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Abstract – Motivated by non-extensive statistical mechanics, in this work we consider a deformed
Schrödinger equation (DSE) for position-dependent mass (PDM) systems, whose deformed plane-
wave solutions allow to characterise a non-periodic lattice. We obtain a deformed version of the
Bloch theorem and we illustrate the formalism presented with two examples of the literature:
the Dirac and the Kronig-Penney potentials. We found that the Kronig-Penney potential offers
a modelling for a lattice with defects expressed by a non-periodicity of the potential within the
underlying non-extensive mathematical structure, which is evidenced by the displacement of the
gaps with respect to the non-deformed case. The eigenfunctions, the reduced energy bands scheme
and the density of states are affected by the deformation.

Copyright c© EPLA, 2020

Introduction. – Quantum mechanics is one of most
robust theories of modern physics. Its wide applicability
in multiple phenomena is reflected in the actual advances
in science and technology. In particular, quantum mechan-
ics allows to explain the transport phenomena of particles
in solid mediums. In this field, a remarkable contribution
was made by Felix Bloch [1] by studying the transport of
electrons in periodic potentials from the Schrödinger equa-
tion, whose result is the well-known Bloch theorem. This
theorem expresses that the wave function of the conduc-
tion electrons in a perfect crystal (i.e., when the potential
has a discrete symmetry in the position coordinates) is a
Bloch wave function satisfying the same symmetry of the
potential. However, in real systems the presence of de-
fects, impurities, thermal vibrations and other effects in
the crystal lattice makes the Bloch theorem insufficient to
describe these features. In this scenario and also in more
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complex structures, news formulations of the Bloch theo-
rem turn out to be necessary. One possibility is to consider
a position-dependent mass (PDM) (i.e., a mass continu-
ously distributed in the space as m(x̂)), that suggests the
use of a generalised Schrödinger equation (or Hamiltonian)
associated with an appropriate deformed kinetic term to
model characteristics of real solids.

Hamiltonians with a PDM have been investigated in
many areas of the physics, both experimentally and the-
oretically: semiconductors [2], quantum dots [3], many
body theory [4], super-symmetrical quantum mechan-
ics [5], quantum liquids [6], inversion potential for NH3 [7],
astrophysics [8], non-linear optics [9], relativistic quan-
tum mechanics [10], classical field theory [11], nuclear
physics [12], etc. Usually, in quantum systems with a
PDM, the mass function m(x̂) and the linear momen-
tum are non-commutating operators. A detailed analy-
sis has been performed using the mathematical structure
of the Hermitian kinetic energy operator proposed by von
Roos [2], which characterises the most of those used in the
literature [13–18].
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Recently, a q-deformed Schrödinger equation associated
with a PDM [19–30] has been explored in the context
of a generalised translation operator related to a non-
additive algebraic structure [31,32], which arose by the
non-extensive statistical mechanics [33]. The latter has a
wide range of applicability for characterising a variety of
phenomena (non-ergodicity, long-range interactions, etc.),
that justify it as an extended theory where standard sta-
tistical mechanics can be considered as a special case. The
term non-extensive is conceivable as the nonlinear grow-
ing of physical magnitudes of the system with increasing
its degrees of freedom. Nonetheless, subsequent develop-
ments in the mathematical structure of non-extensive sta-
tistical mechanics implied a subtle use of this term, for
referring to formalisms that use such structures [31,32].
In this work we follow this convention.

The letter is organised as follows: First we present a
preliminary about the deformed Schrödinger equation
(DSE) from the general kinetic term introduced by von
Roos, which is used to model a particle with an effective
position-dependent mass. Then, we introduce our model
that is a special case of the DSE and whose solutions
are a generalisation of the ordinary plane waves. These
deformed plane waves recover the usual plane waves
when the deformation parameter γ ∝ 1 − q tends to zero.
Second, we generalise the Bloch theorem for potentials
that have a deformed translational invariance, and we
obtain the exact solutions for two models employed in
the literature of solid-state physics: the Dirac potential
and the Kronig-Penney one [34]. For these models we
study the energy bands, the probability distributions and
the density of states, and we compare them with the
non-deformed case. We illustrate this with two applica-
tions: semiconductor phase transitions and continuous
distribution of defects. Last, we outline some conclusions
and give some futures possibilities to be investigated in
this scenario. In the following, we present a series of
behaviors to exemplify the differences between the usual
potentials and the quasi-periodic potentials.

