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Background

Over the last 30 years the Dimensional Metrology Group at 
the National Institute of Standards and Technology (NIST) 
has used a specialized Fizeau-type interferometer for the 
diameter measurement of spheres. This instrument, known as 
the Strang Viewer, is used for measuring NIST’s own master 
spheres and customer master spheres. The NIST masters 
are used in a mechanical comparison process for measuring 
customer spheres as a lower cost, less accurate, and quicker 
alternative to direct measurement by interferometry. NIST 
master spheres are also used on our Moore1 M48 coordinate 

measuring machine (CMM) as qualification and reference 
spheres and are one of the key elements of the M48’s world-
class accuracy.

The Strang Viewer is named in honor of its designer and 
builder George Strang, who built several interferometric 
viewers in the 1960s to measure the diameters of spheres 
and cylinders. It is called a viewer rather than an interfer-
ometer, because the instrument was designed simply to pro-
duce a beam of parallel light and a means to view fringes 
produced by constructive and destructive interference of the 
light reflected from two precision flat surfaces. To obtain 
fringes, these reference surfaces must be oriented near, but 
not exactly, parallel to one another and orthogonal to the 
optical axis of the instrument. Furthermore, the upper ref-
erence flat must have a significant level of transparency to 
permit the transmittance of the reflected light from both sur-
faces, i.e. the bottom surface of the upper reference flat and 
the top surface of the lower reference flat. Fringe contrast is 
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(a)

(b)

Figure 1.  (a) Strang viewer. (b) Strang viewer diagram.
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maximized when the reflectivity of both opposing surfaces 
of the reference flats are closely matched, therefore the upper 
surface is typically completely transparent when the lower 
surface is not highly reflective (i.e. uncoated lower reference 
flat) or coated to produce some small level of reflectivity, 
typically less than 10% when working with a highly reflec-
tive lower reference surfaces. The Strang Viewer becomes 
a Fizeau-type interferometer only when combined with the 
measurement cavity assembly, which is formed by the upper 
reference flat and lower reference flat. The Strang Viewer 
design is shown in figures 1(a) and (b). For sphere diameter 
measurements, both the upper and lower reference flat are 
uncoated fused silica to avoid introducing a phase change of 
the reflected light.

The design retains its historical capability of using Cd-114 
spectral lamps while at the same time today’s modern 633 nm 
Helium Neon stabilized laser. The Cd-114 spectral lamp 
produces multiple wavelengths corresponding to red, green, 
blue and violet wavelengths and is only relevant for deter-
mining proper fringe order, if the sphere diameter cannot be 
pre-estimated within λ/4 using our mechanical comparison 
process, where λ is the 633 nm wavelength of the laser. The 
Cd-114 wavelength values used, for this purpose, and their 
associated uncertainties are published by Bureau International 
des Poids et Mesures (BIPM) [1]. Currently, this capability is 
only needed for spheres less than 1 mm in diameter because 
they cannot easily be measured in the mechanical comparator. 
To enable automated multicolor interferometry using the 
Cd-114 spectral lamp, the instrument’s video camera retrofit 
includes an optical filter wheel. This optical filter wheel is 
controlled using an electro-mechanical mechanism to view 
the desired wavelength.

Other similar interferometric based sphere diameter instru-
ments have been developed over the years and the details 
of these designs can be found in [2–4]. This instrument’s 
operating principles are different and independent of that 
developed by Saunders at NIST, for volume determination 

from sphere and cylinder diameter measurement in the early 
1970s [5].

Measurement principle

Sphere diameter interferometry, as performed at NIST, is sim-
ilar to gauge block interferometry. When an artifact (sphere 
or a gauge block) is measured using the Strang viewer, static 
fringes are formed. These fringes are captured as digital 
images as shown in figures  2 and 3, and image processing 
techniques are used to calculate the fringe fraction. The fringe 
fraction, along with the knowledge of the fringe order is used 
to calculate the dimension of the artifact.

For gauge block interferometry, the upper reference flat is 
stationary. The platen fringes, represent the distance between 
the bottom surface of the upper reference flat and top surface 
of the platen (lower reference flat). The fringes on the gauge 
block, represent the distance between the top surface of the 
gauge block and the bottom surface of the upper reference 
flat. The gauge block does not contact the upper reference 
flat, so the length is derived as the difference between the dis-
tances. In figure 2, the fringe fraction, representing the differ-
ence, appears as the offset between the dark bands on the gage 
block and the dark bands on the platen upon which the block 
is wrung [6].

The instrument arrangement is different when measuring 
a sphere than while measuring a gage block. The sphere con-
tacts both the upper reference flat and lower reference flat, 
thus the sphere’s diameter is the actual separation between the 
two. Only one fringe pattern is formed, as shown in figure 3, 
and it represents the distance between the two reference flats.

Optimal adjustment of the fringes is achieved using the 
mounting assembly for the upper reference flat, as shown in 
figure 4, which is adjusted to accommodate a variety of sphere 
sizes. The empty cavity holding pin, when engaged, prevents 
the contact between the upper and lower reference flat when 
there is no sphere is in the cavity. This pin is disengaged when a 
sphere is placed in the cavity during a measurement. When the 
sphere is contacting both reference flats, the upper assembly 
vertical adjustment changes the wedge angle between the two 

Figure 2.  Gauge block interferometry fringes.

Figure 3.  Sphere interferometry fringes.
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reference flats (fringe spacing), since this causes the upper ref-
erence flat to pivot about the sphere. The angle of the fringes 
orthogonal to the wedge angle is adjusted using the two fringe 
tilt adjustment knobs on the arms of the bottom portion of the 
assembly. The upper reference flat pivot assembly also pro-
vides a means for counterweighting the upper reference flat to 
finely tune the applied force.

