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Abstract
Investigation of ground state structures and phase separation under confinement is of great interest
in spinor Bose–Einstein condensates. In this paper we show that, in general, within the Thomas–
Fermi approximation, the phase separation scenario of stationary states can be obtained including
all the mixed states on an equal footing for a spin-1 condensate under any confinement. According
to the process used here, the density of each and every stationary states can be determined exactly
in terms of the system parameters. This allows to write the expression for energy density of all
states in a form which are not an explicit function of densities of those states. An energy density
comparison therefore, among all the allowed stationary states can be done which will reveal
domain structures depending on the system parameters. We study here, in details, a particular case
of spherically symmetric harmonic confinement as an example and show a wide range of potential
phase separation scenario for anti-ferromagnetic and ferromagnetic interactions.

Keywords: phase separation, domain formation, spinor Bose–Einstein condensate

1. Introduction

Phase separation of multicomponent Bose–Einstein condensate
(BEC) under trapping, as opposed to the phase separation
which does not require external fields, was theoretically
investigated by Timmermans [1] who named it ‘potential
separation’. Spin domain formation in an optically trapped
sodium spinor condensate has been reported by Stenger et al,
[2] followed by a detailed theoretical justification by Isoshima
et al [3]. A number of theoretical investigations have followed
since then to describe the spin domain formation of trapped
spin-1 condensate in many different ways [4–7], even at zero
magnetic field [8, 9]. T-L Ho and VB Shenoy have given a
detailed picture of binary condensates, for which phase
separation arises due to the interplay between intra- and inter-
species interaction [10]. This led to a lot of scientific interest to
explore many possible scenarios of domain formation for
binary condensates [11–20]. In recent years a lot of thorough
scientific investigations have provided the ground state

structure and a detailed picture of instability induced phase
separation in a spin orbit coupled condensate [21–25].

To find out the spin domain formation in the ground state
of a spinor BEC, Thomas–Fermi (T–F) approximation is
extensively used [3, 10, 18, 26, 27] where the spatial deri-
vatives of order parameter are neglected. This is an approx-
imation where one neglects the kinetic energy term on the
basis of considering slow or large length scale spatial varia-
tion of the order parameter. This is a reasonable first step to
understand phase separation under entrapment when the trap
size is bigger than the healing length [4]. This procedure
provides a wider picture of all possibilities out of which some
scenarios might not be present due to instabilities arising from
various conditions. However, irrespective of the presence of
these instabilities of the stationary states, as a first step, get-
ting a complete picture of coexisting stationary phases in the
ground state is desirable.

In this paper we follow the T–F approximation to
exhaustively investigate the possible phase separations of
stationary states under confinement. We show here that, the
T–F approximation allows for an exact expression of the
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energy density of all the possible stationary phases in terms of
confining potential and the parameters of the system. This
allows for a direct comparison of energy densities of all
possible phases on an equal footing at a constant chemical
potential to determine which phase is locally of the lowest
energy. This becomes possible under the T–F approximation
because the energy density can be written as a function of the
exactly determined local total density of the system irre-
spective of particular phases present.

The wider context of research on spinor BEC rests on the
fact that the condensate order parameter having 2f+1 com-
ponents (for a spin-f system) the BEC can generate a host of
purely quantum mechanical complexities in the static as well as
dynamic manifestations. The experimental ability of very fine
tuning of parameters coupled to this potential variety of
quantum phenomena provides a unique window of opportunity
to observe and understand many body quantum phenomena
[28, 29]. The first step towards standardizing such machinery
would be achieving a concise description of all the competing
ground states of the system possibly over the whole allowed
parameter space. To this end, given the nonlinear nature of
even the mean field (GP) dynamics, T–F approximated
approach can give a unified description. Although there exists a
considerable amount of literature addressing mean field
description of spin domain formation in spinor BEC, it was not
foreseen in the existing literature that under the single con-
straint of constant chemical potential the GP dynamics in T–F
approximation can actually capture whole spectrum of phase
co-existence scenarios for any general confinement. This very
general and exact method is being shown in the present paper.
Since this general procedure shows result over the whole range
of relevant parameters and for any confining potential U r( ) ,
this would be useful information for parameter setting in future
experiments and simulations.

On the basis of exact calculations we show here that T–F
approximation produces some interesting results. In the pre-
sence of anti-ferromagnetic interactions the potential phase
separation does not involve anti-ferromagnetic phases over a
very wide range of parameters. This situation is dominated by
domain formation involving ferromagnetic stationary phases.
Three-phase domain formation is only observed when the
interactions are anti-ferromagnetic. When the spin–spin
interaction is ferromagnetic, under T–F approximation, there
actually appears no domain formation involving ferromag-
netic phase over a very wide parameter space that we have
explored under isotropic harmonic confinement. Rather the
anti-ferromagnetic and polar phases dominate along with the
phase-matched (PM) and anti-phase-matched (APM) (1,1,1)
phases. However, at Zeeman coupling more than ±150 Hz,
ferromagnetic phase starts dominating. In this article, the
energy unit is Hz, which is calculated by dividing the SI unit
of energy with h, the Planck’s constant.

