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Abstract
This paper focuses on changing Fock matrix elements of two-mode squeezed vacuum state
(TMSVS) by employing three conditional operations in one-sided lossy channel. These three
conditional operations include one-photon replacement (OPR), one-photon substraction (OPS)
and one-photon addition (OPA). Indeed, three conditional quantum states have been generated
from the original TMSVS. Using the characteristic function (CF) representation of quantum
density operator, we derive the analytical expressions of their Fock matrix elements, which
depend on the interaction parameters, including the squeezing parameter of the input TMSVS,
the loss factor and the transmissivity of the variable beam splitter. For convenience of discussion,
we only give the Fock matrices in the subspace span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 for
these two-mode states. Obviously, the TMSVS only has the populations in ∣ ñ00 and ∣ ñ11 in such
subspace. By comparing the generated states with the TMSVS, we find that: (1) the generated
state after OPR will remain the populations in ∣ ñ00 and ∣ ñ11 , and add the populations in ∣ ñ10 and
∣ ñ20 ; (2) the generated state after OPS will lost the populations in ∣ ñ00 and ∣ ñ11 , but add the
populations in ∣ ñ10 and ∣ ñ20 ; (3) the generated state after OPA will remain the population only in
∣ ñ11 and add the population in ∣ ñ01 .

Keywords: two-mode squeezed vacuum state, Fock matrix elements, twin-Fock state,
conditional measurement, beam splitter, characteristic function

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum state tomography, as a standard approach to char-
acterize unknown quantum state, is often to construct a den-
sity matrix from which some other information can be
inferred. People can retrieve desired information about a
quantum state by performing multiple tomographic mea-
surements (also the so-called projective measurements in
different bases) [1]. The most common measurement is the
homodyne measurement. Through homodyne measurement,

one can obtain a large amount of data, which can be con-
verted into the state’s density matrix and/or Wigner function
by resorting to mathematical methods, such as the inverse
Randon transformation, the pattern-function method and the
likelihood maximization algorithm [2]. In other words, the
unknown quantum state can be reconstructed in the repre-
sentation of a density matrix, either in the quadrature basis or
in the photon-number (Fock) basis. Recently, complete
information about excited coherent states has been analyzed
by the optical tomography by Almarashia et al [3].

Physica Scripta

Phys. Scr. 95 (2020) 045101 (11pp) https://doi.org/10.1088/1402-4896/ab5c8f

0031-8949/20/045101+11$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0003-2361-0357
https://orcid.org/0000-0003-2361-0357
mailto:xuxuexiang@jxnu.edu.cn
https://doi.org/10.1088/1402-4896/ab5c8f
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab5c8f&domain=pdf&date_stamp=2020-02-12
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab5c8f&domain=pdf&date_stamp=2020-02-12


Theoretically, in order to find the information of quantum
state, one choose projection operator in photon-number
(Fock) basis to obtain its Fock matrix elements. Indeed, every
quantum state can be expanded in the number state space and
has its unique Fock matrix elements. For a one-mode quant-
um state, the density operator ρ can be written as

∣ ∣r = å ñá=
¥ p n mn m mn, 0 with ∣ ∣r= á ñp m nmn , in which the

Fock matrix elements pmn is corresponding to component
∣ ∣ñán m in the space of density operator ρ. It should be
emphasized that the elements pmn represent populations
(diagonal term n=m, real number)or coherences (off-diag-
onal ¹n m, often complex number). For example, the
familiar thermal state, as a mixed state, has only the com-
ponents ∣ ∣ñán n (n=0, 1, 2,L) with population element pnn.
The coherent state, as a typical pure state, has the components
∣ ∣ñán m (n, m=0, 1, 2,L) with elements pnm (population or
coherence). The single-mode squeezed vacuum state, also a
pure state, has only the components ∣ ∣ñán m2 2 (n, m=0, 1,
2,L) with elements p2n,2m [4, 5], which often was used as the
typical optical field interacting with atomical system [6, 7].