The field of view of the instrument optics limits the setup 
to the measurement of spheres ranging in size from, 0 mm 
(in theory), to approximately 25 mm. To set up the sphere in 
the field of view for measurement, it must be identifiable in 
the image. In the past, this has limited our measurements to 
spheres no smaller than 0.3 mm in diameter.

For analysis, rather than calculating the fringe fraction 
using the fringe of the gauge block at the gauge point rela-
tive to the banding platen fringes (figure 5), the center of the 
sphere is used, as determined from the image. The center 
is calculated from the least-squares circle fit to image data 
acquired by a simple edge detection routine (figure 6).

The fringe fraction, f , is determined in a similar manner to 
gauge block interferometry, except the center of the sphere 
is used to find ‘a’ rather than the center of the fringe on the 
gauge block (figure 6). The fringe fraction is calculated using 
NIST developed, fringe image analysis software, written in 
Python2.

It is important to note; the thick wavy lines are actually 
very closely spaced data points representing the pixel location 
of the intensity minimum as fit to a line of pixels orthogonal to 
the dark band(fringe) in the image. A third order polynomial is 

then fit using all the data points along the horizontal orienta-
tion in the figures. The a and b in the fringe fraction determi-
nation are determined where the vertical line, that intersects 
the center of the gauge block or sphere, intersects the fit line 
from the upper and lower fringe data. The assumption here 
is that the fit lines, from the fit of the pixel minimums, rep-
resents the surface that cannot be seen. For the gauge block, 
the platen or reference flat fringe representing the surface of 
interest is always hidden. However, for the sphere, depending 
on the location of the fringes, fringe spacing, and the size of 
the sphere, the fringe at the points of interest may or may not 
be hidden by the sphere shadow. The flatness of both, the ref-
erence flats and the gauge block, if gauge block interferometry 
is being done, is critical. In fact, in gauge block interferometry, 
the flatness of the gauge block surface is a dominant contrib
ution to the overall uncertainty, given that the definition of 
length of a gauge block is the perpendicular distance between 
a point on the top of the gauge block at the center point to a 
plane to which the block is wrung.

The sphere diameter is calculated in three steps addressing 
various issues in each step. The first step addresses the cor-
rection of the wavelength of the light source for the index of 
refraction of air; the second step addresses the thermal expan-
sion of the sphere based on its material, and the third step 
addresses the deformation of the measured sphere. In the first 
step, the fringe fraction, along with the environmental condi-
tions, are used with the updated Edlén equation [7, 8] to cal-
culate the deformed diameter of the sphere. In the second step, 
the diameter value is then corrected to exactly 20 °C using the 
measured material temperature and the coefficient of thermal 
expansion of the sphere material. The result now represents 

Figure 4.  Measurement cavity with sphere to be measured.

2 See footnote 1.
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the deformed condition of the sphere and reference flats at 
the upper and lower contact points. The third step involves 
a methodology to account for elastic deformation, which is 
covered in more detail in the following section.

Compensation for elastic deformation

Though the sphere diameter measurement appears simple, 
there are several details that make this process more chal-
lenging. The optical length measured is the separation 
between the upper and lower reference flats and represents the 
‘deformed’ condition of the sphere at the applied force. The 
physical contact between the sphere and each reference flat 
causes deformation of both the reference flats and the sphere. 
For example, when a 1 mm tungsten carbide sphere is placed 
between two fused silica reference flats of the instrument 
at 0.5 N, the deformation of both the reference flats and the 
sphere is approximately 0.78 µm. About 90% of the deforma-
tion is on the surface of the reference flats and about 10% on 
the ball itself. The deformation is substantial and must be con-
sidered to obtain an accurate ‘undeformed’ diameter. If unac-
counted for, it would represent an error more than 100 times 
larger than other uncertainty components in the measurement 
of sphere diameter. Using the specialized derivations of the 
Hertzian formulas from the Puttock and Thwaite publication 
[9], a fairly accurate estimate of the point contact deformation 
for both interfaces can be obtained. However, this correction 
has an uncertainty due to the uncertainty of the applied force 
and the elastic properties of the sphere and plane materials.

With the Strang Viewer design, the applied force of the 
upper reference flat is set by the user. This is done by counter
weighing the upper reference flat mounting arm on the oppo-
site side of the supporting pivot joint. Adjustment of the 
measurement force during the measurement process, from this 
initial setting, is done remotely using the voice coil.

Determining the applied force at each contact point is a 
challenge since the applied force varies based on the location 

of the sphere within the field of view, due to contact loca-
tion between the upper and lower reference flats in relation 
to the pivot point of the pivot assembly. Complicating the 
conditions further, the applied force is different for the upper 
contact than it is for the bottom, due to the weight of the ball. 
The upper contact force is the weight applied by the upper 
contact; however, the bottom force is the weight of the upper 
reference flat plus the weight of the sphere. The weight of the 
sphere is easily measured independently on a calibrated scale. 
To accurately determine the applied force, an in situ force 
measurement solution is incorporated that uses a load cell and 
an air bearing mounted vertically as shown in figure 7. The 
load cell force sensitivity and accuracy are verified in place 
with the air bearing and lower reference flat using a calibrated 
set of weights. A direct in situ reading of the contact force 
is obtained through a series of steps. First, the empty cavity 
holding pin is engaged to ensure the two reference flats do not 

Figure 5.  Gauge block fringe fraction. Figure 6.  Sphere interferometry fringe fraction.