Regarding the nomenclature we use binary notation 1 for
filled spin subcomponent and 0 for empty one. For example,
the anti-ferromagnetic phase with filled mz=±1 and empty
mz=0 components would be denoted as (1, 0, 1), where mz

is the projection of spin-1 particle along z axis. The (1, 1, 1)
phase indicates presence of all the spin components and

would be seen to dominate quite a lot of the domain formation
scenarios along with the mixed phases (0, 1, 1) and (1, 1, 0).

After establishing energy densities for a general confin-
ing potential U r( ) , we show the domain structures here for a
special case of the U r( ) , an isotropic harmonic confinement

w=U r r1

2
2( ) . However, the same analysis can be used to

include any potential and can be extended to effectively
2-dimensional or 1-dimensional systems. GP dynamics for
effective 2- and 1-dimensional systems are obtained by inte-
grating out the dimensions which are confined below the
healing length. This essentially gives back the same structure
of GP model with renormalized couplings where the length
scales of the confined dimensions feature [8]. The same
structure of the GP model in all these dimensions makes it
amenable to the general method presented in this paper.

The chemical potentials of the basic Zeeman components
(1,0,0), (0,1,0) and (0,0,1) are constrained to remain constant
for the chemical stability of the co-existing domains and the
mixed states. This is a minimal condition, that has to be
strictly adhered to in the analysis of phase co-existence. For
anti-ferromagnetic and ferromagnetic cases we fix parameters
corresponding to 23Na and 87Rb respectively [26, 30].

The plan of the paper is as follows. We begin with the
description of the standard mean field analysis using Gross–
Pitaevskii equation for a spin-1 BEC and reproduce the phase
diagrams of the unconfined case following standard literature.
Then we show the phase separations in the confined case
where the spin–spin interaction is negligible and compare
some of these results with those of the unconfined case.
A detailed description of phase separation for the anti-
ferromagnetic and the ferromagnetic cases follows in the next
subsections. We then present a discussion of our results.

2. Mean field dynamics of the condensate

The dynamics of spin-1 condensate under mean field
approximation is given by Gross–Pitaevskii equation
[27, 28, 31]
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ψm is the order parameter corresponding to the mth spin
component and y = nm m

2∣ ∣ gives the density of corresp-
onding spin component. The total density = + + -n n n n1 0 1

is the constraint existing everywhere over space. U r( ) is, in
general, a three dimensional trapping potential and M is the
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mass of a boson. The parameter p sets the strength of the
Zeeman term where, p=−gμBB. Here g is the Lande
hyperfine g-factor, μB is the Bohr magneton and the magnetic
field is applied along the z axis (say) to lift the degeneracy of
the spin states. The parameter q is the strength of the quad-
ratic Zeeman term where, q=(gμBB)

2/Δ Ehf with Δ Ehf is
the hyperfine splitting. In the above equation, F


is local spin

density vector defined as

å y y=
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where l=x, y, z. It can be understood that the coefficient of
the linear Zeeman term p can include the additive Lagrange
multiplier arising from the conservation of magnetization
which might be there due to the presence of a magnetic field
and total spin orientation conserving scattering. The constants

= =p p- + c c,
M

a a

M

a a
1

4

3 0
4 2

3

2
2 0

2
2 0( ) ( ) , where a0 and a2 are the

s wave scattering lengths for hyperfine spin channels 0 and
2 respectively. Typical values of these scattering lengths
in atomic units for 23Na a2=52.98±0.40a.u., a0=
47.36±0.80a.u. and for 87Rb are a2=100.40±0.10a.u.,
a0=101.8±0.20a.u., [28]. In what follows, these typical
values will be used for ferro- and anti-ferromagnetic cases of
analysis.

More explicitly, the components of the spin density
vectors are

y y y y y y y= + + +- -F
1

2
, 3x 1 0 1 0 0 1 1* * *[ ( )] ( )

y y y y y y y= - + -- -F
i

2
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The mean-field energy of this system can always be
written as

òy = á ñ =E H re rd , 60[ ] ˆ ( ) ( ) 

where the local energy density e r( ) is the central quantity
which will determine the phase diagrams for a confined
system. Explicit expression of the local energy density would
read as
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A detailed phase diagram of the free system i.e. when
=U r 0( ) is well described in the review [28] where going by

the ansatz

y z= m- r t n, e , 8m m
ti( ) ( )

setting ζ0 real and Im(ζ+1)=Im(ζ−1) by fixing of the overall
phase, the following phase diagrams were arrived (figure 1).

These phase diagrams (figure 1) capture five distinct
phases separated by boundaries which are functions of the
parameters p, q, c1 and the density n of the condensate in the
presence of a magnetic field. These mean field phase dia-
grams have been immensely useful in understanding many
experimental results [2]. These diagrams, practically at the
zero temperature of the condensate, indicate a set of (quant-
um) phase transition boundaries as a function of density. For a
trapped BEC, the constant density condition underlying the
analysis of a free condensate is no longer valid. Phase
separation, therefore, can arise in a trapped spinor condensate
as a function of density. We are going to systematically
capture in this paper a complete and coherent mean-field
description of phase separation and domain formation of
trapped spin-1 condensate.