Similarly, for a two-mode case, the density operator ρab
can be written in the two-mode photon-number basis

∣ ∣

∣ ∣ ( )

år = ñ ñ

´ á á
=

¥

p n m

n m , 1

ab
n m n m

n m n m a b

a b

, , , 0
, 2 2

1 1

1 1 2 2

1 1 2 2

with ∣ ∣ ∣ ∣r= á á ñ ñp n m n mn m n m a b ab a b, 1 1 2 21 1 2 2
, which shows

Fock matrix element pn m n m,1 1 2 2
corresponding to component

∣ ∣ ∣ ∣ñ ñ á án m n ma b a b2 2 1 1 in the space of two-mode density
operator ρab [8, 9]. It should be noted that ∣ ∣ñ ñn ma b is often
written as ∣ ñnm in this paper. Because the space of
the two-mode density operator has infinite two-mode
number bases span {∣ }ñnm ( = ¥n m, 0, 1, , ), we only
study the Fock matrix elements in the subspace span
{∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 for convenience of dis-
cussion, whose corresponding Fock matrix can also be
expressed in table 1. As we all know,the two-mode
squeezed vacuum state (TMSVS) is the primary entangled
resource in continuous-variable system, which can be used
to implement many quantum protocols, including con-
tinuous version of teleportation and quantum key distribu-
tion. In addition, as a maximum entangled state, the
TMSVS has also been chosen as the typical optical field

interacting with atomical system [10]. Indeed, as a typical
two-mode quantum state, the TMSVS has only the twin-
Fock components with the form ∣ ∣ñánn mm (n, m=0, 1,
2,L). Needless to say, it is impossible to have non-twin-
Fock components forthe TMSVS. Therefore, it is urgent
for us to think that whether we have some ways to change
the Fock matrix elements for the TMSVS by using quantum
operations. This is the key aim of our paper.

In recent years, some conditional operations, such as
photon replacement, photon subtraction and photon addi-
tion, have attracted extensive attention of researchers. In
fact, these schemes are related to conditional measurements,
which are fruitful methods for quantum-state manipulation
and engineering [11]. Many nonclassical states have been
generated by conditional measurements theoretically or
experimentally. In general, two quantum states in the two
output ports of the lossless beam splitter (BS) are quantum-
mechanically correlated with each other. If appropriate
measurement is employed in one of the output ports, then
conditional quantum state is generated in the other output
port [12, 13]. In some conditional measurement schemes,
new output state ρout is generated from the input state ρin in
the main channel and the difference happen in the ancil-
larychannel. For example, photon-replacement scheme has
the feature that m-photon Fock state is input and the same
m-photon Fock state is measured in ancillarychannel. This
strategy is also called as ‘quantum-optical catalysis’
[14–16]. The photon-subtraction scheme has the feature that
m-photon Fock state is input and the bigger n-photon Fock
state is measured in ancillarychannel [17–19]. The photon-
addition scheme has the feature that m-photon Fock state is
input and the smaller n-photon Fock state is measured in
ancillarychannel [20, 21]. These non-Gaussian conditional
operations have proven advantageous in many scenarios
such as entanglement enhancement [22, 23] and teleporta-
tion improvement [24, 25]. On the other hand, the loss
accompanied by conditional operations is unavoidable,
which must be considered in realistic situation. Of course,
losses may in principle be overcome by some quantum
techniques [26–29].

Combining with the above ideas and approaches, we aim
to change the Fock matrix elements of the TMSVS by
employing conditional operations and considering the loss.
The Fock matrix elements before and after operations are
compared. Analytical and numerical results will be given in
details. The paper is organized as follows: in section 2, we
make a brief review of the TMSVS and introduce its Fock
matrix elements. Here we raise the question of how their
elements will be changed. In section 3, we induce three
quantum states from the TMSVS, whose density operators are
given. section 4 gives the analytical expressions of Fock
matrix elements for three generated states. Numerical calcu-
lations about elements are made by choosing given interaction
parameters in section 5. Our conclusions are summarized in
the last section.

Table 1. Fock matrix elements of two-mode density operator ρ in
subspace span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 , .