Figure 7.  Load cell and air bearing.
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touch. Next, the weights of the air-bearing and lower refer-
ence flat are zeroed out from the load cell reading. Then, the 
empty cavity holding pin is disengaged, the sphere is placed in 
the measurement position and properly aligned. At this point, 
the load cell reading provides a real-time measurement of the 
instantaneous applied force between the sphere and lower ref-
erence flat due to the weight of the upper reference flat and the 
sphere. Using this force reading, the top force is then deter-
mined simply by subtracting the weight of the sphere. At pre-
sent, it is estimated that both upper and bottom applied forces 
can be easily determined to better than 0.45 mN.

Sphere diameters are then measured at various forces, 
without moving the sphere. With the known contact forces and 
the fringe fractions representing the deformed diameters, the 
undeformed diameter is determined by a method of extrapola-
tion. The relationship between the two variables is not linear as 
can be seen in figure 8(a). They are then linearized by plotting 
the sphere diameter (or deviation from the nominal diameter) 
and f 2/3, where f  is the force (figure 8(b)). The f 2/3 component 
originates from the Puttock and Thwaite equation  for point 
contact between a sphere and a plane for the contact force. 
The undeformed deviation from the nominal diameter is then 
determined from the Y-intercept of the linearized data.

This extrapolation method eliminates the uncertainty 
components associated with the mechanical properties of the 

sphere and reference flats. However, eliminating one source 
of error introduces another, thermal drift, due to the time-
consuming nature of force adjustment, alignment, and fringe 
reading inherent in the original design. Prior to automation, 
measuring at eight different forces and repeating the meas-
urement at the initial force could easily consume 45 min and 
resulted in noticeable thermal drift, of about 1 nm–2 nm per 
measurement. The drift was assumed to be linear and the 
results were drift corrected based on the difference between 
the first and last measurements at the initial force.

Significantly reducing or eliminating the drift correction 
and uncertainty associated with it became the primary objec-
tive for achieving further improvement in accuracy. This is 

Figure 8.  (a) (Top left) Deformed deviation from the nominal diameter versus force, (b) (top right) linearized-deformed deviation from the 
nominal diameter versus force2/3, (c) (bottom center) residual from best-fit least squares line (after automation).

Figure 9.  Annular marking with laser engraver to identify a specific 
two-point diameter, micrometer anvils added to show a two-point 
gauging situation.
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where automation came into play. With the integration of a 
1.4 megapixel CCD camera for remote fringe image acquisi-
tion, the voice coil for automated force adjustment, and the 
NIST developed image analysis software for fringe fraction 
determination; the entire measurement process could be done 
quickly and remotely, removing the operator from the meas-
urement area completely. These modifications provided a level 
of automation that reduced the multi-force measurement pro-
cess time by a factor of roughly 30 while more than doubling 
the number of measurement forces. The current multi-force 
measured process was reduced from 45 min to approximately 
90 s. With this, drift during measurement was reduced to a 
negligible 0.1 nm per measurement or less. Figure 8(c) shows 
the residuals from the best-fit least-squares line, after automa-
tion, corrected for any remaining linear thermal drift.

Sphere geometry

The standard measurement process for sphere diameter 
involves repeating the multi-force extrapolation process for 
multiple individual diameter measurements to produce a rep-
resentative average diameter of the sphere. Between individual 
diameter measurements, the sphere is removed, cleaned, then 
repositioned in the measurement cavity. The process is typi-
cally repeated 10 times and the standard deviation of the ten 
measurements is divided by the square-root of the number 
of measurements to produce the standard deviation of the 
average, which goes into the uncertainty budget and repre-
sents a combined term for repeatability and artifact geometry. 
While the repeatability is excellent, including artifact geom-
etry often makes this term the dominating component of the 
uncertainty budget. To produce a more accurate sphere diam-
eter measurement, in the absence of a perfectly round sphere, 
the measurand can be redefined to limit the contribution of 
out-of-roundness if the sphere can be used in the same manner 
and satisfy the needs of the customer as a two-point diameter 
standard. To do so, the sphere can be marked with an annular 
ring as shown in figure 9 and measured only within the area 

enclosed by the circle to limit the measurement to one specific 
two-point diameter. This is done by physically marking the 
sphere with a laser engraver. With a specific diameter marked, 
multiple measurements can then be performed at roughly the 
same two-point location after removing, cleaning, and reposi-
tioning the sphere. This repositioning is done to sample and 
randomize any diameter variation due to localized geometric 
form error, of both the sphere (inside the annular ring) and 
reference flats.

Counterweighting and reference flat geometry

A method for counterweighting the sphere was developed that 
allows for measurement of larger spheres near zero total force. 
Doing so, reduces the extrapolation distance from the mea-
surement data to the y -intercept. In addition, reference flats 
with best available geometry have been introduced. Both mod-
ifications are embodied in current design of the instrument.

The counterweighting mechanism can be seen in figures 10 
and 15. This counterweighting mechanism provides a means 
to minimize the contribution of the weight of the sphere to 
the total applied force between the sphere and lower reference 
flat. This enabled measurements on large diameter spheres at 
closer to 0 N force, which effectively reduces the uncertainty 
associated with the force extrapolation method.

To further minimize uncertainty contributions due to form 
of the reference flats, both reference flats were replaced with 
best-available λ/50 flats. The fringe fitting software does a 
very good job predicting the form of the cavity close to contact 
point or center of the sphere, even when one or both of those 
fringes are hidden by the shadow of the sphere. However, any 
departures from the fit estimation due to local unseen geom-
etry perturbations in the hidden region closer to where the 
sphere makes contact, will introduce error. As can be seen 
in figure 10, the fringes in the field of view, have almost no 
detectable curve. The assumption is still made that there are 
no discontinuities at the contact point, however the multiple 
setup and reading process would reveal such as situation by 

Figure 10.  Sphere counterweighting mechanism.
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making individual outlier identification easy. For example, an 
outlier related to contact geometry could be the result of a 
scratch, pit, or dirt.

