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Abstract
We present the study of the positron-impact single ionization process of helium in the case where
the residual ion remains in its ground state. We calculated the total cross-section for incident-
positron energies ranging from the ionization threshold to 150 eV, and the triple differential
cross-sections (TDCSs), using a single continuum wave function built through the Faddeev–
Merkuriev differential equations. A comparison of the results of the total cross-section obtained
with our approach and other theoretical models as well as with existing experimental data, shows
a good agreement. Due to the lack of experimental and theoretical results for comparison, and to
be more general and predictable in our investigation, the two- and three-dimensional
representation of the TDCSs covering all possible values of the angle of the ejected electron for
different values of its energy are presented and discussed.

Keywords: Faddeev–Merkuriev equations, positron-atom scattering, total and triple differential
cross-sections

(Some figures may appear in colour only in the online journal)

1. Introduction

The single ionization of atoms and molecules is one of the
most important areas of collision physics. More particularly,
positron scattering is fundamentally important for the under-
standing of the structure of matter and the dynamics of the
collisional process. It presents also a special interest for the
use of the positron emission tomography scanner to make
diagnosis of cancer in medicine and the positron annihilation
lifetime spectroscopy, to analyse and design specific materials
in material science [1–3].

The first calculations of e+−He scattering have been
performed by Massey and Moussa [4] in the first born
approximation (FBA). From the FBA studies, more sophisti-
cated and significant theoretical advances have been made for
describing the dynamic of the ionization of helium by posi-
tronic impact and there is now good agreement between
experimental and theoretical results for this atom, especially
while talking about total cross-sections. The distorted-wave
Born approximation (DWBA) was applied by Parcell et al [5]
using the distorted wavefunctions in first-order calculations,
and later by Campeanu et al [6] using Coulomb and plane

wavefunctions. The second group obtained accurate results in
agreement with the experimental results of Knudsen et al [7]
and Moxom et al [8]. The Kohn variational method was
applied by Humberston et al [9] and by Van-Reeth and
Humberston [10]. There is a very good agreement for the total
cross section below the Ps-formation (Positronium-formation)
threshold between their results and the experimental data of
Mizogawa et al [11] and Stein et al [12]. Many other methods
have been used in order to approximate the exact solution of
the scattering problem in e+−He systems; such as the close-
coupling approach by Campbell et al [13], the hyper-spherical
close-coupling approach by Igarashi et al [14], the frozen-core
and multi-core convergent close-coupling [15–17] and the
works of the UCL group [18–20]. Recently, total and integral
cross sections from the application of optical potential model to
positron scattering from gas-phase beryllium and magnesium
have been reported [21]. Despite the enormous progress made
so far in discretization and subsequent numerical solutions of
three-body differential and integral equations of the Coulomb
scattering theory, a number of related problems remain open.

In this contribution, in addition to the total cross-section,
we are interested by the triple differential cross-sections
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(TDCSs) of a positron-impact single ionization of helium.
Some earlier theoretical studies of the TDCSs for positron
scattering may be found in [22–24], but these calculations
were restricted to atomic hydrogen. Besides these studies,
some experimental works for positron impact ionization of
some inert gases have been made [25–27] but not for helium.
Overall, there is a lack of studies devoted to TDCSs of a
positron-impact single ionization of helium. The present
contribution aims to partially fill this gap.

In this paper, we use a compact-kernel-integral-equation
approach built from the Faddeev–Merkuriev differential
equations [28, 29] to calculate a three-body wave function
that describes the single continuum of an atomic two-electron
system. We then applied it to positron-impact single ioniz-
ation of helium. Here, the residual ion remains in its ground
state and we are limited in this work to the treatment of the
channel of single ionization without taking the positronium
formation and other channels into account. The calculation is
performed for asymmetric coplanar geometry. The result for
the total positron–helium scattering cross section is firstly
presented for incident-positron energies ranging from the
ionization threshold to 150eV. To be more general and
predictable in our investigation, the two- and three-
dimensional representation of the TDCS’s covering all pos-
sible values of the angle of the ejected electron for different
values of its energy are presented. The energy of the incident
positron for the latter case is fixed at 700 eV.

