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Abstract — Hydrodynamic instabilities often cause spatio-temporal pattern formations and tran-
sitions between them. We investigate a model experimental system, a density oscillator, where
the bifurcation from a resting state to an oscillatory state is triggered by the increase in the den-
sity difference of the two fluids. Our results show that the oscillation amplitude increases from
zero and the period decreases above a critical density difference. The detailed data close to the
bifurcation point provide a critical exponent consistent with the supercritical Hopf bifurcation.
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Introduction. — Limit-cycle oscillations have been in-
vestigated intensively since they are related to a wide vari-
ety of dynamical phenomena both in natural and artificial
systems. There are mainly two scenarios for the realiza-
tion of oscillations. One is a harmonic-like oscillation re-
alizing in an energy conservative system, and the other is
a limit-cycle oscillation in which energy is alternately sup-
plied and dissipated in one cycle. Thus, the observation
of oscillation in open systems is the mark of the existence
of a limit-cycle oscillation. Since energy dissipation is un-
avoidable in macroscopic and mesoscopic systems, many
oscillatory phenomena observed in such systems can be
regarded as limit-cycle oscillations.

One of the most famous experimental systems that ex-
hibit limit-cycle oscillation is the chemical oscillation rep-
resented by the Belousov-Zhabotinsky (BZ) reaction, in
which oxidation and reduction processes occur alternately
and the solution color changes according to such oxida-
tion/reduction reactions [1,2]. Other types of oscillators
have also been reported; e.g., Briggs-Rauscher (BR) re-
action, glycolysis, and electrolysis [3]. Another class is
hydrodynamical systems such as the Bénard convection
system and the density oscillator. These hydrodynami-
cal systems are often discussed in association with the at-
mospheric circulation and thermohaline circulation [4,5].
Martin firstly reported the density oscillator, and he dis-
cussed it as a simplified experimental system of thermo-
haline circulation [6].

The limit-cycle oscillations in the hydrodynamical sys-
tems are important not only for the relation to such

atmospheric and thermohaline circulations but also as the
suitable model systems to investigate the bifurcation phe-
nomena seen in dynamical systems. The hydrodynamical
systems have many degrees of freedom, but they often
show successive bifurcation structure from a trivial state
to oscillatory states, quasi-periodic oscillation states, and
chaotic states that can be described by a model with a
small number of variables [7].

One of the simple and appropriate experimental sys-
tems that exhibit hydrodynamic limit-cycle oscillations
is a density oscillator. In this system, the gravitational
instability originating from an upset density profile of
higher- and lower-density fluids induces upstream and
downstream alternation, which can be regarded as a limit-
cycle oscillation. From Martin’s first report in 1970, there
have been experimental and theoretical papers on the
density oscillators. Some are on the theoretical analy-
sis on the mechanism of oscillation [8-15] and others are
on the coupling between two or more oscillators [16-21].
For the bifurcation phenomenon, some theoretical stud-
ies have been performed based on the reduced ordinary
differential equations, which have predicted various types
of bifurcations according to various bifurcation parame-
ters [10,11]. However, the experimental analyses on the
bifurcation structure with physical parameters between
the resting and oscillatory states are missing, and the
detailed behaviors close to the bifurcation point remain
unclear.

In the present paper, we report the experimental results
on the bifurcation between the resting and oscillatory
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states by changing the density of the higher-density fluid
as a bifurcation parameter. We measured the oscillation
amplitude and period depending on the density of the
higher-density fluid, which indicate the bifurcation struc-
ture between the resting and oscillatory states.

Experimental setup. — All aqueous solutions and dis-
tilled water were prepared with the Elix water purifica-
tion system Elix UV 3 (Merck, Darmstadt, Germany).
A sodium chloride (NaCl) aqueous solution as a higher-
density fluid was prepared by dissolving NaCl (Wako Pure
Chemicals, Tokyo, Japan) into distilled water with various
weight /volume concentrations c. All the aqueous solu-
tions and pure water (¢ = 0g/L, for control) were de-
gassed for 1 hour in a vacuum chamber before use. The
observation chamber of the density oscillator was made of
acrylic plates, which is composed of a smaller container
surrounded by a larger container for higher- and lower-
concentration solutions, respectively. The acrylic plates
were 10mm in thickness except for the bottom of the
smaller container with 2 mm thickness. The center of the
bottom of the smaller container had a small cylindrical
hole with a diameter of 1mm and a length of 2mm to
connect these two containers. They were kept isolated by
blocking the hole with a needle before the measurements.
The dimensions of the observation chamber and a photo-
graph of the experimental setup are shown in fig. 1.

