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PACS 11.25.-w — Strings and branes

Abstract — This work discusses the construction of braneworld solutions in modified gravity with

Lagrange multipliers.

We examine the general aspects of the model and present a first-order

formalism that helps us to find analytic solutions of the equations of motion. We also investigate
some explicit models, analyse the linear stability of the metric and comment on how to relate
models investigated in other works to the ones examined in the present study.
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Introduction. — Modified gravity theories have played
an interesting role in the discussion of some unsolved prob-
lems in High Energy Physics. In particular, there are sev-
eral distinct lines of research in scalar-tensor models that
provide interesting suggestions to the dark energy prob-
lem, the negative pressure fluid responsible for the cur-
rent accelerated expansion of the Universe [1,2]. A class
of models which came to light in the early 1990s to address
the problem of cosmological singularities [3,4] has received
renewed attention in recent years with the use of Lagrange
multipliers to study dark energy [5-8]. In this approach a
multiplier is usually inserted into the fundamental action
to play the role of an auxiliary field that sets a constraint
on the system such that the norm of the scalar field gra-
dient is nontrivially related to the field through a scalar
potential.

Modified gravity with Lagrange multiplier can also gen-
erate new cosmological solutions when associated to other
modified theories, such as F(R) models [7-9], Gauss-
Bonnet gravity [10-12] and covariant renormalisable grav-
ity [13,14]. Moreover, another subset of modified gravity
with Lagrange multiplier is known as mimetic gravity [15],
which emerged from the idea of rewriting the background
metric as a nontrivial coupling between a scalar field and
another auxiliary metric. Later, however, it was observed
that this is equivalent to the addition of a constraint in
the action of the model [16,17]. Although originally re-
quiring only a factorization of the metric, which a priori
should not change the covariant form of the equations, the
field equations in mimetic gravity are different from the
Einstein equation even in the absence of matter. In this
sense, exploring new possibilities around these setups can

be very instructive to understand the behavior of grav-
itational solutions and look for other properties not yet
reached in other gravitational models.

Another important class of gravitational solutions ad-
dressed in modified gravity theories are the braneworlds,
which have been extensively studied in the last twenty
years [18-32], in particular to understand the mass hier-
archy problem, but only recently have been explored in
modified gravity with Lagrange multipliers [33,34]. In
these models the scalar field acts as a source of gravity,
which generates a brane in a five-dimensional bulk con-
sisting of a four-dimensional flat spacetime with Poincaré
symmetry and a single extra spatial dimension of infinite
extent. Gravity is localized in the brane when there is
a normalisable graviton zero mode related to the four-
dimensional invariance. In this work we present a first-
order formalism for the construction of branes in modified
gravity with Lagrange multiplier. Such formalism already
exists in other contexts [35-37], but doing so here may
lead to further discussions related to other inherent pecu-
liarities of branes arising when Lagrange multipliers play
a role. In the models to be studied here, the degrees of
freedom are associated to the source scalar field and the
warp factor that controls the geometry. The constraint
imposed by the Lagrange multiplier makes the scalar field
kinetic term to be determined by a potential that depends
only on the source scalar field. Thus, we can choose such
potential in order to reduce the scalar field equation of
motion to a first-order differential equation that does not
couple to the other degree of freedom associated to the
warp factor. In this sense, the scalar field feeds the geom-
etry, and we then propose another first-order equation to
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describe the warp function to set up the conditions for the
first-order equations to control the equations of motion of
the modified gravity model.

Here we take advantage of the freedom engendered by
the presence of two potentials, one related to the Lagrange
multiplier and the other to be adjusted appropriately, to
find solutions capable of inducing gravity localization. In
these systems, the scalar field acts independently but can
generate branes with well-behaved geometry. We illustrate
the main results examining models of current interest, in
particular the case of brane in mimetic gravity in the sense
of [15]. Also, a linear stability analysis is implemented to
show that the braneworld scenario is robust, since its grav-
itational sector is stable against small fluctuations of the
metric. In this sense, assembling a first-order formalism in
these models follows the idea of finding a systematic way
to obtain analytic brane solutions which can help in the
search for new properties and predictions on gravitational
scenarios.

The letter is organized as follows. In the next section
we introduce the model, write the equations of motion
and then implement the first-order formalism and discuss
some of its properties. In the third section we examine
braneworld models focusing on the obtention of analytical
solutions and in the fourth section we study the stability of
the models under small fluctuations of the metric. We end
the investigation in the fifth section with some comments
and discussions.