Deformed Schrödinger equation for PDM sys-
tems. – In this section, we present a review of how a
non-additive formalism in quantum mechanics can be used
for describing a PDM system. The formalism is based on
a q-algebraic structure that emerges from non-extensive
statistical mechanics.

Review of the q-deformed algebra. The q-exponential
is a deformation of the ordinary exponential function,
defined by expq u ≡ [1 + (1 − q)u]1/(1−q)

+ with [u]+ ≡
max{u, 0}. The inverse function of the q-exponential is
the q-logarithm function, given by lnq u ≡ u1−q−1

1−q . In
the limit q → 1, the ordinary exponential and logarithm
functions are recovered, exp1 x = exp x and ln1 x = lnx.
These functions satisfy the properties expq(a) expq(b) =
expq(a⊕qb), expq(a)/ expq(b) = expq(a�qb), lnq(ab) =
lnq(a)⊕q lnq(b) and lnq(a/b) = lnq(a)�q lnq(b), where
the symbol ⊕q represents the q-addition operator defined

by a ⊕q b ≡ a + b + (1 − q)ab, and �q represents the
q-subtraction, a�qb ≡ a−b

1+(1−q)b (b �=
1

q−1 ) [31,32].
A q-deformed calculus has been introduced from the

deformed differential

dqu ≡ lim
u′→u

u′ �q u =
du

1 + (1 − q)u
. (1)

The definition of a deformed variable uq (also named de-
formed q-number),

uq ≡ ln[1 + (1 − q)u]
1 − q

= ln[expq(u)], (2)

implies dqu = duq, i.e., the deformed differential of an
ordinary variable u coincides with the ordinary differential
of a deformed variable uq. In this way, the q-derivative
operator is defined by

Dqf(u)≡ lim
u′→u

f(u′) − f(u)
u′�qu

= [1+(1−q)u]
df(u)

du
, (3)

being the q-exponential an eigenfunction, Dq expq u =
expq u. Recently, Weberszpil et al. [35] have shown a
connection between the deformed derivative (3) and the
Hausdorff derivative operator associated with fractional
calculus. The deformed derivative operator (3) can be
seen as the variation of the function f(u) with respect
to a nonlinear variation of the independent variable u,
i.e., Dqf(u) = df(u)/duq, where the deformed second
derivative satisfies

D2
qf(u) = [1 + (1 − q)u]

d
du

{
[1 + (1 − q)u]

df

du

}
. (4)

Non-additive quantum formalism for PDM. In the ap-
proach of quantum systems with PDM the mass and the
linear momentum are non-commuting operators, which
gives place to the ordering problem for defining the ki-
netic energy operator. There are several ways to define an
Hermitian kinetic energy operator K̂, and a general form
was proposed by von Roos [2]

K̂ =
1
4

{
[m(x̂)]−η p̂[m(x̂)]−1+η+ν p̂[m(x̂)]−ν

+[m(x̂)]−ν p̂[m(x̂)]−1+η+ν p̂[m(x̂)]−η
}

, (5)

from which some of the most prominent kinetic energy
operators in the literature can be obtained: Ben Daniel
and Duke (BDD) [13] (η = ν = 0), Gora and Williams
(GW) [14] (η = 1, ν = 0), Zhu and Kroemer (ZK) [15]
(η = ν = 1

2 ), Li and Kuhn (LK) [16] (η = 0, ν = 1
2 ).

Morrow et al. [17] have shown that the case η = ν satisfies
the conditions of continuity of the wave function at the
boundaries of a heterojunction in crystals. In particular,
Mustafa and Mazharimousavi [18] have shown that the
case η = ν = 1

4 , named ordering MM, allows the mapping
of a quantum Hamiltonian with PDM into a Hamiltonian
with constant mass by means of a point canonical trans-
formation. Considering the quantum Hamiltonian

Ĥ(x̂, p̂) =
1
2
[m(x̂)]−

1
4 p̂[m(x̂)]−

1
2 p̂[m(x̂)]−

1
4 + V (x̂), (6)
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the time-independent Schrödinger equation Ĥ|ψ〉 = E|ψ〉
in the representation {|x̂〉} is[

− h̄2

2m0

4

√
m0

m(x)
d
dx

√
m0

m(x)
d
dx

4

√
m0

m(x)
+ V (x)