Uncertainty analysis

The previous sections provide some insight into the measure-
ment method and the improvements that have been made. 
However, to specify the uncertainty in sphere diameter mea-
surement with highest confidence, an uncertainty analysis was 
performed by studying the sources of error in the instrument 
and the measurement process. The sources of error in mea-
suring the sphere diameter are listed below:

	 •	�Scale

		�	Laser wavelength
		�	Index of refraction of air
		�	Environmental measurements for wavelength compen-

sation

			▪	� CO2 content in air assumption
			▪	� Air temperature
			▪	� Atmospheric pressure
			▪	� Partial pressure of water vapor

	 •	�Repeatability (includes geometry of sphere and reference 
flats)

	 •	�Temperature related errors

		�	Thermometer
		�	Coefficient of thermal expansion
		�	Temperature gradients

	 •	�Instrument geometry

			�Obliquity correction

	 •	�Elastic deformation

		�	Force extrapolation intercept method

Scale

The current design of the Strang Viewer uses a stabilized 
HeNe laser with a calibrated vacuum wavelength that has a 
relative standard uncertainty of 0.6  ×  10−8 from the calibra-
tion against the NIST maintained iodine stabilized reference. 
While this component alone is negligible in this application, 
there is more uncertainty associated with the wavelength to 
be considered. These include, the intrinsic uncertainty of the 
Edlén Equation itself, the potential error associated with the 
assumed CO2 concentration, and the atmospheric inputs to 
the equation for pressure, temperature, and partial pressure of 
water vapor. The Edlén Equation has an intrinsic relative stan-
dard uncertainty of 1.0  ×  10−8 [8, 18]. For our application, the 
CO2 concentration in air is not continuously measured rather 
assumed to be 450 µmol mol−1. This assumption has an uncer-
tainty and based on experimental data the uncertainty budget 
includes a potential variability of  ±150 µmol mol−1. The stan-
dard uncertainties associated with atmospheric pressure, air 
temperature, and relative humidity (near standard conditions 
and converted to the partial pressure of water vapor) are 2.0 Pa, 
0.012 °C, and 0.7% respectively. These correspond to relative 

standard uncertainties in length of 5.4  ×  10−9, 1.1  ×  10−8 and 
7  ×  10−9, respectively, based on known sensitivities [10].

The uncertainties of the pressure and relative humidity 
readings (inputs) used in the Edlén Equation  for the wave-
length correction, are dominated by the calibration uncer-
tainty of the sensor reported by the respective department at 
NIST that performs the calibration. However, the uncertainty 
of the air temperature reading is dominated by the magnitude 
of the temperature gradients in the beam path of the optical 
cavity that exist during measurement, more so than the uncer-
tainty attributed to the calibration of the air sensor versus our 
primary thermometers. Therefore, the uncertainty of the air 
temperature sensor reading during measurements includes 
both the calibration uncertainty of the sensor and the potential 
gradient between the sensing location during measurement 
and the sphere being measured. The uncertainty associated 
with this gradient is estimated from a rectangular distribu-
tion with a half-width of 0.02 °C, which yields a 0.012 °C 
air temperature reading standard uncertainty. The 0.0014 °C 
uncertainty of the temperature sensor calibration is ignored 
for this term since the uncertainty due to the gradients is ten 
times larger. The standard uncertainties associated with the 
scale are summarized in table 1.

In summary, below are the sources of uncertainty for scale:

Repeatability

Repeatability, in its most basic form, is defined as the level of 
agreement between multiple measurements without changing 
anything. Given this, we have quantified the basic repeat-
ability for this instrument and force extrapolation method 
to be 0.8 nm. This represents multiple measurements of the 
same diameter of the same sphere without moving the sphere. 
This repeatability figure does sample variability in the fringe 
fraction algorithm, the effect of phase noise, and fringe sepa-
ration. This is especially true since the changes in the atmo-
spheric pressure over the course of the multiple diameter 
measurements would introduce changes in the fringe pattern 
and fringe fraction. It could also be considered to sample 
any variability due to vibration and random errors associ-
ated with the wavelength in air and random fluctuations in 
sphere diameter due to temperature. The 0.8 nm represents the 
best repeatability achievable. In practice, however, this term 
is calculated with every sphere measured and since multiple 
different diameters are sampled to obtain an average, it will 
include a significant source of uncertainty due to form of both 

Table 1.  Scale related relative standard uncertainties.

Uncertainty source
Length dependent relative 
standard uncertainty(10−8)

Laser vacuum wavelength 0.6
Index of refraction (modified Edlén 
equation)

1.0

CO2 content in air assumption 2.3
Atmospheric pressure 0.5
Air temperature 1.1
Relative humidity 0.7
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the sphere and reference flats. For each sphere measured, mul-
tiple measurements are made, repositioning the sphere each 
time and allowing the system to thermally equilibrate. No 
matter how well a specific two-point diameter measurement 
location is defined using fiducials on the sphere, there is still 
variability due to a localized sampling of sphere geometry 
and the geometry of the reference flats. Instead of devising a 
separate approach to quantify this contribution independently 
for each sphere measured, it is sampled as part of the repeat-
ability. Thus, for each sphere measured, this expanded term 
becomes a dynamic part of the uncertainty budget calculation.