The paper is organized as follows. After this introduc-
tion, in the second section, we briefly present the theoretical
approach used. The third section is devoted to the results and
discussion. Firstly, the plots of the short and long range
potentials used in Faddeev decomposition are shown; follow
by a representation of the Merkuriev cut-off function used.
Secondly, the result for the total positron–helium scattering
cross section is presented and compare to existing theoretical
and experimental data. Thirdly, the two- and three-
dimensional representation of the TDCS’s are presented and
discussed. The paper ends in section four with a brief sum-
mary. Atomic units are used throughout.

2. Theory

The Hamiltonian of a three-body atomic system is given by:
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where ri are the position vectors of the two electrons.
∣ ∣= -r r r12 2 1 is the interelectronic distance. Z=2 denotes

the charge of the infinitely massive nucleus the position of
which coincides with the origin of the laboratory system. The
continuum wave function with an asymptotic ingoing wave
behavior is a solution of the following Schrödinger equation:
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where E is the total energy of the two electrons. Following
Faddeev and Merkuriev [30], we split the electron-nucleus

Coulomb potentials into a short and a long range part:
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The subscripts i and j take the value 1 or 2 with ¹i j. The
role of ζ(ri, rj) is to fix a border between Ω0, the so-called
‘true’three-body scattering region (where r1∼r2), and the
two-body scattering regions Ω1 (r1?r2), or Ω2 (r2?r1)
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The representation of the long and short range potentials
is shown on figure 1. A representation of the cut-off function
used is also presented on figure 2.

Both electrons are identical particles, so we can introduce
the new functions ( )( )Y - r r,i 1 2 (i=1, 2), such that ( )Y =-

( )[ ]( ) ( )Y + Y- -1 2 1 2 . Taking into account the exchange
symmetry of the solution of equation (2), ( )( )Y =- r r,1 2

( )( )Y - r r,2 1 , where ò=+1 (−1) for a singlet (triplet) state,
we have: ( ) ( )( ) ( )Y = Y- - Pr r r r, , ,2 1 2 12 1 1 2 where P12 is the
permutation operator of particle indices 1 and 2. Thus

( )[ ˆ ] ( )( ) ( )Y = + Y- - P1 2 1 . 712 1

Now we demand that the functions ( )Y -
1 and ( )Y -

2 satisfy
the following equations of Faddeev type:
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According to the previous discussion, and using equation (7)
we can rewrite equation (8) as:
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Equation (9) can be transformed in exactly the same way. As
a results, we obtain only one equation for the component

( )( )Y - r r,1 1 2 , which is fully equivalent to equation (2). Let us
now rewrite equation (10) in the following way:
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where:
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It is straightforward to see that the potential ( )V r r,1 2 is short-
range in the two-body scattering region Ω2 (r2?r1).

We can now perform a partial wave decomposition of the
wave function ( )Y -

1 and write:
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L′ is the total angular momentum and M′ its projection on the
quantization axis. The Clebsch–Gordon coefficient is written
according to the 3j symbols [31]:
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In the equation (13), the spatial wave function ( )yl¢ ¢
¢ ¢ Er r, ;l

L M
1 2

can be further expanded in a basis of Coulomb Sturmian
functions [32] and bipolar harmonics:
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functions ( )kS rnl form a complete and discrete set of

2-integrable functions defined as follows:
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where κ is a nonlinear basis parameter. ( )aL xn is a Laguerre
polynomial [33]. These functions are known to be orthogonal
with the weight 1/r
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Equation (13) taking into account equations (14)–(16) can
now be written:
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Figure 2.Merkuriev cut-off function with parameters a=3, b=20,
and ν=2.1.