3. Phase separation of the trapped condensate

In the presence of trapping potentialU r( ) the GP dynamics of
the spinor gas of spin-1 can be decomposed into parts by
taking the ansatz

y
m
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The relative phase being defined as θr=θ1+
θ−1−2θ0, the dynamics of amplitudes and phases are
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where = - + +  U r c n
M2 0

2 2

( ) .
The phase matching condition demands μ++μ−= 2μ0,

which is valid even when μ+=μ−=μ0. μʼs are the
corresponding chemical potential and stability of the mixed
phases would require them to remain constant. In what follows,
we will always impose this condition of the constant chemical
potential μ in order to have chemical stability of the co-existing
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phases. The relative phase θr and individual phases θmʼs are
treated as global parameters, the dynamics of which actually
hold the key of the relative energy of the various spin phases,
that we are going to look for, on an equal footing. In this
particular work we are investigating states which have either a
constant phase over space or the phase gradients are negligible;
otherwise, vortex solutions can also emerge as ground state
[32] which we are not considering in this paper.

3.1. Phase separation for c1 ¼ 0

The condition, c1;0 incorporates almost no interaction of
spins. This is the situation sitting at the boundary of the two
broad regimes namely c1>0 (anti-ferromagnetic) and c1<0
(ferromagnetic). We follow here the standard scheme of
dividing the parameter regime of spin interactions as is done
for the free condensate [28] to have a direct comparison.
Setting c1=0, one can now easily get the corresponding
energy densities of the seven basic spin configurations in
terms of the total density under T–F approximation (i.e.
spatial derivatives of density and phases are neglected). As an
example let us explore the anti-ferromagnetic state, (1, 0, 1).
As n0=0 here, equation (12) is no longer valid and the
solution should obey the stationarity of other two sub-
component phases resulting in

m+ - + =U r c n p q 0, 140( ) ( ) 

when n=n1+n−1. Note that, equation (13) take such a
simple form because we are studying the case where spin
dependent interaction is absent. From equation (14) it is easy
to see that the T–F profile for the (1, 0, 1) state would be

m= - -c n r q U r , 150 ( ) ( ) ( ) 

when p=0. Here p=0 is the condition for existence of this
phase. Following the similar scheme would allow one to find
the T–F profile, corresponding energy density and the para-
meter restrictions for all the stationary states summarized in
table 1.

Note that, all the restrictions present on the parameters
corresponding to the last four phases in the table which are
p=q, p=0, p=−q and p=q=0 arise from the solution
of equations (12)–(13). An immediate consequence of these
parameter restrictions is that, except for the case i.e.
p=q=0, the states (1, 1, 0), (1, 0, 1) and (0, 1, 1) cannot
exist together. So there is no domain formation for these
phases anywhere over the p qversus parameter plane except
at the origin. The phase (1, 1, 1) exists only at the origin on
this plane as well.

Figure 2(a) is a phase diagram showing which one of the
first three phases (1, 0, 0), (0, 1, 0) and (0, 0, 1) exists where
on the p versus q plane at c1=0. This gives us a clear idea
as to where on this phase diagram the domain formation can
be expected depending upon any particular form of the

Table 1. Stationary states at c1=0. Associated conditions for the last four states are p=q, p=0, p=−q and p=0, q=0 respectively.
The energy density expressions shown in this table for all the stationary states are obtained from equation (7) by substituting specific density
profiles. Here F is an abbreviation for ferromagnetic states and P is that for polar state.

States Variation of density Energy density Restriction

(1, 0, 0) F1 m= + - -c n r p q U r0 ( ) ( ) 
= +m m- + + - - + - -e U r p q p q U r

c

p q U r

c1 20

2

0

[ ( ) ][ ( )] [ ( )]  
none
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= +m m- -e U r U r

c

U r

c2 20

2

0

( )[ ( )] [ ( )]  
none

(0, 0, 1) F2 m= - - -c n r p q U r0 ( ) ( ) 
= +m m+ + - - - - - -e U r p q p q U r