ρ ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20 L

∣á00 p00,00 p00,01 p00,10 p00,02 p00,11 p00,20 L
∣á01 p01,00 p01,01 p01,10 p01,02 p01,11 p01,20 L
∣á10 p10,00 p10,01 p10,10 p10,02 p10,11 p10,20 L
∣á02 p02,00 p02,01 p02,10 p02,02 p02,11 p02,20 L
∣á11 p11,00 p11,01 p11,10 p11,02 p11,11 p11,20 L
∣á20 p20,00 p20,01 p20,10 p20,02 p20,11 p20,20 L

M M M M M M M O
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2. TMSVS and its Fock matrix elements

In this section, we make a brief review of the TMSVS and
introduce its Fock matrix elements. To begin with, we
introduce the two-mode squeezing operator [30]

( ) [ ( )] ( )† †= -S r r a b abexp , 2

where aand bare the annihilation operators for the two
modes and r is the real squeezing parameter. By operating

( )S r on the two-mode vacuum ∣ ñ00 , we can obtain the
TMSVS

( )∣ ( )∣ ( )† †l lñ = - ñS r a b00 1 exp 00 32

with l = rtanh . Obviously, the TMSVS can be written in
number basis as follows

( )∣ ∣ ∣ ∣ ( )åñ = ñ = ñ + ñ +
=

¥

S r c nn c c00 00 11 4
n

n
0

0 1

with l l= -c 1n
n 2 . The obvious fact is that the TMSVS

is only the superposition of the twin Fock state, that is, ∣ ñ00 ,
∣ ñ11 , L. It is impossible for the TMSVS to contain non-
twin-Fock state ∣ ñnm with ¹n m, such as ∣ ñ01 , ∣ ñ10 , ∣ ñ02 ,
∣ ñ12 , L.

Correspondingly, the density operator of the TMSVS can
be expressed as

( )∣ ∣ ( ) ( )†r = ñáS r S r00 00 . 5TMSVS

Using equation (4), it can be also expanded as

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )






r = ñá + ñá +
+ ñá + ñá +
+

c c c c

c c c c

00 00 00 11

11 00 11 11
, 6

TMSVS 0 0 0 1

1 0 1 1

where the density operator only contains the twin-Fock
components. Obviously, in our considered subspace, we find
that the TMSVS has only component ∣ ∣ñá00 00 with popula-
tion probability c0c0= 1− λ2 and component ∣ ∣ñá11 11 with
population probability ( )l l= -c c 11 1

2 2 . Of course, there
are other two coherence terms (i.e. corresponding to compo-
nents ∣ ∣ñá00 11 and ∣ ∣ñá11 00 ) as non-zero elements in matrix,
which is the coherence between ∣ ñ00 and ∣ ñ11 . Table 2 gives
the Fock matrix elements of the TMSVS.

Now another question arises: what can we do to make the
TMSVS to contain elements corresponding to non-twin-Fock
components, such as ∣ ∣ñá00 01 and ∣ ∣ñá01 10 ? This will be the
focus of our following work.

3. Three quantum states induced from the TMSVS

As shown in figure 1, we construct three conceptual schemes
to generate three new quantum states from the TMSVS. Using
the TMSVS as the initial optical field and operating three
kinds of non-Gaussian conditional operations in one mode
(channel) which has the loss, we study and compare the Fock
matrix elements of the final optical fields. Using the char-
acteristic function (CF) representation, we obtain the normal
forms (denoted by ::) for every density operator. Of course,
the success probabilities are also obtained.

The propagation of optical field in every scheme includes
two input–output processes and three stages. The two pro-
cesses include loss and non-Gaussian operation, respectively.
For the sake of convenience, we describe the optical field in
every stages with their corresponding density operators as
follows

( )( ) ( ) ( )r r r  . 7ab ab ab
I II III

Next we shall give the exact expressions of the density
operator in every stages.