Formalism. — In this work we consider thick brane
models driven by scalar fields in (4,1) spacetime dimen-
sions for a class of modified theories of gravity with
Lagrange multiplier. The basic model is described by the
action

5= [aval(-F 1 (oo +vi0) - vo)
1)

Here, g is the determinant of the background metric gqp
(a,b=0,1,2,3,4), R is the Ricci scalar, I represents the
Lagrange multiplier, ¢ denotes the scalar field and V' (¢)
and U(¢) are two potentials. As we shall see later, these
potentials are responsible for the scalar field solution and
the modelling of the brane, respectively. Also, the scalar
function I acts as a Lagrange multiplier, and its equation
of motion imposes a constraint on the scalar field ¢ to be
specified along with the potential V' (¢).

The variation of the action (1) in terms of the scalar
field ¢ and the background metric g, leads us to the field
equations

dv dU
I (gabvavb¢ — ) + 0,10 + — =0,

dé i 0 (%)

Gapy — 2T4 = 0. (2b)

The constraint provided by the Lagrange multiplier
becomes

59"0u00,0 +V(8) =0, 3)

and the energy-momentum tensor is given by
Top = 100,00 + gapU (). (4)

The constraint provided by eq. (3) was used to simplify
Tap, so we can interpret the Lagrange multiplier as a field
source which effectively modifies the scalar field dynamics.

The background geometry has four-dimensional invari-
ance and a single extra dimension of infinite extent. It is
given by the general ansatz

ds? = e*4n,, dztda” — dy?,

()

where the coordinate y denotes the extra dimension, 7, =
diag(1,—1,—1,—1) is the four-dimensional Minkowski
metric with g, v = 0,1,2,3 and A = A(y) is the warp
function. The metric (5) is the most general ansatz one
can choose which holds four-dimensional Poincaré symme-
try. For simplicity, we also consider that the scalar field
is static and depends only on the extra dimension. In this
way, egs. (2a) and (2b) become

2 !l dv ! 1 dU o
1<¢ +4A¢+d¢)+l¢—d¢_0, (6a)
3A% +U(¢) — 14" =0, (6b)
A"+ §I¢’2 =0, (6¢)

and the constraint (3) now reduces to

¢ =2V (9), (7)

where the prime denotes derivative with respect to the
extra spatial coordinate y. We have a system of four dif-
ferential equations, but it is not completely independent
since if we derive eq. (6b) once again with respect to the
extra coordinate and then use egs. (6¢) and (7), we re-
cover (6a). We can also find eq. (6a) by using the Bianchi
identity.

We now concentrate on the task of finding solutions to
the above model. It has been recently used in [34,35] to
investigate braneworld scenarios, and there the authors
analysed internal structures and gravitational resonances.
Our main motivation here is to describe a systematic pro-
cedure to obtain solutions of these braneworld models us-
ing a first-order formalism to be developed below. An
extra gain within the first-order formalism is the possibil-
ity to expand the discussion on the construction of new
solutions emerging in the above context. In order to move
forward towards the development of the formalism, we re-
call the necessity to include auxiliary functions that help
us solve the equations of motion in a simplified way. If we
focus on eq. (7), we can introduce the function w = w(¢)

such that )
1/d
V(o) =3 (d‘;) :

and this naturally leads us to the first-order equation

, dw
¢—@~

(®)

(9)
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Moreover, we also include another function W = W (¢) to
control the warp function, such that

A = 2w (e).

- (10)

We then use the above equations into eq. (6) to get
(11)

which is imposed to ensure consistency with egs. (6)

and (7). In particular, the Lagrange multiplier in this
case has to obey
dw dW
I(¢p)— = —. 12
O -5 (12)

This equation shows that the auxiliary functions W (¢)
and w(¢), in addition to dictating how the scalar field self-
interacts and inducing the expression of the warp factor,
also have an effect on the dynamics of the scalar field.