Figure 1. The short-range ( )V s and long-range ( )V l potentials.
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After some calculations [34, 35], the coefficients
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denotes a matrix element of the potential defined by
equation (12) in the basis (17). Since in this work we are
concerned by a single ionization, the potential V(r1, r2) is
indeed short-range in the two-body scattering region Ω2(or
Ω1). Therefore the kernel in the right hand side of
equation (19) is compact and the results converge. The matrix
elements have been calculated numerically by using the
Gauss–Laguerre quadrature, that is known to be very stable,
especially when deal with the orthogonal polynomials [33].
sνλ(p, Z−1) and ( )snl

n
0

0 are the decomposition coefficients in
the Sturmian basis (17) of the regular Coulomb function with
the effective charge Z−1 and the hydrogenoid function with
charge Z. The expression of ( )(( )
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l
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-G Enn

l
, in equation (19) can

be found in our previous work [35, 36]. Finally our single
continuum wave function is written (7):
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with ( )( )Y - r r,1 1 2 given by equation (19).
Let us mentioned that if in equation (19), we only keep

the first term of the right-hand side and neglect the correction
which involves Green’s function, then we will obtain a wave
function identical to that obtained by making the symmetrized
product of a Coulomb function (describing the ejected elec-
tron) and a hydrogenoid function (describing the residual
ion). The latter is none other than the asymptotic function of
our wave function of the single continuum (21). In the section
results and discussion, we will also present the curve of the
TDCS obtained with this asymptotic wave function.

3. Results and discussion

3.1. Potentials and merkuriev cut-off function

In figure 1 we present the plots of the short-range ( )V s and
long-range ( )V l potentials, for an attractive Coulomb poten-
tial. The function ( )V s decreases rather rapidly in the three-
body asymptotic domain Ω0 and coincides with the initial
potential in the two-body asymptotic domain Ω2.

Figure 2 presents the plot of the Merkuriev cutt-off
function ( )z r r,2 1 with the commonly used parameters a=3,
b=20, and ν=2.1. One realizes that the figure 2 marries
well the limit given in (6), indeed in the two-body region
(where (r2?r1)) one sees well that ζ is very close to one
(red zone) then decreases exponentially to zero (blue zone) as
we approach the three-body region (where ⟶~ ¥r r1 2 ).

The theoretical approach described above to calculate the
single continuum wave function is now applied to positron-
impact single ionization of helium. Here, the residual ion
remains in its ground state and we are limited in this work to
the treatment of the channel of single ionization without
taking the positronium formation and other channels into
account. The result for the total positron–helium scattering
cross section (widely studied) is firstly presented follow by
the results of the e+−He TDCSs. Due to the lack of
experimental and theoretical results for comparison in the
latter case, we will cover all ejection angle values in order to
predict all possible cases for the different ejection energies
considered.

3.2. Total cross section

Figure 3 shows the total positron–helium scattering cross
section as a function of the energy of the incident positron
above the ionization threshold. This energy varies from the
ionization threshold of helium 24.58–150 eV. The exper-
imental results of Stein et al [12], Caradonna et al [37] as well
as the theoretical results of Wu et al [15]; Campbell et al [13]
and Kadyrov et al [17] are also shown in the figure. As it is
shown in the legend, the solid red line is the result obtained
within our approach. (I.e.: using the wave function in (21).)
From a general point of view, all the curves have a similar
shape, they have a maximum at about 55 eV and then a
decrease beyond this energy. Between the energy of the
ionization threshold and 55 eV, we notice a satisfactory
agreement between all the theoretical approaches and the
experimental results. Beyond this value, the result obtained
within a frozen-core CCC approach overestimates the
experimental data and the results obtained with the other
theoretical methods. Utamuratov et al [16] explain that this
overestimation is likely due to the frozen-core treatment of the
He wavefunctions. Such an approximation gives a reasonably
accurate ground state of He with an ionization energy of

Figure 3. Total positron–helium cross section as a function of the
energy of the incident positron above the ionization threshold. Our
results given by the red solid line are compared with those obtained
by other approaches: Wu et al [15]; Campbell et al [13]; FC-CCC
and MC-CCC of Kadyrov et al [17]. Experimental data are due to
Stein et al [12] and Caradona et al [37].
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23.74eV instead of the actual 24.58 eV. Beyond 50 eV, the
result of Campbell et al [13] obtained with 24 helium pseu-
dostates and the 3 lowest Ps eigenstates, and the multi-core
CCC result of Kadyrov et al, are very closed to our result and
to the result of Wu et al. More other results (not presented
here) of the total cross section are available in the littera-
ture [38, 39].