]
ψ(x) =

Eψ(x), (7)

where ψ(x) is the wave function solution and m(x) = m0

recovers the standard Schrödinger equation. By defining
the mass function,

m(x) =
m0

(1 + γx)2
, (8)

with γ = (1 − q)/L and L a characteristic length, the
field ϕ(x) = (

√
1 + γx)ψ(x) obeys a time-independent de-

formed Schrödinger wave equation (DSE) [19]

− h̄2

2m0
D2

γϕ(x) + V (x)ϕ(x) = Eϕ(x), (9)

where Dγ = (1 + γx) d
dx has a structure similar to

that of q-derivative (3). Equation (9) is equivalent to a
Schrödinger-like equation for ϕ(x) expressed in terms of
the non-Hermitian quantum Hamiltonian operator Ĥγ =

1
2m0

p̂2
γ + V (x̂) and p̂γ ≡ (1 + γx̂)p̂ = −ih̄Dγ a de-

formed non-Hermitian momentum operator, which satis-
fies the commutator relation [x̂, p̂γ ] = ih̄(1̂ + γx̂). The
wave functions ϕ(x) are normalised by means of a de-
formed inner product 〈ϕ1|ϕ2〉 =

∫ xf

xi
ϕ∗

1(x)ϕ2(x)dγx where
dγx = dx/(1 + γx). So, the probability density results

ργ(x) =
ϕ∗(x)ϕ(x)

1 + γx
. (10)

Using the change of variable x → xγ = γ−1 ln(1 + γx),
eq. (9) can be recasted in the deformed space xγ as

− h̄2

2m0

d2φ(xγ)
dx2

γ

+ U(xγ)φ(xγ) = Eφ(xγ), (11)

where φ(xγ) = ϕ(x(xγ)) and U(xγ) = V (x(xγ)) are the
field and the potential in the deformed space. Thus,
the wave equation for the field ψ(x) of a system with a
PDM (8) in the standard space {|x̂〉} is mapped into an
equation for the field φ(xγ) in a deformed space {|x̂γ〉}.

The free particle solution (V (x) = 0) in the represen-
tation {|x̂〉} is, as expected, an imaginary deformed ex-
ponential ϕ(x) = A0e±ikγ−1 ln(1+γx) = A0

[
expq

(
x
L

)]±ikL,
with k =

√
2m0E/h̄. It recovers the usual exponential for

q → 1 (γ = 0). In the deformed space basis {|x̂γ〉}, the
wave function has the usual form φ(xγ) = A0e±ikxγ . As
in the usual case (γ = 0), the function ϕ(x) is also not
normalised. Also, a wave packet can be defined from the
deformed Fourier transform

ϕ(x) =
∫ +∞

−∞
Ã(k)eikγ−1 ln(1+γx)dk, (12)

where Ã(k) is the distribution function of the wave vec-
tors k. Analogously, the corresponding wave packet

in the representation of the deformed space basis
{|x̂γ〉} is φ(xγ) = ϕ(x(xγ)) = (

√
1 + γx)ψ(x(xγ)) =∫ +∞

−∞ Ã(k)eikxγ dk. From the Plancherel theorem, we have

Ã(k) =
1
2π

∫ +∞

−∞
φ(xγ)e−ikxγ dxγ

=
1
2π

∫ +∞

−∞

ϕ(x)
1 + γx

e−ikγ−1 ln(1+γx)dx

=
1
2π

∫ +∞

−∞

ψ(x)√
1 + γx

e−ikγ−1 ln(1+γx)dx. (13)

Dirac delta and Kronig-Penney potentials. – As
an application of the formalism presented in the previous
section, we obtain the solutions of the DSE (9) for the
Dirac delta potential and a combination of them that can
be used to represent the potential of a crystal lattice with
defects.

Dirac delta potential. Consider a particle with a PDM
and a energy E under the influence of a delta potential
V (x) = −αδ(x − xc), where α (area of the potential bar-
rier) is a positive constant of energy × length dimensions
and xc is the position for which the potential diverges.
The DSE (9) becomes

− h̄2

2m0
D2

γϕ(x) − αδ(x − xc)ϕ(x) = Eϕ(x). (14)

