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Abbreviations

CT	 Computed tomography
PET	 Positron emission tomography
NSCLC	 Non-small cell lung cancer
SCLC	 Small cell lung cancer
TCIA	 The Cancer Imaging Archive
CNN	 Convolutional neural networks
LSP	 Long survival group
SSP	 Short survival group
SMOTE	 Synthetic minority over-sampling technique
ML	 Middle layer
GLCM	 Gray level co-occurrence matrix
GLRLM	 Gray level run length matrix
NGTDM	 Neighborhood gray-tone difference matrix
GT	 Gabor transform
SIFT	 Scale-invariant feature transform
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Abstract
In order to assist doctors in arranging the postoperative treatments and re-examinations for non-
small cell lung cancer (NSCLC) patients, this study was initiated to explore a prognostic analysis 
method for NSCLC based on computed tomography (CT) radiomics.

The data of 173 NSCLC patients were collected retrospectively and the clinically meaningful 
3-year survival was used as the predictive limit to predict the patient’s prognosis survival time range. 
Firstly, lung tumors were segmented and the radiomics features were extracted. Secondly, the feature 
weighting algorithm was used to screen and optimize the extracted original feature data. Then, the 
selected feature data combining with the prognosis survival of patients were used to train machine 
learning classification models. Finally, a prognostic survival prediction model and radiomics 
prognostic factors were obtained to predict the prognosis survival time range of NSCLC patients.

The classification accuracy rate under cross-validation was up to 88.7% in the prognosis survival 
analysis model. When verifying on an independent data set, the model also yielded a high prediction 
accuracy which is up to 79.6%. Inverse different moment, lobulation sign and angular second 
moment were NSCLC prognostic factors based on radiomics.

This study proved that CT radiomics features could effectively assist doctors to make more 
accurate prognosis survival prediction for NSCLC patients, so as to help doctors to optimize 
treatment and re-examination for NSCLC patients to extend their survival time.
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LBP	 Local binary pattern
DT	 Decision trees
DAC	 Discriminant analysis classifiers
LR	 Logistic regression
SVM	 Support vector machine
KNN	 K-nearest neighbor
EC	 Ensemble classifiers
RF	 Random forest
TP	 True positive
FP	 False positive
TN	 True negative
FN	 False negative
ACC	 Accuracy
SE	 Sensitivity
SP	 Specificity
ROC	 Receiver operating characteristic curve
AUC	 Area under the curve
MIP	 Maximal intensity projection
IDM	 Inverse different moment
ASM	 Angular second moment

1.  Introduction

In 2018, the latest global cancer incidence and mortality data released by American Cancer Society showed that 
lung cancer has become a malignant tumor with the highest morbidity and mortality in the world now, which 
accounted for 11.6% of all cancers and 18.4% of total deaths due to cancer (Bray et al 2018). According to the 
classification of histology, lung cancer can be divided into non-small cell lung cancer (NSCLC) and small cell 
lung cancer (SCLC). Compared with SCLC, NSCLC has slower growth and division, late metastasis and less 
mortality. It accounts for 80%–85% of total number of lung cancer patients. Because the developmental status of 
NSCLC are usually various for patients as heterogeneity of tumors, the same type of tumors can show different 
therapeutic effect and prognosis in different individuals (Shepherd et al 2005). The epidemiological statistics 
have shown that a large number of NSCLC patients had not been treated properly due to inaccurate predictions 
for the disease developments which resulted in a mortality of 75%. Therefore, an effective method for predicting 
prognostic survival time of NSCLC patients is urgently needed to select the treatment and re-examinations to 
increase the cure rate and survival rate of NSCLC patients.