It is important to note that two-point diameter variation is 
due to the out-of-roundness of the sphere; however, out-of-
roundness may not cause two-point diameter variation (e.g. 
odd lobing in 2D). If a customer requests the average diameter 
of the sphere, with no orientation reference, the diameter vari-
ation due to out-of-roundness will most likely be the domi-
nant source in the reported average diameter uncertainty. In 
addition to diameter variation due to sphere out-of-roundness, 
each repositioning of the sphere results in a measurement 
sampling of different local flatness of the upper and lower 
reference flat. Incorporating λ/50 reference flats has made 
this error source almost negligible. For example, when using 
a λ/50 reference flat of 76 mm diameter, along with a HeNe 
light source of 632 nm, the flatness over the entire surface 
could be 12.6 nm; however, if only the central 10% of the flat 
is sampled, this value decreases significantly, but not neces-
sarily in a proportional manner because of the typical profile 
shapes of reference flats. Including the actual contribution due 
to the geometry of the reference flats and sphere, the repeata-
bility, emulates the actual measurement-to-measurement pro-
cess, thus more meaningful than the pure static repeatability. 
Typically, the measurement process involves measuring the 
diameter 10 times, setting up the sphere each time between 
measurements. The repeatability of the of the measurements 
is simply the standard deviation of the measured diameters 
divided by the square root of the number of measurements or 
10, for this process.

The diameter variability, due to out-of-roundness, is the 
most dominant source of uncertainty in the uncertainty budget 
and is highly dependent of the geometry of the sphere being 
measured and whether or not the sphere is marked to specify 
a specific diameter

uRepeatability ≈ 1.3 nm (best capability) .

This represents the best repeatability achievable without any 
contribution due to the form of the sphere but it does add vari-
ability due to the geometry of the reference flats to the ‘static’ 
0.8 nm repeatability as defined previously.

Temperature related errors

Determining the temperature of the sphere being measured 
involves the accuracy of the thermometer, the coefficient of 
thermal expansion of the sphere, and the possible gradient 

between the temperature sensing location and the actual 
sphere temperature. Due to the interferometric nature of the 
measurement and the measurement process sensitivities (i.e. 
applied forces), direct measurement of the temperature of the 
sphere being measured is not possible.

Thermometer uncertainty

The thermometer system uses extremely stable thermistor 
probes. The uncertainty of the thermometer comes from 
the calibration of the unit and the additional uncertainties 
attributed to instability of the unit’s calibration over the cal-
ibration interval and any non-linearities, not compensated 
through the linearization of the probe from the calibration, 
over the temperature range of use. Our range of use is 20 
°C  ±  0.1 °C. The standard uncertainty of the thermom-
eter reading is 0.0014 °C. In terms of length, this is then 
multiplied by nominal coefficient of the thermal expansion 
(CTE) of the sphere which is being measured. For a steel 
sphere, the CTE or α is approximately 11.5  ×  10−6 K−1, 
thus the relative standard uncertainty from the thermometer 
is given by:

uThermometer = (uThermometer Calibration)α = (0.0014 ◦C)Ä
11.5 × 10−6 K−1

ä
= 1.6 × 10−8.

For clarity, it is important to differentiate between the uncer-
tainty of the air temperature and the material temperature. 
These are two distinctly different measurements and thus 
are subject to different influences. The material temperature 
uncertainty is much better than the air temperature measure-
ment uncertainty because the material thermal mass, which 
the probe is imbedded, is much greater than the thermal mass 
of the probe alone in air. This results in the material mass with 
imbedded sensor acting as a long pass filter thus it does not 
exhibit the high frequency variation seen in the air. This vari-
ability contributes significantly to the overall air temperature 
measurement uncertainty.

Coefficient of thermal expansion uncertainty

The coefficient of thermal expansion of the sphere is not 
directly measured at NIST, rather the CTE provided by the 
manufacturer is used. For simplicity, we assume this value to 
be good to  ±10% which is typically the uncertainty reported 
in material property handbooks. As an example, a steel artifact 
with a α  =  11.5  ×  10−6 °C−1 would have a potential error in 
the CTE of  ±1.2  ×  10−6 K−1 or 10%. Since the exact prob-
ability distribution this represents is not known, we assume 
a rectangular distribution. The maximum difference between 
the actual temperature of the sphere and 20 °C is  ±0.1 °C 
which is based on laboratory performance and spatial gradi-
ents from one location in the room to another. Given this, we 
calculate the relative standard uncertainty by:
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uCTE = ∆T
0.1α√

3
= 0.1 ◦C

ñ
1.2 × 10−6 K−1

√
3

ô
= 6.9 × 10−8.

Temperature gradient uncertainty

The temperature gradient represents the potential error 
between the temperature at the location of the sensors relative 
to the temperature of the sphere during measurement in the 
optical cavity, since the temperature of the sphere under test 
cannot be measured directly. Normally, to determine this, mul-
tiple temperature sensors are set up to sample this error over a 

short period of time, then it is assumed that the gradient does 
not change because of the exceptional temperature control in 
the lab. The specification for temperature stability in the NIST 
Advanced Measurement Laboratory (AML) room housing 
the Strang Viewer is  ±0.01 °C, but performance indicates 
12 h stability of  ±0.002 °C or better. Since we are striving 
to maintain an extraordinarily low uncertainty, a system was 
devised which would remain in place and could be monitored 
to ensure that temperature gradient conditions do not change. 
This system is comprised of five 25 mm diameter spheres with 
2 mm holes drilled in them to embed the 5 kΩ 4-wire therm-
istors. Figure 11 shows the location of the five temperature 
spheres. Each sphere has two sensors, in case one fails. The 

Figure 11.  Temperature monitoring system.

