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Abstract
An incompressible, MHD, bioconvective flow of Maxwell fluid is studied. The rotating isolated
disk caused the fluid motion. The disk also stretches with constant rate along radial direction.
Cattaneo–Christov energy and mass species flux models are adopted. Buongiorno model of
nanofluid is executed in the constitutive equations along with gyrotactic microorganisms. The
transformation of Von-Karman assist to obtained nonlinear system of ordinary differential
equations. The final controlled equations are resolved by adopting Runge–Kutta–Fehlberg
numerical procedure. Graphical illustrations of results are accounted. It is percieved that velocity
field is reduced by velocity ratio parameter. themphoretic, Brownian motion and thermal
relaxation time parameters enhanced thermal fields respectively. Motile organisms rate is
declined due to bioconvection Peclet number.

Keywords: rotating disk, Maxwell nanofluid, gyrotactic microorganisms, Cattaneo–Christov
theories, magnetohydrodynamic
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1. Introduction

The non-Newtonian liquid flows across a rotating disk is
very prominent and emerging area of research in the recent
days due a wide applications of industrial and mechanical
engineering, which include production of petroleum pro-
cesses, production of polymer sheet food processing in
advanced technology, electric and turbo power generating
system analysis. Based on the above mentioned inspired
applications, the mathematical flow in a rotating disk was
originally studied by Karman [1]. After his pioneer
contribution, the hydro-dynamical liquid flow in a two-
dimensional (2D) rotational disk has been discussed
numerically by Cochran [2]. Thermal analysis due to a
rotational disk was addressed by Millsaps and Pohlhausen
[3]. Acrivos et al [4] have described the governing flow

equations on the non-Newtonianfluid across a rotating disk
in 1960. The 2D rotating disk flow in a non-Newtonian
liquid was studied by Jain [5]. He employed the second-
ordervelocity strain–stress relations in classical hydro-
dynamics. The power-law liquid flow analysis induced by a
rotating disk was reported by Andersson et al [6]. They
utilized the similarity transformations for simplifying the
governing modeled equations. Attia [7] considered the heat
transfer on non-Newtonian flow induced by disk rotation. He
obtained the exact solutions for velocity and temperature.
The heat transfer and numerical simulation on Burgers’
liquid along an eccentric rotating stretchable disks was
emphasized by Siddiqui et al [8]. Tabassum Mustafa [9]
have considered the numerical heat transfer flow on non-
Newtonian Reiner-Rivlin fluid. Exploration of variable
thermal conductivity on swirling hydrodynamic heat flow in
Maxwell fluid induced by two rotating disks have been
addressed very recently by Ahmed et al [10]. They
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emphasized that the energy profile is increased for the
magnetic field parameter. Some researches induced by disk
rotation have been reported in [11–15].

In recent era, multiple efforts are made to execute the
real behavior of nanofluids. The regular heat transportation
fluids like water, ethanediol and engine oil have weaker
abilities of energy transport because of their lesser thermal
conductivity. The insertion of higher thermal conductive
metal-particles in regular energy transport fluid may
improve the thermal efficiency of the resulting fluid. The
term ‘Nanofluid’ has been recommended by Choi [16].
Thermal conductivity is the most outstanding feature of
nanofluid which makes its more effective and suitable for
the present technological and industrial processes [17].
Turkyilmazoglu [18] executed the energy transport phe-
nonmenon of nanofluid flow generated by disk rotation.
Hayat et al [19] studied the thermophoresis and Brownian
motion impacts in second grade fluid flow subject to
rotating disk. Hayat et al [20] analyze the statistical
declartion for two phase radiative flow confined throgh
stretchable disks and computed probable error. They scru-
tinazed that at disks surfaces, the drag force is less aganist
rotational parameter. Analytical approach using HAM is
adopted to discussed thermal features of third grade nano-
fluid flow via stretchable disk by Hayat et al [21]. They
contributed to the fact that concentration as well as temp-
erature enhanced with Brownian motion and velocity is
reduced by material parameters. Ahmad et al [22] presented
the entropy analysis of viscous squeezign flow of two sheets
by considering five distinct configurations of nanoparticles.
They found that nanoparticles volume fraction enhanced
entropy generation. Three dimensional (3D) flow of
hydromagnetic nanofluid examined by Aziz et al [23]. They
obtained the solution with the aid of ND solve technique
with Matlab software. It is worthy noticed that as the
boosting values of thermophoresis exhibits uniform trend in
the both concentration and temperature. Mahanthesh et al
[24] numerically scrutinized thermal attributes of distinct
shapes nanoparticles in radiative viscous fluid flow caused
by a rotating disk. Sheikholeslami and Shehzad [25]
estimated the nanofluid characteristics in convective flow
through porous enclosure using CVFEM technique. RK-4
method was adopted to discuss the hall current attributes of
hybrid nanofluid flow through spinning isolated disk by
Acharya et al [26]. It is established that the Hall influence
escalated the radial velocity and declines temperature field.
Mehmood et al [27] modeled the combined heat and species
transfer analysis over a rotating wavy disk. Stagnation
Maxwell nanoliquid flow has been investigated by Jawad
et al [28].