We put 245 mL of the NaCl aqueous solution in the
smaller container, and 1400 mL of pure water in the larger
container to reach the same water levels in these two con-
tainers. After removing the blocking of the small hole,
the flow was induced through the hole if the concentra-
tion difference was greater than a critical value. The time
series of the surface height of the solution in the outer
container was measured with a laser displacement meter
(32.77 fps, LT9010M, Keyence, Japan) [12]. We measured
the surface height for 4000s. As the surface height ad-
equately relaxed to a steady resting or oscillatory state
in 2000s, we analyzed the data from 2000s to 4000s. It
should be noted that the steady oscillatory state with the
repetitive macroscopic flow is characteristic for limit-cycle
oscillations. To visualize the profile of the density dif-
ference between higher and lower NaCl concentration, we
utilized the optical-index difference in a similar manner
with the shadowgraph method [22] using a light emit-
ting diode (LED) as a light source and a plastic sheet
(TAMIYA Inc., Shizuoka, Japan) as a screen. The ob-
tained time series of the surface height were processed as
follows: The surface height linearly decreased due to the
evaporation, and thus the linear trend was reduced by
subtracting the least-squares fitted linear function. Then,
the data were smoothed by applying a band-pass filter be-
tween 0.003 and 0.019Hz. Using the smoothed data and
their time derivatives, we detected the local maximum and
minimum points. The time series of the time derivative
were calculated as the slope of adjacent +10 points (lo-
cal data points for 0.64s) obtained by the least-squares
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Fig. 1: Experimental setup. (a) Dimensions of the chamber
made of acrylic plates. The laser displacement meter and the
measured spot are also shown. (b) Overview of the surface-
height measurement and observation.

fitting. We obtained the mean peak-to-peak distances and
the mean time intervals of the local minima as the os-
cillation amplitude and the period, respectively, for each
condition of NaCl concentration c.

Experimental results. — Figure 2 shows the upstream
and downstream series through the small hole connecting
the higher- and lower-concentration solutions. Character-
istic oscillatory behavior of the density oscillator is ob-
served. The concentration of the NaCl aqueous solution
was ¢ = 30g/L. In this setup, the upstream of the lower-
concentration solution and the downstream of the higher-
concentration solution were visualized as dark and light
images, respectively, since the cylindrical flow shape acts
as concave or convex optical lenses. The upstream and
downstream series were repeated with a typical period of
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Fig. 2: Snapshots of the oscillatory behavior of the density oscillator. The concentration of the NaCl aqueous solution was
¢ = 30g/L. The oscillatory flow was visualized by the optical-index difference. (a) Displayed area. (b) Typical oscillatory
flow. (c) Details for the switching from upstream to downstream. (d) Details for the switching from downstream to upstream.
Snapshots every (b) 1.67s and (c), (d) 0.33s are shown. The video and background-subtracted images are available in the
Supplementary Material (see supplementary video density_oscillator.mp4 and fig. S1 in Supplementarymaterial.pdf (SM),

respectively).

~b50s in this condition. In this timescale, the cylindrical
flows did not mix with the surrounding solutions, i.e., dif-
fusion of solutes is negligible. Figures 2(b) and (c) show
the details for the switching of these opposite flows, where
the arrow-like shaped flow enters the other solution at an
almost constant velocity.

For the quantitative measurement of the oscillation, we
used a time series of the surface height of the solution in
the outer container obtained by the laser displacement me-
ter. The characteristic time series of the surface height is
shown in fig. 3. Figure 3(a) shows the result for ¢ = 0g/L
as a control condition. The unprocessed time series (blue
line) shows a constantly-decreasing trend due to the slow
evaporation of water, even though a total volume change
of the aqueous phase is negligibly small. By subtracting
the linear trend (black line), which is obtained by the least-
squares method, time evolution of the surface height h(t)
is obtained. h(t) directly reflects the fluid flow through
the small hole between the inner and outer containers.
While the time series for ¢ = 0g/L is almost constant
with small fluctuation (fig. 3(a)), that for ¢ = 30g/L
exhibits steady oscillation (fig. 3(b)), which corresponds
to the oscillatory flow through the hole. Note that the
linear trends for both resting (¢ = 0g/L) and oscilla-
tory (¢ = 30g/L) states were measured in 3 hours under
the condition with similar humidity, and showed a sim-
ilar decreasing rate with the slopes of —0.00746 ym -s~!
and —0.00772 um - s~ 1, respectively, which are compatible
with the typical rate for water evaporation. For further

quantification of the amplitude and period of the oscilla-
tion, we applied a band-pass filter in a frequency range
0.003-0.019 Hz (red-dashed line).