Recent researches have found that radiomics is highly related to NSCLC prognosis, it can be considered as 
a kind of prognostic factor for the prognosis prediction of patients. Wu et al retrospectively analyzed fluorine 
18 Fluorodeoxyglucose positron emission tomography (PET) images of 101 NSCLC patients, and extracted 70 
radiomics features of tumors. Through the analysis of Cox proportional hazard regression model, it was proved 
that PET radiomics features can be used for tumor distant metastasis precdiction. When combined with histo-
logic types, the prognostic power was further improved (Wu et al 2016a). Cook et al collected PET images of 53 
NSCLC patients, and extracted four radiomics texture features of tumor region, namely, cosensence, contrast, 
busyness and complexity for survival analysis. In multi-factor analysis, cosensence was an independent prog-
nostic factor of NSCLC(Cook et al 2013). Vaidya et al extracted and screened the pathological features and CT 
radiomics texture features of 93 NSCLC patients. Through statistical analysis and classification experiments, 
it is found that the pathological features and CT radiomics texture features can well predict the recurrence of 
early NSCLC (Vaidya et al 2018). Lee et al retrospectively analyzed multiple independent NSCLC cohorts and 
demonstrated that CT-derived pleural contact index and normalized inverse difference may serve as noninvasive 
prognostic markers in early stage NSCLC. When combined with known prognosticators, the two radiomics fea-
tures can improve survival prediction (Lee et al 2018a, 2018b). Olya et al found that convexity and entropy ratio 
correlated with NSCLC prognosis. It was demonstrated that these two features were the independent prognosis 
factors of NSCLC through survival analysis (Olya et al 2015).

A large number of studies have shown that radiomics has great potential to evaluate cancer treatment at all 
stages, including auxiliary diagnosis, disease evaluation, efficacy monitoring and predictive analysis. On the basis 
of previous studies, this paper designed a new prognostic analysis model from the perspective of CT radiomics to 
predict the prognostic survival time range of NSCLC patients, and screened out the radiomics factors related to 
the prognostic survival.
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2.  Material and methods

2.1.  Experimental data set
The data used in the experiments were derived from two data sets, which are lung 1 data set (called data set 
1 below) of TCIA NSCLC-Radiomics project5 and lung 3 data set (called data set 2 below) of TCIA NSCLC 
Radiogenomics project6. The data inclusion-exclusion criteria is as follows: INCLUDE single tumor (In order 
to control the variables and ensure the influence of a single lesion on the prognosis of patients, we only selected 
the data of patients with one primary lesion) and EXCLUDE patients who had a cut-off survival time of less than 
three years and were still alive at that time (Such patients cannot be given a proper label so that they do not meet 
our experimental requirements).

Based on the above requirements, we screened a total of 173 eligible patient data Among them, 124 patients 
from data set 1 are used for model training, and 49 patients from data set 2 are used for model testing. Besides, the 
database also included many clinical information such as age, gender and TNM stage. The full information of the 

eligible data is shown in table 1.

2.2.  Experimental design
The clinical experiments indicated that the chance of recurrence will be greatly reduced when lung cancer patients 
have survived for more than 3 years. If the patient’s disease-free survival (DFS) was more than 5 years, it was 
considered to be probably recovered. These time points were important for patient treatment design and review 
options in clinical practice (Zeng et al 2018). Therefore, according to the postoperative survival time of patients in the 
data set, the survival period of 3 years was selected as grouping threshold clinically. The experimental data from data 
set 1 was divided into ‘long survival group’ (LSP) and ‘short survival group’ (SSP), which correspond to survival time 
more than 1100 d (from 1141 to 1926 d with the median time of 1479 d) and less than 900 d (from 10 to 896 d with 
the median time of 418 d) respectively. After grouping, lung tumors were segmented and the features were extracted 
and optimized at first. Then, various classifiers were applied to classify the feature optimized data, and the prediction 
model of NSCLC prognosis survival was constructed based on CT radiomics. At the same time, the survival-related 
radiomics prognostic factors were obtained. Finally, the effectiveness of radiomics prognostic factors was verified and 
evaluated for performance of the classification model. The process of experiments is shown in figure 1.

2.3.  Tumor segmentation
Tumor segmentation is the basis for tumor radiomics feature extraction. In order to extract accurately the 
radiomics features from tumor regions, the tumor regions should be firstly segmented accurately from CT image 
sequence to prevent interference of surrounding background (Shakibapour et al 2019).