Stage 1: The corresponding density operator in stage 1 is
( )r r=ab
I

TMSVS, where the initial optical field under con-
sideration is the TMSVS ( )∣ ñS r 00 . By using the Weyl
expansion of the density operator, ( )rab

I can also be expressed
further in the CF representation as follows

( ) ( ) ( ) ( )( ) ( )òr
a b
p

c a b a b= - -D D
d d

, , 8ab ab a b
I

2 2

2
I

where

( ) ( ( ) ( ))

( )

( ) ( )

( )( )(∣ ∣ ∣ ∣ )
( )

c a b r a b=

=
l a b ab

l
- + +

-
l a b

l
+ +

-

D D, Tr

e 9

ab ab a b
I I

1
1 2 2 2

2 1 2 2

* *

is just the CF of the TMSVS and ( ) ( )†a a a= -D a aexpa *
and ( ) ( )†b b b= -D b bexpb * are the displacement opera-
tors, respectively.

Stage 2: In the second stage, we consider the loss only in
channel (mode) b, where the conditional operation will be
employed. Thus, the density operator of the optical field can
be expressed as

( ) ( ) ( )
( )

( ) ∣ ∣ ( )òr
a b
p

c a hb a b= - - -h b- D D
d d

e , 1 ,

10
ab ab a b
II

2 2

2
I1

2
2

Table 2. Fock matrix elements of the TMSVS in subspace span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 , .

ρTMSVS ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20 L

∣á00 1−λ2 0 0 0 ( )l l-1 2 0 L
∣á01 0 0 0 0 0 0 L
∣á10 0 0 0 0 0 0 L
∣á02 0 0 0 0 0 0 L
∣á11 ( )l l-1 2 0 0 0 ( )l l-12 2 0 L
∣á20 0 0 0 0 0 0 L
M M M M M M M O

3

Phys. Scr. 95 (2020) 045101 H-l Zhang et al



where [ ]h Î 0, 1 is the loss factor. Here one can use the
formula derived in [31] or see appendix A.

Stage 3: There are the differences for the three sub-
figures of figure 1 in this stage. Three conditional operations
(that is, one-photon replacement (OPR), one-photon sub-
traction (OPS) and one-photon addition (OPA)) are used in
three schemes, respectively.

Case OPR: The OPR can be embodied in the c mode,
where one-photon Fock state ∣ ñ1 is input and one-photon Fock
state ∣ ñ1 is measured [32]. After employing the OPR, we
obtain the first generating state

∣{ [ (∣ ∣) ] }∣
( )( )

( ) †

( )r
r

=
á Ä ñá ñ- B B

p

1 1 1 1
, 11ab

c ab c c

d

III 11
II

11

where ( )pd
11 is the success probability and =B

[ ( )]† †q -b c bcexp is the BS operator satisfying the following

transformation

( )

†

†
= + -
=- - +

BbB T b T c

BcB T b T c

1 ,

1 , 12

with transmissivity q=T cos2 . After detailed calculation, we
obtain the density operator in the normal ordering form

∣
( )

( )
( )

( ) ( )

( ) ( )

† †

† † † †

r
l

=
-

´

´
´

l h l h

l h

-

- - + - - +

- - - + + - +

+
= = = =

p

h h s s

1

d

d d d d
: e

e

e : ,

13

ab

a a T h a h a

b b T s b s b T a b ab

T h s T h s
s s h h

III 11
2

d
11

4

2 1 2 1

1 1 1

1 1

0

2
2 1

1 2

2 1 1 2
1 2 1 2

where

( )( ) ( )( ) l k l k l= W - + +p T1 14d
11 3 2

1
2

2
4

is the success probability (also the normalization factor),
whose derivative form can be found in the appendix B,
with

( )
( )( ) ( )

( )( ) ( )

l h l h
k h h
k h h

W = - - -
= + - + -
= - - -

- T

T T

T T

1 1 ,

1 1 2 2 ,

1 1 . 15

1 2 2

1
2

2
2

Obviously, if h  0 and T 1, then ( ) ( )r r-
ab ab
III 11 I . That

is, the first generated state can be reduced to the TMSVS in
this limit case.

