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Abstract

A Magnetized Relativistic Quantum Hydrodynamics model is used to study the behavior of low
fRequency electrostatic solitons in relativistic magnetized spin-polarized quantum plasma. The
constituents of the plasma are inertia-less relativistic quantum electrons having concentration of
both spin-up n,1 and spin-down 7, species, and relativistic classical ions. We have used two-
dimensional geometry in which a uniform ambient magnetic field is applied in the z-direction i.e.
B = BjZ. The linear analysis shows the presence of two types of modes; slow (acoustic) mode
and a fast Langmuir-like mode. A nonlinear Zakharov—Kuznetsov (ZK) type equation is derived
for the electrostatic potential by using reductive perturbation technique. The dependence of the
spin density polarization ratio x on the properties of solitary wave profile is being investigated. It
has been demonstrated that amplitude as well as width of the soliton depend significantly on the
spin density polarization ratio, obliqueness and relativistic effects. We have also observed that
the soliton solution of the ZK equation is unstable to the oblique perturbations. The instability

growth rate varies appreciably with the density polarization and relativistic effects.

Keywords: solitary structures, relatvistic plasma, spin polarized plasma, magnetized plasma,

quantum plasma

(Some figures may appear in colour only in the online journal)

1. Introduction

At extremely high density and low temperature, the de Bro-
glie wavelength of the constituent particles of plasma
becomes comparable to the mean distance between the par-
ticles and the wavefunctions start to overlap. These systems
are commonly referred to as quantum plasmas as the quantum
nature of particles in such a system affects the entire
dynamics. Such plasmas can be observed in astrophysical
objects [1-3], miniature semiconducting devices [4], metallic
nano-structures [5], inertial confinement fusion experiments
[6], etc. Quantum properties have already been experimen-
tally observed and measured in a laser generated beryllium
plasma [7]. Many researchers have theoretically investigated
various aspects of quantum plasmas, see for example [8—11]
and many references therein. Our motivation for this work
stems from the developments in short- pulse high-power laser

0031-8949,/20,/045603+-09$33.00

technology (see for example [12]) that has made the genera-
tion of such plasmas possible in a laboratory environment.
If the average energy contents of the constituent particles
exceed their rest mass energy, relativistic effects will become
important as the relativistic parameter Pf/mc [13] will have an
appreciable magnitude and could not be ignored. Here Prand m
are respectively the Fermi momentum and mass of the con-
stituent particle and c is the speed of light in free space. In
compact interstellar objects where the particle number density
can be of the order of 10*°cm™ (white dwarf) or even
10*cm ™3 (neutron star), Chandrasekhar [14, 15] has mathe-
matically explained the equation of state for such systems for
two limits, non-relativistic and ultra-relativistic limit. If the
Fermi energy of the constituent particles of quantum plasma is
too large compared to its thermal energy, the plasma is con-
sidered as cold i.e. carrying zero kinetic temperature even if it is
of the order 10° K [16]. Mc kerr et al [17] have developed a

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Plots showing normalized angular frequency w (normalized by w,;) versus parallel propagation vector k| (normalized by );). The
left side graphs depict the high frequency modes while the right side plots show the low frequency modes. The top two plots (al) and (a2)
show how the relativistic factor affects these two modes by plotting the frequency against the parallel wave vector for three different cases,
weakly relativistic, relativistic and ultra-relativistic. In these cases, k; = 0.1 and x = 0.1. The middle plots (b1) and (b2) show the spin
polarization effect on the dispersion for a relativistic case at k; = 0.1. The bottom plots (c1) and (c2) show the effect of variation of the
perpendicular component of the wave vector k, (signifying obliqueness) for the relativistic case while keeping x = 0.1.

relativistic two fluid model and studied relativistic solitary
structure by assuming one dimensional geometry. The propa-
gation of electrostatic solitary pulses has also been investigated
in a relativistic and magnetized quantum plasma by applying a
quantum hydrodynamic model [11].

