” is reported both as an absolute

number and a percent of the data set.

SN Ia absolute magnitude, as compared to SALT2 (Saunders
et al. 2018), is expected to reduce this systematic uncertainty
floor. The above analysis tests if SNEMO can be used on the
same data currently used with SALT2. As seen in Figure 3,
SNEMO?2 can be used as a drop in replacement for SALT2. For a
full cosmological analysis, SNEMO2 would need to be merged
into current cosmological tools (e.g., Kunz et al. 2007; Kessler
et al. 2009; Kessler & Scolnic 2017). In addition, we expect
SNEMO?2 to get the minor revisions and improvements SALT2
has received over the last 13 yr. For example, SNEMO2 will
benefit from the linking of SNFactory to the CALSPEC system
(Bohlin et al. 2014; Rubin 2019).

Although a full cosmological treatment is not possible, if a
fiducial cosmology is assumed, comparisons between SALT2
and SNEMO?7 can be made. Figure 5 shows a Hubble-Lemaitre
diagram using both the SALT2 and SNEMO7 models, assuming
the same fiducial cosmology as UNITY 1.2. The data shown are
from the nominal sample, with |¢] < 5, 0; < 2, and the
SNEMO7 model being fit with no added error model. We
additionally cut all objects identified as outliers by UNITY1.2,
leaving 229 SNe la. The resulting Hubble-Lemaitre diagram
confirms the result from Saunders et al. (2018) that SNEMO7
reduces the scatter around the assumed cosmology from an rms
of 0.148 to 0.141 mag. These rms values are from the mean of
each residual distribution, not the zero fiducial cosmology
itself. Though the extra degrees of freedom in SNEMO7 may be
unexpectedly self-serving, this is unlikely because the data set
has both SNEMO7 and SALT? outliers rejected. In addition, this
small reduction in overall scatter takes on a larger significance
since these numbers are for the same SNe Ia.

The difference in distance between SALT2 and SNEMO7
versus redshift can be seen in Figure 6, where no redshift
dependence is visible. The negative average Ay indicates a
change to the model My value, as seen in Table 3. A lack of
redshift decadence indicates that there would be no effect on
any dark energy parameters.

A full cosmological analysis with SNEMO7 is not yet
possible, but the reduced rms in the Hubble—Lemaitre diagram
shows promise that these new models can explain more SN Ia
variation than SALT2. Explaining more variation is important
because any unaccounted variance may produce a systematic

offset between SN Ia at different redshifts. This possibility is a
major systematic uncertainty for future cosmological
measurements.

Continued work is required to improve SNEMO and other
new light-curve fitters, particularly since only ~25% of
available photometrically observed SNe Ia can use SNEMO7.
An error model is coming to SNEMO, as is further testing of the
necessary data quality. These improvements are warranted
because Saunders et al. (2018) and this work have shown that
improvements on SALT2 are possible. However, there is
currently no model that can act as a drop in replacement while
giving us these improvements.

5. Conclusion

SNEMO is a family of SN Ia models trained on the
spectrophotometric time series data of SNfactory. One of the
many potential uses of these models is to standardize SNe Ia
for cosmological measurements. In testing that use case with
current data sets, we are able to consistently determine the
standardization parameters for SNEMO?7, but tight correlations
between the parameters implies that with a reduction of the
model complexity by one or two components, the other
parameters should be much easier to constrain. This means that
SNEMOS5 or SNEMO6 would be good candidates for a new light-
curve fitter with a goal of cosmological standardization of
current data sets. To properly calculate oupexplained> YOu need to
first remove the scatter characterized by the uncertainty model.
Once we add a modest uncertainty model—similar to the one
present in SALT2—SNEMO2 and SNEMO7 have a slight
reduction in Oypexplained indicating that SNEMO explains more
of the natural variation of SN Ia. On the other hand, there is no
statistically significant reduction in a stellar mass dependence,
implying that adding more linearly standardized light-curve
parameters, with SNEMO7, would be susceptible to a similar
systematic uncertainty floor as SALT2 and that we may be
approaching the limits of Tripp standardization. This perhaps
motivates consideration of nonlinear relationships.

SNEMO7 describes more of the intrinsic variation of SN Ia as
seen in the reduction of the rms in Figure 5. These unaccounted
for variations have been shown to be responsible for a
significant fraction of the unexplained intrinsic dispersion seen
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Figure 3. Same as Figure 2, but using the SNEMO2 light-curve fitter. Three different uncertainty models are shown: no uncertainty model (orange), 1% of peak
uncertainty floor (blue), and a 2% uncertainty (gray). Each parameter is well constrained independent of the assumed uncertainty model. As expected, the unexplained
intrinsic scatter (Gunexplained) depends directly on the uncertainty model. When the uncertainty model decreases to zero (orange contours) the unexplained intrinsic
scatter increases to compensate. The stellar mass dependence is very consistent with what is seen when using SALT2. The blue lines for the Gynexplainea and <y are the
medians of the SALT?2 analysis of the same data set. Like Figure 2, the median and 1o uncertainties for the marginalized distributions are numerically presented above
the associated histograms, first for the no uncertainty model (orange), then for the 1% of peak uncertainty floor (blue), and finally for the 2% uncertainty floor (gray).

in SALT?2 analyses (Fakhouri et al. 2015). Therefore, there is a
danger that if one leaves these differences unaccounted for,
SN Ia sets at different redshifts could systematically favor one
side or the other of this unexplained intrinsic dispersion, thus
introducing a systematic in any cosmological measurement. If

we cannot constrain models that explain more of this intrinsic
dispersion, we risk being unable to reach the level of precision
planned for future cosmological surveys.

