
Rational solutions and their interaction
solutions for the (2+1)-dimensional
dispersive long wave equation

Hong-Yi Zhang and Yu-Feng Zhang

School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People’s
Republic of China

E-mail: zhangyfcumt@163.com

Received 3 October 2019, revised 20 November 2019
Accepted for publication 28 November 2019
Published 12 February 2020

Abstract
The Hirota bilinear form of the (2+1)-dimensional dispersive long wave equation by the
truncated painlevé series in this paper is obtained. Meanwhile, a pair of quartic-linear forms are
also constructed by an appropriate selection of seed solution to explore the lump solutions of the
(2+1)-dimensional dispersive long wave equation. Then some novel interaction solutions by
combining quadratic functions and exponential functions are yielded. Finally, in order to better
illustrate the features of the results, we draw the three-dimensional and two-dimensional figures.

Keywords: (2+1)-dimensional dispersive long wave equation, truncated painlevé series, rational
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1. Introduction

Seeking for exact solutions of NLPDEs plays an increasing
significant part in the field of nonlinear science, such as
dynamics, control processes, marine engineering, and so on
[1–15]. And that some effective methods had been proposed to
search the exact solutions of NLPDEs. For example, the Lie
group method [16], the inverse scattering method [17], the
Hirota bilinear method [18], etc [19–24]. In recent years, the
lump solutions, the lump-type solutions and their interaction
solutions have been used to explain various nonlinear phe-
nomena, such as the rogue wave phenomena. In soliton theory,
rogue waves not only have powerful and strange energy, but
also generate tremendous destructive power [25]. Moreover,
rogue wave is a special kind of lump solutions, it is rationally
localized in all directions of the space [26]. Therefore the lump
solutions catch the attention of many scholars, and that the
lump solutions have been investigated in fluid, plasma, and
optic media [27–32]. Especially, the Darboux transformation
method and the Hirota bilinear method are two directly pow-
erful approaches to construction of lump solutions [33–38]. In
addition, the study of interaction solutions contributes to some
problems for the exact solutions of NLPDEs.

In this article, we will analyze the (2+1)-dimensional
dispersive long wave equation [39]
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where u and η are the wave amplitude functions, x, y, t are
independent variables. Equation (1.1) had been better studied
in the last years, such as Boiti et al [40] constructed a com-
patibility by using a weak Lax pair, Tang and Lou [39]
obtained plentiful related structures. Paquin and Winternitz
[41] showed that the symmetry algebra of this considered
equation is infinite-dimensional and possesses a Kac–Moody-
Virasoro structure. Meanwhile, by using symmetry algebra
and the classical theoretical analysis method, the special
similarity solutions were found in [41]. Moreover, the more
general symmetry algebra and w¥ symmetry algebra, were
constructed in paper [42].

The main purpose of the paper is to obtain the abundant
localized excitations by using the Painlevé-Bäcklund transfor-
mations and multi-linear variable separation methods. Besides,
multiple soliton solutions and fusion interaction phenomena
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under the help of Bäcklund transformations method and the
Hirota bilinear method are derived.

2. Lump solutions

Applying the painlevé analysis method, the Painlevé-Bäck-
lund transformation [43, 44] of the (2+1)-dimensional dis-
persive long wave equation is written as follows
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where f is an arbitrary function of variable x, y and t, the
functions u1 and η2 are solutions of equation (1.1). Sub-
stituting equation (2.1) into (1.1), then balancing the coeffi-
cient f−4, we derive

( )f h f f= = -u 2 , 2 . 2.2x x y0 0

Next balancing the coefficient f−3, we have
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Besides, substituting equations (2.2) and (2.3) into the trans-
formation (2.1) and letting the seed solution u1=η2=0, the
Hirota bilinear form of equation (1.1) can be found
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In order to obtain the lump solutions of equation (1.1), we
assume a quadratic function for f
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Substituting equation (2.5) into (2.4) and collecting the dif-
ferent powers of x, y and t, we derive the solutions of the
parameters

( )= = = =a a or a a0, 0, 0, 0. 2.61 5 2 6

Therefore, through the above standard bilinear form, we fail to
obtain any non-trivial lump solution.