As in the standard case, the wave function satisfies the
continuity of the lateral limits, i.e., limx→y+ ϕ(x) =
limx→y− ϕ(x) ∀x, with the particularity that by integrat-
ing eq. (14) between xc − ε and xc + ε with ε → 0, we
obtain

h̄2

2m0

∫ xc+ε

xc−ε

[z(x)]2
d2ϕ(x)

dx2
dx+

h̄2γ

2m0

∫ xc+ε

xc−ε

z(x)
dϕ(x)

dx
dx =

− α

∫ xc+ε

xc−ε

δ(x − xc)ϕ(x)dx, (15)

with z(x) = 1 + γx. Applying integration by parts in the
first two integrals, we arrive at

lim
ε→0

(
dϕ(x)

dx

∣∣∣∣
xc+ε

−dϕ(x)
dx

∣∣∣∣
xc−ε

)
= −2m(xc)α

h̄2 ϕ(xc).

(16)
For bound states (E < 0) and 1 + γxc > 0, the wave
function is

ϕ(x) =

⎧⎨⎩
B0e−κγ−1 ln(1+γx), x > xc,

B0eκγ−1 ln(1+γx), −1/γ < x < xc,
0, x < −1/γ,

(17)

with B0 = 1
h̄

√
m0α

1+γxc
the normalisation constant and

E = −h̄2κ2/2m0 = −m(xc)α2/2h̄2 the energy. The wave
function ϕ(x) is zero for x < −1/γ due to the cut-off of
the q-exponential function.

For unbound states (E > 0), the reflection and trans-
mission coefficients are given respectively, by r = [1 +

2h̄2E
m(xc)α2 ]−1 and t = [1 + m(xc)α

2

2h̄2E
]−1.
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Periodic potential with a defect: deformed Bloch theo-
rem. Now we consider a one-dimensional model for a
solid in which the ions are fixed but have a defect so that
the potential is quasi-periodic and satisfies the condition
(that we called non-additive translational invariance)

V (x) = V (x + a + γxa), (18)

which expresses that V (x) is invariant under deformed
spatial translations. The argument on the right-hand
side of V can be written as a q-sum: x + a + γxa =
L[(x/L) ⊕q (a/L)]. In order to discuss this problem more
formally, we employ a deformed translation operator T̂γ(a)
defined by

T̂γ(a)ϕ(x) = ϕ(x + a + γxa), (19)

that is originally associated with the formulation of the
deformed Schrödinger equation (9) [19,20]. The point here
is that for potentials of the type (18), the operators Ĥγ

and T̂γ(a) commute. In fact, since

p̂γ T̂γ(a)ϕ(x) = −ih̄(1 + γx)
d
dx

ϕ(x + a + γxa)

= −ih̄[1 + γ(x + a + γxa)]
dϕ

dx

∣∣∣∣
x+a+γxa

= T̂γ(a)p̂γϕ(x) (20)

and

V (x̂)T̂γ(a)ϕ(x) = V (x)ϕ(x + a + γxa)
= V (x + a + γxa)ϕ(x + a + γxa)
= T̂γ(a)V (x̂)ϕ(x), (21)

so we have [Ĥγ , T̂γ(a)] = 0. Hence, the eigenfunctions
of T̂γ(a), that we called deformed Bloch states, are also
eigenfunctions of Ĥγ for quasi-periodic potentials of the
type (18). Then, the deformed Bloch states are given by

ϕ(x) = eisγ−1 ln(1+γx)us(x), (22)

where us(x) = us(x + a + γxa). Indeed,

T̂γ(a)ϕ(x) = eisγ−1 ln[1+γ(x+a+γxa)]us(x + a + γxa)

= eisγ−1 ln(1+γa)ϕ(x), (23)

where the factor eisγ−1 ln(1+γa) is the eigenvalue of the op-
erator T̂γ(a) for the deformed Bloch states (22). The usual
case ϕ(x) = eisaus(x) is recovered for γ → 0. Additionally,
it is straightforwardly verified that the deformed Bloch
states satisfy the q-inner product∫ xf

xi

ϕ∗(x)ϕ(x)
1 + γx

dx =
∫ xf

xi

[T̂γ(a)ϕ(x)]∗[T̂γ(a)ϕ(x)]
1 + γx

dx =∫ xf

xi

ϕ∗(x + a + γxa)ϕ(x + a + γxa)
1 + γx

dx. (24)

Thus, the steps (18)–(24) can be considered as the de-
formed version of the Bloch theorem in the context of
non-extensive statistical mechanics.