Figure 12.  Offset of each temperature sphere/location and average temperature of all ‘non-control’ locations relative to the ‘control’.
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fifth sphere is mounted where the sphere under test is located 
during measurement. Data is collected for many days to mon-
itor the differences between each temperature sphere relative 
to each other and to the fifth temperature sphere inside the 
cavity to estimate the real sphere temperature.

Periodically, all ten temperature probes are mounted 
together in a thermal copper block to determine the offsets 
between each one so that the individual readings can then be 
corrected during use. This procedure ensures that they read 
the same relative to one another. The fifth temperature probe, 
labeled as the ‘control’ in figure 11, is placed in the meas-
urement cavity to periodically repeat the offset experiment 
and track gradients. In practice, the temperature of the sphere 
whose diameter is being measured, is being measured indi-
rectly from the average of the four (A, B, C and D) perma-
nently mounted temperature spheres and corrected based on 
the data from the periodic offset and gradient experiment. The 
‘control’ temperature sphere is set aside and not used during 
normal measurements.

Figure 12 shows the temperature of each sphere relative to 
the ‘control’ sphere and the average of the three spheres. We 
show the results for three temperature spheres instead for 4, 
as shown in figure 11, because one of the temperature spheres 
had to be taken offline due to a sensor being broken around 
the time of the 2017 measurements. Probe D tracks with the 
average. Probes A and C vary significantly because they are 
sheltered from the vertical airflow of the room by the instru-
ment and rear of the upper reference flat mounting assembly 
respectively. At 300 air changes h−1, this can be significant. 
Comparing 2014 and 2017, the average difference between 
the average of the surrounding spheres relative to the control 
sphere is the same to  <0.002 °C, however the individual dif-
ferences between the control location and A and C has become 
noticeably smaller. This was due to reconfiguration of the 
probes and ancillary items with respect to the instrument. The 
graph shows remarkable local stability over 50–60 h. Absolute 
temperature does move  ±0.01 °C day-to-day, but the gradi-
ents are quite constant.

During normal operation without the control sphere, the 
temperature relationship between average of temperature 

spheres A and C versus D is closely monitored. If there is a 
temperature difference of more than 0.002 °C, measurements 
are suspended, and a potential cause is investigated. If the con-
dition does not self-correct or is not confirmed against some 
laboratory control system change or problem that cannot be 
fixed, then the experiment with the control temperature sphere 
is repeated and the new offset relationships are determined.

The relative standard uncertainty of this process is derived 
as follows using the standard deviation of the gradients (σG) 
from the experiment and the typical worst case CTE (α) for a 
steel sphere.

uGradient = σGα = (0.0025 ◦C) (11.5 × 10−6 K−1) = 2.9 × 10−8.

Instrument geometry

The Fizeau design of this interferometer results in an obliquity 
correction [11]. This obliquity correction, which is an optical 
path angular error resulting from the offset of the entrance 
(source) and exit (image) apertures relative to the optical 
axis, can be calculated but is most easily obtained by direct 
measurement if internal dimensions are not available (refer 
to figure 13).

To determine the correction, a length standard comprised 
of a 101.6 mm round DoAll3 Cer-Vit gauge block with a 
2.54 mm steel gauge block wrung to the top is wrung to small 
steel platen as shown in figure 14.

Due to the transparent nature of the Cer-Vit gauge block, 
a 2.54 mm steel gauge block is wrung to the top to provide a 
surface that produces fringes with good contrast. This seemly 
complicated gauge block combination is used instead of a single 
steel gage block because ultra-low CTE of the Cer-Vit mini-
mizes the temperature related uncertainty contributions to the 
measurement. The block and platen assembly were measured 
in an Automated Gauge Block Interferometer (AGI)4,5 of the 

Figure 13.  Example of the optical configuration of a Fizeau type interferometer (N P L gauge interferometer) that results in an obliquity 
error and subsequent correction. (Reproduced from Bruce (1955) with permission from CSIRO Publishing [11].)

3 See footnote 1.
4 See footnote 1.
5 This instrument was designed by NPL (National Physical Laboratory, UK) 
and manufactured by Hexagon (formerly TESA).
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Twyman–Green design, that does not have an obliquity correc-
tion. Then, the block and platen assembly are transferred to the 
Strang Viewer for measurement. The measurement is performed 
using the Strang Viewer by removing the bottom assembly (load 
cell and air bearing) and inserting the block and platen assembly 
in its place. The Strang Viewer is now configured as a gauge 
block interferometer with the upper reference flat fixed in place. 
The measurements in both instruments are repeated over a period 
of several weeks to sample the range of fringe fraction readings 
that result with the change in atmospheric pressure. This was 
done to randomize any subtle, non-systematic, fringe reading 
errors. By using the same block, platen, and wring, many of 
the sources of uncertainty associated with a typical gauge block 
interferometric measurement become common mode (i.e. phase 
correction and wringing variability), thus make no contribution 
to the uncertainty of the obliquity correction determination. 
Thermal errors become negligible through the choice of the 
Cer-Vit material which has a CTE of less than 1  ×  10−6 K−1.

From this obliquity correction determination procedure, 
the standard uncertainty of the difference between the meas-
urements by both instruments of the combined length of the 
101.6 mm Cer-Vit gauge block and 2.54 mm steel gauge block 
as wrung to the gauge block platen was determined to be 
5.2 nm. This results in a relative standard uncertainty of the 
obliquity correction of

uInstument = 5.1 × 10−8.

This uncertainty is dominated by the repeatability of both 
instruments and the uncertainties associated with the cor-
rected laser wavelengths for each instrument.