c

p q U r

c3 20

2

0

[ ( ) ][ ( )] [ ( )]  
none

(1, 1, 0) m= -c n r U r0 ( ) ( ) 
= +m m- -e U r U r

c

U r

c4 20

2

0

( )[ ( )] [ ( )]  
p=q

(1, 0, 1) m= - -c n r q U r0 ( ) ( ) 
= +m m+ - - - -e U r q q U r

c

q U r

c5 20

2

0

[ ( ) ][ ( )] [ ( )]  
p=0

(0, 1, 1) m= -c n r U r0 ( ) ( ) 
= +m m- -e U r U r

c

U r

c6 20

2

0

( )[ ( )] [ ( )]  
p=−q

(1, 1, 1) m= -c n r U r0 ( ) ( ) 
= +m m- -e U r U r

c

U r

c7 20

2

0

( )[ ( )] [ ( )]  
p=q=0

Figure 1. Phase diagram in (p,q) parametric space of a spin-1 BEC in free space. The linear and quadratic Zeeman terms are represented as p
and q respectively. These phase diagrams are particularly useful to determine the ground state structures of a homogeneous spin-1 condensate
with (a) anti-ferromagnetic, (b) no spin–spin and (c) ferromagnetic interactions.
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trapping potential U r( ) which is considered to be harmonic
here. The diagonal lines, the q−axis and the origin are the
places where the other four phases namely (1, 1, 0), (1, 0, 1),
(0, 1, 1) and (1, 1, 1) exist. An actual pair-wise comparison of
energy densities shows the inner and the outer phases to
expect in a harmonic trap in the region for negative q in
figure 2(b). This figure also includes an estimation of the
radius of phase boundaries under harmonic confinement. The
same comparison is sufficient to deduce that no phase
separation or domain formation is possible for q>0.

To look at an example for the formation of domains
when w=U r r1

2
2( ) is a harmonic trapping, let us choose the

region (III) where first three single component phases can
exist. A comparison of energy densities of the (1, 0, 0) and (0,
1, 0) shows that

D º - =
- - -

e e e
p q U r p q

c

2

2
1612 1 2

0

( )[ ( ) ( )] ( )


and it implies that the state (1, 0, 0) energetically is favored
below a radius w= -r p q0

2 ( ) because (p−q)>0. The
state (0, 1, 0) should be existing for r>r0 and is the per-
ipheral state when (1, 0, 0) sits at the core of the harmonic
trap. The situation does not happen when (p−q) is negative as
the radius becomes imaginary. The same reason is enough to
understand that phase separation between the F1 and P is only
possible in region-I, II, III and IV of figure 2(a). All such
comparison can now be done and one gets the ground state
domains of stationary phases under T–F approximations for
c1=0. Though in the regions marked as III and IV in
figure 2(a) all three types of phase separation is allowed, no
cases can be found for simultaneous domain formation of all
three states. One can start the analysis by first considering
which of the states is energetically favored at the centre of the
trap, as the condensation in an experimental situation arises
first at the central region because of the density being max-
imum there [33]. For example in region-III where (1, 0, 0) sits
at the centre of the trap, out of two possibilities of separation
(0, 1, 0) wins because the separation can happen at a smaller

radius than that with (0, 0, 1). Now, when (0, 1, 0) is in the
outer region one can check that (0, 0, 1) never wins energe-
tically over (0, 1, 0). To understand these, one can have a look
at the phase diagrams (figure 3) on U(r) versus p and U(r)
versus q planes. Phase separation between ferromagnetic and
polar phases are observed here as one moves upward along
the U r( ) -axis at relatively larger negative q values. At a
smaller negative q value, two ferromagnetic phases form
domains.

Note that no possible phase separation can happen in the
region marked VII and VIII. In this region the ground state
will be selected depending on the chemical potential μ. As we
are only concentrating on the phase separation scenario
keeping a constant μ for the three unrestricted stationary
states, we find (0, 0, 1) to be energetically lowest in the region
I,VIII (see figure 3(a)). This situation might change when the
constant μ condition is relaxed in order to find the only
existing phase without any phase separation. However, that is
not of our interest in this paper.

A quick comparison of this confined case can be done
with the phase diagram figure 1(b) of the uniform BEC.
Figure 1(b) indicates a phase separation existing for positive
q, whereas, T–F approximated calculations under actual
confinement gives here results in contrary to that. Figure 1(b)
also indicates that there can be no phase co-existence of the
two opposite ferromagnetic phases (at nonzero p), however,
the confined picture reveals the opposite. This is exactly the
reason one should be guided by the phase separation scenario
under actual confinement rather than extrapolating density
dependence of the phase in the homogeneous case to the
phase separation under confinement.

3.2. Phase co-existence for c1 ≠ 0

The condition ¹c 01 involves both anti-ferromagnetic and
ferromagnetic interaction for c1>0 and c1<0 respectively.
For nonzero spin interaction, it is obvious from
equations (10)–(11) that the temporal variation of the different

Figure 2. Co-existing phases and domain formation in (p, q) parameter space of trapped spin-1 BEC for c1=0. The states (1, 0, 0), (0, 0, 1)
and (0, 1, 0) are represented by F1, F2 and P for better visibility. For a uniform two dimensional harmonic trap the phase-separation radius
(r0) from the centre of the trap is shown as well.
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spin densities should go to zero for the stationary states. So
one is left with two choices,

• at least one of the spin density is zero (corresponds to the
first six states in table 2) or,

• all the subcomponents are populated but the relative
phase is either 0 or π.

The stationary state corresponding to θr=0 with all the
subcomponent densities being non-zero, is also called phase-
matched (PM) state [4]. For this state, equations corresp-
onding to all the phases are valid.