Deformed Dirac-Kronig-Penney potential. We con-
sider a modified version of the Dirac-Kronig-Penney
model [34] with the potential given by

V (x) = α
+∞∑

n=−∞
δ

(
x − an

1 + γan

)
, (25)

where an = γ−1[(1 + γa)n − 1] = L lnq[expn
q (a/L)] is the

position of the ions in the crystal lattice. It is straightfor-
wardly verified that the potential (25) satisfies (18). For
γa > 0 (−1 < γa < 0), the separation distance between
two consecutive crystal ions, λn = an − an−1, increases
(decreases) with n. From the properties of the Dirac delta
function, the n-th potential barrier area changes by a fac-
tor of (1+γa)n. The non-additive translational invariance
introduces physically a deformation of the lattice, that can
model a non-periodic crystal with sites localised in an ∀n
with a potential barrier area αn = α(1 + γa)n. The solu-
tion of eq. (9) in the interval 0 ≤ x ≤ a is

ϕ(x) = A sin
[
k

γ
ln(1 + γx)

]
+ B cos

[
k

γ
ln(1 + γx)

]
,

(26)
with E = h̄2k2/2m0. From the deformed Bloch functions,
the solution immediately to the left of x = 0 (i.e., in the
interval −a/(1 + γa) ≤ x ≤ 0) is

ϕ(x) = e−isaγ

{
A sin

[
k

γ
ln(1 + γx) +

k

γ
ln(1 + γa)

]
+B cos

[
k

γ
ln(1 + γx) +

k

γ
ln(1 + γa)

]}
, (27)

in which aγ = γ−1 ln(1 + γa). From the continuity of
the wave function ϕ(x) and discontinuity of the deriva-
tive dϕ(x)/dx (eq. (16)), both at x = 0, we obtain,
respectively,

B

{
eisaγ − cos

[
k

γ
ln(1 + γa)

]}
= A sin

[
k

γ
ln(1 + γa)

]
,

and{
B sin

[
k

γ
ln(1 + γa)

]
− A cos

[
k

γ
ln(1 + γa)

]}
keisaγ

+ kA =
2m0α

h̄2 B. (28)

Solving the above equations we found the dispersion
relationship

cos
[

s

γ
ln(1 + γa)

]
= cos

[
k

γ
ln(1 + γa)

]
+

(
β

ka

)
sin

[
k

γ
ln(1 + γa)

]
, (29)

where β = m0αa/h̄2 is the scattering power. Con-
sidering the deformed space, eq. (29) can be rewritten
more compactly as cos(saγ) = cos(kaγ) + βγ

sin(kaγ)
kaγ

, with
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Fig. 1: (a) Function Fγ(ka) = cos[kγ−1 ln(1 + γa)] +
(β/ka) sin[kγ−1 ln(1 + γa)] for the usual case γ = 0 (dashed
line), γ = 0.2 (dash-dotted line) and γ = 0.5 (solid line), with
a standard scattering power β = m0αa/h̄2 = 3π/2. (b) Re-
duced scheme of the energy bands and the gaps.

βγ = aγ

a β. Similar to the standard case, the possible wave
vectors for bound states, and therefore the allowed en-
ergy bands, satisfy the condition −1 ≤ Fγ(ka) ≤ 1 with
Fγ(ka) = cos[kγ−1 ln(1+γa)]+(β/ka) sin[kγ−1 ln(1+γa)].
The limit β → ∞ recovers the problem of a particle con-
fined in a one-dimensional box where the wave vectors are
kn = nπ/aγ , and the energies are En = h̄2π2n2/2m0a

2
γ

as obtained in ref. [19]. Figure 1(a) shows the function
Fγ(ka) for β = 3π/2 and different values of the deforma-
tion parameter γa. From the eq. (22) and the deformed
periodic boundary condition ϕ(x + aN + γxaN ) = ϕ(x),
with N � 1, we obtain eN isγ−1 ln(1+γa) = 1. Thereby, s =
2πj/Naγ with j = 0, 1, 2, . . . , N − 1. In this sense, there
are N possible states for each energy band. The effect of
the deformation parameter γ on the allowed energies and
band energy gaps are illustrated in table 1. Figure 1(b)
shows the reduced scheme of the energy spectrum obtained
from the numerical solution of cos(2πj/N) = Fγ(ka) for
different values of γa. It can be seen that the allowed en-
ergy levels and gaps increase as γa increases. From the
definition of the effective mass, 1/m∗

eff. = 1/h̄2(∂2E/∂s2),
we see that m∗

eff. increases when γa decreases.
By means of eq. (28), we can rewrite the wave function

in the form

ϕ(x) = C

{
sin

[
k

γ
ln(1 + γx)