Case OPS: The OPS can be embodied in the c mode,
where vacuum state ∣ ñ0 is input and one-photon Fock state ∣ ñ1
is measured. After employing the OPS, we obtain the second
generating state

∣{ [ (∣ ∣) ] }∣
( )( )

( ) †

( )r
r

=
á Ä ñá ñ- B B

p

1 0 0 1
, 16ab

c ab c c

d

III 01
II

01

where ( )pd
01 is the success probability. The density operator in

the normal ordering form can be expressed as

∣
( )

( )
( )

( ) ( )

( )

† †

† † †

r
l

=
-

´

´

l h l h

l h

-

- - + - - +

- + - +
= =

p

h h

1

d

d d
: e

e :

17

ab

a a T h a h a

b b T a b ab
h h

III 01
2

d
01

2

2 1

1 1 1

1
0

2
2 1

1 2

with the success probability

( )( )( ) ( )( ) l l h= W - - -p T1 1 1 . 18d
01 2 2 2

Figure 1. Three conceptual quantum schemes to obtain quantum
states from the TMSVS. The operations include (a) OPR, (b) OPS
and (c) OPA, where the loss is also considered. Here η is the loss
factor and Tis transmissivity of the BS.
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Case OPA: The OPA can be embodied in the c mode,
where one-photon Fock state ∣ ñ1 is input and vacuum state ∣ ñ0
is measured. After employing the OPA, we obtain the third
generating state

∣{ [ (∣ ∣) ] }∣
( )( )

( ) †

( )r
r

=
á Ä ñá ñ- B B

p

0 1 1 0
, 19ab

c ab c c

d

III 10
II

10

where ( )pd
10 is the success probability. The density operator in

the normal ordering form can be expressed as

∣ ( )

( )
( )

( ) ( )

( )

† † †

† †

r
l

=
-

´

´

l h l h

-

- - + - +

- - - +
= =

p

s s

1

d

d d
: e

e : 20

ab

a a T a b ab

b b T s b s b
s s

III 10
2

d
10

2

2 1

1 1

1
0

2

1 2
1 2

with the success probability

( )( )( ) ( )( ) l l h= W - - -p T1 1 1 . 21d
10 2 2 2

Obviously, these new generating states can be adjusted
by the interaction parameters, including the squeezing para-
meter r of the input TMSV, the loss factor η, and the trans-
missivity T of BS.

4. Fock matrix elements for three generated states

Next, we study the Fock matrix elements for three generated
states, which will be compared with that of the original
TMSVS. Firstly, we give their analytical expressions for the

Fock matrix elements and then give the Fock matrix. As
example, we plot the Fock matrices for these states and the
population elements by choosing given interaction
parameters.

4.1. Analytical expressions

After detailed derivation, we obtain the following analytical
expressions of the Fock matrix elements for every quantum
states.

(1) For ( )r -
ab
III 11 , we have

! ! ! !

∣ ( )

( )
( )

[ ( ) ( )]

( ) ( )

l
=

-

´

´
´

´

l h

+ + +

- - + + +

+ - - +

= = = = = = = =
l h

p
p n n m m

g g f f s s h h

1

d

d d d d

d

d d d d

e

e

e . 22

n m n m

n n m m

m m n n

T f h h f T f g f g

T h s h s T g s g s

f f g g h h s s

,
11

2

d
11

1 2 1 2

2 1 2 1

4

1 2 1 2

1 1

1

0
f f

1 1 2 2

1 2 1 2

2 1 2 1

1 2 1 2 1 1 2 2

2 1 1 2 1 1 2 2

2
1 2

1 2 1 2 1 2 1 2

(2) For ( )r -
ab
III 01 , we have

! ! ! !
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e

e . 23
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f f
f f g g h h

,
01

2

d
01

1 2 1 2

2 1 2 1

2

1 2

1 1

0

1 1 2 2

1 2 1 2

2 1 2 1

1 2 1 2 1 1 2 2

2
1 2
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(3) For ( )r -
ab
III 10 , we have

! ! ! !
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2

d
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1 2 1 2

2 1 2 1

2

1 2

1 1
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1 1 2 2

1 2 1 2

2 1 2 1

1 1 2 2 1 1 2 2

2
1 2

1 2 1 2 1 2

It should be noted that these expressions retain the derivative
form because of the complexity of components. With these
expressions, we can calculate the matrix elements in each case
by mathematical software.