Figure 4 shows the concentration dependence of the typ-
ical time series of the surface height for ¢ = 0g/L (control),
c=15g/L,¢c=3g/L, ¢c=10g/L, and ¢ = 30g/L. In ad-
dition to the original trend-subtracted data (gray points),
we plotted smoothed data obtained by a moving average
with adjacent £64 points (3.91s) (black line) and the data
with a band-pass filter (red-dashed line) (figs. 4(a)—(e)).
The corresponding whole dynamics including the initial
transient states are shown in fig. S2 in the SM. While
the surface heights for small ¢, e.g., ¢ = 0g/L, are in a
resting state, those for ¢ > 1.5g/L exhibit characteris-
tic oscillation. According to the increase in ¢, the ampli-
tude becomes larger and the period becomes shorter. The
detailed wave profiles, shown in each inset, also change
from smooth sinusoidal-like oscillations to relaxation os-
cillations. Figures 4(f)—(j) show the corresponding trajec-
tories of the trend-subtracted smoothed data in a phase
space (h,dh/dt). According to the increase in ¢, the tra-
jectories corresponding to the limit-cycle orbits with larger
amplitudes appear. Also in the trajectories for ¢ > 10g/L,
we can clearly see a characteristic shape of relaxation os-
cillation. Though the smoothed plot for small oscillation
in ¢ = 1.5g/L shows no clear cyclic trajectory due to the
long-term fluctuation of the baseline, the plot after a band-
pass filter shows sufficiently large oscillatory amplitude,
which will be discussed later.

18001-p3


http://stacks.iop.org/0295-5075/129/18001/mmedia
http://stacks.iop.org/0295-5075/129/18001/mmedia

H. Ito et al.

(a) c=0 gL (control)
30

—— Unprocessed
Trend-subtracted

—— Linear fitting
---- Band-pass filtered

n
o

Height h (um)
o

o

L
=

750 1000 1250 1500 1750 2000
Time t (s)

0 250 500

(b) c=30g/L
30

N
o

107

Height h (um)

R R AR
AR RAAAARL

750 1000 1250 1500 1750 2000
Time t(s)

0 250 500
Fig. 3: Time series of the surface height measured with a
laser displacement meter for (a) ¢ = 0g/L (control) and
(b) ¢ = 30g/L. Unprocessed data (blue lines), linear fitting
for the unprocessed data (black lines), trend-subtracted data

(gray lines), and smoothed data with a band-pass filter (red-
dashed lines) are shown.

From the band-pass filtered data, we obtained the am-
plitudes and the periods of the oscillations for various con-
centrations ¢, as shown in figs. 5(a) and (b), respectively.
The results in fig. 5(a) show that the amplitude shows a
steep increase above a critical concentration ¢, ~ 1g/L,
and it monotonically increases for larger concentrations.
Here, we determined one standard deviation of the ampli-
tude in the control condition (¢ = 0g/L) as the thresh-
old amplitude between the resting and oscillatory states.
By this standard, ¢ < 1g/L is in a resting state, and
¢ > 1.125g/L shows a limit-cycle oscillation. For the con-
ditions with limit-cycle oscillations ¢ > 1.125g/L, the os-
cillation period T is plotted against various ¢ in fig. 5(b).
The period T monotonically decreases with the increase in
the concentration ¢, and converges to 1" ~ 50 s for larger c.

Discussion. — The driving force of the density oscilla-
tor is the gravitational energy. In fact, the density profile
is upset in the initial stage; in other words, the higher-
density fluid is located above the lower-density fluid. This
instability can induce the limit-cycle oscillation through
the dissipation of the gravitational energy. From the ex-
perimental results, the limit-cycle oscillation was observed
when the concentration of NaCl aqueous solution, ¢, was
above a critical value ¢. ~ 1g/L. Considering that the
gravitational energy is proportional to the density, the re-
sults suggest that the oscillatory flow is induced by the
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Fig. 4: Oscillations for different NaCl concentrations ec.