Quantum plasmas obey Fermi—Dirac statistics as the Pauli
Exclusion Principle does not allow electrons to occupy the same
state due to its identical nature. Contrary to the classical thermal

pressure, the Fermi pressure does not vanish at low temperature.
Furthermore, Bohm potential and particle spin are the other
important effects associated with quantum plasma that are to be
incorporated in the fluid modeling of the system. The Bohm
potential enters through the density perturbations while the spin
effects associated with intrinsic spin magnetic moment of the
plasma species can be introduced in the equation of motion
through the magnetization energy. A detailed description of
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modeling quantum plasma is discussed by Manfredi [18]
wherein different plasma models (kinetic and fluid) are used to
investigate the collective properties of degenerate plasma.

Brodin et al [19] presented a review of different mathe-
matical models to study magnetization effects produced due
to electron spin angular momentum in quantum plasma.
Andreev and Kuz’'menkov [20] studied oblique propagation
of longitudinal waves in magnetized spin-1/2 plasmas con-
sidering spin-up and spin-down electrons as two different
populations. They have observed additional modes during
oblique propagation of longitudinal waves in magnetized
quantum plasmas. Furthermore, Andreev [10] has given a
brief and comprehensive study of separated spin degenerate
electrons and has observed the existence of spin-electron
acoustic wave. Recently, the spin polarization effects on the
characteristic profile of electrostatic solitary structure and on
the instability of the soliton to obliquely propagating pertur-
bations have been studied in [21].

In this article, we examine the propagation of electro-
static solitary structures in relativistic quantum plasmas con-
sisting of relativistic inertia-less quantum electrons having
both spin-up (n.;) and spin-down (n,|) concentrations and
classical relativistic ions by using the approach developed in
[11]. By using the standard analytical approach called
reductive perturbation technique (RPT), a nonlinear differ-
ential equation of Zakharov—Kuznetsov (ZK) type is obtained
to study the propagation of solitary structures. It has been
observed that the solitons are not stable to oblique propaga-
tion. We investigate anaytically the dependence of the
instability growth rate on various plasma parameters. In
section 2, we present a mathematical model governing the
low frequency (ion-scale) electrostatic perturbations in mag-
netized relativistic quantum plasma composed of relativistic
inertia-less degenerate electrons of spin-up (n.;) and spin-
down (n,) concentrations and relativistic classical ions.
Section 3 describes the linear properties of such system. The
ion-acoustic waves (IAWs) propagation is studied in section 4
by deriving a nonlinear evolution equation (ZK-type). An
explanation of soliton solution is given in its subsection. The
results are discussed thoroughly by varying various plasma
parameters. The stability of oblique propagation of solitons is
investigated in section 5. We conclude our work in section 6.

2. Mathematical model

We use a magnetized relativistic quantum hydrodynamics
(MRQH) model to study relativistic quantum plasma com-
posed of relativistic inertia-less quantum electrons, both spin
up (n.1) and spin down (n,), and relativistic classical ions
[10, 11]. We have used a two-dimensional configuration and
have assumed the evolution and propagation of plasma
excitations in the X-Z-plane. Therefore, we will take V
= (0, 0, 0,). A uniform ambient magnetic field is applied in
the z-direction i.e. B = ByZ. The dynamics of classical

relativistic ions is governed by the following set of equations:

G 15 Gumew) =0, M
ot
(2+W‘V)’Yi"i:iE+e—B0Vixf- 2
ot m; m;c

The set of equations (continuity and momentum equations)
describing the dynamics of spin-up (n,1) and spin-down (n,)
inertia-less relativistic degenerate electrons are:

8(7 ne)
I LV (nervey) = O, 3)
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a( ne)
FNEL L - (yeyvep) = O, )
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The Poisson equation which closes the system of equations is
given as:

V - E = 4me(yin; — Y ne| — ViMet)- (7

The electric field is defined in terms of electrostatic potential

pasE=—-Vg¢, v, =,1— v,-,zu/c2 is the gamma factor

describing the relativistic effects. Here the subscripts i.e.
represent ion and electron respectively. The relativistic
degenerate pressure P, of spin-up (n,1) and spin-down (n,))
degenerate electrons is given by:

mic?