Before investigating specific models, let us comment on
some interesting issues. First, the choice of the function
w(¢), and thus the potential V(¢), directly implies the
choice of the scalar field ¢, which obeys eq. (9). How-
ever, the choice for the function W(¢) cannot be made
carelessly, because of the Lagrange multiplier (12). The
function W (¢) has to be combined with the scalar field so-
lution given by eq. (9) to make the warp function that obey
eq. (10) provide models with gravity localization. Second,
since (9) and (10) are first-order equations, they open the
possibility to build analytic thick brane models where the
scalar field can present a distinct behavior. When choosing
how to combine the scalar field solution with the function
W (@), one should care about the building of a regular warp
factor, such that lim, .+ exp(2A(y)) — 0. In this sense,
the scalar field profile and the nonlinearities encoded in
the choice of the function W (¢) have to be conveniently
adjusted to give rise to robust braneworld scenarios. We
notice, for instance, that the 00-component of the energy-
momentum tensor, given by Tpo = p(y) = exp(24)U can
under the use of the first-order equations be expressed as
the total derivative

(13)

so the total energy of the brane vanishes for any well-
behaved function W (¢). Moreover, we can calculate the
Kretschmann scalar; in the above model it is given by

K =16A"% 4+ 324° A" + 404", (14)
and should be examined to see if the gravitational sector
of the model behaves adequately, in terms of the extra
spatial dimension.

We also notice that for the two potentials V(¢) and
U(¢) that are given by egs. (8) and (11), the first-order
equations (9) and (10) solve the equations of motion when

the Lagrange multiplier obeys (12). Moreover, if we set the
Lagrange multiplier to unity, the model (1) becomes the
standard model with potential Ug(¢) = U(¢) — V(¢). In
this case, eq. (12) imposes that dw/d¢ = dW/d¢, and
egs. (8) and (11) lead to
aw\? 4
— ] - - W? 15
B) g (15)
which is the form required for the potential of the standard
gravity braneworld model, capable of generating a thick
brane in the presence of the source scalar field, governed
by the first-order equations (9) and (10).

Another issue is that the choice w(¢) = ¢ leads us to
the solution ¢(y) = y. In this case, if we choose

Us(¢) = % (

3 ign(e),

W)=

(16)
with k being a real constant, the warp function has the
solution A(y) = —k|y|, and the warp factor leads to the
line element

ds? = e~ 21lvly datda” — dy? . (17)

Thus, we recover the solution presented in the Randall-
Sundrum model [18], which describes the thin brane
model.

Models. — Let us now discuss some models with dis-
tinct behavior, which can be addressed by using the first-
order formalism uncovered in the previous section.

First model. Let us first consider the case with
W(¢p) = ¢. Here we get

A= —(2/3)¢.

The scalar field is governed by the first-order equation (9),
so we need w(¢) which is now proposed to be

(18)

w(6) =aap— - o, (19)

where a and « are positive real parameters. In this case,
the scalar field solution has the form

¢(y) = a tanh(ay), (20)
and I(¢) = a/(a(a® — ¢?)). We then have
e24W) = sech/3%) (), (21)

and the energy density

p(y) = asech4e/3®) <1 <§a + 1> tanh? (ay)> . (22)
o)

The warp factor and energy density are depicted in fig. 1
for a = 1 and for some values of a.

We now recall the work [22], which unveiled an interest-
ing way to reach the thin brane limit starting from a thick
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Fig. 1: First model. Warp factor (top panel) and energy den-
sity (bottom panel) for @ = 1. The solid (dark blue), dot-
dashed (blue), dashed (light blue) and dotted (lighter blue)
lines refer to aw = 1/2, 1, 2 and 4, respectively.

brane. The idea was to transform the smooth kinklike
profile of the scalar field into an abrupt steplike configu-
ration. It can also be implemented here, in the limit of
a very high parameter a. The point is that the kinklike
solution (20) in the limit @ — oo leads us to the solution
o(y) = asign(y), such that the warp function becomes
A(y) = —(2a/3)|y|. Thus, if one sets a = 3k/2 we get
back to the thin brane described in [18] once again.

We have checked that the Kretschmann scalar behaves
nicely as a function of the extra spatial dimension, for
a wide range of values of a. We have also noticed that
it diverges at y = 0 in the limit &« — oo, and this is
consistent with the divergence of the Kretschmann scalar
for the thin brane described in [18]. Interestingly, it was
shown before that the thin brane can be obtained with
w(¢) = ¢, and an appropriate choice of W(¢). And above
we have found that the thin brane can also be built in the
case of W(¢) = ¢, with an appropriate choice of w(¢).