3.3. Triple differential cross sections

The TDCS of such process is given by:
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where (E0, p0), (Es, ps), are the energy and momentum of the
incident and the scattered positron. (E, p), the energy and
momentum of the ejected electron. Q=p0–ps is the
momentum transfer.

Ψ0 and
( )Y -
sc are the initial and the final single continuum

wave functions of helium. The ground state wave function Ψ0

is expanded in a basis of the Coulomb Sturmian functions
(17) for the radial coordinates and bipolar harmonics for the
angular coordinates [32]. Ψ0 is obtained as a result of diag-
onalization of the matrix of the Hamiltonian of the three body
system. In the present calculation, we put nmax=νmax=20
and lmax=3 (maximum value for the individual angular
momenta). By choosing the nonlinear parameter κ0=2, we
obtain E0=−2.903274 a.u. for the ground-state energy [40].
The wave function ( )Y -

sc for the final state of the system is
obtained by the method outlined above. In these calculations,
it is sufficient to take into account five values (0, 1, 2, 3 and 4)
of the total angular momentum L. The number N of Coulomb
sturmian functions is 50 with the dilation parameter κ=1.
The parameters of the cutoff function are the optimized one
which lead to the convergence, they are a=3, b=20,
and ν=2.1.

In order to have a global idea about the behavior of the
TDCS, we first showed up its look in three-dimensional (3D)
representation. Thus, we have scanned all the values that can

take the angle of the ejected electron θ in the interval [0; 360]
and we have also varied its energy E in the interval [1; 60 eV].
For each value of E within this interval, the value of the
energy of the scattered positron is obtained from the law of
conservation of energy.

Figure 4 shows the 3D representation of the TDCS of a
positron-impact single ionization process of helium as a
function of the energy and the angle of the ejected electron.
The plots are done using in (a) the asymptotic wave function,
and in (b) the full single continuum wave function. The
positron incident energy is set at 700 eV. The both figures
present a similar shape, the magnitude of cross-sections in
case (a) is slightly greater than the one in case (b). This
slightly surestimation of the cross-section in case (a) was
predictable since the asymptotic wave function does not take
the effects of the different correlations contained in the
potential (12) into account.We observe a decrease of the
values of the TDCS when the energy of the ejected electron
increases. We can also observe from the both plots, two
maxima located at the positions θ;20° and θ;200° and
two minima located at θ;100° and θ;280°. Note that the
intensity observed at θ=0° is the same at θ=360° and
should not be confused with a maximum. The two lobes
structures of the plots in figure 4 can be compared and ana-
lysed in view of those observed in a process by electron
impact. The first lobe with the maximum at θ;20° called
binary peak, is in the direction of the momentum transfer
(+Q) and the second lobe at θ;200° called recoil peak, is in
the opposite direction (−Q).

For a better understanding of the role of these peaks in
the dynamic of the collisional process, we did some two-
dimensional plots of the TDCS’s using the full single single
continuum wave function. The plots are done for ejection
energies in front, above and close to the energy of the
ionization threshold of helium. The results are presented on
figures.

Figure 5 gives a 2D-representation of the TDCS of a
positron-impact single ionization process of helium as a
function of the angle of the ejected electron and for weak
ejection energies in front of the energy of the ionization

Figure 4. 3D representation of the TDCS of a positron-impact single ionization process of helium as a function of the energy and the angle of
the ejected electron. In (a) the TDCS using the asymptotic wave function, and in (b) the TDCS using the full single continuum wave function.
The positron incident energy is 700 eV.
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threshold of helium. One can easily notice that the two peaks
(at 20◦ and 200◦) have approximately the same magnitude
what suggest that for weak ejection energies in front of the
energy of the ionization threshold of helium, the momentum
is transferred equally between the residual ion and the ejected
electron. None are more involved in the collisional process
than the other.