]
− e−isγ−1 ln(1+γa)

× sin
[
k

γ
ln

(
1 + γx

1 + γa

)]}
, (30)

in which C is a normalisation constant. Considering the
probability density (10) and the normalisation condition

limN→∞
∫ aN

0
ργ(x)dx = 1 in the limit of infinite sites,

one obtains from the software Mathematica [36] N |C|2 =
{aγ [1 − cos(saγ) cos(kaγ)]}−1, and then,

Nργ(x) =
γ

ln(1 + γa)[1 − cos(saγ) cos(kaγ)]
1

1 + γx

×
{

sin2

[
k

γ
ln(1+γx)

]
+ sin2

[
k

γ
ln

(
1 + γx

1 + γa

)]
−2 cos(saγ) sin

[
k

γ
ln(1 + γx)

]
× sin

[
k

γ
ln

(
1 + γx

1 + γa

)]}
. (31)

In fig. 2 we show the probability density functions in the
cell 0 < x < a for different values of γa at the top and bot-
tom of the first three energy bands (i.e., ka = π, 2π, 3π)
with β = 3π/2. The usual case γa = 0 is shown for com-
parison. For γ �= 0 it is observed that the points x = 0
and x = a are no longer nodes. The density of states
g(E) = 2

π
∂k
∂E for the dispersion relation (29) becomes

g(E) =
1

aε0

√
ε0

E

1
sin(saγ)

{sin(θγ(E))

+βγ

[
sin(θγ(E))

θ2
γ(E)

− cos(θγ(E))
θγ(E)

]}
, (32)

with θγ(E) = π
aγ

a

√
E
ε0

and ε0 = h2

8m0a2 . Figure 3 shows
the density of states for the first energy band and for the
values of γa = 0, 0.2, 0.5. We note that the distribution
shifts to the right as γ increases, similar to the effect of an
electric field on a Fermi surface for free electrons.

Physical relevance: Phase transitions and defects.
From fig. 1 and table 1 we see that the deformed Dirac-
Kronig-Penney potential presents an energy band gap
corresponding to a semiconductor, where the deforma-
tion parameter γ produces a displacement (5th and 6th
columns) and a width variation (2th–4th columns) of the
energy gaps, but maintaining the nature of a direct band
gap. Table 1 expresses a transition from a semiconductor,
having an increasing band gap with γa from 0 to 0.5, into
other more insulators. Putting values, if a is of the order
of the Bohr radio and m0 the electron mass we have that
h2/8m0a

2 ≈ 1.342 eV, so the first bands gaps (5th column
of table 1) adjust well with the ones corresponding to cop-
per cadmium (1.342 × 1.250 ≈ 1.7 eV) and zinc telluride
(1.342 × 1.657 ≈ 2.25 eV) at room temperature.

A non-uniform potential strength allows to model a lat-
tice provided with different atomic potentials, as was re-
ported in a generalised Dirac-Kronig-Penney model [37],
and a non-uniform distribution of sites characterises a
lattice with defects. These two joint effects are rele-
vant in continuous distribution of defects when the lat-
tice spacing goes to zero, requiring potential strengths of
arbitrarily small magnitude. This is the case of real crys-
talline solids where the density of defects is very high,
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Table 1: The allowed energies E and the first two band energy gaps (both in units of h2/8m0a
2) of a PDM particle for different

values of γa and for a scattering power β = 3π/2.

γa Range of E in band 1 Range of E in band 2 Range of E in band 3 First band gap Second band gap
0 0.514 to 1.000 2.250 to 4.000 5.571 to 9.000 1.250 1.571

0.2 0.588 to 1.203 2.621 to 4.812 6.572 to 10.827 1.418 1.760
0.5 0.696 to 1.520 3.177 to 6.081 8.105 to 13.682 1.657 2.024

Fig. 2: (a) Dimensionless probability distribution functions (31) for (a) ka = π, (b) 2π and (c) 3π and the deformation
parameters γa = 0 (usual case), 0.2 and 0.5 with a scattering power β = 3π/2.