3. Rational solutions of the (2+1)-dimensional
dispersive long wave equation

In this section, we choose different seed solutions for u1 and
η1 to obtain non-trivial quadratic function solutions. Firstly,
we assume that

( )
f
f

f f
f

h
f f

f

f

f
= -

+
=

-
+u

2
,

2 2
, 3.1x t xx

x

x y xy

2

with the seed solutions
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Substituting equation (3.1) into (1.1), we get the following
two quartic-linear equations
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We construct a solution f to satisfy equations (3.3) and (3.4)
simultaneously. In order to derive the lump solutions of
equation (1.1), we define a quadratic function solution for
equations (3.3) and (3.4) as
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where ai(1�i�9) are parameters to be determined. Sub-
stituting equation (3.5) into equations (3.3) and (3.4), then
collecting the coefficients of different powers of x, y, and t
and setting them to zero. We can get the relationship among
the parameters which satisfy equations (3.3) and (3.4)
simultaneously. The parameters satisfy
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where ai, (i=1, 2, 3, 4, 7, 8, 9) are arbitrary constants and
+ + ¹a a a a a a a3 2 0,1

2
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2 a9>0 to guarantee the defi-
nition and positiveness of the resulting solutions. Substituting
parameters (3.6) into equation (3.5), we can obtain the posi-
tive quadratic function solution as following
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Under the transformation (3.1), we obtain the rational solu-
tions of equations (3.3) and (3.4) as follows
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h=a5x+a6y+a7t+a8. In order to better describe this
type of rational solutions, we take the parameters a1=3,
a3=2, a4=1, a5=3, a6=1, a7=1, a8=2, a9=2. The
following 3D-, 2D- plots in figures 1 and 2are presented to
illustrate the solutions (3.8). This type of solution u is
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different from general lump solutions, the traits of these
rational solutions distinguish ones of lumps in the scheme of
the second section [45–47].

4. Interaction between lumps and solitons

4.1. Between lumps and one line-soliton

In this sub-section, via the combine of the quadratic function
and other type functions, we construct interaction solutions
between lumps and several types of solitons. To obtain
interaction solutions between lumps and one line-soliton, we
presume an interaction solution as a sum of a quadratic
function and an exponential function
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where ki (i=1, 2,···,5) are five undetermined real para-
meters. Substituting equation (4.1) into equations (3.3) and

(3.4) and collecting the same power terms of x, y and t, then
we obtain the following three classes parameters values
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where ai, (i=1, 2, 3, 4, 5, 8, 9) are arbitrary constants, and
¹ > >a a a k0, 0, 01 5 9 1 to guarantee that the corresponding

solution f is positive, analytical and localization in all
directions in the (x, y)-plane. Then substituting equation (4.1)
into equations (3.1) and (4.2), we get a type of interaction
solutions of equation (1.1)
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Figure 1. Three-dimensional diagram (a), two-dimensional density plot (b) and two-dimensional contour plot (c) of solution u with a1=3,
a3=2, a4=1, a5=3, a6=1, a7=1, a8=2, a9=2 when t=0 in the (x, y) plane.

Figure 2. Three-dimensional diagram (a), two-dimensional density plots (b) and two-dimensional contour plot (c) of solution η with a1=3,
a3=2, a4=1, a5=3, a6=1, a7=1, a8=2, a9=2 when t=0 in the (x, y) plane.

3

Phys. Scr. 95 (2020) 045208 H-Y Zhang and Y-F Zhang



( )

( )

f = + + +
= + + +

= - + +

= +

g h a k f
g a x a y a t a

h a x
a a

a
y

a a

a
t a

f k y k

exp ,
,

,

. 4.5

2 2
9 1

1 2 3 4

5
1 2

5

3 5

1
8

3 5

The dynamical characters of solutions (4.3) and (4.4) are
illustrated by figures 3, 4.

Case II.