Elastic deformation

There are two approaches to correcting for deformation that 
include: (1) applying a calculated correction based on applied 

force, contact materials and their associated elastic proper-
ties, and the contact geometry/dimensions using specialized 
Hertzian derivations published by Puttock and Twaite [9], and 
(2) calculating the undeformed diameter from the Y-intercept 
using data obtained from measuring the deformed diameter 
at numerous forces. Plotting the deformed diameter versus 
the applied force to the two-thirds power linearizes the rela-
tionship and linear regression analysis provides for the easy 
determination of the intercept. This paper focuses on the 
second approach described next, in that it is the most accurate 
because it does not require knowledge of the elastic properties 
of the materials involved, including contributions of their rela-
tive uncertainties.

The entire measurement sequence for a sphere is auto-
mated. Control and data acquisition is performed remotely 
from an external control room. The automation includes 
changing the force by means of a voice coil, acquiring fringe/
sphere images with a video camera, data acquisition for the 
measurement of force, temperature, pressure and humidity, 
fringe fraction analysis and Edlén Equation  calculations to 
obtain the deformed diameters at each force. Data acquisi-
tion and analysis is performed using the Python programming 
language. Each measurement sequence is easily customiz-
able with regards to the number for force settings, and the 
maximum and minimum applied force. Typical sequences 
involve measurement using 20 or more force values with a 
randomized application order. For thermal drift correction 
purposes, the first and last readings are at the same force. 
After completion of the measurement, the operator performs a 
zero-force check of the force measuring device. At each force 
setting, multiple images from the camera were acquired, ana-
lyzed, and the results are averaged. With the automation, the 
magnitude of the thermal drift and correspondingly the uncer-
tainty associated with the drift correction, that dominated the 
uncertainty budget when the system was manually operated, 

Figure 14.  Cer-Vit block in Twyman–Green Interferometer for reference measurement to determine obliquity correction of the Strang 
viewer.
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has been reduced to just a negligible level of a few tenths of a 
nanometer. A sequence of 15 to 30 measurements at different 
force can now be completed in 90 s to 120 s.

The uncertainty of the linear regression approach includes 
the uncertainty of the load cell readings, fringe reading repeat-
ability, non-linear thermal drift, and error in the measured 
weight of the sphere under test.

The absolute accuracy of the sphere weight is critical as 
any errors here will systematically affect every force between 
the upper reference flat and the sphere, since the sphere 
weight is subtracted from the measured force between the 
sphere and lower reference flat. The weight of the vertically 
mounted air bearing and lower reference flat are electronically 
zeroed from the load cell reading before loading the sphere 
into the measurement cavity and bringing the upper reference 
flat in contact. By zeroing these out, the combination of the 
sphere weight and the upper contact (varied by the voice coil) 
is measured in situ.

The effects of the nonlinearities over the course of the meas-
urement and the fringe reading repeatability are significantly 
reduced through the linear regression and any remaining varia-
bility due to these is captured in the standard error of the inter-
cept from the regression analysis. This sequence is repeated 
for ten different setups of the sphere being measured and the 
standard error of the intercept for each run is then pooled and 
included in the uncertainty budget for as the standard uncer-
tainty due to the elastic deformation correction process. This 
uncertainty budget entry is updated for each sphere measured. 
Although small, this number can increase with sphere diam-
eter due to thermal influences and due to variability associated 
with surface finish.

uElastic Deformaton ≈ 1.0 nm (typical) .

To achieve a very low standard error on the calculated 
Y-intercept, it was determined that it was important to include 

measurements as close as possible to zero force to limit the 
distance over which to extrapolate the best-fit least-squares 
line from the data set to the Y-axis. This is simple for small 
spheres that do not weigh much but for spheres over roughly 
12 mm, depending on material density, this can be signifi-
cant. Because of this, a means had to be found to compensate 
for the weight of the sphere. The clever approach devised is 
called the ‘sphere looper’ and is depicted in figure 15 and it 
appears in use in figure 10. The sphere looper is made from 
metal for stiffness and the dimensions of the ring are such 
that it straddles the sphere about 1/2 the radius of the sphere 
and so the outer edge of the loop is smaller than the diameter 
of the sphere. The latter is necessary to ensure the loop does 
not interfere with image of the sphere, which is used to deter-
mine the center. If the design is done carefully, one looper can 
accommodate a range of sphere sizes to limit the number of 
loopers to 2 or 3 to cover the range of sphere sizes from 12 mm 
to 25 mm in diameter. The sphere looper is balanced over an 
externally mounted pivot point and loaded with weights until 
the weight of the sphere, as read by the force device, is just 
a gram or two more than the force exerted by the upper ref-
erence flat. Although an initial concern, this setup does not 
degrade the repeatability of the results.

Uncertainty summary

In table 2, the coefficient of thermal expansion, α, is assumed 
to be that of typical dimensional artifact steel or 11.5  ×  10−6 
K−1. The relative standard uncertainty due to the uncertainty 
in the coefficient of thermal expansion, tg, represents the max-
imum temperature from 20 °C the gauge is measured. For this 
measurement process, 20  −  tg is 0.1 °C.

The best case expanded uncertainty, U, with a coverage 
factor of k  =  2 would be for a 1 mm diameter steel sphere 
at  ±3.4 nm. For a larger sphere, such as, a 25 mm diameter 

Figure 15.  Ball weight counterweighting mechanism-sphere looper.
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steel sphere, the expanded uncertainty, U, with a coverage 
factor of k  =  2 would be  ±8.9 nm. The uncertainty for the 
larger spheres is significantly influenced by the sphere mat
erial, specifically the three components associated with uncer-
tainty related to the sphere temperature (uThermometer, uCTE, 
uGradients). For materials with lower CTE values, like tungsten 

carbide, ruby, silicon nitride, and especially Zerodur6 these 
contributions become much less significant resulting in an 
expanded uncertainty, U, with a coverage factor of k  =  2, 
potentially as low as  ±6.1 nm.