Table 3. Fock matrix elements of state ( )r -
ab
III 11 in subspace span

{∣ ñ00 , ∣ ∣ñ ñ01 , 10 , ∣ ∣ñ ñ02 , 11 , ∣ }ñ20 , .

( )r -
ab
III 11 ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20 L

∣á00 ( )p00,00
11 0 0 0 ( )p00,11

11 0 L

∣á01 0 0 0 0 0 0 L
∣á10 0 0 ( )p10,10

11 0 0 0 L

∣á02 0 0 0 0 0 0 L
∣á11 ( )p11,00

11 0 0 0 ( )p11,11
11 0 L

∣á20 0 0 0 0 0 ( )p20,20
11 L

M M M M M M M O

Table 4. Fock matrix elements of state ( )r -
ab
III 01 in subspace

span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 , .

( )r -
ab
III 01 ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20 L

∣á00 0 0 0 0 0 0 L
∣á01 0 0 0 0 0 0 L
∣á10 0 0 ( )p10,10

01 0 0 0 L

∣á02 0 0 0 0 0 0 L
∣á11 0 0 0 0 0 0 L
∣á20 0 0 0 0 0 ( )p20,20

01 L

M M M M M M M O

Table 5. Fock matrix elements of state ( )r -
ab
III 10 in subspace

span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 , .

( )r -
ab
III 10 ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20 L

∣á00 0 0 0 0 0 0 L
∣á01 0 ( )p01,01

10 0 0 0 0 L

∣á10 0 0 0 0 0 0 L
∣á02 0 0 0 0 0 0 L
∣á11 0 0 0 0 ( )p11,11

01 0 L

∣á20 0 0 0 0 0 0 L
M M M M M M M O
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4.2. Matrix forms and numerical results

In the considered subspace, we give the Fock matrix elements
of state ( )r -

ab
III 11 in table 3, where the non-zero elements ele-

ments are

( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )
( )

l h l l

h l l

h l l

h l l

=
-

=
-

= =
- - -

=
- - -

=
-

p
T

p
p

T

p

p p
T T

p

p
T

p

p
T

p

1
,

1
,

1 2 1 1
,

1 2 1 1
,

1
. 25

d d

d

d

d

00,00
11

2

11 10,10
11

2 2

11

00,11
11

11,00
11

2

11

11,11
11

2 2 2

11

20,20
11

2 4 2

11

Noticing that the coherence elements ( ( )p00,11
11 or )( )p11,00

11

have the possibility of negative value if ( )l - <T2 1 0.
Comparing table 3 of ( )r -

ab
III 11 and table 2 for the TMSVS ( )rab

I ,

we find that two new population elements (i.e. ( )p10,10
11 and

( )p20,20
11 ) have been added, which mean that there exist the

populations in states ∣ ñ10 and ∣ ñ20 . Of course, the population

probability of ( )p00,00
11 and ( )p11,11

11 depends on the interaction
parameter, which is also different from those of the TMSVS.

Table 4 gives the Fock matrix elements of state ( )r -
ab
III 01 ,

where the non-zero elements are

( )( ) ( )

( )

( )
( )

( ) ( )

h l l

hl

=
- - -

=

p
T

p

p p

1 1 1
,

2 . 26
d

10,10
01

2 2

01

20,20
01 2

10,10
01

It is surprising to find that the original elements of TMSVS
are all vanished but two new elements (i.e. ( )p10,10

11 and ( )p20,20
11 )

have been added in this case. This point is also like that
OPR case.

Table 5 gives the Fock matrix elements of state ( )r -
ab
III 10 ,

where the non-zero elements are

( )( )

( )

( )
( )

( ) ( )

l

hl

=
- -

=

p
T

p

p p

1 1
,

. 27
d

01,01
10

2

10

11,11
10 2

01,01
10

Here we find that only the population element of component
∣ ∣ñá11 11 still exists and another population element of
component ∣ ∣ñá01 01 is added. This is also an interesting
result.