PES:—QSZO{?_:)) a?+11/2+3sinh_las’ 8
(a0l = 3} + 1) ) ®

where s stands for T and |, respectively. From [11]

Py + p, = Nesmec®Ja? + 1. 9)

Here, p., is the electronic fluid internal energy density. The
symbol « is the normalized relativistic parameter (ratio of the
relativistic Fermi momentum and the rest mass momentum of
the particle) and is defined as:

o pFes —

s T
mec

i(67r2nex)1/3.
mec

(10)

At equilibrium, pg,, and n,; will be replaced by pro.s and ngs.

From [10], it is clear that the equations of states for both
spin species are different due to the presence of applied
magnetic field, which causes to change the equilibrium den-
sity of each specie ng; = ng;. It is assumed that only one
electron of a particular spin can occupy a quantum state
(Pauli Exclusion Principle). We took (672n,,)!/? instead of
(372n.5)!/? occurring in the Fermi momentum state. We
have ignored Bohm potential in the electron equation
according to [22]. At equilibrium, the charge-neutrality con-
dition must be satisfied i.e. no; + no; = njo.
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Figure 2. Plot of small amplitude soliton based on equation (31) by
using M = 0.1. Plots(a) shows the relativistic effect on solitons at
. . [, = 0.9 and k = 0.1. Plots (b) depict the variation in the soliton
3. Linear analysis structure with change in the spin polarization for a relativistic plasma
at [, = 0.9. The effects of obliqueness on solitons in relativistic
We linearize and then Fourier analyze the set of plasma with spin polarization x = 0.1 for three different values

equations (11)—(17) by assuming small perturbations to vary

[,=0.9,1, =0.8, and [, = 0.7 are plotted in plots (c).
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Figure 3. Plots showing the instabilities growth rates I'; and I', as
function of € for k, = 0.05. Figure (a) shows the relativistic effect on
the growth rates of the instability having x = 0.1 and /, = 0.9.
Figure (b) shows the spin polarization effect x on the growth rate of
the instability in relativistic case, and L = 0.2, and I, = 0.9. Figure
(c) shows plots depicting the effect of /, on the growth rates of the
instability for a relativistic case at K = 0.1.

like ~eitkxtkz—wt) With some algebraic manipulation, we
obtain the following dispersion relation (for detail calcula-
tions see appendix A):

w* — bw? + ¢ =0, (19)
where
2

p=| K ,

k> + 3

k202
c=|—= ,

K+

B = %[(1 + RV + ) + (1 — &)1+ af)l.

Here, the magnitude of the propagation vector is given by
k= \/ (kx2 + kf) = \/ (k”2 + kf). From the above dispersion
relation (equation (19)), one can see spin polarization
dependence (due to spin-up and spin-down electrons) through
the symbol . The condition £ = 0 shows the fact that half of
the electrons are spin-up and the remaining half are spin-
down, whereas x = 1 represents the usual non-polarized
electron-ion plasma. The solution of equation (19) is given as:

5 (b + (b2 — 4c)1/2)