Table 2.  Uncertainty budget summary.

Uncertainty source

Standard  
uncertainty 
u(xi)

Sensitivity  
coefficient 

cxi =
∂f
∂xi

Length uncertainty 
ui (d) = |cxi | × u (xi)

Fixed
Length  
dependent

Process, ref. flats, and sphere geometry

  u repeatability (best) 1.3 nm 1 1.3 nm

Scale

  u laser vacuum wavelength 6.0  ×  10−9 L 0.6  ×  10−8 l
  u Edlén 1.0  ×  10−8 L 1.0  ×  10−8 l
  u index of refraction input—CO2 content assumption 150  ×  10−6 1.5  ×  10−4 l 2.3  ×  10−8 l
  u index of refraction input—air temperature 0.012 °C 9.3  ×  10−7 l 1.1  ×  10−8 l
  u index of refraction input—pressure 2.0 Pa 2.7  ×  10−9 l 0.5  ×  10−8 l
  u index of refraction input—partial pressure of water vapor from RH 0.7% 1.0  ×  10−8 l 0.7  ×  10−8 l

Sphere temperature

  u thermometer 0.0014 °C α  ×  L 1.6  ×  10−8 l
  u CTE 6.9  ×  10−7 K−1 |(20  −  tg)|  ×  L 6.9  ×  10−8 l
  u gradients 0.0025 °C α  ×  L 2.9  ×  10−8 l

Instrument geometry

  u obliquity 5.1  ×  10−8 L 5.1  ×  10−8 l

Deformation

  u deformation 0.9 nm 1 0.9 nm
Combined standard uncertainty, uC 1.6 nm 9.6  ×  10−8 l

Figure 16.  Specially designed spherical contacts used for gauge block and gauge block phase correction measurement.

6 See footnote 1.
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Master spheres measured by the Strang Viewer support 
ultra-high accuracy characterization of the M48 coordinate 
measuring machine (CMM) probe tip so that the uncertainty 
in the diameter of the probe trip is insignificant when volu-
metric measurements are subsequently performed with the 
CMM. Spheres measured using the Strang Viewer also serve 
more directly as reference masters for special artifact calibra-
tions using the M48 CMM, as documented in numerous pub-
lications [12–16].

Unique application

In 1998, Stoup, Doiron, and Faust used the Strang Viewer to 
measure the phase correction for gauge blocks [17]. Their 
work, used a slice of sphere with wringable flat surface that 
was mounted/wrung to the underside of the upper reference 
flat, as shown in figure  16. The flat was created by trun-
cating the sphere, leaving the equator intact to ensure that 
the equator shadow could be visualized for center determina-
tion. Doing this fixed the contact point for the sphere which 
guarantees the exact same contact point, from setup to setup, 
unlike the variability of the contact point on a sphere even 
when marked. With the fixed sphere slice in place, the force 
extrapolation approach was used to measure the dimension 
(size or length) of the slice with different lower reference flats. 
When the dimension of the sphere slice is measured on the 
Strang Viewer using Fused Silica or Quartz as the lower refer-
ence flat, that dimension is known to have 180° phase change 
upon reflection exactly, with no uncertainty. This measured 
dimension becomes the reference for our comparison. Next, a 
gauge block or gauge block platen is substituted as the lower 
reference flat, in place of the Fused Silica reference flat, and 
the measurement process repeated. The resulting sphere slice 
dimension will be different from the reference measurement, 
assuming the gauge block or gauge block platen is not Fused 
Silica or Quartz. This difference is the optical length correction 
resulting from difference in the actual phase correction from 
that of the Fused Silica reference, at the frequency of the light 
source used during the measurements. In gauge block length 
interferometry, we refer to this as the ‘phase correction’.

Since this time, the instrument has experienced significant 
upgrades, that include the stabilized laser as light source, full 
automation, and even a redesign of the spherical contact. The 
configuration of the spherical contact is shown in figure 16. 
Today, NIST uses two-thirds of a 5 mm diameter sphere and 
we have made these spheres out of different materials to prove 
that the same results can be obtained even though the slope of 
the linearized deformation is different for each material. The 
phase correction measurement process results associated with 
these improvements are not quite complete but expect to be 
published at a later date.

Conclusion

The Strang Viewer is an instrument designed to measure sphere 
diameter and is based on a Fizeau interferometer. The optical 
cavity design, the application, and decades of refinement have 

resulted in a very high-accuracy instrument for sphere diam-
eter measurement. Its adaptation to the measurement of gauge 
block and gauge block platen optical phase correction by phys-
ical contact is quite unique, in that it is simple and completely 
independent of the wringing layer limitations of the traditional 
stack method and pack experiments. The current state of the 
instrument is a great example of the advantages of automation, 
which clearly helped us overcome the dominant uncertainty 
contributions associated with manual operation like thermal 
drift. Validation and confidence in the method has been veri-
fied through the measurement of three spheres using both the 
Strang Viewer and another absolute measurement system that 
uses a laser displacement interferometer based NIST devel-
oped micrometer for the measurement of cylindrical diameter. 
The measurement of sphere diameter, although cumbersome, 
provided results with an estimated expanded uncertainty, U, 
of  ±20 nm, with a coverage factor of k  =  2. This comparison 
was done for several different sized spheres and the worst 
agreement was 15 nm, ensuring the utmost confidence in both 
systems. Further validation and confidence of the method, the 
instrument, and the analyses is expected upon publication of 
the results of the Consultative Committee for Length (CCL) 
K-4 intercomparison of diameter standards.
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