By exploiting the stationarity of phases one gets the
corresponding equation for the n0 subcomponent,

m
q

+ -
+ + + =- -

U r c n
c n n n n2 cos 0. 17

t

r

0

1 1 1 1 1

[ ( ) ]
( ) ( )



For further simplification one can define a parameter,
=

-
k r n

n
1

1
( ) . Note that the ansatz (equation (9)) allows

n rm ( ) to take only positive values, negative value being
accounted for by the phase factor. So by definition k r( ) is
positive and nonzero here. The condition θr=0 leads to

m+ - = - + -U r c n r c k r n r1 . 18t 0 1
2

1[ ( ) ( ) ] [ ( ) ] ( ) ( )   

Now the other two phase equations (13) become

m

- + + + -

- + + =

-U r p q c n r c k r n r

c n r c n r
k

1
1

0, 19

t 0 1
2

1

1 0 1 0

( ) ( ) ( ( ) ) ( )

( ) ( ) ( )

   

 

m
+ + + - -

- + + =
-U r p q c n r c k r n r

c n r c n r k

1
0. 20

t 0 1
2

1

1 0 1 0

( ) ( ) ( ( ) ) ( )
( ) ( ) ( )

   
 

Subtracting equation (19) from equation (20) one can express
n0 in terms of k and n−1,

=
- + -

-
-c n r

p c k n r

k

2 2 1
. 21

k

1 0
1

2
1

1
( ) ( ) ( ) ( ) 

Similarly addition leads to another expression of n0,

=
+ -

+ +
-c n r

c k n r q

k

2 1 2

2
. 22

k

1 0
1

2
1

1
( ) ( ) ( ) ( ) 

Solving last two equations one gets to express k r( ) in terms
of the external parameters p and q as, = +

-
k q p

q p
. It is easy to

see that k is positive only for >q p∣ ∣ ∣ ∣.
So, replacing the value of this k in any of the equations of

n0, and then using the equation, n=n0+(k2+1)n−1 we get
the number densities to be

=
+

+
-

n r
p q

q
n r

q p

c q4 2
, 231

2

2

2 2

1

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) 

=
-

+
-

-n r
p q

q
n r

q p

c q4 2
, 241

2

2

2 2

1

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) 

=
-

-
+

n r
q p

q
n r

q p

c q2 2
. 250

2 2

2

2 2

1

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) 

This state corresponding to θr=0 is valid for the condition
>q p∣ ∣ ∣ ∣ as reasoned earlier.
The total number density (defined as = +n r n r1( ) ( ) 

+ -n r n r0 1( ) ( ) 
) varies as

m
=

- +

+

-

n r
U r

c c
. 26

t
p q

q2

0 1

2 2

( )
( )

( )
( )

( )




Corresponding energy density can be calculated by using
this expression in equation (7)

=
-
+

+
-
+

+
-
+

+
-

e r U r
k U r

c c
c

k U r

c c

c
k U r

c c

p q

qc

1

2

1

2 2
, 27

t
t1

0 1
0

1

0 1

2

1
1

0 1

2 2

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) [ ( )]
( )

( )

( ) ( )

   



where, m= + -k p q

q1 2

2 2( ) .

The method we have used is sufficient to extract infor-
mation about APM state (q p=r ) as well. We find for APM
state, = +

-
k q p

p q
. The fact that k being positive as discussed

earlier ensures that >p q∣ ∣ ∣ ∣. Though these two conditions
(θr=0 or π) lead to the same density and energy density
profile of (1, 1, 1) state, the phase-matched and anti-phase-
matched states exist only for the conditions <p q∣ ∣ ∣ ∣ and

>p q∣ ∣ ∣ ∣ respectively.

Figure 3. Phase separation of a spin-1 BEC with almost no spin dependent interaction (c1=0). (a) and (b) showing phase separation for
opposite linear Zeeman terms These sub-figures are symmetric under the change of the direction of magnetic field. (c) Same symmetry is
revealed when quadratic Zeeman term is fixed at a negative value. The phase boundaries remain unaffected with the change of chemical
potential (μ). In this and all the following figures, the unit of the Zeeman terms p, q and the trapping potential U(r) is Hz.

6

Phys. Scr. 95 (2020) 045702 P K Kanjilal and A Bhattacharyay



Table 2. Density profile and T–F approximated energy density expressions for different stationary states at ¹c 01 are shown here. The abbreviation MF stands for mixed-ferromagnetic state and
(A)PM for (anti-)phase-matched state. The restrictions corresponding to MF1 and MF2 states arise automatically from the solution of equations (12) and (13). As n0�0 both of these states are
restricted in (p,q) parameter space depending on the sign of c1.