wi > (20)
It is evident from equation (20) that there is a frequency gap
for the upper mode w, — Q at k — 0 (k. = kj = 0) which
gives rise to upper-hybrid type of perturbations. Figure 1 is
the graphical representation of the dispersion relation
(equation (19)). We observe the existence of two modes; low
and a high frequency modes for the whole range of k| except
at k; = 0, where the high frequency oscillations exist only.
The low frequency mode (w_), plotted on the right, is the
acoustic oscillations, while the higher frequency mode (w.)
(plotted on the left) is the Langmuir-like mode [23]. The top
two plots (al) and (a2) in figure 1 depict the dispersion of the
plasma at three different values of the normalized relativistic
parameter of plasma «y, i.e. ag = 0.55 for the weakly-rela-
tivistic case (1029 cm > ), ag = 1.19 for the relativistic case
(1030 cm73), and o = 2.57 representing the ultra-relativistic
case (10°" cm ™). In all these three cases, the spin polarization
ratio is kept at x = 0.1 and the obliqueness parameter at
k, = 0.1. For the high frequency Langmuir-like mode on the
left figure 1 (al), one can see a reduction in both the phase
velocity and group velocity as one goes from weakly- rela-
tivistic to relativistic and ultra-relativistic case. The phase
velocity of the low frequency mode, shown in figure 1 (a2),
however, increases as one goes from weakly-relativistic case
to ultra-relativistic case. The acoustic mode stops propagating
for higher values of k. In the middle two plots of figure 1, we
have kept the obliqueness at k;, = 0.1 for a relativistic plasma
and varied the spin polarization ratio by choosing £ = 0.1,
k = 0.2, and kK = 0.3 for both the Langmuir-like mode (bl)
and the acoustic mode (b2). The spin polarization ratio seems
to have a dramatic effect on the propagation of both the
modes. For all the three cases of the spin polarization ratio,
initially the Langmuir-like mode oscillates to some extent of
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the k. The phase velocity during the oscillation increases
with increasing polarization ratio and the extent of k; for
which the Langmuir-like mode oscillates increases with
increasing polarization ratio. During the propagation phase,
the group velocity varies inversely with the spin polarization
as we go from k=0.1 to Kk =0.2, and x = 0.3. The
increasing spin polarization makes the acoustic mode prop-
agate with increasing group velocity to a larger extent of k.
After the extent of kj when the mode starts oscillating, the
phase velocity varies directly with the spin polarization. We
have also checked the effect of obliqueness on the propaga-
tion of both the Langmuir-like and ion-acoustic modes in a
relativistic plasma for a spin-polarized case of x = 0.1 by
varying k from k;, = 0.1 to k; = 0.3 as shown in the bottom
plots (cl) and (c2) of figure 1. With initial oscillations to an
extent in k, the Langmuir-like mode (c1) propagates with a
group velocity that decreases with increasing obliqueness and
the phase velocity increases with increasing obliqueness. The
lower frequency mode is observed to be propagating initially
and then starts oscillating after a fixed value of k. Both the
phase velocity and group velocity reduce with increasing
obliqueness. In all cases of interest, the Langmuir-like mode
has greater speed than the acoustic and hence the term fast
and slow mode respectively.

4. Nonlinear analysis

To study the nonlinear properties of the IAWs (solitary
structures) in the magnetized quantum plasma containing
spin-up (n,1) and spin-down (r,|) as two different species of
relativistic degenerate electrons, the standard procedure of
RPT [24] has been used to obtain the ZK equation. We have
taken V = (0,, 0, 8,). We have stretched the spatial and
temporal variables as: X = €'/ 2y, and Z = '/ 2(z —vpt) and
T = €/%, where the symbol e represents the strength of
nonlinearity and v, is the normalized waves speed. We have
expanded the dynamical quantities by following the proce-
dure used in [25] as below:

ni~1+en +en® + en® ..o (21)
my~1+ El’l(l) + anT(Z) + en (Sf , (22)
v, = evih) 4+ 2@ 4 B (23)
Vey 63/2\1)&,1}), + EZV)%). + 55/2v,£,3}), e (24)
P~ D 4 20 4 30O ... (25)

By putting the above expansions into the dynamical equations
(equations (11)—(17)) and comparing the coefficients of the
lowest powers (~¢), we obtain phase velocity v,

2
"o \/3((1 + &30+ ag) + (1= 030+ ap)
(26)

for detail calculations see appendix B.

Separating the next higher order quantities, we get the
ZK equation, which is given as:
0% o> 0 ( 0*®

+AD— + —[B— +C
or

27
0z  0z\ 0z @D

2
BCIJ _o.
ox2

Here, ® = " has been used for simplicity. In the ZK
equation (27), the real coefficients A (nonlinear coefficient),
B and C (dispersion coefficients) have the following explicit
values:

4 v(3 30 +agpd +3ag)
2y 2 A+
3+ ag +3ag) b
2 (1 — )3 v
. 96vo (1 + ag))> B 9év, (1 + agp)? 28)
a- H)I/S a+ H)1/3 ’
3
Vv
B=-"L, 29
5 (29)
v3
C= ?”(1 + Q). (30)

For detail calculations see appendix C. Equation (27) is the
ZK equation governing the nonlinear evolution of the
acoustic waves which are obliquely propagating in a mag-
netized quantum plasma having both spin-up (7.7) and spin-
down (7. |) populations of relativistic degenerate electrons and
relativistic classical ions.