For the requirements of segmentation, a semi-automatic segmentation method was used in this paper. Firstly, 
tumor area sequence images were selected that contain the entire tumor through the interactive medical imag-
ing software RadiAntViewer. Secondly, a bicubic interpolation algorithm along the axial direction was applied to 
generate isotropic scans in order to solve the problem of anisotropic 3D spatial resolution CT scanning. Then, the 
semi-automatic segmentation method was used to segment the tumor, and different segmentation schemes were 
adopted for tumors with different types: (1) For the solitary tumors, the gray threshold segmentation algorithm 
and three-dimensional region growing algorithm were used to segment; (2) For the pleural tumors, the edge 
of lung area was repaired based on concave hulls algorithm (Soltaninejad et al 2016) and chain code algorithm 
(Sun and Wang 2016). On the basis of a complete repair of lung boundary, the same segmentation method as 
solitary pulmonary tumor segmentation method was used; (3) For the vascular tumors, the above-described 
solitary pulmonary tumor segmentation method is used for coarse segmentation at first. Moreover, the method 
of Geodesic distance histogram (Sun et al 2014) and fuzzy C-means clustering were adopted to achieve fine seg-
mentation, and the segmentation outcome was the intersection of the above two segments. The final results were 
selected from the average of several times of segmentations, which are shown in figure 2.

2.4.  Feature extraction
The extraction of radiomics features is an important method for calculating and quantifying tumor image 
information. In order to reveal the correlation between CT radiomics features and NSCLC prognosis, 
quantitative indicators of tumors must be extracted, as many as possible, to avoid the loss of information and 
increase the accuracy of predictions (Way et al 2006). In this paper, a total of 258 radiomics features based on gray, 
shape, texture and other information were extracted (Han et al 2015, Dhara et al 2016, de Carvalho Filho et al 
2017, Ferreira et al 2017). In addition to traditional gray features, shape features, texture features, we also used 
mathematical modeling methods to accurately quantify medical signs commonly used in clinical practice. The 
features extracted by the experiment are shown in table 2.

5 TCIA NSCLC-Radiomics: https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
6 TCIA NSCLC Radiogenomics:https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
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A large number of studies have shown that the parameters of imaging equipment affect radiomics feature 
values. Since the data used in this experiment is from public data sets, we cannot obtain the complete imaging 
protocol, but we try to consider all factors that can be obtained. In the process of feature extraction, we compre-
hensively considered these parameters which are easy to affect the robustness and reproducibility of radiomics 
features, including pixel size, layer thickness, layer spacing. We obtained this information in the Dicom file. In 
the process of analyzing the Dicom file information of the experimental data, we found that the device informa-
tion of the CT image sequence of the data set 1 is consistent, and the type of imaging device is SIEMENS CT VA1 
DUMMY. So during the training of the model, we can ensure that the CT imaging device parameters have the 
same impact on the imaging feature extraction for each patient. In the process of model verification using data set 
2, we also considered these parameters, and tried to ensure that the radiomics feature extraction of each sample 
data is performed under the same operation. Finally, the feature data is normalized, and value interval of all fea-
tures is scaled to the range of [0, 1].

Table 1.  Data basic information.

Parameter

Result

Data set 1 Data set 2

Image size

512 Pixel  ×  512 Pixel 512 Pixel  ×  512 Pixel

Pixel size

  X direction 0.977 mm 0.604–0.865 mm

  Y direction 0.977 mm 0.604–0.865 mm

Slice thickness

3 mm 0.8–3 mm

Gender

  Male 82 41

  Female 42 8

Histology

  Adenocarcinoma 16 35

  Squamous cell carcinoma 44 12

  Large cell carcinoma 41 0

  Other 23 2

T stage

  T1 36 18

  T2 54 22

  T3 9 3

  T4 25 6

N stage

  N0 57 29

  N1 6 7

  N2 40 13

  N3 21 0

M stage

  M0 123 43

  M1 1 6

Tumor type

  Solitary 8 5

  Vascular adhesions 43 19

  Pleural adhesions 73 25

Figure 1.  Experimental process design.