States Variation of density Energy density Restriction

(1,0,0) F1 m+ = + - -c c n r p q U r0 1( ) ( ) ( ) 
+m m- + + - -

+
+ - -

+
U r p q p q U r

c c

p q U r

c c20 1

2

0 1

[ ( ) ][ ( )]
( )

[ ( )]
( )

  
none

(0,1,0) P m= -c n r U r0 ( ) ( ) 
+m m- -U r U r

c

U r

c20

2

0

( )[ ( )] [ ( )]  
none

(0,0,1) F2 m+ = - - -c c n r p q U r0 1( ) ( ) ( ) 
+m m+ + - - -

+
- - -

+
U r p q p q U r

c c

p q U r

c c20 1

2

0 1

[ ( ) ][ ( )]
( )

[ ( )]
( )

  
none

(1,1,0) MF1 m+ = - + -c c n r U r p q0 1( ) ( ) ( ) ( ) 
+m m+ - -

+
+ - -

+
U r p q U r

c c

c p q U r

c c20 1

0
2

0 1
2

( )[ ( )]
( )

[ ( )]
( )

  
= -n p q

c0
1

(1,0,1) AF m= - -c n r q U r0 ( ) ( ) 
and - º =-n n Fz

p

c1 1
1

( ) + -m m+ - - - -U r q q U r

c

q U r

c

p

c2 20

2

0

2

1

[ ( ) ][ ( )] [ ( )]  
none

(0,1,1) MF2 m+ = - - +c c n r U r p q0 1( ) ( ) ( ) ( ) 
+m m- - -

+
- - -

+
U r p q U r

c c

c p q U r

c c20 1

0
2

0 1
2

( )[ ( )]
( )

[ ( )]
( )

  
= - -n p q

c0
1

(1,1,1) (A)PM + = -c c n r k U r0 1 1( ) ( ) ( ) 
where, m= + -k p q

q1 2

2 2( )
+ + +-

+
-
+

- -
+

U r k U r

c c

c k U r

c c

p q

qc

c k U r

c c2 2

2

2

2
1

0 1

1 1

0 1

2 2

1

0 1

0 1

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦( )[ ( )] ( ) ( )   

< >p q p qPM APM(∣ ∣ ∣ ∣) (∣ ∣ ∣ ∣)
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Following similar scheme, subcomponent densities and
energy densities corresponding to the first six states (see
table 2) can be easily found out.

3.2.1. Anti-ferromagnetic interaction c1 > 0. For anti-
ferromagnetic type of interaction, energetic comparison of
all the seven possible states along with the constraint that all
the component densities are positive reveal the phase
separated ground state structure. As is already mentioned,
all the energy density comparison is done at a constant
chemical potential (μ), ensuring chemical stability. We fix the
μ at 400 nK and investigate the case for 23Na , for which c1 is
positive (2.415×10−19 Hzm3). The parameter c0 is
numerically 149.89×10−19 Hzm3 for this element. The
controllable parameters p and q can be safely varied from
−150 to 150 Hz. External potential U is varied from 0 to
170 Hz. To observe the phase separation phenomenon we fix
either p or q and tune the other with U.

It is obvious that for all the mixed states the
subcomponent densities must be positive. This puts restric-
tions over p and q for all the mixed states. For example
subcomponent densities for the anti-ferromagnetic state go as

m
=

- -
n

q U r

c

p

c2 2
. 281

0 1

( ) ( )


So, AF state is only possible for the parameter value of p
and q for which both of them are positive, i.e.

m m- - > > - - -
c

c
q U r p

c

c
q U r . 291

0

1

0
( ( ) ( ( ) ( ) 

This condition is similar to the restriction over p, which is
- < <c n p c n1 1 , for the untrapped (homogeneous number
density) case [28]. Similarly, mixed ferromagnetic and (anti-)
phase-matched states have their own region of existence.
Although spin–spin interaction is positive, the anti-ferromag-
netic state does not win energetically to show phase coexistence,
under the given setting of constant chemical potential.

Tunability of p and q and comparison of energy densities,
keeping track of the above mentioned restrictions, allow us to
observe many spin domain formation. At q=30 Hz, if p is
relaxed to a moderate negative value, a domain formation
between the MF2 state, residing at the centre and F1 staying
outside can be observed (figure 4(a)). A simple check, as
mentioned earlier, can be helpful to see that MF2 can indeed
appear in this parameter domain. Similarly, at p=100 Hz,
tunability of q around 48 Hz would let one observe the
condensate forming a domain structure with MF1 inside and
F2 outside. The magnitude of q is roughly in the same region
as compared to (figure 4(a)) but p is positive in this case (not
shown in figure 4). When p is fixed at 100 Hz, variation
around small negative values of quadratic term reveals that a
domain structure between the two ferromagnetic phase can be
observed (figure 4(b)). Note that, this type of structure is not
possible for untrapped situation (figure 1(a)), which reveals
the novelty of the trapped condensate. For relatively smaller
p, variation of q around 30.5 Hz energetically favors the PM
state to occupy the high density region. F2 becomes the most

stable state to capture the low density region (figure 4(c)).
Obviously as >q p∣ ∣ ∣ ∣, (1, 1, 1) can be identified as a PM
state. The same structure extends to larger values of p
(=100 Hz) and q (101.5 to 104 Hz) which is not shown in the
figure. Figure 4(d) draws one’s attention to compare it with
figure 4(c). Though the parameter domain in this case is
different but similar structure with PM state inside and a
ferromagnetic state (in this case F1) outside is observed.