(a) 0g/L, (b) 1.5g/L, (c) 3g/L, (d) 10g/L, and (e) 30g/L.
Trend-subtracted data (Data, gray dots), moving-average
(M. A., black lines), and band-pass filtered data (B.-P., red-
dashed lines) are plotted. Each inset shows a magnified region
of 250s < ¢ < 500s. (f)—(j) Corresponding trajectories in a
phase space (h,dh/dt).

upset density profile but it should suffer from the resis-
tance due to the fluid viscosity. The gravitational energy
due to the upset profile can overcome the viscosity for
¢ > ¢, while it cannot for ¢ < c..

The existence of the critical value ¢. for the instabil-
ity is also interpreted from the transport phenomenon.
Since the solute transportation is dominated by diffusion
in the resting state and by the advection in the oscillatory
state, the Rayleigh number Ra = (gL3Ap/p)/(vD) pro-
vides a critical value for the density difference Ap to drive
the oscillation. Here, g (~10m-s72) is the gravitational
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Fig. 5: Amplitude and period of the density oscillator for vari-
ous concentrations of NaCl aqueous solution as a higher-density
fluid. (a) Amplitude. The dashed line in the inset shows the
threshold value for the resting state. (b) Period. Each inset
shows the magnified region around the bifurcation point.

acceleration, L (~0.5mm) is the hole radius as a charac-
teristic length, Ap/p(~1072) is the ratio of the density
difference, v (~1.0x 1075 m? - s71) is the kinematic viscos-
ity of water at room temperature, and D (~107%m? - s71)
is the diffusion constant of solutes in water at room tem-
perature. If we take a critical Rayleigh number Ra (~103)
typical for Rayleigh-Bénard instability, the critical density
difference Ap., namely, the critical solute concentration c.
can be estimated as ¢, ~ 0.8 g/L, which agrees well with
the bifurcation point ~1.0 g/L obtained in our experiment.
Note that this value is much smaller compared to the pa-
rameter ranges in the previous experiments [8,12]. Actu-
ally, the decreases in the density of salt water per a cycle
are roughly estimated as ~—3% in Steinbock et al. [8] and
~—0.2% in Ueno et al. [12], which is much larger than
our experiment, ~—0.003%. These previous experiments
showed continuous shifts of the water surface in mm—-cm
length scale during the measurements due to the decrease
in the density difference by mixing of the solutions between

the two containers. In contrast, our experiment measured
the motion of surface height in pym length scale, and there-
fore, the bifurcation phenomenon at the small density dif-
ference as well as the water evaporation could be detected.

From the viewpoint of the dynamical systems, this tran-
sition can be discussed in terms of bifurcation. There are
several scenarios known for the transition from a resting
state to an oscillatory state; supercritical Hopf bifurcation,
saddle-node bifurcation of cycles (subcritical Hopf bifurca-
tion), infinite-period bifurcation (saddle-node homoclinic
bifurcation, saddle-node bifurcation on an invariant circle
(SNIC)), homoclinic bifurcation, and so on [23-26]. For a
supercritical Hopf bifurcation, the amplitude of oscillation
raises from a bifurcation point in proportion to the square
root of the distance from the bifurcation point, while the
amplitude has a finite value at the bifurcation point for
the other three types.

In the experiments, the amplitude of the oscillation
seems to increase from zero with an increase in ¢ for ¢ > ¢,
as shown in fig. 5(a). If we assume that the system under-
goes the supercritical Hopf bifurcation, the dependence of
the amplitude on the concentration ¢ is suggested to be
proportional to (¢ — )12 when the system is close to
the bifurcation point. Here, c! is the critical concentra-
tion for the supercritical Hopf bifurcation. We performed
power-law fittings of the experimental data to determine
the bifurcation point and the power exponent. First, we
checked the power spectra for each concentration ¢ to de-
termine the range of the “close-to-bifurcation-point re-
gion”, where the critical behavior is expected. Figure 6
shows the power spectra corresponding to the conditions
shown in fig. 4. Above c., a clear first peak for the charac-
teristic limit-cycle oscillation appears within a frequency
range of the band-pass filter, 0.003-0.019 Hz. For higher
concentrations, ¢ > 3 g/L, harmonics originating from the
nonlinear waveform of relaxation oscillation appear, i.e.,
the system is in the “far-from-bifurcation-point region”.
Thus, we performed linear fitting of the squared ampli-
tude in the “close-to-bifurcation-point region” as shown
in fig. 7(a), and obtained the critical concentration as
el = 1.03g/L. Here, the closest oscillatory condition
¢ = 1.125g/L was eliminated from the fitting, because
the amplitude was close to the noise level. Then, the dou-
ble logarithmic plot of the amplitude vs. ¢ — ¢! shown in
fig. 7(b) provides the power exponent close to the bifur-
cation point, resulting in 0.482, which is close to 1/2. Tt
suggests that the bifurcation would be classified into the
supercritical Hopf bifurcation.