The energy transfer mechanism was reported by Fourier
law [29] of heat conduction theory. The heat transport
mechanism having a plenty number of engineering applica-
tions which include like the nuclear-reactor cooling, heat
conduction in production systems, drug delivery and targeting

in medical treatment. The Cattaneo–Christov (C–C) heat flux
on Jeffrey fluid flow has been explored by Hayat et al [30].
Scrutinization of C–C heat diffusion flow over thicked surface
has been made by Hayat et al [31]. Mustafa [32] analyzed the
energy transfer in Maxwell fluid under C–C heat diffusion
formula. Reddy et al [33, 34] have employed this theory on
thermal radiative flows of Oldroyd-B fluid over wedge/cone.
Abbasi and Shehzad [35] discussed the energy transfer on 3D
Maxwell fluid by employing C–C heat flux theory. Shehzad
et al [36] demonstrated the C–C heat flux model for rate type
flows of non-Newtonian materials.

Nanofluids have upgraded thermophysical characteristics
such as thermal diffusivity and thermal conductivity which
are important in numerous industrial applications include
transportation, nuclear reactor, thermosyphons, pulsating
heated pipes and biomedicine. Moreover nanoparticles higher
concentration that produces larger thermal resistance due to
which dynamic viscosity increases. C–C double diffusion
theories are utilized by considering more features to heat and
mass transfer by adding heat and mass flux relaxation rate in
constitutive equations, which overcome the limitations of
Fourier’s and Fick’s laws. With all physical aspects and the
above literature analysis discloses that no work occurs on of
bioconvection of Maxwell nanofluid under the influence of
the C–C heat flux and double diffusion. Buongiorno model of
nanofluid is executed in the constitutive equations. The
transformation of Von-Karman assist to obtained non-linear
system of ordinary differential equations and obtained the
numerical solutions by employing Runge–Kutta–Fehlberg
(RKF) numerical approach. Outcomes are represented via
plots and tables for the physical flow parameters of concern.

2. Problem formulation

A mathematical model of incompressible bioconvective
Maxwell nanofluid flow through rotating stretchable disk with

Figure 1. Flow configuration.
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double diffusive C–C theories and magnetic field effects is
considered. The isolated disk rotates with angular speed W
and main reason to generate the fluid motion and stretches
along radial direction with constant rate c. Cylindrical polar

co-ordinates are the best choice considering the geometrical
model. Components of velocity u v w, ,( ) are taken in
increasing directions of qr z, ,( ) (see figure 1). Considering
the assumption of axisymmetric flow, therefore derivatives

Figure 2. Behavior of M on F.

Figure 3. Behavior of M on G.
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along tangential components are omitted. Electric field is
overlooked due to less Reynolds number. Magnetic field
having uniform potency is applied along axial direction. The
disk surface temperature Tw is larger than ambient fluid

temperature ¥T . The concentration at surface of disk is Cw

while ambient fluid volume fraction of nanoparticles is ¥C .
Microorganisms reference concentration is Nw ambient
microorganisms concentration is represents by ¥N .

Figure 4. Behavior of g1 on F.

Figure 5. Behavior of g1 on G.
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Figure 6. Behavior of Pr on q.

Figure 7. Behavior of Nt on q.
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Figure 8. Behavior of Nb on q.

Figure 9. Behavior of g2 on q.
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Figure 10. Behavior of Le on f.

Figure 11. Behavior of Nb on f.
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Figure 12. Behavior of Nt on f.

Figure 13. Impact of Lb on y.

8

Phys. Scr. 95 (2020) 045207 S A Shehzad et al



Figure 14. Behavior of Peb on y.

Figure 15. Behavior of Ng on y.
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Governing equations in framework of above assumptions
are [10, 37]:
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Figure 16. Stream lines for =M 1.0.
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Figure 17. Stream lines for =M 3.0.
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1 stands for magnetic parameter, Deborah number,
Prandtl number, thermophoretic constraint, Brownian move-
ment factor, thermal relaxation time constraint, concentration
relaxation time constraint, Lewis number, bio-convected
Lewis number, bio-convected Peclet number, micro-organ-
isms concentration difference factor and the stretching
constraint.

3. Numerical procedure

The finalized equations (10)–(15) under appropriate condi-
tions (16) are solved via RKF method with shooting mech-
anism to acquired numerical solutions. Equations (10)–(15)
are of order second in q fF G H, , , , and y, changed into
first order under following procedure.
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To resolve the equations (18)–(23), intially, we guess the
values of f 2 ,( ) f 4 ,( ) f 5 ,( ) f 7 ,( ) f 9 ,( ) f 11 ,( ) which are
absent at initial conditions. After attaining required initial
conditions, the equations (18)–(23) are integrated via RKF
numerical scheme. The step length in successive iterations is
taken 0.001.

4. Graphical description

The impact of notable pertinent flow parameters such as
magnetic parameter, velocity ratio parameter M, thermo-
phoretic constraint Nt, Prandtl number Pr, Brownian motion
Nb, thermal relaxation time g ,2 concentration relaxation time
g ,2 Lewis number Le, bioconvection Lewis number L ,b bio-
convection Peclet number P ,eb microorganisms concentration
difference Ng and the stretching parameter W1 on the flow,

Figure 19. Stream lines for W = 0.1.
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heat, mass and motile microorganism profiles are illustrated
through figures 2–21.