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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2.5.  Feature selection
In order to maximize the collection of information on all aspects of the tumor, a large number of radiomics features 
describing the characteristics of the tumor need to be extracted (Lohrmann et al 2018). However, too high dimension 
of features often tend to make features matching too complicated and affect operation speed. At the same time, 
some of the extracted features will bring irrelevant information or error information to the prediction. Therefore, 
in order to obtain a good performance prediction model, it is necessary to filter redundant features data and retain 
effective features (Lee et al 2008 Jaffar and Al Eisa 2015). So the Relief feature weighting algorithm (Hancer et al 
2018) was used to retain features which are highly relevant to categories to reduce redundancy features and improve 
performance of the prediction model. The pseudo-code for the Relief algorithm is shown as follows.

Algorithm: Pseudo-code for the Relief algorithm

INPUT: Sample set S, Sampling number m, Feature weight threshold τ.

OUTPUT: the vector w of estimations of the qualities of attributes and the Selected feature subset.

Begin:

  1.set all weights W (i) = 0,

  2.for i  =  1 to m

    Randomly select a sample R from S,

    Find the k-nearest neighbors Hj ( j = 1, 2, L, k) of R from the same sample set of R, 

Find k-nearest neighbors from each different class of sample set Mj(C),

  3.for i  =  1 to N

W(A) = W(A)−
k∑

j−1
dif f (A, R, Mj(C))/(mk)

+
∑

C/∈class(R) [
p(C)

1−p(class(R))

∑k
j−1 dif f (A, R, Mj(C))/(mk)]

                                                             (1)

  4. Sort W and sort its corresponding features.

End

Mj(C) represents the jth nearest neighbor sample in class C.

dif f (A, R1, R2)) represents the difference between the sample R1 and the sample R2 in the feature A, as shown below:

diff(A, R1, R2) =




|R1[A]−R2[A]|
max(A)−min(A) , if A is continuous

0 if A is discrete and R1[A] = R2[A]
1, if A is discrete and R1[A] �= R2[A]

.� (2)

Figure 2.  Segmentation results: (a), (d) and (g) are original images. (b), (e) and (h) are the segmentation results of parenchyma. (c), 
(f) and (i) are segmentation results of solitary, pleural and vascular tumors.

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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The feature screening was introduced into every cross-validation process to avoid errors in feature screening. 
According to the quantitative relationship between samples and features, the top ten features with the highest 
weighted value were selected for the training and testing by using the Relief feature weighting algorithm. The 

features sorted by weight value from high to low is shown in table 3.

2.6.  Data balance
In 124 case samples, the huge quantity difference between ‘short survival group’ and ‘long survival group’ results 
in data imbalance (sample ratio: 94/30  =  3.13). Data imbalance will cause errors in classifier training and affect 
classifier performance. Therefore, synthetic minority over-sampling technique (SMOTE) resampling method 
(Last et al 2017) was used to resample the feature data of ‘long survival group’ samples in the data set to balance 
the two types of samples.

Table 3.  Radiomics features of the top 10 weight values.

Class Feature name Importance

Texture feature GLCM-inverse different moment (MIP, orientations  =  135°) 0.3137

Medical signs Lobulation sign 0.2564

Texture feature GLCM-angular second moment (MIP, orientations  =  90°) 0.2189

Texture feature NGTDM -busyness 0.2020

Shape features Compactness 0.1852

Texture feature GLCM-related information metric1 (MIP, orientations  =  135°) 0.1791

Texture feature GLCM-related information metric2 (MIP, orientations  =  0°) 0.1586

Medical signs Spiculation sign 0.1544

Gray feature Contrast 0.1319

Texture feature SIFT-#20 0.1203

Table 2.  The features extracted in experiment.