The supercritical Hopf bifurcation is also characterized
by a finite angular velocity in the phase space at the bi-
furcation point. In fig. 5(b), the period increased as ¢
approached the bifurcation point from higher concentra-
tions ¢ > ¢.. This behavior recalls infinite-period bifur-
cation, in which the amplitude is finite while the period
diverges at the bifurcation point ¢, with the scaling of
(c — cl)=1/2. We further checked the critical behavior of

C
the period vs. ¢ — cl! in the double logarithmic plot shown
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Fig. 6: Power spectra for different NaCl concentrations c.
(a) 0g/L, (b) 1.5g/L, (c) 3g/L, (d) 10g/L, and (e) 30g/L.
Mean (black line) £ standard deviation (S.D., gray region) of
the samples is plotted. Characteristic frequency modes for the
limit-cycle oscillation are indicated by the black solid arrows.
The spectra include the harmonics for these modes.

in fig. 7(c), and confirmed that the period does not seem to
diverge. Instead, it remains constant around the bifurca-
tion point, which is also consistent with the supercritical
Hopf bifurcation. Moreover, we also estimated another
critical concentration ¢, by assuming the infinite-period
bifurcation through the critical behavior of the inversed
square period. This test resulted in ¢} = 4.87 x 1072 g/L
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Fig. 7: Critical behavior of the bifurcation with respect to
the concentration. (a) Linear fitting of squared amplitude in
(1.25g/L < ¢ < 2g/L), close to the bifurcation point. The in-
tersection estimates the Hopf bifurcation point ¢! = 1.03 g/L.
(b) Double logarithmic plot of amplitude h vs. concentration
difference ¢ — cf!. The power exponent for (1.25g/L < ¢ <
2g/L) is 0.482. (c) Double logarithmic plot of period T ws.
concentration difference ¢ — cf'. T approaches constant as ¢ ap-
proaches the Hopf bifurcation point ct. Slope is the eye guide
for the comparison with the scaling ~(¢ — ¢l')™*/2. (d) Lin-
ear fitting of 772 in (1.25g/L < ¢ < 2g/L) by assuming the
scaling for the infinite-period bifurcation ~(c — ¢L)~/2. The
intersection estimates the possible infinite-period bifurcation
point ¢, = 4.87 x 1072 g/L, which is apparently inconsistent
with fig. 5(a).

as shown in fig. 7(d), which is apparently inconsistent with
the experimentally indicated ¢. ~ 1.0g/L as observed in
the amplitude shown in fig. 5(a). While our experimen-
tal results and analyses strongly support the supercritical
Hopf bifurcation, the precise asymptotic behaviors are still
not clear due to the experimental limitations. From the
experimental observation only, it is difficult to completely
exclude the possibilities for other types of bifurcations.
From the present results, the saddle-node bifurcation of
cycles was dismissed since the bistability between the rest-
ing and oscillatory states was not observed. Further study
is needed to identify the bifurcation class of the density os-
cillator depending on the density difference.

Summary. — We investigated the transition from the
resting state to the oscillatory state depending on the den-
sity difference in a density oscillator. The limit-cycle oscil-
lation, where the upstream and downstream alternations
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occur, was observed for the higher density difference, while
no hydrodynamic flow was observed for the lower density
difference. The detailed data close to the bifurcation point
provide a critical exponent close to 1/2 and a finite period
around the bifurcation point, which is consistent with the
supercritical Hopf bifurcation. Further experimental and
theoretical studies should be performed to exactly iden-
tify the bifurcation class since the experimental results
still showed the ambiguity.

The density oscillator is an excellent experimental sys-
tem for the limit-cycle oscillation with hydrodynamic in-
stability since it can be treated from the standpoint of
physics; complex processes such as chemical reaction and
phase transition are not included, and thus only hy-
drodynamics is taken into consideration. The present
experimental study will give fundamental knowledge on
the nonlinear oscillation with hydrodynamic instability
from the viewpoint of bifurcation theory in dynamical sys-
tems, and help further studies using density oscillators.
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