Figures 2 and 3 exhibit that the magnitude of the velocity
profiles F and G decreases for boosting values of magnetic
constraint M in radial and azimuthal directions, respectively.
The exhibition of Lorentz force opposes flow movement in
radial direction, therefore the flow velocity reduces due to
extra resistance and hence a reduction in radial velocity field
is noticed (see figure 2). As the magnetic field is applied in
normal direction to rotating disk therefore it resists flow
velocity in tangential direction. As a consequence Lorentz
force slows down azimuthal velocity field with the increase in
magnetic parameter as pictured in figure 3. The velocity
curves exponentially decay to zero at short distance from the
surface when M is raised. Figures 4 and 5 show the nature of
Deborah number g1 on F G, . For escalating values of g1
velocity profiles decline. In fact, the relaxation time factor is
improved by the increasing Deborah number that results in
weaker velocities curves. Figure 6 signifies the Prandtl
number importance. As Prandtl number contributes to mat-
erial property which differs from one fluid to another. Smaller
thermal conductivity with larger viscosity impart to higher
Prandtl number. Therefore, the increased in Pr corresponds to
reduction in thermal curves.

Figure 7 exhibits that the curves of temperature field
enhances with increment in Nt values. The similar phenom-
enon is attained against Brownian motion parameter which is
shown in figure 8. Significance of thermal field distribution
for distinct g2 values is predicted in figure 9. It is noticed as
the thermal profile is a depreciating activity for rising g .2 In
addition to that the thickness of the thermal boundary layer is
declined generally for modified g .2 The particles of the object
need long time to shift heat to its neighborhood particles.
Especially, we can declare for large values of g ,2 material
represents a non-conducting attitude that is an important in
minimization of thermal profile.

The depiction of concentration profiles for bigger Lewis
number values are exhibited through figure 10. As Lewis
number defines momentum and mass diffusivities ratio so
whenever convection of mass diffusion and momentum pro-
cesses exist, Lewis number is used to characterize the fluid
flows. It associates hydrodynamic relative thickness layer and
boundary layer of mass transportation. Raising the values of
Le elucidates strong molecular movements which ultimately
enhance the fluid temperature. Fluid with higher Lewis
number contains weaker coefficient of Brownian-diffusion
which presents particles to diffuse enormously into fluid. Due
to this reason, shorter penetration depth of temperature exists

Figure 20. Stream lines for g = 0.1.1
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in case of larger Lewis number. It illustrates that the con-
centration profile declines as the Lewis number increases.

The variation in concentration profiles with the Brownian
motion parameter is elucidated in figure 11. Reduction in
concentration profiles is noticed with the growing values of
Nb. Thermophoresis parameter intensifies the concentration
profile declines. This nature is clearly shown in figure 12.
Figures 13–15 report that the escalating values of Peclet
number P ,eb and bio convection Lewis number Lb create
reduction in motile microorganism and this trend is reverse
for the microorganism concentration difference parameter N .g

Patterns which relate to stream lines are sketched via
figures 16–21 in order to have clear picture of flow
phenomenon. Increased variations in WM, ,1 and g1 resulted
into definite curve that obtained by tracing the fluid particle
along x-direction under the existence of surface. Furthermore,
it is clear that the there is a retardation in the flow pattern. For
the validity of our numerical procedure, a comparison of

numerical values in limiting scenario is presented through
table 1. It is observed that the numerical values have excellent
comparison with the literature work [38].

5. Conclusions

Maxwell fluid flow is accounted subject to stretchable rotating
disk. Nanofluids Buongiorno model with C–C theories are
examined through thermal and concentration constitutive
equations. Gyrotactic bio convection features are also incor-
porated in flow phenomenon. Results are gathered via RKF
technique. Following major points are noticed:

• Both the velocity ratio and magnetic parameters declined
velocity profiles F and G.

• Thermal field is reduced by Prandtl number while
enhanced via thermal relaxation time parameter.

Figure 21. Stream lines for g = 0.5.1

Table 1. Numerical values of ¢ - ¢F G0 , 0( ) ( ) and q- ¢ 0( ) for =Pr 0.71 and g g= = = = W =Nt Nb 0.1 2 1

M ¢F 0( ) [38] Present - ¢G 0( ) [38] Present q- ¢ 0( ) [38] Present

0 0.510186 0.510184 0.61589 0.61586 0.32760 0.32761
1 0.309237 0.309236 1.06907 1.06906 0.14667 0.14669
4 0.165701 0.165698 2.01027 2.01024 0.02906 0.02909
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• Nb and Nt have similar impacts on thermal curves
however concentration field is affected in opposite ways.

• Bioconvection Lewis and Peclet numbers results into
decline of motile organisms rate while the organisms rate
is enhanced by Ng.

• Flow pattern signifies retardation along x-direction due by
strengthen the stretching parameter.
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