Fig. 3: Density of states for the first energy band and values
of the deformation parameter γa = 0, 0.2 and 0.5.

with 108–1010 mm/mm3 number of dislocations. From the
modified Dirac delta potential (25) this situation can be
modeled for γa < 0 and for sites an with n > 0. Let
us consider γa = −0.5 (γ < 0). Then, the strength
potential satisfies α(0.5)n → 0 for n → ∞ while the sites
an = (0.5)n−1

γ → − 1
γ > 0 for n → ∞, that correspond

to a lattice with defects accumulated around x = − 1
γ

for n → ∞. Within the range n = 108–1010 of number
of sites the relative lattice spacing λnγ results between
(0.5)10

10
–(0.5)10

7
, thus representing a continuous density

of defects.

Conclusions. – From a generalised version of the
Schrödinger equation for PDM systems inspired in non-
exstensive statistics, we have addressed the problem of
one-dimensional periodic potentials in a deformed lat-
tice with non-periodically localised sites. We have ob-
tained a deformed version of the Bloch theorem, whose
deformed Bloch states satisfy a non-additive translational
invariance that is compatible with the deformed lattice
assumed. In all the cases the standard definitions and

concepts are recovered when the deformation goes to zero
(γ → 0).

We have illustrated the formalism presented with two
examples: the Dirac delta and the Kroning-Penney po-
tentials. For the Dirac potential we have obtained the
deformed eigenstates along with the reflection and trans-
mission coefficients. In the case of the Kronig-Penney
model we have considered a modified version, correspond-
ing to a deformed lattice having a non-uniform neighbour
distance.

We found an asymmetry of the probability distribution
functions of the eigenfunctions (see fig. 2), while the re-
duced scheme of the energy bands presents a displacement
and an increase in the band gaps (fig. 1(b) and table 1),
that can be interpreted as a phase transition to a more
insulator behavior. The density of states exhibits a shift
to the right as a consequence of the position-dependent
mass chosen m(x) = m0/(1 + γx)2. Complementarily, we
also have discussed the representation of a lattice with a
continuous distribution of defects and potential strengths
turning out to be arbitrarily small, being both effects con-
trolled by the dimensionless deformation parameter γa.
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Appendix: deformed Kronig-Penney model
in reciprocal lattice space. – The dispersion ra-
tio for the Kronig-Penney model can be obtained
from the reciprocal lattice space. Considering the
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field ϕ(x) and the potential expressed in a deformed
Fourier series analogous to the corresponding trans-
form (12) V (x) =

∑
Gn

Ṽ (Gn)eiGnγ−1 ln(1+γx), ϕ(x) =∑
s Ã(s)eisγ−1 ln(1+γx) and replacing in (9), we obtain

(ζs − E)Ã(s) +
∑
Gn

Ṽ (Gn)Ã(s − Gn) = 0, (A.1)

where ζs = h̄2s2/2m0. Equation (A.1) has the same form
as the usual case due to the non-additive periodicity of
the potential, while (eq. (18)) the deformed reciprocal
lattice vectors for the one-dimensional solid are given by
Gn = 2πn/aγ with n integer and aγ the new lattice param-
eter. The coefficients of the series for potential (25) are

Ṽ (Gn) =
α

aγ

+∞∑
n=−∞

∫ x′+a+γx′a

x′
δ

(
x − an

1 + γan

)
×e−iGnγ−1 ln(1+γx)dγx, (A.2)

with x′ an arbitrary position, that is equals to

Ṽ (Gn) =
α

aγ

+∞∑
n=−∞

∫ x′
γ+aγ

x′
γ

δ

(
eγxγ − (1 + γan)

γ(1 + γan)

)
×e−iGnxγ dxγ

=
α

aγ
, (A.3)

where x′
γ = γ−1 ln(1 + γx′), and where we have used

δ(f(u)) =
∑

u0

δ(u−u0)
|f ′(u0)| (f(u0) = 0). Consequently,

eq. (A.1) for Dirac-Kronig-Penney potential becomes

(ζs − E)Ã(s) +
∑
Gn

α

aγ
Ã(s − Gn) = 0. (A.4)

Following the same path as in ref. [38], it is immediate to
show that (A.4) leads to the dispersion relation

cos(saγ) = cos(kaγ) +
m0α

2h̄2k
sin(kaγ), (A.5)

with E = h̄2k2/2m0 and β = m0αa/2h̄2 is the scattering
power, in accordance with the Dirac-Kronig-Penney
potential, differing from eq. (29) by a factor of 1

2 .
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