4.1. Solitary wave solution

To solve the ZK equation (equation (27)) analytically for a
single pulse, we use the well-known fanh-method [26]. We
use the transformation & = (I, X + [,Z — MT), where
M represents the soliton velocity moving with the frame,
x has the dimension of inverse of soliton’s width and /,, /, are
the direction cosines of the propagation wave vector k along
X and Z directions, respectlvely Hence, 12 + I 2= 1. The
important fact to be noted here is that the ansatz deals only
with the oblique propagation with respect to the applied
magnetic field (9 = tan~!(l, /I.)), whereas it breaks down for
the purely transverse propagation (I, = 0) [27]. By using
tanh-method, the solitary wave solution of equation (27) is
given as:

® = &, sech?(&). (31)

Details on the algebraic procedure can be found in
appendix A of [28]. In the equation (31), ¢, = 7—1‘1 is the

amplitude of the soliton, & = x(I,X + [.Z — MT) and

41.(BI? 2y . . . .
x =4 W is the width of the soliton. It is clear that

the amplitude of solitons depends upon the nonlinear coeffi-
cient whereas the width of soliton is the function of dispersive
coefficients. In this study, it has been found that the present
model admits only compressive solitons for the plasma
parameters studied in this article.
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We have plotted the solution of equation (31) in figure 2
by varying the electron density and accessed three different
plasma regimes; weakly-relativistic (10°° cm ™), relativistic
(10°° em ™), and ultra-relativistic (10*' cm ™). As can be seen
from plots in figure 2(a), at the spin polarization value
k = 0.1 and the obliqueness /I, = 0.9, both the width and
amplitude of the acoustic solitons decrease as we move from
the weakly relativistic regime to the ultra-relativistic regime.
Figure 2(b) shows the effect of spin polarization on the
structure of solitons in a relativistic case at an obliqueness
value of [, = 0.9. The obliqueness value of /, = 0.9 is chosen
only to make a representative case. We observe that the width
of the soliton decreases with increase in the value of the
polarization parameter . The amplitude remains largely
unchanged with variation in the spin polarization. The choice
of the polarization parameter ~ = 0.1, 0.2, 0.3 is only for
demonstrating the effect of polarization. We also studied the
effect of propagation direction via /, on the amplitude and
width of the nonlinear structures. As explained by Verheest
[29], one needs to keep the angle between propagation vector
k and the applied magnetic field By as small to satisfy the
criteria for electrostatic approximation. It is observed (see
figure 2(c)) that for the relativistic plasma with spin polar-
ization k = 0.1, both the amplitude and width of the solitons
increase with decrease in the value of /, from 0.9 to 0.7. Once
again, the choice-values of /, amply demonstrate the changes
in the soliton structures with the obliqueness parameter.

5. Stability analysis

In this section, we investigate the stability of the solitary wave
solution of equation (31) by using the procedure developed in
[30]. By using proper scaling ie. ® — &b, T — T,T,
Z— L)Z,X — L X" the ZK-equation (equation (27)) is
converted to ‘canonical’ form as:
LI & i(az—qf + 32—‘1,’) —0. 3
or oz oz\9*Z 9%

This canonical equation has a form similar to equation (1.1)
appeared in [30]. Here we focus mainly on the salient features
of the instability instead of its re-derivation. For details, the
readers may consult the articles by Allen and Rowlands [30],
and Adnan et al [31].

The solution of equation (32) is

b = By + eP(x)eikrer, (33)

Here, @, represents the equilibrium solution of equation (32),
vis the instability growth rate, and k, is the transverse
component of the propagation vector. The function @ (x) is
calculated by using the multi-scale perturbation, depending
on an expansion in the magnitude of the wave vector k [30].

In the small k£ limits, the instability growth rate (I") is
directly proportional to the real part of  [30], and is
expressed as

T =ky+ k29 + o (34)

Here, v, and ~, represent the first and second order instabil-
ities respectively. By performing a detailed calculation
[30-32], we get the following expression for the first order
instability:

8|(8 )5 .
= —|]=cos*0 — 1| +isinf|.
" 3[(5 ]

Here, 0 is the angle made by perpendicular component of
propagation vector and the externally applied magnetic field.