Figure 2. Fock matrix elements of four states in our considered subspace. (a) ( )r ;ab
I (b) ( )r - ;ab

III 11 (c) ( )r - ;ab
III 01 (d) ( )r -

ab
III 10 , with r=0.7, η=0.2,

T=0.7. In figure 2(a), p00,00=0.634 74, p11,11=0.231 845 and p00,11 = p11,00 = 0.383 616; in figure 2(b), ( ) =p 0.861 27400,00
11 ,

( ) =p 0.062 917810,10
11 , ( ) =p 0.057 524911,11

11 , ( ) =p 0.004 596 2820,20
11 , and ( ) ( )= =p p 0.222 586;00,11

11
11,00

11 in figure 2(c), ( ) =p 0.521 86510,10
01 ,

( ) =p 0.0762 466;20, 20
01

figure 2(d), ( ) =p 0.562 99301,01
10 , ( ) =p 0.041 127811,11

10 .
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By changing the interaction parameters, we can obtain
the Fock matrix elements by numerical simulation. Figure 2
shows the density matrices of the TMSVS and other three
quantum states with given parameters (r=0.7, η=0.2,
T=0.7). Here, we also give the corresponding numerical

values for the population elements. As we all know, the
summarization of all population elements are unity in prin-
ciple. Because many other population elements outside of our
considered subspace are not given, we can’t verify its unity
only in the considered subspace. Of course, one can calculate

Figure 3. Population elements (a) ( )p00,00
11 , (b) ( )p11,11

11 , (c) ( )p10,10
11 and (d) ( )p20,20

11 in state ( )r -
ab
III 11 as a function of η with T=0.7 (left)or as a

function T with η=0.2 (right). Here the black solid line, blue dashed line and brown dotdashed line are corresponding to r=0.5 , r=0.7
and r=1, respectively.
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any population element according to the corresponding
expression. Furthermore, in order to show the effect of the
interaction parameters on these population elements, we plot
some population probabilities as the function of the loss factor
η or as a function of the transmissivity T in figures 3–5, where
other parameters are fixed. One can see figures for details.

5. Conclusions and discussions

To summarize, we theoretically realized conditional operations
to change the Fock matrix elements of the TMSVS. These
operations include OPR, OPS and OPA. Everyone knows that
the most prominent feature of the TMSVS is the twin-number
field, which leads to the population and coherence components
only from twin-Fock states. By employing three conditional
operations, we have prepared three entangled resources from the
original TMSVS. We obtain the analytical expressions of their
Fock matrix elements and analyze the change in elements. In
the finite subspace span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 ,
we compare their population elements, as shown in table 6.
Compared with that the TMSVS only has the populations in
∣ ñ00 and ∣ ñ11 , we find that (1) the populations in ∣ ñ10 and ∣ ñ20
have been added for the generated state after OPR; (2) the
populations in ∣ ñ00 and ∣ ñ11 have been lost and the populations
in ∣ ñ10 and ∣ ñ20 have been added for the generated state after
OPS; (3) the population only in ∣ ñ11 has been remained and the
population in ∣ ñ01 has been added for the generated state after
OPA. The numerical results are shown in some figures.

In fact, there are a lot of related works. It is instructive to
compare our work with earlier related works. In order to

improve figures of merit for a quantum state, researchers often
propose different quantum strategies, for example, by apply-
ing the non-Gaussian operations (including photon addition,
photon subtraction, superposition of photon addition and
subtraction) on the original state. Of course, for a two-mode
state such as the TMSVS, these strategies may be applied to
one or both modes. For example, Bartley and Walmsley
compared entanglement enhancement of the TMSVS after
applying these non-Gaussian operations [17]. In addition, by
means of quantum catalysis [33] or quantum scissors [34], the
entanglement properties of the TMSVS can also be enhanced
in some parameter range. For example, our group has two
related works in recent years. One is by employed local
quantum catalysis on the TMSVS [16], another is by quantum
scissors [35] on the TMSVS. In fact, the OPR scheme in our
work is related to the idea of Ulanov et al who proposed to
distill the TMSVS by using noiseless amplification [27]. By
the way, the OPS scheme in our work is related to the idea of
Kurochkin et al who demonstrated entanglement distillation
by applying photon annihilation on only one of the modes of

Figure 4. Population elements (a) ( )p10,10
01 and (b) ( )p20,20

01 in state ( )r -
ab
III 01 as a function of η with T=0.7 (left)or as a function T with η=0.2

(right). Here the black solid line, blue dashed line and brown dotdashed line are corresponding to r=0.5 , r=0.7 and r=1, respectively.