Figure 5 summarizes the various possibilities of coex-
istence of three states that we have observed. Setting the
linear term p to a small positive value, say 5 Hz, opens up the
possibility to observe a domain formation of three states when
q is tuned at around −61.5 Hz (figure 5(a)). The mixed
ferromagnetic phase MF2 outplays all other states to stay at
the low potential region. At a distance from the trap centre F1
appears as it becomes the lowest energy state. Drawing an
imaginary vertical line one can find the corresponding U r( ) ,
where the first phase separation happens, in turn allowing to
find the domain of MF2. For 2D harmonic trap the previously
defined r0 becomes, w=r U20 . Following the same
scheme, it is easy to find out the distance from the centre at
which the next state F2 resides. Note that (p+q) being
negative here, it does not impose any restriction over the
existence of the state MF2 (see table 2). Interesting to note
that this parameter region satisfies the condition as described
in equation (29). For this case, although the subcomponent
number densities are positive, the AF state does not win
energetically to form any domain.

For moderately small negative values of p and q another
three layer domain formation can be observed (figure 5(b)).
Here F1 state is only allowed to form in the most exterior part
of the trap. MF2 still occupies the central region and the other
ferromagnetic state F2 stays in between.

For moderately small negative p, when q is largely
negative, a domain structure of two ferromagnetic state and the
MF1 can be observed with F2 at the core and F1 in the most
outer region are separated by a layer of MF1 (figure 5(c)).

3.2.2. Ferromagnetic interaction c1 < 0. To investigate the
domain formation phenomenon for ferromagnetic type of
interaction we choose 87Rb for which c1 comes out to be
−0.275×10−19 Hzm3. The parameter c0 is numerically
78.02×10−19 Hz m3 for this element. Again all the
controllable parameter and the trapping potential is varied
over the specified range as stated in subsection 3.2.1. The μ is
kept fixed at the value mentioned earlier. The most startling
fact here is that there is no dominance of the ferromagnetic
phases in the domain formation scenario as observed in this
parameter region. Note that there is no apparent reason for the
ferromagnetic state not to appear at all parameter regime; in
fact we found out that in an extended parameter region
(tuning p and q beyond ±150 Hz) ferromagnetic state
dominates in the domain formation scenario. As we are
restricting ourselves in the parameter region discussed above,
we are not including these cases in figure 6.

We first fix the value of the linear Zeeman term. In the
parameter region as shown in figure 6(a), (0,1,0) is the most
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stable one to prevail at the outer region of the trap while the
PM state stays at the core. A slight increment in the q value
would only result in the broadening of the PM domain. For
small p (figure 6(b)), the state (0, 1, 0) often called the polar
state appears to have a phase separating structure with the AF
state. Note that, this happens at a large negative value of q.
For a nonzero small value of p∣ ∣ the polar state stays central
followed by the AF state staying wide (figure 6(c)).

As the sign of q is changed, a comparison between
figure 6(d) and figure 6(c) reveals the interchange of the
domains of polar and AF state. In this case the AF state forms
at the centre. A slight increment of p∣ ∣ would prefer the polar
phase to expand its domain in both the cases. In this case after
a limiting value of p∣ ∣ the structure is lost. Interesting to note
that as p appears in the energy expression of the AF state (for
details see the table 2) an increment in p2 would increase the

Figure 4. Possible two state coexisting structures; with (b), (c) at fixed p and (a), (d) at fixed q. Though, the interaction type is anti-
ferromagnetic these domain forming structures do not include the AF state. The polar phase (0, 1, 0) also does not contribute to any phase
separated structure.

Figure 5. Domain formation possibilities with three coexisting states for different values of p and q. All these three-phase coexistence arise
when q assumes a negative value. In all these structures ferromagnetic states are present. The other states that show up are mixed
ferromagnetic in nature.
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energy density of it for c1<0. As p does not appear in the
energy density expression of the polar state, depletion of the
domain of the AF is quite reasonable to occur.

Note that, equation (7) suggests the quadratic term does
not appear in the expression of energy density of the polar
phase (as m= 0 is only present) but the AF state gets affected
approximately as qn (n being the total number density).
Therefore, a change in sign of q from positive (figure 6(c)) to
negative (figure 6(d)) can only decrease the energy density of
the AF state, thus allowing it to be energetically more stable
at the high density region.

Fixing the quadratic term at q=−100 Hz a slight
variation of the linear term around 122.25 Hz would result in
the determination of a phase separating structure between the
APM state and polar phase with APM state (as >p q∣ ∣ ∣ ∣)
staying central. A slight increment in p will only result in the
depletion of the APM domain and domination of the polar
state to occupy the whole region (figure 6(e)).

3.3. Variation of individual subcomponent densities

Radial variation of subcomponent densities of the domain
forming stationary states can be obtained easily following the
analytical expressions provided earlier. For this purpose we
assume a value of trapping frequency, ω=2π×100 Hz.