Feature type Feature subtype Feature name

Grayscale features 3D Mean, standard deviation, absolute maximum, absolute minimum, 

local maximum, local minimum, median, information entropy, 

kurtosis, slope, contrast, energy, density

Shape features 2D or 3D Volume(3D), surface area(3D), sphericity(3D), three-dimensional 

longest diameter(3D), surface area to volume ratio(3D), middle layer 

area circularity(2D), middle layer area rectangle(2D), middle layer 

area elongation(2D), middle layer area compactness(2D), middle 

layer area outline size ratio(2D), middle layer area perimeter(2D), 

middle layer area concavity(2D), middle layer area 2, 3, 4th order 

invariant moment(2D), middle layer area boundary irregularity(2D), 

middle layer area boundary fourier descriptor(2D)

Gray level co-occurrence matrix 

(MIP, each feature computed in 

4orientations: (0°,45°,90°,135°))

Sum average, variance, sum variance, differential variance, inverse 

different moment, contrast, dissimilarity, entropy, sum entropy, 

difference entropy, correlation, angular second moment, related 

information metric

Gray level run length matrix 

(MIP, each feature computed in  

4 orientations: (0°,45°,90°,135°))

Short run emphasis, long run emphasis, gray scale inhomogeneity, 

run length non-uniformity, run length distribution, run percentages, 

low gray level run emphasis, high gray level run emphasis, short run 

low gray level emphasis, short run high gray level emphasis, long run 

low gray level emphasis, long run high gray level emphasis, mean, 

mean square error, energy, entropy

Texture features Neighborhood gray-tone differ-

ence matrix (3D)

Coarseness, busyness, complexity, contrast, texture strength

Gabor transform (3D) Gabor texture mean, gabor texture variance

Scale-invariant feature transform 

(ML, 2D)

72 feature statistics

Local binary pattern (3D) Texture mean, texture variance

Medical signs 3D Lobulation sign, spiculation sign, uniformity of tumor density, vacu-

ole sign, stelliform sign, patchy shadow, alveolar ectasia, notch sign

Abbreviations: MIP, maximum intensity projection; ML, middle layer.

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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SMOTE algorithm is a data synthesis algorithm based on interpolation to synthesize a small number of new 
samples. The implementation of the algorithm was shown as follows:

	(1)	� For each sample x in a few classes, distance to all samples in a small sample set were calculated by 
Euclidean distance and the k-nearest neighbor should be obtained.

	(2)	� A resampling magnification N was reset according to the sample imbalance ratio. For each minority 
sample x, several samples from its k nearest neighbors were randomly selected assuming the selected 
neighbors as xn .

	(3)	� For each randomly selected neighbor xn , a new sample xnew was constructed by the primitive sample 
according to equation (3).

xnew = x + rand(0, 1)× (x − xn).� (3)

Where: rand(0, 1)indicates a random number between 0 and 1.
By using SMOTE data resampling method, the number of ‘long survival group’ has increased from 30 to 

90. Experimental data has been contained 94 samples of ‘short survival group’ and 90 samples of ‘long survival 
group’. During the training and testing, SMOTE resampling method was also involved into verification process. 
Since the added ‘long survival group’ sample from resampling technique is not the real data, the data of this part 
only were used for classifier training but have not been used to test. In the process of classifier training and test-
ing with all data sample, the classification results of only 124 real samples were obtained in the original data set. 
This method is widely used in the design of computer aided diagnosis (CAD) of pulmonary nodules (Aghaei et al 
2016, Yan et al 2016).

2.7.  Classification
The classification model of lung cancer patientsl survival time range was trained by the feature data with 
strong characterization ability of lung cancer regions obtained from feature selection, and model predictive 
performance was tested on all 124 cases by cross-validation. In order to construct a performance-optimized 
classification model as much as possible, seven representative classifiers with strong generalization ability and 
often used for small sample data set training have been selected (Messay and Rogers 2010, Cascio et al 2012, 
Wang et al 2013). They are decision trees (DT), discriminant analysis classifiers (DAC), logistic regression (LR), 
support vector machine (SVM), k-nearest neighbor (KNN), ensemble classifiers (EC), random forest (RF). In 
this paper, all the above biomedical data classification methods had been used to select the classification model 
with best performance for the experimental results, and the optimal performance model was used to predict 
survival of patients.