Second model.  The second model is described by the

pair of functions

¢3

3 W)= p? L, (23)

w(¢) =

with n = 0,1,2,3,.... Here we choose to insert a pa-
rameter in the model only in the W function, leaving the

(a) Warp factor

o)

(b) Energy density

Fig. 2: Second model. Warp factor (top panel) and energy
density (bottom panel). The solid (dark blue), dot-dashed
(blue), dashed (light blue) and dotted (lighter blue) lines refer
ton=0,n=1,n=2 and n = 3, respectively.

function w with no parameters. It is straightforward to ob-
tain the solution of the scalar field and the expression for
the Lagrange multiplier from eqs. (9) and (12), where one
finds ¢(y) = tanh(y) and 1(g) = (1 + 2n)(¢*" /(1 — ¢?)).
Since the function w(¢) has no parameters, the scalar field
solution is fully determined, and represents the standard
kinklike solution. The warp factor, on the other hand, will
depend on n; eq. (10) in this case reads

2
A = ~3 tanh?" ™ (), (24)

and has the solution

2(n+1)
W o Fy (l,n +1,n+ 2,tanh2(y)) ,
(25)
where o F (- - - ) denotes the hypergeometric function. Fur-
thermore, the energy density associated to this model is

given by

Aly) = -

p(y)=e*4 ((2n—|— 1) sech?(y) tanh®" (y) — % tanh (™) (y)>

(26)

The respective warp factor for the warp function (25)
is depicted in fig. 2(a) for some values of n. The param-
eter n controls the thickness of the brane and makes it
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smoother and flatter in the vicinity of the region y = 0,
where the brane is located. The energy density (26) is de-
picted in fig. 2(b), where one can identify a splitting effect
for n # 0, indicating that the parameter n controls the in-
ternal structure of the brane. This behavior is similar to
that presented by models investigated in [38—41], forcing
the energy density to behave at y = 0 as it behaves asymp-
totically. And yet, the Kretschmann scalar also behaves
with no problem in the case.

Third model. — The next model we investigate is related
to the subset of modified gravity with Lagrange multiplier
defined by mimetic gravity [15]. We reach those systems
when taking the w(¢) in the form w(¢) = ¢, and conse-
quently the potential V' (¢) becomes constant. In this case
the constraint of the model given in eq. (3) has the form

9" 0aOpd = —1, (27)

which is exactly the bound emerging from the metric fac-
torization originally proposed within this setup [16,17] and
responsible for the decoupling of the conformal mode and
the departure from general relativity. We remark here that
our understanding of mimetic gravity is different from that
presented in [34], and we refer to it only in the case where
the constraint (27) is satisfied. This choice implies that for
any choice for W(¢) we have to deal with the equations

dw AW 4

Let us consider the case where W is
W(¢) = (3r/2) tanh(¢), (29)

with 7 being real parameter. With this choice for W the
Lagrange multiplier becomes I(¢) = (3r/2)sech?(¢) and
the warp factor gets the form

e = sech? (y).

It is now straightforward to obtain the energy density as-
sociated with this model; it has the form

(30)

ply) = ?;lseCh%(y) ((2r + 1)sech®(y) — 2r)) .

The warp factor and the energy density are depicted in
fig. 3 for some values of r, and we see that they be-
have adequately, even though the scalar field diverges
asymptotically.

We also notice from the behavior of the warp factor
shown in fig. 3, that it becomes thinner, as r increases.
This effect is similar to the effect unveiled before in [31],
in the study on the possibility to make the brane compact,
that is, to shrink the warp factor inside a compact re-
gion along the extra dimension. The effect here is similar,
and we have checked that when 7 increases to higher and
higher values, the warp factor in fact shrinks to a smaller
and smaller region around the center of the solution along
the extra dimension. However, the Kretschmann scalar
behaves inappropriately in the limit » — oo, so we can-
not probe the compact limit of the brane in the present
context.

(31)

(a) Warp factor

Py

(b) Energy density

Fig. 3: Third model. Warp factor (top panel) and energy den-
sity (bottom panel). The solid (dark blue), dot-dashed (blue),
dashed (light blue) and dotted (lighter blue) lines refer tor = 1,
r=1/2,r=1/3 and r = 1/4, respectively.

Stability. — We now proceed to investigate the sta-
bility of the gravitational sector of the models. We fol-
low the investigation described in [20] and first make a
coordinate redefinition for the extra dimension given by
dy = e*®)dz, so that now the background geometry is
conformally flat, i.e., Gaup = €*4*)n,. We then take
small fluctuations around the metric by making the change
Nab — Nab + hap(x, z), with hss = 0. These fluctuations
describe the gravitational behavior along the extra dimen-
sion around the brane. In this way, the perturbed metric
becomes

ds® = ) (4, + hap)dz®da® . (32)

The linear correction to the Einstein tensor in the trans-
verse traceless gauge (9,h*" = 0 and hf = 0) due to the
presence of gravitational fluctuations is

1 . .
3G = — 50y + 5 Al — By (A4 42), (33

and 0Gs5 = 0 (since hss; = 0), where the dot repre-
sents derivative with respect to the new coordinate z.
In order to find the equation describing the gravitational
modes in the metric background (32) we have to solve
the general equation 6G,, = 207),,. One can prove that
the linear correction to the energy-momentum tensor is
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(a) Stability potential of the first model

(b) Stability potential of the second model

uy)

(c) Stability potential of the third model

Fig. 4: Stability potential of the three models investigated in
the third section. They are depicted using the same conven-
tions of their corresponding figs. 1, 2 and 3.