Table 6. Population elements in Fock matrix of these states in
subspace span {∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ00 , 01 , 10 , 02 , 11 , 20 .

Population ∣ ñ00 ∣ ñ01 ∣ ñ10 ∣ ñ02 ∣ ñ11 ∣ ñ20

( )rab
I √ √

( )r -
ab
III 11 √ √ √ √

( )r -
ab
III 01 √ √

( )r -
ab
III 10 √ √
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the initial TMSVS [36]. Previous analyses of these processes
have adopted different figures of merit to compare each
protocol, for example teleportation fidelity, squeezing effect
or entanglement entropy. Unlike previous works, in this
paper, we pay our attention on the Fock matrix elements of
the density operators for quantum states under investigation.

Quantum technology protocols exploit the unique proper-
ties of quantum systems to fulfill communication, computing
and metrology tasks that are impossible, inefficient or intract-
able for classical systems. Perhaps it is because of the most
prominent characteristic (eg. squeezing and entanglement), the
TMSVS have become the most commonly used entangled
resource of quantum technology [37]. However, as our new
states induced from the TMSVS, they must have their own
unique characteristic, which will become new entangled
resources to require the needs of quantum technologies. The
development of technologies allows promising real applications
in quantum information processing, such as quantum tele-
portation [38], quantum computation [39] and quantum com-
munication [40]. It is believed that our generating states will be
good entangled resources for future application. Our theoretical
analyses will provide some information for further applications
and stimulate the design of experimental tests.
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Appendix A. Loss formula in CF formalism

About the detailed derivation of this loss formula, one can
refer to our previous work [31]. The loss can be modeled in a
BS formalism. The input state ρin can be expressed in the CF
representation

( ) ( ) ( )òr
a
p

c a a= -D
d

, A.1ain

2

in

where ( )aDa is the displacement operator in mode a, and
( ) ( ( ))c a r a= DTr ain in is the CF of the input state ρin. The

output state ρout can be expressed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

( )

∣ ∣( )òr
a

p h
c a

a
h

=
-

´ -
-

a- h
h-

D

d

1
e

1
, A.2a

out

2

in2 1
2

or

( )

( ) ( )

∣ ∣òr
a
p

c ha

a

= -

´ -

h a-

D

d
e 1

, A.3a

out

2

in
1
2

2

where η is the loss factor. So, once the input CF ( )c ain is
known, one can obtain the output optical field after the loss
according to equations (A.2) or (A.3).

Figure 5. Population elements (a) ( )p01,01
10 and (b) ( )p11,11

10 in state ( )r -
ab
III 10 as a function of η with T=0.7 (left)or as a function T with η=0.2

(right). Here the black solid line, blue dashed line and brown dotdashed line are corresponding to r=0.5, r=0.7 and r=1, respectively.
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Appendix B. Success probability of generating
states

In order to ensure Tr ( )( )r = 1ab
III , we must calculate the suc-

cess probability for every scheme. These success probabilities
in derivative forms are given as follows, i.e.

( )

∣ ( )

( )

( )[ ( ) ( ) ]

( ) ( )

l= W -

´
´

l h l h

l

W - - + -

W - +
= = = =

p
h h s s

1
d

d d d d

e

e , B.1

T h h s s

T s h h s
s s h h

d
11 2

4

2 1 2 1

1 1 1

1
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2
1 2

2
1 2

2
1 2 1 2

1 2 1 2

and
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´ l hW - -
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p
s s
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d
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e , B.2T s s
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10 2
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2 1

1 1
0

2
1 2
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as well as

( )

∣ ( )
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= = = =

p
h h
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d

d d

e . B.3T h h
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