2.8.  Correlation analysis
In order to explore the degree of correlation between the features obtained by the above feature selection algorithm 
and prognosis survival, and to select statistically significant correlation features as factors of prognosis survival 
analysis model, Pearson correlation analysis (Grkovski et al 2016, Bailey et al 2018) was applied to calculate the 
correlation between the top ten features obtained by the Relief algorithm and the prognostic survival labels. 
Correlation coefficient |r| and P-value were used to evaluate the ‘significant degree’ of correlation degree.

2.9.  Survival analysis
According to the prediction results obtained by the above performance optimal prediction model, the Kaplan-
Meier survival analysis method was used to perform survival analysis on the predicted two groups of cases to 
verify the validity of the experiment (Wu et al 2016b).

The kaplan–meier survival analysis method used the principle of conditional probability and probability 
multiplication to calculate the survival rate by combining the cut-off survival time and survival status in the case 
information. In SPSS software, we inputed patients’ cut-off survival time, patients’ cut-off survival status, origi-
nal grouping label and prognosis prediction results of patients into Kaplan Meier survival analysis model to draw 
the survival curve of NSCLC patients.

3.  Results

The results of the above experiments are shown in this section. Table 4 shows the classification results and 
evaluation indicators for each classifier subtype in the experiment. The ROC curves of the best classification 
subtype under each classifier model are shown in figure 3. Experimental results showed that the highest cross-

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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Table 4.  Classification experiment results.

Classifier Subtype ACC(%) AUC SE SP

DT Deep tree 72.6 0.75 0.667 0.745

medium tree 72.6 0.75 0.667 0.745

shallow tree 63.7 0.71 0.700 0.617

DAC Linear discriminant 71.0 0.79 0.800 0.681

Quadratic discriminant 83.1 0.90 0.867 0.819

LR — 69.4 0.77 0.733 0.681

SVM Linear SVM 69.4 0.79 0.800 0.660

Quadratic SVM 78.2 0.89 0.933 0.734

Cubic SVM 73.4 0.85 0.900 0.681

Fine Gaussian SVM 88.7 0.92 0.833 0.904

Medium Gaussian SVM 68.5 0.82 0.867 0.628

Coarse Gaussian SVM 75.8 0.80 0 1

KNN Fine KNN 77.4 0.82 0.933 0.723

Medium KNN 53.2 0.74 0.933 0.404

Coarse KNN 24.2 0.72 1 0

Cosine KNN 76.6 0.84 0.800 0.755

Cubic KNN 55.6 0.77 0.933 0.436

Weighted KNN 58.9 0.87 0.967 0.468

EC AdaBoosted trees 79.0 0.84 0.633 0.840

RusBoosted trees 74.2 0.78 0.667 0.766

Bagged trees 82.3 0.88 0.867 0.809

Subspace KNN 75.8 0.90 0.967 0.702

Subspace discriminant 70.1 0.79 0.767 0.681

RF — 80.6 0.86 0.800 0.613

Abbreviations: DT, decision trees; DAC, discriminant analysis classifiers; LR, logistic regression; SVM, support vector machine; KNN, 

K-nearest neighbor; EC, ensemble classifiers; RF, random forest; ACC, accuracy; SE, sensitivity; SP, specificity; AUC, area under the 

curves.

Figure 3.  ROC curve of the best classification subtype under each classifier model.

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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Table 5.  Independent dataset verification results.

Confusion matrix

Predictive value

SSP LSP ACC(%) AUC SE SP

Actual value SSP 29 6
79.6 0.84 0.714 0.829

LSP 4 10

Abbreviations: LSP, long survival group; SSP, short survival group; ACC, accuracy; SE, sensitivity; SP, specificity; AUC, area under the 

curves.