For c0 and c1 values corresponding to 23Na , one may
fix the linear and quadratic term as, p=5 Hz and q=
−61.328 Hz which would allow for a three-layer domain
formation as shown in figure 5(a). The mixed-phase MF2
residing at the centre of the trap terminates at a radial distance
of approximately 0.66 μm. The solid line depicting the n0
subcomponent (figure 7(a)) is a constant for this case (see
table 2), whereas, the n1 subcomponent decreases with radial
distance from the trap centre. The second layer of F1 con-
sisting of only n1 subcomponent exists up to an approximate
distance of 0.93 μm. The other ferromagnetic phase forms the
periphery consists of only n−1 subcomponent also decreases
radially, as obvious.

Similarly for the same trapping frequency one may fix
the linear and quadratic Zeeman term at 5 Hz and−133.94 Hz
respectively to investigate the radial variation of sub-
component number densities of a phase co-existing structure
for 87Rb. For this parametric values a domain forming
structure between the polar and AF phase can be observed
(figure 6(b)). The AF state occupying the central region
vanishes at an approximate distance of 0.38 μm. As the spin–
spin interaction coefficient c1 is negative in this case the n1
will be lesser than n−1 subcomponent as evident from
equation (28). The outer region, covered by the polar phase

Figure 6. All possible phase separation for ferromagnetic type interaction. Only bi-layer domain structures are observed. Fixing the linear
term at the specified values variation of q allows one to observe a phase separation between (a) polar and phase-matched state, (b) anti-
ferromagnetic and the polar phase. For very small values of the linear Zeeman term phase separation between the polar and anti-
ferromagnetic states can be observed where the quadratic term can have a small (c) positive or (d) negative value. Fixing quadratic term,
variation of linear term also allows for phase separating structures between (e) anti-phase-matched and polar state and also between polar and
mixed ferromagnetic state.
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has only one subcomponent n0 which decreases with radial
distance as −r2.

It is interesting to note from these two density plots that
the total density variation at the interfaces of co-existing
phases is not really appreciable which may be good for
mechanical stability.

4. Discussion

Using T–F approximation, we have studied the phase
separation of stationary states in details for a spin-1 con-
densate with both ferromagnetic and anti-ferromagnetic type
of interaction. We show here that this procedure is indeed
very general and can capture all the mixed phases equally,
irrespective of the confining potential. However, the test case
that has been considered in the present work makes use of an
isotropic harmonic confinement. Applying optical and
magnetic Feshbach resonance [34], the spin interaction
parameter can be tuned [35–37] close to zero [8]. For this case
also, all the possible potential induced domain structures have
been investigated here in details.

The detailed analysis involving harmonic trap presented
here shows a remarkable result that when interactions are
ferromagnetic, the anti-ferromagnetic and polar phases dom-
inate the domain formation scenario and for anti-ferromag-
netic interaction the situation is just opposite. The actual
phase boundaries can be estimated using the present analysis
for any confining potential. Three-phase domain formation
comes out quite naturally. We have explicitly worked out here
the cases involving PM and APM phases where all the spin
projections are populated to show that under T–F approx-
imation the domain formation scenario is amenable to ana-
lytic study in general for all situation on equal footing.

It should be noted that the Zeeman terms may be varied
to even higher values [38] and the scheme shown here using
energy density comparison should suffice to reveal any
domain structure even in that regime. At zero magnetic field

the system becomes degenerate even at non-zero temperature
[38]. Careful observation reveals that the energy density
corresponding to the (A)PM state is ill defined at q=0 (in
table 2). To get rid of this issue, one can rewrite equation (12),
13 for p, q=0 in the first place. It is easy to see that the
subcomponent density then would be multiples of each other,
a fact which agrees with the assumption taken by Gautam and
Adhikari [8].

The broader picture of phase separation in terms of sta-
tionary states presented in this paper is the first step and many
of the situations arising may get ruled out when a stability
analysis is done with respect to density and the phase per-
turbations. However, this picture is essential in order to know
in the beginning about all the equilibrium possibilities that
can exist and about which state stability analysis should
happen. The present analysis is quite interesting in that
respect because it shows a complete treatment of all the
phases on equal footing is possible under T–F approximation,
which to our knowledge has not been done in this way in
existing literature.

The present analysis also shows many new results where
the actual phase boundaries over space can be obtained in the
T–F approximation and the next natural step could be looking
at the dynamics of those under various conditions and per-
turbations. These phase boundaries are places where the
derivative of the order parameter cannot be neglected, how-
ever, under T–F approximation that is not the case. As a result
it is essential that the stability analysis around each and every
phase boundary of domains be done and we would in future
look into this to see if any general stability condition can be
arrived at. The constant chemical potential constraint which is
essential for chemical stability of coexisting phases may also
be a heavy requirement for many cases under various con-
ditions and the failure of maintaining this constraint may also
rule out some otherwise allowed structures. Nevertheless, the
broader picture of stationary phase separated domains is
necessary and the present analysis will help in that purpose.

Figure 7. Radial density plots of subcomponents of different domain forming stationary states at p=5 Hz and (a) c1>0, q=−61.328 Hz
and (b) c1<0, q=−133.94 Hz. The radial distance r is scaled in μm and the number density is scaled as 1019 m−3.
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