1
The expression (% cos?f — 1)2 < 0 leads to 0 < 37.8° for

v to occur.

It may be noted that the second order instability which is
~k* may even takes place if the system is stable to the first
order (~k). The second order instability growth rate has the
following mathematical form:

(35)

4(5 + 4cos?f)itand

'yzz—i (§00s20—1)se09+ .
o\ 45(%00526‘ - 1)2

(36)

The Allen-Rowlands analysis [30] is summarized as
follow:
(1) For 0 < 0, ~ 37.8° the instability growth rate is

T} = kRe(71) + O(k?) ~ k%(% cos2f — 1)2. 37)
(2) For 0 > 0., ~ 37.8°, the instability growth rate is
I = kRe(y) + O(k?) ~ —kzg(g cos2f — l)sec 0. (38)

To go back to our original model by using the transformation
B L L (c\s .
oy = LHTA’ Ty = e L e R and L, = LH(E) for ®, time,
z and x respectively, we get equations (37) and (38) in the

corresponding dimensional variables as:

1

1 1
I ~ k(BCZ)2 §(§ cos?f — 1)2 (39)
I
and
D~ —kzgi(§ cos?f — 1)sec 0. (40)
LH 915

Here, we have used the scaling k — kL, v, — 1o
and v, — v, 7.

We have parametrically investigated the dependence of
the first order instability growth rate I'; as well as the second
order instability growth rate I', on plasma parameters such as
the relativistic degeneracy factor «, spin polarization x and
obliqueness I, by employing equations (39) and (40). In all
cases the first order instability growth rate I'; reduces to zero
atf = 6., = 37.8°. Beyond 6,,, I, sees an abrupt increase. In
figure 3(a), we have plotted the growth rates I'; and I', against
0 by varying the relativistic degeneracy factor at x = 0.1 and
I, = 0.9 for k, = 0.05. We observe a reduction in the growth
rates of the instability as we move from weakly relativistic
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regime to ultra-relativistic regime. For the relativistic regime,
we varied the spin polarization x at L = 0.2, and /. = 0.9
and we see (figure 3(b)) that the spin polarization significantly
reduces the growth rates, especially the second order
instability. We also studied the effect of obliqueness on the
growth rates of the instability in the relativistic regime studied
above for L)y = 0.2, and x = 0.1. A drastic enhancement in
the growth rate is observed as the value of /, is reduced from
0.9 to 0.8 and 0.7 for the smaller angles 6. For § > 37.8°, the
effect of the obliqueness on the growth rate of the second
order instability is not very significant.

6. Conclusions

We have investigated the propagation of low frequency
acoustic waves in magnetized quantum plasma consisting of
inertia-less relativistic degenerate electrons having both spin
up (n.1) and the spin down (n,)) concentrations and relati-
vistic non-degenerate dynamical ions. We have investigated
both linear and nonlinear waves by taking the degenerate
electrons having spin up (n.7) and spin down (n,)) states as
two different species. In the linear regime we got two dis-
persion curves that correspond to two different modes; a slow
(acoustic) mode and a fast (Langmuir-like) mode. Our results
indicate that in all cases of interest, from weakly-relativistic to
ultra-relativistic cases at the spin polarization value of
x = 0.1, barring the initial increment in k|, the phase speed
decreases with increase in density of the system. Furthermore,
while the Langmuir-like mode (fast-mode) propagates for the
most part of the investigation, the slow-mode (acoustic) starts
oscillating after the initial brief propagation. The increasing
spin polarization enhances the phase speed of the slow mode
but the effect is limited to the initial values of k| in case of
the Langmuir-like mode where the effect reverses after some
propagation. The obliqueness has been shown to favor the
Langmuir-like mode while it depresses the slow mode.

The solution of our ZK-type equation provides localized
solitary structures that are only compressive in nature. A
reduction in both the width and amplitude of the solitons has
been observed as one goes from weakly-relativistic regime to
ultra-relativistic regime. The width of the solitons has been
observed to be inversely proportional to the polarization
density. An increase in both the amplitude and width of the
solitons with a reduction in the direction ratio /, has also been
observed.