( )

( )

= = -
+ +
+ +

= =

a a a
a a a a a a a a

a a a a a a a
k k

,
2 3

3 2
,

0, 0, 4.6

i i 2
6 1

2
7 1 3 5 5

2
7

1
2

3 1 5 7 3 5
2

2 4

where ai, (i=1, 3, 4, 5, 6, 7, 8, 9) are arbitrary constants,
according to analytical method of the Case I, we can get

+ + ¹ > >a a a a a a a a k3 2 0, 0, 01
2
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9 1 . Substituting
equation (4.1) into equations (4.6) and (3.1), we obtain
another type of interaction solutions between lumps and one
line-soliton of equation (1.1)

( )

=
+

+ + +
-

+ + +
+

u
a g a h

g h a k e

a g a h a a

a g a h

4 4 2 2 2 2

2 2
,

4.7

f
1 5

2 2
9 1

3 7 1
2

5
2

1 5

Figure 3. Three-dimensional diagram (a), two-dimensional density plot (b) and two-dimensional contour plot (c) of solution u with a1=1,
a2=1, a3=1, a4=1, a5=1, a8=1, a9=3, k1=1, k3=1, k5=2 when t=0 in the (x, y)-plane.

Figure 4. Three-dimensional diagram (a), two-dimensional density plot (b) and two-dimensional contour plot (c) of solution η with a1=1,
a2=1, a3=1, a4=1, a5=1, a8=1, a9=3, k1=1, k3=1, k5=2 when t=0 in the (x, y)-plane.
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We can derive dynamical characters of solutions (4.7)
and (4.8) by figures 5, 6.

Case III.
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where ai, (i=1, 2, 3, 4, 5, 8, 9) are arbitrary constants,
according to similar analysis of the Case I, we have a1a5¹0,
a9>0, k1>0. Substituting equation (4.1) into equations (4.10)
and (3.1), we obtain the third type of interaction solutions

between lumps and one line-soliton of equation (1.1)
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Figure 5. Three-dimensional diagram (a), two-dimensional density plot (b) and two-dimensional contour plot (c) of solution u with a1=1,
a3=1, a4=1, a5=2, a6=1, a7=2, a8=1, a9=3, k1=1, k3=1, k5=2, when t=0 in the (x, y)-plane.

Figure 6. Three-dimensional diagram (a), two-dimensional density plot (b) and two-dimensional contour plot (c) of solution η with a1=1,
a3=1, a4=1, a5=2, a6=1, a7=2, a8=1, a9=3, k1=1, k3=1, k5=2, when t=0 in the (x, y)-plane.
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Through the above analysis, we know that the dynamics of
interaction solutions are partly different with different parameters.

4.2. Between lumps and a pair of line solitons

In this sub-section, we apply a quadratic function with two
exponential functions to construct interaction solutions
between lumps and a two-stripe solitary
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Substituting equation (4.14) into equations (3.3) and (3.4)
collecting the coefficients of x, y, t. Then letting each terms to
zero, we get a type of solution of the parameters
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where ai, (i=1, 2, 4, 5, 7, 8, 9) are arbitrary constants,
similar to the above, ¹ >a a0, 01 9 . Substituting equations
(4.15) and (4.14) into (3.1), we can obtain the interaction
solutions
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Figure 7. Three-dimensional diagram (a) and two-dimensional density plot (b) of solution u with a1=1, a2=1, a4=1, a5=3, a7=1,
a8=1, a9=2, k1=1, k3=1, k5=2, k6=1. when t=0, in the (x, y)-plane.

Figure 8. Three-dimensional diagram (a) and two-dimensional density plot (b) of solution η with a1=1, a2=1, a4=1, a5=3, a7=1,
a8=1, a9=2, k1=1, k3=1, k5=2, k6=1. when t=0, in the (x, y)-plane.
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The characters of solutions (4.7) and (4.8) are presented
by figures 7, 8.

5. Conclusions

The main work in this paper is to investigate the (2+1)-
dimensional dispersive long wave equation with the help of
the truncated painlevé series idea. As a result, rational solu-
tions and their interaction solutions, which combine the lumps
and solitons with quadratic function and the exponential
functions, are yielded. They can be used to express more rich
phenomena appear in fluid or plasma mechanics by 3D and
2D plots in detail. For the rational solutions (3.8), we can see
that u, η possess different evolutionary form under the same
parameters, the solution u is singular twins mainly, however,
the solution η is double twins from figures 1, 2. As for the
solutions (4.3) and (4.4), we can find out that the evolutions
of u, η are basically similar, u is smoother than η merely from
figures 3, 4. Moreover, we can see that the interaction solu-
tions (4.16) and (4.17) show both localities of the lumps and
non-locality of the a pair of line solitons from figures 7, 8. In
addition, we can also investigate lumps and their interaction
solutions by solving different multi-linear forms and that we
will study more interactions of lumps in shorting time.
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