Table 6.  Prognostic prediction results of traditional prognostic markers.

Confusion matrix

Predictive value

SSP LSP ACC(%) AUC SE SP

Actual value SSP 61 33 63.7 0.69 0.600 0.649

LSP 12 18

Abbreviations: LSP, long survival group; SSP, short survival group; ACC, accuracy; SE, sensitivity; SP, specificity; AUC, area under the 

curves.

Table 7.  Pearson correlation analysis.

Feature weight ranking Feature name |r| P-value

#1 GLCM-inverse different moment (MIP, orientations  =  135°) 0.637 0.000 013(≪0.05)

#2 Lobulation sign 0.487 0.005 721(≪0.05)

#3 GLCM-angular second moment (MIP, orientations  =  90°) 0.256 0.034 519(<0.05)

#4 NGTDM-busyness 0.237 0.271 931

#5 Shape-compactness 0.013 0.858 854

#6 GLCM-related information metric1 (MIP, orientations  =  135°) 0.033 0.652 019

#7 GLCM-related information metric2 (MIP, orientations  =  0°) 0.093 0.202 318

#8 Spiculation sign 0.281 0.183 632

#9 Gray-contrast 0.146 0.157 295

#10 SIFT-#20 0.261 0.478 626

Abbreviations: GLCM, gray level co-occurrence matrix; NGTDM, neighborhood gray-tone difference matrix; SIFT, scale-invariant 

feature transform; MIP, maximal intensity projection.

Figure 4.  The Kaplan–Meier survival curve.

Phys. Med. Biol. 65 (2020) 045006 (12pp)
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validation accuracy of classification was 88.7% and was obtained with the support vector machine classifier. 
After that, we used all 124 patient data from data set 1 to train the model, and adopted the parameters, average 
error rate and classifier subtype of the above optimal model to train the data to get the new classification model. 
Then, we tested all 49 patient data sets of data from data set 2 to verify the accuracy and robustness of the model. 
The results of the test set are shown in table 5. The 79.6% prediction accuracy of other independent cohort also 
proved that experimental method and feature extraction for predicting the prognostic survival of patients are 
effective and robust.

In order to verify that the radiomics features can bring better prediction capabilities to traditional markers, 
we also took the currently recognized clinical prognostic factors of NSCLC (volume, TNM staging, histological 
classification) as training input, and then used them to train the patient prognosis survival model to predict the 
prognosis survival time range of 124 NSCLC patients. The best experimental result is shown in the table 6. The 
experimental results showed that the radiomics features can significantly improve the prognostic ability, which 
once again proved that CT radiomics has great potential in the prognosis prediction of NSCLC.

The result of the Pearson correlation analysis is shown in table 7. Experimental results showed that the p-value 
of the Pearson correlation analysis of GLCM-inverse different moment (IDM), Lobulation sign and GLCM-
angular second moment (ASN) was less than 0.05 which was statistically significant. Only the first three of the ten 
features with the highest weighted value were significantly correlated with the survival of the model.

The survival curve is shown in figure 4. It can be seen from the figure that there is a large difference between 
the predicted survival rates of the two groups. Chi-square test was further carried out on the prediction results. 
With a p -value of 0.0173, we rejected the null hypothesis that the groups are the same. Thus, the predicted classes 
were distinct from one another when predicting survival groups, which also verified the feasibility and effective-
ness of this experimental method.

4.  Discussion

This study was based on CT radiomics features to construct a prognostic survival prediction model for NSCLC 
for predicting the survival of 173 patients with NSCLC, and screening for radiomics factors associated with 
prognostic survival prediction. We conducted accurate tumor segmentation and multi-scale feature extraction 
to carry out in-depth exploration of tumor radiomics information and used feature optimization method and 
various types of machine learning methods to constructed a comprehensive and effective prognostic survival 
prediction model to predict the prognosis survival of patients with NSCLC.