From the instability analysis, it can be seen that the first
order instability growth rate () decreases with 6 (i.e. the
angle between the perpendicular component of the propaga-
tion vector and the direction of the ambient magnetic field) in
the range (0 < 0 < 37.80). A decrease in the growth rate is
also recorded by changing the spin polarization ratio from 0.1
to 0.3 and by varying the normalized relativistic parameter of
plasma ag. Furthermore, the second order instability growth
rate (y,) increases sharply beyond 6 > 37.8 and attains
saturation at larger values of # inversely with spin polarization
ratio and relativistic effects.

Appendix A. Derivation of the dispersion relation

Replacing g by —iw, % by ik,, and % by ik,, equation (12)
gives

_ ke g0

(D —
: (@ — @)

bl

.Q
_l_vix(l), Vix(l) -
w

Kz g,
w

v = (A1)
By substituting the above values in equation (11), we obtain
the ion number density in terms of &

2 2
) = (L n ’i)@(l).

st (A2)

Similarly from equations (15) and (16), we obtain electron
number densities in terms of ®"

PRO

w@m n® = w@ﬂ). (A.3)

1+ R (1 — R)*3

Substituting the values of n;V, ;" and n|" in equation (17)
we obtain equation (19).

Appendix B. First order perturbed quantities and
phase velocity

By putting the expansions (22)—(26) into the dynamical
equations (11)—(17) and comparing the coefficients of the
lowest powers (~&3/2), we obtain:

o 1980 v 1990 (B.1)

oz v oz 9z v, 0Z '
oy 301 + agyp) 9a0) 52

0z (1 + w323 0z’ '
on{) 31+ afy) 9w B3

oz (1 — w23 0z ° '
) 3,01+ ad) gad -

0z (A +r23 0z’ '
avzﬁli ~ 3u(1+ a%T) oHdM B.5)

0z (A —w?3 0z’ '

1 9dM

v =0, v = o (B.6)
(1_; H‘)"é%) * (l_; H‘)”éP -n=0. B

Taking derivative of equation (B.7) with respect to Z we get

(1 + m)anﬁ#) +(1 - ﬁ)anﬁ) o

=0. (B.S)
2 0z 2 0z 0z

6,,’.(” 0”T“) ﬁnfl)

Putting 07 oz and o7 in equation (B.8) we obtain the

expression for the phase velocity equation (26).
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Appendix C. Second order perturbed quantities and
ZK equation

Separating the next higher order quantities, we get

%) ) 2) 2)
B B B B Set =0
(C.1)
PHE) Sy ovH 2)
— v, Viz Viz + Vi(zl)i + 8@; =0, (C2)
o0z or - 0Z 0z
0z (1 + r)*73
2 2
O0v, 1+ Q)" ) o) 921 (C3)
4/3 ’ '
(1 + k) oz
on® (301 + afp( + 3a3)
oz (1 — r)*/3
2 2
Poup(1+ Q) ) 92 (C.4)
ERYYE ’ '
(1 — k) 19/4
o @ _ v 090
V@ =0, v =2 , C.5
y 0% 020X €
2o 200 (M1 + k) o, (1=K) o
x| o :( 2 )”T +( 2 )nl
—n® + 6(%)1}?2 + 6(17%)";})2 _ gvl.(zl)z
(C.6)

For the derivation of equation (27) taking the derivative of
equation (C.6) with respect to Z,

00 i (1 + n)an{” N (1 - K)anz)
0Z0X? 0z3 2 /4 2 oz
2 )] (1)
_ 87’ll~() 4 6(1 + lﬁ?)v(l) aVZT + 6(1 — :‘i)v(l) 8VZ
oz 2 ) oz 2 ) oz
1
P 1y 8vi(z )
4 aZ
(C.7)
. @ on® on® v
Putting the values of =~ —", a_lz’ VD, v D,y D) s

(1)
ava
9Z

oD . .
and a—; we get the ZK equation (equation (27)).
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