The family of SNEMO models are not intrinsically uncon-
strainable, as SNEMO2 can easily be constrained with present
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Figure 4. Same as Figure 3, but using SNEMO?7 to fit the light curves. Three different uncertainty models are shown: no uncertainty model (orange, top numbers), 1%
of peak uncertainty floor (blue, middle numbers), and a 2% uncertainty (gray, bottom numbers). For several parameters, there is not enough statistical significance to

distinguish the standardization parameters (¢, ) from zero with any significance, this

is especially true for the 2% uncertainty floor. Nevertheless, the 2% uncertainty

floor does reveal many tight correlations between the parameters (e.g., oy—as and ay—ag) implying that with a reduction of one or two parameters, the others would
likely be determinable. The blue lines for oynexplainea and v are from the SALT? fits of the same data set. Whereas, the other lines, ; and (3, are the values presented in

Saunders et al. (2018).

data. On the other hand, only the highest quality among
currently available light curves could be fit by SNEMO7, and the
resulting data set is dominated by SN Ia observed by CSP.
Therefore, it is likely that upcoming large surveys, such as
LSST and WFIRST, will want to specify CSP-like signal-to-
noise, time sampling, and rest-frame wavelength coverage for a
reasonable fraction of their supernova photometry. Such light

10

curves could be fit by SNEMO7 and gain the benefit of better
constraints on the SN Ia differences. It is also possible that one
or more spectra might be needed. Further work is essential in
order to properly understand the data requirements needed for
high quality and cosmologically useful fits of light curves with
SNEMO?7. Part of this work is already in preparation but
additional SNEMO models with fewer light-curve shape
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Figure 6. Difference in distance between SALT2 and SNEMO7 vs. redshift.
There is no significant redshift dependence. However, SNEMO7 does increase
the average SN la modeled distance (negative average Apu). This would be a
change in My but would not effect the estimation of dark energy.

parameters should also be investigated. This would include an
investigation into possible information loss or reordering of
eigenvectors by going from the spectrophotmetric time series
data to light-curve data.

We have presented a first look at SNEMO7’s ability to be a
replacement for SALT2 in cosmological analyses. We have
concluded that further analyses are required to determine what
CSP-like qualities are needed to use the additional information
in SNEMO7. Also, SNEMO models with fewer parameters
should be developed and tested in order to use lower quality
data sets, since neither the philosophy behind SNEMO nor
photometry-only data sets are roadblocks to its future use.
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Table 4
Parameter Estimation Results from UNITY 1.2 for SN Ia that Passed SNEMO7
Quality Cuts, 0; < 1

SNEMO7

% Error Model 0 1 2
Data set size 157 90 39
My —19.5279%4 —19.43+096 —19.4792
Ounexplained 0.1 35t88]‘2 0. 132t881|; 006t88§
B 1054397 0.897997 0.71917
™ —0.05+993 —0.03+093 0.185%7
@ 0.0475%2 0.097594 0.18790%2
s —0.0373% 0.02°3% 0.089:92
au —0.055+9917 —0.0749%3 —0.1719%
as —0.040* 5914 —0.0299%3 0.07+004
ag 0.01410016 ~0.004+003 —0.107996
v —0.0675%2 —0.0017919 —0.02799
No. of outliers 6 (3.8%) 1 (1.1%) 8 21%)

Note. The “No. of outliers” is reported both as an absolute number and a
percent of the data set.
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reference ANR-11-IDEX-0004-02. L.G. was funded by the
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Software: astropy (Astropy Collaboration 2013), click,
corner.py (Foreman-Mackey 2016), emcee (Foreman-Mackey
et al. 2012), kde_corner, Matplotlib (Hunter 2007), Numpy
(van der Walt et al. 2011), Pandas (McKinney 2010), pystan
(Riddel et al. 2018), python, SciPy (Jones et al. 2001), Seaborn
(Waskom et al. 2018), sncosmo (Barbary et al. 2015), Stan
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Appendix
Effect of Signal-to-noise Cuts

The 0; < 2 cut is a subjective choice and therefore could
have a noticeable effect on the results presented. As such, we
reran UNITY 1.2 on data sets with cuts applied at 0; < 1. These
results are listed in Table 4. While using the 1% uncertainty
model, Figure 7 shows the effects of changing the value of the
o; cut.

As expected, the effects of changing from a quality cut of
0; < 2 are slight and statistically insignificant. The uncertainty
on the parameters are inflated when moving from o; < 2 to
0; < 1 but this is largely due to the decrease in sample size,
from 194 SN Ia to 90 respectively, rather than the actual value
of ;. Ultimately, the ability to standardize SNEMO?7 light-curve
fits shows no significant dependence on reasonable light-curve
fit quality cuts.

The 2% error model in Table 4 shows very large
uncertainties, particularly for +. This is not an issue with
UNITY1.2, but rather a result of attempting to constrain eight
standardization parameters via 31 inlier SNe Ia (39 total minus
8 outliers). In addition, the distribution of SNe Ia in this data
set are biased toward more massive hosts, forcing an even
larger uncertainty on . These numbers are presented for
completeness only.
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Figure 7. Same as Figure 4 but showing the effect of changing o;. These data sets use a 1% uncertainty model and use quality cuts of o; < 1 (blue) and 0; < 2 (gray,
blue in Figure 4). Changing the signal-to-noise cut has no significant (<20 effect on the UNITY 1.2 parameter estimation. This increase in uncertainty is expected
for the decrease in sample size.
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