20T}, = —3hu (A + AQ) and then the equation becomes

0.0h,u, — 3Ah,, = 0. (34)
In order to clarify how the above equation relates to the
stability of the system under small fluctuations, we take
hyw = e‘”"”ﬂegA/QH,W7 so we are led to the Schrédinger-
like stability equation

(=02 +u(z)) Hy = m*H,, (35)
where the stability potential is given by
3. 9.
= A+ -A%
u(z) 3 + 1 (36)

The stability potentials of the models presented in the pre-
vious section are depicted in fig. 4, where one can realise
how they react to the variations of the parameters of the
models. We notice that in fig. 4, the warp factors are
displayed in terms of y, so they were depicted using the
stability potential

uly) = 34 (24" 4 547) (37)
Figure 4(a) shows a standard behavior, but in fig. 4(b) the
stability potential of the second model has local maxima
in the central region of the potential for n # 0, which
results from the splitting of the branes in that case. In
fig. 4(c) the parameter r of the third model controls the
thickness of the potential and its depth, but does not have
an internal structure.

The stability equation (35) can be factorized as

(az + ‘;’A) (—az + ;’A) H,, =m*H,, .

Thus, if we define Q = —, + (3/2)A4, it is possible to
rewrite (38) in the form QTQH,, = m?H,,. In this way,
the operator QT(Q is nonnegative and so m? > 0, forbid-
ding the presence of states with negative eigenvalue. The
gravitational sector of the model is then linearly stable.
In particular, the graviton zero mode is proportional to
e34(2)/2 - Gravity localization then requires the zero mode
to be normalisable, i.e., the integral of exp(3A(z)) over
z € (—00,00) should be finite. This condition implies that
the warp function A(z) has to behave properly to ensure
finiteness of the above integral.

In the case of the thin brane which is obtained with
w(p) = ¢, or with W(¢) = ¢, as discussed in the third
section, the stability potential is given by

(38)

15 K2

(CEESERRGAG

(39)

and its stability analysis was already performed in [18].

Conclusion. — In this work we developed a first-order
formalism for thick branes in the context of modified grav-
ity with Lagrange multiplier. The procedure was im-
plemented with two auxiliary functions w(¢) and W (o),
which allowed us to solve the equations of motion with
first-order differential equations. Interestingly, the use of
such formalism brings us new possibilities, illustrated with
distinct systems. The first model presented a standard
scenario, controlled by the parameter «, and we noticed
that the limit of a very large « provided another way to
get back to the thin brane scenario firstly discussed in [18].
The second model is also of interest, since it leads us to
the case of brane splitting, which is characterized by the
peculiar profile of energy density when n = 1,2,3, etc.
The third model is also interesting since it leads to the
case of thick mimetic branes, with the scalar field giving
rise to a solution that diverges asymptotically, but capa-
ble of producing a thick brane with the standard profile.

11004-p6
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This model, in particular, engenders the effect of allowing
the brane to shrink inside a compact region around the
center of the solution along the extra dimension. We have
also examined linear stability of the gravity sector of the
models, showing that the braneworld scenarios are stable
against small fluctuations of the metric.

The first-order procedure developed in this work shows
not only that the addition of Lagrange multipliers is a use-
ful tool to construct new thick branes models, but also that
it unveils a route to describe analytical solutions, which
are welcome since they allow a clearer view of the problem.
In particular, it can perhaps be extended to other scenar-
ios, such as the one with two or more scalar fields. Given
the form of the potential U(¢) that appears in (11), an-
other possibility of investigation concerns the construction
of asymmetric branes, which can be implemented with the
methodology recently used in [42] to explore the problem.
The first-order procedure may also be useful to examine
the domain-wall/brane-cosmology correspondence [37] in
the new scenario of modified gravity with Lagrange mul-
tiplier. We hope that the above results will foster new
investigations in this subject.

k) K 3k
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