In figure 6, we have a 2D-representation of the TDCS of
a positron-impact single ionization process of helium as a
function of the angle of the ejected electron and for ejection
energies close to the energy of the ionization threshold of
helium. The first remark is the magnitude of cross-sections
that is smaller compared to that observed in figure 5. Here the
binary peak is dominant; which means that the momentum
has been transferred in majority to the ejected electron.

Figure 7 shows a 2D-representation of the TDCS of a
positron-impact single ionization process of helium as a
function of the angle of the ejected electron and for large
ejection energies above of the energy of the ionization
threshold of helium. In this last case, one can see that the
binary peak is largely dominant and therefore the momentum
has been transferred almost completely to the ejected electron
and the residual ion has practically remained a spectator. It
can also be noted that the amplitude of the TDCS’s is smaller
compared to the two previous cases. Thus for a high and

sufficient moderate incident positron energy (more than
10 times the energy of the ionization threshold of He), the
higher the energy of the ejected electron, the lower the
probability of single ionization by positron impact. Such a
conclusion has also been found in [41, 42] but for elctron
impact. Finally, we would like to point out that at this mod-
erate impact-energy, non-first-Born effects are expected to
start playing a role for a more better reproduction of the
lobes [43, 44].

4. Summary

In this paper, we have use a compact-kernel-integral-equation
approach built from the Faddeev–Merkuriev differential
equations to calculate a three-body wave function that
describes the single continuum of an atomic two-electron
system. We have then applied it to positron-impact single-
ionization of helium in the case where the residual ion
remains in its ground state. The calculation has been per-
formed for asymmetric coplanar geometry. The total posi-
tron–helium scattering cross section has been presented for
incident-positron energies ranging from the ionization
threshold to 150 eV and also the two-and three-dimensional
representation of the TDCS’s covering all possible values of

Figure 5. (2D) representation of the TDCS of a positron-impact single ionization process of helium as a function of the angle of the ejected
electron and for weak ejection energies in front of the energy of the ionization threshold of helium. Here E=1 and 4 eV.

Figure 6. (2D) representation of the TDCS of a positron-impact single ionization process of helium as a function of the angle of the ejected
electron and for ejection energies close to the energy of the ionization threshold of helium. Here E=22 and 25 eV.
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the angle of the ejected electron for different values of its
energy.

From the results obtained, with regard to the total cross
section that we have study as a function of the energy of the
incident positron, we noticed a growth in intensity between
the threshold of first ionization of helium and 56 eV, then a
decrease beyond this value. This is consistent with the theory
in view of the agreement resulting from the comparison with
the other experimental and theoretical results. With regard to
the TDCS’s, one can easily notice that its variations depend
both on the energy of the ejected electron and on its angle. It
remains important to emphasize that to our knowledge, no
experimental or previous theoretical work has been done, that
is why we have not been able to compare our results. From
the two- and three-dimensional plots, we find that: for weak
ejection energies in front of the energy of the ionization
threshold of helium, the momentum is transferred almost
equally between the residual ion and the ejected electron;
none are more involved in the collisional process than the
other. Close and above the energy of the ionization threshold,
the momentum is transferred largely to the ejected electron.
As regards the magnitude of TDCS, we have found that for a
high and sufficient incident positron energy, the higher the
energy of the ejected electron, the lower the probability of
single ionization by positron impact. In other words, the
positron-impact single ionization is more likely for low-
energy values of the ejected electron. While waiting for new
theoretical (and experimental) works on TDCs of helium at
different positron-impact energies, we are of the opinion that
this work could stimulate additional studies. In our current
work, on the low-energy collision, that takes into account the
other channels (formation of Ps, annihilation...) interfering in
e+−He, the continuum wave function is built with Faddeev–
Merkuriev equations for three charged particles in such a way
that a third term (describing the scattered positron) is added.
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