The accuracy of 88.7% is a high accuracy for this problem, which again demonstrated the feasibility and effec-
tiveness of radiomics features in the prognosis of NSCLC. The algorithm of this study is compared with existing 
method (Hawkins et al 2014, Paul et al 2017), and the prediction accuracy of the model (ACC) and the area under 
the ROC curve (AUC) were used as the evaluation indexes of the algorithm. The comparison results are shown in 
table 8, which indicated that the accuracy and AUC of our method were significantly improved in the case of the 
same cross-validation. We not only used the traditional cross-validation method, but also used other independ-
ent dataset verification methods not used in the literature, which showed that our method is more universal and 
the prediction effect is more accurate and stable.

Table 8.  Prognostic analysis model performance comparison results.

Algorithm S.H. Hawkins’s R. Paul’s Ours

Sample size 81 81 124

Feature Type Traditional imaging 

features

Deep learning features Mixed (more traditional imaging  

features  +  medical signs) features

Classifier Used Decision trees K-nearest neighbor Support vector machine

Total number of 

features

219 4096 258

Feature selector used Relief-f Symmetric uncertainty Relief

Number of features 

selected

5 5 10

Verification of method Leave-one-out cross 

validation

Leave-one-out cross valida-

tion

k-fold cross validation

ACC(%) 77.5 82.5 88.7

AUC 0.712 — 0.92

Abbreviations: ACC, accuracy; AUC, area under the curves.

Phys. Med. Biol. 65 (2020) 045006 (12pp)



11

X Wang et al

After proving the effectiveness of radiomics features in predicting the prognosis of NSCLC, we also explored 
the specific relationship between the imaging information of these features and the clinical background. Three 
conclusions can be drawn as below:

	(1)	� GLCM-inverse different moment reflects the homogeneity of image texture and measures the local 
variation of image texture. The small value indicates that the different regions of the image texture 
change violently and the local area is very inhomogeneous.

(2)	� GLCM-angular second moment reflects the uniformity of gray distribution of images. The larger ASN 
value, the more inhomogeneous the gray distribution of the image.
The roughness of tumor surface can be revealed by the above two radiomics shape texture features, 
which is an important reference index for the discrimination of tumor benign and malignant, even the 
determination of tumor malignancy. The lower the IDM and ASM values of tumor indicate the rough 
of the tumor surface and the higher the degree of malignancy of the tumor clinically.

	(3)	� Lobulation sign is considered to be an important indicator for diagnosing benign and malignant 
tumors clinically. In general, lobulation sign reflects the infiltration of the tumor. The depth the 
lobulation makes the invasiveness intensive, the low the degree of differentiation and the worse the 
prognosis. Besides, lobulation sign also reflects the tumor heterogeneity. Deep lobulation reveals a high 
level of heterogeneity to tumors which will lead to the bad prognosis.

All of the above three features can reflect the degree of malignancy of the tumor at the level of radiomics. The 
degree of malignancy of the tumor usually determines the prognosis of the patient.

Although experimental results verified the effectiveness of the proposed method, there were still some short-
comings in this study. In spite of the experimental data came from two data sets, there were a large number of data 
in the data set that cannot meet experimental requirements. Through detailed screening, CT data of only 173 
NSCLC patients were enrolled. The experimental data might not completely capture the variability of NSCLC at 
imaging due to the limitation of small sample size. In the future research, it is necessary to use a large size sample 
data to further verify and test the effectiveness of the algorithm. At the same time, the future work will be focused 
on the combination of radiomics and other omics information such as genetic test results, tumor marker, his-
topathological grade and other important prognosis related information in order to improve the accuracy and 
robustness of prognostic survival prediction model.

5.  Conclusion

In conclusion, CT radiomics features of tumors can be used to quantitatively evaluate the subtle differences of 
tumors of the same type, which can solve the problem that tumor heterogeneity is difficult to quantitatively 
estimate, and can assist doctors in diagnosis, analysis and prediction of prognosis survival of patients. The 
method is an important application of radiomics in the diagnosis, analysis and prediction of NSCLC, and has 
important clinical value and significance.
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